]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-thin.c
Merge git://www.linux-watchdog.org/linux-watchdog
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX "thin"
18
19 /*
20 * Tunable constants
21 */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36 * Device id is restricted to 24 bits.
37 */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
66 * (process_prepared_mapping). This act of inserting breaks some
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106 struct bio_prison;
107
108 struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112 };
113
114 struct cell {
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
118 struct bio *holder;
119 struct bio_list bios;
120 };
121
122 struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129 };
130
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142 }
143
144 /*
145 * @nr_cells should be the number of cells you want in use _concurrently_.
146 * Don't confuse it with the number of distinct keys.
147 */
148 static struct bio_prison *prison_create(unsigned nr_cells)
149 {
150 unsigned i;
151 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 size_t len = sizeof(struct bio_prison) +
153 (sizeof(struct hlist_head) * nr_buckets);
154 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
155
156 if (!prison)
157 return NULL;
158
159 spin_lock_init(&prison->lock);
160 prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 sizeof(struct cell));
162 if (!prison->cell_pool) {
163 kfree(prison);
164 return NULL;
165 }
166
167 prison->nr_buckets = nr_buckets;
168 prison->hash_mask = nr_buckets - 1;
169 prison->cells = (struct hlist_head *) (prison + 1);
170 for (i = 0; i < nr_buckets; i++)
171 INIT_HLIST_HEAD(prison->cells + i);
172
173 return prison;
174 }
175
176 static void prison_destroy(struct bio_prison *prison)
177 {
178 mempool_destroy(prison->cell_pool);
179 kfree(prison);
180 }
181
182 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
183 {
184 const unsigned long BIG_PRIME = 4294967291UL;
185 uint64_t hash = key->block * BIG_PRIME;
186
187 return (uint32_t) (hash & prison->hash_mask);
188 }
189
190 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
191 {
192 return (lhs->virtual == rhs->virtual) &&
193 (lhs->dev == rhs->dev) &&
194 (lhs->block == rhs->block);
195 }
196
197 static struct cell *__search_bucket(struct hlist_head *bucket,
198 struct cell_key *key)
199 {
200 struct cell *cell;
201 struct hlist_node *tmp;
202
203 hlist_for_each_entry(cell, tmp, bucket, list)
204 if (keys_equal(&cell->key, key))
205 return cell;
206
207 return NULL;
208 }
209
210 /*
211 * This may block if a new cell needs allocating. You must ensure that
212 * cells will be unlocked even if the calling thread is blocked.
213 *
214 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
215 */
216 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 struct bio *inmate, struct cell **ref)
218 {
219 int r = 1;
220 unsigned long flags;
221 uint32_t hash = hash_key(prison, key);
222 struct cell *cell, *cell2;
223
224 BUG_ON(hash > prison->nr_buckets);
225
226 spin_lock_irqsave(&prison->lock, flags);
227
228 cell = __search_bucket(prison->cells + hash, key);
229 if (cell) {
230 bio_list_add(&cell->bios, inmate);
231 goto out;
232 }
233
234 /*
235 * Allocate a new cell
236 */
237 spin_unlock_irqrestore(&prison->lock, flags);
238 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 spin_lock_irqsave(&prison->lock, flags);
240
241 /*
242 * We've been unlocked, so we have to double check that
243 * nobody else has inserted this cell in the meantime.
244 */
245 cell = __search_bucket(prison->cells + hash, key);
246 if (cell) {
247 mempool_free(cell2, prison->cell_pool);
248 bio_list_add(&cell->bios, inmate);
249 goto out;
250 }
251
252 /*
253 * Use new cell.
254 */
255 cell = cell2;
256
257 cell->prison = prison;
258 memcpy(&cell->key, key, sizeof(cell->key));
259 cell->holder = inmate;
260 bio_list_init(&cell->bios);
261 hlist_add_head(&cell->list, prison->cells + hash);
262
263 r = 0;
264
265 out:
266 spin_unlock_irqrestore(&prison->lock, flags);
267
268 *ref = cell;
269
270 return r;
271 }
272
273 /*
274 * @inmates must have been initialised prior to this call
275 */
276 static void __cell_release(struct cell *cell, struct bio_list *inmates)
277 {
278 struct bio_prison *prison = cell->prison;
279
280 hlist_del(&cell->list);
281
282 bio_list_add(inmates, cell->holder);
283 bio_list_merge(inmates, &cell->bios);
284
285 mempool_free(cell, prison->cell_pool);
286 }
287
288 static void cell_release(struct cell *cell, struct bio_list *bios)
289 {
290 unsigned long flags;
291 struct bio_prison *prison = cell->prison;
292
293 spin_lock_irqsave(&prison->lock, flags);
294 __cell_release(cell, bios);
295 spin_unlock_irqrestore(&prison->lock, flags);
296 }
297
298 /*
299 * There are a couple of places where we put a bio into a cell briefly
300 * before taking it out again. In these situations we know that no other
301 * bio may be in the cell. This function releases the cell, and also does
302 * a sanity check.
303 */
304 static void __cell_release_singleton(struct cell *cell, struct bio *bio)
305 {
306 hlist_del(&cell->list);
307 BUG_ON(cell->holder != bio);
308 BUG_ON(!bio_list_empty(&cell->bios));
309 }
310
311 static void cell_release_singleton(struct cell *cell, struct bio *bio)
312 {
313 unsigned long flags;
314 struct bio_prison *prison = cell->prison;
315
316 spin_lock_irqsave(&prison->lock, flags);
317 __cell_release_singleton(cell, bio);
318 spin_unlock_irqrestore(&prison->lock, flags);
319 }
320
321 /*
322 * Sometimes we don't want the holder, just the additional bios.
323 */
324 static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
325 {
326 struct bio_prison *prison = cell->prison;
327
328 hlist_del(&cell->list);
329 bio_list_merge(inmates, &cell->bios);
330
331 mempool_free(cell, prison->cell_pool);
332 }
333
334 static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
335 {
336 unsigned long flags;
337 struct bio_prison *prison = cell->prison;
338
339 spin_lock_irqsave(&prison->lock, flags);
340 __cell_release_no_holder(cell, inmates);
341 spin_unlock_irqrestore(&prison->lock, flags);
342 }
343
344 static void cell_error(struct cell *cell)
345 {
346 struct bio_prison *prison = cell->prison;
347 struct bio_list bios;
348 struct bio *bio;
349 unsigned long flags;
350
351 bio_list_init(&bios);
352
353 spin_lock_irqsave(&prison->lock, flags);
354 __cell_release(cell, &bios);
355 spin_unlock_irqrestore(&prison->lock, flags);
356
357 while ((bio = bio_list_pop(&bios)))
358 bio_io_error(bio);
359 }
360
361 /*----------------------------------------------------------------*/
362
363 /*
364 * We use the deferred set to keep track of pending reads to shared blocks.
365 * We do this to ensure the new mapping caused by a write isn't performed
366 * until these prior reads have completed. Otherwise the insertion of the
367 * new mapping could free the old block that the read bios are mapped to.
368 */
369
370 struct deferred_set;
371 struct deferred_entry {
372 struct deferred_set *ds;
373 unsigned count;
374 struct list_head work_items;
375 };
376
377 struct deferred_set {
378 spinlock_t lock;
379 unsigned current_entry;
380 unsigned sweeper;
381 struct deferred_entry entries[DEFERRED_SET_SIZE];
382 };
383
384 static void ds_init(struct deferred_set *ds)
385 {
386 int i;
387
388 spin_lock_init(&ds->lock);
389 ds->current_entry = 0;
390 ds->sweeper = 0;
391 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
392 ds->entries[i].ds = ds;
393 ds->entries[i].count = 0;
394 INIT_LIST_HEAD(&ds->entries[i].work_items);
395 }
396 }
397
398 static struct deferred_entry *ds_inc(struct deferred_set *ds)
399 {
400 unsigned long flags;
401 struct deferred_entry *entry;
402
403 spin_lock_irqsave(&ds->lock, flags);
404 entry = ds->entries + ds->current_entry;
405 entry->count++;
406 spin_unlock_irqrestore(&ds->lock, flags);
407
408 return entry;
409 }
410
411 static unsigned ds_next(unsigned index)
412 {
413 return (index + 1) % DEFERRED_SET_SIZE;
414 }
415
416 static void __sweep(struct deferred_set *ds, struct list_head *head)
417 {
418 while ((ds->sweeper != ds->current_entry) &&
419 !ds->entries[ds->sweeper].count) {
420 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
421 ds->sweeper = ds_next(ds->sweeper);
422 }
423
424 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
425 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
426 }
427
428 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
429 {
430 unsigned long flags;
431
432 spin_lock_irqsave(&entry->ds->lock, flags);
433 BUG_ON(!entry->count);
434 --entry->count;
435 __sweep(entry->ds, head);
436 spin_unlock_irqrestore(&entry->ds->lock, flags);
437 }
438
439 /*
440 * Returns 1 if deferred or 0 if no pending items to delay job.
441 */
442 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
443 {
444 int r = 1;
445 unsigned long flags;
446 unsigned next_entry;
447
448 spin_lock_irqsave(&ds->lock, flags);
449 if ((ds->sweeper == ds->current_entry) &&
450 !ds->entries[ds->current_entry].count)
451 r = 0;
452 else {
453 list_add(work, &ds->entries[ds->current_entry].work_items);
454 next_entry = ds_next(ds->current_entry);
455 if (!ds->entries[next_entry].count)
456 ds->current_entry = next_entry;
457 }
458 spin_unlock_irqrestore(&ds->lock, flags);
459
460 return r;
461 }
462
463 /*----------------------------------------------------------------*/
464
465 /*
466 * Key building.
