]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-thin.c
Merge tag 'nfs-for-4.2-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205 };
206
207 struct pool_features {
208 enum pool_mode mode;
209
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
234
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238
239 struct dm_bio_prison *prison;
240 struct dm_kcopyd_client *copier;
241
242 struct workqueue_struct *wq;
243 struct throttle throttle;
244 struct work_struct worker;
245 struct delayed_work waker;
246 struct delayed_work no_space_timeout;
247
248 unsigned long last_commit_jiffies;
249 unsigned ref_count;
250
251 spinlock_t lock;
252 struct bio_list deferred_flush_bios;
253 struct list_head prepared_mappings;
254 struct list_head prepared_discards;
255 struct list_head active_thins;
256
257 struct dm_deferred_set *shared_read_ds;
258 struct dm_deferred_set *all_io_ds;
259
260 struct dm_thin_new_mapping *next_mapping;
261 mempool_t *mapping_pool;
262
263 process_bio_fn process_bio;
264 process_bio_fn process_discard;
265
266 process_cell_fn process_cell;
267 process_cell_fn process_discard_cell;
268
269 process_mapping_fn process_prepared_mapping;
270 process_mapping_fn process_prepared_discard;
271
272 struct dm_bio_prison_cell **cell_sort_array;
273 };
274
275 static enum pool_mode get_pool_mode(struct pool *pool);
276 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277
278 /*
279 * Target context for a pool.
280 */
281 struct pool_c {
282 struct dm_target *ti;
283 struct pool *pool;
284 struct dm_dev *data_dev;
285 struct dm_dev *metadata_dev;
286 struct dm_target_callbacks callbacks;
287
288 dm_block_t low_water_blocks;
289 struct pool_features requested_pf; /* Features requested during table load */
290 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
291 };
292
293 /*
294 * Target context for a thin.
295 */
296 struct thin_c {
297 struct list_head list;
298 struct dm_dev *pool_dev;
299 struct dm_dev *origin_dev;
300 sector_t origin_size;
301 dm_thin_id dev_id;
302
303 struct pool *pool;
304 struct dm_thin_device *td;
305 struct mapped_device *thin_md;
306
307 bool requeue_mode:1;
308 spinlock_t lock;
309 struct list_head deferred_cells;
310 struct bio_list deferred_bio_list;
311 struct bio_list retry_on_resume_list;
312 struct rb_root sort_bio_list; /* sorted list of deferred bios */
313
314 /*
315 * Ensures the thin is not destroyed until the worker has finished
316 * iterating the active_thins list.
317 */
318 atomic_t refcount;
319 struct completion can_destroy;
320 };
321
322 /*----------------------------------------------------------------*/
323
324 /**
325 * __blkdev_issue_discard_async - queue a discard with async completion
326 * @bdev: blockdev to issue discard for
327 * @sector: start sector
328 * @nr_sects: number of sectors to discard
329 * @gfp_mask: memory allocation flags (for bio_alloc)
330 * @flags: BLKDEV_IFL_* flags to control behaviour
331 * @parent_bio: parent discard bio that all sub discards get chained to
332 *
333 * Description:
334 * Asynchronously issue a discard request for the sectors in question.
335 * NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
336 * that is being kept local to DM thinp until the block changes to allow
337 * late bio splitting land upstream.
338 */
339 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
340 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
341 struct bio *parent_bio)
342 {
343 struct request_queue *q = bdev_get_queue(bdev);
344 int type = REQ_WRITE | REQ_DISCARD;
345 unsigned int max_discard_sectors, granularity;
346 int alignment;
347 struct bio *bio;
348 int ret = 0;
349 struct blk_plug plug;
350
351 if (!q)
352 return -ENXIO;
353
354 if (!blk_queue_discard(q))
355 return -EOPNOTSUPP;
356
357 /* Zero-sector (unknown) and one-sector granularities are the same. */
358 granularity = max(q->limits.discard_granularity >> 9, 1U);
359 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
360
361 /*
362 * Ensure that max_discard_sectors is of the proper
363 * granularity, so that requests stay aligned after a split.
364 */
365 max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
366 max_discard_sectors -= max_discard_sectors % granularity;
367 if (unlikely(!max_discard_sectors)) {
368 /* Avoid infinite loop below. Being cautious never hurts. */
369 return -EOPNOTSUPP;
370 }
371
372 if (flags & BLKDEV_DISCARD_SECURE) {
373 if (!blk_queue_secdiscard(q))
374 return -EOPNOTSUPP;
375 type |= REQ_SECURE;
376 }
377
378 blk_start_plug(&plug);
379 while (nr_sects) {
380 unsigned int req_sects;
381 sector_t end_sect, tmp;
382
383 /*
384 * Required bio_put occurs in bio_endio thanks to bio_chain below
385 */
386 bio = bio_alloc(gfp_mask, 1);
387 if (!bio) {
388 ret = -ENOMEM;
389 break;
390 }
391
392 req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
393
394 /*
395 * If splitting a request, and the next starting sector would be
396 * misaligned, stop the discard at the previous aligned sector.
397 */
398 end_sect = sector + req_sects;
399 tmp = end_sect;
400 if (req_sects < nr_sects &&
401 sector_div(tmp, granularity) != alignment) {
402 end_sect = end_sect - alignment;
403 sector_div(end_sect, granularity);
404 end_sect = end_sect * granularity + alignment;
405 req_sects = end_sect - sector;
406 }
407
408 bio_chain(bio, parent_bio);
409
410 bio->bi_iter.bi_sector = sector;
411 bio->bi_bdev = bdev;
412
413 bio->bi_iter.bi_size = req_sects << 9;
414 nr_sects -= req_sects;
415 sector = end_sect;
416
417 submit_bio(type, bio);
418
419 /*
420 * We can loop for a long time in here, if someone does
421 * full device discards (like mkfs). Be nice and allow
422 * us to schedule out to avoid softlocking if preempt
423 * is disabled.
424 */
425 cond_resched();
426 }
427 blk_finish_plug(&plug);
428
429 return ret;
430 }
431
432 static bool block_size_is_power_of_two(struct pool *pool)
433 {
434 return pool->sectors_per_block_shift >= 0;
435 }
436
437 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
438 {
439 return block_size_is_power_of_two(pool) ?
440 (b << pool->sectors_per_block_shift) :
441 (b * pool->sectors_per_block);
442 }
443
444 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
445 struct bio *parent_bio)
446 {
447 sector_t s = block_to_sectors(tc->pool, data_b);
448 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
449
450 return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
451 GFP_NOWAIT, 0, parent_bio);
452 }
453
454 /*----------------------------------------------------------------*/
455
456 /*
457 * wake_worker() is used when new work is queued and when pool_resume is
458 * ready to continue deferred IO processing.
459 */
460 static void wake_worker(struct pool *pool)
461 {
462 queue_work(pool->wq, &pool->worker);
463 }
464
465 /*----------------------------------------------------------------*/
466
467 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
468 struct dm_bio_prison_cell **cell_result)
469 {
470 int r;
471 struct dm_bio_prison_cell *cell_prealloc;
472
473 /*
474 * Allocate a cell from the prison's mempool.
475 * This might block but it can't fail.
476 */
477 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
478
479 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
480 if (r)
481 /*
482 * We reused an old cell; we can get rid of
483 * the new one.
484 */
485 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
486
487 return r;
488 }
489
490 static void cell_release(struct pool *pool,
491 struct dm_bio_prison_cell *cell,
492 struct bio_list *bios)
493 {
494 dm_cell_release(pool->prison, cell, bios);
495 dm_bio_prison_free_cell(pool->prison, cell);
496 }
497
498 static void cell_visit_release(struct pool *pool,
499 void (*fn)(void *, struct dm_bio_prison_cell *),
500 void *context,
501 struct dm_bio_prison_cell *cell)
502 {
503 dm_cell_visit_release(pool->prison, fn, context, cell);
504 dm_bio_prison_free_cell(pool->prison, cell);
505 }
506
507 static void cell_release_no_holder(struct pool *pool,
508 struct dm_bio_prison_cell *cell,
509 struct bio_list *bios)
510 {
511 dm_cell_release_no_holder(pool->prison, cell, bios);
512 dm_bio_prison_free_cell(pool->prison, cell);
513 }
514
515 static void cell_error_with_code(struct pool *pool,
516 struct dm_bio_prison_cell *cell, int error_code)
517 {
518 dm_cell_error(pool->prison, cell, error_code);
519 dm_bio_prison_free_cell(pool->prison, cell);
520 }
521
522 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
523 {
524 cell_error_with_code(pool, cell, -EIO);
525 }
526
527 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
528 {
529 cell_error_with_code(pool, cell, 0);
530 }
531
532 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
533 {
534 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
535 }
536
537 /*----------------------------------------------------------------*/
538
539 /*
540 * A global list of pools that uses a struct mapped_device as a key.
541 */
542 static struct dm_thin_pool_table {
543 struct mutex mutex;
544 struct list_head pools;
545 } dm_thin_pool_table;
546
547 static void pool_table_init(void)
548 {
549 mutex_init(&dm_thin_pool_table.mutex);
550 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
551 }
552
553 static void __pool_table_insert(struct pool *pool)
554 {
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 list_add(&pool->list, &dm_thin_pool_table.pools);
557 }
558
559 static void __pool_table_remove(struct pool *pool)
560 {
561 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
562 list_del(&pool->list);
563 }
564
565 static struct pool *__pool_table_lookup(struct mapped_device *md)
566 {
567 struct pool *pool = NULL, *tmp;
568
569 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 if (tmp->pool_md == md) {
573 pool = tmp;
574 break;
575 }
576 }
577
578 return pool;
579 }
580
581 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
582 {
583 struct pool *pool = NULL, *tmp;
584
585 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
586
587 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
588 if (tmp->md_dev == md_dev) {
589 pool = tmp;
590 break;
591 }
592 }
593
594 return pool;
595 }
596
597 /*----------------------------------------------------------------*/
598
599 struct dm_thin_endio_hook {
600 struct thin_c *tc;
601 struct dm_deferred_entry *shared_read_entry;
602 struct dm_deferred_entry *all_io_entry;
603 struct dm_thin_new_mapping *overwrite_mapping;
604 struct rb_node rb_node;
605 struct dm_bio_prison_cell *cell;
606 };
607
608 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
609 {
610 bio_list_merge(bios, master);
611 bio_list_init(master);
612 }
613
614 static void error_bio_list(struct bio_list *bios, int error)
615 {
616 struct bio *bio;
617
618 while ((bio = bio_list_pop(bios)))
619 bio_endio(bio, error);
620 }
621
622 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
623 {
624 struct bio_list bios;
625 unsigned long flags;
626
627 bio_list_init(&bios);
628
629 spin_lock_irqsave(&tc->lock, flags);
630 __merge_bio_list(&bios, master);
631 spin_unlock_irqrestore(&tc->lock, flags);
632
633 error_bio_list(&bios, error);
634 }
635
636 static void requeue_deferred_cells(struct thin_c *tc)
637 {
638 struct pool *pool = tc->pool;
639 unsigned long flags;
640 struct list_head cells;
641 struct dm_bio_prison_cell *cell, *tmp;
642
643 INIT_LIST_HEAD(&cells);
644
645 spin_lock_irqsave(&tc->lock, flags);
646 list_splice_init(&tc->deferred_cells, &cells);
647 spin_unlock_irqrestore(&tc->lock, flags);
648
649 list_for_each_entry_safe(cell, tmp, &cells, user_list)
650 cell_requeue(pool, cell);
651 }
652
653 static void requeue_io(struct thin_c *tc)
654 {
655 struct bio_list bios;
656 unsigned long flags;
657
658 bio_list_init(&bios);
659
660 spin_lock_irqsave(&tc->lock, flags);
661 __merge_bio_list(&bios, &tc->deferred_bio_list);
662 __merge_bio_list(&bios, &tc->retry_on_resume_list);
663 spin_unlock_irqrestore(&tc->lock, flags);
664
665 error_bio_list(&bios, DM_ENDIO_REQUEUE);
666 requeue_deferred_cells(tc);
667 }
668
669 static void error_retry_list(struct pool *pool)
670 {
671 struct thin_c *tc;
672
673 rcu_read_lock();
674 list_for_each_entry_rcu(tc, &pool->active_thins, list)
675 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
676 rcu_read_unlock();
677 }
678
679 /*
680 * This section of code contains the logic for processing a thin device's IO.
681 * Much of the code depends on pool object resources (lists, workqueues, etc)
682 * but most is exclusively called from the thin target rather than the thin-pool
683 * target.
684 */
685
686 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
687 {
688 struct pool *pool = tc->pool;
689 sector_t block_nr = bio->bi_iter.bi_sector;
690
691 if (block_size_is_power_of_two(pool))
692 block_nr >>= pool->sectors_per_block_shift;
693 else
694 (void) sector_div(block_nr, pool->sectors_per_block);
695
696 return block_nr;
697 }
698
699 /*
700 * Returns the _complete_ blocks that this bio covers.
701 */
702 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
703 dm_block_t *begin, dm_block_t *end)
704 {
705 struct pool *pool = tc->pool;
706 sector_t b = bio->bi_iter.bi_sector;
707 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
708
709 b += pool->sectors_per_block - 1ull; /* so we round up */
710
711 if (block_size_is_power_of_two(pool)) {
712 b >>= pool->sectors_per_block_shift;
713 e >>= pool->sectors_per_block_shift;
714 } else {
715 (void) sector_div(b, pool->sectors_per_block);
716 (void) sector_div(e, pool->sectors_per_block);
717 }
718
719 if (e < b)
720 /* Can happen if the bio is within a single block. */
721 e = b;
722
723 *begin = b;
724 *end = e;
725 }
726
727 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
728 {
729 struct pool *pool = tc->pool;
730 sector_t bi_sector = bio->bi_iter.bi_sector;
731
732 bio->bi_bdev = tc->pool_dev->bdev;
733 if (block_size_is_power_of_two(pool))
734 bio->bi_iter.bi_sector =
735 (block << pool->sectors_per_block_shift) |
736 (bi_sector & (pool->sectors_per_block - 1));
737 else
738 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
739 sector_div(bi_sector, pool->sectors_per_block);
740 }
741
742 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
743 {
744 bio->bi_bdev = tc->origin_dev->bdev;
745 }
746
747 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
748 {
749 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
750 dm_thin_changed_this_transaction(tc->td);
751 }
752
753 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
754 {
755 struct dm_thin_endio_hook *h;
756
757 if (bio->bi_rw & REQ_DISCARD)
758 return;
759
760 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
761 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
762 }
763
764 static void issue(struct thin_c *tc, struct bio *bio)
765 {
766 struct pool *pool = tc->pool;
767 unsigned long flags;
768
769 if (!bio_triggers_commit(tc, bio)) {
770 generic_make_request(bio);
771 return;
772 }
773
774 /*
775 * Complete bio with an error if earlier I/O caused changes to
776 * the metadata that can't be committed e.g, due to I/O errors
777 * on the metadata device.
