]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-thin.c
qlcnic: Update version to 5.3.54
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
156
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
160
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
164
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204 * Target context for a pool.
205 */
206 struct pool_c {
207 struct dm_target *ti;
208 struct pool *pool;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
212
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219 * Target context for a thin.
220 */
221 struct thin_c {
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
224 dm_thin_id dev_id;
225
226 struct pool *pool;
227 struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
235 */
236 static void wake_worker(struct pool *pool)
237 {
238 queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
245 {
246 int r;
247 struct dm_bio_prison_cell *cell_prealloc;
248
249 /*
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
252 */
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 if (r)
257 /*
258 * We reused an old cell; we can get rid of
259 * the new one.
260 */
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263 return r;
264 }
265
266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
269 {
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
277 {
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
284 {
285 struct pool *pool = tc->pool;
286 unsigned long flags;
287
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
291
292 wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
297 {
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305 * A global list of pools that uses a struct mapped_device as a key.
306 */
307 static struct dm_thin_pool_table {
308 struct mutex mutex;
309 struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 struct pool *pool = NULL, *tmp;
333
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
338 pool = tmp;
339 break;
340 }
341 }
342
343 return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 struct pool *pool = NULL, *tmp;
349
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
354 pool = tmp;
355 break;
356 }
357 }
358
359 return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365 struct thin_c *tc;
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 struct bio *bio;
374 struct bio_list bios;
375
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
379
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383 if (h->tc == tc)
384 bio_endio(bio, DM_ENDIO_REQUEUE);
385 else
386 bio_list_add(master, bio);
387 }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392 struct pool *pool = tc->pool;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
405 * target.
406 */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_sector;
417
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
420 else
421 (void) sector_div(block_nr, pool->sectors_per_block);
422
423 return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_sector;
430
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 (bi_sector & (pool->sectors_per_block - 1));
435 else
436 bio->bi_sector = (block * pool->sectors_per_block) +
437 sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 struct dm_thin_endio_hook *h;
454
455 if (bio->bi_rw & REQ_DISCARD)
456 return;
457
458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 struct pool *pool = tc->pool;
465 unsigned long flags;
466
467 if (!bio_triggers_commit(tc, bio)) {
468 generic_make_request(bio);
469 return;
470 }
471
472 /*
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
476 */
477 if (dm_thin_aborted_changes(tc->td)) {
478 bio_io_error(bio);
479 return;
480 }
481
482 /*
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
485 */
486 spin_lock_irqsave(&pool->lock, flags);
487 bio_list_add(&pool->deferred_flush_bios, bio);
488 spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 remap_to_origin(tc, bio);
494 issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 dm_block_t block)
499 {
500 remap(tc, bio, block);
501 issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507 * Bio endio functions.
508 */
509 struct dm_thin_new_mapping {
510 struct list_head list;
511
512 unsigned quiesced:1;
513 unsigned prepared:1;
514 unsigned pass_discard:1;
515
516 struct thin_c *tc;
517 dm_block_t virt_block;
518 dm_block_t data_block;
519 struct dm_bio_prison_cell *cell, *cell2;
520 int err;
521
522 /*
523 * If the bio covers the whole area of a block then we can avoid
524 * zeroing or copying. Instead this bio is hooked. The bio will
525 * still be in the cell, so care has to be taken to avoid issuing
526 * the bio twice.
527 */
528 struct bio *bio;
529 bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 struct pool *pool = m->tc->pool;
535
536 if (m->quiesced && m->prepared) {
537 list_add(&m->list, &pool->prepared_mappings);
538 wake_worker(pool);
539 }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 unsigned long flags;
545 struct dm_thin_new_mapping *m = context;
546 struct pool *pool = m->tc->pool;
547
548 m->err = read_err || write_err ? -EIO : 0;
549
550 spin_lock_irqsave(&pool->lock, flags);
551 m->prepared = 1;
552 __maybe_add_mapping(m);
553 spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 unsigned long flags;
559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 struct pool *pool = m->tc->pool;
562
563 m->err = err;
564
565 spin_lock_irqsave(&pool->lock, flags);
566 m->prepared = 1;
567 __maybe_add_mapping(m);
568 spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574 * Workqueue.
575 */
576
577 /*
578 * Prepared mapping jobs.
579 */
580
581 /*
582 * This sends the bios in the cell back to the deferred_bios list.
583 */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 struct pool *pool = tc->pool;
587 unsigned long flags;
588
589 spin_lock_irqsave(&pool->lock, flags);
590 cell_release(pool, cell, &pool->deferred_bios);
591 spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593 wake_worker(pool);
594 }
595
596 /*
597 * Same as cell_defer above, except it omits the original holder of the cell.
598 */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 struct pool *pool = tc->pool;
602 unsigned long flags;
603
604 spin_lock_irqsave(&pool->lock, flags);
605 cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 spin_unlock_irqrestore(&pool->lock, flags);
607
608 wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 if (m->bio)
614 m->bio->bi_end_io = m->saved_bi_end_io;
615 cell_error(m->tc->pool, m->cell);
616 list_del(&m->list);
617 mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 struct thin_c *tc = m->tc;
623 struct pool *pool = tc->pool;
624 struct bio *bio;
625 int r;
626
627 bio = m->bio;
628 if (bio)
629 bio->bi_end_io = m->saved_bi_end_io;
630
631 if (m->err) {
632 cell_error(pool, m->cell);
633 goto out;
634 }
635
636 /*
637 * Commit the prepared block into the mapping btree.
638 * Any I/O for this block arriving after this point will get
639 * remapped to it directly.
640 */
641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 if (r) {
643 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
644 dm_device_name(pool->pool_md), r);
645 set_pool_mode(pool, PM_READ_ONLY);
646 cell_error(pool, m->cell);
647 goto out;
648 }
649
650 /*
651 * Release any bios held while the block was being provisioned.
652 * If we are processing a write bio that completely covers the block,
653 * we already processed it so can ignore it now when processing
654 * the bios in the cell.
655 */
656 if (bio) {
657 cell_defer_no_holder(tc, m->cell);
658 bio_endio(bio, 0);
659 } else
660 cell_defer(tc, m->cell);
661
662 out:
663 list_del(&m->list);
664 mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669 struct thin_c *tc = m->tc;
670
671 bio_io_error(m->bio);
672 cell_defer_no_holder(tc, m->cell);
673 cell_defer_no_holder(tc, m->cell2);
674 mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679 struct thin_c *tc = m->tc;
680
681 inc_all_io_entry(tc->pool, m->bio);
682 cell_defer_no_holder(tc, m->cell);
683 cell_defer_no_holder(tc, m->cell2);
684
685 if (m->pass_discard)
686 remap_and_issue(tc, m->bio, m->data_block);
687 else
688 bio_endio(m->bio, 0);
689
690 mempool_free(m, tc->pool->mapping_pool);
691 }
692
693 static void process_prepared_discard(struct dm_thin_new_mapping *m)
694 {
695 int r;
696 struct thin_c *tc = m->tc;
697
698 r = dm_thin_remove_block(tc->td, m->virt_block);
699 if (r)
700 DMERR_LIMIT("dm_thin_remove_block() failed");
701
702 process_prepared_discard_passdown(m);
703 }
704
705 static void process_prepared(struct pool *pool, struct list_head *head,
706 process_mapping_fn *fn)
707 {
708 unsigned long flags;
709 struct list_head maps;
710 struct dm_thin_new_mapping *m, *tmp;
711
712 INIT_LIST_HEAD(&maps);
713 spin_lock_irqsave(&pool->lock, flags);
714 list_splice_init(head, &maps);
715 spin_unlock_irqrestore(&pool->lock, flags);
716
717 list_for_each_entry_safe(m, tmp, &maps, list)
718 (*fn)(m);
719 }
720
721 /*
722 * Deferred bio jobs.
723 */
724 static int io_overlaps_block(struct pool *pool, struct bio *bio)
725 {
726 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
727 }
728
729 static int io_overwrites_block(struct pool *pool, struct bio *bio)
730 {
731 return (bio_data_dir(bio) == WRITE) &&
732 io_overlaps_block(pool, bio);
733 }
734
735 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
736 bio_end_io_t *fn)
737 {
738 *save = bio->bi_end_io;
739 bio->bi_end_io = fn;
740 }
741
742 static int ensure_next_mapping(struct pool *pool)
743 {
744 if (pool->next_mapping)
745 return 0;
746
747 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
748
749 return pool->next_mapping ? 0 : -ENOMEM;
750 }
751
752 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
753 {
754 struct dm_thin_new_mapping *r = pool->next_mapping;
755
756 BUG_ON(!pool->next_mapping);
757
758 pool->next_mapping = NULL;
759
760 return r;
761 }
762
763 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
764 struct dm_dev *origin, dm_block_t data_origin,
765 dm_block_t data_dest,
766 struct dm_bio_prison_cell *cell, struct bio *bio)
767 {
768 int r;
769 struct pool *pool = tc->pool;
770 struct dm_thin_new_mapping *m = get_next_mapping(pool);
771
772 INIT_LIST_HEAD(&m->list);
773 m->quiesced = 0;
774 m->prepared = 0;
775 m->tc = tc;
776 m->virt_block = virt_block;
777 m->data_block = data_dest;
778 m->cell = cell;
779 m->err = 0;
780 m->bio = NULL;
781
782 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
783 m->quiesced = 1;
784
785 /*
786 * IO to pool_dev remaps to the pool target's data_dev.