467 */
468 static void build_data_key(struct dm_thin_device *td,
469 dm_block_t b, struct cell_key *key)
470 {
471 key->virtual = 0;
472 key->dev = dm_thin_dev_id(td);
473 key->block = b;
474 }
475
476 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
477 struct cell_key *key)
478 {
479 key->virtual = 1;
480 key->dev = dm_thin_dev_id(td);
481 key->block = b;
482 }
483
484 /*----------------------------------------------------------------*/
485
486 /*
487 * A pool device ties together a metadata device and a data device. It
488 * also provides the interface for creating and destroying internal
489 * devices.
490 */
491 struct new_mapping;
492
493 struct pool_features {
494 unsigned zero_new_blocks:1;
495 unsigned discard_enabled:1;
496 unsigned discard_passdown:1;
497 };
498
499 struct pool {
500 struct list_head list;
501 struct dm_target *ti; /* Only set if a pool target is bound */
502
503 struct mapped_device *pool_md;
504 struct block_device *md_dev;
505 struct dm_pool_metadata *pmd;
506
507 uint32_t sectors_per_block;
508 unsigned block_shift;
509 dm_block_t offset_mask;
510 dm_block_t low_water_blocks;
511
512 struct pool_features pf;
513 unsigned low_water_triggered:1; /* A dm event has been sent */
514 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
515
516 struct bio_prison *prison;
517 struct dm_kcopyd_client *copier;
518
519 struct workqueue_struct *wq;
520 struct work_struct worker;
521 struct delayed_work waker;
522
523 unsigned ref_count;
524 unsigned long last_commit_jiffies;
525
526 spinlock_t lock;
527 struct bio_list deferred_bios;
528 struct bio_list deferred_flush_bios;
529 struct list_head prepared_mappings;
530 struct list_head prepared_discards;
531
532 struct bio_list retry_on_resume_list;
533
534 struct deferred_set shared_read_ds;
535 struct deferred_set all_io_ds;
536
537 struct new_mapping *next_mapping;
538 mempool_t *mapping_pool;
539 mempool_t *endio_hook_pool;
540 };
541
542 /*
543 * Target context for a pool.
544 */
545 struct pool_c {
546 struct dm_target *ti;
547 struct pool *pool;
548 struct dm_dev *data_dev;
549 struct dm_dev *metadata_dev;
550 struct dm_target_callbacks callbacks;
551
552 dm_block_t low_water_blocks;
553 struct pool_features pf;
554 };
555
556 /*
557 * Target context for a thin.
558 */
559 struct thin_c {
560 struct dm_dev *pool_dev;
561 struct dm_dev *origin_dev;
562 dm_thin_id dev_id;
563
564 struct pool *pool;
565 struct dm_thin_device *td;
566 };
567
568 /*----------------------------------------------------------------*/
569
570 /*
571 * A global list of pools that uses a struct mapped_device as a key.
572 */
573 static struct dm_thin_pool_table {
574 struct mutex mutex;
575 struct list_head pools;
576 } dm_thin_pool_table;
577
578 static void pool_table_init(void)
579 {
580 mutex_init(&dm_thin_pool_table.mutex);
581 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
582 }
583
584 static void __pool_table_insert(struct pool *pool)
585 {
586 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
587 list_add(&pool->list, &dm_thin_pool_table.pools);
588 }
589
590 static void __pool_table_remove(struct pool *pool)
591 {
592 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593 list_del(&pool->list);
594 }
595
596 static struct pool *__pool_table_lookup(struct mapped_device *md)
597 {
598 struct pool *pool = NULL, *tmp;
599
600 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
601
602 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
603 if (tmp->pool_md == md) {
604 pool = tmp;
605 break;
606 }
607 }
608
609 return pool;
610 }
611
612 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
613 {
614 struct pool *pool = NULL, *tmp;
615
616 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
617
618 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
619 if (tmp->md_dev == md_dev) {
620 pool = tmp;
621 break;
622 }
623 }
624
625 return pool;
626 }
627
628 /*----------------------------------------------------------------*/
629
630 struct endio_hook {
631 struct thin_c *tc;
632 struct deferred_entry *shared_read_entry;
633 struct deferred_entry *all_io_entry;
634 struct new_mapping *overwrite_mapping;
635 };
636
637 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
638 {
639 struct bio *bio;
640 struct bio_list bios;
641
642 bio_list_init(&bios);
643 bio_list_merge(&bios, master);
644 bio_list_init(master);
645
646 while ((bio = bio_list_pop(&bios))) {
647 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
648 if (h->tc == tc)
649 bio_endio(bio, DM_ENDIO_REQUEUE);
650 else
651 bio_list_add(master, bio);
652 }
653 }
654
655 static void requeue_io(struct thin_c *tc)
656 {
657 struct pool *pool = tc->pool;
658 unsigned long flags;
659
660 spin_lock_irqsave(&pool->lock, flags);
661 __requeue_bio_list(tc, &pool->deferred_bios);
662 __requeue_bio_list(tc, &pool->retry_on_resume_list);
663 spin_unlock_irqrestore(&pool->lock, flags);
664 }
665
666 /*
667 * This section of code contains the logic for processing a thin device's IO.
668 * Much of the code depends on pool object resources (lists, workqueues, etc)
669 * but most is exclusively called from the thin target rather than the thin-pool
670 * target.
671 */
672
673 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
674 {
675 return bio->bi_sector >> tc->pool->block_shift;
676 }
677
678 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
679 {
680 struct pool *pool = tc->pool;
681
682 bio->bi_bdev = tc->pool_dev->bdev;
683 bio->bi_sector = (block << pool->block_shift) +
684 (bio->bi_sector & pool->offset_mask);
685 }
686
687 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
688 {
689 bio->bi_bdev = tc->origin_dev->bdev;
690 }
691
692 static void issue(struct thin_c *tc, struct bio *bio)
693 {
694 struct pool *pool = tc->pool;
695 unsigned long flags;
696
697 /*
698 * Batch together any FUA/FLUSH bios we find and then issue
699 * a single commit for them in process_deferred_bios().
700 */
701 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
702 spin_lock_irqsave(&pool->lock, flags);
703 bio_list_add(&pool->deferred_flush_bios, bio);
704 spin_unlock_irqrestore(&pool->lock, flags);
705 } else
706 generic_make_request(bio);
707 }
708
709 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
710 {
711 remap_to_origin(tc, bio);
712 issue(tc, bio);
713 }
714
715 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
716 dm_block_t block)
717 {
718 remap(tc, bio, block);
719 issue(tc, bio);
720 }
721
722 /*
723 * wake_worker() is used when new work is queued and when pool_resume is
724 * ready to continue deferred IO processing.
725 */
726 static void wake_worker(struct pool *pool)
727 {
728 queue_work(pool->wq, &pool->worker);
729 }
730
731 /*----------------------------------------------------------------*/
732
733 /*
734 * Bio endio functions.
735 */
736 struct new_mapping {
737 struct list_head list;
738
739 unsigned quiesced:1;
740 unsigned prepared:1;
741 unsigned pass_discard:1;
742
743 struct thin_c *tc;
744 dm_block_t virt_block;
745 dm_block_t data_block;
746 struct cell *cell, *cell2;
747 int err;
748
749 /*
750 * If the bio covers the whole area of a block then we can avoid
751 * zeroing or copying. Instead this bio is hooked. The bio will
752 * still be in the cell, so care has to be taken to avoid issuing
753 * the bio twice.
754 */
755 struct bio *bio;
756 bio_end_io_t *saved_bi_end_io;
757 };
758
759 static void __maybe_add_mapping(struct new_mapping *m)
760 {
761 struct pool *pool = m->tc->pool;
762
763 if (m->quiesced && m->prepared) {
764 list_add(&m->list, &pool->prepared_mappings);
765 wake_worker(pool);
766 }
767 }
768
769 static void copy_complete(int read_err, unsigned long write_err, void *context)
770 {
771 unsigned long flags;
772 struct new_mapping *m = context;
773 struct pool *pool = m->tc->pool;
774
775 m->err = read_err || write_err ? -EIO : 0;
776
777 spin_lock_irqsave(&pool->lock, flags);
778 m->prepared = 1;
779 __maybe_add_mapping(m);
780 spin_unlock_irqrestore(&pool->lock, flags);
781 }
782
783 static void overwrite_endio(struct bio *bio, int err)
784 {
785 unsigned long flags;
786 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
787 struct new_mapping *m = h->overwrite_mapping;
788 struct pool *pool = m->tc->pool;
789
790 m->err = err;
791
792 spin_lock_irqsave(&pool->lock, flags);
793 m->prepared = 1;
794 __maybe_add_mapping(m);
795 spin_unlock_irqrestore(&pool->lock, flags);
796 }
797
798 /*----------------------------------------------------------------*/
799
800 /*
801 * Workqueue.
802 */
803
804 /*
805 * Prepared mapping jobs.
806 */
807
808 /*
809 * This sends the bios in the cell back to the deferred_bios list.
