]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-thin.c
Merge tag 'mips_4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/mips
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205 };
206
207 struct pool_features {
208 enum pool_mode mode;
209
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
234
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238 bool out_of_data_space:1;
239
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
242
243 struct workqueue_struct *wq;
244 struct throttle throttle;
245 struct work_struct worker;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
248
249 unsigned long last_commit_jiffies;
250 unsigned ref_count;
251
252 spinlock_t lock;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head prepared_discards_pt2;
257 struct list_head active_thins;
258
259 struct dm_deferred_set *shared_read_ds;
260 struct dm_deferred_set *all_io_ds;
261
262 struct dm_thin_new_mapping *next_mapping;
263 mempool_t *mapping_pool;
264
265 process_bio_fn process_bio;
266 process_bio_fn process_discard;
267
268 process_cell_fn process_cell;
269 process_cell_fn process_discard_cell;
270
271 process_mapping_fn process_prepared_mapping;
272 process_mapping_fn process_prepared_discard;
273 process_mapping_fn process_prepared_discard_pt2;
274
275 struct dm_bio_prison_cell **cell_sort_array;
276 };
277
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280
281 /*
282 * Target context for a pool.
283 */
284 struct pool_c {
285 struct dm_target *ti;
286 struct pool *pool;
287 struct dm_dev *data_dev;
288 struct dm_dev *metadata_dev;
289 struct dm_target_callbacks callbacks;
290
291 dm_block_t low_water_blocks;
292 struct pool_features requested_pf; /* Features requested during table load */
293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
294 };
295
296 /*
297 * Target context for a thin.
298 */
299 struct thin_c {
300 struct list_head list;
301 struct dm_dev *pool_dev;
302 struct dm_dev *origin_dev;
303 sector_t origin_size;
304 dm_thin_id dev_id;
305
306 struct pool *pool;
307 struct dm_thin_device *td;
308 struct mapped_device *thin_md;
309
310 bool requeue_mode:1;
311 spinlock_t lock;
312 struct list_head deferred_cells;
313 struct bio_list deferred_bio_list;
314 struct bio_list retry_on_resume_list;
315 struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317 /*
318 * Ensures the thin is not destroyed until the worker has finished
319 * iterating the active_thins list.
320 */
321 atomic_t refcount;
322 struct completion can_destroy;
323 };
324
325 /*----------------------------------------------------------------*/
326
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329 return pool->sectors_per_block_shift >= 0;
330 }
331
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334 return block_size_is_power_of_two(pool) ?
335 (b << pool->sectors_per_block_shift) :
336 (b * pool->sectors_per_block);
337 }
338
339 /*----------------------------------------------------------------*/
340
341 struct discard_op {
342 struct thin_c *tc;
343 struct blk_plug plug;
344 struct bio *parent_bio;
345 struct bio *bio;
346 };
347
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350 BUG_ON(!parent);
351
352 op->tc = tc;
353 blk_start_plug(&op->plug);
354 op->parent_bio = parent;
355 op->bio = NULL;
356 }
357
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360 struct thin_c *tc = op->tc;
361 sector_t s = block_to_sectors(tc->pool, data_b);
362 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363
364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 GFP_NOWAIT, 0, &op->bio);
366 }
367
368 static void end_discard(struct discard_op *op, int r)
369 {
370 if (op->bio) {
371 /*
372 * Even if one of the calls to issue_discard failed, we
373 * need to wait for the chain to complete.
374 */
375 bio_chain(op->bio, op->parent_bio);
376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 submit_bio(op->bio);
378 }
379
380 blk_finish_plug(&op->plug);
381
382 /*
383 * Even if r is set, there could be sub discards in flight that we
384 * need to wait for.
385 */
386 if (r && !op->parent_bio->bi_error)
387 op->parent_bio->bi_error = r;
388 bio_endio(op->parent_bio);
389 }
390
391 /*----------------------------------------------------------------*/
392
393 /*
394 * wake_worker() is used when new work is queued and when pool_resume is
395 * ready to continue deferred IO processing.
396 */
397 static void wake_worker(struct pool *pool)
398 {
399 queue_work(pool->wq, &pool->worker);
400 }
401
402 /*----------------------------------------------------------------*/
403
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 struct dm_bio_prison_cell **cell_result)
406 {
407 int r;
408 struct dm_bio_prison_cell *cell_prealloc;
409
410 /*
411 * Allocate a cell from the prison's mempool.
412 * This might block but it can't fail.
413 */
414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415
416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 if (r)
418 /*
419 * We reused an old cell; we can get rid of
420 * the new one.
421 */
422 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423
424 return r;
425 }
426
427 static void cell_release(struct pool *pool,
428 struct dm_bio_prison_cell *cell,
429 struct bio_list *bios)
430 {
431 dm_cell_release(pool->prison, cell, bios);
432 dm_bio_prison_free_cell(pool->prison, cell);
433 }
434
435 static void cell_visit_release(struct pool *pool,
436 void (*fn)(void *, struct dm_bio_prison_cell *),
437 void *context,
438 struct dm_bio_prison_cell *cell)
439 {
440 dm_cell_visit_release(pool->prison, fn, context, cell);
441 dm_bio_prison_free_cell(pool->prison, cell);
442 }
443
444 static void cell_release_no_holder(struct pool *pool,
445 struct dm_bio_prison_cell *cell,
446 struct bio_list *bios)
447 {
448 dm_cell_release_no_holder(pool->prison, cell, bios);
449 dm_bio_prison_free_cell(pool->prison, cell);
450 }
451
452 static void cell_error_with_code(struct pool *pool,
453 struct dm_bio_prison_cell *cell, int error_code)
454 {
455 dm_cell_error(pool->prison, cell, error_code);
456 dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static int get_pool_io_error_code(struct pool *pool)
460 {
461 return pool->out_of_data_space ? -ENOSPC : -EIO;
462 }
463
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 int error = get_pool_io_error_code(pool);
467
468 cell_error_with_code(pool, cell, error);
469 }
470
471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473 cell_error_with_code(pool, cell, 0);
474 }
475
476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
479 }
480
481 /*----------------------------------------------------------------*/
482
483 /*
484 * A global list of pools that uses a struct mapped_device as a key.
485 */
486 static struct dm_thin_pool_table {
487 struct mutex mutex;
488 struct list_head pools;
489 } dm_thin_pool_table;
490
491 static void pool_table_init(void)
492 {
493 mutex_init(&dm_thin_pool_table.mutex);
494 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495 }
496
497 static void __pool_table_insert(struct pool *pool)
498 {
499 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
500 list_add(&pool->list, &dm_thin_pool_table.pools);
501 }
502
503 static void __pool_table_remove(struct pool *pool)
504 {
505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506 list_del(&pool->list);
507 }
508
509 static struct pool *__pool_table_lookup(struct mapped_device *md)
510 {
511 struct pool *pool = NULL, *tmp;
512
513 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
514
515 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
516 if (tmp->pool_md == md) {
517 pool = tmp;
518 break;
519 }
520 }
521
522 return pool;
523 }
524
525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
526 {
527 struct pool *pool = NULL, *tmp;
528
529 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
530
531 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
532 if (tmp->md_dev == md_dev) {
533 pool = tmp;
534 break;
535 }
536 }
537
538 return pool;
539 }
540
541 /*----------------------------------------------------------------*/
542
543 struct dm_thin_endio_hook {
544 struct thin_c *tc;
545 struct dm_deferred_entry *shared_read_entry;
546 struct dm_deferred_entry *all_io_entry;
547 struct dm_thin_new_mapping *overwrite_mapping;
548 struct rb_node rb_node;
549 struct dm_bio_prison_cell *cell;
550 };
551
552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
553 {
554 bio_list_merge(bios, master);
555 bio_list_init(master);
556 }
557
558 static void error_bio_list(struct bio_list *bios, int error)
559 {
560 struct bio *bio;
561
562 while ((bio = bio_list_pop(bios))) {
563 bio->bi_error = error;
564 bio_endio(bio);
565 }
566 }
567
568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
569 {
570 struct bio_list bios;
571 unsigned long flags;
572
573 bio_list_init(&bios);
574
575 spin_lock_irqsave(&tc->lock, flags);
576 __merge_bio_list(&bios, master);
577 spin_unlock_irqrestore(&tc->lock, flags);
578
579 error_bio_list(&bios, error);
580 }
581
582 static void requeue_deferred_cells(struct thin_c *tc)
583 {
584 struct pool *pool = tc->pool;
585 unsigned long flags;
586 struct list_head cells;
587 struct dm_bio_prison_cell *cell, *tmp;
588
589 INIT_LIST_HEAD(&cells);
590
591 spin_lock_irqsave(&tc->lock, flags);
592 list_splice_init(&tc->deferred_cells, &cells);
593 spin_unlock_irqrestore(&tc->lock, flags);
594
595 list_for_each_entry_safe(cell, tmp, &cells, user_list)
596 cell_requeue(pool, cell);
597 }
598
599 static void requeue_io(struct thin_c *tc)
600 {
601 struct bio_list bios;
602 unsigned long flags;
603
604 bio_list_init(&bios);
605
606 spin_lock_irqsave(&tc->lock, flags);
607 __merge_bio_list(&bios, &tc->deferred_bio_list);
608 __merge_bio_list(&bios, &tc->retry_on_resume_list);
609 spin_unlock_irqrestore(&tc->lock, flags);
610
611 error_bio_list(&bios, DM_ENDIO_REQUEUE);
612 requeue_deferred_cells(tc);
613 }
614
615 static void error_retry_list_with_code(struct pool *pool, int error)
616 {
617 struct thin_c *tc;
618
619 rcu_read_lock();
620 list_for_each_entry_rcu(tc, &pool->active_thins, list)
621 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622 rcu_read_unlock();
623 }
624
625 static void error_retry_list(struct pool *pool)
626 {
627 int error = get_pool_io_error_code(pool);
628
629 error_retry_list_with_code(pool, error);
630 }
631
632 /*
633 * This section of code contains the logic for processing a thin device's IO.
634 * Much of the code depends on pool object resources (lists, workqueues, etc)
635 * but most is exclusively called from the thin target rather than the thin-pool
636 * target.
637 */
638
639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
640 {
641 struct pool *pool = tc->pool;
642 sector_t block_nr = bio->bi_iter.bi_sector;
643
644 if (block_size_is_power_of_two(pool))
645 block_nr >>= pool->sectors_per_block_shift;
646 else
647 (void) sector_div(block_nr, pool->sectors_per_block);
648
649 return block_nr;
650 }
651
652 /*
653 * Returns the _complete_ blocks that this bio covers.
654 */
655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
656 dm_block_t *begin, dm_block_t *end)
657 {
658 struct pool *pool = tc->pool;
659 sector_t b = bio->bi_iter.bi_sector;
660 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
661
662 b += pool->sectors_per_block - 1ull; /* so we round up */
663
664 if (block_size_is_power_of_two(pool)) {
665 b >>= pool->sectors_per_block_shift;
666 e >>= pool->sectors_per_block_shift;
667 } else {
668 (void) sector_div(b, pool->sectors_per_block);
669 (void) sector_div(e, pool->sectors_per_block);
670 }
671
672 if (e < b)
673 /* Can happen if the bio is within a single block. */
674 e = b;
675
676 *begin = b;
677 *end = e;
678 }
679
680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
681 {
682 struct pool *pool = tc->pool;
683 sector_t bi_sector = bio->bi_iter.bi_sector;
684
685 bio->bi_bdev = tc->pool_dev->bdev;
686 if (block_size_is_power_of_two(pool))
687 bio->bi_iter.bi_sector =
688 (block << pool->sectors_per_block_shift) |
689 (bi_sector & (pool->sectors_per_block - 1));
690 else
691 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692 sector_div(bi_sector, pool->sectors_per_block);
693 }
694
695 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
696 {
697 bio->bi_bdev = tc->origin_dev->bdev;
698 }
699
700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
701 {
702 return op_is_flush(bio->bi_opf) &&
703 dm_thin_changed_this_transaction(tc->td);
704 }
705
706 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
707 {
708 struct dm_thin_endio_hook *h;
709
710 if (bio_op(bio) == REQ_OP_DISCARD)
711 return;
712
713 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
715 }
716
717 static void issue(struct thin_c *tc, struct bio *bio)
718 {
719 struct pool *pool = tc->pool;
720 unsigned long flags;
721
722 if (!bio_triggers_commit(tc, bio)) {
723 generic_make_request(bio);
724 return;
725 }
726
727 /*
728 * Complete bio with an error if earlier I/O caused changes to
729 * the metadata that can't be committed e.g, due to I/O errors
730 * on the metadata device.
731 */
732 if (dm_thin_aborted_changes(tc->td)) {
733 bio_io_error(bio);
734 return;
735 }
736
737 /*
738 * Batch together any bios that trigger commits and then issue a
739 * single commit for them in process_deferred_bios().
740 */
741 spin_lock_irqsave(&pool->lock, flags);
742 bio_list_add(&pool->deferred_flush_bios, bio);
743 spin_unlock_irqrestore(&pool->lock, flags);
744 }
745
746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
747 {
748 remap_to_origin(tc, bio);
749 issue(tc, bio);
750 }
751
752 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
753 dm_block_t block)
754 {
755 remap(tc, bio, block);
756 issue(tc, bio);
757 }
758
759 /*----------------------------------------------------------------*/
760
761 /*
762 * Bio endio functions.
763 */
764 struct dm_thin_new_mapping {
765 struct list_head list;
766
767 bool pass_discard:1;
768 bool maybe_shared:1;
769
770 /*
771 * Track quiescing, copying and zeroing preparation actions. When this
772 * counter hits zero the block is prepared and can be inserted into the
773 * btree.
774 */
775 atomic_t prepare_actions;
776
777 int err;
778 struct thin_c *tc;
779 dm_block_t virt_begin, virt_end;
780 dm_block_t data_block;
781 struct dm_bio_prison_cell *cell;
782
783 /*
784 * If the bio covers the whole area of a block then we can avoid
785 * zeroing or copying. Instead this bio is hooked. The bio will
786 * still be in the cell, so care has to be taken to avoid issuing
787 * the bio twice.