778 */
779 if (dm_thin_aborted_changes(tc->td)) {
780 bio_io_error(bio);
781 return;
782 }
783
784 /*
785 * Batch together any bios that trigger commits and then issue a
786 * single commit for them in process_deferred_bios().
787 */
788 spin_lock_irqsave(&pool->lock, flags);
789 bio_list_add(&pool->deferred_flush_bios, bio);
790 spin_unlock_irqrestore(&pool->lock, flags);
791 }
792
793 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
794 {
795 remap_to_origin(tc, bio);
796 issue(tc, bio);
797 }
798
799 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
800 dm_block_t block)
801 {
802 remap(tc, bio, block);
803 issue(tc, bio);
804 }
805
806 /*----------------------------------------------------------------*/
807
808 /*
809 * Bio endio functions.
810 */
811 struct dm_thin_new_mapping {
812 struct list_head list;
813
814 bool pass_discard:1;
815 bool maybe_shared:1;
816
817 /*
818 * Track quiescing, copying and zeroing preparation actions. When this
819 * counter hits zero the block is prepared and can be inserted into the
820 * btree.
821 */
822 atomic_t prepare_actions;
823
824 int err;
825 struct thin_c *tc;
826 dm_block_t virt_begin, virt_end;
827 dm_block_t data_block;
828 struct dm_bio_prison_cell *cell;
829
830 /*
831 * If the bio covers the whole area of a block then we can avoid
832 * zeroing or copying. Instead this bio is hooked. The bio will
833 * still be in the cell, so care has to be taken to avoid issuing
834 * the bio twice.
835 */
836 struct bio *bio;
837 bio_end_io_t *saved_bi_end_io;
838 };
839
840 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842 struct pool *pool = m->tc->pool;
843
844 if (atomic_dec_and_test(&m->prepare_actions)) {
845 list_add_tail(&m->list, &pool->prepared_mappings);
846 wake_worker(pool);
847 }
848 }
849
850 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
851 {
852 unsigned long flags;
853 struct pool *pool = m->tc->pool;
854
855 spin_lock_irqsave(&pool->lock, flags);
856 __complete_mapping_preparation(m);
857 spin_unlock_irqrestore(&pool->lock, flags);
858 }
859
860 static void copy_complete(int read_err, unsigned long write_err, void *context)
861 {
862 struct dm_thin_new_mapping *m = context;
863
864 m->err = read_err || write_err ? -EIO : 0;
865 complete_mapping_preparation(m);
866 }
867
868 static void overwrite_endio(struct bio *bio, int err)
869 {
870 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
871 struct dm_thin_new_mapping *m = h->overwrite_mapping;
872
873 bio->bi_end_io = m->saved_bi_end_io;
874
875 m->err = err;
876 complete_mapping_preparation(m);
877 }
878
879 /*----------------------------------------------------------------*/
880
881 /*
882 * Workqueue.
883 */
884
885 /*
886 * Prepared mapping jobs.
887 */
888
889 /*
890 * This sends the bios in the cell, except the original holder, back
891 * to the deferred_bios list.
892 */
893 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
894 {
895 struct pool *pool = tc->pool;
896 unsigned long flags;
897
898 spin_lock_irqsave(&tc->lock, flags);
899 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
900 spin_unlock_irqrestore(&tc->lock, flags);
901
902 wake_worker(pool);
903 }
904
905 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
906
907 struct remap_info {
908 struct thin_c *tc;
909 struct bio_list defer_bios;
910 struct bio_list issue_bios;
911 };
912
913 static void __inc_remap_and_issue_cell(void *context,
914 struct dm_bio_prison_cell *cell)
915 {
916 struct remap_info *info = context;
917 struct bio *bio;
918
919 while ((bio = bio_list_pop(&cell->bios))) {
920 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
921 bio_list_add(&info->defer_bios, bio);
922 else {
923 inc_all_io_entry(info->tc->pool, bio);
924
925 /*
926 * We can't issue the bios with the bio prison lock
927 * held, so we add them to a list to issue on
928 * return from this function.
929 */
930 bio_list_add(&info->issue_bios, bio);
931 }
932 }
933 }
934
935 static void inc_remap_and_issue_cell(struct thin_c *tc,
936 struct dm_bio_prison_cell *cell,
937 dm_block_t block)
938 {
939 struct bio *bio;
940 struct remap_info info;
941
942 info.tc = tc;
943 bio_list_init(&info.defer_bios);
944 bio_list_init(&info.issue_bios);
945
946 /*
947 * We have to be careful to inc any bios we're about to issue
948 * before the cell is released, and avoid a race with new bios
949 * being added to the cell.
950 */
951 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
952 &info, cell);
953
954 while ((bio = bio_list_pop(&info.defer_bios)))
955 thin_defer_bio(tc, bio);
956
957 while ((bio = bio_list_pop(&info.issue_bios)))
958 remap_and_issue(info.tc, bio, block);
959 }
960
961 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
962 {
963 cell_error(m->tc->pool, m->cell);
964 list_del(&m->list);
965 mempool_free(m, m->tc->pool->mapping_pool);
966 }
967
968 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
969 {
970 struct thin_c *tc = m->tc;
971 struct pool *pool = tc->pool;
972 struct bio *bio = m->bio;
973 int r;
974
975 if (m->err) {
976 cell_error(pool, m->cell);
977 goto out;
978 }
979
980 /*
981 * Commit the prepared block into the mapping btree.
982 * Any I/O for this block arriving after this point will get
983 * remapped to it directly.
984 */
985 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
986 if (r) {
987 metadata_operation_failed(pool, "dm_thin_insert_block", r);
988 cell_error(pool, m->cell);
989 goto out;
990 }
991
992 /*
993 * Release any bios held while the block was being provisioned.
994 * If we are processing a write bio that completely covers the block,
995 * we already processed it so can ignore it now when processing
996 * the bios in the cell.
997 */
998 if (bio) {
999 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1000 bio_endio(bio, 0);
1001 } else {
1002 inc_all_io_entry(tc->pool, m->cell->holder);
1003 remap_and_issue(tc, m->cell->holder, m->data_block);
1004 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1005 }
1006
1007 out:
1008 list_del(&m->list);
1009 mempool_free(m, pool->mapping_pool);
1010 }
1011
1012 /*----------------------------------------------------------------*/
1013
1014 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1015 {
1016 struct thin_c *tc = m->tc;
1017 if (m->cell)
1018 cell_defer_no_holder(tc, m->cell);
1019 mempool_free(m, tc->pool->mapping_pool);
1020 }
1021
1022 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1023 {
1024 bio_io_error(m->bio);
1025 free_discard_mapping(m);
1026 }
1027
1028 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1029 {
1030 bio_endio(m->bio, 0);
1031 free_discard_mapping(m);
1032 }
1033
1034 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1035 {
1036 int r;
1037 struct thin_c *tc = m->tc;
1038
1039 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1040 if (r) {
1041 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1042 bio_io_error(m->bio);
1043 } else
1044 bio_endio(m->bio, 0);
1045
1046 cell_defer_no_holder(tc, m->cell);
1047 mempool_free(m, tc->pool->mapping_pool);
1048 }
1049
1050 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1051 {
1052 /*
1053 * We've already unmapped this range of blocks, but before we
1054 * passdown we have to check that these blocks are now unused.
1055 */
1056 int r;
1057 bool used = true;
1058 struct thin_c *tc = m->tc;
1059 struct pool *pool = tc->pool;
1060 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1061
1062 while (b != end) {
1063 /* find start of unmapped run */
1064 for (; b < end; b++) {
1065 r = dm_pool_block_is_used(pool->pmd, b, &used);
1066 if (r)
1067 return r;
1068
1069 if (!used)
1070 break;
1071 }
1072
1073 if (b == end)
1074 break;
1075
1076 /* find end of run */
1077 for (e = b + 1; e != end; e++) {
1078 r = dm_pool_block_is_used(pool->pmd, e, &used);
1079 if (r)
1080 return r;
1081
1082 if (used)
1083 break;
1084 }
1085
1086 r = issue_discard(tc, b, e, m->bio);
1087 if (r)
1088 return r;
1089
1090 b = e;
1091 }
1092
1093 return 0;
1094 }
1095
1096 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1097 {
1098 int r;
1099 struct thin_c *tc = m->tc;
1100 struct pool *pool = tc->pool;
1101
1102 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1103 if (r)
1104 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1105
1106 else if (m->maybe_shared)
1107 r = passdown_double_checking_shared_status(m);
1108 else
1109 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1110
1111 /*
1112 * Even if r is set, there could be sub discards in flight that we
1113 * need to wait for.
1114 */
1115 bio_endio(m->bio, r);
1116 cell_defer_no_holder(tc, m->cell);
1117 mempool_free(m, pool->mapping_pool);
1118 }
1119
1120 static void process_prepared(struct pool *pool, struct list_head *head,
1121 process_mapping_fn *fn)
1122 {
1123 unsigned long flags;
1124 struct list_head maps;
1125 struct dm_thin_new_mapping *m, *tmp;
1126
1127 INIT_LIST_HEAD(&maps);
1128 spin_lock_irqsave(&pool->lock, flags);
1129 list_splice_init(head, &maps);
1130 spin_unlock_irqrestore(&pool->lock, flags);
1131
1132 list_for_each_entry_safe(m, tmp, &maps, list)
1133 (*fn)(m);
1134 }
1135
1136 /*
1137 * Deferred bio jobs.
1138 */
1139 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1140 {
1141 return bio->bi_iter.bi_size ==
1142 (pool->sectors_per_block << SECTOR_SHIFT);
1143 }
1144
1145 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1146 {
1147 return (bio_data_dir(bio) == WRITE) &&
1148 io_overlaps_block(pool, bio);
1149 }
1150
1151 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1152 bio_end_io_t *fn)
1153 {
1154 *save = bio->bi_end_io;
1155 bio->bi_end_io = fn;
1156 }
1157
1158 static int ensure_next_mapping(struct pool *pool)
1159 {
1160 if (pool->next_mapping)
1161 return 0;
1162
1163 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1164
1165 return pool->next_mapping ? 0 : -ENOMEM;
1166 }
1167
1168 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1169 {
1170 struct dm_thin_new_mapping *m = pool->next_mapping;
1171
1172 BUG_ON(!pool->next_mapping);
1173
1174 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1175 INIT_LIST_HEAD(&m->list);
1176 m->bio = NULL;
1177
1178 pool->next_mapping = NULL;
1179
1180 return m;
1181 }
1182
1183 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1184 sector_t begin, sector_t end)
1185 {
1186 int r;
1187 struct dm_io_region to;
1188
1189 to.bdev = tc->pool_dev->bdev;
1190 to.sector = begin;
1191 to.count = end - begin;
1192
1193 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1194 if (r < 0) {
1195 DMERR_LIMIT("dm_kcopyd_zero() failed");
1196 copy_complete(1, 1, m);
1197 }
1198 }
1199
1200 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1201 dm_block_t data_begin,
1202 struct dm_thin_new_mapping *m)
1203 {
1204 struct pool *pool = tc->pool;
1205 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1206
1207 h->overwrite_mapping = m;
1208 m->bio = bio;
1209 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1210 inc_all_io_entry(pool, bio);
1211 remap_and_issue(tc, bio, data_begin);
1212 }
1213
1214 /*
1215 * A partial copy also needs to zero the uncopied region.
1216 */
1217 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1218 struct dm_dev *origin, dm_block_t data_origin,
1219 dm_block_t data_dest,
1220 struct dm_bio_prison_cell *cell, struct bio *bio,
1221 sector_t len)
1222 {
1223 int r;
1224 struct pool *pool = tc->pool;
1225 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1226
1227 m->tc = tc;
1228 m->virt_begin = virt_block;
1229 m->virt_end = virt_block + 1u;
1230 m->data_block = data_dest;
1231 m->cell = cell;
1232
1233 /*
1234 * quiesce action + copy action + an extra reference held for the
1235 * duration of this function (we may need to inc later for a
1236 * partial zero).
1237 */
1238 atomic_set(&m->prepare_actions, 3);
1239
1240 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1241 complete_mapping_preparation(m); /* already quiesced */
1242
1243 /*
1244 * IO to pool_dev remaps to the pool target's data_dev.
1245 *
1246 * If the whole block of data is being overwritten, we can issue the
1247 * bio immediately. Otherwise we use kcopyd to clone the data first.
1248 */
1249 if (io_overwrites_block(pool, bio))
1250 remap_and_issue_overwrite(tc, bio, data_dest, m);
1251 else {
1252 struct dm_io_region from, to;
1253
1254 from.bdev = origin->bdev;
1255 from.sector = data_origin * pool->sectors_per_block;
1256 from.count = len;
1257
1258 to.bdev = tc->pool_dev->bdev;
1259 to.sector = data_dest * pool->sectors_per_block;
1260 to.count = len;
1261
1262 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1263 0, copy_complete, m);
1264 if (r < 0) {
1265 DMERR_LIMIT("dm_kcopyd_copy() failed");
1266 copy_complete(1, 1, m);
1267
1268 /*
1269 * We allow the zero to be issued, to simplify the
1270 * error path. Otherwise we'd need to start
1271 * worrying about decrementing the prepare_actions
1272 * counter.
1273 */
1274 }
1275
1276 /*
1277 * Do we need to zero a tail region?