810 */
811 static void cell_defer(struct thin_c *tc, struct cell *cell,
812 dm_block_t data_block)
813 {
814 struct pool *pool = tc->pool;
815 unsigned long flags;
816
817 spin_lock_irqsave(&pool->lock, flags);
818 cell_release(cell, &pool->deferred_bios);
819 spin_unlock_irqrestore(&tc->pool->lock, flags);
820
821 wake_worker(pool);
822 }
823
824 /*
825 * Same as cell_defer above, except it omits one particular detainee,
826 * a write bio that covers the block and has already been processed.
827 */
828 static void cell_defer_except(struct thin_c *tc, struct cell *cell)
829 {
830 struct bio_list bios;
831 struct pool *pool = tc->pool;
832 unsigned long flags;
833
834 bio_list_init(&bios);
835
836 spin_lock_irqsave(&pool->lock, flags);
837 cell_release_no_holder(cell, &pool->deferred_bios);
838 spin_unlock_irqrestore(&pool->lock, flags);
839
840 wake_worker(pool);
841 }
842
843 static void process_prepared_mapping(struct new_mapping *m)
844 {
845 struct thin_c *tc = m->tc;
846 struct bio *bio;
847 int r;
848
849 bio = m->bio;
850 if (bio)
851 bio->bi_end_io = m->saved_bi_end_io;
852
853 if (m->err) {
854 cell_error(m->cell);
855 return;
856 }
857
858 /*
859 * Commit the prepared block into the mapping btree.
860 * Any I/O for this block arriving after this point will get
861 * remapped to it directly.
862 */
863 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
864 if (r) {
865 DMERR("dm_thin_insert_block() failed");
866 cell_error(m->cell);
867 return;
868 }
869
870 /*
871 * Release any bios held while the block was being provisioned.
872 * If we are processing a write bio that completely covers the block,
873 * we already processed it so can ignore it now when processing
874 * the bios in the cell.
875 */
876 if (bio) {
877 cell_defer_except(tc, m->cell);
878 bio_endio(bio, 0);
879 } else
880 cell_defer(tc, m->cell, m->data_block);
881
882 list_del(&m->list);
883 mempool_free(m, tc->pool->mapping_pool);
884 }
885
886 static void process_prepared_discard(struct new_mapping *m)
887 {
888 int r;
889 struct thin_c *tc = m->tc;
890
891 r = dm_thin_remove_block(tc->td, m->virt_block);
892 if (r)
893 DMERR("dm_thin_remove_block() failed");
894
895 /*
896 * Pass the discard down to the underlying device?
897 */
898 if (m->pass_discard)
899 remap_and_issue(tc, m->bio, m->data_block);
900 else
901 bio_endio(m->bio, 0);
902
903 cell_defer_except(tc, m->cell);
904 cell_defer_except(tc, m->cell2);
905 mempool_free(m, tc->pool->mapping_pool);
906 }
907
908 static void process_prepared(struct pool *pool, struct list_head *head,
909 void (*fn)(struct new_mapping *))
910 {
911 unsigned long flags;
912 struct list_head maps;
913 struct new_mapping *m, *tmp;
914
915 INIT_LIST_HEAD(&maps);
916 spin_lock_irqsave(&pool->lock, flags);
917 list_splice_init(head, &maps);
918 spin_unlock_irqrestore(&pool->lock, flags);
919
920 list_for_each_entry_safe(m, tmp, &maps, list)
921 fn(m);
922 }
923
924 /*
925 * Deferred bio jobs.
926 */
927 static int io_overlaps_block(struct pool *pool, struct bio *bio)
928 {
929 return !(bio->bi_sector & pool->offset_mask) &&
930 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
931
932 }
933
934 static int io_overwrites_block(struct pool *pool, struct bio *bio)
935 {
936 return (bio_data_dir(bio) == WRITE) &&
937 io_overlaps_block(pool, bio);
938 }
939
940 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
941 bio_end_io_t *fn)
942 {
943 *save = bio->bi_end_io;
944 bio->bi_end_io = fn;
945 }
946
947 static int ensure_next_mapping(struct pool *pool)
948 {
949 if (pool->next_mapping)
950 return 0;
951
952 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
953
954 return pool->next_mapping ? 0 : -ENOMEM;
955 }
956
957 static struct new_mapping *get_next_mapping(struct pool *pool)
958 {
959 struct new_mapping *r = pool->next_mapping;
960
961 BUG_ON(!pool->next_mapping);
962
963 pool->next_mapping = NULL;
964
965 return r;
966 }
967
968 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
969 struct dm_dev *origin, dm_block_t data_origin,
970 dm_block_t data_dest,
971 struct cell *cell, struct bio *bio)
972 {
973 int r;
974 struct pool *pool = tc->pool;
975 struct new_mapping *m = get_next_mapping(pool);
976
977 INIT_LIST_HEAD(&m->list);
978 m->quiesced = 0;
979 m->prepared = 0;
980 m->tc = tc;
981 m->virt_block = virt_block;
982 m->data_block = data_dest;
983 m->cell = cell;
984 m->err = 0;
985 m->bio = NULL;
986
987 if (!ds_add_work(&pool->shared_read_ds, &m->list))
988 m->quiesced = 1;
989
990 /*
991 * IO to pool_dev remaps to the pool target's data_dev.
992 *
993 * If the whole block of data is being overwritten, we can issue the
994 * bio immediately. Otherwise we use kcopyd to clone the data first.
995 */
996 if (io_overwrites_block(pool, bio)) {
997 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
998 h->overwrite_mapping = m;
999 m->bio = bio;
1000 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1001 remap_and_issue(tc, bio, data_dest);
1002 } else {
1003 struct dm_io_region from, to;
1004
1005 from.bdev = origin->bdev;
1006 from.sector = data_origin * pool->sectors_per_block;
1007 from.count = pool->sectors_per_block;
1008
1009 to.bdev = tc->pool_dev->bdev;
1010 to.sector = data_dest * pool->sectors_per_block;
1011 to.count = pool->sectors_per_block;
1012
1013 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1014 0, copy_complete, m);
1015 if (r < 0) {
1016 mempool_free(m, pool->mapping_pool);
1017 DMERR("dm_kcopyd_copy() failed");
1018 cell_error(cell);
1019 }
1020 }
1021 }
1022
1023 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1024 dm_block_t data_origin, dm_block_t data_dest,
1025 struct cell *cell, struct bio *bio)
1026 {
1027 schedule_copy(tc, virt_block, tc->pool_dev,
1028 data_origin, data_dest, cell, bio);
1029 }
1030
1031 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1032 dm_block_t data_dest,
1033 struct cell *cell, struct bio *bio)
1034 {
1035 schedule_copy(tc, virt_block, tc->origin_dev,
1036 virt_block, data_dest, cell, bio);
1037 }
1038
1039 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1040 dm_block_t data_block, struct cell *cell,
1041 struct bio *bio)
1042 {
1043 struct pool *pool = tc->pool;
1044 struct new_mapping *m = get_next_mapping(pool);
1045
1046 INIT_LIST_HEAD(&m->list);
1047 m->quiesced = 1;
1048 m->prepared = 0;
1049 m->tc = tc;
1050 m->virt_block = virt_block;
1051 m->data_block = data_block;
1052 m->cell = cell;
1053 m->err = 0;
1054 m->bio = NULL;
1055
1056 /*
1057 * If the whole block of data is being overwritten or we are not
1058 * zeroing pre-existing data, we can issue the bio immediately.
1059 * Otherwise we use kcopyd to zero the data first.
1060 */
1061 if (!pool->pf.zero_new_blocks)
1062 process_prepared_mapping(m);
1063
1064 else if (io_overwrites_block(pool, bio)) {
1065 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1066 h->overwrite_mapping = m;
1067 m->bio = bio;
1068 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1069 remap_and_issue(tc, bio, data_block);
1070
1071 } else {
1072 int r;
1073 struct dm_io_region to;
1074
1075 to.bdev = tc->pool_dev->bdev;
1076 to.sector = data_block * pool->sectors_per_block;
1077 to.count = pool->sectors_per_block;
1078
1079 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1080 if (r < 0) {
1081 mempool_free(m, pool->mapping_pool);
1082 DMERR("dm_kcopyd_zero() failed");
1083 cell_error(cell);
1084 }
1085 }
1086 }
1087
1088 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1089 {
1090 int r;
1091 dm_block_t free_blocks;
1092 unsigned long flags;
1093 struct pool *pool = tc->pool;
1094
1095 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1096 if (r)
1097 return r;
1098
1099 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1100 DMWARN("%s: reached low water mark, sending event.",
1101 dm_device_name(pool->pool_md));
1102 spin_lock_irqsave(&pool->lock, flags);
1103 pool->low_water_triggered = 1;
1104 spin_unlock_irqrestore(&pool->lock, flags);
1105 dm_table_event(pool->ti->table);
1106 }
1107
1108 if (!free_blocks) {
1109 if (pool->no_free_space)
1110 return -ENOSPC;
1111 else {
1112 /*
1113 * Try to commit to see if that will free up some
1114 * more space.
1115 */
1116 r = dm_pool_commit_metadata(pool->pmd);
1117 if (r) {
1118 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1119 __func__, r);
1120 return r;
1121 }
1122
1123 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1124 if (r)
1125 return r;
1126
1127 /*
1128 * If we still have no space we set a flag to avoid
1129 * doing all this checking and return -ENOSPC.