787 *
788 * If the whole block of data is being overwritten, we can issue the
789 * bio immediately. Otherwise we use kcopyd to clone the data first.
790 */
791 if (io_overwrites_block(pool, bio)) {
792 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
793
794 h->overwrite_mapping = m;
795 m->bio = bio;
796 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
797 inc_all_io_entry(pool, bio);
798 remap_and_issue(tc, bio, data_dest);
799 } else {
800 struct dm_io_region from, to;
801
802 from.bdev = origin->bdev;
803 from.sector = data_origin * pool->sectors_per_block;
804 from.count = pool->sectors_per_block;
805
806 to.bdev = tc->pool_dev->bdev;
807 to.sector = data_dest * pool->sectors_per_block;
808 to.count = pool->sectors_per_block;
809
810 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
811 0, copy_complete, m);
812 if (r < 0) {
813 mempool_free(m, pool->mapping_pool);
814 DMERR_LIMIT("dm_kcopyd_copy() failed");
815 cell_error(pool, cell);
816 }
817 }
818 }
819
820 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
821 dm_block_t data_origin, dm_block_t data_dest,
822 struct dm_bio_prison_cell *cell, struct bio *bio)
823 {
824 schedule_copy(tc, virt_block, tc->pool_dev,
825 data_origin, data_dest, cell, bio);
826 }
827
828 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
829 dm_block_t data_dest,
830 struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832 schedule_copy(tc, virt_block, tc->origin_dev,
833 virt_block, data_dest, cell, bio);
834 }
835
836 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
837 dm_block_t data_block, struct dm_bio_prison_cell *cell,
838 struct bio *bio)
839 {
840 struct pool *pool = tc->pool;
841 struct dm_thin_new_mapping *m = get_next_mapping(pool);
842
843 INIT_LIST_HEAD(&m->list);
844 m->quiesced = 1;
845 m->prepared = 0;
846 m->tc = tc;
847 m->virt_block = virt_block;
848 m->data_block = data_block;
849 m->cell = cell;
850 m->err = 0;
851 m->bio = NULL;
852
853 /*
854 * If the whole block of data is being overwritten or we are not
855 * zeroing pre-existing data, we can issue the bio immediately.
856 * Otherwise we use kcopyd to zero the data first.
857 */
858 if (!pool->pf.zero_new_blocks)
859 process_prepared_mapping(m);
860
861 else if (io_overwrites_block(pool, bio)) {
862 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863
864 h->overwrite_mapping = m;
865 m->bio = bio;
866 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
867 inc_all_io_entry(pool, bio);
868 remap_and_issue(tc, bio, data_block);
869 } else {
870 int r;
871 struct dm_io_region to;
872
873 to.bdev = tc->pool_dev->bdev;
874 to.sector = data_block * pool->sectors_per_block;
875 to.count = pool->sectors_per_block;
876
877 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
878 if (r < 0) {
879 mempool_free(m, pool->mapping_pool);
880 DMERR_LIMIT("dm_kcopyd_zero() failed");
881 cell_error(pool, cell);
882 }
883 }
884 }
885
886 /*
887 * A non-zero return indicates read_only or fail_io mode.
888 * Many callers don't care about the return value.
889 */
890 static int commit(struct pool *pool)
891 {
892 int r;
893
894 if (get_pool_mode(pool) != PM_WRITE)
895 return -EINVAL;
896
897 r = dm_pool_commit_metadata(pool->pmd);
898 if (r) {
899 DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
900 dm_device_name(pool->pool_md), r);
901 set_pool_mode(pool, PM_READ_ONLY);
902 }
903
904 return r;
905 }
906
907 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
908 {
909 int r;
910 dm_block_t free_blocks;
911 unsigned long flags;
912 struct pool *pool = tc->pool;
913
914 /*
915 * Once no_free_space is set we must not allow allocation to succeed.
916 * Otherwise it is difficult to explain, debug, test and support.
917 */
918 if (pool->no_free_space)
919 return -ENOSPC;
920
921 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
922 if (r)
923 return r;
924
925 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
926 DMWARN("%s: reached low water mark for data device: sending event.",
927 dm_device_name(pool->pool_md));
928 spin_lock_irqsave(&pool->lock, flags);
929 pool->low_water_triggered = 1;
930 spin_unlock_irqrestore(&pool->lock, flags);
931 dm_table_event(pool->ti->table);
932 }
933
934 if (!free_blocks) {
935 /*
936 * Try to commit to see if that will free up some
937 * more space.
938 */
939 r = commit(pool);
940 if (r)
941 return r;
942
943 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 if (r)
945 return r;
946
947 /*
948 * If we still have no space we set a flag to avoid
949 * doing all this checking and return -ENOSPC. This
950 * flag serves as a latch that disallows allocations from
951 * this pool until the admin takes action (e.g. resize or
952 * table reload).
953 */
954 if (!free_blocks) {
955 DMWARN("%s: no free data space available.",
956 dm_device_name(pool->pool_md));
957 spin_lock_irqsave(&pool->lock, flags);
958 pool->no_free_space = 1;
959 spin_unlock_irqrestore(&pool->lock, flags);
960 return -ENOSPC;
961 }
962 }
963
964 r = dm_pool_alloc_data_block(pool->pmd, result);
965 if (r) {
966 if (r == -ENOSPC &&
967 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
968 !free_blocks) {
969 DMWARN("%s: no free metadata space available.",
970 dm_device_name(pool->pool_md));
971 set_pool_mode(pool, PM_READ_ONLY);
972 }
973 return r;
974 }
975
976 return 0;
977 }
978
979 /*
980 * If we have run out of space, queue bios until the device is
981 * resumed, presumably after having been reloaded with more space.
982 */
983 static void retry_on_resume(struct bio *bio)
984 {
985 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986 struct thin_c *tc = h->tc;
987 struct pool *pool = tc->pool;
988 unsigned long flags;
989
990 spin_lock_irqsave(&pool->lock, flags);
991 bio_list_add(&pool->retry_on_resume_list, bio);
992 spin_unlock_irqrestore(&pool->lock, flags);
993 }
994
995 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
996 {
997 struct bio *bio;
998 struct bio_list bios;
999
1000 bio_list_init(&bios);
1001 cell_release(pool, cell, &bios);
1002
1003 while ((bio = bio_list_pop(&bios)))
1004 retry_on_resume(bio);
1005 }
1006
1007 static void process_discard(struct thin_c *tc, struct bio *bio)
1008 {
1009 int r;
1010 unsigned long flags;
1011 struct pool *pool = tc->pool;
1012 struct dm_bio_prison_cell *cell, *cell2;
1013 struct dm_cell_key key, key2;
1014 dm_block_t block = get_bio_block(tc, bio);
1015 struct dm_thin_lookup_result lookup_result;
1016 struct dm_thin_new_mapping *m;
1017
1018 build_virtual_key(tc->td, block, &key);
1019 if (bio_detain(tc->pool, &key, bio, &cell))
1020 return;
1021
1022 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1023 switch (r) {
1024 case 0:
1025 /*
1026 * Check nobody is fiddling with this pool block. This can
1027 * happen if someone's in the process of breaking sharing
1028 * on this block.
1029 */
1030 build_data_key(tc->td, lookup_result.block, &key2);
1031 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1032 cell_defer_no_holder(tc, cell);
1033 break;
1034 }
1035
1036 if (io_overlaps_block(pool, bio)) {
1037 /*
1038 * IO may still be going to the destination block. We must
1039 * quiesce before we can do the removal.
1040 */
1041 m = get_next_mapping(pool);
1042 m->tc = tc;
1043 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1044 m->virt_block = block;
1045 m->data_block = lookup_result.block;
1046 m->cell = cell;
1047 m->cell2 = cell2;
1048 m->err = 0;
1049 m->bio = bio;
1050
1051 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1052 spin_lock_irqsave(&pool->lock, flags);
1053 list_add(&m->list, &pool->prepared_discards);
1054 spin_unlock_irqrestore(&pool->lock, flags);
1055 wake_worker(pool);
1056 }
1057 } else {
1058 inc_all_io_entry(pool, bio);
1059 cell_defer_no_holder(tc, cell);
1060 cell_defer_no_holder(tc, cell2);
1061
1062 /*
1063 * The DM core makes sure that the discard doesn't span
1064 * a block boundary. So we submit the discard of a
1065 * partial block appropriately.
1066 */
1067 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1068 remap_and_issue(tc, bio, lookup_result.block);
1069 else
1070 bio_endio(bio, 0);
1071 }
1072 break;
1073
1074 case -ENODATA:
1075 /*
1076 * It isn't provisioned, just forget it.
1077 */
1078 cell_defer_no_holder(tc, cell);
1079 bio_endio(bio, 0);
1080 break;
1081
1082 default:
1083 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1084 __func__, r);
1085 cell_defer_no_holder(tc, cell);
1086 bio_io_error(bio);
1087 break;
1088 }
1089 }
1090
1091 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1092 struct dm_cell_key *key,
1093 struct dm_thin_lookup_result *lookup_result,
1094 struct dm_bio_prison_cell *cell)
1095 {
1096 int r;
1097 dm_block_t data_block;
1098 struct pool *pool = tc->pool;
1099
1100 r = alloc_data_block(tc, &data_block);
1101 switch (r) {
1102 case 0:
1103 schedule_internal_copy(tc, block, lookup_result->block,
1104 data_block, cell, bio);
1105 break;
1106
1107 case -ENOSPC:
1108 no_space(pool, cell);
1109 break;
1110
1111 default:
1112 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1113 __func__, r);
1114 set_pool_mode(pool, PM_READ_ONLY);
1115 cell_error(pool, cell);
1116 break;
1117 }
1118 }
1119
1120 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1121 dm_block_t block,
1122 struct dm_thin_lookup_result *lookup_result)
1123 {
1124 struct dm_bio_prison_cell *cell;
1125 struct pool *pool = tc->pool;
1126 struct dm_cell_key key;
1127
1128 /*
1129 * If cell is already occupied, then sharing is already in the process
1130 * of being broken so we have nothing further to do here.