1278 */
1279 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1280 atomic_inc(&m->prepare_actions);
1281 ll_zero(tc, m,
1282 data_dest * pool->sectors_per_block + len,
1283 (data_dest + 1) * pool->sectors_per_block);
1284 }
1285 }
1286
1287 complete_mapping_preparation(m); /* drop our ref */
1288 }
1289
1290 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1291 dm_block_t data_origin, dm_block_t data_dest,
1292 struct dm_bio_prison_cell *cell, struct bio *bio)
1293 {
1294 schedule_copy(tc, virt_block, tc->pool_dev,
1295 data_origin, data_dest, cell, bio,
1296 tc->pool->sectors_per_block);
1297 }
1298
1299 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1300 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1301 struct bio *bio)
1302 {
1303 struct pool *pool = tc->pool;
1304 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1305
1306 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1307 m->tc = tc;
1308 m->virt_begin = virt_block;
1309 m->virt_end = virt_block + 1u;
1310 m->data_block = data_block;
1311 m->cell = cell;
1312
1313 /*
1314 * If the whole block of data is being overwritten or we are not
1315 * zeroing pre-existing data, we can issue the bio immediately.
1316 * Otherwise we use kcopyd to zero the data first.
1317 */
1318 if (pool->pf.zero_new_blocks) {
1319 if (io_overwrites_block(pool, bio))
1320 remap_and_issue_overwrite(tc, bio, data_block, m);
1321 else
1322 ll_zero(tc, m, data_block * pool->sectors_per_block,
1323 (data_block + 1) * pool->sectors_per_block);
1324 } else
1325 process_prepared_mapping(m);
1326 }
1327
1328 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1329 dm_block_t data_dest,
1330 struct dm_bio_prison_cell *cell, struct bio *bio)
1331 {
1332 struct pool *pool = tc->pool;
1333 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1334 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1335
1336 if (virt_block_end <= tc->origin_size)
1337 schedule_copy(tc, virt_block, tc->origin_dev,
1338 virt_block, data_dest, cell, bio,
1339 pool->sectors_per_block);
1340
1341 else if (virt_block_begin < tc->origin_size)
1342 schedule_copy(tc, virt_block, tc->origin_dev,
1343 virt_block, data_dest, cell, bio,
1344 tc->origin_size - virt_block_begin);
1345
1346 else
1347 schedule_zero(tc, virt_block, data_dest, cell, bio);
1348 }
1349
1350 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1351
1352 static void check_for_space(struct pool *pool)
1353 {
1354 int r;
1355 dm_block_t nr_free;
1356
1357 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1358 return;
1359
1360 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1361 if (r)
1362 return;
1363
1364 if (nr_free)
1365 set_pool_mode(pool, PM_WRITE);
1366 }
1367
1368 /*
1369 * A non-zero return indicates read_only or fail_io mode.
1370 * Many callers don't care about the return value.
1371 */
1372 static int commit(struct pool *pool)
1373 {
1374 int r;
1375
1376 if (get_pool_mode(pool) >= PM_READ_ONLY)
1377 return -EINVAL;
1378
1379 r = dm_pool_commit_metadata(pool->pmd);
1380 if (r)
1381 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1382 else
1383 check_for_space(pool);
1384
1385 return r;
1386 }
1387
1388 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1389 {
1390 unsigned long flags;
1391
1392 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1393 DMWARN("%s: reached low water mark for data device: sending event.",
1394 dm_device_name(pool->pool_md));
1395 spin_lock_irqsave(&pool->lock, flags);
1396 pool->low_water_triggered = true;
1397 spin_unlock_irqrestore(&pool->lock, flags);
1398 dm_table_event(pool->ti->table);
1399 }
1400 }
1401
1402 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1403 {
1404 int r;
1405 dm_block_t free_blocks;
1406 struct pool *pool = tc->pool;
1407
1408 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1409 return -EINVAL;
1410
1411 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1412 if (r) {
1413 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1414 return r;
1415 }
1416
1417 check_low_water_mark(pool, free_blocks);
1418
1419 if (!free_blocks) {
1420 /*
1421 * Try to commit to see if that will free up some
1422 * more space.
1423 */
1424 r = commit(pool);
1425 if (r)
1426 return r;
1427
1428 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1429 if (r) {
1430 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1431 return r;
1432 }
1433
1434 if (!free_blocks) {
1435 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1436 return -ENOSPC;
1437 }
1438 }
1439
1440 r = dm_pool_alloc_data_block(pool->pmd, result);
1441 if (r) {
1442 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1443 return r;
1444 }
1445
1446 return 0;
1447 }
1448
1449 /*
1450 * If we have run out of space, queue bios until the device is
1451 * resumed, presumably after having been reloaded with more space.
1452 */
1453 static void retry_on_resume(struct bio *bio)
1454 {
1455 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1456 struct thin_c *tc = h->tc;
1457 unsigned long flags;
1458
1459 spin_lock_irqsave(&tc->lock, flags);
1460 bio_list_add(&tc->retry_on_resume_list, bio);
1461 spin_unlock_irqrestore(&tc->lock, flags);
1462 }
1463
1464 static int should_error_unserviceable_bio(struct pool *pool)
1465 {
1466 enum pool_mode m = get_pool_mode(pool);
1467
1468 switch (m) {
1469 case PM_WRITE:
1470 /* Shouldn't get here */
1471 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1472 return -EIO;
1473
1474 case PM_OUT_OF_DATA_SPACE:
1475 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1476
1477 case PM_READ_ONLY:
1478 case PM_FAIL:
1479 return -EIO;
1480 default:
1481 /* Shouldn't get here */
1482 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1483 return -EIO;
1484 }
1485 }
1486
1487 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1488 {
1489 int error = should_error_unserviceable_bio(pool);
1490
1491 if (error)
1492 bio_endio(bio, error);
1493 else
1494 retry_on_resume(bio);
1495 }
1496
1497 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1498 {
1499 struct bio *bio;
1500 struct bio_list bios;
1501 int error;
1502
1503 error = should_error_unserviceable_bio(pool);
1504 if (error) {
1505 cell_error_with_code(pool, cell, error);
1506 return;
1507 }
1508
1509 bio_list_init(&bios);
1510 cell_release(pool, cell, &bios);
1511
1512 while ((bio = bio_list_pop(&bios)))
1513 retry_on_resume(bio);
1514 }
1515
1516 static void process_discard_cell_no_passdown(struct thin_c *tc,
1517 struct dm_bio_prison_cell *virt_cell)
1518 {
1519 struct pool *pool = tc->pool;
1520 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1521
1522 /*
1523 * We don't need to lock the data blocks, since there's no
1524 * passdown. We only lock data blocks for allocation and breaking sharing.
1525 */
1526 m->tc = tc;
1527 m->virt_begin = virt_cell->key.block_begin;
1528 m->virt_end = virt_cell->key.block_end;
1529 m->cell = virt_cell;
1530 m->bio = virt_cell->holder;
1531
1532 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1533 pool->process_prepared_discard(m);
1534 }
1535
1536 /*
1537 * FIXME: DM local hack to defer parent bios's end_io until we
1538 * _know_ all chained sub range discard bios have completed.
1539 * Will go away once late bio splitting lands upstream!
1540 */
1541 static inline void __bio_inc_remaining(struct bio *bio)
1542 {
1543 bio->bi_flags |= (1 << BIO_CHAIN);
1544 smp_mb__before_atomic();
1545 atomic_inc(&bio->__bi_remaining);
1546 }
1547
1548 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1549 struct bio *bio)
1550 {
1551 struct pool *pool = tc->pool;
1552
1553 int r;
1554 bool maybe_shared;
1555 struct dm_cell_key data_key;
1556 struct dm_bio_prison_cell *data_cell;
1557 struct dm_thin_new_mapping *m;
1558 dm_block_t virt_begin, virt_end, data_begin;
1559
1560 while (begin != end) {
1561 r = ensure_next_mapping(pool);
1562 if (r)
1563 /* we did our best */
1564 return;
1565
1566 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1567 &data_begin, &maybe_shared);
1568 if (r)
1569 /*
1570 * Silently fail, letting any mappings we've
1571 * created complete.
1572 */
1573 break;
1574
1575 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1576 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1577 /* contention, we'll give up with this range */
1578 begin = virt_end;
1579 continue;
1580 }
1581
1582 /*
1583 * IO may still be going to the destination block. We must
1584 * quiesce before we can do the removal.
1585 */
1586 m = get_next_mapping(pool);
1587 m->tc = tc;
1588 m->maybe_shared = maybe_shared;
1589 m->virt_begin = virt_begin;
1590 m->virt_end = virt_end;
1591 m->data_block = data_begin;
1592 m->cell = data_cell;
1593 m->bio = bio;
1594
1595 /*
1596 * The parent bio must not complete before sub discard bios are
1597 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1598 *
1599 * This per-mapping bi_remaining increment is paired with
1600 * the implicit decrement that occurs via bio_endio() in
1601 * process_prepared_discard_{passdown,no_passdown}.
1602 */
1603 __bio_inc_remaining(bio);
1604 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1605 pool->process_prepared_discard(m);
1606
1607 begin = virt_end;
1608 }
1609 }
1610
1611 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1612 {
1613 struct bio *bio = virt_cell->holder;
1614 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1615
1616 /*
1617 * The virt_cell will only get freed once the origin bio completes.
1618 * This means it will remain locked while all the individual
1619 * passdown bios are in flight.
1620 */
1621 h->cell = virt_cell;
1622 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1623
1624 /*
1625 * We complete the bio now, knowing that the bi_remaining field
1626 * will prevent completion until the sub range discards have
1627 * completed.
1628 */
1629 bio_endio(bio, 0);
1630 }
1631
1632 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1633 {
1634 dm_block_t begin, end;
1635 struct dm_cell_key virt_key;
1636 struct dm_bio_prison_cell *virt_cell;
1637
1638 get_bio_block_range(tc, bio, &begin, &end);
1639 if (begin == end) {
1640 /*
1641 * The discard covers less than a block.
1642 */
1643 bio_endio(bio, 0);
1644 return;
1645 }
1646
1647 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1648 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1649 /*
1650 * Potential starvation issue: We're relying on the
1651 * fs/application being well behaved, and not trying to
1652 * send IO to a region at the same time as discarding it.
1653 * If they do this persistently then it's possible this
1654 * cell will never be granted.
1655 */
1656 return;
1657
1658 tc->pool->process_discard_cell(tc, virt_cell);
1659 }
1660
1661 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1662 struct dm_cell_key *key,
1663 struct dm_thin_lookup_result *lookup_result,
1664 struct dm_bio_prison_cell *cell)
1665 {
1666 int r;
1667 dm_block_t data_block;
1668 struct pool *pool = tc->pool;
1669
1670 r = alloc_data_block(tc, &data_block);
1671 switch (r) {
1672 case 0:
1673 schedule_internal_copy(tc, block, lookup_result->block,
1674 data_block, cell, bio);
1675 break;
1676
1677 case -ENOSPC:
1678 retry_bios_on_resume(pool, cell);
1679 break;
1680
1681 default:
1682 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1683 __func__, r);
1684 cell_error(pool, cell);
1685 break;
1686 }
1687 }
1688
1689 static void __remap_and_issue_shared_cell(void *context,
1690 struct dm_bio_prison_cell *cell)
1691 {
1692 struct remap_info *info = context;
1693 struct bio *bio;
1694
1695 while ((bio = bio_list_pop(&cell->bios))) {
1696 if ((bio_data_dir(bio) == WRITE) ||
1697 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1698 bio_list_add(&info->defer_bios, bio);
1699 else {
1700 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1701
1702 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1703 inc_all_io_entry(info->tc->pool, bio);
1704 bio_list_add(&info->issue_bios, bio);
1705 }
1706 }
1707 }
1708
1709 static void remap_and_issue_shared_cell(struct thin_c *tc,
1710 struct dm_bio_prison_cell *cell,
1711 dm_block_t block)
1712 {
1713 struct bio *bio;
1714 struct remap_info info;
1715
1716 info.tc = tc;
1717 bio_list_init(&info.defer_bios);
1718 bio_list_init(&info.issue_bios);
1719
1720 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1721 &info, cell);
1722
1723 while ((bio = bio_list_pop(&info.defer_bios)))
1724 thin_defer_bio(tc, bio);
1725
1726 while ((bio = bio_list_pop(&info.issue_bios)))
1727 remap_and_issue(tc, bio, block);
1728 }
1729
1730 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1731 dm_block_t block,
1732 struct dm_thin_lookup_result *lookup_result,
1733 struct dm_bio_prison_cell *virt_cell)
1734 {
1735 struct dm_bio_prison_cell *data_cell;
1736 struct pool *pool = tc->pool;
1737 struct dm_cell_key key;
1738
1739 /*
1740 * If cell is already occupied, then sharing is already in the process
1741 * of being broken so we have nothing further to do here.
1742 */
1743 build_data_key(tc->td, lookup_result->block, &key);
1744 if (bio_detain(pool, &key, bio, &data_cell)) {
1745 cell_defer_no_holder(tc, virt_cell);
1746 return;
1747 }
1748
1749 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1750 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1751 cell_defer_no_holder(tc, virt_cell);
1752 } else {
1753 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1754
1755 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1756 inc_all_io_entry(pool, bio);
1757 remap_and_issue(tc, bio, lookup_result->block);
1758
1759 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1760 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1761 }
1762 }
1763
1764 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1765 struct dm_bio_prison_cell *cell)
1766 {
1767 int r;
1768 dm_block_t data_block;
1769 struct pool *pool = tc->pool;
1770
1771 /*
1772 * Remap empty bios (flushes) immediately, without provisioning.
1773 */
1774 if (!bio->bi_iter.bi_size) {
1775 inc_all_io_entry(pool, bio);
1776 cell_defer_no_holder(tc, cell);
1777
1778 remap_and_issue(tc, bio, 0);
1779 return;
1780 }
1781
1782 /*
1783 * Fill read bios with zeroes and complete them immediately.