1130 */
1131 if (!free_blocks) {
1132 DMWARN("%s: no free space available.",
1133 dm_device_name(pool->pool_md));
1134 spin_lock_irqsave(&pool->lock, flags);
1135 pool->no_free_space = 1;
1136 spin_unlock_irqrestore(&pool->lock, flags);
1137 return -ENOSPC;
1138 }
1139 }
1140 }
1141
1142 r = dm_pool_alloc_data_block(pool->pmd, result);
1143 if (r)
1144 return r;
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * If we have run out of space, queue bios until the device is
1151 * resumed, presumably after having been reloaded with more space.
1152 */
1153 static void retry_on_resume(struct bio *bio)
1154 {
1155 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1156 struct thin_c *tc = h->tc;
1157 struct pool *pool = tc->pool;
1158 unsigned long flags;
1159
1160 spin_lock_irqsave(&pool->lock, flags);
1161 bio_list_add(&pool->retry_on_resume_list, bio);
1162 spin_unlock_irqrestore(&pool->lock, flags);
1163 }
1164
1165 static void no_space(struct cell *cell)
1166 {
1167 struct bio *bio;
1168 struct bio_list bios;
1169
1170 bio_list_init(&bios);
1171 cell_release(cell, &bios);
1172
1173 while ((bio = bio_list_pop(&bios)))
1174 retry_on_resume(bio);
1175 }
1176
1177 static void process_discard(struct thin_c *tc, struct bio *bio)
1178 {
1179 int r;
1180 struct pool *pool = tc->pool;
1181 struct cell *cell, *cell2;
1182 struct cell_key key, key2;
1183 dm_block_t block = get_bio_block(tc, bio);
1184 struct dm_thin_lookup_result lookup_result;
1185 struct new_mapping *m;
1186
1187 build_virtual_key(tc->td, block, &key);
1188 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1189 return;
1190
1191 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1192 switch (r) {
1193 case 0:
1194 /*
1195 * Check nobody is fiddling with this pool block. This can
1196 * happen if someone's in the process of breaking sharing
1197 * on this block.
1198 */
1199 build_data_key(tc->td, lookup_result.block, &key2);
1200 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1201 cell_release_singleton(cell, bio);
1202 break;
1203 }
1204
1205 if (io_overlaps_block(pool, bio)) {
1206 /*
1207 * IO may still be going to the destination block. We must
1208 * quiesce before we can do the removal.
1209 */
1210 m = get_next_mapping(pool);
1211 m->tc = tc;
1212 m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1213 m->virt_block = block;
1214 m->data_block = lookup_result.block;
1215 m->cell = cell;
1216 m->cell2 = cell2;
1217 m->err = 0;
1218 m->bio = bio;
1219
1220 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1221 list_add(&m->list, &pool->prepared_discards);
1222 wake_worker(pool);
1223 }
1224 } else {
1225 /*
1226 * This path is hit if people are ignoring
1227 * limits->discard_granularity. It ignores any
1228 * part of the discard that is in a subsequent
1229 * block.
1230 */
1231 sector_t offset = bio->bi_sector - (block << pool->block_shift);
1232 unsigned remaining = (pool->sectors_per_block - offset) << 9;
1233 bio->bi_size = min(bio->bi_size, remaining);
1234
1235 cell_release_singleton(cell, bio);
1236 cell_release_singleton(cell2, bio);
1237 remap_and_issue(tc, bio, lookup_result.block);
1238 }
1239 break;
1240
1241 case -ENODATA:
1242 /*
1243 * It isn't provisioned, just forget it.
1244 */
1245 cell_release_singleton(cell, bio);
1246 bio_endio(bio, 0);
1247 break;
1248
1249 default:
1250 DMERR("discard: find block unexpectedly returned %d", r);
1251 cell_release_singleton(cell, bio);
1252 bio_io_error(bio);
1253 break;
1254 }
1255 }
1256
1257 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1258 struct cell_key *key,
1259 struct dm_thin_lookup_result *lookup_result,
1260 struct cell *cell)
1261 {
1262 int r;
1263 dm_block_t data_block;
1264
1265 r = alloc_data_block(tc, &data_block);
1266 switch (r) {
1267 case 0:
1268 schedule_internal_copy(tc, block, lookup_result->block,
1269 data_block, cell, bio);
1270 break;
1271
1272 case -ENOSPC:
1273 no_space(cell);
1274 break;
1275
1276 default:
1277 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1278 cell_error(cell);
1279 break;
1280 }
1281 }
1282
1283 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1284 dm_block_t block,
1285 struct dm_thin_lookup_result *lookup_result)
1286 {
1287 struct cell *cell;
1288 struct pool *pool = tc->pool;
1289 struct cell_key key;
1290
1291 /*
1292 * If cell is already occupied, then sharing is already in the process
1293 * of being broken so we have nothing further to do here.
1294 */
1295 build_data_key(tc->td, lookup_result->block, &key);
1296 if (bio_detain(pool->prison, &key, bio, &cell))
1297 return;
1298
1299 if (bio_data_dir(bio) == WRITE)
1300 break_sharing(tc, bio, block, &key, lookup_result, cell);
1301 else {
1302 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1303
1304 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1305
1306 cell_release_singleton(cell, bio);
1307 remap_and_issue(tc, bio, lookup_result->block);
1308 }
1309 }
1310
1311 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1312 struct cell *cell)
1313 {
1314 int r;
1315 dm_block_t data_block;
1316
1317 /*
1318 * Remap empty bios (flushes) immediately, without provisioning.
1319 */
1320 if (!bio->bi_size) {
1321 cell_release_singleton(cell, bio);
1322 remap_and_issue(tc, bio, 0);
1323 return;
1324 }
1325
1326 /*
1327 * Fill read bios with zeroes and complete them immediately.
1328 */
1329 if (bio_data_dir(bio) == READ) {
1330 zero_fill_bio(bio);
1331 cell_release_singleton(cell, bio);
1332 bio_endio(bio, 0);
1333 return;
1334 }
1335
1336 r = alloc_data_block(tc, &data_block);
1337 switch (r) {
1338 case 0:
1339 if (tc->origin_dev)
1340 schedule_external_copy(tc, block, data_block, cell, bio);
1341 else
1342 schedule_zero(tc, block, data_block, cell, bio);
1343 break;
1344
1345 case -ENOSPC:
1346 no_space(cell);
1347 break;
1348
1349 default:
1350 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1351 cell_error(cell);
1352 break;
1353 }
1354 }
1355
1356 static void process_bio(struct thin_c *tc, struct bio *bio)
1357 {
1358 int r;
1359 dm_block_t block = get_bio_block(tc, bio);
1360 struct cell *cell;
1361 struct cell_key key;
1362 struct dm_thin_lookup_result lookup_result;
1363
1364 /*
1365 * If cell is already occupied, then the block is already
1366 * being provisioned so we have nothing further to do here.
1367 */
1368 build_virtual_key(tc->td, block, &key);
1369 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1370 return;
1371
1372 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1373 switch (r) {
1374 case 0:
1375 /*
1376 * We can release this cell now. This thread is the only
1377 * one that puts bios into a cell, and we know there were
1378 * no preceding bios.
1379 */
1380 /*
1381 * TODO: this will probably have to change when discard goes
1382 * back in.
1383 */
1384 cell_release_singleton(cell, bio);
1385
1386 if (lookup_result.shared)
1387 process_shared_bio(tc, bio, block, &lookup_result);
1388 else
1389 remap_and_issue(tc, bio, lookup_result.block);
1390 break;
1391
1392 case -ENODATA:
1393 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1394 cell_release_singleton(cell, bio);
1395 remap_to_origin_and_issue(tc, bio);
1396 } else
1397 provision_block(tc, bio, block, cell);
1398 break;
1399
1400 default:
1401 DMERR("dm_thin_find_block() failed, error = %d", r);
1402 cell_release_singleton(cell, bio);
1403 bio_io_error(bio);
1404 break;
1405 }
1406 }
1407
1408 static int need_commit_due_to_time(struct pool *pool)
1409 {
1410 return jiffies < pool->last_commit_jiffies ||
1411 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1412 }
1413
1414 static void process_deferred_bios(struct pool *pool)
1415 {
1416 unsigned long flags;
1417 struct bio *bio;
1418 struct bio_list bios;
1419 int r;
1420
1421 bio_list_init(&bios);
1422
1423 spin_lock_irqsave(&pool->lock, flags);
1424 bio_list_merge(&bios, &pool->deferred_bios);
1425 bio_list_init(&pool->deferred_bios);
1426 spin_unlock_irqrestore(&pool->lock, flags);
1427
1428 while ((bio = bio_list_pop(&bios))) {
1429 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1430 struct thin_c *tc = h->tc;
1431
1432 /*
1433 * If we've got no free new_mapping structs, and processing
1434 * this bio might require one, we pause until there are some
1435 * prepared mappings to process.
1436 */
1437 if (ensure_next_mapping(pool)) {
1438 spin_lock_irqsave(&pool->lock, flags);
1439 bio_list_merge(&pool->deferred_bios, &bios);
1440 spin_unlock_irqrestore(&pool->lock, flags);
1441
1442 break;
1443 }
1444
1445 if (bio->bi_rw & REQ_DISCARD)
1446 process_discard(tc, bio);
1447 else
1448 process_bio(tc, bio);
1449 }
1450
1451 /*
1452 * If there are any deferred flush bios, we must commit
1453 * the metadata before issuing them.