1131 */
1132 build_data_key(tc->td, lookup_result->block, &key);
1133 if (bio_detain(pool, &key, bio, &cell))
1134 return;
1135
1136 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1137 break_sharing(tc, bio, block, &key, lookup_result, cell);
1138 else {
1139 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1140
1141 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1142 inc_all_io_entry(pool, bio);
1143 cell_defer_no_holder(tc, cell);
1144
1145 remap_and_issue(tc, bio, lookup_result->block);
1146 }
1147 }
1148
1149 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1150 struct dm_bio_prison_cell *cell)
1151 {
1152 int r;
1153 dm_block_t data_block;
1154 struct pool *pool = tc->pool;
1155
1156 /*
1157 * Remap empty bios (flushes) immediately, without provisioning.
1158 */
1159 if (!bio->bi_size) {
1160 inc_all_io_entry(pool, bio);
1161 cell_defer_no_holder(tc, cell);
1162
1163 remap_and_issue(tc, bio, 0);
1164 return;
1165 }
1166
1167 /*
1168 * Fill read bios with zeroes and complete them immediately.
1169 */
1170 if (bio_data_dir(bio) == READ) {
1171 zero_fill_bio(bio);
1172 cell_defer_no_holder(tc, cell);
1173 bio_endio(bio, 0);
1174 return;
1175 }
1176
1177 r = alloc_data_block(tc, &data_block);
1178 switch (r) {
1179 case 0:
1180 if (tc->origin_dev)
1181 schedule_external_copy(tc, block, data_block, cell, bio);
1182 else
1183 schedule_zero(tc, block, data_block, cell, bio);
1184 break;
1185
1186 case -ENOSPC:
1187 no_space(pool, cell);
1188 break;
1189
1190 default:
1191 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1192 __func__, r);
1193 set_pool_mode(pool, PM_READ_ONLY);
1194 cell_error(pool, cell);
1195 break;
1196 }
1197 }
1198
1199 static void process_bio(struct thin_c *tc, struct bio *bio)
1200 {
1201 int r;
1202 struct pool *pool = tc->pool;
1203 dm_block_t block = get_bio_block(tc, bio);
1204 struct dm_bio_prison_cell *cell;
1205 struct dm_cell_key key;
1206 struct dm_thin_lookup_result lookup_result;
1207
1208 /*
1209 * If cell is already occupied, then the block is already
1210 * being provisioned so we have nothing further to do here.
1211 */
1212 build_virtual_key(tc->td, block, &key);
1213 if (bio_detain(pool, &key, bio, &cell))
1214 return;
1215
1216 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1217 switch (r) {
1218 case 0:
1219 if (lookup_result.shared) {
1220 process_shared_bio(tc, bio, block, &lookup_result);
1221 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1222 } else {
1223 inc_all_io_entry(pool, bio);
1224 cell_defer_no_holder(tc, cell);
1225
1226 remap_and_issue(tc, bio, lookup_result.block);
1227 }
1228 break;
1229
1230 case -ENODATA:
1231 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1232 inc_all_io_entry(pool, bio);
1233 cell_defer_no_holder(tc, cell);
1234
1235 remap_to_origin_and_issue(tc, bio);
1236 } else
1237 provision_block(tc, bio, block, cell);
1238 break;
1239
1240 default:
1241 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1242 __func__, r);
1243 cell_defer_no_holder(tc, cell);
1244 bio_io_error(bio);
1245 break;
1246 }
1247 }
1248
1249 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1250 {
1251 int r;
1252 int rw = bio_data_dir(bio);
1253 dm_block_t block = get_bio_block(tc, bio);
1254 struct dm_thin_lookup_result lookup_result;
1255
1256 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1257 switch (r) {
1258 case 0:
1259 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1260 bio_io_error(bio);
1261 else {
1262 inc_all_io_entry(tc->pool, bio);
1263 remap_and_issue(tc, bio, lookup_result.block);
1264 }
1265 break;
1266
1267 case -ENODATA:
1268 if (rw != READ) {
1269 bio_io_error(bio);
1270 break;
1271 }
1272
1273 if (tc->origin_dev) {
1274 inc_all_io_entry(tc->pool, bio);
1275 remap_to_origin_and_issue(tc, bio);
1276 break;
1277 }
1278
1279 zero_fill_bio(bio);
1280 bio_endio(bio, 0);
1281 break;
1282
1283 default:
1284 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1285 __func__, r);
1286 bio_io_error(bio);
1287 break;
1288 }
1289 }
1290
1291 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1292 {
1293 bio_io_error(bio);
1294 }
1295
1296 /*
1297 * FIXME: should we also commit due to size of transaction, measured in
1298 * metadata blocks?
1299 */
1300 static int need_commit_due_to_time(struct pool *pool)
1301 {
1302 return jiffies < pool->last_commit_jiffies ||
1303 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1304 }
1305
1306 static void process_deferred_bios(struct pool *pool)
1307 {
1308 unsigned long flags;
1309 struct bio *bio;
1310 struct bio_list bios;
1311
1312 bio_list_init(&bios);
1313
1314 spin_lock_irqsave(&pool->lock, flags);
1315 bio_list_merge(&bios, &pool->deferred_bios);
1316 bio_list_init(&pool->deferred_bios);
1317 spin_unlock_irqrestore(&pool->lock, flags);
1318
1319 while ((bio = bio_list_pop(&bios))) {
1320 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1321 struct thin_c *tc = h->tc;
1322
1323 /*
1324 * If we've got no free new_mapping structs, and processing
1325 * this bio might require one, we pause until there are some
1326 * prepared mappings to process.
1327 */
1328 if (ensure_next_mapping(pool)) {
1329 spin_lock_irqsave(&pool->lock, flags);
1330 bio_list_merge(&pool->deferred_bios, &bios);
1331 spin_unlock_irqrestore(&pool->lock, flags);
1332
1333 break;
1334 }
1335
1336 if (bio->bi_rw & REQ_DISCARD)
1337 pool->process_discard(tc, bio);
1338 else
1339 pool->process_bio(tc, bio);
1340 }
1341
1342 /*
1343 * If there are any deferred flush bios, we must commit
1344 * the metadata before issuing them.
1345 */
1346 bio_list_init(&bios);
1347 spin_lock_irqsave(&pool->lock, flags);
1348 bio_list_merge(&bios, &pool->deferred_flush_bios);
1349 bio_list_init(&pool->deferred_flush_bios);
1350 spin_unlock_irqrestore(&pool->lock, flags);
1351
1352 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1353 return;
1354
1355 if (commit(pool)) {
1356 while ((bio = bio_list_pop(&bios)))
1357 bio_io_error(bio);
1358 return;
1359 }
1360 pool->last_commit_jiffies = jiffies;
1361
1362 while ((bio = bio_list_pop(&bios)))
1363 generic_make_request(bio);
1364 }
1365
1366 static void do_worker(struct work_struct *ws)
1367 {
1368 struct pool *pool = container_of(ws, struct pool, worker);
1369
1370 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1371 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1372 process_deferred_bios(pool);
1373 }
1374
1375 /*
1376 * We want to commit periodically so that not too much
1377 * unwritten data builds up.
1378 */
1379 static void do_waker(struct work_struct *ws)
1380 {
1381 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1382 wake_worker(pool);
1383 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1384 }
1385
1386 /*----------------------------------------------------------------*/
1387
1388 static enum pool_mode get_pool_mode(struct pool *pool)
1389 {
1390 return pool->pf.mode;
1391 }
1392
1393 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1394 {
1395 int r;
1396
1397 pool->pf.mode = mode;
1398
1399 switch (mode) {
1400 case PM_FAIL:
1401 DMERR("%s: switching pool to failure mode",
1402 dm_device_name(pool->pool_md));
1403 dm_pool_metadata_read_only(pool->pmd);
1404 pool->process_bio = process_bio_fail;
1405 pool->process_discard = process_bio_fail;
1406 pool->process_prepared_mapping = process_prepared_mapping_fail;
1407 pool->process_prepared_discard = process_prepared_discard_fail;
1408 break;
1409
1410 case PM_READ_ONLY:
1411 DMERR("%s: switching pool to read-only mode",
1412 dm_device_name(pool->pool_md));
1413 r = dm_pool_abort_metadata(pool->pmd);
1414 if (r) {
1415 DMERR("%s: aborting transaction failed",
1416 dm_device_name(pool->pool_md));
1417 set_pool_mode(pool, PM_FAIL);
1418 } else {
1419 dm_pool_metadata_read_only(pool->pmd);
1420 pool->process_bio = process_bio_read_only;
1421 pool->process_discard = process_discard;
1422 pool->process_prepared_mapping = process_prepared_mapping_fail;
1423 pool->process_prepared_discard = process_prepared_discard_passdown;
1424 }
1425 break;
1426
1427 case PM_WRITE:
1428 dm_pool_metadata_read_write(pool->pmd);
1429 pool->process_bio = process_bio;
1430 pool->process_discard = process_discard;
1431 pool->process_prepared_mapping = process_prepared_mapping;
1432 pool->process_prepared_discard = process_prepared_discard;
1433 break;
1434 }
1435 }
1436
1437 /*----------------------------------------------------------------*/
1438
1439 /*
1440 * Mapping functions.