1784 */
1785 if (bio_data_dir(bio) == READ) {
1786 zero_fill_bio(bio);
1787 cell_defer_no_holder(tc, cell);
1788 bio_endio(bio, 0);
1789 return;
1790 }
1791
1792 r = alloc_data_block(tc, &data_block);
1793 switch (r) {
1794 case 0:
1795 if (tc->origin_dev)
1796 schedule_external_copy(tc, block, data_block, cell, bio);
1797 else
1798 schedule_zero(tc, block, data_block, cell, bio);
1799 break;
1800
1801 case -ENOSPC:
1802 retry_bios_on_resume(pool, cell);
1803 break;
1804
1805 default:
1806 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1807 __func__, r);
1808 cell_error(pool, cell);
1809 break;
1810 }
1811 }
1812
1813 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1814 {
1815 int r;
1816 struct pool *pool = tc->pool;
1817 struct bio *bio = cell->holder;
1818 dm_block_t block = get_bio_block(tc, bio);
1819 struct dm_thin_lookup_result lookup_result;
1820
1821 if (tc->requeue_mode) {
1822 cell_requeue(pool, cell);
1823 return;
1824 }
1825
1826 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1827 switch (r) {
1828 case 0:
1829 if (lookup_result.shared)
1830 process_shared_bio(tc, bio, block, &lookup_result, cell);
1831 else {
1832 inc_all_io_entry(pool, bio);
1833 remap_and_issue(tc, bio, lookup_result.block);
1834 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1835 }
1836 break;
1837
1838 case -ENODATA:
1839 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1840 inc_all_io_entry(pool, bio);
1841 cell_defer_no_holder(tc, cell);
1842
1843 if (bio_end_sector(bio) <= tc->origin_size)
1844 remap_to_origin_and_issue(tc, bio);
1845
1846 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1847 zero_fill_bio(bio);
1848 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1849 remap_to_origin_and_issue(tc, bio);
1850
1851 } else {
1852 zero_fill_bio(bio);
1853 bio_endio(bio, 0);
1854 }
1855 } else
1856 provision_block(tc, bio, block, cell);
1857 break;
1858
1859 default:
1860 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1861 __func__, r);
1862 cell_defer_no_holder(tc, cell);
1863 bio_io_error(bio);
1864 break;
1865 }
1866 }
1867
1868 static void process_bio(struct thin_c *tc, struct bio *bio)
1869 {
1870 struct pool *pool = tc->pool;
1871 dm_block_t block = get_bio_block(tc, bio);
1872 struct dm_bio_prison_cell *cell;
1873 struct dm_cell_key key;
1874
1875 /*
1876 * If cell is already occupied, then the block is already
1877 * being provisioned so we have nothing further to do here.
1878 */
1879 build_virtual_key(tc->td, block, &key);
1880 if (bio_detain(pool, &key, bio, &cell))
1881 return;
1882
1883 process_cell(tc, cell);
1884 }
1885
1886 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1887 struct dm_bio_prison_cell *cell)
1888 {
1889 int r;
1890 int rw = bio_data_dir(bio);
1891 dm_block_t block = get_bio_block(tc, bio);
1892 struct dm_thin_lookup_result lookup_result;
1893
1894 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1895 switch (r) {
1896 case 0:
1897 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1898 handle_unserviceable_bio(tc->pool, bio);
1899 if (cell)
1900 cell_defer_no_holder(tc, cell);
1901 } else {
1902 inc_all_io_entry(tc->pool, bio);
1903 remap_and_issue(tc, bio, lookup_result.block);
1904 if (cell)
1905 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1906 }
1907 break;
1908
1909 case -ENODATA:
1910 if (cell)
1911 cell_defer_no_holder(tc, cell);
1912 if (rw != READ) {
1913 handle_unserviceable_bio(tc->pool, bio);
1914 break;
1915 }
1916
1917 if (tc->origin_dev) {
1918 inc_all_io_entry(tc->pool, bio);
1919 remap_to_origin_and_issue(tc, bio);
1920 break;
1921 }
1922
1923 zero_fill_bio(bio);
1924 bio_endio(bio, 0);
1925 break;
1926
1927 default:
1928 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1929 __func__, r);
1930 if (cell)
1931 cell_defer_no_holder(tc, cell);
1932 bio_io_error(bio);
1933 break;
1934 }
1935 }
1936
1937 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1938 {
1939 __process_bio_read_only(tc, bio, NULL);
1940 }
1941
1942 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943 {
1944 __process_bio_read_only(tc, cell->holder, cell);
1945 }
1946
1947 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1948 {
1949 bio_endio(bio, 0);
1950 }
1951
1952 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1953 {
1954 bio_io_error(bio);
1955 }
1956
1957 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1958 {
1959 cell_success(tc->pool, cell);
1960 }
1961
1962 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963 {
1964 cell_error(tc->pool, cell);
1965 }
1966
1967 /*
1968 * FIXME: should we also commit due to size of transaction, measured in
1969 * metadata blocks?
1970 */
1971 static int need_commit_due_to_time(struct pool *pool)
1972 {
1973 return !time_in_range(jiffies, pool->last_commit_jiffies,
1974 pool->last_commit_jiffies + COMMIT_PERIOD);
1975 }
1976
1977 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1978 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1979
1980 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1981 {
1982 struct rb_node **rbp, *parent;
1983 struct dm_thin_endio_hook *pbd;
1984 sector_t bi_sector = bio->bi_iter.bi_sector;
1985
1986 rbp = &tc->sort_bio_list.rb_node;
1987 parent = NULL;
1988 while (*rbp) {
1989 parent = *rbp;
1990 pbd = thin_pbd(parent);
1991
1992 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1993 rbp = &(*rbp)->rb_left;
1994 else
1995 rbp = &(*rbp)->rb_right;
1996 }
1997
1998 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1999 rb_link_node(&pbd->rb_node, parent, rbp);
2000 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2001 }
2002
2003 static void __extract_sorted_bios(struct thin_c *tc)
2004 {
2005 struct rb_node *node;
2006 struct dm_thin_endio_hook *pbd;
2007 struct bio *bio;
2008
2009 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2010 pbd = thin_pbd(node);
2011 bio = thin_bio(pbd);
2012
2013 bio_list_add(&tc->deferred_bio_list, bio);
2014 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2015 }
2016
2017 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2018 }
2019
2020 static void __sort_thin_deferred_bios(struct thin_c *tc)
2021 {
2022 struct bio *bio;
2023 struct bio_list bios;
2024
2025 bio_list_init(&bios);
2026 bio_list_merge(&bios, &tc->deferred_bio_list);
2027 bio_list_init(&tc->deferred_bio_list);
2028
2029 /* Sort deferred_bio_list using rb-tree */
2030 while ((bio = bio_list_pop(&bios)))
2031 __thin_bio_rb_add(tc, bio);
2032
2033 /*
2034 * Transfer the sorted bios in sort_bio_list back to
2035 * deferred_bio_list to allow lockless submission of
2036 * all bios.
2037 */
2038 __extract_sorted_bios(tc);
2039 }
2040
2041 static void process_thin_deferred_bios(struct thin_c *tc)
2042 {
2043 struct pool *pool = tc->pool;
2044 unsigned long flags;
2045 struct bio *bio;
2046 struct bio_list bios;
2047 struct blk_plug plug;
2048 unsigned count = 0;
2049
2050 if (tc->requeue_mode) {
2051 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2052 return;
2053 }
2054
2055 bio_list_init(&bios);
2056
2057 spin_lock_irqsave(&tc->lock, flags);
2058
2059 if (bio_list_empty(&tc->deferred_bio_list)) {
2060 spin_unlock_irqrestore(&tc->lock, flags);
2061 return;
2062 }
2063
2064 __sort_thin_deferred_bios(tc);
2065
2066 bio_list_merge(&bios, &tc->deferred_bio_list);
2067 bio_list_init(&tc->deferred_bio_list);
2068
2069 spin_unlock_irqrestore(&tc->lock, flags);
2070
2071 blk_start_plug(&plug);
2072 while ((bio = bio_list_pop(&bios))) {
2073 /*
2074 * If we've got no free new_mapping structs, and processing
2075 * this bio might require one, we pause until there are some
2076 * prepared mappings to process.
2077 */
2078 if (ensure_next_mapping(pool)) {
2079 spin_lock_irqsave(&tc->lock, flags);
2080 bio_list_add(&tc->deferred_bio_list, bio);
2081 bio_list_merge(&tc->deferred_bio_list, &bios);
2082 spin_unlock_irqrestore(&tc->lock, flags);
2083 break;
2084 }
2085
2086 if (bio->bi_rw & REQ_DISCARD)
2087 pool->process_discard(tc, bio);
2088 else
2089 pool->process_bio(tc, bio);
2090
2091 if ((count++ & 127) == 0) {
2092 throttle_work_update(&pool->throttle);
2093 dm_pool_issue_prefetches(pool->pmd);
2094 }
2095 }
2096 blk_finish_plug(&plug);
2097 }
2098
2099 static int cmp_cells(const void *lhs, const void *rhs)
2100 {
2101 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2102 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2103
2104 BUG_ON(!lhs_cell->holder);
2105 BUG_ON(!rhs_cell->holder);
2106
2107 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2108 return -1;
2109
2110 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2111 return 1;
2112
2113 return 0;
2114 }
2115
2116 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2117 {
2118 unsigned count = 0;
2119 struct dm_bio_prison_cell *cell, *tmp;
2120
2121 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2122 if (count >= CELL_SORT_ARRAY_SIZE)
2123 break;
2124
2125 pool->cell_sort_array[count++] = cell;
2126 list_del(&cell->user_list);
2127 }
2128
2129 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2130
2131 return count;
2132 }
2133
2134 static void process_thin_deferred_cells(struct thin_c *tc)
2135 {
2136 struct pool *pool = tc->pool;
2137 unsigned long flags;
2138 struct list_head cells;
2139 struct dm_bio_prison_cell *cell;
2140 unsigned i, j, count;
2141
2142 INIT_LIST_HEAD(&cells);
2143
2144 spin_lock_irqsave(&tc->lock, flags);
2145 list_splice_init(&tc->deferred_cells, &cells);
2146 spin_unlock_irqrestore(&tc->lock, flags);
2147
2148 if (list_empty(&cells))
2149 return;
2150
2151 do {
2152 count = sort_cells(tc->pool, &cells);
2153
2154 for (i = 0; i < count; i++) {
2155 cell = pool->cell_sort_array[i];
2156 BUG_ON(!cell->holder);
2157
2158 /*
2159 * If we've got no free new_mapping structs, and processing
2160 * this bio might require one, we pause until there are some
2161 * prepared mappings to process.
2162 */
2163 if (ensure_next_mapping(pool)) {
2164 for (j = i; j < count; j++)
2165 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2166
2167 spin_lock_irqsave(&tc->lock, flags);
2168 list_splice(&cells, &tc->deferred_cells);
2169 spin_unlock_irqrestore(&tc->lock, flags);
2170 return;
2171 }
2172
2173 if (cell->holder->bi_rw & REQ_DISCARD)
2174 pool->process_discard_cell(tc, cell);
2175 else
2176 pool->process_cell(tc, cell);
2177 }
2178 } while (!list_empty(&cells));
2179 }
2180
2181 static void thin_get(struct thin_c *tc);
2182 static void thin_put(struct thin_c *tc);
2183
2184 /*
2185 * We can't hold rcu_read_lock() around code that can block. So we
2186 * find a thin with the rcu lock held; bump a refcount; then drop
2187 * the lock.
2188 */
2189 static struct thin_c *get_first_thin(struct pool *pool)
2190 {
2191 struct thin_c *tc = NULL;
2192
2193 rcu_read_lock();
2194 if (!list_empty(&pool->active_thins)) {
2195 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2196 thin_get(tc);
2197 }
2198 rcu_read_unlock();
2199
2200 return tc;
2201 }
2202
2203 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2204 {
2205 struct thin_c *old_tc = tc;
2206
2207 rcu_read_lock();
2208 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2209 thin_get(tc);
2210 thin_put(old_tc);
2211 rcu_read_unlock();
2212 return tc;
2213 }
2214 thin_put(old_tc);
2215 rcu_read_unlock();
2216
2217 return NULL;
2218 }
2219
2220 static void process_deferred_bios(struct pool *pool)
2221 {
2222 unsigned long flags;
2223 struct bio *bio;
2224 struct bio_list bios;
2225 struct thin_c *tc;
2226
2227 tc = get_first_thin(pool);
2228 while (tc) {
2229 process_thin_deferred_cells(tc);
2230 process_thin_deferred_bios(tc);
2231 tc = get_next_thin(pool, tc);
2232 }
2233
2234 /*
2235 * If there are any deferred flush bios, we must commit
2236 * the metadata before issuing them.
2237 */
2238 bio_list_init(&bios);
2239 spin_lock_irqsave(&pool->lock, flags);
2240 bio_list_merge(&bios, &pool->deferred_flush_bios);
2241 bio_list_init(&pool->deferred_flush_bios);
2242 spin_unlock_irqrestore(&pool->lock, flags);
2243
2244 if (bio_list_empty(&bios) &&
2245 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2246 return;
2247
2248 if (commit(pool)) {
2249 while ((bio = bio_list_pop(&bios)))
2250 bio_io_error(bio);
2251 return;
2252 }
2253 pool->last_commit_jiffies = jiffies;
2254
2255 while ((bio = bio_list_pop(&bios)))
2256 generic_make_request(bio);
2257 }
2258
2259 static void do_worker(struct work_struct *ws)
2260 {
2261 struct pool *pool = container_of(ws, struct pool, worker);
2262
2263 throttle_work_start(&pool->throttle);
2264 dm_pool_issue_prefetches(pool->pmd);
2265 throttle_work_update(&pool->throttle);
2266 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2267 throttle_work_update(&pool->throttle);
2268 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2269 throttle_work_update(&pool->throttle);
2270 process_deferred_bios(pool);
2271 throttle_work_complete(&pool->throttle);
2272 }
2273
2274 /*
2275 * We want to commit periodically so that not too much
2276 * unwritten data builds up.