1454 */
1455 bio_list_init(&bios);
1456 spin_lock_irqsave(&pool->lock, flags);
1457 bio_list_merge(&bios, &pool->deferred_flush_bios);
1458 bio_list_init(&pool->deferred_flush_bios);
1459 spin_unlock_irqrestore(&pool->lock, flags);
1460
1461 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1462 return;
1463
1464 r = dm_pool_commit_metadata(pool->pmd);
1465 if (r) {
1466 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1467 __func__, r);
1468 while ((bio = bio_list_pop(&bios)))
1469 bio_io_error(bio);
1470 return;
1471 }
1472 pool->last_commit_jiffies = jiffies;
1473
1474 while ((bio = bio_list_pop(&bios)))
1475 generic_make_request(bio);
1476 }
1477
1478 static void do_worker(struct work_struct *ws)
1479 {
1480 struct pool *pool = container_of(ws, struct pool, worker);
1481
1482 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1483 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1484 process_deferred_bios(pool);
1485 }
1486
1487 /*
1488 * We want to commit periodically so that not too much
1489 * unwritten data builds up.
1490 */
1491 static void do_waker(struct work_struct *ws)
1492 {
1493 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1494 wake_worker(pool);
1495 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1496 }
1497
1498 /*----------------------------------------------------------------*/
1499
1500 /*
1501 * Mapping functions.
1502 */
1503
1504 /*
1505 * Called only while mapping a thin bio to hand it over to the workqueue.
1506 */
1507 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1508 {
1509 unsigned long flags;
1510 struct pool *pool = tc->pool;
1511
1512 spin_lock_irqsave(&pool->lock, flags);
1513 bio_list_add(&pool->deferred_bios, bio);
1514 spin_unlock_irqrestore(&pool->lock, flags);
1515
1516 wake_worker(pool);
1517 }
1518
1519 static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1520 {
1521 struct pool *pool = tc->pool;
1522 struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1523
1524 h->tc = tc;
1525 h->shared_read_entry = NULL;
1526 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1527 h->overwrite_mapping = NULL;
1528
1529 return h;
1530 }
1531
1532 /*
1533 * Non-blocking function called from the thin target's map function.
1534 */
1535 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1536 union map_info *map_context)
1537 {
1538 int r;
1539 struct thin_c *tc = ti->private;
1540 dm_block_t block = get_bio_block(tc, bio);
1541 struct dm_thin_device *td = tc->td;
1542 struct dm_thin_lookup_result result;
1543
1544 map_context->ptr = thin_hook_bio(tc, bio);
1545 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1546 thin_defer_bio(tc, bio);
1547 return DM_MAPIO_SUBMITTED;
1548 }
1549
1550 r = dm_thin_find_block(td, block, 0, &result);
1551
1552 /*
1553 * Note that we defer readahead too.
1554 */
1555 switch (r) {
1556 case 0:
1557 if (unlikely(result.shared)) {
1558 /*
1559 * We have a race condition here between the
1560 * result.shared value returned by the lookup and
1561 * snapshot creation, which may cause new
1562 * sharing.
1563 *
1564 * To avoid this always quiesce the origin before
1565 * taking the snap. You want to do this anyway to
1566 * ensure a consistent application view
1567 * (i.e. lockfs).
1568 *
1569 * More distant ancestors are irrelevant. The
1570 * shared flag will be set in their case.
1571 */
1572 thin_defer_bio(tc, bio);
1573 r = DM_MAPIO_SUBMITTED;
1574 } else {
1575 remap(tc, bio, result.block);
1576 r = DM_MAPIO_REMAPPED;
1577 }
1578 break;
1579
1580 case -ENODATA:
1581 /*
1582 * In future, the failed dm_thin_find_block above could
1583 * provide the hint to load the metadata into cache.
1584 */
1585 case -EWOULDBLOCK:
1586 thin_defer_bio(tc, bio);
1587 r = DM_MAPIO_SUBMITTED;
1588 break;
1589 }
1590
1591 return r;
1592 }
1593
1594 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1595 {
1596 int r;
1597 unsigned long flags;
1598 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1599
1600 spin_lock_irqsave(&pt->pool->lock, flags);
1601 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1602 spin_unlock_irqrestore(&pt->pool->lock, flags);
1603
1604 if (!r) {
1605 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1606 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1607 }
1608
1609 return r;
1610 }
1611
1612 static void __requeue_bios(struct pool *pool)
1613 {
1614 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1615 bio_list_init(&pool->retry_on_resume_list);
1616 }
1617
1618 /*----------------------------------------------------------------
1619 * Binding of control targets to a pool object
1620 *--------------------------------------------------------------*/
1621 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1622 {
1623 struct pool_c *pt = ti->private;
1624
1625 pool->ti = ti;
1626 pool->low_water_blocks = pt->low_water_blocks;
1627 pool->pf = pt->pf;
1628
1629 return 0;
1630 }
1631
1632 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1633 {
1634 if (pool->ti == ti)
1635 pool->ti = NULL;
1636 }
1637
1638 /*----------------------------------------------------------------
1639 * Pool creation
1640 *--------------------------------------------------------------*/
1641 /* Initialize pool features. */
1642 static void pool_features_init(struct pool_features *pf)
1643 {
1644 pf->zero_new_blocks = 1;
1645 pf->discard_enabled = 1;
1646 pf->discard_passdown = 1;
1647 }
1648
1649 static void __pool_destroy(struct pool *pool)
1650 {
1651 __pool_table_remove(pool);
1652
1653 if (dm_pool_metadata_close(pool->pmd) < 0)
1654 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1655
1656 prison_destroy(pool->prison);
1657 dm_kcopyd_client_destroy(pool->copier);
1658
1659 if (pool->wq)
1660 destroy_workqueue(pool->wq);
1661
1662 if (pool->next_mapping)
1663 mempool_free(pool->next_mapping, pool->mapping_pool);
1664 mempool_destroy(pool->mapping_pool);
1665 mempool_destroy(pool->endio_hook_pool);
1666 kfree(pool);
1667 }
1668
1669 static struct pool *pool_create(struct mapped_device *pool_md,
1670 struct block_device *metadata_dev,
1671 unsigned long block_size, char **error)
1672 {
1673 int r;
1674 void *err_p;
1675 struct pool *pool;
1676 struct dm_pool_metadata *pmd;
1677
1678 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1679 if (IS_ERR(pmd)) {
1680 *error = "Error creating metadata object";
1681 return (struct pool *)pmd;
1682 }
1683
1684 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1685 if (!pool) {
1686 *error = "Error allocating memory for pool";
1687 err_p = ERR_PTR(-ENOMEM);
1688 goto bad_pool;
1689 }
1690
1691 pool->pmd = pmd;
1692 pool->sectors_per_block = block_size;
1693 pool->block_shift = ffs(block_size) - 1;
1694 pool->offset_mask = block_size - 1;
1695 pool->low_water_blocks = 0;
1696 pool_features_init(&pool->pf);
1697 pool->prison = prison_create(PRISON_CELLS);
1698 if (!pool->prison) {
1699 *error = "Error creating pool's bio prison";
1700 err_p = ERR_PTR(-ENOMEM);
1701 goto bad_prison;
1702 }
1703
1704 pool->copier = dm_kcopyd_client_create();
1705 if (IS_ERR(pool->copier)) {
1706 r = PTR_ERR(pool->copier);
1707 *error = "Error creating pool's kcopyd client";
1708 err_p = ERR_PTR(r);
1709 goto bad_kcopyd_client;
1710 }
1711
1712 /*
1713 * Create singlethreaded workqueue that will service all devices
1714 * that use this metadata.