1441 */
1442
1443 /*
1444 * Called only while mapping a thin bio to hand it over to the workqueue.
1445 */
1446 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1447 {
1448 unsigned long flags;
1449 struct pool *pool = tc->pool;
1450
1451 spin_lock_irqsave(&pool->lock, flags);
1452 bio_list_add(&pool->deferred_bios, bio);
1453 spin_unlock_irqrestore(&pool->lock, flags);
1454
1455 wake_worker(pool);
1456 }
1457
1458 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1459 {
1460 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1461
1462 h->tc = tc;
1463 h->shared_read_entry = NULL;
1464 h->all_io_entry = NULL;
1465 h->overwrite_mapping = NULL;
1466 }
1467
1468 /*
1469 * Non-blocking function called from the thin target's map function.
1470 */
1471 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1472 {
1473 int r;
1474 struct thin_c *tc = ti->private;
1475 dm_block_t block = get_bio_block(tc, bio);
1476 struct dm_thin_device *td = tc->td;
1477 struct dm_thin_lookup_result result;
1478 struct dm_bio_prison_cell cell1, cell2;
1479 struct dm_bio_prison_cell *cell_result;
1480 struct dm_cell_key key;
1481
1482 thin_hook_bio(tc, bio);
1483
1484 if (get_pool_mode(tc->pool) == PM_FAIL) {
1485 bio_io_error(bio);
1486 return DM_MAPIO_SUBMITTED;
1487 }
1488
1489 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1490 thin_defer_bio(tc, bio);
1491 return DM_MAPIO_SUBMITTED;
1492 }
1493
1494 r = dm_thin_find_block(td, block, 0, &result);
1495
1496 /*
1497 * Note that we defer readahead too.
1498 */
1499 switch (r) {
1500 case 0:
1501 if (unlikely(result.shared)) {
1502 /*
1503 * We have a race condition here between the
1504 * result.shared value returned by the lookup and
1505 * snapshot creation, which may cause new
1506 * sharing.
1507 *
1508 * To avoid this always quiesce the origin before
1509 * taking the snap. You want to do this anyway to
1510 * ensure a consistent application view
1511 * (i.e. lockfs).
1512 *
1513 * More distant ancestors are irrelevant. The
1514 * shared flag will be set in their case.
1515 */
1516 thin_defer_bio(tc, bio);
1517 return DM_MAPIO_SUBMITTED;
1518 }
1519
1520 build_virtual_key(tc->td, block, &key);
1521 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1522 return DM_MAPIO_SUBMITTED;
1523
1524 build_data_key(tc->td, result.block, &key);
1525 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1526 cell_defer_no_holder_no_free(tc, &cell1);
1527 return DM_MAPIO_SUBMITTED;
1528 }
1529
1530 inc_all_io_entry(tc->pool, bio);
1531 cell_defer_no_holder_no_free(tc, &cell2);
1532 cell_defer_no_holder_no_free(tc, &cell1);
1533
1534 remap(tc, bio, result.block);
1535 return DM_MAPIO_REMAPPED;
1536
1537 case -ENODATA:
1538 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1539 /*
1540 * This block isn't provisioned, and we have no way
1541 * of doing so. Just error it.
1542 */
1543 bio_io_error(bio);
1544 return DM_MAPIO_SUBMITTED;
1545 }
1546 /* fall through */
1547
1548 case -EWOULDBLOCK:
1549 /*
1550 * In future, the failed dm_thin_find_block above could
1551 * provide the hint to load the metadata into cache.
1552 */
1553 thin_defer_bio(tc, bio);
1554 return DM_MAPIO_SUBMITTED;
1555
1556 default:
1557 /*
1558 * Must always call bio_io_error on failure.
1559 * dm_thin_find_block can fail with -EINVAL if the
1560 * pool is switched to fail-io mode.
1561 */
1562 bio_io_error(bio);
1563 return DM_MAPIO_SUBMITTED;
1564 }
1565 }
1566
1567 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1568 {
1569 int r;
1570 unsigned long flags;
1571 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1572
1573 spin_lock_irqsave(&pt->pool->lock, flags);
1574 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1575 spin_unlock_irqrestore(&pt->pool->lock, flags);
1576
1577 if (!r) {
1578 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1579 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1580 }
1581
1582 return r;
1583 }
1584
1585 static void __requeue_bios(struct pool *pool)
1586 {
1587 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1588 bio_list_init(&pool->retry_on_resume_list);
1589 }
1590
1591 /*----------------------------------------------------------------
1592 * Binding of control targets to a pool object
1593 *--------------------------------------------------------------*/
1594 static bool data_dev_supports_discard(struct pool_c *pt)
1595 {
1596 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1597
1598 return q && blk_queue_discard(q);
1599 }
1600
1601 static bool is_factor(sector_t block_size, uint32_t n)
1602 {
1603 return !sector_div(block_size, n);
1604 }
1605
1606 /*
1607 * If discard_passdown was enabled verify that the data device
1608 * supports discards. Disable discard_passdown if not.
1609 */
1610 static void disable_passdown_if_not_supported(struct pool_c *pt)
1611 {
1612 struct pool *pool = pt->pool;
1613 struct block_device *data_bdev = pt->data_dev->bdev;
1614 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1615 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1616 const char *reason = NULL;
1617 char buf[BDEVNAME_SIZE];
1618
1619 if (!pt->adjusted_pf.discard_passdown)
1620 return;
1621
1622 if (!data_dev_supports_discard(pt))
1623 reason = "discard unsupported";
1624
1625 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1626 reason = "max discard sectors smaller than a block";
1627
1628 else if (data_limits->discard_granularity > block_size)
1629 reason = "discard granularity larger than a block";
1630
1631 else if (!is_factor(block_size, data_limits->discard_granularity))
1632 reason = "discard granularity not a factor of block size";
1633
1634 if (reason) {
1635 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1636 pt->adjusted_pf.discard_passdown = false;
1637 }
1638 }
1639
1640 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1641 {
1642 struct pool_c *pt = ti->private;
1643
1644 /*
1645 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1646 */
1647 enum pool_mode old_mode = pool->pf.mode;
1648 enum pool_mode new_mode = pt->adjusted_pf.mode;
1649
1650 /*
1651 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1652 * not going to recover without a thin_repair. So we never let the
1653 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1654 * may have been due to a lack of metadata or data space, and may
1655 * now work (ie. if the underlying devices have been resized).
1656 */
1657 if (old_mode == PM_FAIL)
1658 new_mode = old_mode;
1659
1660 pool->ti = ti;
1661 pool->low_water_blocks = pt->low_water_blocks;
1662 pool->pf = pt->adjusted_pf;
1663
1664 set_pool_mode(pool, new_mode);
1665
1666 return 0;
1667 }
1668
1669 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1670 {
1671 if (pool->ti == ti)
1672 pool->ti = NULL;
1673 }
1674
1675 /*----------------------------------------------------------------
1676 * Pool creation
1677 *--------------------------------------------------------------*/
1678 /* Initialize pool features. */
1679 static void pool_features_init(struct pool_features *pf)
1680 {
1681 pf->mode = PM_WRITE;
1682 pf->zero_new_blocks = true;
1683 pf->discard_enabled = true;
1684 pf->discard_passdown = true;
1685 }
1686
1687 static void __pool_destroy(struct pool *pool)
1688 {
1689 __pool_table_remove(pool);
1690
1691 if (dm_pool_metadata_close(pool->pmd) < 0)
1692 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1693
1694 dm_bio_prison_destroy(pool->prison);
1695 dm_kcopyd_client_destroy(pool->copier);
1696
1697 if (pool->wq)
1698 destroy_workqueue(pool->wq);
1699
1700 if (pool->next_mapping)
1701 mempool_free(pool->next_mapping, pool->mapping_pool);
1702 mempool_destroy(pool->mapping_pool);
1703 dm_deferred_set_destroy(pool->shared_read_ds);
1704 dm_deferred_set_destroy(pool->all_io_ds);
1705 kfree(pool);
1706 }
1707
1708 static struct kmem_cache *_new_mapping_cache;
1709
1710 static struct pool *pool_create(struct mapped_device *pool_md,
1711 struct block_device *metadata_dev,
1712 unsigned long block_size,
1713 int read_only, char **error)
1714 {
1715 int r;
1716 void *err_p;
1717 struct pool *pool;
1718 struct dm_pool_metadata *pmd;
1719 bool format_device = read_only ? false : true;
1720
1721 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1722 if (IS_ERR(pmd)) {
1723 *error = "Error creating metadata object";
1724 return (struct pool *)pmd;
1725 }
1726
1727 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1728 if (!pool) {
1729 *error = "Error allocating memory for pool";
1730 err_p = ERR_PTR(-ENOMEM);
1731 goto bad_pool;
1732 }
1733
1734 pool->pmd = pmd;
1735 pool->sectors_per_block = block_size;
1736 if (block_size & (block_size - 1))
1737 pool->sectors_per_block_shift = -1;
1738 else
1739 pool->sectors_per_block_shift = __ffs(block_size);
1740 pool->low_water_blocks = 0;
1741 pool_features_init(&pool->pf);
1742 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1743 if (!pool->prison) {
1744 *error = "Error creating pool's bio prison";
1745 err_p = ERR_PTR(-ENOMEM);
1746 goto bad_prison;
1747 }
1748
1749 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1750 if (IS_ERR(pool->copier)) {
1751 r = PTR_ERR(pool->copier);
1752 *error = "Error creating pool's kcopyd client";
1753 err_p = ERR_PTR(r);
1754 goto bad_kcopyd_client;
1755 }
1756
1757 /*
1758 * Create singlethreaded workqueue that will service all devices
1759 * that use this metadata.