2277 */
2278 static void do_waker(struct work_struct *ws)
2279 {
2280 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2281 wake_worker(pool);
2282 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2283 }
2284
2285 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2286
2287 /*
2288 * We're holding onto IO to allow userland time to react. After the
2289 * timeout either the pool will have been resized (and thus back in
2290 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2291 */
2292 static void do_no_space_timeout(struct work_struct *ws)
2293 {
2294 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2295 no_space_timeout);
2296
2297 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2298 pool->pf.error_if_no_space = true;
2299 notify_of_pool_mode_change_to_oods(pool);
2300 error_retry_list(pool);
2301 }
2302 }
2303
2304 /*----------------------------------------------------------------*/
2305
2306 struct pool_work {
2307 struct work_struct worker;
2308 struct completion complete;
2309 };
2310
2311 static struct pool_work *to_pool_work(struct work_struct *ws)
2312 {
2313 return container_of(ws, struct pool_work, worker);
2314 }
2315
2316 static void pool_work_complete(struct pool_work *pw)
2317 {
2318 complete(&pw->complete);
2319 }
2320
2321 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2322 void (*fn)(struct work_struct *))
2323 {
2324 INIT_WORK_ONSTACK(&pw->worker, fn);
2325 init_completion(&pw->complete);
2326 queue_work(pool->wq, &pw->worker);
2327 wait_for_completion(&pw->complete);
2328 }
2329
2330 /*----------------------------------------------------------------*/
2331
2332 struct noflush_work {
2333 struct pool_work pw;
2334 struct thin_c *tc;
2335 };
2336
2337 static struct noflush_work *to_noflush(struct work_struct *ws)
2338 {
2339 return container_of(to_pool_work(ws), struct noflush_work, pw);
2340 }
2341
2342 static void do_noflush_start(struct work_struct *ws)
2343 {
2344 struct noflush_work *w = to_noflush(ws);
2345 w->tc->requeue_mode = true;
2346 requeue_io(w->tc);
2347 pool_work_complete(&w->pw);
2348 }
2349
2350 static void do_noflush_stop(struct work_struct *ws)
2351 {
2352 struct noflush_work *w = to_noflush(ws);
2353 w->tc->requeue_mode = false;
2354 pool_work_complete(&w->pw);
2355 }
2356
2357 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2358 {
2359 struct noflush_work w;
2360
2361 w.tc = tc;
2362 pool_work_wait(&w.pw, tc->pool, fn);
2363 }
2364
2365 /*----------------------------------------------------------------*/
2366
2367 static enum pool_mode get_pool_mode(struct pool *pool)
2368 {
2369 return pool->pf.mode;
2370 }
2371
2372 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2373 {
2374 dm_table_event(pool->ti->table);
2375 DMINFO("%s: switching pool to %s mode",
2376 dm_device_name(pool->pool_md), new_mode);
2377 }
2378
2379 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2380 {
2381 if (!pool->pf.error_if_no_space)
2382 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2383 else
2384 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2385 }
2386
2387 static bool passdown_enabled(struct pool_c *pt)
2388 {
2389 return pt->adjusted_pf.discard_passdown;
2390 }
2391
2392 static void set_discard_callbacks(struct pool *pool)
2393 {
2394 struct pool_c *pt = pool->ti->private;
2395
2396 if (passdown_enabled(pt)) {
2397 pool->process_discard_cell = process_discard_cell_passdown;
2398 pool->process_prepared_discard = process_prepared_discard_passdown;
2399 } else {
2400 pool->process_discard_cell = process_discard_cell_no_passdown;
2401 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2402 }
2403 }
2404
2405 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2406 {
2407 struct pool_c *pt = pool->ti->private;
2408 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2409 enum pool_mode old_mode = get_pool_mode(pool);
2410 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2411
2412 /*
2413 * Never allow the pool to transition to PM_WRITE mode if user
2414 * intervention is required to verify metadata and data consistency.
2415 */
2416 if (new_mode == PM_WRITE && needs_check) {
2417 DMERR("%s: unable to switch pool to write mode until repaired.",
2418 dm_device_name(pool->pool_md));
2419 if (old_mode != new_mode)
2420 new_mode = old_mode;
2421 else
2422 new_mode = PM_READ_ONLY;
2423 }
2424 /*
2425 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2426 * not going to recover without a thin_repair. So we never let the
2427 * pool move out of the old mode.
2428 */
2429 if (old_mode == PM_FAIL)
2430 new_mode = old_mode;
2431
2432 switch (new_mode) {
2433 case PM_FAIL:
2434 if (old_mode != new_mode)
2435 notify_of_pool_mode_change(pool, "failure");
2436 dm_pool_metadata_read_only(pool->pmd);
2437 pool->process_bio = process_bio_fail;
2438 pool->process_discard = process_bio_fail;
2439 pool->process_cell = process_cell_fail;
2440 pool->process_discard_cell = process_cell_fail;
2441 pool->process_prepared_mapping = process_prepared_mapping_fail;
2442 pool->process_prepared_discard = process_prepared_discard_fail;
2443
2444 error_retry_list(pool);
2445 break;
2446
2447 case PM_READ_ONLY:
2448 if (old_mode != new_mode)
2449 notify_of_pool_mode_change(pool, "read-only");
2450 dm_pool_metadata_read_only(pool->pmd);
2451 pool->process_bio = process_bio_read_only;
2452 pool->process_discard = process_bio_success;
2453 pool->process_cell = process_cell_read_only;
2454 pool->process_discard_cell = process_cell_success;
2455 pool->process_prepared_mapping = process_prepared_mapping_fail;
2456 pool->process_prepared_discard = process_prepared_discard_success;
2457
2458 error_retry_list(pool);
2459 break;
2460
2461 case PM_OUT_OF_DATA_SPACE:
2462 /*
2463 * Ideally we'd never hit this state; the low water mark
2464 * would trigger userland to extend the pool before we
2465 * completely run out of data space. However, many small
2466 * IOs to unprovisioned space can consume data space at an
2467 * alarming rate. Adjust your low water mark if you're
2468 * frequently seeing this mode.
2469 */
2470 if (old_mode != new_mode)
2471 notify_of_pool_mode_change_to_oods(pool);
2472 pool->process_bio = process_bio_read_only;
2473 pool->process_discard = process_discard_bio;
2474 pool->process_cell = process_cell_read_only;
2475 pool->process_prepared_mapping = process_prepared_mapping;
2476 set_discard_callbacks(pool);
2477
2478 if (!pool->pf.error_if_no_space && no_space_timeout)
2479 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2480 break;
2481
2482 case PM_WRITE:
2483 if (old_mode != new_mode)
2484 notify_of_pool_mode_change(pool, "write");
2485 dm_pool_metadata_read_write(pool->pmd);
2486 pool->process_bio = process_bio;
2487 pool->process_discard = process_discard_bio;
2488 pool->process_cell = process_cell;
2489 pool->process_prepared_mapping = process_prepared_mapping;
2490 set_discard_callbacks(pool);
2491 break;
2492 }
2493
2494 pool->pf.mode = new_mode;
2495 /*
2496 * The pool mode may have changed, sync it so bind_control_target()
2497 * doesn't cause an unexpected mode transition on resume.
2498 */
2499 pt->adjusted_pf.mode = new_mode;
2500 }
2501
2502 static void abort_transaction(struct pool *pool)
2503 {
2504 const char *dev_name = dm_device_name(pool->pool_md);
2505
2506 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2507 if (dm_pool_abort_metadata(pool->pmd)) {
2508 DMERR("%s: failed to abort metadata transaction", dev_name);
2509 set_pool_mode(pool, PM_FAIL);
2510 }
2511
2512 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2513 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2514 set_pool_mode(pool, PM_FAIL);
2515 }
2516 }
2517
2518 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2519 {
2520 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2521 dm_device_name(pool->pool_md), op, r);
2522
2523 abort_transaction(pool);
2524 set_pool_mode(pool, PM_READ_ONLY);
2525 }
2526
2527 /*----------------------------------------------------------------*/
2528
2529 /*
2530 * Mapping functions.
2531 */
2532
2533 /*
2534 * Called only while mapping a thin bio to hand it over to the workqueue.
2535 */
2536 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2537 {
2538 unsigned long flags;
2539 struct pool *pool = tc->pool;
2540
2541 spin_lock_irqsave(&tc->lock, flags);
2542 bio_list_add(&tc->deferred_bio_list, bio);
2543 spin_unlock_irqrestore(&tc->lock, flags);
2544
2545 wake_worker(pool);
2546 }
2547
2548 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2549 {
2550 struct pool *pool = tc->pool;
2551
2552 throttle_lock(&pool->throttle);
2553 thin_defer_bio(tc, bio);
2554 throttle_unlock(&pool->throttle);
2555 }
2556
2557 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2558 {
2559 unsigned long flags;
2560 struct pool *pool = tc->pool;
2561
2562 throttle_lock(&pool->throttle);
2563 spin_lock_irqsave(&tc->lock, flags);
2564 list_add_tail(&cell->user_list, &tc->deferred_cells);
2565 spin_unlock_irqrestore(&tc->lock, flags);
2566 throttle_unlock(&pool->throttle);
2567
2568 wake_worker(pool);
2569 }
2570
2571 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2572 {
2573 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2574
2575 h->tc = tc;
2576 h->shared_read_entry = NULL;
2577 h->all_io_entry = NULL;
2578 h->overwrite_mapping = NULL;
2579 h->cell = NULL;
2580 }
2581
2582 /*
2583 * Non-blocking function called from the thin target's map function.
2584 */
2585 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2586 {
2587 int r;
2588 struct thin_c *tc = ti->private;
2589 dm_block_t block = get_bio_block(tc, bio);
2590 struct dm_thin_device *td = tc->td;
2591 struct dm_thin_lookup_result result;
2592 struct dm_bio_prison_cell *virt_cell, *data_cell;
2593 struct dm_cell_key key;
2594
2595 thin_hook_bio(tc, bio);
2596
2597 if (tc->requeue_mode) {
2598 bio_endio(bio, DM_ENDIO_REQUEUE);
2599 return DM_MAPIO_SUBMITTED;
2600 }
2601
2602 if (get_pool_mode(tc->pool) == PM_FAIL) {
2603 bio_io_error(bio);
2604 return DM_MAPIO_SUBMITTED;
2605 }
2606
2607 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2608 thin_defer_bio_with_throttle(tc, bio);
2609 return DM_MAPIO_SUBMITTED;
2610 }
2611
2612 /*
2613 * We must hold the virtual cell before doing the lookup, otherwise
2614 * there's a race with discard.
2615 */
2616 build_virtual_key(tc->td, block, &key);
2617 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2618 return DM_MAPIO_SUBMITTED;
2619
2620 r = dm_thin_find_block(td, block, 0, &result);
2621
2622 /*
2623 * Note that we defer readahead too.
2624 */
2625 switch (r) {
2626 case 0:
2627 if (unlikely(result.shared)) {
2628 /*
2629 * We have a race condition here between the
2630 * result.shared value returned by the lookup and
2631 * snapshot creation, which may cause new
2632 * sharing.
2633 *
2634 * To avoid this always quiesce the origin before
2635 * taking the snap. You want to do this anyway to
2636 * ensure a consistent application view
2637 * (i.e. lockfs).
2638 *
2639 * More distant ancestors are irrelevant. The
2640 * shared flag will be set in their case.
2641 */
2642 thin_defer_cell(tc, virt_cell);
2643 return DM_MAPIO_SUBMITTED;
2644 }
2645
2646 build_data_key(tc->td, result.block, &key);
2647 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2648 cell_defer_no_holder(tc, virt_cell);
2649 return DM_MAPIO_SUBMITTED;
2650 }
2651
2652 inc_all_io_entry(tc->pool, bio);
2653 cell_defer_no_holder(tc, data_cell);
2654 cell_defer_no_holder(tc, virt_cell);
2655
2656 remap(tc, bio, result.block);
2657 return DM_MAPIO_REMAPPED;
2658
2659 case -ENODATA:
2660 case -EWOULDBLOCK:
2661 thin_defer_cell(tc, virt_cell);
2662 return DM_MAPIO_SUBMITTED;
2663
2664 default:
2665 /*
2666 * Must always call bio_io_error on failure.
2667 * dm_thin_find_block can fail with -EINVAL if the
2668 * pool is switched to fail-io mode.
2669 */
2670 bio_io_error(bio);
2671 cell_defer_no_holder(tc, virt_cell);
2672 return DM_MAPIO_SUBMITTED;
2673 }
2674 }
2675
2676 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2677 {
2678 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2679 struct request_queue *q;
2680
2681 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2682 return 1;
2683
2684 q = bdev_get_queue(pt->data_dev->bdev);
2685 return bdi_congested(&q->backing_dev_info, bdi_bits);
2686 }
2687
2688 static void requeue_bios(struct pool *pool)
2689 {
2690 unsigned long flags;
2691 struct thin_c *tc;
2692
2693 rcu_read_lock();
2694 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2695 spin_lock_irqsave(&tc->lock, flags);
2696 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2697 bio_list_init(&tc->retry_on_resume_list);
2698 spin_unlock_irqrestore(&tc->lock, flags);
2699 }
2700 rcu_read_unlock();
2701 }
2702
2703 /*----------------------------------------------------------------
2704 * Binding of control targets to a pool object
2705 *--------------------------------------------------------------*/
2706 static bool data_dev_supports_discard(struct pool_c *pt)
2707 {
2708 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2709
2710 return q && blk_queue_discard(q);
2711 }
2712
2713 static bool is_factor(sector_t block_size, uint32_t n)
2714 {
2715 return !sector_div(block_size, n);
2716 }
2717
2718 /*
2719 * If discard_passdown was enabled verify that the data device
2720 * supports discards. Disable discard_passdown if not.
2721 */
2722 static void disable_passdown_if_not_supported(struct pool_c *pt)
2723 {
2724 struct pool *pool = pt->pool;
2725 struct block_device *data_bdev = pt->data_dev->bdev;
2726 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2727 const char *reason = NULL;
2728 char buf[BDEVNAME_SIZE];
2729
2730 if (!pt->adjusted_pf.discard_passdown)
2731 return;
2732
2733 if (!data_dev_supports_discard(pt))
2734 reason = "discard unsupported";
2735
2736 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2737 reason = "max discard sectors smaller than a block";
2738
2739 if (reason) {
2740 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2741 pt->adjusted_pf.discard_passdown = false;
2742 }
2743 }
2744
2745 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2746 {
2747 struct pool_c *pt = ti->private;
2748
2749 /*
2750 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2751 */
2752 enum pool_mode old_mode = get_pool_mode(pool);
2753 enum pool_mode new_mode = pt->adjusted_pf.mode;
2754
2755 /*
2756 * Don't change the pool's mode until set_pool_mode() below.
2757 * Otherwise the pool's process_* function pointers may
2758 * not match the desired pool mode.