788 */
789 struct bio *bio;
790 bio_end_io_t *saved_bi_end_io;
791 };
792
793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794 {
795 struct pool *pool = m->tc->pool;
796
797 if (atomic_dec_and_test(&m->prepare_actions)) {
798 list_add_tail(&m->list, &pool->prepared_mappings);
799 wake_worker(pool);
800 }
801 }
802
803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804 {
805 unsigned long flags;
806 struct pool *pool = m->tc->pool;
807
808 spin_lock_irqsave(&pool->lock, flags);
809 __complete_mapping_preparation(m);
810 spin_unlock_irqrestore(&pool->lock, flags);
811 }
812
813 static void copy_complete(int read_err, unsigned long write_err, void *context)
814 {
815 struct dm_thin_new_mapping *m = context;
816
817 m->err = read_err || write_err ? -EIO : 0;
818 complete_mapping_preparation(m);
819 }
820
821 static void overwrite_endio(struct bio *bio)
822 {
823 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824 struct dm_thin_new_mapping *m = h->overwrite_mapping;
825
826 bio->bi_end_io = m->saved_bi_end_io;
827
828 m->err = bio->bi_error;
829 complete_mapping_preparation(m);
830 }
831
832 /*----------------------------------------------------------------*/
833
834 /*
835 * Workqueue.
836 */
837
838 /*
839 * Prepared mapping jobs.
840 */
841
842 /*
843 * This sends the bios in the cell, except the original holder, back
844 * to the deferred_bios list.
845 */
846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847 {
848 struct pool *pool = tc->pool;
849 unsigned long flags;
850
851 spin_lock_irqsave(&tc->lock, flags);
852 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
853 spin_unlock_irqrestore(&tc->lock, flags);
854
855 wake_worker(pool);
856 }
857
858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
859
860 struct remap_info {
861 struct thin_c *tc;
862 struct bio_list defer_bios;
863 struct bio_list issue_bios;
864 };
865
866 static void __inc_remap_and_issue_cell(void *context,
867 struct dm_bio_prison_cell *cell)
868 {
869 struct remap_info *info = context;
870 struct bio *bio;
871
872 while ((bio = bio_list_pop(&cell->bios))) {
873 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
874 bio_list_add(&info->defer_bios, bio);
875 else {
876 inc_all_io_entry(info->tc->pool, bio);
877
878 /*
879 * We can't issue the bios with the bio prison lock
880 * held, so we add them to a list to issue on
881 * return from this function.
882 */
883 bio_list_add(&info->issue_bios, bio);
884 }
885 }
886 }
887
888 static void inc_remap_and_issue_cell(struct thin_c *tc,
889 struct dm_bio_prison_cell *cell,
890 dm_block_t block)
891 {
892 struct bio *bio;
893 struct remap_info info;
894
895 info.tc = tc;
896 bio_list_init(&info.defer_bios);
897 bio_list_init(&info.issue_bios);
898
899 /*
900 * We have to be careful to inc any bios we're about to issue
901 * before the cell is released, and avoid a race with new bios
902 * being added to the cell.
903 */
904 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
905 &info, cell);
906
907 while ((bio = bio_list_pop(&info.defer_bios)))
908 thin_defer_bio(tc, bio);
909
910 while ((bio = bio_list_pop(&info.issue_bios)))
911 remap_and_issue(info.tc, bio, block);
912 }
913
914 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
915 {
916 cell_error(m->tc->pool, m->cell);
917 list_del(&m->list);
918 mempool_free(m, m->tc->pool->mapping_pool);
919 }
920
921 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
922 {
923 struct thin_c *tc = m->tc;
924 struct pool *pool = tc->pool;
925 struct bio *bio = m->bio;
926 int r;
927
928 if (m->err) {
929 cell_error(pool, m->cell);
930 goto out;
931 }
932
933 /*
934 * Commit the prepared block into the mapping btree.
935 * Any I/O for this block arriving after this point will get
936 * remapped to it directly.
937 */
938 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
939 if (r) {
940 metadata_operation_failed(pool, "dm_thin_insert_block", r);
941 cell_error(pool, m->cell);
942 goto out;
943 }
944
945 /*
946 * Release any bios held while the block was being provisioned.
947 * If we are processing a write bio that completely covers the block,
948 * we already processed it so can ignore it now when processing
949 * the bios in the cell.
950 */
951 if (bio) {
952 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
953 bio_endio(bio);
954 } else {
955 inc_all_io_entry(tc->pool, m->cell->holder);
956 remap_and_issue(tc, m->cell->holder, m->data_block);
957 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
958 }
959
960 out:
961 list_del(&m->list);
962 mempool_free(m, pool->mapping_pool);
963 }
964
965 /*----------------------------------------------------------------*/
966
967 static void free_discard_mapping(struct dm_thin_new_mapping *m)
968 {
969 struct thin_c *tc = m->tc;
970 if (m->cell)
971 cell_defer_no_holder(tc, m->cell);
972 mempool_free(m, tc->pool->mapping_pool);
973 }
974
975 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
976 {
977 bio_io_error(m->bio);
978 free_discard_mapping(m);
979 }
980
981 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
982 {
983 bio_endio(m->bio);
984 free_discard_mapping(m);
985 }
986
987 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
988 {
989 int r;
990 struct thin_c *tc = m->tc;
991
992 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
993 if (r) {
994 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
995 bio_io_error(m->bio);
996 } else
997 bio_endio(m->bio);
998
999 cell_defer_no_holder(tc, m->cell);
1000 mempool_free(m, tc->pool->mapping_pool);
1001 }
1002
1003 /*----------------------------------------------------------------*/
1004
1005 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1006 struct bio *discard_parent)
1007 {
1008 /*
1009 * We've already unmapped this range of blocks, but before we
1010 * passdown we have to check that these blocks are now unused.
1011 */
1012 int r = 0;
1013 bool used = true;
1014 struct thin_c *tc = m->tc;
1015 struct pool *pool = tc->pool;
1016 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1017 struct discard_op op;
1018
1019 begin_discard(&op, tc, discard_parent);
1020 while (b != end) {
1021 /* find start of unmapped run */
1022 for (; b < end; b++) {
1023 r = dm_pool_block_is_used(pool->pmd, b, &used);
1024 if (r)
1025 goto out;
1026
1027 if (!used)
1028 break;
1029 }
1030
1031 if (b == end)
1032 break;
1033
1034 /* find end of run */
1035 for (e = b + 1; e != end; e++) {
1036 r = dm_pool_block_is_used(pool->pmd, e, &used);
1037 if (r)
1038 goto out;
1039
1040 if (used)
1041 break;
1042 }
1043
1044 r = issue_discard(&op, b, e);
1045 if (r)
1046 goto out;
1047
1048 b = e;
1049 }
1050 out:
1051 end_discard(&op, r);
1052 }
1053
1054 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1055 {
1056 unsigned long flags;
1057 struct pool *pool = m->tc->pool;
1058
1059 spin_lock_irqsave(&pool->lock, flags);
1060 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1061 spin_unlock_irqrestore(&pool->lock, flags);
1062 wake_worker(pool);
1063 }
1064
1065 static void passdown_endio(struct bio *bio)
1066 {
1067 /*
1068 * It doesn't matter if the passdown discard failed, we still want
1069 * to unmap (we ignore err).
1070 */
1071 queue_passdown_pt2(bio->bi_private);
1072 }
1073
1074 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1075 {
1076 int r;
1077 struct thin_c *tc = m->tc;
1078 struct pool *pool = tc->pool;
1079 struct bio *discard_parent;
1080 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1081
1082 /*
1083 * Only this thread allocates blocks, so we can be sure that the
1084 * newly unmapped blocks will not be allocated before the end of
1085 * the function.
1086 */
1087 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1088 if (r) {
1089 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1090 bio_io_error(m->bio);
1091 cell_defer_no_holder(tc, m->cell);
1092 mempool_free(m, pool->mapping_pool);
1093 return;
1094 }
1095
1096 discard_parent = bio_alloc(GFP_NOIO, 1);
1097 if (!discard_parent) {
1098 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1099 dm_device_name(tc->pool->pool_md));
1100 queue_passdown_pt2(m);
1101
1102 } else {
1103 discard_parent->bi_end_io = passdown_endio;
1104 discard_parent->bi_private = m;
1105
1106 if (m->maybe_shared)
1107 passdown_double_checking_shared_status(m, discard_parent);
1108 else {
1109 struct discard_op op;
1110
1111 begin_discard(&op, tc, discard_parent);
1112 r = issue_discard(&op, m->data_block, data_end);
1113 end_discard(&op, r);
1114 }
1115 }
1116
1117 /*
1118 * Increment the unmapped blocks. This prevents a race between the
1119 * passdown io and reallocation of freed blocks.
1120 */
1121 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1122 if (r) {
1123 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1124 bio_io_error(m->bio);
1125 cell_defer_no_holder(tc, m->cell);
1126 mempool_free(m, pool->mapping_pool);
1127 return;
1128 }
1129 }
1130
1131 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1132 {
1133 int r;
1134 struct thin_c *tc = m->tc;
1135 struct pool *pool = tc->pool;
1136
1137 /*
1138 * The passdown has completed, so now we can decrement all those
1139 * unmapped blocks.
1140 */
1141 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1142 m->data_block + (m->virt_end - m->virt_begin));
1143 if (r) {
1144 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1145 bio_io_error(m->bio);
1146 } else
1147 bio_endio(m->bio);
1148
1149 cell_defer_no_holder(tc, m->cell);
1150 mempool_free(m, pool->mapping_pool);
1151 }
1152
1153 static void process_prepared(struct pool *pool, struct list_head *head,
1154 process_mapping_fn *fn)
1155 {
1156 unsigned long flags;
1157 struct list_head maps;
1158 struct dm_thin_new_mapping *m, *tmp;
1159
1160 INIT_LIST_HEAD(&maps);
1161 spin_lock_irqsave(&pool->lock, flags);
1162 list_splice_init(head, &maps);
1163 spin_unlock_irqrestore(&pool->lock, flags);
1164
1165 list_for_each_entry_safe(m, tmp, &maps, list)
1166 (*fn)(m);
1167 }
1168
1169 /*
1170 * Deferred bio jobs.
1171 */
1172 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1173 {
1174 return bio->bi_iter.bi_size ==
1175 (pool->sectors_per_block << SECTOR_SHIFT);
1176 }
1177
1178 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1179 {
1180 return (bio_data_dir(bio) == WRITE) &&
1181 io_overlaps_block(pool, bio);
1182 }
1183
1184 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1185 bio_end_io_t *fn)
1186 {
1187 *save = bio->bi_end_io;
1188 bio->bi_end_io = fn;
1189 }
1190
1191 static int ensure_next_mapping(struct pool *pool)
1192 {
1193 if (pool->next_mapping)
1194 return 0;
1195
1196 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1197
1198 return pool->next_mapping ? 0 : -ENOMEM;
1199 }
1200
1201 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1202 {
1203 struct dm_thin_new_mapping *m = pool->next_mapping;
1204
1205 BUG_ON(!pool->next_mapping);
1206
1207 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1208 INIT_LIST_HEAD(&m->list);
1209 m->bio = NULL;
1210
1211 pool->next_mapping = NULL;
1212
1213 return m;
1214 }
1215
1216 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1217 sector_t begin, sector_t end)
1218 {
1219 int r;
1220 struct dm_io_region to;
1221
1222 to.bdev = tc->pool_dev->bdev;
1223 to.sector = begin;
1224 to.count = end - begin;
1225
1226 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1227 if (r < 0) {
1228 DMERR_LIMIT("dm_kcopyd_zero() failed");
1229 copy_complete(1, 1, m);
1230 }
1231 }
1232
1233 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1234 dm_block_t data_begin,
1235 struct dm_thin_new_mapping *m)
1236 {
1237 struct pool *pool = tc->pool;
1238 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1239
1240 h->overwrite_mapping = m;
1241 m->bio = bio;
1242 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1243 inc_all_io_entry(pool, bio);
1244 remap_and_issue(tc, bio, data_begin);
1245 }
1246
1247 /*
1248 * A partial copy also needs to zero the uncopied region.
1249 */
1250 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1251 struct dm_dev *origin, dm_block_t data_origin,
1252 dm_block_t data_dest,
1253 struct dm_bio_prison_cell *cell, struct bio *bio,
1254 sector_t len)
1255 {
1256 int r;
1257 struct pool *pool = tc->pool;
1258 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1259
1260 m->tc = tc;
1261 m->virt_begin = virt_block;
1262 m->virt_end = virt_block + 1u;
1263 m->data_block = data_dest;
1264 m->cell = cell;
1265
1266 /*
1267 * quiesce action + copy action + an extra reference held for the
1268 * duration of this function (we may need to inc later for a
1269 * partial zero).
1270 */
1271 atomic_set(&m->prepare_actions, 3);
1272
1273 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1274 complete_mapping_preparation(m); /* already quiesced */
1275
1276 /*
1277 * IO to pool_dev remaps to the pool target's data_dev.
1278 *
1279 * If the whole block of data is being overwritten, we can issue the
1280 * bio immediately. Otherwise we use kcopyd to clone the data first.
1281 */
1282 if (io_overwrites_block(pool, bio))
1283 remap_and_issue_overwrite(tc, bio, data_dest, m);
1284 else {
1285 struct dm_io_region from, to;
1286
1287 from.bdev = origin->bdev;
1288 from.sector = data_origin * pool->sectors_per_block;
1289 from.count = len;
1290
1291 to.bdev = tc->pool_dev->bdev;
1292 to.sector = data_dest * pool->sectors_per_block;
1293 to.count = len;
1294
1295 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1296 0, copy_complete, m);
1297 if (r < 0) {
1298 DMERR_LIMIT("dm_kcopyd_copy() failed");
1299 copy_complete(1, 1, m);
1300
1301 /*
1302 * We allow the zero to be issued, to simplify the
1303 * error path. Otherwise we'd need to start
1304 * worrying about decrementing the prepare_actions
1305 * counter.
1306 */
1307 }
1308
1309 /*
1310 * Do we need to zero a tail region?
1311 */
1312 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1313 atomic_inc(&m->prepare_actions);
1314 ll_zero(tc, m,
1315 data_dest * pool->sectors_per_block + len,
1316 (data_dest + 1) * pool->sectors_per_block);
1317 }
1318 }
1319
1320 complete_mapping_preparation(m); /* drop our ref */
1321 }
1322
1323 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1324 dm_block_t data_origin, dm_block_t data_dest,
1325 struct dm_bio_prison_cell *cell, struct bio *bio)
1326 {
1327 schedule_copy(tc, virt_block, tc->pool_dev,
1328 data_origin, data_dest, cell, bio,
1329 tc->pool->sectors_per_block);
1330 }
1331
1332 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1333 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1334 struct bio *bio)
1335 {
1336 struct pool *pool = tc->pool;
1337 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1338
1339 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1340 m->tc = tc;
1341 m->virt_begin = virt_block;
1342 m->virt_end = virt_block + 1u;
1343 m->data_block = data_block;
1344 m->cell = cell;
1345
1346 /*
1347 * If the whole block of data is being overwritten or we are not
1348 * zeroing pre-existing data, we can issue the bio immediately.
1349 * Otherwise we use kcopyd to zero the data first.