1715 */
1716 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1717 if (!pool->wq) {
1718 *error = "Error creating pool's workqueue";
1719 err_p = ERR_PTR(-ENOMEM);
1720 goto bad_wq;
1721 }
1722
1723 INIT_WORK(&pool->worker, do_worker);
1724 INIT_DELAYED_WORK(&pool->waker, do_waker);
1725 spin_lock_init(&pool->lock);
1726 bio_list_init(&pool->deferred_bios);
1727 bio_list_init(&pool->deferred_flush_bios);
1728 INIT_LIST_HEAD(&pool->prepared_mappings);
1729 INIT_LIST_HEAD(&pool->prepared_discards);
1730 pool->low_water_triggered = 0;
1731 pool->no_free_space = 0;
1732 bio_list_init(&pool->retry_on_resume_list);
1733 ds_init(&pool->shared_read_ds);
1734 ds_init(&pool->all_io_ds);
1735
1736 pool->next_mapping = NULL;
1737 pool->mapping_pool =
1738 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1739 if (!pool->mapping_pool) {
1740 *error = "Error creating pool's mapping mempool";
1741 err_p = ERR_PTR(-ENOMEM);
1742 goto bad_mapping_pool;
1743 }
1744
1745 pool->endio_hook_pool =
1746 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1747 if (!pool->endio_hook_pool) {
1748 *error = "Error creating pool's endio_hook mempool";
1749 err_p = ERR_PTR(-ENOMEM);
1750 goto bad_endio_hook_pool;
1751 }
1752 pool->ref_count = 1;
1753 pool->last_commit_jiffies = jiffies;
1754 pool->pool_md = pool_md;
1755 pool->md_dev = metadata_dev;
1756 __pool_table_insert(pool);
1757
1758 return pool;
1759
1760 bad_endio_hook_pool:
1761 mempool_destroy(pool->mapping_pool);
1762 bad_mapping_pool:
1763 destroy_workqueue(pool->wq);
1764 bad_wq:
1765 dm_kcopyd_client_destroy(pool->copier);
1766 bad_kcopyd_client:
1767 prison_destroy(pool->prison);
1768 bad_prison:
1769 kfree(pool);
1770 bad_pool:
1771 if (dm_pool_metadata_close(pmd))
1772 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1773
1774 return err_p;
1775 }
1776
1777 static void __pool_inc(struct pool *pool)
1778 {
1779 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1780 pool->ref_count++;
1781 }
1782
1783 static void __pool_dec(struct pool *pool)
1784 {
1785 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1786 BUG_ON(!pool->ref_count);
1787 if (!--pool->ref_count)
1788 __pool_destroy(pool);
1789 }
1790
1791 static struct pool *__pool_find(struct mapped_device *pool_md,
1792 struct block_device *metadata_dev,
1793 unsigned long block_size, char **error,
1794 int *created)
1795 {
1796 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1797
1798 if (pool) {
1799 if (pool->pool_md != pool_md)
1800 return ERR_PTR(-EBUSY);
1801 __pool_inc(pool);
1802
1803 } else {
1804 pool = __pool_table_lookup(pool_md);
1805 if (pool) {
1806 if (pool->md_dev != metadata_dev)
1807 return ERR_PTR(-EINVAL);
1808 __pool_inc(pool);
1809
1810 } else {
1811 pool = pool_create(pool_md, metadata_dev, block_size, error);
1812 *created = 1;
1813 }
1814 }
1815
1816 return pool;
1817 }
1818
1819 /*----------------------------------------------------------------
1820 * Pool target methods
1821 *--------------------------------------------------------------*/
1822 static void pool_dtr(struct dm_target *ti)
1823 {
1824 struct pool_c *pt = ti->private;
1825
1826 mutex_lock(&dm_thin_pool_table.mutex);
1827
1828 unbind_control_target(pt->pool, ti);
1829 __pool_dec(pt->pool);
1830 dm_put_device(ti, pt->metadata_dev);
1831 dm_put_device(ti, pt->data_dev);
1832 kfree(pt);
1833
1834 mutex_unlock(&dm_thin_pool_table.mutex);
1835 }
1836
1837 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1838 struct dm_target *ti)
1839 {
1840 int r;
1841 unsigned argc;
1842 const char *arg_name;
1843
1844 static struct dm_arg _args[] = {
1845 {0, 3, "Invalid number of pool feature arguments"},
1846 };
1847
1848 /*
1849 * No feature arguments supplied.
1850 */
1851 if (!as->argc)
1852 return 0;
1853
1854 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1855 if (r)
1856 return -EINVAL;
1857
1858 while (argc && !r) {
1859 arg_name = dm_shift_arg(as);
1860 argc--;
1861
1862 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1863 pf->zero_new_blocks = 0;
1864 continue;
1865 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1866 pf->discard_enabled = 0;
1867 continue;
1868 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1869 pf->discard_passdown = 0;
1870 continue;
1871 }
1872
1873 ti->error = "Unrecognised pool feature requested";
1874 r = -EINVAL;
1875 }
1876
1877 return r;
1878 }
1879
1880 /*
1881 * thin-pool <metadata dev> <data dev>
1882 * <data block size (sectors)>
1883 * <low water mark (blocks)>
1884 * [<#feature args> [<arg>]*]
1885 *
1886 * Optional feature arguments are:
1887 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1888 * ignore_discard: disable discard
1889 * no_discard_passdown: don't pass discards down to the data device
1890 */
1891 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1892 {
1893 int r, pool_created = 0;
1894 struct pool_c *pt;
1895 struct pool *pool;
1896 struct pool_features pf;
1897 struct dm_arg_set as;
1898 struct dm_dev *data_dev;
1899 unsigned long block_size;
1900 dm_block_t low_water_blocks;
1901 struct dm_dev *metadata_dev;
1902 sector_t metadata_dev_size;
1903 char b[BDEVNAME_SIZE];
1904
1905 /*
1906 * FIXME Remove validation from scope of lock.
1907 */
1908 mutex_lock(&dm_thin_pool_table.mutex);
1909
1910 if (argc < 4) {
1911 ti->error = "Invalid argument count";
1912 r = -EINVAL;
1913 goto out_unlock;
1914 }
1915 as.argc = argc;
1916 as.argv = argv;
1917
1918 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1919 if (r) {
1920 ti->error = "Error opening metadata block device";
1921 goto out_unlock;
1922 }
1923
1924 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1925 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1926 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1927 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1928
1929 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1930 if (r) {
1931 ti->error = "Error getting data device";
1932 goto out_metadata;
1933 }
1934
1935 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1936 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1937 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1938 !is_power_of_2(block_size)) {
1939 ti->error = "Invalid block size";
1940 r = -EINVAL;
1941 goto out;
1942 }
1943
1944 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1945 ti->error = "Invalid low water mark";
1946 r = -EINVAL;
1947 goto out;
1948 }
1949
1950 /*
1951 * Set default pool features.
1952 */
1953 pool_features_init(&pf);
1954
1955 dm_consume_args(&as, 4);
1956 r = parse_pool_features(&as, &pf, ti);
1957 if (r)
1958 goto out;
1959
1960 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1961 if (!pt) {
1962 r = -ENOMEM;
1963 goto out;
1964 }
1965
1966 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1967 block_size, &ti->error, &pool_created);
1968 if (IS_ERR(pool)) {
1969 r = PTR_ERR(pool);
1970 goto out_free_pt;
1971 }
1972
1973 /*
1974 * 'pool_created' reflects whether this is the first table load.
1975 * Top level discard support is not allowed to be changed after
1976 * initial load. This would require a pool reload to trigger thin
1977 * device changes.
1978 */
1979 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1980 ti->error = "Discard support cannot be disabled once enabled";
1981 r = -EINVAL;
1982 goto out_flags_changed;
1983 }
1984
1985 /*
1986 * If discard_passdown was enabled verify that the data device
1987 * supports discards. Disable discard_passdown if not; otherwise
1988 * -EOPNOTSUPP will be returned.
1989 */
1990 if (pf.discard_passdown) {
1991 struct request_queue *q = bdev_get_queue(data_dev->bdev);
1992 if (!q || !blk_queue_discard(q)) {
1993 DMWARN("Discard unsupported by data device: Disabling discard passdown.");
1994 pf.discard_passdown = 0;
1995 }
1996 }
1997
1998 pt->pool = pool;
1999 pt->ti = ti;
2000 pt->metadata_dev = metadata_dev;
2001 pt->data_dev = data_dev;
2002 pt->low_water_blocks = low_water_blocks;
2003 pt->pf = pf;
2004 ti->num_flush_requests = 1;
2005 /*
2006 * Only need to enable discards if the pool should pass
2007 * them down to the data device. The thin device's discard
2008 * processing will cause mappings to be removed from the btree.
2009 */
2010 if (pf.discard_enabled && pf.discard_passdown) {
2011 ti->num_discard_requests = 1;
2012 /*
2013 * Setting 'discards_supported' circumvents the normal
2014 * stacking of discard limits (this keeps the pool and
2015 * thin devices' discard limits consistent).
2016 */
2017 ti->discards_supported = 1;
2018 }
2019 ti->private = pt;
2020
2021 pt->callbacks.congested_fn = pool_is_congested;
2022 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2023
2024 mutex_unlock(&dm_thin_pool_table.mutex);
2025
2026 return 0;
2027
2028 out_flags_changed:
2029 __pool_dec(pool);
2030 out_free_pt:
2031 kfree(pt);
2032 out:
2033 dm_put_device(ti, data_dev);
2034 out_metadata:
2035 dm_put_device(ti, metadata_dev);
2036 out_unlock:
2037 mutex_unlock(&dm_thin_pool_table.mutex);
2038
2039 return r;
2040 }
2041
2042 static int pool_map(struct dm_target *ti, struct bio *bio,
2043 union map_info *map_context)
2044 {
2045 int r;
2046 struct pool_c *pt = ti->private;
2047 struct pool *pool = pt->pool;
2048 unsigned long flags;
2049
2050 /*
2051 * As this is a singleton target, ti->begin is always zero.
2052 */
2053 spin_lock_irqsave(&pool->lock, flags);
2054 bio->bi_bdev = pt->data_dev->bdev;
2055 r = DM_MAPIO_REMAPPED;
2056 spin_unlock_irqrestore(&pool->lock, flags);
2057
2058 return r;
2059 }
2060
2061 /*
2062 * Retrieves the number of blocks of the data device from
2063 * the superblock and compares it to the actual device size,
2064 * thus resizing the data device in case it has grown.
2065 *
2066 * This both copes with opening preallocated data devices in the ctr
2067 * being followed by a resume
2068 * -and-
2069 * calling the resume method individually after userspace has
2070 * grown the data device in reaction to a table event.
2071 */
2072 static int pool_preresume(struct dm_target *ti)
2073 {
2074 int r;
2075 struct pool_c *pt = ti->private;
2076 struct pool *pool = pt->pool;
2077 dm_block_t data_size, sb_data_size;
2078
2079 /*
2080 * Take control of the pool object.