2759 */
2760 pt->adjusted_pf.mode = old_mode;
2761
2762 pool->ti = ti;
2763 pool->pf = pt->adjusted_pf;
2764 pool->low_water_blocks = pt->low_water_blocks;
2765
2766 set_pool_mode(pool, new_mode);
2767
2768 return 0;
2769 }
2770
2771 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2772 {
2773 if (pool->ti == ti)
2774 pool->ti = NULL;
2775 }
2776
2777 /*----------------------------------------------------------------
2778 * Pool creation
2779 *--------------------------------------------------------------*/
2780 /* Initialize pool features. */
2781 static void pool_features_init(struct pool_features *pf)
2782 {
2783 pf->mode = PM_WRITE;
2784 pf->zero_new_blocks = true;
2785 pf->discard_enabled = true;
2786 pf->discard_passdown = true;
2787 pf->error_if_no_space = false;
2788 }
2789
2790 static void __pool_destroy(struct pool *pool)
2791 {
2792 __pool_table_remove(pool);
2793
2794 vfree(pool->cell_sort_array);
2795 if (dm_pool_metadata_close(pool->pmd) < 0)
2796 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2797
2798 dm_bio_prison_destroy(pool->prison);
2799 dm_kcopyd_client_destroy(pool->copier);
2800
2801 if (pool->wq)
2802 destroy_workqueue(pool->wq);
2803
2804 if (pool->next_mapping)
2805 mempool_free(pool->next_mapping, pool->mapping_pool);
2806 mempool_destroy(pool->mapping_pool);
2807 dm_deferred_set_destroy(pool->shared_read_ds);
2808 dm_deferred_set_destroy(pool->all_io_ds);
2809 kfree(pool);
2810 }
2811
2812 static struct kmem_cache *_new_mapping_cache;
2813
2814 static struct pool *pool_create(struct mapped_device *pool_md,
2815 struct block_device *metadata_dev,
2816 unsigned long block_size,
2817 int read_only, char **error)
2818 {
2819 int r;
2820 void *err_p;
2821 struct pool *pool;
2822 struct dm_pool_metadata *pmd;
2823 bool format_device = read_only ? false : true;
2824
2825 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2826 if (IS_ERR(pmd)) {
2827 *error = "Error creating metadata object";
2828 return (struct pool *)pmd;
2829 }
2830
2831 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2832 if (!pool) {
2833 *error = "Error allocating memory for pool";
2834 err_p = ERR_PTR(-ENOMEM);
2835 goto bad_pool;
2836 }
2837
2838 pool->pmd = pmd;
2839 pool->sectors_per_block = block_size;
2840 if (block_size & (block_size - 1))
2841 pool->sectors_per_block_shift = -1;
2842 else
2843 pool->sectors_per_block_shift = __ffs(block_size);
2844 pool->low_water_blocks = 0;
2845 pool_features_init(&pool->pf);
2846 pool->prison = dm_bio_prison_create();
2847 if (!pool->prison) {
2848 *error = "Error creating pool's bio prison";
2849 err_p = ERR_PTR(-ENOMEM);
2850 goto bad_prison;
2851 }
2852
2853 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2854 if (IS_ERR(pool->copier)) {
2855 r = PTR_ERR(pool->copier);
2856 *error = "Error creating pool's kcopyd client";
2857 err_p = ERR_PTR(r);
2858 goto bad_kcopyd_client;
2859 }
2860
2861 /*
2862 * Create singlethreaded workqueue that will service all devices
2863 * that use this metadata.
2864 */
2865 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2866 if (!pool->wq) {
2867 *error = "Error creating pool's workqueue";
2868 err_p = ERR_PTR(-ENOMEM);
2869 goto bad_wq;
2870 }
2871
2872 throttle_init(&pool->throttle);
2873 INIT_WORK(&pool->worker, do_worker);
2874 INIT_DELAYED_WORK(&pool->waker, do_waker);
2875 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2876 spin_lock_init(&pool->lock);
2877 bio_list_init(&pool->deferred_flush_bios);
2878 INIT_LIST_HEAD(&pool->prepared_mappings);
2879 INIT_LIST_HEAD(&pool->prepared_discards);
2880 INIT_LIST_HEAD(&pool->active_thins);
2881 pool->low_water_triggered = false;
2882 pool->suspended = true;
2883
2884 pool->shared_read_ds = dm_deferred_set_create();
2885 if (!pool->shared_read_ds) {
2886 *error = "Error creating pool's shared read deferred set";
2887 err_p = ERR_PTR(-ENOMEM);
2888 goto bad_shared_read_ds;
2889 }
2890
2891 pool->all_io_ds = dm_deferred_set_create();
2892 if (!pool->all_io_ds) {
2893 *error = "Error creating pool's all io deferred set";
2894 err_p = ERR_PTR(-ENOMEM);
2895 goto bad_all_io_ds;
2896 }
2897
2898 pool->next_mapping = NULL;
2899 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2900 _new_mapping_cache);
2901 if (!pool->mapping_pool) {
2902 *error = "Error creating pool's mapping mempool";
2903 err_p = ERR_PTR(-ENOMEM);
2904 goto bad_mapping_pool;
2905 }
2906
2907 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2908 if (!pool->cell_sort_array) {
2909 *error = "Error allocating cell sort array";
2910 err_p = ERR_PTR(-ENOMEM);
2911 goto bad_sort_array;
2912 }
2913
2914 pool->ref_count = 1;
2915 pool->last_commit_jiffies = jiffies;
2916 pool->pool_md = pool_md;
2917 pool->md_dev = metadata_dev;
2918 __pool_table_insert(pool);
2919
2920 return pool;
2921
2922 bad_sort_array:
2923 mempool_destroy(pool->mapping_pool);
2924 bad_mapping_pool:
2925 dm_deferred_set_destroy(pool->all_io_ds);
2926 bad_all_io_ds:
2927 dm_deferred_set_destroy(pool->shared_read_ds);
2928 bad_shared_read_ds:
2929 destroy_workqueue(pool->wq);
2930 bad_wq:
2931 dm_kcopyd_client_destroy(pool->copier);
2932 bad_kcopyd_client:
2933 dm_bio_prison_destroy(pool->prison);
2934 bad_prison:
2935 kfree(pool);
2936 bad_pool:
2937 if (dm_pool_metadata_close(pmd))
2938 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2939
2940 return err_p;
2941 }
2942
2943 static void __pool_inc(struct pool *pool)
2944 {
2945 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2946 pool->ref_count++;
2947 }
2948
2949 static void __pool_dec(struct pool *pool)
2950 {
2951 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2952 BUG_ON(!pool->ref_count);
2953 if (!--pool->ref_count)
2954 __pool_destroy(pool);
2955 }
2956
2957 static struct pool *__pool_find(struct mapped_device *pool_md,
2958 struct block_device *metadata_dev,
2959 unsigned long block_size, int read_only,
2960 char **error, int *created)
2961 {
2962 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2963
2964 if (pool) {
2965 if (pool->pool_md != pool_md) {
2966 *error = "metadata device already in use by a pool";
2967 return ERR_PTR(-EBUSY);
2968 }
2969 __pool_inc(pool);
2970
2971 } else {
2972 pool = __pool_table_lookup(pool_md);
2973 if (pool) {
2974 if (pool->md_dev != metadata_dev) {
2975 *error = "different pool cannot replace a pool";
2976 return ERR_PTR(-EINVAL);
2977 }
2978 __pool_inc(pool);
2979
2980 } else {
2981 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2982 *created = 1;
2983 }
2984 }
2985
2986 return pool;
2987 }
2988
2989 /*----------------------------------------------------------------
2990 * Pool target methods
2991 *--------------------------------------------------------------*/
2992 static void pool_dtr(struct dm_target *ti)
2993 {
2994 struct pool_c *pt = ti->private;
2995
2996 mutex_lock(&dm_thin_pool_table.mutex);
2997
2998 unbind_control_target(pt->pool, ti);
2999 __pool_dec(pt->pool);
3000 dm_put_device(ti, pt->metadata_dev);
3001 dm_put_device(ti, pt->data_dev);
3002 kfree(pt);
3003
3004 mutex_unlock(&dm_thin_pool_table.mutex);
3005 }
3006
3007 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3008 struct dm_target *ti)
3009 {
3010 int r;
3011 unsigned argc;
3012 const char *arg_name;
3013
3014 static struct dm_arg _args[] = {
3015 {0, 4, "Invalid number of pool feature arguments"},
3016 };
3017
3018 /*
3019 * No feature arguments supplied.
3020 */
3021 if (!as->argc)
3022 return 0;
3023
3024 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3025 if (r)
3026 return -EINVAL;
3027
3028 while (argc && !r) {
3029 arg_name = dm_shift_arg(as);
3030 argc--;
3031
3032 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3033 pf->zero_new_blocks = false;
3034
3035 else if (!strcasecmp(arg_name, "ignore_discard"))
3036 pf->discard_enabled = false;
3037
3038 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3039 pf->discard_passdown = false;
3040
3041 else if (!strcasecmp(arg_name, "read_only"))
3042 pf->mode = PM_READ_ONLY;
3043
3044 else if (!strcasecmp(arg_name, "error_if_no_space"))
3045 pf->error_if_no_space = true;
3046
3047 else {
3048 ti->error = "Unrecognised pool feature requested";
3049 r = -EINVAL;
3050 break;
3051 }
3052 }
3053
3054 return r;
3055 }
3056
3057 static void metadata_low_callback(void *context)
3058 {
3059 struct pool *pool = context;
3060
3061 DMWARN("%s: reached low water mark for metadata device: sending event.",
3062 dm_device_name(pool->pool_md));
3063
3064 dm_table_event(pool->ti->table);
3065 }
3066
3067 static sector_t get_dev_size(struct block_device *bdev)
3068 {
3069 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3070 }
3071
3072 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3073 {
3074 sector_t metadata_dev_size = get_dev_size(bdev);
3075 char buffer[BDEVNAME_SIZE];
3076
3077 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3078 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3079 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3080 }
3081
3082 static sector_t get_metadata_dev_size(struct block_device *bdev)
3083 {
3084 sector_t metadata_dev_size = get_dev_size(bdev);
3085
3086 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3087 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3088
3089 return metadata_dev_size;
3090 }
3091
3092 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3093 {
3094 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3095
3096 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3097
3098 return metadata_dev_size;
3099 }
3100
3101 /*
3102 * When a metadata threshold is crossed a dm event is triggered, and
3103 * userland should respond by growing the metadata device. We could let
3104 * userland set the threshold, like we do with the data threshold, but I'm
3105 * not sure they know enough to do this well.
3106 */
3107 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3108 {
3109 /*
3110 * 4M is ample for all ops with the possible exception of thin
3111 * device deletion which is harmless if it fails (just retry the
3112 * delete after you've grown the device).
3113 */
3114 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3115 return min((dm_block_t)1024ULL /* 4M */, quarter);
3116 }
3117
3118 /*
3119 * thin-pool <metadata dev> <data dev>
3120 * <data block size (sectors)>
3121 * <low water mark (blocks)>
3122 * [<#feature args> [<arg>]*]
3123 *
3124 * Optional feature arguments are:
3125 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3126 * ignore_discard: disable discard
3127 * no_discard_passdown: don't pass discards down to the data device
3128 * read_only: Don't allow any changes to be made to the pool metadata.
3129 * error_if_no_space: error IOs, instead of queueing, if no space.
3130 */
3131 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3132 {
3133 int r, pool_created = 0;
3134 struct pool_c *pt;
3135 struct pool *pool;
3136 struct pool_features pf;
3137 struct dm_arg_set as;
3138 struct dm_dev *data_dev;
3139 unsigned long block_size;
3140 dm_block_t low_water_blocks;
3141 struct dm_dev *metadata_dev;
3142 fmode_t metadata_mode;
3143
3144 /*
3145 * FIXME Remove validation from scope of lock.
3146 */
3147 mutex_lock(&dm_thin_pool_table.mutex);
3148
3149 if (argc < 4) {
3150 ti->error = "Invalid argument count";
3151 r = -EINVAL;
3152 goto out_unlock;
3153 }
3154
3155 as.argc = argc;
3156 as.argv = argv;
3157
3158 /*
3159 * Set default pool features.
3160 */
3161 pool_features_init(&pf);
3162
3163 dm_consume_args(&as, 4);
3164 r = parse_pool_features(&as, &pf, ti);
3165 if (r)
3166 goto out_unlock;
3167
3168 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3169 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3170 if (r) {
3171 ti->error = "Error opening metadata block device";
3172 goto out_unlock;
3173 }
3174 warn_if_metadata_device_too_big(metadata_dev->bdev);
3175
3176 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3177 if (r) {
3178 ti->error = "Error getting data device";
3179 goto out_metadata;
3180 }
3181
3182 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3183 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3184 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3185 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3186 ti->error = "Invalid block size";
3187 r = -EINVAL;
3188 goto out;
3189 }
3190
3191 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3192 ti->error = "Invalid low water mark";
3193 r = -EINVAL;
3194 goto out;
3195 }
3196
3197 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3198 if (!pt) {
3199 r = -ENOMEM;
3200 goto out;
3201 }
3202
3203 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3204 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3205 if (IS_ERR(pool)) {
3206 r = PTR_ERR(pool);
3207 goto out_free_pt;
3208 }
3209
3210 /*
3211 * 'pool_created' reflects whether this is the first table load.
3212 * Top level discard support is not allowed to be changed after
3213 * initial load. This would require a pool reload to trigger thin
3214 * device changes.
3215 */
3216 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3217 ti->error = "Discard support cannot be disabled once enabled";
3218 r = -EINVAL;
3219 goto out_flags_changed;
3220 }
3221
3222 pt->pool = pool;
3223 pt->ti = ti;
3224 pt->metadata_dev = metadata_dev;
3225 pt->data_dev = data_dev;
3226 pt->low_water_blocks = low_water_blocks;
3227 pt->adjusted_pf = pt->requested_pf = pf;
3228 ti->num_flush_bios = 1;
3229
3230 /*
3231 * Only need to enable discards if the pool should pass
3232 * them down to the data device. The thin device's discard
3233 * processing will cause mappings to be removed from the btree.
3234 */
3235 ti->discard_zeroes_data_unsupported = true;
3236 if (pf.discard_enabled && pf.discard_passdown) {
3237 ti->num_discard_bios = 1;
3238
3239 /*
3240 * Setting 'discards_supported' circumvents the normal
3241 * stacking of discard limits (this keeps the pool and
3242 * thin devices' discard limits consistent).