1760 */
1761 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1762 if (!pool->wq) {
1763 *error = "Error creating pool's workqueue";
1764 err_p = ERR_PTR(-ENOMEM);
1765 goto bad_wq;
1766 }
1767
1768 INIT_WORK(&pool->worker, do_worker);
1769 INIT_DELAYED_WORK(&pool->waker, do_waker);
1770 spin_lock_init(&pool->lock);
1771 bio_list_init(&pool->deferred_bios);
1772 bio_list_init(&pool->deferred_flush_bios);
1773 INIT_LIST_HEAD(&pool->prepared_mappings);
1774 INIT_LIST_HEAD(&pool->prepared_discards);
1775 pool->low_water_triggered = 0;
1776 pool->no_free_space = 0;
1777 bio_list_init(&pool->retry_on_resume_list);
1778
1779 pool->shared_read_ds = dm_deferred_set_create();
1780 if (!pool->shared_read_ds) {
1781 *error = "Error creating pool's shared read deferred set";
1782 err_p = ERR_PTR(-ENOMEM);
1783 goto bad_shared_read_ds;
1784 }
1785
1786 pool->all_io_ds = dm_deferred_set_create();
1787 if (!pool->all_io_ds) {
1788 *error = "Error creating pool's all io deferred set";
1789 err_p = ERR_PTR(-ENOMEM);
1790 goto bad_all_io_ds;
1791 }
1792
1793 pool->next_mapping = NULL;
1794 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1795 _new_mapping_cache);
1796 if (!pool->mapping_pool) {
1797 *error = "Error creating pool's mapping mempool";
1798 err_p = ERR_PTR(-ENOMEM);
1799 goto bad_mapping_pool;
1800 }
1801
1802 pool->ref_count = 1;
1803 pool->last_commit_jiffies = jiffies;
1804 pool->pool_md = pool_md;
1805 pool->md_dev = metadata_dev;
1806 __pool_table_insert(pool);
1807
1808 return pool;
1809
1810 bad_mapping_pool:
1811 dm_deferred_set_destroy(pool->all_io_ds);
1812 bad_all_io_ds:
1813 dm_deferred_set_destroy(pool->shared_read_ds);
1814 bad_shared_read_ds:
1815 destroy_workqueue(pool->wq);
1816 bad_wq:
1817 dm_kcopyd_client_destroy(pool->copier);
1818 bad_kcopyd_client:
1819 dm_bio_prison_destroy(pool->prison);
1820 bad_prison:
1821 kfree(pool);
1822 bad_pool:
1823 if (dm_pool_metadata_close(pmd))
1824 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1825
1826 return err_p;
1827 }
1828
1829 static void __pool_inc(struct pool *pool)
1830 {
1831 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1832 pool->ref_count++;
1833 }
1834
1835 static void __pool_dec(struct pool *pool)
1836 {
1837 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1838 BUG_ON(!pool->ref_count);
1839 if (!--pool->ref_count)
1840 __pool_destroy(pool);
1841 }
1842
1843 static struct pool *__pool_find(struct mapped_device *pool_md,
1844 struct block_device *metadata_dev,
1845 unsigned long block_size, int read_only,
1846 char **error, int *created)
1847 {
1848 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1849
1850 if (pool) {
1851 if (pool->pool_md != pool_md) {
1852 *error = "metadata device already in use by a pool";
1853 return ERR_PTR(-EBUSY);
1854 }
1855 __pool_inc(pool);
1856
1857 } else {
1858 pool = __pool_table_lookup(pool_md);
1859 if (pool) {
1860 if (pool->md_dev != metadata_dev) {
1861 *error = "different pool cannot replace a pool";
1862 return ERR_PTR(-EINVAL);
1863 }
1864 __pool_inc(pool);
1865
1866 } else {
1867 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1868 *created = 1;
1869 }
1870 }
1871
1872 return pool;
1873 }
1874
1875 /*----------------------------------------------------------------
1876 * Pool target methods
1877 *--------------------------------------------------------------*/
1878 static void pool_dtr(struct dm_target *ti)
1879 {
1880 struct pool_c *pt = ti->private;
1881
1882 mutex_lock(&dm_thin_pool_table.mutex);
1883
1884 unbind_control_target(pt->pool, ti);
1885 __pool_dec(pt->pool);
1886 dm_put_device(ti, pt->metadata_dev);
1887 dm_put_device(ti, pt->data_dev);
1888 kfree(pt);
1889
1890 mutex_unlock(&dm_thin_pool_table.mutex);
1891 }
1892
1893 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1894 struct dm_target *ti)
1895 {
1896 int r;
1897 unsigned argc;
1898 const char *arg_name;
1899
1900 static struct dm_arg _args[] = {
1901 {0, 3, "Invalid number of pool feature arguments"},
1902 };
1903
1904 /*
1905 * No feature arguments supplied.
1906 */
1907 if (!as->argc)
1908 return 0;
1909
1910 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1911 if (r)
1912 return -EINVAL;
1913
1914 while (argc && !r) {
1915 arg_name = dm_shift_arg(as);
1916 argc--;
1917
1918 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1919 pf->zero_new_blocks = false;
1920
1921 else if (!strcasecmp(arg_name, "ignore_discard"))
1922 pf->discard_enabled = false;
1923
1924 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1925 pf->discard_passdown = false;
1926
1927 else if (!strcasecmp(arg_name, "read_only"))
1928 pf->mode = PM_READ_ONLY;
1929
1930 else {
1931 ti->error = "Unrecognised pool feature requested";
1932 r = -EINVAL;
1933 break;
1934 }
1935 }
1936
1937 return r;
1938 }
1939
1940 static void metadata_low_callback(void *context)
1941 {
1942 struct pool *pool = context;
1943
1944 DMWARN("%s: reached low water mark for metadata device: sending event.",
1945 dm_device_name(pool->pool_md));
1946
1947 dm_table_event(pool->ti->table);
1948 }
1949
1950 static sector_t get_metadata_dev_size(struct block_device *bdev)
1951 {
1952 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1953 char buffer[BDEVNAME_SIZE];
1954
1955 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1956 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1957 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1958 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1959 }
1960
1961 return metadata_dev_size;
1962 }
1963
1964 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1965 {
1966 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1967
1968 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1969
1970 return metadata_dev_size;
1971 }
1972
1973 /*
1974 * When a metadata threshold is crossed a dm event is triggered, and
1975 * userland should respond by growing the metadata device. We could let
1976 * userland set the threshold, like we do with the data threshold, but I'm
1977 * not sure they know enough to do this well.
1978 */
1979 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1980 {
1981 /*
1982 * 4M is ample for all ops with the possible exception of thin
1983 * device deletion which is harmless if it fails (just retry the
1984 * delete after you've grown the device).
1985 */
1986 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1987 return min((dm_block_t)1024ULL /* 4M */, quarter);
1988 }
1989
1990 /*
1991 * thin-pool <metadata dev> <data dev>
1992 * <data block size (sectors)>
1993 * <low water mark (blocks)>
1994 * [<#feature args> [<arg>]*]
1995 *
1996 * Optional feature arguments are:
1997 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1998 * ignore_discard: disable discard
1999 * no_discard_passdown: don't pass discards down to the data device
2000 */
2001 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2002 {
2003 int r, pool_created = 0;
2004 struct pool_c *pt;
2005 struct pool *pool;
2006 struct pool_features pf;
2007 struct dm_arg_set as;
2008 struct dm_dev *data_dev;
2009 unsigned long block_size;
2010 dm_block_t low_water_blocks;
2011 struct dm_dev *metadata_dev;
2012 fmode_t metadata_mode;
2013
2014 /*
2015 * FIXME Remove validation from scope of lock.
2016 */
2017 mutex_lock(&dm_thin_pool_table.mutex);
2018
2019 if (argc < 4) {
2020 ti->error = "Invalid argument count";
2021 r = -EINVAL;
2022 goto out_unlock;
2023 }
2024
2025 as.argc = argc;
2026 as.argv = argv;
2027
2028 /*
2029 * Set default pool features.
2030 */
2031 pool_features_init(&pf);
2032
2033 dm_consume_args(&as, 4);
2034 r = parse_pool_features(&as, &pf, ti);
2035 if (r)
2036 goto out_unlock;
2037
2038 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2039 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2040 if (r) {
2041 ti->error = "Error opening metadata block device";
2042 goto out_unlock;
2043 }
2044
2045 /*
2046 * Run for the side-effect of possibly issuing a warning if the
2047 * device is too big.