2081 */
2082 r = bind_control_target(pool, ti);
2083 if (r)
2084 return r;
2085
2086 data_size = ti->len >> pool->block_shift;
2087 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2088 if (r) {
2089 DMERR("failed to retrieve data device size");
2090 return r;
2091 }
2092
2093 if (data_size < sb_data_size) {
2094 DMERR("pool target too small, is %llu blocks (expected %llu)",
2095 data_size, sb_data_size);
2096 return -EINVAL;
2097
2098 } else if (data_size > sb_data_size) {
2099 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2100 if (r) {
2101 DMERR("failed to resize data device");
2102 return r;
2103 }
2104
2105 r = dm_pool_commit_metadata(pool->pmd);
2106 if (r) {
2107 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2108 __func__, r);
2109 return r;
2110 }
2111 }
2112
2113 return 0;
2114 }
2115
2116 static void pool_resume(struct dm_target *ti)
2117 {
2118 struct pool_c *pt = ti->private;
2119 struct pool *pool = pt->pool;
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&pool->lock, flags);
2123 pool->low_water_triggered = 0;
2124 pool->no_free_space = 0;
2125 __requeue_bios(pool);
2126 spin_unlock_irqrestore(&pool->lock, flags);
2127
2128 do_waker(&pool->waker.work);
2129 }
2130
2131 static void pool_postsuspend(struct dm_target *ti)
2132 {
2133 int r;
2134 struct pool_c *pt = ti->private;
2135 struct pool *pool = pt->pool;
2136
2137 cancel_delayed_work(&pool->waker);
2138 flush_workqueue(pool->wq);
2139
2140 r = dm_pool_commit_metadata(pool->pmd);
2141 if (r < 0) {
2142 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2143 __func__, r);
2144 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2145 }
2146 }
2147
2148 static int check_arg_count(unsigned argc, unsigned args_required)
2149 {
2150 if (argc != args_required) {
2151 DMWARN("Message received with %u arguments instead of %u.",
2152 argc, args_required);
2153 return -EINVAL;
2154 }
2155
2156 return 0;
2157 }
2158
2159 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2160 {
2161 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2162 *dev_id <= MAX_DEV_ID)
2163 return 0;
2164
2165 if (warning)
2166 DMWARN("Message received with invalid device id: %s", arg);
2167
2168 return -EINVAL;
2169 }
2170
2171 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2172 {
2173 dm_thin_id dev_id;
2174 int r;
2175
2176 r = check_arg_count(argc, 2);
2177 if (r)
2178 return r;
2179
2180 r = read_dev_id(argv[1], &dev_id, 1);
2181 if (r)
2182 return r;
2183
2184 r = dm_pool_create_thin(pool->pmd, dev_id);
2185 if (r) {
2186 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2187 argv[1]);
2188 return r;
2189 }
2190
2191 return 0;
2192 }
2193
2194 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2195 {
2196 dm_thin_id dev_id;
2197 dm_thin_id origin_dev_id;
2198 int r;
2199
2200 r = check_arg_count(argc, 3);
2201 if (r)
2202 return r;
2203
2204 r = read_dev_id(argv[1], &dev_id, 1);
2205 if (r)
2206 return r;
2207
2208 r = read_dev_id(argv[2], &origin_dev_id, 1);
2209 if (r)
2210 return r;
2211
2212 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2213 if (r) {
2214 DMWARN("Creation of new snapshot %s of device %s failed.",
2215 argv[1], argv[2]);
2216 return r;
2217 }
2218
2219 return 0;
2220 }
2221
2222 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2223 {
2224 dm_thin_id dev_id;
2225 int r;
2226
2227 r = check_arg_count(argc, 2);
2228 if (r)
2229 return r;
2230
2231 r = read_dev_id(argv[1], &dev_id, 1);
2232 if (r)
2233 return r;
2234
2235 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2236 if (r)
2237 DMWARN("Deletion of thin device %s failed.", argv[1]);
2238
2239 return r;
2240 }
2241
2242 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2243 {
2244 dm_thin_id old_id, new_id;
2245 int r;
2246
2247 r = check_arg_count(argc, 3);
2248 if (r)
2249 return r;
2250
2251 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2252 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2253 return -EINVAL;
2254 }
2255
2256 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2257 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2258 return -EINVAL;
2259 }
2260
2261 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2262 if (r) {
2263 DMWARN("Failed to change transaction id from %s to %s.",
2264 argv[1], argv[2]);
2265 return r;
2266 }
2267
2268 return 0;
2269 }
2270
2271 /*
2272 * Messages supported:
2273 * create_thin <dev_id>
2274 * create_snap <dev_id> <origin_id>
2275 * delete <dev_id>
2276 * trim <dev_id> <new_size_in_sectors>
2277 * set_transaction_id <current_trans_id> <new_trans_id>
2278 */
2279 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2280 {
2281 int r = -EINVAL;
2282 struct pool_c *pt = ti->private;
2283 struct pool *pool = pt->pool;
2284
2285 if (!strcasecmp(argv[0], "create_thin"))
2286 r = process_create_thin_mesg(argc, argv, pool);
2287
2288 else if (!strcasecmp(argv[0], "create_snap"))
2289 r = process_create_snap_mesg(argc, argv, pool);
2290
2291 else if (!strcasecmp(argv[0], "delete"))
2292 r = process_delete_mesg(argc, argv, pool);
2293
2294 else if (!strcasecmp(argv[0], "set_transaction_id"))
2295 r = process_set_transaction_id_mesg(argc, argv, pool);
2296
2297 else
2298 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2299
2300 if (!r) {
2301 r = dm_pool_commit_metadata(pool->pmd);
2302 if (r)
2303 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2304 argv[0], r);
2305 }
2306
2307 return r;
2308 }
2309
2310 /*
2311 * Status line is:
2312 * <transaction id> <used metadata sectors>/<total metadata sectors>
2313 * <used data sectors>/<total data sectors> <held metadata root>
2314 */
2315 static int pool_status(struct dm_target *ti, status_type_t type,
2316 char *result, unsigned maxlen)
2317 {
2318 int r, count;
2319 unsigned sz = 0;
2320 uint64_t transaction_id;
2321 dm_block_t nr_free_blocks_data;
2322 dm_block_t nr_free_blocks_metadata;
2323 dm_block_t nr_blocks_data;
2324 dm_block_t nr_blocks_metadata;
2325 dm_block_t held_root;
2326 char buf[BDEVNAME_SIZE];
2327 char buf2[BDEVNAME_SIZE];
2328 struct pool_c *pt = ti->private;
2329 struct pool *pool = pt->pool;
2330
2331 switch (type) {
2332 case STATUSTYPE_INFO:
2333 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2334 &transaction_id);
2335 if (r)
2336 return r;
2337
2338 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2339 &nr_free_blocks_metadata);
2340 if (r)
2341 return r;
2342
2343 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2344 if (r)
2345 return r;
2346
2347 r = dm_pool_get_free_block_count(pool->pmd,
2348 &nr_free_blocks_data);
2349 if (r)
2350 return r;
2351
2352 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2353 if (r)
2354 return r;
2355
2356 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2357 if (r)
2358 return r;
2359
2360 DMEMIT("%llu %llu/%llu %llu/%llu ",
2361 (unsigned long long)transaction_id,
2362 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2363 (unsigned long long)nr_blocks_metadata,
2364 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2365 (unsigned long long)nr_blocks_data);
2366
2367 if (held_root)
2368 DMEMIT("%llu", held_root);
2369 else
2370 DMEMIT("-");
2371
2372 break;
2373
2374 case STATUSTYPE_TABLE:
2375 DMEMIT("%s %s %lu %llu ",
2376 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2377 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2378 (unsigned long)pool->sectors_per_block,
2379 (unsigned long long)pt->low_water_blocks);
2380
2381 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2382 !pool->pf.discard_passdown;
2383 DMEMIT("%u ", count);
2384
2385 if (!pool->pf.zero_new_blocks)
2386 DMEMIT("skip_block_zeroing ");
2387
2388 if (!pool->pf.discard_enabled)
2389 DMEMIT("ignore_discard ");
2390
2391 if (!pool->pf.discard_passdown)
2392 DMEMIT("no_discard_passdown ");
2393
2394 break;
2395 }
2396
2397 return 0;
2398 }
2399
2400 static int pool_iterate_devices(struct dm_target *ti,
2401 iterate_devices_callout_fn fn, void *data)
2402 {
2403 struct pool_c *pt = ti->private;
2404
2405 return fn(ti, pt->data_dev, 0, ti->len, data);
2406 }
2407
2408 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2409 struct bio_vec *biovec, int max_size)
2410 {
2411 struct pool_c *pt = ti->private;
2412 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2413
2414 if (!q->merge_bvec_fn)
2415 return max_size;
2416
2417 bvm->bi_bdev = pt->data_dev->bdev;
2418
2419 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2420 }
2421
2422 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2423 {
2424 /*
2425 * FIXME: these limits may be incompatible with the pool's data device
2426 */
2427 limits->max_discard_sectors = pool->sectors_per_block;
2428
2429 /*
2430 * This is just a hint, and not enforced. We have to cope with
2431 * bios that overlap 2 blocks.