3243 */
3244 ti->discards_supported = true;
3245 }
3246 ti->private = pt;
3247
3248 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3249 calc_metadata_threshold(pt),
3250 metadata_low_callback,
3251 pool);
3252 if (r)
3253 goto out_free_pt;
3254
3255 pt->callbacks.congested_fn = pool_is_congested;
3256 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3257
3258 mutex_unlock(&dm_thin_pool_table.mutex);
3259
3260 return 0;
3261
3262 out_flags_changed:
3263 __pool_dec(pool);
3264 out_free_pt:
3265 kfree(pt);
3266 out:
3267 dm_put_device(ti, data_dev);
3268 out_metadata:
3269 dm_put_device(ti, metadata_dev);
3270 out_unlock:
3271 mutex_unlock(&dm_thin_pool_table.mutex);
3272
3273 return r;
3274 }
3275
3276 static int pool_map(struct dm_target *ti, struct bio *bio)
3277 {
3278 int r;
3279 struct pool_c *pt = ti->private;
3280 struct pool *pool = pt->pool;
3281 unsigned long flags;
3282
3283 /*
3284 * As this is a singleton target, ti->begin is always zero.
3285 */
3286 spin_lock_irqsave(&pool->lock, flags);
3287 bio->bi_bdev = pt->data_dev->bdev;
3288 r = DM_MAPIO_REMAPPED;
3289 spin_unlock_irqrestore(&pool->lock, flags);
3290
3291 return r;
3292 }
3293
3294 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3295 {
3296 int r;
3297 struct pool_c *pt = ti->private;
3298 struct pool *pool = pt->pool;
3299 sector_t data_size = ti->len;
3300 dm_block_t sb_data_size;
3301
3302 *need_commit = false;
3303
3304 (void) sector_div(data_size, pool->sectors_per_block);
3305
3306 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3307 if (r) {
3308 DMERR("%s: failed to retrieve data device size",
3309 dm_device_name(pool->pool_md));
3310 return r;
3311 }
3312
3313 if (data_size < sb_data_size) {
3314 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3315 dm_device_name(pool->pool_md),
3316 (unsigned long long)data_size, sb_data_size);
3317 return -EINVAL;
3318
3319 } else if (data_size > sb_data_size) {
3320 if (dm_pool_metadata_needs_check(pool->pmd)) {
3321 DMERR("%s: unable to grow the data device until repaired.",
3322 dm_device_name(pool->pool_md));
3323 return 0;
3324 }
3325
3326 if (sb_data_size)
3327 DMINFO("%s: growing the data device from %llu to %llu blocks",
3328 dm_device_name(pool->pool_md),
3329 sb_data_size, (unsigned long long)data_size);
3330 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3331 if (r) {
3332 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3333 return r;
3334 }
3335
3336 *need_commit = true;
3337 }
3338
3339 return 0;
3340 }
3341
3342 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3343 {
3344 int r;
3345 struct pool_c *pt = ti->private;
3346 struct pool *pool = pt->pool;
3347 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3348
3349 *need_commit = false;
3350
3351 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3352
3353 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3354 if (r) {
3355 DMERR("%s: failed to retrieve metadata device size",
3356 dm_device_name(pool->pool_md));
3357 return r;
3358 }
3359
3360 if (metadata_dev_size < sb_metadata_dev_size) {
3361 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3362 dm_device_name(pool->pool_md),
3363 metadata_dev_size, sb_metadata_dev_size);
3364 return -EINVAL;
3365
3366 } else if (metadata_dev_size > sb_metadata_dev_size) {
3367 if (dm_pool_metadata_needs_check(pool->pmd)) {
3368 DMERR("%s: unable to grow the metadata device until repaired.",
3369 dm_device_name(pool->pool_md));
3370 return 0;
3371 }
3372
3373 warn_if_metadata_device_too_big(pool->md_dev);
3374 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3375 dm_device_name(pool->pool_md),
3376 sb_metadata_dev_size, metadata_dev_size);
3377 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3378 if (r) {
3379 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3380 return r;
3381 }
3382
3383 *need_commit = true;
3384 }
3385
3386 return 0;
3387 }
3388
3389 /*
3390 * Retrieves the number of blocks of the data device from
3391 * the superblock and compares it to the actual device size,
3392 * thus resizing the data device in case it has grown.
3393 *
3394 * This both copes with opening preallocated data devices in the ctr
3395 * being followed by a resume
3396 * -and-
3397 * calling the resume method individually after userspace has
3398 * grown the data device in reaction to a table event.
3399 */
3400 static int pool_preresume(struct dm_target *ti)
3401 {
3402 int r;
3403 bool need_commit1, need_commit2;
3404 struct pool_c *pt = ti->private;
3405 struct pool *pool = pt->pool;
3406
3407 /*
3408 * Take control of the pool object.
3409 */
3410 r = bind_control_target(pool, ti);
3411 if (r)
3412 return r;
3413
3414 r = maybe_resize_data_dev(ti, &need_commit1);
3415 if (r)
3416 return r;
3417
3418 r = maybe_resize_metadata_dev(ti, &need_commit2);
3419 if (r)
3420 return r;
3421
3422 if (need_commit1 || need_commit2)
3423 (void) commit(pool);
3424
3425 return 0;
3426 }
3427
3428 static void pool_suspend_active_thins(struct pool *pool)
3429 {
3430 struct thin_c *tc;
3431
3432 /* Suspend all active thin devices */
3433 tc = get_first_thin(pool);
3434 while (tc) {
3435 dm_internal_suspend_noflush(tc->thin_md);
3436 tc = get_next_thin(pool, tc);
3437 }
3438 }
3439
3440 static void pool_resume_active_thins(struct pool *pool)
3441 {
3442 struct thin_c *tc;
3443
3444 /* Resume all active thin devices */
3445 tc = get_first_thin(pool);
3446 while (tc) {
3447 dm_internal_resume(tc->thin_md);
3448 tc = get_next_thin(pool, tc);
3449 }
3450 }
3451
3452 static void pool_resume(struct dm_target *ti)
3453 {
3454 struct pool_c *pt = ti->private;
3455 struct pool *pool = pt->pool;
3456 unsigned long flags;
3457
3458 /*
3459 * Must requeue active_thins' bios and then resume
3460 * active_thins _before_ clearing 'suspend' flag.
3461 */
3462 requeue_bios(pool);
3463 pool_resume_active_thins(pool);
3464
3465 spin_lock_irqsave(&pool->lock, flags);
3466 pool->low_water_triggered = false;
3467 pool->suspended = false;
3468 spin_unlock_irqrestore(&pool->lock, flags);
3469
3470 do_waker(&pool->waker.work);
3471 }
3472
3473 static void pool_presuspend(struct dm_target *ti)
3474 {
3475 struct pool_c *pt = ti->private;
3476 struct pool *pool = pt->pool;
3477 unsigned long flags;
3478
3479 spin_lock_irqsave(&pool->lock, flags);
3480 pool->suspended = true;
3481 spin_unlock_irqrestore(&pool->lock, flags);
3482
3483 pool_suspend_active_thins(pool);
3484 }
3485
3486 static void pool_presuspend_undo(struct dm_target *ti)
3487 {
3488 struct pool_c *pt = ti->private;
3489 struct pool *pool = pt->pool;
3490 unsigned long flags;
3491
3492 pool_resume_active_thins(pool);
3493
3494 spin_lock_irqsave(&pool->lock, flags);
3495 pool->suspended = false;
3496 spin_unlock_irqrestore(&pool->lock, flags);
3497 }
3498
3499 static void pool_postsuspend(struct dm_target *ti)
3500 {
3501 struct pool_c *pt = ti->private;
3502 struct pool *pool = pt->pool;
3503
3504 cancel_delayed_work(&pool->waker);
3505 cancel_delayed_work(&pool->no_space_timeout);
3506 flush_workqueue(pool->wq);
3507 (void) commit(pool);
3508 }
3509
3510 static int check_arg_count(unsigned argc, unsigned args_required)
3511 {
3512 if (argc != args_required) {
3513 DMWARN("Message received with %u arguments instead of %u.",
3514 argc, args_required);
3515 return -EINVAL;
3516 }
3517
3518 return 0;
3519 }
3520
3521 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3522 {
3523 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3524 *dev_id <= MAX_DEV_ID)
3525 return 0;
3526
3527 if (warning)
3528 DMWARN("Message received with invalid device id: %s", arg);
3529
3530 return -EINVAL;
3531 }
3532
3533 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3534 {
3535 dm_thin_id dev_id;
3536 int r;
3537
3538 r = check_arg_count(argc, 2);
3539 if (r)
3540 return r;
3541
3542 r = read_dev_id(argv[1], &dev_id, 1);
3543 if (r)
3544 return r;
3545
3546 r = dm_pool_create_thin(pool->pmd, dev_id);
3547 if (r) {
3548 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3549 argv[1]);
3550 return r;
3551 }
3552
3553 return 0;
3554 }
3555
3556 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3557 {
3558 dm_thin_id dev_id;
3559 dm_thin_id origin_dev_id;
3560 int r;
3561
3562 r = check_arg_count(argc, 3);
3563 if (r)
3564 return r;
3565
3566 r = read_dev_id(argv[1], &dev_id, 1);
3567 if (r)
3568 return r;
3569
3570 r = read_dev_id(argv[2], &origin_dev_id, 1);
3571 if (r)
3572 return r;
3573
3574 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3575 if (r) {
3576 DMWARN("Creation of new snapshot %s of device %s failed.",
3577 argv[1], argv[2]);
3578 return r;
3579 }
3580
3581 return 0;
3582 }
3583
3584 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3585 {
3586 dm_thin_id dev_id;
3587 int r;
3588
3589 r = check_arg_count(argc, 2);
3590 if (r)
3591 return r;
3592
3593 r = read_dev_id(argv[1], &dev_id, 1);
3594 if (r)
3595 return r;
3596
3597 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3598 if (r)
3599 DMWARN("Deletion of thin device %s failed.", argv[1]);
3600
3601 return r;
3602 }
3603
3604 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3605 {
3606 dm_thin_id old_id, new_id;
3607 int r;
3608
3609 r = check_arg_count(argc, 3);
3610 if (r)
3611 return r;
3612
3613 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3614 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3615 return -EINVAL;
3616 }
3617
3618 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3619 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3620 return -EINVAL;
3621 }
3622
3623 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3624 if (r) {
3625 DMWARN("Failed to change transaction id from %s to %s.",
3626 argv[1], argv[2]);
3627 return r;
3628 }
3629
3630 return 0;
3631 }
3632
3633 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3634 {
3635 int r;
3636
3637 r = check_arg_count(argc, 1);
3638 if (r)
3639 return r;
3640
3641 (void) commit(pool);
3642
3643 r = dm_pool_reserve_metadata_snap(pool->pmd);
3644 if (r)
3645 DMWARN("reserve_metadata_snap message failed.");
3646
3647 return r;
3648 }
3649
3650 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3651 {
3652 int r;
3653
3654 r = check_arg_count(argc, 1);
3655 if (r)
3656 return r;
3657
3658 r = dm_pool_release_metadata_snap(pool->pmd);
3659 if (r)
3660 DMWARN("release_metadata_snap message failed.");
3661
3662 return r;
3663 }
3664
3665 /*
3666 * Messages supported:
3667 * create_thin <dev_id>
3668 * create_snap <dev_id> <origin_id>
3669 * delete <dev_id>
3670 * set_transaction_id <current_trans_id> <new_trans_id>
3671 * reserve_metadata_snap
3672 * release_metadata_snap
3673 */
3674 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3675 {
3676 int r = -EINVAL;
3677 struct pool_c *pt = ti->private;
3678 struct pool *pool = pt->pool;
3679
3680 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3681 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3682 dm_device_name(pool->pool_md));
3683 return -EOPNOTSUPP;
3684 }
3685
3686 if (!strcasecmp(argv[0], "create_thin"))
3687 r = process_create_thin_mesg(argc, argv, pool);
3688
3689 else if (!strcasecmp(argv[0], "create_snap"))
3690 r = process_create_snap_mesg(argc, argv, pool);
3691
3692 else if (!strcasecmp(argv[0], "delete"))
3693 r = process_delete_mesg(argc, argv, pool);
3694
3695 else if (!strcasecmp(argv[0], "set_transaction_id"))
3696 r = process_set_transaction_id_mesg(argc, argv, pool);
3697
3698 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3699 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3700
3701 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3702 r = process_release_metadata_snap_mesg(argc, argv, pool);
3703
3704 else
3705 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3706
3707 if (!r)
3708 (void) commit(pool);
3709
3710 return r;
3711 }
3712
3713 static void emit_flags(struct pool_features *pf, char *result,
3714 unsigned sz, unsigned maxlen)
3715 {
3716 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3717 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3718 pf->error_if_no_space;
3719 DMEMIT("%u ", count);
3720
3721 if (!pf->zero_new_blocks)
3722 DMEMIT("skip_block_zeroing ");
3723
3724 if (!pf->discard_enabled)
3725 DMEMIT("ignore_discard ");
3726
3727 if (!pf->discard_passdown)
3728 DMEMIT("no_discard_passdown ");
3729
3730 if (pf->mode == PM_READ_ONLY)
3731 DMEMIT("read_only ");
3732
3733 if (pf->error_if_no_space)
3734 DMEMIT("error_if_no_space ");
3735 }
3736
3737 /*
3738 * Status line is:
3739 * <transaction id> <used metadata sectors>/<total metadata sectors>
3740 * <used data sectors>/<total data sectors> <held metadata root>
3741 * <pool mode> <discard config> <no space config> <needs_check>
3742 */
3743 static void pool_status(struct dm_target *ti, status_type_t type,
3744 unsigned status_flags, char *result, unsigned maxlen)
3745 {
3746 int r;
3747 unsigned sz = 0;
3748 uint64_t transaction_id;
3749 dm_block_t nr_free_blocks_data;
3750 dm_block_t nr_free_blocks_metadata;
3751 dm_block_t nr_blocks_data;
3752 dm_block_t nr_blocks_metadata;
3753 dm_block_t held_root;
3754 char buf[BDEVNAME_SIZE];
3755 char buf2[BDEVNAME_SIZE];
3756 struct pool_c *pt = ti->private;
3757 struct pool *pool = pt->pool;
3758
3759 switch (type) {
3760 case STATUSTYPE_INFO:
3761 if (get_pool_mode(pool) == PM_FAIL) {
3762 DMEMIT("Fail");
3763 break;
3764 }
3765
3766 /* Commit to ensure statistics aren't out-of-date */