2048 */
2049 (void) get_metadata_dev_size(metadata_dev->bdev);
2050
2051 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2052 if (r) {
2053 ti->error = "Error getting data device";
2054 goto out_metadata;
2055 }
2056
2057 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2058 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2059 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2060 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2061 ti->error = "Invalid block size";
2062 r = -EINVAL;
2063 goto out;
2064 }
2065
2066 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2067 ti->error = "Invalid low water mark";
2068 r = -EINVAL;
2069 goto out;
2070 }
2071
2072 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2073 if (!pt) {
2074 r = -ENOMEM;
2075 goto out;
2076 }
2077
2078 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2079 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2080 if (IS_ERR(pool)) {
2081 r = PTR_ERR(pool);
2082 goto out_free_pt;
2083 }
2084
2085 /*
2086 * 'pool_created' reflects whether this is the first table load.
2087 * Top level discard support is not allowed to be changed after
2088 * initial load. This would require a pool reload to trigger thin
2089 * device changes.
2090 */
2091 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2092 ti->error = "Discard support cannot be disabled once enabled";
2093 r = -EINVAL;
2094 goto out_flags_changed;
2095 }
2096
2097 pt->pool = pool;
2098 pt->ti = ti;
2099 pt->metadata_dev = metadata_dev;
2100 pt->data_dev = data_dev;
2101 pt->low_water_blocks = low_water_blocks;
2102 pt->adjusted_pf = pt->requested_pf = pf;
2103 ti->num_flush_bios = 1;
2104
2105 /*
2106 * Only need to enable discards if the pool should pass
2107 * them down to the data device. The thin device's discard
2108 * processing will cause mappings to be removed from the btree.
2109 */
2110 ti->discard_zeroes_data_unsupported = true;
2111 if (pf.discard_enabled && pf.discard_passdown) {
2112 ti->num_discard_bios = 1;
2113
2114 /*
2115 * Setting 'discards_supported' circumvents the normal
2116 * stacking of discard limits (this keeps the pool and
2117 * thin devices' discard limits consistent).
2118 */
2119 ti->discards_supported = true;
2120 }
2121 ti->private = pt;
2122
2123 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2124 calc_metadata_threshold(pt),
2125 metadata_low_callback,
2126 pool);
2127 if (r)
2128 goto out_free_pt;
2129
2130 pt->callbacks.congested_fn = pool_is_congested;
2131 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2132
2133 mutex_unlock(&dm_thin_pool_table.mutex);
2134
2135 return 0;
2136
2137 out_flags_changed:
2138 __pool_dec(pool);
2139 out_free_pt:
2140 kfree(pt);
2141 out:
2142 dm_put_device(ti, data_dev);
2143 out_metadata:
2144 dm_put_device(ti, metadata_dev);
2145 out_unlock:
2146 mutex_unlock(&dm_thin_pool_table.mutex);
2147
2148 return r;
2149 }
2150
2151 static int pool_map(struct dm_target *ti, struct bio *bio)
2152 {
2153 int r;
2154 struct pool_c *pt = ti->private;
2155 struct pool *pool = pt->pool;
2156 unsigned long flags;
2157
2158 /*
2159 * As this is a singleton target, ti->begin is always zero.
2160 */
2161 spin_lock_irqsave(&pool->lock, flags);
2162 bio->bi_bdev = pt->data_dev->bdev;
2163 r = DM_MAPIO_REMAPPED;
2164 spin_unlock_irqrestore(&pool->lock, flags);
2165
2166 return r;
2167 }
2168
2169 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2170 {
2171 int r;
2172 struct pool_c *pt = ti->private;
2173 struct pool *pool = pt->pool;
2174 sector_t data_size = ti->len;
2175 dm_block_t sb_data_size;
2176
2177 *need_commit = false;
2178
2179 (void) sector_div(data_size, pool->sectors_per_block);
2180
2181 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2182 if (r) {
2183 DMERR("%s: failed to retrieve data device size",
2184 dm_device_name(pool->pool_md));
2185 return r;
2186 }
2187
2188 if (data_size < sb_data_size) {
2189 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2190 dm_device_name(pool->pool_md),
2191 (unsigned long long)data_size, sb_data_size);
2192 return -EINVAL;
2193
2194 } else if (data_size > sb_data_size) {
2195 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2196 if (r) {
2197 DMERR("%s: failed to resize data device",
2198 dm_device_name(pool->pool_md));
2199 set_pool_mode(pool, PM_READ_ONLY);
2200 return r;
2201 }
2202
2203 *need_commit = true;
2204 }
2205
2206 return 0;
2207 }
2208
2209 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2210 {
2211 int r;
2212 struct pool_c *pt = ti->private;
2213 struct pool *pool = pt->pool;
2214 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2215
2216 *need_commit = false;
2217
2218 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2219
2220 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2221 if (r) {
2222 DMERR("%s: failed to retrieve metadata device size",
2223 dm_device_name(pool->pool_md));
2224 return r;
2225 }
2226
2227 if (metadata_dev_size < sb_metadata_dev_size) {
2228 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2229 dm_device_name(pool->pool_md),
2230 metadata_dev_size, sb_metadata_dev_size);
2231 return -EINVAL;
2232
2233 } else if (metadata_dev_size > sb_metadata_dev_size) {
2234 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2235 if (r) {
2236 DMERR("%s: failed to resize metadata device",
2237 dm_device_name(pool->pool_md));
2238 return r;
2239 }
2240
2241 *need_commit = true;
2242 }
2243
2244 return 0;
2245 }
2246
2247 /*
2248 * Retrieves the number of blocks of the data device from
2249 * the superblock and compares it to the actual device size,
2250 * thus resizing the data device in case it has grown.
2251 *
2252 * This both copes with opening preallocated data devices in the ctr
2253 * being followed by a resume
2254 * -and-
2255 * calling the resume method individually after userspace has
2256 * grown the data device in reaction to a table event.
2257 */
2258 static int pool_preresume(struct dm_target *ti)
2259 {
2260 int r;
2261 bool need_commit1, need_commit2;
2262 struct pool_c *pt = ti->private;
2263 struct pool *pool = pt->pool;
2264
2265 /*
2266 * Take control of the pool object.
2267 */
2268 r = bind_control_target(pool, ti);
2269 if (r)
2270 return r;
2271
2272 r = maybe_resize_data_dev(ti, &need_commit1);
2273 if (r)
2274 return r;
2275
2276 r = maybe_resize_metadata_dev(ti, &need_commit2);
2277 if (r)
2278 return r;
2279
2280 if (need_commit1 || need_commit2)
2281 (void) commit(pool);
2282
2283 return 0;
2284 }
2285
2286 static void pool_resume(struct dm_target *ti)
2287 {
2288 struct pool_c *pt = ti->private;
2289 struct pool *pool = pt->pool;
2290 unsigned long flags;
2291
2292 spin_lock_irqsave(&pool->lock, flags);
2293 pool->low_water_triggered = 0;
2294 pool->no_free_space = 0;
2295 __requeue_bios(pool);
2296 spin_unlock_irqrestore(&pool->lock, flags);
2297
2298 do_waker(&pool->waker.work);
2299 }
2300
2301 static void pool_postsuspend(struct dm_target *ti)
2302 {
2303 struct pool_c *pt = ti->private;
2304 struct pool *pool = pt->pool;
2305
2306 cancel_delayed_work(&pool->waker);
2307 flush_workqueue(pool->wq);
2308 (void) commit(pool);
2309 }
2310
2311 static int check_arg_count(unsigned argc, unsigned args_required)
2312 {
2313 if (argc != args_required) {
2314 DMWARN("Message received with %u arguments instead of %u.",
2315 argc, args_required);
2316 return -EINVAL;
2317 }
2318
2319 return 0;
2320 }
2321
2322 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2323 {
2324 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2325 *dev_id <= MAX_DEV_ID)
2326 return 0;
2327
2328 if (warning)
2329 DMWARN("Message received with invalid device id: %s", arg);
2330
2331 return -EINVAL;
2332 }
2333
2334 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2335 {
2336 dm_thin_id dev_id;
2337 int r;
2338
2339 r = check_arg_count(argc, 2);
2340 if (r)
2341 return r;
2342
2343 r = read_dev_id(argv[1], &dev_id, 1);
2344 if (r)
2345 return r;
2346
2347 r = dm_pool_create_thin(pool->pmd, dev_id);
2348 if (r) {
2349 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2350 argv[1]);
2351 return r;
2352 }
2353
2354 return 0;
2355 }
2356
2357 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2358 {
2359 dm_thin_id dev_id;
2360 dm_thin_id origin_dev_id;
2361 int r;
2362
2363 r = check_arg_count(argc, 3);
2364 if (r)
2365 return r;
2366
2367 r = read_dev_id(argv[1], &dev_id, 1);
2368 if (r)
2369 return r;
2370
2371 r = read_dev_id(argv[2], &origin_dev_id, 1);
2372 if (r)
2373 return r;
2374
2375 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2376 if (r) {
2377 DMWARN("Creation of new snapshot %s of device %s failed.",
2378 argv[1], argv[2]);
2379 return r;
2380 }
2381
2382 return 0;
2383 }
2384
2385 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2386 {
2387 dm_thin_id dev_id;
2388 int r;
2389
2390 r = check_arg_count(argc, 2);
2391 if (r)
2392 return r;
2393
2394 r = read_dev_id(argv[1], &dev_id, 1);
2395 if (r)
2396 return r;
2397
2398 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2399 if (r)
2400 DMWARN("Deletion of thin device %s failed.", argv[1]);
2401
2402 return r;
2403 }
2404
2405 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2406 {
2407 dm_thin_id old_id, new_id;
2408 int r;
2409
2410 r = check_arg_count(argc, 3);
2411 if (r)
2412 return r;
2413
2414 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2415 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2416 return -EINVAL;
2417 }
2418
2419 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2420 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2421 return -EINVAL;
2422 }
2423
2424 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2425 if (r) {
2426 DMWARN("Failed to change transaction id from %s to %s.",