1350 */
1351 if (pool->pf.zero_new_blocks) {
1352 if (io_overwrites_block(pool, bio))
1353 remap_and_issue_overwrite(tc, bio, data_block, m);
1354 else
1355 ll_zero(tc, m, data_block * pool->sectors_per_block,
1356 (data_block + 1) * pool->sectors_per_block);
1357 } else
1358 process_prepared_mapping(m);
1359 }
1360
1361 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1362 dm_block_t data_dest,
1363 struct dm_bio_prison_cell *cell, struct bio *bio)
1364 {
1365 struct pool *pool = tc->pool;
1366 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1367 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1368
1369 if (virt_block_end <= tc->origin_size)
1370 schedule_copy(tc, virt_block, tc->origin_dev,
1371 virt_block, data_dest, cell, bio,
1372 pool->sectors_per_block);
1373
1374 else if (virt_block_begin < tc->origin_size)
1375 schedule_copy(tc, virt_block, tc->origin_dev,
1376 virt_block, data_dest, cell, bio,
1377 tc->origin_size - virt_block_begin);
1378
1379 else
1380 schedule_zero(tc, virt_block, data_dest, cell, bio);
1381 }
1382
1383 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1384
1385 static void check_for_space(struct pool *pool)
1386 {
1387 int r;
1388 dm_block_t nr_free;
1389
1390 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1391 return;
1392
1393 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1394 if (r)
1395 return;
1396
1397 if (nr_free)
1398 set_pool_mode(pool, PM_WRITE);
1399 }
1400
1401 /*
1402 * A non-zero return indicates read_only or fail_io mode.
1403 * Many callers don't care about the return value.
1404 */
1405 static int commit(struct pool *pool)
1406 {
1407 int r;
1408
1409 if (get_pool_mode(pool) >= PM_READ_ONLY)
1410 return -EINVAL;
1411
1412 r = dm_pool_commit_metadata(pool->pmd);
1413 if (r)
1414 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1415 else
1416 check_for_space(pool);
1417
1418 return r;
1419 }
1420
1421 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1422 {
1423 unsigned long flags;
1424
1425 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1426 DMWARN("%s: reached low water mark for data device: sending event.",
1427 dm_device_name(pool->pool_md));
1428 spin_lock_irqsave(&pool->lock, flags);
1429 pool->low_water_triggered = true;
1430 spin_unlock_irqrestore(&pool->lock, flags);
1431 dm_table_event(pool->ti->table);
1432 }
1433 }
1434
1435 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1436 {
1437 int r;
1438 dm_block_t free_blocks;
1439 struct pool *pool = tc->pool;
1440
1441 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1442 return -EINVAL;
1443
1444 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1445 if (r) {
1446 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1447 return r;
1448 }
1449
1450 check_low_water_mark(pool, free_blocks);
1451
1452 if (!free_blocks) {
1453 /*
1454 * Try to commit to see if that will free up some
1455 * more space.
1456 */
1457 r = commit(pool);
1458 if (r)
1459 return r;
1460
1461 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1462 if (r) {
1463 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1464 return r;
1465 }
1466
1467 if (!free_blocks) {
1468 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1469 return -ENOSPC;
1470 }
1471 }
1472
1473 r = dm_pool_alloc_data_block(pool->pmd, result);
1474 if (r) {
1475 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1476 return r;
1477 }
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * If we have run out of space, queue bios until the device is
1484 * resumed, presumably after having been reloaded with more space.
1485 */
1486 static void retry_on_resume(struct bio *bio)
1487 {
1488 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1489 struct thin_c *tc = h->tc;
1490 unsigned long flags;
1491
1492 spin_lock_irqsave(&tc->lock, flags);
1493 bio_list_add(&tc->retry_on_resume_list, bio);
1494 spin_unlock_irqrestore(&tc->lock, flags);
1495 }
1496
1497 static int should_error_unserviceable_bio(struct pool *pool)
1498 {
1499 enum pool_mode m = get_pool_mode(pool);
1500
1501 switch (m) {
1502 case PM_WRITE:
1503 /* Shouldn't get here */
1504 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1505 return -EIO;
1506
1507 case PM_OUT_OF_DATA_SPACE:
1508 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1509
1510 case PM_READ_ONLY:
1511 case PM_FAIL:
1512 return -EIO;
1513 default:
1514 /* Shouldn't get here */
1515 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1516 return -EIO;
1517 }
1518 }
1519
1520 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1521 {
1522 int error = should_error_unserviceable_bio(pool);
1523
1524 if (error) {
1525 bio->bi_error = error;
1526 bio_endio(bio);
1527 } else
1528 retry_on_resume(bio);
1529 }
1530
1531 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1532 {
1533 struct bio *bio;
1534 struct bio_list bios;
1535 int error;
1536
1537 error = should_error_unserviceable_bio(pool);
1538 if (error) {
1539 cell_error_with_code(pool, cell, error);
1540 return;
1541 }
1542
1543 bio_list_init(&bios);
1544 cell_release(pool, cell, &bios);
1545
1546 while ((bio = bio_list_pop(&bios)))
1547 retry_on_resume(bio);
1548 }
1549
1550 static void process_discard_cell_no_passdown(struct thin_c *tc,
1551 struct dm_bio_prison_cell *virt_cell)
1552 {
1553 struct pool *pool = tc->pool;
1554 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1555
1556 /*
1557 * We don't need to lock the data blocks, since there's no
1558 * passdown. We only lock data blocks for allocation and breaking sharing.
1559 */
1560 m->tc = tc;
1561 m->virt_begin = virt_cell->key.block_begin;
1562 m->virt_end = virt_cell->key.block_end;
1563 m->cell = virt_cell;
1564 m->bio = virt_cell->holder;
1565
1566 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1567 pool->process_prepared_discard(m);
1568 }
1569
1570 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1571 struct bio *bio)
1572 {
1573 struct pool *pool = tc->pool;
1574
1575 int r;
1576 bool maybe_shared;
1577 struct dm_cell_key data_key;
1578 struct dm_bio_prison_cell *data_cell;
1579 struct dm_thin_new_mapping *m;
1580 dm_block_t virt_begin, virt_end, data_begin;
1581
1582 while (begin != end) {
1583 r = ensure_next_mapping(pool);
1584 if (r)
1585 /* we did our best */
1586 return;
1587
1588 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1589 &data_begin, &maybe_shared);
1590 if (r)
1591 /*
1592 * Silently fail, letting any mappings we've
1593 * created complete.
1594 */
1595 break;
1596
1597 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1598 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1599 /* contention, we'll give up with this range */
1600 begin = virt_end;
1601 continue;
1602 }
1603
1604 /*
1605 * IO may still be going to the destination block. We must
1606 * quiesce before we can do the removal.
1607 */
1608 m = get_next_mapping(pool);
1609 m->tc = tc;
1610 m->maybe_shared = maybe_shared;
1611 m->virt_begin = virt_begin;
1612 m->virt_end = virt_end;
1613 m->data_block = data_begin;
1614 m->cell = data_cell;
1615 m->bio = bio;
1616
1617 /*
1618 * The parent bio must not complete before sub discard bios are
1619 * chained to it (see end_discard's bio_chain)!
1620 *
1621 * This per-mapping bi_remaining increment is paired with
1622 * the implicit decrement that occurs via bio_endio() in
1623 * end_discard().
1624 */
1625 bio_inc_remaining(bio);
1626 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1627 pool->process_prepared_discard(m);
1628
1629 begin = virt_end;
1630 }
1631 }
1632
1633 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1634 {
1635 struct bio *bio = virt_cell->holder;
1636 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1637
1638 /*
1639 * The virt_cell will only get freed once the origin bio completes.
1640 * This means it will remain locked while all the individual
1641 * passdown bios are in flight.
1642 */
1643 h->cell = virt_cell;
1644 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1645
1646 /*
1647 * We complete the bio now, knowing that the bi_remaining field
1648 * will prevent completion until the sub range discards have
1649 * completed.
1650 */
1651 bio_endio(bio);
1652 }
1653
1654 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1655 {
1656 dm_block_t begin, end;
1657 struct dm_cell_key virt_key;
1658 struct dm_bio_prison_cell *virt_cell;
1659
1660 get_bio_block_range(tc, bio, &begin, &end);
1661 if (begin == end) {
1662 /*
1663 * The discard covers less than a block.
1664 */
1665 bio_endio(bio);
1666 return;
1667 }
1668
1669 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1670 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1671 /*
1672 * Potential starvation issue: We're relying on the
1673 * fs/application being well behaved, and not trying to
1674 * send IO to a region at the same time as discarding it.
1675 * If they do this persistently then it's possible this
1676 * cell will never be granted.
1677 */
1678 return;
1679
1680 tc->pool->process_discard_cell(tc, virt_cell);
1681 }
1682
1683 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1684 struct dm_cell_key *key,
1685 struct dm_thin_lookup_result *lookup_result,
1686 struct dm_bio_prison_cell *cell)
1687 {
1688 int r;
1689 dm_block_t data_block;
1690 struct pool *pool = tc->pool;
1691
1692 r = alloc_data_block(tc, &data_block);
1693 switch (r) {
1694 case 0:
1695 schedule_internal_copy(tc, block, lookup_result->block,
1696 data_block, cell, bio);
1697 break;
1698
1699 case -ENOSPC:
1700 retry_bios_on_resume(pool, cell);
1701 break;
1702
1703 default:
1704 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1705 __func__, r);
1706 cell_error(pool, cell);
1707 break;
1708 }
1709 }
1710
1711 static void __remap_and_issue_shared_cell(void *context,
1712 struct dm_bio_prison_cell *cell)
1713 {
1714 struct remap_info *info = context;
1715 struct bio *bio;
1716
1717 while ((bio = bio_list_pop(&cell->bios))) {
1718 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1719 bio_op(bio) == REQ_OP_DISCARD)
1720 bio_list_add(&info->defer_bios, bio);
1721 else {
1722 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1723
1724 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1725 inc_all_io_entry(info->tc->pool, bio);
1726 bio_list_add(&info->issue_bios, bio);
1727 }
1728 }
1729 }
1730
1731 static void remap_and_issue_shared_cell(struct thin_c *tc,
1732 struct dm_bio_prison_cell *cell,
1733 dm_block_t block)
1734 {
1735 struct bio *bio;
1736 struct remap_info info;
1737
1738 info.tc = tc;
1739 bio_list_init(&info.defer_bios);
1740 bio_list_init(&info.issue_bios);
1741
1742 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1743 &info, cell);
1744
1745 while ((bio = bio_list_pop(&info.defer_bios)))
1746 thin_defer_bio(tc, bio);
1747
1748 while ((bio = bio_list_pop(&info.issue_bios)))
1749 remap_and_issue(tc, bio, block);
1750 }
1751
1752 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1753 dm_block_t block,
1754 struct dm_thin_lookup_result *lookup_result,
1755 struct dm_bio_prison_cell *virt_cell)
1756 {
1757 struct dm_bio_prison_cell *data_cell;
1758 struct pool *pool = tc->pool;
1759 struct dm_cell_key key;
1760
1761 /*
1762 * If cell is already occupied, then sharing is already in the process
1763 * of being broken so we have nothing further to do here.
1764 */
1765 build_data_key(tc->td, lookup_result->block, &key);
1766 if (bio_detain(pool, &key, bio, &data_cell)) {
1767 cell_defer_no_holder(tc, virt_cell);
1768 return;
1769 }
1770
1771 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1772 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1773 cell_defer_no_holder(tc, virt_cell);
1774 } else {
1775 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1776
1777 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1778 inc_all_io_entry(pool, bio);
1779 remap_and_issue(tc, bio, lookup_result->block);
1780
1781 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1782 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1783 }
1784 }
1785
1786 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787 struct dm_bio_prison_cell *cell)
1788 {
1789 int r;
1790 dm_block_t data_block;
1791 struct pool *pool = tc->pool;
1792
1793 /*
1794 * Remap empty bios (flushes) immediately, without provisioning.
1795 */
1796 if (!bio->bi_iter.bi_size) {
1797 inc_all_io_entry(pool, bio);
1798 cell_defer_no_holder(tc, cell);
1799
1800 remap_and_issue(tc, bio, 0);
1801 return;
1802 }
1803
1804 /*
1805 * Fill read bios with zeroes and complete them immediately.
1806 */
1807 if (bio_data_dir(bio) == READ) {
1808 zero_fill_bio(bio);
1809 cell_defer_no_holder(tc, cell);
1810 bio_endio(bio);
1811 return;
1812 }
1813
1814 r = alloc_data_block(tc, &data_block);
1815 switch (r) {
1816 case 0:
1817 if (tc->origin_dev)
1818 schedule_external_copy(tc, block, data_block, cell, bio);
1819 else
1820 schedule_zero(tc, block, data_block, cell, bio);
1821 break;
1822
1823 case -ENOSPC:
1824 retry_bios_on_resume(pool, cell);
1825 break;
1826
1827 default:
1828 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1829 __func__, r);
1830 cell_error(pool, cell);
1831 break;
1832 }
1833 }
1834
1835 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1836 {
1837 int r;
1838 struct pool *pool = tc->pool;
1839 struct bio *bio = cell->holder;
1840 dm_block_t block = get_bio_block(tc, bio);
1841 struct dm_thin_lookup_result lookup_result;
1842
1843 if (tc->requeue_mode) {
1844 cell_requeue(pool, cell);
1845 return;
1846 }
1847
1848 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1849 switch (r) {
1850 case 0:
1851 if (lookup_result.shared)
1852 process_shared_bio(tc, bio, block, &lookup_result, cell);
1853 else {
1854 inc_all_io_entry(pool, bio);
1855 remap_and_issue(tc, bio, lookup_result.block);
1856 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1857 }
1858 break;
1859
1860 case -ENODATA:
1861 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1862 inc_all_io_entry(pool, bio);
1863 cell_defer_no_holder(tc, cell);
1864
1865 if (bio_end_sector(bio) <= tc->origin_size)
1866 remap_to_origin_and_issue(tc, bio);
1867
1868 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1869 zero_fill_bio(bio);
1870 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1871 remap_to_origin_and_issue(tc, bio);
1872
1873 } else {
1874 zero_fill_bio(bio);
1875 bio_endio(bio);
1876 }
1877 } else
1878 provision_block(tc, bio, block, cell);
1879 break;
1880
1881 default:
1882 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1883 __func__, r);
1884 cell_defer_no_holder(tc, cell);
1885 bio_io_error(bio);
1886 break;
1887 }
1888 }
1889
1890 static void process_bio(struct thin_c *tc, struct bio *bio)
1891 {
1892 struct pool *pool = tc->pool;
1893 dm_block_t block = get_bio_block(tc, bio);
1894 struct dm_bio_prison_cell *cell;
1895 struct dm_cell_key key;
1896
1897 /*
1898 * If cell is already occupied, then the block is already
1899 * being provisioned so we have nothing further to do here.