2432 */
2433 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2434 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2435 }
2436
2437 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2438 {
2439 struct pool_c *pt = ti->private;
2440 struct pool *pool = pt->pool;
2441
2442 blk_limits_io_min(limits, 0);
2443 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2444 if (pool->pf.discard_enabled)
2445 set_discard_limits(pool, limits);
2446 }
2447
2448 static struct target_type pool_target = {
2449 .name = "thin-pool",
2450 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2451 DM_TARGET_IMMUTABLE,
2452 .version = {1, 1, 0},
2453 .module = THIS_MODULE,
2454 .ctr = pool_ctr,
2455 .dtr = pool_dtr,
2456 .map = pool_map,
2457 .postsuspend = pool_postsuspend,
2458 .preresume = pool_preresume,
2459 .resume = pool_resume,
2460 .message = pool_message,
2461 .status = pool_status,
2462 .merge = pool_merge,
2463 .iterate_devices = pool_iterate_devices,
2464 .io_hints = pool_io_hints,
2465 };
2466
2467 /*----------------------------------------------------------------
2468 * Thin target methods
2469 *--------------------------------------------------------------*/
2470 static void thin_dtr(struct dm_target *ti)
2471 {
2472 struct thin_c *tc = ti->private;
2473
2474 mutex_lock(&dm_thin_pool_table.mutex);
2475
2476 __pool_dec(tc->pool);
2477 dm_pool_close_thin_device(tc->td);
2478 dm_put_device(ti, tc->pool_dev);
2479 if (tc->origin_dev)
2480 dm_put_device(ti, tc->origin_dev);
2481 kfree(tc);
2482
2483 mutex_unlock(&dm_thin_pool_table.mutex);
2484 }
2485
2486 /*
2487 * Thin target parameters:
2488 *
2489 * <pool_dev> <dev_id> [origin_dev]
2490 *
2491 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2492 * dev_id: the internal device identifier
2493 * origin_dev: a device external to the pool that should act as the origin
2494 *
2495 * If the pool device has discards disabled, they get disabled for the thin
2496 * device as well.
2497 */
2498 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2499 {
2500 int r;
2501 struct thin_c *tc;
2502 struct dm_dev *pool_dev, *origin_dev;
2503 struct mapped_device *pool_md;
2504
2505 mutex_lock(&dm_thin_pool_table.mutex);
2506
2507 if (argc != 2 && argc != 3) {
2508 ti->error = "Invalid argument count";
2509 r = -EINVAL;
2510 goto out_unlock;
2511 }
2512
2513 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2514 if (!tc) {
2515 ti->error = "Out of memory";
2516 r = -ENOMEM;
2517 goto out_unlock;
2518 }
2519
2520 if (argc == 3) {
2521 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2522 if (r) {
2523 ti->error = "Error opening origin device";
2524 goto bad_origin_dev;
2525 }
2526 tc->origin_dev = origin_dev;
2527 }
2528
2529 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2530 if (r) {
2531 ti->error = "Error opening pool device";
2532 goto bad_pool_dev;
2533 }
2534 tc->pool_dev = pool_dev;
2535
2536 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2537 ti->error = "Invalid device id";
2538 r = -EINVAL;
2539 goto bad_common;
2540 }
2541
2542 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2543 if (!pool_md) {
2544 ti->error = "Couldn't get pool mapped device";
2545 r = -EINVAL;
2546 goto bad_common;
2547 }
2548
2549 tc->pool = __pool_table_lookup(pool_md);
2550 if (!tc->pool) {
2551 ti->error = "Couldn't find pool object";
2552 r = -EINVAL;
2553 goto bad_pool_lookup;
2554 }
2555 __pool_inc(tc->pool);
2556
2557 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2558 if (r) {
2559 ti->error = "Couldn't open thin internal device";
2560 goto bad_thin_open;
2561 }
2562
2563 ti->split_io = tc->pool->sectors_per_block;
2564 ti->num_flush_requests = 1;
2565
2566 /* In case the pool supports discards, pass them on. */
2567 if (tc->pool->pf.discard_enabled) {
2568 ti->discards_supported = 1;
2569 ti->num_discard_requests = 1;
2570 }
2571
2572 dm_put(pool_md);
2573
2574 mutex_unlock(&dm_thin_pool_table.mutex);
2575
2576 return 0;
2577
2578 bad_thin_open:
2579 __pool_dec(tc->pool);
2580 bad_pool_lookup:
2581 dm_put(pool_md);
2582 bad_common:
2583 dm_put_device(ti, tc->pool_dev);
2584 bad_pool_dev:
2585 if (tc->origin_dev)
2586 dm_put_device(ti, tc->origin_dev);
2587 bad_origin_dev:
2588 kfree(tc);
2589 out_unlock:
2590 mutex_unlock(&dm_thin_pool_table.mutex);
2591
2592 return r;
2593 }
2594
2595 static int thin_map(struct dm_target *ti, struct bio *bio,
2596 union map_info *map_context)
2597 {
2598 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2599
2600 return thin_bio_map(ti, bio, map_context);
2601 }
2602
2603 static int thin_endio(struct dm_target *ti,
2604 struct bio *bio, int err,
2605 union map_info *map_context)
2606 {
2607 unsigned long flags;
2608 struct endio_hook *h = map_context->ptr;
2609 struct list_head work;
2610 struct new_mapping *m, *tmp;
2611 struct pool *pool = h->tc->pool;
2612
2613 if (h->shared_read_entry) {
2614 INIT_LIST_HEAD(&work);
2615 ds_dec(h->shared_read_entry, &work);
2616
2617 spin_lock_irqsave(&pool->lock, flags);
2618 list_for_each_entry_safe(m, tmp, &work, list) {
2619 list_del(&m->list);
2620 m->quiesced = 1;
2621 __maybe_add_mapping(m);
2622 }
2623 spin_unlock_irqrestore(&pool->lock, flags);
2624 }
2625
2626 if (h->all_io_entry) {
2627 INIT_LIST_HEAD(&work);
2628 ds_dec(h->all_io_entry, &work);
2629 list_for_each_entry_safe(m, tmp, &work, list)
2630 list_add(&m->list, &pool->prepared_discards);
2631 }
2632
2633 mempool_free(h, pool->endio_hook_pool);
2634
2635 return 0;
2636 }
2637
2638 static void thin_postsuspend(struct dm_target *ti)
2639 {
2640 if (dm_noflush_suspending(ti))
2641 requeue_io((struct thin_c *)ti->private);
2642 }
2643
2644 /*
2645 * <nr mapped sectors> <highest mapped sector>
2646 */
2647 static int thin_status(struct dm_target *ti, status_type_t type,
2648 char *result, unsigned maxlen)
2649 {
2650 int r;
2651 ssize_t sz = 0;
2652 dm_block_t mapped, highest;
2653 char buf[BDEVNAME_SIZE];
2654 struct thin_c *tc = ti->private;
2655
2656 if (!tc->td)
2657 DMEMIT("-");
2658 else {
2659 switch (type) {
2660 case STATUSTYPE_INFO:
2661 r = dm_thin_get_mapped_count(tc->td, &mapped);
2662 if (r)
2663 return r;
2664
2665 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2666 if (r < 0)
2667 return r;
2668
2669 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2670 if (r)
2671 DMEMIT("%llu", ((highest + 1) *
2672 tc->pool->sectors_per_block) - 1);
2673 else
2674 DMEMIT("-");
2675 break;
2676
2677 case STATUSTYPE_TABLE:
2678 DMEMIT("%s %lu",
2679 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2680 (unsigned long) tc->dev_id);
2681 if (tc->origin_dev)
2682 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2683 break;
2684 }
2685 }
2686
2687 return 0;
2688 }
2689
2690 static int thin_iterate_devices(struct dm_target *ti,
2691 iterate_devices_callout_fn fn, void *data)
2692 {
2693 dm_block_t blocks;
2694 struct thin_c *tc = ti->private;
2695
2696 /*
2697 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2698 * we follow a more convoluted path through to the pool's target.
2699 */
2700 if (!tc->pool->ti)
2701 return 0; /* nothing is bound */
2702
2703 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2704 if (blocks)
2705 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2706
2707 return 0;
2708 }
2709
2710 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2711 {
2712 struct thin_c *tc = ti->private;
2713 struct pool *pool = tc->pool;
2714
2715 blk_limits_io_min(limits, 0);
2716 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2717 set_discard_limits(pool, limits);
2718 }
2719
2720 static struct target_type thin_target = {
2721 .name = "thin",
2722 .version = {1, 1, 0},
2723 .module = THIS_MODULE,
2724 .ctr = thin_ctr,
2725 .dtr = thin_dtr,
2726 .map = thin_map,
2727 .end_io = thin_endio,
2728 .postsuspend = thin_postsuspend,
2729 .status = thin_status,
2730 .iterate_devices = thin_iterate_devices,
2731 .io_hints = thin_io_hints,
2732 };
2733
2734 /*----------------------------------------------------------------*/
2735
2736 static int __init dm_thin_init(void)
2737 {
2738 int r;
2739
2740 pool_table_init();
2741
2742 r = dm_register_target(&thin_target);
2743 if (r)
2744 return r;
2745
2746 r = dm_register_target(&pool_target);
2747 if (r)
2748 dm_unregister_target(&thin_target);
2749
2750 return r;
2751 }
2752
2753 static void dm_thin_exit(void)
2754 {
2755 dm_unregister_target(&thin_target);
2756 dm_unregister_target(&pool_target);
2757 }
2758
2759 module_init(dm_thin_init);
2760 module_exit(dm_thin_exit);
2761
2762 MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target");
2763 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2764 MODULE_LICENSE("GPL");