2427 argv[1], argv[2]);
2428 return r;
2429 }
2430
2431 return 0;
2432 }
2433
2434 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2435 {
2436 int r;
2437
2438 r = check_arg_count(argc, 1);
2439 if (r)
2440 return r;
2441
2442 (void) commit(pool);
2443
2444 r = dm_pool_reserve_metadata_snap(pool->pmd);
2445 if (r)
2446 DMWARN("reserve_metadata_snap message failed.");
2447
2448 return r;
2449 }
2450
2451 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2452 {
2453 int r;
2454
2455 r = check_arg_count(argc, 1);
2456 if (r)
2457 return r;
2458
2459 r = dm_pool_release_metadata_snap(pool->pmd);
2460 if (r)
2461 DMWARN("release_metadata_snap message failed.");
2462
2463 return r;
2464 }
2465
2466 /*
2467 * Messages supported:
2468 * create_thin <dev_id>
2469 * create_snap <dev_id> <origin_id>
2470 * delete <dev_id>
2471 * trim <dev_id> <new_size_in_sectors>
2472 * set_transaction_id <current_trans_id> <new_trans_id>
2473 * reserve_metadata_snap
2474 * release_metadata_snap
2475 */
2476 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2477 {
2478 int r = -EINVAL;
2479 struct pool_c *pt = ti->private;
2480 struct pool *pool = pt->pool;
2481
2482 if (!strcasecmp(argv[0], "create_thin"))
2483 r = process_create_thin_mesg(argc, argv, pool);
2484
2485 else if (!strcasecmp(argv[0], "create_snap"))
2486 r = process_create_snap_mesg(argc, argv, pool);
2487
2488 else if (!strcasecmp(argv[0], "delete"))
2489 r = process_delete_mesg(argc, argv, pool);
2490
2491 else if (!strcasecmp(argv[0], "set_transaction_id"))
2492 r = process_set_transaction_id_mesg(argc, argv, pool);
2493
2494 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2495 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2496
2497 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2498 r = process_release_metadata_snap_mesg(argc, argv, pool);
2499
2500 else
2501 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2502
2503 if (!r)
2504 (void) commit(pool);
2505
2506 return r;
2507 }
2508
2509 static void emit_flags(struct pool_features *pf, char *result,
2510 unsigned sz, unsigned maxlen)
2511 {
2512 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2513 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2514 DMEMIT("%u ", count);
2515
2516 if (!pf->zero_new_blocks)
2517 DMEMIT("skip_block_zeroing ");
2518
2519 if (!pf->discard_enabled)
2520 DMEMIT("ignore_discard ");
2521
2522 if (!pf->discard_passdown)
2523 DMEMIT("no_discard_passdown ");
2524
2525 if (pf->mode == PM_READ_ONLY)
2526 DMEMIT("read_only ");
2527 }
2528
2529 /*
2530 * Status line is:
2531 * <transaction id> <used metadata sectors>/<total metadata sectors>
2532 * <used data sectors>/<total data sectors> <held metadata root>
2533 */
2534 static void pool_status(struct dm_target *ti, status_type_t type,
2535 unsigned status_flags, char *result, unsigned maxlen)
2536 {
2537 int r;
2538 unsigned sz = 0;
2539 uint64_t transaction_id;
2540 dm_block_t nr_free_blocks_data;
2541 dm_block_t nr_free_blocks_metadata;
2542 dm_block_t nr_blocks_data;
2543 dm_block_t nr_blocks_metadata;
2544 dm_block_t held_root;
2545 char buf[BDEVNAME_SIZE];
2546 char buf2[BDEVNAME_SIZE];
2547 struct pool_c *pt = ti->private;
2548 struct pool *pool = pt->pool;
2549
2550 switch (type) {
2551 case STATUSTYPE_INFO:
2552 if (get_pool_mode(pool) == PM_FAIL) {
2553 DMEMIT("Fail");
2554 break;
2555 }
2556
2557 /* Commit to ensure statistics aren't out-of-date */
2558 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2559 (void) commit(pool);
2560
2561 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2562 if (r) {
2563 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2564 dm_device_name(pool->pool_md), r);
2565 goto err;
2566 }
2567
2568 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2569 if (r) {
2570 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2571 dm_device_name(pool->pool_md), r);
2572 goto err;
2573 }
2574
2575 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2576 if (r) {
2577 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2578 dm_device_name(pool->pool_md), r);
2579 goto err;
2580 }
2581
2582 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2583 if (r) {
2584 DMERR("%s: dm_pool_get_free_block_count returned %d",
2585 dm_device_name(pool->pool_md), r);
2586 goto err;
2587 }
2588
2589 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2590 if (r) {
2591 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2592 dm_device_name(pool->pool_md), r);
2593 goto err;
2594 }
2595
2596 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2597 if (r) {
2598 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2599 dm_device_name(pool->pool_md), r);
2600 goto err;
2601 }
2602
2603 DMEMIT("%llu %llu/%llu %llu/%llu ",
2604 (unsigned long long)transaction_id,
2605 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2606 (unsigned long long)nr_blocks_metadata,
2607 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2608 (unsigned long long)nr_blocks_data);
2609
2610 if (held_root)
2611 DMEMIT("%llu ", held_root);
2612 else
2613 DMEMIT("- ");
2614
2615 if (pool->pf.mode == PM_READ_ONLY)
2616 DMEMIT("ro ");
2617 else
2618 DMEMIT("rw ");
2619
2620 if (!pool->pf.discard_enabled)
2621 DMEMIT("ignore_discard");
2622 else if (pool->pf.discard_passdown)
2623 DMEMIT("discard_passdown");
2624 else
2625 DMEMIT("no_discard_passdown");
2626
2627 break;
2628
2629 case STATUSTYPE_TABLE:
2630 DMEMIT("%s %s %lu %llu ",
2631 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2632 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2633 (unsigned long)pool->sectors_per_block,
2634 (unsigned long long)pt->low_water_blocks);
2635 emit_flags(&pt->requested_pf, result, sz, maxlen);
2636 break;
2637 }
2638 return;
2639
2640 err:
2641 DMEMIT("Error");
2642 }
2643
2644 static int pool_iterate_devices(struct dm_target *ti,
2645 iterate_devices_callout_fn fn, void *data)
2646 {
2647 struct pool_c *pt = ti->private;
2648
2649 return fn(ti, pt->data_dev, 0, ti->len, data);
2650 }
2651
2652 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2653 struct bio_vec *biovec, int max_size)
2654 {
2655 struct pool_c *pt = ti->private;
2656 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2657
2658 if (!q->merge_bvec_fn)
2659 return max_size;
2660
2661 bvm->bi_bdev = pt->data_dev->bdev;
2662
2663 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2664 }
2665
2666 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2667 {
2668 struct pool *pool = pt->pool;
2669 struct queue_limits *data_limits;
2670
2671 limits->max_discard_sectors = pool->sectors_per_block;
2672
2673 /*
2674 * discard_granularity is just a hint, and not enforced.
2675 */
2676 if (pt->adjusted_pf.discard_passdown) {
2677 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2678 limits->discard_granularity = data_limits->discard_granularity;
2679 } else
2680 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2681 }
2682
2683 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2684 {
2685 struct pool_c *pt = ti->private;
2686 struct pool *pool = pt->pool;
2687 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2688
2689 /*
2690 * If the system-determined stacked limits are compatible with the
2691 * pool's blocksize (io_opt is a factor) do not override them.
2692 */
2693 if (io_opt_sectors < pool->sectors_per_block ||
2694 do_div(io_opt_sectors, pool->sectors_per_block)) {
2695 blk_limits_io_min(limits, 0);
2696 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2697 }
2698
2699 /*
2700 * pt->adjusted_pf is a staging area for the actual features to use.
2701 * They get transferred to the live pool in bind_control_target()
2702 * called from pool_preresume().
2703 */
2704 if (!pt->adjusted_pf.discard_enabled) {
2705 /*
2706 * Must explicitly disallow stacking discard limits otherwise the
2707 * block layer will stack them if pool's data device has support.
2708 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2709 * user to see that, so make sure to set all discard limits to 0.
2710 */
2711 limits->discard_granularity = 0;
2712 return;
2713 }
2714
2715 disable_passdown_if_not_supported(pt);
2716
2717 set_discard_limits(pt, limits);
2718 }
2719
2720 static struct target_type pool_target = {
2721 .name = "thin-pool",
2722 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2723 DM_TARGET_IMMUTABLE,
2724 .version = {1, 9, 0},
2725 .module = THIS_MODULE,
2726 .ctr = pool_ctr,
2727 .dtr = pool_dtr,
2728 .map = pool_map,
2729 .postsuspend = pool_postsuspend,
2730 .preresume = pool_preresume,
2731 .resume = pool_resume,
2732 .message = pool_message,
2733 .status = pool_status,
2734 .merge = pool_merge,
2735 .iterate_devices = pool_iterate_devices,
2736 .io_hints = pool_io_hints,
2737 };
2738
2739 /*----------------------------------------------------------------
2740 * Thin target methods
2741 *--------------------------------------------------------------*/
2742 static void thin_dtr(struct dm_target *ti)
2743 {
2744 struct thin_c *tc = ti->private;
2745
2746 mutex_lock(&dm_thin_pool_table.mutex);
2747
2748 __pool_dec(tc->pool);
2749 dm_pool_close_thin_device(tc->td);
2750 dm_put_device(ti, tc->pool_dev);
2751 if (tc->origin_dev)
2752 dm_put_device(ti, tc->origin_dev);
2753 kfree(tc);
2754
2755 mutex_unlock(&dm_thin_pool_table.mutex);
2756 }
2757
2758 /*
2759 * Thin target parameters:
2760 *
2761 * <pool_dev> <dev_id> [origin_dev]
2762 *
2763 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2764 * dev_id: the internal device identifier
2765 * origin_dev: a device external to the pool that should act as the origin
2766 *
2767 * If the pool device has discards disabled, they get disabled for the thin
2768 * device as well.