1900 */
1901 build_virtual_key(tc->td, block, &key);
1902 if (bio_detain(pool, &key, bio, &cell))
1903 return;
1904
1905 process_cell(tc, cell);
1906 }
1907
1908 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1909 struct dm_bio_prison_cell *cell)
1910 {
1911 int r;
1912 int rw = bio_data_dir(bio);
1913 dm_block_t block = get_bio_block(tc, bio);
1914 struct dm_thin_lookup_result lookup_result;
1915
1916 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1917 switch (r) {
1918 case 0:
1919 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1920 handle_unserviceable_bio(tc->pool, bio);
1921 if (cell)
1922 cell_defer_no_holder(tc, cell);
1923 } else {
1924 inc_all_io_entry(tc->pool, bio);
1925 remap_and_issue(tc, bio, lookup_result.block);
1926 if (cell)
1927 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1928 }
1929 break;
1930
1931 case -ENODATA:
1932 if (cell)
1933 cell_defer_no_holder(tc, cell);
1934 if (rw != READ) {
1935 handle_unserviceable_bio(tc->pool, bio);
1936 break;
1937 }
1938
1939 if (tc->origin_dev) {
1940 inc_all_io_entry(tc->pool, bio);
1941 remap_to_origin_and_issue(tc, bio);
1942 break;
1943 }
1944
1945 zero_fill_bio(bio);
1946 bio_endio(bio);
1947 break;
1948
1949 default:
1950 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1951 __func__, r);
1952 if (cell)
1953 cell_defer_no_holder(tc, cell);
1954 bio_io_error(bio);
1955 break;
1956 }
1957 }
1958
1959 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1960 {
1961 __process_bio_read_only(tc, bio, NULL);
1962 }
1963
1964 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1965 {
1966 __process_bio_read_only(tc, cell->holder, cell);
1967 }
1968
1969 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1970 {
1971 bio_endio(bio);
1972 }
1973
1974 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1975 {
1976 bio_io_error(bio);
1977 }
1978
1979 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1980 {
1981 cell_success(tc->pool, cell);
1982 }
1983
1984 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1985 {
1986 cell_error(tc->pool, cell);
1987 }
1988
1989 /*
1990 * FIXME: should we also commit due to size of transaction, measured in
1991 * metadata blocks?
1992 */
1993 static int need_commit_due_to_time(struct pool *pool)
1994 {
1995 return !time_in_range(jiffies, pool->last_commit_jiffies,
1996 pool->last_commit_jiffies + COMMIT_PERIOD);
1997 }
1998
1999 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2000 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2001
2002 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2003 {
2004 struct rb_node **rbp, *parent;
2005 struct dm_thin_endio_hook *pbd;
2006 sector_t bi_sector = bio->bi_iter.bi_sector;
2007
2008 rbp = &tc->sort_bio_list.rb_node;
2009 parent = NULL;
2010 while (*rbp) {
2011 parent = *rbp;
2012 pbd = thin_pbd(parent);
2013
2014 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2015 rbp = &(*rbp)->rb_left;
2016 else
2017 rbp = &(*rbp)->rb_right;
2018 }
2019
2020 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2021 rb_link_node(&pbd->rb_node, parent, rbp);
2022 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2023 }
2024
2025 static void __extract_sorted_bios(struct thin_c *tc)
2026 {
2027 struct rb_node *node;
2028 struct dm_thin_endio_hook *pbd;
2029 struct bio *bio;
2030
2031 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2032 pbd = thin_pbd(node);
2033 bio = thin_bio(pbd);
2034
2035 bio_list_add(&tc->deferred_bio_list, bio);
2036 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2037 }
2038
2039 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2040 }
2041
2042 static void __sort_thin_deferred_bios(struct thin_c *tc)
2043 {
2044 struct bio *bio;
2045 struct bio_list bios;
2046
2047 bio_list_init(&bios);
2048 bio_list_merge(&bios, &tc->deferred_bio_list);
2049 bio_list_init(&tc->deferred_bio_list);
2050
2051 /* Sort deferred_bio_list using rb-tree */
2052 while ((bio = bio_list_pop(&bios)))
2053 __thin_bio_rb_add(tc, bio);
2054
2055 /*
2056 * Transfer the sorted bios in sort_bio_list back to
2057 * deferred_bio_list to allow lockless submission of
2058 * all bios.
2059 */
2060 __extract_sorted_bios(tc);
2061 }
2062
2063 static void process_thin_deferred_bios(struct thin_c *tc)
2064 {
2065 struct pool *pool = tc->pool;
2066 unsigned long flags;
2067 struct bio *bio;
2068 struct bio_list bios;
2069 struct blk_plug plug;
2070 unsigned count = 0;
2071
2072 if (tc->requeue_mode) {
2073 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2074 return;
2075 }
2076
2077 bio_list_init(&bios);
2078
2079 spin_lock_irqsave(&tc->lock, flags);
2080
2081 if (bio_list_empty(&tc->deferred_bio_list)) {
2082 spin_unlock_irqrestore(&tc->lock, flags);
2083 return;
2084 }
2085
2086 __sort_thin_deferred_bios(tc);
2087
2088 bio_list_merge(&bios, &tc->deferred_bio_list);
2089 bio_list_init(&tc->deferred_bio_list);
2090
2091 spin_unlock_irqrestore(&tc->lock, flags);
2092
2093 blk_start_plug(&plug);
2094 while ((bio = bio_list_pop(&bios))) {
2095 /*
2096 * If we've got no free new_mapping structs, and processing
2097 * this bio might require one, we pause until there are some
2098 * prepared mappings to process.
2099 */
2100 if (ensure_next_mapping(pool)) {
2101 spin_lock_irqsave(&tc->lock, flags);
2102 bio_list_add(&tc->deferred_bio_list, bio);
2103 bio_list_merge(&tc->deferred_bio_list, &bios);
2104 spin_unlock_irqrestore(&tc->lock, flags);
2105 break;
2106 }
2107
2108 if (bio_op(bio) == REQ_OP_DISCARD)
2109 pool->process_discard(tc, bio);
2110 else
2111 pool->process_bio(tc, bio);
2112
2113 if ((count++ & 127) == 0) {
2114 throttle_work_update(&pool->throttle);
2115 dm_pool_issue_prefetches(pool->pmd);
2116 }
2117 }
2118 blk_finish_plug(&plug);
2119 }
2120
2121 static int cmp_cells(const void *lhs, const void *rhs)
2122 {
2123 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2124 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2125
2126 BUG_ON(!lhs_cell->holder);
2127 BUG_ON(!rhs_cell->holder);
2128
2129 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2130 return -1;
2131
2132 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2133 return 1;
2134
2135 return 0;
2136 }
2137
2138 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2139 {
2140 unsigned count = 0;
2141 struct dm_bio_prison_cell *cell, *tmp;
2142
2143 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2144 if (count >= CELL_SORT_ARRAY_SIZE)
2145 break;
2146
2147 pool->cell_sort_array[count++] = cell;
2148 list_del(&cell->user_list);
2149 }
2150
2151 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2152
2153 return count;
2154 }
2155
2156 static void process_thin_deferred_cells(struct thin_c *tc)
2157 {
2158 struct pool *pool = tc->pool;
2159 unsigned long flags;
2160 struct list_head cells;
2161 struct dm_bio_prison_cell *cell;
2162 unsigned i, j, count;
2163
2164 INIT_LIST_HEAD(&cells);
2165
2166 spin_lock_irqsave(&tc->lock, flags);
2167 list_splice_init(&tc->deferred_cells, &cells);
2168 spin_unlock_irqrestore(&tc->lock, flags);
2169
2170 if (list_empty(&cells))
2171 return;
2172
2173 do {
2174 count = sort_cells(tc->pool, &cells);
2175
2176 for (i = 0; i < count; i++) {
2177 cell = pool->cell_sort_array[i];
2178 BUG_ON(!cell->holder);
2179
2180 /*
2181 * If we've got no free new_mapping structs, and processing
2182 * this bio might require one, we pause until there are some
2183 * prepared mappings to process.
2184 */
2185 if (ensure_next_mapping(pool)) {
2186 for (j = i; j < count; j++)
2187 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2188
2189 spin_lock_irqsave(&tc->lock, flags);
2190 list_splice(&cells, &tc->deferred_cells);
2191 spin_unlock_irqrestore(&tc->lock, flags);
2192 return;
2193 }
2194
2195 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2196 pool->process_discard_cell(tc, cell);
2197 else
2198 pool->process_cell(tc, cell);
2199 }
2200 } while (!list_empty(&cells));
2201 }
2202
2203 static void thin_get(struct thin_c *tc);
2204 static void thin_put(struct thin_c *tc);
2205
2206 /*
2207 * We can't hold rcu_read_lock() around code that can block. So we
2208 * find a thin with the rcu lock held; bump a refcount; then drop
2209 * the lock.
2210 */
2211 static struct thin_c *get_first_thin(struct pool *pool)
2212 {
2213 struct thin_c *tc = NULL;
2214
2215 rcu_read_lock();
2216 if (!list_empty(&pool->active_thins)) {
2217 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2218 thin_get(tc);
2219 }
2220 rcu_read_unlock();
2221
2222 return tc;
2223 }
2224
2225 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2226 {
2227 struct thin_c *old_tc = tc;
2228
2229 rcu_read_lock();
2230 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2231 thin_get(tc);
2232 thin_put(old_tc);
2233 rcu_read_unlock();
2234 return tc;
2235 }
2236 thin_put(old_tc);
2237 rcu_read_unlock();
2238
2239 return NULL;
2240 }
2241
2242 static void process_deferred_bios(struct pool *pool)
2243 {
2244 unsigned long flags;
2245 struct bio *bio;
2246 struct bio_list bios;
2247 struct thin_c *tc;
2248
2249 tc = get_first_thin(pool);
2250 while (tc) {
2251 process_thin_deferred_cells(tc);
2252 process_thin_deferred_bios(tc);
2253 tc = get_next_thin(pool, tc);
2254 }
2255
2256 /*
2257 * If there are any deferred flush bios, we must commit
2258 * the metadata before issuing them.
2259 */
2260 bio_list_init(&bios);
2261 spin_lock_irqsave(&pool->lock, flags);
2262 bio_list_merge(&bios, &pool->deferred_flush_bios);
2263 bio_list_init(&pool->deferred_flush_bios);
2264 spin_unlock_irqrestore(&pool->lock, flags);
2265
2266 if (bio_list_empty(&bios) &&
2267 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2268 return;
2269
2270 if (commit(pool)) {
2271 while ((bio = bio_list_pop(&bios)))
2272 bio_io_error(bio);
2273 return;
2274 }
2275 pool->last_commit_jiffies = jiffies;
2276
2277 while ((bio = bio_list_pop(&bios)))
2278 generic_make_request(bio);
2279 }
2280
2281 static void do_worker(struct work_struct *ws)
2282 {
2283 struct pool *pool = container_of(ws, struct pool, worker);
2284
2285 throttle_work_start(&pool->throttle);
2286 dm_pool_issue_prefetches(pool->pmd);
2287 throttle_work_update(&pool->throttle);
2288 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2289 throttle_work_update(&pool->throttle);
2290 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2291 throttle_work_update(&pool->throttle);
2292 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2293 throttle_work_update(&pool->throttle);
2294 process_deferred_bios(pool);
2295 throttle_work_complete(&pool->throttle);
2296 }
2297
2298 /*
2299 * We want to commit periodically so that not too much
2300 * unwritten data builds up.
2301 */
2302 static void do_waker(struct work_struct *ws)
2303 {
2304 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2305 wake_worker(pool);
2306 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2307 }
2308
2309 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2310
2311 /*
2312 * We're holding onto IO to allow userland time to react. After the
2313 * timeout either the pool will have been resized (and thus back in
2314 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2315 */
2316 static void do_no_space_timeout(struct work_struct *ws)
2317 {
2318 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2319 no_space_timeout);
2320
2321 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2322 pool->pf.error_if_no_space = true;
2323 notify_of_pool_mode_change_to_oods(pool);
2324 error_retry_list_with_code(pool, -ENOSPC);
2325 }
2326 }
2327
2328 /*----------------------------------------------------------------*/
2329
2330 struct pool_work {
2331 struct work_struct worker;
2332 struct completion complete;
2333 };
2334
2335 static struct pool_work *to_pool_work(struct work_struct *ws)
2336 {
2337 return container_of(ws, struct pool_work, worker);
2338 }
2339
2340 static void pool_work_complete(struct pool_work *pw)
2341 {
2342 complete(&pw->complete);
2343 }
2344
2345 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2346 void (*fn)(struct work_struct *))
2347 {
2348 INIT_WORK_ONSTACK(&pw->worker, fn);
2349 init_completion(&pw->complete);
2350 queue_work(pool->wq, &pw->worker);
2351 wait_for_completion(&pw->complete);
2352 }
2353
2354 /*----------------------------------------------------------------*/
2355
2356 struct noflush_work {
2357 struct pool_work pw;
2358 struct thin_c *tc;
2359 };
2360
2361 static struct noflush_work *to_noflush(struct work_struct *ws)
2362 {
2363 return container_of(to_pool_work(ws), struct noflush_work, pw);
2364 }
2365
2366 static void do_noflush_start(struct work_struct *ws)
2367 {
2368 struct noflush_work *w = to_noflush(ws);
2369 w->tc->requeue_mode = true;
2370 requeue_io(w->tc);
2371 pool_work_complete(&w->pw);
2372 }
2373
2374 static void do_noflush_stop(struct work_struct *ws)
2375 {
2376 struct noflush_work *w = to_noflush(ws);
2377 w->tc->requeue_mode = false;
2378 pool_work_complete(&w->pw);
2379 }
2380
2381 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2382 {
2383 struct noflush_work w;
2384
2385 w.tc = tc;
2386 pool_work_wait(&w.pw, tc->pool, fn);
2387 }
2388
2389 /*----------------------------------------------------------------*/
2390
2391 static enum pool_mode get_pool_mode(struct pool *pool)
2392 {
2393 return pool->pf.mode;
2394 }
2395
2396 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2397 {
2398 dm_table_event(pool->ti->table);
2399 DMINFO("%s: switching pool to %s mode",
2400 dm_device_name(pool->pool_md), new_mode);
2401 }
2402
2403 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2404 {
2405 if (!pool->pf.error_if_no_space)
2406 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2407 else
2408 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2409 }
2410
2411 static bool passdown_enabled(struct pool_c *pt)
2412 {
2413 return pt->adjusted_pf.discard_passdown;
2414 }
2415
2416 static void set_discard_callbacks(struct pool *pool)
2417 {
2418 struct pool_c *pt = pool->ti->private;
2419
2420 if (passdown_enabled(pt)) {
2421 pool->process_discard_cell = process_discard_cell_passdown;
2422 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2423 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2424 } else {
2425 pool->process_discard_cell = process_discard_cell_no_passdown;
2426 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2427 }
2428 }
2429
2430 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2431 {
2432 struct pool_c *pt = pool->ti->private;
2433 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2434 enum pool_mode old_mode = get_pool_mode(pool);
2435 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2436
2437 /*
2438 * Never allow the pool to transition to PM_WRITE mode if user
2439 * intervention is required to verify metadata and data consistency.
2440 */
2441 if (new_mode == PM_WRITE && needs_check) {
2442 DMERR("%s: unable to switch pool to write mode until repaired.",
2443 dm_device_name(pool->pool_md));
2444 if (old_mode != new_mode)
2445 new_mode = old_mode;
2446 else
2447 new_mode = PM_READ_ONLY;
2448 }
2449 /*
2450 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2451 * not going to recover without a thin_repair. So we never let the
2452 * pool move out of the old mode.
2453 */
2454 if (old_mode == PM_FAIL)
2455 new_mode = old_mode;
2456
2457 switch (new_mode) {
2458 case PM_FAIL:
2459 if (old_mode != new_mode)
2460 notify_of_pool_mode_change(pool, "failure");
2461 dm_pool_metadata_read_only(pool->pmd);
2462 pool->process_bio = process_bio_fail;
2463 pool->process_discard = process_bio_fail;
2464 pool->process_cell = process_cell_fail;
2465 pool->process_discard_cell = process_cell_fail;
2466 pool->process_prepared_mapping = process_prepared_mapping_fail;
2467 pool->process_prepared_discard = process_prepared_discard_fail;
2468
2469 error_retry_list(pool);
2470 break;
2471
2472 case PM_READ_ONLY:
2473 if (old_mode != new_mode)
2474 notify_of_pool_mode_change(pool, "read-only");
2475 dm_pool_metadata_read_only(pool->pmd);
2476 pool->process_bio = process_bio_read_only;
2477 pool->process_discard = process_bio_success;
2478 pool->process_cell = process_cell_read_only;
2479 pool->process_discard_cell = process_cell_success;
2480 pool->process_prepared_mapping = process_prepared_mapping_fail;
2481 pool->process_prepared_discard = process_prepared_discard_success;
2482
2483 error_retry_list(pool);
2484 break;
2485
2486 case PM_OUT_OF_DATA_SPACE:
2487 /*
2488 * Ideally we'd never hit this state; the low water mark
2489 * would trigger userland to extend the pool before we
2490 * completely run out of data space. However, many small
2491 * IOs to unprovisioned space can consume data space at an
2492 * alarming rate. Adjust your low water mark if you're
2493 * frequently seeing this mode.
2494 */
2495 if (old_mode != new_mode)
2496 notify_of_pool_mode_change_to_oods(pool);
2497 pool->out_of_data_space = true;
2498 pool->process_bio = process_bio_read_only;
2499 pool->process_discard = process_discard_bio;
2500 pool->process_cell = process_cell_read_only;
2501 pool->process_prepared_mapping = process_prepared_mapping;
2502 set_discard_callbacks(pool);
2503
2504 if (!pool->pf.error_if_no_space && no_space_timeout)
2505 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2506 break;
2507
2508 case PM_WRITE:
2509 if (old_mode != new_mode)
2510 notify_of_pool_mode_change(pool, "write");
2511 pool->out_of_data_space = false;
2512 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2513 dm_pool_metadata_read_write(pool->pmd);
2514 pool->process_bio = process_bio;
2515 pool->process_discard = process_discard_bio;
2516 pool->process_cell = process_cell;
2517 pool->process_prepared_mapping = process_prepared_mapping;
2518 set_discard_callbacks(pool);
2519 break;
2520 }
2521
2522 pool->pf.mode = new_mode;
2523 /*
2524 * The pool mode may have changed, sync it so bind_control_target()
2525 * doesn't cause an unexpected mode transition on resume.
2526 */
2527 pt->adjusted_pf.mode = new_mode;
2528 }
2529
2530 static void abort_transaction(struct pool *pool)
2531 {
2532 const char *dev_name = dm_device_name(pool->pool_md);
2533
2534 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2535 if (dm_pool_abort_metadata(pool->pmd)) {
2536 DMERR("%s: failed to abort metadata transaction", dev_name);
2537 set_pool_mode(pool, PM_FAIL);
2538 }
2539
2540 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2541 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2542 set_pool_mode(pool, PM_FAIL);
2543 }
2544 }
2545
2546 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2547 {
2548 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2549 dm_device_name(pool->pool_md), op, r);
2550
2551 abort_transaction(pool);
2552 set_pool_mode(pool, PM_READ_ONLY);
2553 }
2554
2555 /*----------------------------------------------------------------*/
2556
2557 /*
2558 * Mapping functions.
2559 */
2560
2561 /*
2562 * Called only while mapping a thin bio to hand it over to the workqueue.
2563 */
2564 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2565 {
2566 unsigned long flags;
2567 struct pool *pool = tc->pool;
2568
2569 spin_lock_irqsave(&tc->lock, flags);
2570 bio_list_add(&tc->deferred_bio_list, bio);
2571 spin_unlock_irqrestore(&tc->lock, flags);
2572
2573 wake_worker(pool);
2574 }
2575
2576 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2577 {
2578 struct pool *pool = tc->pool;
2579
2580 throttle_lock(&pool->throttle);
2581 thin_defer_bio(tc, bio);
2582 throttle_unlock(&pool->throttle);
2583 }
2584
2585 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2586 {
2587 unsigned long flags;
2588 struct pool *pool = tc->pool;
2589
2590 throttle_lock(&pool->throttle);
2591 spin_lock_irqsave(&tc->lock, flags);
2592 list_add_tail(&cell->user_list, &tc->deferred_cells);
2593 spin_unlock_irqrestore(&tc->lock, flags);
2594 throttle_unlock(&pool->throttle);
2595
2596 wake_worker(pool);
2597 }
2598
2599 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2600 {
2601 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2602
2603 h->tc = tc;
2604 h->shared_read_entry = NULL;
2605 h->all_io_entry = NULL;
2606 h->overwrite_mapping = NULL;
2607 h->cell = NULL;
2608 }
2609
2610 /*
2611 * Non-blocking function called from the thin target's map function.
2612 */
2613 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2614 {
2615 int r;
2616 struct thin_c *tc = ti->private;
2617 dm_block_t block = get_bio_block(tc, bio);
2618 struct dm_thin_device *td = tc->td;
2619 struct dm_thin_lookup_result result;
2620 struct dm_bio_prison_cell *virt_cell, *data_cell;
2621 struct dm_cell_key key;
2622
2623 thin_hook_bio(tc, bio);
2624
2625 if (tc->requeue_mode) {
2626 bio->bi_error = DM_ENDIO_REQUEUE;
2627 bio_endio(bio);
2628 return DM_MAPIO_SUBMITTED;
2629 }
2630
2631 if (get_pool_mode(tc->pool) == PM_FAIL) {
2632 bio_io_error(bio);
2633 return DM_MAPIO_SUBMITTED;
2634 }
2635
2636 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2637 thin_defer_bio_with_throttle(tc, bio);
2638 return DM_MAPIO_SUBMITTED;
2639 }
2640
2641 /*
2642 * We must hold the virtual cell before doing the lookup, otherwise
2643 * there's a race with discard.
2644 */
2645 build_virtual_key(tc->td, block, &key);
2646 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2647 return DM_MAPIO_SUBMITTED;
2648
2649 r = dm_thin_find_block(td, block, 0, &result);
2650
2651 /*
2652 * Note that we defer readahead too.
2653 */
2654 switch (r) {
2655 case 0:
2656 if (unlikely(result.shared)) {
2657 /*
2658 * We have a race condition here between the
2659 * result.shared value returned by the lookup and
2660 * snapshot creation, which may cause new
2661 * sharing.
2662 *
2663 * To avoid this always quiesce the origin before
2664 * taking the snap. You want to do this anyway to
2665 * ensure a consistent application view
2666 * (i.e. lockfs).
2667 *
2668 * More distant ancestors are irrelevant. The
2669 * shared flag will be set in their case.
2670 */
2671 thin_defer_cell(tc, virt_cell);
2672 return DM_MAPIO_SUBMITTED;
2673 }
2674
2675 build_data_key(tc->td, result.block, &key);
2676 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2677 cell_defer_no_holder(tc, virt_cell);
2678 return DM_MAPIO_SUBMITTED;
2679 }
2680
2681 inc_all_io_entry(tc->pool, bio);
2682 cell_defer_no_holder(tc, data_cell);
2683 cell_defer_no_holder(tc, virt_cell);
2684
2685 remap(tc, bio, result.block);
2686 return DM_MAPIO_REMAPPED;
2687
2688 case -ENODATA:
2689 case -EWOULDBLOCK:
2690 thin_defer_cell(tc, virt_cell);
2691 return DM_MAPIO_SUBMITTED;
2692
2693 default:
2694 /*
2695 * Must always call bio_io_error on failure.
2696 * dm_thin_find_block can fail with -EINVAL if the
2697 * pool is switched to fail-io mode.
2698 */
2699 bio_io_error(bio);
2700 cell_defer_no_holder(tc, virt_cell);
2701 return DM_MAPIO_SUBMITTED;
2702 }
2703 }
2704
2705 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2706 {
2707 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2708 struct request_queue *q;
2709
2710 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2711 return 1;
2712
2713 q = bdev_get_queue(pt->data_dev->bdev);
2714 return bdi_congested(q->backing_dev_info, bdi_bits);
2715 }
2716
2717 static void requeue_bios(struct pool *pool)
2718 {
2719 unsigned long flags;
2720 struct thin_c *tc;
2721
2722 rcu_read_lock();
2723 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2724 spin_lock_irqsave(&tc->lock, flags);
2725 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2726 bio_list_init(&tc->retry_on_resume_list);
2727 spin_unlock_irqrestore(&tc->lock, flags);
2728 }
2729 rcu_read_unlock();
2730 }
2731
2732 /*----------------------------------------------------------------
2733 * Binding of control targets to a pool object
2734 *--------------------------------------------------------------*/
2735 static bool data_dev_supports_discard(struct pool_c *pt)
2736 {
2737 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2738
2739 return q && blk_queue_discard(q);
2740 }
2741
2742 static bool is_factor(sector_t block_size, uint32_t n)
2743 {
2744 return !sector_div(block_size, n);
2745 }
2746
2747 /*
2748 * If discard_passdown was enabled verify that the data device
2749 * supports discards. Disable discard_passdown if not.
2750 */
2751 static void disable_passdown_if_not_supported(struct pool_c *pt)
2752 {
2753 struct pool *pool = pt->pool;
2754 struct block_device *data_bdev = pt->data_dev->bdev;
2755 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2756 const char *reason = NULL;
2757 char buf[BDEVNAME_SIZE];
2758
2759 if (!pt->adjusted_pf.discard_passdown)
2760 return;
2761
2762 if (!data_dev_supports_discard(pt))
2763 reason = "discard unsupported";
2764
2765 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2766 reason = "max discard sectors smaller than a block";
2767
2768 if (reason) {
2769 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2770 pt->adjusted_pf.discard_passdown = false;
2771 }
2772 }
2773
2774 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2775 {
2776 struct pool_c *pt = ti->private;
2777
2778 /*
2779 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2780 */
2781 enum pool_mode old_mode = get_pool_mode(pool);
2782 enum pool_mode new_mode = pt->adjusted_pf.mode;
2783
2784 /*
2785 * Don't change the pool's mode until set_pool_mode() below.
2786 * Otherwise the pool's process_* function pointers may
2787 * not match the desired pool mode.
2788 */
2789 pt->adjusted_pf.mode = old_mode;
2790
2791 pool->ti = ti;
2792 pool->pf = pt->adjusted_pf;
2793 pool->low_water_blocks = pt->low_water_blocks;
2794
2795 set_pool_mode(pool, new_mode);
2796
2797 return 0;
2798 }
2799
2800 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2801 {
2802 if (pool->ti == ti)
2803 pool->ti = NULL;
2804 }
2805
2806 /*----------------------------------------------------------------
2807 * Pool creation
2808 *--------------------------------------------------------------*/
2809 /* Initialize pool features. */
2810 static void pool_features_init(struct pool_features *pf)
2811 {
2812 pf->mode = PM_WRITE;
2813 pf->zero_new_blocks = true;
2814 pf->discard_enabled = true;
2815 pf->discard_passdown = true;
2816 pf->error_if_no_space = false;
2817 }
2818
2819 static void __pool_destroy(struct pool *pool)
2820 {
2821 __pool_table_remove(pool);
2822
2823 vfree(pool->cell_sort_array);
2824 if (dm_pool_metadata_close(pool->pmd) < 0)
2825 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2826
2827 dm_bio_prison_destroy(pool->prison);
2828 dm_kcopyd_client_destroy(pool->copier);
2829
2830 if (pool->wq)
2831 destroy_workqueue(pool->wq);
2832
2833 if (pool->next_mapping)
2834 mempool_free(pool->next_mapping, pool->mapping_pool);
2835 mempool_destroy(pool->mapping_pool);
2836 dm_deferred_set_destroy(pool->shared_read_ds);
2837 dm_deferred_set_destroy(pool->all_io_ds);
2838 kfree(pool);
2839 }
2840
2841 static struct kmem_cache *_new_mapping_cache;
2842
2843 static struct pool *pool_create(struct mapped_device *pool_md,
2844 struct block_device *metadata_dev,
2845 unsigned long block_size,
2846 int read_only, char **error)
2847 {
2848 int r;
2849 void *err_p;
2850 struct pool *pool;
2851 struct dm_pool_metadata *pmd;
2852 bool format_device = read_only ? false : true;
2853
2854 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2855 if (IS_ERR(pmd)) {
2856 *error = "Error creating metadata object";
2857 return (struct pool *)pmd;
2858 }
2859
2860 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2861 if (!pool) {
2862 *error = "Error allocating memory for pool";
2863 err_p = ERR_PTR(-ENOMEM);
2864 goto bad_pool;
2865 }
2866
2867 pool->pmd = pmd;
2868 pool->sectors_per_block = block_size;
2869 if (block_size & (block_size - 1))
2870 pool->sectors_per_block_shift = -1;
2871 else
2872 pool->sectors_per_block_shift = __ffs(block_size);
2873 pool->low_water_blocks = 0;
2874 pool_features_init(&pool->pf);
2875 pool->prison = dm_bio_prison_create();
2876 if (!pool->prison) {
2877 *error = "Error creating pool's bio prison";
2878 err_p = ERR_PTR(-ENOMEM);
2879 goto bad_prison;
2880 }
2881
2882 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2883 if (IS_ERR(pool->copier)) {
2884 r = PTR_ERR(pool->copier);
2885 *error = "Error creating pool's kcopyd client";
2886 err_p = ERR_PTR(r);
2887 goto bad_kcopyd_client;
2888 }
2889
2890 /*
2891 * Create singlethreaded workqueue that will service all devices
2892 * that use this metadata.