2769 */
2770 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2771 {
2772 int r;
2773 struct thin_c *tc;
2774 struct dm_dev *pool_dev, *origin_dev;
2775 struct mapped_device *pool_md;
2776
2777 mutex_lock(&dm_thin_pool_table.mutex);
2778
2779 if (argc != 2 && argc != 3) {
2780 ti->error = "Invalid argument count";
2781 r = -EINVAL;
2782 goto out_unlock;
2783 }
2784
2785 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2786 if (!tc) {
2787 ti->error = "Out of memory";
2788 r = -ENOMEM;
2789 goto out_unlock;
2790 }
2791
2792 if (argc == 3) {
2793 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2794 if (r) {
2795 ti->error = "Error opening origin device";
2796 goto bad_origin_dev;
2797 }
2798 tc->origin_dev = origin_dev;
2799 }
2800
2801 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2802 if (r) {
2803 ti->error = "Error opening pool device";
2804 goto bad_pool_dev;
2805 }
2806 tc->pool_dev = pool_dev;
2807
2808 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2809 ti->error = "Invalid device id";
2810 r = -EINVAL;
2811 goto bad_common;
2812 }
2813
2814 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2815 if (!pool_md) {
2816 ti->error = "Couldn't get pool mapped device";
2817 r = -EINVAL;
2818 goto bad_common;
2819 }
2820
2821 tc->pool = __pool_table_lookup(pool_md);
2822 if (!tc->pool) {
2823 ti->error = "Couldn't find pool object";
2824 r = -EINVAL;
2825 goto bad_pool_lookup;
2826 }
2827 __pool_inc(tc->pool);
2828
2829 if (get_pool_mode(tc->pool) == PM_FAIL) {
2830 ti->error = "Couldn't open thin device, Pool is in fail mode";
2831 goto bad_thin_open;
2832 }
2833
2834 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2835 if (r) {
2836 ti->error = "Couldn't open thin internal device";
2837 goto bad_thin_open;
2838 }
2839
2840 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2841 if (r)
2842 goto bad_thin_open;
2843
2844 ti->num_flush_bios = 1;
2845 ti->flush_supported = true;
2846 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2847
2848 /* In case the pool supports discards, pass them on. */
2849 ti->discard_zeroes_data_unsupported = true;
2850 if (tc->pool->pf.discard_enabled) {
2851 ti->discards_supported = true;
2852 ti->num_discard_bios = 1;
2853 /* Discard bios must be split on a block boundary */
2854 ti->split_discard_bios = true;
2855 }
2856
2857 dm_put(pool_md);
2858
2859 mutex_unlock(&dm_thin_pool_table.mutex);
2860
2861 return 0;
2862
2863 bad_thin_open:
2864 __pool_dec(tc->pool);
2865 bad_pool_lookup:
2866 dm_put(pool_md);
2867 bad_common:
2868 dm_put_device(ti, tc->pool_dev);
2869 bad_pool_dev:
2870 if (tc->origin_dev)
2871 dm_put_device(ti, tc->origin_dev);
2872 bad_origin_dev:
2873 kfree(tc);
2874 out_unlock:
2875 mutex_unlock(&dm_thin_pool_table.mutex);
2876
2877 return r;
2878 }
2879
2880 static int thin_map(struct dm_target *ti, struct bio *bio)
2881 {
2882 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2883
2884 return thin_bio_map(ti, bio);
2885 }
2886
2887 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2888 {
2889 unsigned long flags;
2890 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2891 struct list_head work;
2892 struct dm_thin_new_mapping *m, *tmp;
2893 struct pool *pool = h->tc->pool;
2894
2895 if (h->shared_read_entry) {
2896 INIT_LIST_HEAD(&work);
2897 dm_deferred_entry_dec(h->shared_read_entry, &work);
2898
2899 spin_lock_irqsave(&pool->lock, flags);
2900 list_for_each_entry_safe(m, tmp, &work, list) {
2901 list_del(&m->list);
2902 m->quiesced = 1;
2903 __maybe_add_mapping(m);
2904 }
2905 spin_unlock_irqrestore(&pool->lock, flags);
2906 }
2907
2908 if (h->all_io_entry) {
2909 INIT_LIST_HEAD(&work);
2910 dm_deferred_entry_dec(h->all_io_entry, &work);
2911 if (!list_empty(&work)) {
2912 spin_lock_irqsave(&pool->lock, flags);
2913 list_for_each_entry_safe(m, tmp, &work, list)
2914 list_add(&m->list, &pool->prepared_discards);
2915 spin_unlock_irqrestore(&pool->lock, flags);
2916 wake_worker(pool);
2917 }
2918 }
2919
2920 return 0;
2921 }
2922
2923 static void thin_postsuspend(struct dm_target *ti)
2924 {
2925 if (dm_noflush_suspending(ti))
2926 requeue_io((struct thin_c *)ti->private);
2927 }
2928
2929 /*
2930 * <nr mapped sectors> <highest mapped sector>
2931 */
2932 static void thin_status(struct dm_target *ti, status_type_t type,
2933 unsigned status_flags, char *result, unsigned maxlen)
2934 {
2935 int r;
2936 ssize_t sz = 0;
2937 dm_block_t mapped, highest;
2938 char buf[BDEVNAME_SIZE];
2939 struct thin_c *tc = ti->private;
2940
2941 if (get_pool_mode(tc->pool) == PM_FAIL) {
2942 DMEMIT("Fail");
2943 return;
2944 }
2945
2946 if (!tc->td)
2947 DMEMIT("-");
2948 else {
2949 switch (type) {
2950 case STATUSTYPE_INFO:
2951 r = dm_thin_get_mapped_count(tc->td, &mapped);
2952 if (r) {
2953 DMERR("dm_thin_get_mapped_count returned %d", r);
2954 goto err;
2955 }
2956
2957 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2958 if (r < 0) {
2959 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2960 goto err;
2961 }
2962
2963 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2964 if (r)
2965 DMEMIT("%llu", ((highest + 1) *
2966 tc->pool->sectors_per_block) - 1);
2967 else
2968 DMEMIT("-");
2969 break;
2970
2971 case STATUSTYPE_TABLE:
2972 DMEMIT("%s %lu",
2973 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2974 (unsigned long) tc->dev_id);
2975 if (tc->origin_dev)
2976 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2977 break;
2978 }
2979 }
2980
2981 return;
2982
2983 err:
2984 DMEMIT("Error");
2985 }
2986
2987 static int thin_iterate_devices(struct dm_target *ti,
2988 iterate_devices_callout_fn fn, void *data)
2989 {
2990 sector_t blocks;
2991 struct thin_c *tc = ti->private;
2992 struct pool *pool = tc->pool;
2993
2994 /*
2995 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2996 * we follow a more convoluted path through to the pool's target.
2997 */
2998 if (!pool->ti)
2999 return 0; /* nothing is bound */
3000
3001 blocks = pool->ti->len;
3002 (void) sector_div(blocks, pool->sectors_per_block);
3003 if (blocks)
3004 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3005
3006 return 0;
3007 }
3008
3009 static struct target_type thin_target = {
3010 .name = "thin",
3011 .version = {1, 9, 0},
3012 .module = THIS_MODULE,
3013 .ctr = thin_ctr,
3014 .dtr = thin_dtr,
3015 .map = thin_map,
3016 .end_io = thin_endio,
3017 .postsuspend = thin_postsuspend,
3018 .status = thin_status,
3019 .iterate_devices = thin_iterate_devices,
3020 };
3021
3022 /*----------------------------------------------------------------*/
3023
3024 static int __init dm_thin_init(void)
3025 {
3026 int r;
3027
3028 pool_table_init();
3029
3030 r = dm_register_target(&thin_target);
3031 if (r)
3032 return r;
3033
3034 r = dm_register_target(&pool_target);
3035 if (r)
3036 goto bad_pool_target;
3037
3038 r = -ENOMEM;
3039
3040 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3041 if (!_new_mapping_cache)
3042 goto bad_new_mapping_cache;
3043
3044 return 0;
3045
3046 bad_new_mapping_cache:
3047 dm_unregister_target(&pool_target);
3048 bad_pool_target:
3049 dm_unregister_target(&thin_target);
3050
3051 return r;
3052 }
3053
3054 static void dm_thin_exit(void)
3055 {
3056 dm_unregister_target(&thin_target);
3057 dm_unregister_target(&pool_target);
3058
3059 kmem_cache_destroy(_new_mapping_cache);
3060 }
3061
3062 module_init(dm_thin_init);
3063 module_exit(dm_thin_exit);
3064
3065 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3066 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3067 MODULE_LICENSE("GPL");