2893 */
2894 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2895 if (!pool->wq) {
2896 *error = "Error creating pool's workqueue";
2897 err_p = ERR_PTR(-ENOMEM);
2898 goto bad_wq;
2899 }
2900
2901 throttle_init(&pool->throttle);
2902 INIT_WORK(&pool->worker, do_worker);
2903 INIT_DELAYED_WORK(&pool->waker, do_waker);
2904 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2905 spin_lock_init(&pool->lock);
2906 bio_list_init(&pool->deferred_flush_bios);
2907 INIT_LIST_HEAD(&pool->prepared_mappings);
2908 INIT_LIST_HEAD(&pool->prepared_discards);
2909 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2910 INIT_LIST_HEAD(&pool->active_thins);
2911 pool->low_water_triggered = false;
2912 pool->suspended = true;
2913 pool->out_of_data_space = false;
2914
2915 pool->shared_read_ds = dm_deferred_set_create();
2916 if (!pool->shared_read_ds) {
2917 *error = "Error creating pool's shared read deferred set";
2918 err_p = ERR_PTR(-ENOMEM);
2919 goto bad_shared_read_ds;
2920 }
2921
2922 pool->all_io_ds = dm_deferred_set_create();
2923 if (!pool->all_io_ds) {
2924 *error = "Error creating pool's all io deferred set";
2925 err_p = ERR_PTR(-ENOMEM);
2926 goto bad_all_io_ds;
2927 }
2928
2929 pool->next_mapping = NULL;
2930 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2931 _new_mapping_cache);
2932 if (!pool->mapping_pool) {
2933 *error = "Error creating pool's mapping mempool";
2934 err_p = ERR_PTR(-ENOMEM);
2935 goto bad_mapping_pool;
2936 }
2937
2938 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2939 if (!pool->cell_sort_array) {
2940 *error = "Error allocating cell sort array";
2941 err_p = ERR_PTR(-ENOMEM);
2942 goto bad_sort_array;
2943 }
2944
2945 pool->ref_count = 1;
2946 pool->last_commit_jiffies = jiffies;
2947 pool->pool_md = pool_md;
2948 pool->md_dev = metadata_dev;
2949 __pool_table_insert(pool);
2950
2951 return pool;
2952
2953 bad_sort_array:
2954 mempool_destroy(pool->mapping_pool);
2955 bad_mapping_pool:
2956 dm_deferred_set_destroy(pool->all_io_ds);
2957 bad_all_io_ds:
2958 dm_deferred_set_destroy(pool->shared_read_ds);
2959 bad_shared_read_ds:
2960 destroy_workqueue(pool->wq);
2961 bad_wq:
2962 dm_kcopyd_client_destroy(pool->copier);
2963 bad_kcopyd_client:
2964 dm_bio_prison_destroy(pool->prison);
2965 bad_prison:
2966 kfree(pool);
2967 bad_pool:
2968 if (dm_pool_metadata_close(pmd))
2969 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2970
2971 return err_p;
2972 }
2973
2974 static void __pool_inc(struct pool *pool)
2975 {
2976 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2977 pool->ref_count++;
2978 }
2979
2980 static void __pool_dec(struct pool *pool)
2981 {
2982 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2983 BUG_ON(!pool->ref_count);
2984 if (!--pool->ref_count)
2985 __pool_destroy(pool);
2986 }
2987
2988 static struct pool *__pool_find(struct mapped_device *pool_md,
2989 struct block_device *metadata_dev,
2990 unsigned long block_size, int read_only,
2991 char **error, int *created)
2992 {
2993 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2994
2995 if (pool) {
2996 if (pool->pool_md != pool_md) {
2997 *error = "metadata device already in use by a pool";
2998 return ERR_PTR(-EBUSY);
2999 }
3000 __pool_inc(pool);
3001
3002 } else {
3003 pool = __pool_table_lookup(pool_md);
3004 if (pool) {
3005 if (pool->md_dev != metadata_dev) {
3006 *error = "different pool cannot replace a pool";
3007 return ERR_PTR(-EINVAL);
3008 }
3009 __pool_inc(pool);
3010
3011 } else {
3012 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3013 *created = 1;
3014 }
3015 }
3016
3017 return pool;
3018 }
3019
3020 /*----------------------------------------------------------------
3021 * Pool target methods
3022 *--------------------------------------------------------------*/
3023 static void pool_dtr(struct dm_target *ti)
3024 {
3025 struct pool_c *pt = ti->private;
3026
3027 mutex_lock(&dm_thin_pool_table.mutex);
3028
3029 unbind_control_target(pt->pool, ti);
3030 __pool_dec(pt->pool);
3031 dm_put_device(ti, pt->metadata_dev);
3032 dm_put_device(ti, pt->data_dev);
3033 kfree(pt);
3034
3035 mutex_unlock(&dm_thin_pool_table.mutex);
3036 }
3037
3038 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3039 struct dm_target *ti)
3040 {
3041 int r;
3042 unsigned argc;
3043 const char *arg_name;
3044
3045 static struct dm_arg _args[] = {
3046 {0, 4, "Invalid number of pool feature arguments"},
3047 };
3048
3049 /*
3050 * No feature arguments supplied.
3051 */
3052 if (!as->argc)
3053 return 0;
3054
3055 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3056 if (r)
3057 return -EINVAL;
3058
3059 while (argc && !r) {
3060 arg_name = dm_shift_arg(as);
3061 argc--;
3062
3063 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3064 pf->zero_new_blocks = false;
3065
3066 else if (!strcasecmp(arg_name, "ignore_discard"))
3067 pf->discard_enabled = false;
3068
3069 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3070 pf->discard_passdown = false;
3071
3072 else if (!strcasecmp(arg_name, "read_only"))
3073 pf->mode = PM_READ_ONLY;
3074
3075 else if (!strcasecmp(arg_name, "error_if_no_space"))
3076 pf->error_if_no_space = true;
3077
3078 else {
3079 ti->error = "Unrecognised pool feature requested";
3080 r = -EINVAL;
3081 break;
3082 }
3083 }
3084
3085 return r;
3086 }
3087
3088 static void metadata_low_callback(void *context)
3089 {
3090 struct pool *pool = context;
3091
3092 DMWARN("%s: reached low water mark for metadata device: sending event.",
3093 dm_device_name(pool->pool_md));
3094
3095 dm_table_event(pool->ti->table);
3096 }
3097
3098 static sector_t get_dev_size(struct block_device *bdev)
3099 {
3100 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3101 }
3102
3103 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3104 {
3105 sector_t metadata_dev_size = get_dev_size(bdev);
3106 char buffer[BDEVNAME_SIZE];
3107
3108 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3109 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3110 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3111 }
3112
3113 static sector_t get_metadata_dev_size(struct block_device *bdev)
3114 {
3115 sector_t metadata_dev_size = get_dev_size(bdev);
3116
3117 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3118 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3119
3120 return metadata_dev_size;
3121 }
3122
3123 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3124 {
3125 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3126
3127 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3128
3129 return metadata_dev_size;
3130 }
3131
3132 /*
3133 * When a metadata threshold is crossed a dm event is triggered, and
3134 * userland should respond by growing the metadata device. We could let
3135 * userland set the threshold, like we do with the data threshold, but I'm
3136 * not sure they know enough to do this well.
3137 */
3138 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3139 {
3140 /*
3141 * 4M is ample for all ops with the possible exception of thin
3142 * device deletion which is harmless if it fails (just retry the
3143 * delete after you've grown the device).
3144 */
3145 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3146 return min((dm_block_t)1024ULL /* 4M */, quarter);
3147 }
3148
3149 /*
3150 * thin-pool <metadata dev> <data dev>
3151 * <data block size (sectors)>
3152 * <low water mark (blocks)>
3153 * [<#feature args> [<arg>]*]
3154 *
3155 * Optional feature arguments are:
3156 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3157 * ignore_discard: disable discard
3158 * no_discard_passdown: don't pass discards down to the data device
3159 * read_only: Don't allow any changes to be made to the pool metadata.
3160 * error_if_no_space: error IOs, instead of queueing, if no space.
3161 */
3162 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3163 {
3164 int r, pool_created = 0;
3165 struct pool_c *pt;
3166 struct pool *pool;
3167 struct pool_features pf;
3168 struct dm_arg_set as;
3169 struct dm_dev *data_dev;
3170 unsigned long block_size;
3171 dm_block_t low_water_blocks;
3172 struct dm_dev *metadata_dev;
3173 fmode_t metadata_mode;
3174
3175 /*
3176 * FIXME Remove validation from scope of lock.
3177 */
3178 mutex_lock(&dm_thin_pool_table.mutex);
3179
3180 if (argc < 4) {
3181 ti->error = "Invalid argument count";
3182 r = -EINVAL;
3183 goto out_unlock;
3184 }
3185
3186 as.argc = argc;
3187 as.argv = argv;
3188
3189 /*
3190 * Set default pool features.
3191 */
3192 pool_features_init(&pf);
3193
3194 dm_consume_args(&as, 4);
3195 r = parse_pool_features(&as, &pf, ti);
3196 if (r)
3197 goto out_unlock;
3198
3199 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3200 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3201 if (r) {
3202 ti->error = "Error opening metadata block device";
3203 goto out_unlock;
3204 }
3205 warn_if_metadata_device_too_big(metadata_dev->bdev);
3206
3207 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3208 if (r) {
3209 ti->error = "Error getting data device";
3210 goto out_metadata;
3211 }
3212
3213 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3214 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3215 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3216 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3217 ti->error = "Invalid block size";
3218 r = -EINVAL;
3219 goto out;
3220 }
3221
3222 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3223 ti->error = "Invalid low water mark";
3224 r = -EINVAL;
3225 goto out;
3226 }
3227
3228 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3229 if (!pt) {
3230 r = -ENOMEM;
3231 goto out;
3232 }
3233
3234 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3235 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3236 if (IS_ERR(pool)) {
3237 r = PTR_ERR(pool);
3238 goto out_free_pt;
3239 }
3240
3241 /*
3242 * 'pool_created' reflects whether this is the first table load.
3243 * Top level discard support is not allowed to be changed after
3244 * initial load. This would require a pool reload to trigger thin
3245 * device changes.
3246 */
3247 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3248 ti->error = "Discard support cannot be disabled once enabled";
3249 r = -EINVAL;
3250 goto out_flags_changed;
3251 }
3252
3253 pt->pool = pool;
3254 pt->ti = ti;
3255 pt->metadata_dev = metadata_dev;
3256 pt->data_dev = data_dev;
3257 pt->low_water_blocks = low_water_blocks;
3258 pt->adjusted_pf = pt->requested_pf = pf;
3259 ti->num_flush_bios = 1;
3260
3261 /*
3262 * Only need to enable discards if the pool should pass
3263 * them down to the data device. The thin device's discard
3264 * processing will cause mappings to be removed from the btree.
3265 */
3266 ti->discard_zeroes_data_unsupported = true;
3267 if (pf.discard_enabled && pf.discard_passdown) {
3268 ti->num_discard_bios = 1;
3269
3270 /*
3271 * Setting 'discards_supported' circumvents the normal
3272 * stacking of discard limits (this keeps the pool and
3273 * thin devices' discard limits consistent).
3274 */
3275 ti->discards_supported = true;
3276 }
3277 ti->private = pt;
3278
3279 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3280 calc_metadata_threshold(pt),
3281 metadata_low_callback,
3282 pool);
3283 if (r)
3284 goto out_flags_changed;
3285
3286 pt->callbacks.congested_fn = pool_is_congested;
3287 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3288
3289 mutex_unlock(&dm_thin_pool_table.mutex);
3290
3291 return 0;
3292
3293 out_flags_changed:
3294 __pool_dec(pool);
3295 out_free_pt:
3296 kfree(pt);
3297 out:
3298 dm_put_device(ti, data_dev);
3299 out_metadata:
3300 dm_put_device(ti, metadata_dev);
3301 out_unlock:
3302 mutex_unlock(&dm_thin_pool_table.mutex);
3303
3304 return r;
3305 }
3306
3307 static int pool_map(struct dm_target *ti, struct bio *bio)
3308 {
3309 int r;
3310 struct pool_c *pt = ti->private;
3311 struct pool *pool = pt->pool;
3312 unsigned long flags;
3313
3314 /*
3315 * As this is a singleton target, ti->begin is always zero.
3316 */
3317 spin_lock_irqsave(&pool->lock, flags);
3318 bio->bi_bdev = pt->data_dev->bdev;
3319 r = DM_MAPIO_REMAPPED;
3320 spin_unlock_irqrestore(&pool->lock, flags);
3321
3322 return r;
3323 }
3324
3325 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3326 {
3327 int r;
3328 struct pool_c *pt = ti->private;
3329 struct pool *pool = pt->pool;
3330 sector_t data_size = ti->len;
3331 dm_block_t sb_data_size;
3332
3333 *need_commit = false;
3334
3335 (void) sector_div(data_size, pool->sectors_per_block);
3336
3337 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3338 if (r) {
3339 DMERR("%s: failed to retrieve data device size",
3340 dm_device_name(pool->pool_md));
3341 return r;
3342 }
3343
3344 if (data_size < sb_data_size) {
3345 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3346 dm_device_name(pool->pool_md),
3347 (unsigned long long)data_size, sb_data_size);
3348 return -EINVAL;
3349
3350 } else if (data_size > sb_data_size) {
3351 if (dm_pool_metadata_needs_check(pool->pmd)) {
3352 DMERR("%s: unable to grow the data device until repaired.",
3353 dm_device_name(pool->pool_md));
3354 return 0;
3355 }
3356
3357 if (sb_data_size)
3358 DMINFO("%s: growing the data device from %llu to %llu blocks",
3359 dm_device_name(pool->pool_md),
3360 sb_data_size, (unsigned long long)data_size);
3361 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3362 if (r) {
3363 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3364 return r;
3365 }
3366
3367 *need_commit = true;
3368 }
3369
3370 return 0;
3371 }
3372
3373 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3374 {
3375 int r;
3376 struct pool_c *pt = ti->private;
3377 struct pool *pool = pt->pool;
3378 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3379
3380 *need_commit = false;
3381
3382 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3383
3384 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3385 if (r) {
3386 DMERR("%s: failed to retrieve metadata device size",
3387 dm_device_name(pool->pool_md));
3388 return r;
3389 }
3390
3391 if (metadata_dev_size < sb_metadata_dev_size) {
3392 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3393 dm_device_name(pool->pool_md),
3394 metadata_dev_size, sb_metadata_dev_size);
3395 return -EINVAL;
3396
3397 } else if (metadata_dev_size > sb_metadata_dev_size) {
3398 if (dm_pool_metadata_needs_check(pool->pmd)) {
3399 DMERR("%s: unable to grow the metadata device until repaired.",
3400 dm_device_name(pool->pool_md));
3401 return 0;
3402 }
3403
3404 warn_if_metadata_device_too_big(pool->md_dev);
3405 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3406 dm_device_name(pool->pool_md),
3407 sb_metadata_dev_size, metadata_dev_size);
3408 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3409 if (r) {
3410 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3411 return r;
3412 }
3413
3414 *need_commit = true;
3415 }
3416
3417 return 0;
3418 }
3419
3420 /*
3421 * Retrieves the number of blocks of the data device from
3422 * the superblock and compares it to the actual device size,
3423 * thus resizing the data device in case it has grown.
3424 *
3425 * This both copes with opening preallocated data devices in the ctr
3426 * being followed by a resume
3427 * -and-
3428 * calling the resume method individually after userspace has
3429 * grown the data device in reaction to a table event.
3430 */
3431 static int pool_preresume(struct dm_target *ti)
3432 {
3433 int r;
3434 bool need_commit1, need_commit2;
3435 struct pool_c *pt = ti->private;
3436 struct pool *pool = pt->pool;
3437
3438 /*
3439 * Take control of the pool object.
3440 */
3441 r = bind_control_target(pool, ti);
3442 if (r)
3443 return r;
3444
3445 r = maybe_resize_data_dev(ti, &need_commit1);
3446 if (r)
3447 return r;
3448
3449 r = maybe_resize_metadata_dev(ti, &need_commit2);
3450 if (r)
3451 return r;
3452
3453 if (need_commit1 || need_commit2)
3454 (void) commit(pool);
3455
3456 return 0;
3457 }
3458
3459 static void pool_suspend_active_thins(struct pool *pool)
3460 {
3461 struct thin_c *tc;
3462
3463 /* Suspend all active thin devices */
3464 tc = get_first_thin(pool);
3465 while (tc) {
3466 dm_internal_suspend_noflush(tc->thin_md);
3467 tc = get_next_thin(pool, tc);
3468 }
3469 }
3470
3471 static void pool_resume_active_thins(struct pool *pool)
3472 {
3473 struct thin_c *tc;
3474
3475 /* Resume all active thin devices */
3476 tc = get_first_thin(pool);
3477 while (tc) {
3478 dm_internal_resume(tc->thin_md);
3479 tc = get_next_thin(pool, tc);
3480 }
3481 }
3482
3483 static void pool_resume(struct dm_target *ti)
3484 {
3485 struct pool_c *pt = ti->private;
3486 struct pool *pool = pt->pool;
3487 unsigned long flags;
3488
3489 /*
3490 * Must requeue active_thins' bios and then resume
3491 * active_thins _before_ clearing 'suspend' flag.
3492 */
3493 requeue_bios(pool);
3494 pool_resume_active_thins(pool);
3495
3496 spin_lock_irqsave(&pool->lock, flags);
3497 pool->low_water_triggered = false;
3498 pool->suspended = false;
3499 spin_unlock_irqrestore(&pool->lock, flags);
3500
3501 do_waker(&pool->waker.work);
3502 }
3503
3504 static void pool_presuspend(struct dm_target *ti)
3505 {
3506 struct pool_c *pt = ti->private;
3507 struct pool *pool = pt->pool;
3508 unsigned long flags;
3509
3510 spin_lock_irqsave(&pool->lock, flags);
3511 pool->suspended = true;
3512 spin_unlock_irqrestore(&pool->lock, flags);
3513
3514 pool_suspend_active_thins(pool);
3515 }
3516
3517 static void pool_presuspend_undo(struct dm_target *ti)
3518 {
3519 struct pool_c *pt = ti->private;
3520 struct pool *pool = pt->pool;
3521 unsigned long flags;
3522
3523 pool_resume_active_thins(pool);
3524
3525 spin_lock_irqsave(&pool->lock, flags);
3526 pool->suspended = false;
3527 spin_unlock_irqrestore(&pool->lock, flags);
3528 }
3529
3530 static void pool_postsuspend(struct dm_target *ti)
3531 {
3532 struct pool_c *pt = ti->private;
3533 struct pool *pool = pt->pool;
3534
3535 cancel_delayed_work_sync(&pool->waker);
3536 cancel_delayed_work_sync(&pool->no_space_timeout);
3537 flush_workqueue(pool->wq);
3538 (void) commit(pool);
3539 }
3540
3541 static int check_arg_count(unsigned argc, unsigned args_required)
3542 {
3543 if (argc != args_required) {
3544 DMWARN("Message received with %u arguments instead of %u.",
3545 argc, args_required);
3546 return -EINVAL;
3547 }
3548
3549 return 0;
3550 }
3551
3552 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3553 {
3554 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3555 *dev_id <= MAX_DEV_ID)
3556 return 0;
3557
3558 if (warning)
3559 DMWARN("Message received with invalid device id: %s", arg);
3560
3561 return -EINVAL;
3562 }
3563
3564 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3565 {
3566 dm_thin_id dev_id;
3567 int r;
3568
3569 r = check_arg_count(argc, 2);
3570 if (r)
3571 return r;
3572
3573 r = read_dev_id(argv[1], &dev_id, 1);
3574 if (r)
3575 return r;
3576
3577 r = dm_pool_create_thin(pool->pmd, dev_id);
3578 if (r) {
3579 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3580 argv[1]);
3581 return r;
3582 }
3583
3584 return 0;
3585 }
3586
3587 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588 {
3589 dm_thin_id dev_id;
3590 dm_thin_id origin_dev_id;
3591 int r;
3592
3593 r = check_arg_count(argc, 3);
3594 if (r)
3595 return r;
3596
3597 r = read_dev_id(argv[1], &dev_id, 1);
3598 if (r)
3599 return r;
3600
3601 r = read_dev_id(argv[2], &origin_dev_id, 1);
3602 if (r)
3603 return r;
3604
3605 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3606 if (r) {
3607 DMWARN("Creation of new snapshot %s of device %s failed.",
3608 argv[1], argv[2]);
3609 return r;
3610 }
3611
3612 return 0;
3613 }
3614
3615 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3616 {
3617 dm_thin_id dev_id;
3618 int r;
3619
3620 r = check_arg_count(argc, 2);
3621 if (r)
3622 return r;
3623
3624 r = read_dev_id(argv[1], &dev_id, 1);
3625 if (r)
3626 return r;
3627
3628 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3629 if (r)
3630 DMWARN("Deletion of thin device %s failed.", argv[1]);
3631
3632 return r;
3633 }
3634
3635 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3636 {
3637 dm_thin_id old_id, new_id;
3638 int r;
3639
3640 r = check_arg_count(argc, 3);
3641 if (r)
3642 return r;
3643
3644 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3645 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3646 return -EINVAL;
3647 }
3648
3649 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3650 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3651 return -EINVAL;
3652 }
3653
3654 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3655 if (r) {
3656 DMWARN("Failed to change transaction id from %s to %s.",
3657 argv[1], argv[2]);
3658 return r;
3659 }
3660
3661 return 0;
3662 }
3663
3664 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3665 {
3666 int r;
3667
3668 r = check_arg_count(argc, 1);
3669 if (r)
3670 return r;
3671
3672 (void) commit(pool);
3673
3674 r = dm_pool_reserve_metadata_snap(pool->pmd);
3675 if (r)
3676 DMWARN("reserve_metadata_snap message failed.");
3677
3678 return r;
3679 }
3680
3681 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3682 {
3683 int r;
3684
3685 r = check_arg_count(argc, 1);
3686 if (r)
3687 return r;
3688
3689 r = dm_pool_release_metadata_snap(pool->pmd);
3690 if (r)
3691 DMWARN("release_metadata_snap message failed.");
3692
3693 return r;
3694 }
3695
3696 /*
3697 * Messages supported:
3698 * create_thin <dev_id>
3699 * create_snap <dev_id> <origin_id>
3700 * delete <dev_id>
3701 * set_transaction_id <current_trans_id> <new_trans_id>
3702 * reserve_metadata_snap
3703 * release_metadata_snap
3704 */
3705 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3706 {
3707 int r = -EINVAL;
3708 struct pool_c *pt = ti->private;
3709 struct pool *pool = pt->pool;
3710
3711 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3712 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3713 dm_device_name(pool->pool_md));
3714 return -EOPNOTSUPP;
3715 }
3716
3717 if (!strcasecmp(argv[0], "create_thin"))
3718 r = process_create_thin_mesg(argc, argv, pool);
3719
3720 else if (!strcasecmp(argv[0], "create_snap"))
3721 r = process_create_snap_mesg(argc, argv, pool);
3722
3723 else if (!strcasecmp(argv[0], "delete"))
3724 r = process_delete_mesg(argc, argv, pool);
3725
3726 else if (!strcasecmp(argv[0], "set_transaction_id"))
3727 r = process_set_transaction_id_mesg(argc, argv, pool);
3728
3729 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3730 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3731
3732 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3733 r = process_release_metadata_snap_mesg(argc, argv, pool);
3734
3735 else
3736 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3737
3738 if (!r)
3739 (void) commit(pool);
3740
3741 return r;
3742 }
3743
3744 static void emit_flags(struct pool_features *pf, char *result,
3745 unsigned sz, unsigned maxlen)
3746 {
3747 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3748 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3749 pf->error_if_no_space;
3750 DMEMIT("%u ", count);
3751
3752 if (!pf->zero_new_blocks)
3753 DMEMIT("skip_block_zeroing ");
3754
3755 if (!pf->discard_enabled)
3756 DMEMIT("ignore_discard ");
3757
3758 if (!pf->discard_passdown)
3759 DMEMIT("no_discard_passdown ");
3760
3761 if (pf->mode == PM_READ_ONLY)
3762 DMEMIT("read_only ");
3763
3764 if (pf->error_if_no_space)
3765 DMEMIT("error_if_no_space ");
3766 }
3767
3768 /*
3769 * Status line is:
3770 * <transaction id> <used metadata sectors>/<total metadata sectors>
3771 * <used data sectors>/<total data sectors> <held metadata root>
3772 * <pool mode> <discard config> <no space config> <needs_check>
3773 */
3774 static void pool_status(struct dm_target *ti, status_type_t type,
3775 unsigned status_flags, char *result, unsigned maxlen)
3776 {
3777 int r;
3778 unsigned sz = 0;
3779 uint64_t transaction_id;
3780 dm_block_t nr_free_blocks_data;
3781 dm_block_t nr_free_blocks_metadata;
3782 dm_block_t nr_blocks_data;
3783 dm_block_t nr_blocks_metadata;
3784 dm_block_t held_root;
3785 char buf[BDEVNAME_SIZE];
3786 char buf2[BDEVNAME_SIZE];
3787 struct pool_c *pt = ti->private;
3788 struct pool *pool = pt->pool;
3789
3790 switch (type) {
3791 case STATUSTYPE_INFO:
3792 if (get_pool_mode(pool) == PM_FAIL) {
3793 DMEMIT("Fail");
3794 break;
3795 }
3796
3797 /* Commit to ensure statistics aren't out-of-date */
3798 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3799 (void) commit(pool);
3800
3801 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3802 if (r) {
3803 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3804 dm_device_name(pool->pool_md), r);
3805 goto err;
3806 }
3807
3808 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3809 if (r) {
3810 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3811 dm_device_name(pool->pool_md), r);
3812 goto err;
3813 }
3814
3815 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3816 if (r) {
3817 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3818 dm_device_name(pool->pool_md), r);
3819 goto err;
3820 }
3821
3822 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3823 if (r) {
3824 DMERR("%s: dm_pool_get_free_block_count returned %d",
3825 dm_device_name(pool->pool_md), r);
3826 goto err;
3827 }
3828
3829 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3830 if (r) {
3831 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3832 dm_device_name(pool->pool_md), r);
3833 goto err;
3834 }
3835
3836 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3837 if (r) {
3838 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3839 dm_device_name(pool->pool_md), r);
3840 goto err;
3841 }
3842
3843 DMEMIT("%llu %llu/%llu %llu/%llu ",
3844 (unsigned long long)transaction_id,
3845 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3846 (unsigned long long)nr_blocks_metadata,
3847 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3848 (unsigned long long)nr_blocks_data);
3849
3850 if (held_root)
3851 DMEMIT("%llu ", held_root);
3852 else
3853 DMEMIT("- ");
3854
3855 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3856 DMEMIT("out_of_data_space ");
3857 else if (pool->pf.mode == PM_READ_ONLY)
3858 DMEMIT("ro ");
3859 else
3860 DMEMIT("rw ");
3861
3862 if (!pool->pf.discard_enabled)
3863 DMEMIT("ignore_discard ");
3864 else if (pool->pf.discard_passdown)
3865 DMEMIT("discard_passdown ");
3866 else
3867 DMEMIT("no_discard_passdown ");
3868
3869 if (pool->pf.error_if_no_space)
3870 DMEMIT("error_if_no_space ");
3871 else
3872 DMEMIT("queue_if_no_space ");
3873
3874 if (dm_pool_metadata_needs_check(pool->pmd))
3875 DMEMIT("needs_check ");
3876 else
3877 DMEMIT("- ");
3878
3879 break;
3880
3881 case STATUSTYPE_TABLE:
3882 DMEMIT("%s %s %lu %llu ",
3883 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3884 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3885 (unsigned long)pool->sectors_per_block,
3886 (unsigned long long)pt->low_water_blocks);
3887 emit_flags(&pt->requested_pf, result, sz, maxlen);
3888 break;
3889 }
3890 return;
3891
3892 err:
3893 DMEMIT("Error");
3894 }
3895
3896 static int pool_iterate_devices(struct dm_target *ti,
3897 iterate_devices_callout_fn fn, void *data)
3898 {
3899 struct pool_c *pt = ti->private;
3900
3901 return fn(ti, pt->data_dev, 0, ti->len, data);
3902 }
3903
3904 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3905 {
3906 struct pool_c *pt = ti->private;
3907 struct pool *pool = pt->pool;
3908 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3909
3910 /*
3911 * If max_sectors is smaller than pool->sectors_per_block adjust it
3912 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3913 * This is especially beneficial when the pool's data device is a RAID
3914 * device that has a full stripe width that matches pool->sectors_per_block
3915 * -- because even though partial RAID stripe-sized IOs will be issued to a
3916 * single RAID stripe; when aggregated they will end on a full RAID stripe
3917 * boundary.. which avoids additional partial RAID stripe writes cascading
3918 */
3919 if (limits->max_sectors < pool->sectors_per_block) {
3920 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3921 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3922 limits->max_sectors--;
3923 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3924 }
3925 }
3926
3927 /*
3928 * If the system-determined stacked limits are compatible with the
3929 * pool's blocksize (io_opt is a factor) do not override them.
3930 */
3931 if (io_opt_sectors < pool->sectors_per_block ||
3932 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3933 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3934 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3935 else
3936 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3937 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938 }
3939
3940 /*
3941 * pt->adjusted_pf is a staging area for the actual features to use.
3942 * They get transferred to the live pool in bind_control_target()
3943 * called from pool_preresume().
3944 */
3945 if (!pt->adjusted_pf.discard_enabled) {
3946 /*
3947 * Must explicitly disallow stacking discard limits otherwise the
3948 * block layer will stack them if pool's data device has support.
3949 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3950 * user to see that, so make sure to set all discard limits to 0.
3951 */
3952 limits->discard_granularity = 0;
3953 return;
3954 }
3955
3956 disable_passdown_if_not_supported(pt);
3957
3958 /*
3959 * The pool uses the same discard limits as the underlying data
3960 * device. DM core has already set this up.
3961 */
3962 }
3963
3964 static struct target_type pool_target = {
3965 .name = "thin-pool",
3966 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3967 DM_TARGET_IMMUTABLE,
3968 .version = {1, 19, 0},
3969 .module = THIS_MODULE,
3970 .ctr = pool_ctr,
3971 .dtr = pool_dtr,
3972 .map = pool_map,
3973 .presuspend = pool_presuspend,
3974 .presuspend_undo = pool_presuspend_undo,
3975 .postsuspend = pool_postsuspend,
3976 .preresume = pool_preresume,
3977 .resume = pool_resume,
3978 .message = pool_message,
3979 .status = pool_status,
3980 .iterate_devices = pool_iterate_devices,
3981 .io_hints = pool_io_hints,
3982 };
3983
3984 /*----------------------------------------------------------------
3985 * Thin target methods
3986 *--------------------------------------------------------------*/
3987 static void thin_get(struct thin_c *tc)
3988 {
3989 atomic_inc(&tc->refcount);
3990 }
3991
3992 static void thin_put(struct thin_c *tc)
3993 {
3994 if (atomic_dec_and_test(&tc->refcount))
3995 complete(&tc->can_destroy);
3996 }
3997
3998 static void thin_dtr(struct dm_target *ti)
3999 {
4000 struct thin_c *tc = ti->private;
4001 unsigned long flags;
4002
4003 spin_lock_irqsave(&tc->pool->lock, flags);
4004 list_del_rcu(&tc->list);
4005 spin_unlock_irqrestore(&tc->pool->lock, flags);
4006 synchronize_rcu();
4007
4008 thin_put(tc);
4009 wait_for_completion(&tc->can_destroy);
4010
4011 mutex_lock(&dm_thin_pool_table.mutex);
4012
4013 __pool_dec(tc->pool);
4014 dm_pool_close_thin_device(tc->td);
4015 dm_put_device(ti, tc->pool_dev);
4016 if (tc->origin_dev)
4017 dm_put_device(ti, tc->origin_dev);
4018 kfree(tc);
4019
4020 mutex_unlock(&dm_thin_pool_table.mutex);
4021 }
4022
4023 /*
4024 * Thin target parameters:
4025 *
4026 * <pool_dev> <dev_id> [origin_dev]
4027 *
4028 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4029 * dev_id: the internal device identifier
4030 * origin_dev: a device external to the pool that should act as the origin
4031 *
4032 * If the pool device has discards disabled, they get disabled for the thin
4033 * device as well.
4034 */
4035 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4036 {
4037 int r;
4038 struct thin_c *tc;
4039 struct dm_dev *pool_dev, *origin_dev;
4040 struct mapped_device *pool_md;
4041 unsigned long flags;
4042
4043 mutex_lock(&dm_thin_pool_table.mutex);
4044
4045 if (argc != 2 && argc != 3) {
4046 ti->error = "Invalid argument count";
4047 r = -EINVAL;
4048 goto out_unlock;
4049 }
4050
4051 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4052 if (!tc) {
4053 ti->error = "Out of memory";
4054 r = -ENOMEM;
4055 goto out_unlock;
4056 }
4057 tc->thin_md = dm_table_get_md(ti->table);
4058 spin_lock_init(&tc->lock);
4059 INIT_LIST_HEAD(&tc->deferred_cells);
4060 bio_list_init(&tc->deferred_bio_list);
4061 bio_list_init(&tc->retry_on_resume_list);
4062 tc->sort_bio_list = RB_ROOT;
4063
4064 if (argc == 3) {
4065 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4066 if (r) {
4067 ti->error = "Error opening origin device";
4068 goto bad_origin_dev;
4069 }
4070 tc->origin_dev = origin_dev;
4071 }
4072
4073 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4074 if (r) {
4075 ti->error = "Error opening pool device";
4076 goto bad_pool_dev;
4077 }
4078 tc->pool_dev = pool_dev;
4079
4080 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4081 ti->error = "Invalid device id";
4082 r = -EINVAL;
4083 goto bad_common;
4084 }
4085
4086 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4087 if (!pool_md) {
4088 ti->error = "Couldn't get pool mapped device";
4089 r = -EINVAL;
4090 goto bad_common;
4091 }
4092
4093 tc->pool = __pool_table_lookup(pool_md);
4094 if (!tc->pool) {
4095 ti->error = "Couldn't find pool object";
4096 r = -EINVAL;
4097 goto bad_pool_lookup;
4098 }
4099 __pool_inc(tc->pool);
4100
4101 if (get_pool_mode(tc->pool) == PM_FAIL) {
4102 ti->error = "Couldn't open thin device, Pool is in fail mode";
4103 r = -EINVAL;
4104 goto bad_pool;
4105 }
4106
4107 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4108 if (r) {
4109 ti->error = "Couldn't open thin internal device";
4110 goto bad_pool;
4111 }
4112
4113 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4114 if (r)
4115 goto bad;
4116
4117 ti->num_flush_bios = 1;
4118 ti->flush_supported = true;
4119 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4120
4121 /* In case the pool supports discards, pass them on. */
4122 ti->discard_zeroes_data_unsupported = true;
4123 if (tc->pool->pf.discard_enabled) {
4124 ti->discards_supported = true;
4125 ti->num_discard_bios = 1;
4126 ti->split_discard_bios = false;
4127 }
4128
4129 mutex_unlock(&dm_thin_pool_table.mutex);
4130
4131 spin_lock_irqsave(&tc->pool->lock, flags);
4132 if (tc->pool->suspended) {
4133 spin_unlock_irqrestore(&tc->pool->lock, flags);
4134 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4135 ti->error = "Unable to activate thin device while pool is suspended";
4136 r = -EINVAL;
4137 goto bad;
4138 }
4139 atomic_set(&tc->refcount, 1);
4140 init_completion(&tc->can_destroy);
4141 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4142 spin_unlock_irqrestore(&tc->pool->lock, flags);
4143 /*
4144 * This synchronize_rcu() call is needed here otherwise we risk a
4145 * wake_worker() call finding no bios to process (because the newly
4146 * added tc isn't yet visible). So this reduces latency since we
4147 * aren't then dependent on the periodic commit to wake_worker().
4148 */
4149 synchronize_rcu();
4150
4151 dm_put(pool_md);
4152
4153 return 0;
4154
4155 bad:
4156 dm_pool_close_thin_device(tc->td);
4157 bad_pool:
4158 __pool_dec(tc->pool);
4159 bad_pool_lookup:
4160 dm_put(pool_md);
4161 bad_common:
4162 dm_put_device(ti, tc->pool_dev);
4163 bad_pool_dev:
4164 if (tc->origin_dev)
4165 dm_put_device(ti, tc->origin_dev);
4166 bad_origin_dev:
4167 kfree(tc);
4168 out_unlock:
4169 mutex_unlock(&dm_thin_pool_table.mutex);
4170
4171 return r;
4172 }
4173
4174 static int thin_map(struct dm_target *ti, struct bio *bio)
4175 {
4176 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4177
4178 return thin_bio_map(ti, bio);
4179 }
4180
4181 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4182 {
4183 unsigned long flags;
4184 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4185 struct list_head work;
4186 struct dm_thin_new_mapping *m, *tmp;
4187 struct pool *pool = h->tc->pool;
4188
4189 if (h->shared_read_entry) {
4190 INIT_LIST_HEAD(&work);
4191 dm_deferred_entry_dec(h->shared_read_entry, &work);
4192
4193 spin_lock_irqsave(&pool->lock, flags);
4194 list_for_each_entry_safe(m, tmp, &work, list) {
4195 list_del(&m->list);
4196 __complete_mapping_preparation(m);
4197 }
4198 spin_unlock_irqrestore(&pool->lock, flags);
4199 }
4200
4201 if (h->all_io_entry) {
4202 INIT_LIST_HEAD(&work);
4203 dm_deferred_entry_dec(h->all_io_entry, &work);
4204 if (!list_empty(&work)) {
4205 spin_lock_irqsave(&pool->lock, flags);
4206 list_for_each_entry_safe(m, tmp, &work, list)
4207 list_add_tail(&m->list, &pool->prepared_discards);
4208 spin_unlock_irqrestore(&pool->lock, flags);
4209 wake_worker(pool);
4210 }
4211 }
4212
4213 if (h->cell)
4214 cell_defer_no_holder(h->tc, h->cell);
4215
4216 return 0;
4217 }
4218
4219 static void thin_presuspend(struct dm_target *ti)
4220 {
4221 struct thin_c *tc = ti->private;
4222
4223 if (dm_noflush_suspending(ti))
4224 noflush_work(tc, do_noflush_start);
4225 }
4226
4227 static void thin_postsuspend(struct dm_target *ti)
4228 {
4229 struct thin_c *tc = ti->private;
4230
4231 /*
4232 * The dm_noflush_suspending flag has been cleared by now, so
4233 * unfortunately we must always run this.
4234 */
4235 noflush_work(tc, do_noflush_stop);
4236 }
4237
4238 static int thin_preresume(struct dm_target *ti)
4239 {
4240 struct thin_c *tc = ti->private;
4241
4242 if (tc->origin_dev)
4243 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4244
4245 return 0;
4246 }
4247
4248 /*
4249 * <nr mapped sectors> <highest mapped sector>
4250 */
4251 static void thin_status(struct dm_target *ti, status_type_t type,
4252 unsigned status_flags, char *result, unsigned maxlen)
4253 {
4254 int r;
4255 ssize_t sz = 0;
4256 dm_block_t mapped, highest;
4257 char buf[BDEVNAME_SIZE];
4258 struct thin_c *tc = ti->private;
4259
4260 if (get_pool_mode(tc->pool) == PM_FAIL) {
4261 DMEMIT("Fail");
4262 return;
4263 }
4264
4265 if (!tc->td)
4266 DMEMIT("-");
4267 else {
4268 switch (type) {
4269 case STATUSTYPE_INFO:
4270 r = dm_thin_get_mapped_count(tc->td, &mapped);
4271 if (r) {
4272 DMERR("dm_thin_get_mapped_count returned %d", r);
4273 goto err;
4274 }
4275
4276 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4277 if (r < 0) {
4278 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4279 goto err;
4280 }
4281
4282 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4283 if (r)
4284 DMEMIT("%llu", ((highest + 1) *
4285 tc->pool->sectors_per_block) - 1);
4286 else
4287 DMEMIT("-");
4288 break;
4289
4290 case STATUSTYPE_TABLE:
4291 DMEMIT("%s %lu",
4292 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4293 (unsigned long) tc->dev_id);
4294 if (tc->origin_dev)
4295 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4296 break;
4297 }
4298 }
4299
4300 return;
4301
4302 err:
4303 DMEMIT("Error");
4304 }
4305
4306 static int thin_iterate_devices(struct dm_target *ti,
4307 iterate_devices_callout_fn fn, void *data)
4308 {
4309 sector_t blocks;
4310 struct thin_c *tc = ti->private;
4311 struct pool *pool = tc->pool;
4312
4313 /*
4314 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4315 * we follow a more convoluted path through to the pool's target.
4316 */
4317 if (!pool->ti)
4318 return 0; /* nothing is bound */
4319
4320 blocks = pool->ti->len;
4321 (void) sector_div(blocks, pool->sectors_per_block);
4322 if (blocks)
4323 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4324
4325 return 0;
4326 }
4327
4328 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4329 {
4330 struct thin_c *tc = ti->private;
4331 struct pool *pool = tc->pool;
4332
4333 if (!pool->pf.discard_enabled)
4334 return;
4335
4336 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4337 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4338 }
4339
4340 static struct target_type thin_target = {
4341 .name = "thin",
4342 .version = {1, 19, 0},
4343 .module = THIS_MODULE,
4344 .ctr = thin_ctr,
4345 .dtr = thin_dtr,
4346 .map = thin_map,
4347 .end_io = thin_endio,
4348 .preresume = thin_preresume,
4349 .presuspend = thin_presuspend,
4350 .postsuspend = thin_postsuspend,
4351 .status = thin_status,
4352 .iterate_devices = thin_iterate_devices,
4353 .io_hints = thin_io_hints,
4354 };
4355
4356 /*----------------------------------------------------------------*/
4357
4358 static int __init dm_thin_init(void)
4359 {
4360 int r;
4361
4362 pool_table_init();
4363
4364 r = dm_register_target(&thin_target);
4365 if (r)
4366 return r;
4367
4368 r = dm_register_target(&pool_target);
4369 if (r)
4370 goto bad_pool_target;
4371
4372 r = -ENOMEM;
4373
4374 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4375 if (!_new_mapping_cache)
4376 goto bad_new_mapping_cache;
4377
4378 return 0;
4379
4380 bad_new_mapping_cache:
4381 dm_unregister_target(&pool_target);
4382 bad_pool_target:
4383 dm_unregister_target(&thin_target);
4384
4385 return r;
4386 }
4387
4388 static void dm_thin_exit(void)
4389 {
4390 dm_unregister_target(&thin_target);
4391 dm_unregister_target(&pool_target);
4392
4393 kmem_cache_destroy(_new_mapping_cache);
4394 }
4395
4396 module_init(dm_thin_init);
4397 module_exit(dm_thin_exit);
4398
4399 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4400 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4401
4402 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4403 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4404 MODULE_LICENSE("GPL");