3767 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3768 (void) commit(pool);
3769
3770 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3771 if (r) {
3772 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3773 dm_device_name(pool->pool_md), r);
3774 goto err;
3775 }
3776
3777 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3778 if (r) {
3779 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3780 dm_device_name(pool->pool_md), r);
3781 goto err;
3782 }
3783
3784 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3785 if (r) {
3786 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3787 dm_device_name(pool->pool_md), r);
3788 goto err;
3789 }
3790
3791 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3792 if (r) {
3793 DMERR("%s: dm_pool_get_free_block_count returned %d",
3794 dm_device_name(pool->pool_md), r);
3795 goto err;
3796 }
3797
3798 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3799 if (r) {
3800 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3801 dm_device_name(pool->pool_md), r);
3802 goto err;
3803 }
3804
3805 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3806 if (r) {
3807 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3808 dm_device_name(pool->pool_md), r);
3809 goto err;
3810 }
3811
3812 DMEMIT("%llu %llu/%llu %llu/%llu ",
3813 (unsigned long long)transaction_id,
3814 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3815 (unsigned long long)nr_blocks_metadata,
3816 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3817 (unsigned long long)nr_blocks_data);
3818
3819 if (held_root)
3820 DMEMIT("%llu ", held_root);
3821 else
3822 DMEMIT("- ");
3823
3824 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3825 DMEMIT("out_of_data_space ");
3826 else if (pool->pf.mode == PM_READ_ONLY)
3827 DMEMIT("ro ");
3828 else
3829 DMEMIT("rw ");
3830
3831 if (!pool->pf.discard_enabled)
3832 DMEMIT("ignore_discard ");
3833 else if (pool->pf.discard_passdown)
3834 DMEMIT("discard_passdown ");
3835 else
3836 DMEMIT("no_discard_passdown ");
3837
3838 if (pool->pf.error_if_no_space)
3839 DMEMIT("error_if_no_space ");
3840 else
3841 DMEMIT("queue_if_no_space ");
3842
3843 if (dm_pool_metadata_needs_check(pool->pmd))
3844 DMEMIT("needs_check ");
3845 else
3846 DMEMIT("- ");
3847
3848 break;
3849
3850 case STATUSTYPE_TABLE:
3851 DMEMIT("%s %s %lu %llu ",
3852 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3853 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3854 (unsigned long)pool->sectors_per_block,
3855 (unsigned long long)pt->low_water_blocks);
3856 emit_flags(&pt->requested_pf, result, sz, maxlen);
3857 break;
3858 }
3859 return;
3860
3861 err:
3862 DMEMIT("Error");
3863 }
3864
3865 static int pool_iterate_devices(struct dm_target *ti,
3866 iterate_devices_callout_fn fn, void *data)
3867 {
3868 struct pool_c *pt = ti->private;
3869
3870 return fn(ti, pt->data_dev, 0, ti->len, data);
3871 }
3872
3873 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3874 struct bio_vec *biovec, int max_size)
3875 {
3876 struct pool_c *pt = ti->private;
3877 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3878
3879 if (!q->merge_bvec_fn)
3880 return max_size;
3881
3882 bvm->bi_bdev = pt->data_dev->bdev;
3883
3884 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3885 }
3886
3887 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3888 {
3889 struct pool_c *pt = ti->private;
3890 struct pool *pool = pt->pool;
3891 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3892
3893 /*
3894 * If max_sectors is smaller than pool->sectors_per_block adjust it
3895 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3896 * This is especially beneficial when the pool's data device is a RAID
3897 * device that has a full stripe width that matches pool->sectors_per_block
3898 * -- because even though partial RAID stripe-sized IOs will be issued to a
3899 * single RAID stripe; when aggregated they will end on a full RAID stripe
3900 * boundary.. which avoids additional partial RAID stripe writes cascading
3901 */
3902 if (limits->max_sectors < pool->sectors_per_block) {
3903 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3904 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3905 limits->max_sectors--;
3906 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3907 }
3908 }
3909
3910 /*
3911 * If the system-determined stacked limits are compatible with the
3912 * pool's blocksize (io_opt is a factor) do not override them.
3913 */
3914 if (io_opt_sectors < pool->sectors_per_block ||
3915 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3916 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3917 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3918 else
3919 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3920 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3921 }
3922
3923 /*
3924 * pt->adjusted_pf is a staging area for the actual features to use.
3925 * They get transferred to the live pool in bind_control_target()
3926 * called from pool_preresume().
3927 */
3928 if (!pt->adjusted_pf.discard_enabled) {
3929 /*
3930 * Must explicitly disallow stacking discard limits otherwise the
3931 * block layer will stack them if pool's data device has support.
3932 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3933 * user to see that, so make sure to set all discard limits to 0.
3934 */
3935 limits->discard_granularity = 0;
3936 return;
3937 }
3938
3939 disable_passdown_if_not_supported(pt);
3940
3941 /*
3942 * The pool uses the same discard limits as the underlying data
3943 * device. DM core has already set this up.
3944 */
3945 }
3946
3947 static struct target_type pool_target = {
3948 .name = "thin-pool",
3949 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3950 DM_TARGET_IMMUTABLE,
3951 .version = {1, 16, 0},
3952 .module = THIS_MODULE,
3953 .ctr = pool_ctr,
3954 .dtr = pool_dtr,
3955 .map = pool_map,
3956 .presuspend = pool_presuspend,
3957 .presuspend_undo = pool_presuspend_undo,
3958 .postsuspend = pool_postsuspend,
3959 .preresume = pool_preresume,
3960 .resume = pool_resume,
3961 .message = pool_message,
3962 .status = pool_status,
3963 .merge = pool_merge,
3964 .iterate_devices = pool_iterate_devices,
3965 .io_hints = pool_io_hints,
3966 };
3967
3968 /*----------------------------------------------------------------
3969 * Thin target methods
3970 *--------------------------------------------------------------*/
3971 static void thin_get(struct thin_c *tc)
3972 {
3973 atomic_inc(&tc->refcount);
3974 }
3975
3976 static void thin_put(struct thin_c *tc)
3977 {
3978 if (atomic_dec_and_test(&tc->refcount))
3979 complete(&tc->can_destroy);
3980 }
3981
3982 static void thin_dtr(struct dm_target *ti)
3983 {
3984 struct thin_c *tc = ti->private;
3985 unsigned long flags;
3986
3987 spin_lock_irqsave(&tc->pool->lock, flags);
3988 list_del_rcu(&tc->list);
3989 spin_unlock_irqrestore(&tc->pool->lock, flags);
3990 synchronize_rcu();
3991
3992 thin_put(tc);
3993 wait_for_completion(&tc->can_destroy);
3994
3995 mutex_lock(&dm_thin_pool_table.mutex);
3996
3997 __pool_dec(tc->pool);
3998 dm_pool_close_thin_device(tc->td);
3999 dm_put_device(ti, tc->pool_dev);
4000 if (tc->origin_dev)
4001 dm_put_device(ti, tc->origin_dev);
4002 kfree(tc);
4003
4004 mutex_unlock(&dm_thin_pool_table.mutex);
4005 }
4006
4007 /*
4008 * Thin target parameters:
4009 *
4010 * <pool_dev> <dev_id> [origin_dev]
4011 *
4012 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4013 * dev_id: the internal device identifier
4014 * origin_dev: a device external to the pool that should act as the origin
4015 *
4016 * If the pool device has discards disabled, they get disabled for the thin
4017 * device as well.
4018 */
4019 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4020 {
4021 int r;
4022 struct thin_c *tc;
4023 struct dm_dev *pool_dev, *origin_dev;
4024 struct mapped_device *pool_md;
4025 unsigned long flags;
4026
4027 mutex_lock(&dm_thin_pool_table.mutex);
4028
4029 if (argc != 2 && argc != 3) {
4030 ti->error = "Invalid argument count";
4031 r = -EINVAL;
4032 goto out_unlock;
4033 }
4034
4035 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4036 if (!tc) {
4037 ti->error = "Out of memory";
4038 r = -ENOMEM;
4039 goto out_unlock;
4040 }
4041 tc->thin_md = dm_table_get_md(ti->table);
4042 spin_lock_init(&tc->lock);
4043 INIT_LIST_HEAD(&tc->deferred_cells);
4044 bio_list_init(&tc->deferred_bio_list);
4045 bio_list_init(&tc->retry_on_resume_list);
4046 tc->sort_bio_list = RB_ROOT;
4047
4048 if (argc == 3) {
4049 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4050 if (r) {
4051 ti->error = "Error opening origin device";
4052 goto bad_origin_dev;
4053 }
4054 tc->origin_dev = origin_dev;
4055 }
4056
4057 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4058 if (r) {
4059 ti->error = "Error opening pool device";
4060 goto bad_pool_dev;
4061 }
4062 tc->pool_dev = pool_dev;
4063
4064 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4065 ti->error = "Invalid device id";
4066 r = -EINVAL;
4067 goto bad_common;
4068 }
4069
4070 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4071 if (!pool_md) {
4072 ti->error = "Couldn't get pool mapped device";
4073 r = -EINVAL;
4074 goto bad_common;
4075 }
4076
4077 tc->pool = __pool_table_lookup(pool_md);
4078 if (!tc->pool) {
4079 ti->error = "Couldn't find pool object";
4080 r = -EINVAL;
4081 goto bad_pool_lookup;
4082 }
4083 __pool_inc(tc->pool);
4084
4085 if (get_pool_mode(tc->pool) == PM_FAIL) {
4086 ti->error = "Couldn't open thin device, Pool is in fail mode";
4087 r = -EINVAL;
4088 goto bad_pool;
4089 }
4090
4091 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4092 if (r) {
4093 ti->error = "Couldn't open thin internal device";
4094 goto bad_pool;
4095 }
4096
4097 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4098 if (r)
4099 goto bad;
4100
4101 ti->num_flush_bios = 1;
4102 ti->flush_supported = true;
4103 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4104
4105 /* In case the pool supports discards, pass them on. */
4106 ti->discard_zeroes_data_unsupported = true;
4107 if (tc->pool->pf.discard_enabled) {
4108 ti->discards_supported = true;
4109 ti->num_discard_bios = 1;
4110 ti->split_discard_bios = false;
4111 }
4112
4113 mutex_unlock(&dm_thin_pool_table.mutex);
4114
4115 spin_lock_irqsave(&tc->pool->lock, flags);
4116 if (tc->pool->suspended) {
4117 spin_unlock_irqrestore(&tc->pool->lock, flags);
4118 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4119 ti->error = "Unable to activate thin device while pool is suspended";
4120 r = -EINVAL;
4121 goto bad;
4122 }
4123 atomic_set(&tc->refcount, 1);
4124 init_completion(&tc->can_destroy);
4125 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4126 spin_unlock_irqrestore(&tc->pool->lock, flags);
4127 /*
4128 * This synchronize_rcu() call is needed here otherwise we risk a
4129 * wake_worker() call finding no bios to process (because the newly
4130 * added tc isn't yet visible). So this reduces latency since we
4131 * aren't then dependent on the periodic commit to wake_worker().
4132 */
4133 synchronize_rcu();
4134
4135 dm_put(pool_md);
4136
4137 return 0;
4138
4139 bad:
4140 dm_pool_close_thin_device(tc->td);
4141 bad_pool:
4142 __pool_dec(tc->pool);
4143 bad_pool_lookup:
4144 dm_put(pool_md);
4145 bad_common:
4146 dm_put_device(ti, tc->pool_dev);
4147 bad_pool_dev:
4148 if (tc->origin_dev)
4149 dm_put_device(ti, tc->origin_dev);
4150 bad_origin_dev:
4151 kfree(tc);
4152 out_unlock:
4153 mutex_unlock(&dm_thin_pool_table.mutex);
4154
4155 return r;
4156 }
4157
4158 static int thin_map(struct dm_target *ti, struct bio *bio)
4159 {
4160 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4161
4162 return thin_bio_map(ti, bio);
4163 }
4164
4165 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4166 {
4167 unsigned long flags;
4168 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4169 struct list_head work;
4170 struct dm_thin_new_mapping *m, *tmp;
4171 struct pool *pool = h->tc->pool;
4172
4173 if (h->shared_read_entry) {
4174 INIT_LIST_HEAD(&work);
4175 dm_deferred_entry_dec(h->shared_read_entry, &work);
4176
4177 spin_lock_irqsave(&pool->lock, flags);
4178 list_for_each_entry_safe(m, tmp, &work, list) {
4179 list_del(&m->list);
4180 __complete_mapping_preparation(m);
4181 }
4182 spin_unlock_irqrestore(&pool->lock, flags);
4183 }
4184
4185 if (h->all_io_entry) {
4186 INIT_LIST_HEAD(&work);
4187 dm_deferred_entry_dec(h->all_io_entry, &work);
4188 if (!list_empty(&work)) {
4189 spin_lock_irqsave(&pool->lock, flags);
4190 list_for_each_entry_safe(m, tmp, &work, list)
4191 list_add_tail(&m->list, &pool->prepared_discards);
4192 spin_unlock_irqrestore(&pool->lock, flags);
4193 wake_worker(pool);
4194 }
4195 }
4196
4197 if (h->cell)
4198 cell_defer_no_holder(h->tc, h->cell);
4199
4200 return 0;
4201 }
4202
4203 static void thin_presuspend(struct dm_target *ti)
4204 {
4205 struct thin_c *tc = ti->private;
4206
4207 if (dm_noflush_suspending(ti))
4208 noflush_work(tc, do_noflush_start);
4209 }
4210
4211 static void thin_postsuspend(struct dm_target *ti)
4212 {
4213 struct thin_c *tc = ti->private;
4214
4215 /*
4216 * The dm_noflush_suspending flag has been cleared by now, so
4217 * unfortunately we must always run this.
4218 */
4219 noflush_work(tc, do_noflush_stop);
4220 }
4221
4222 static int thin_preresume(struct dm_target *ti)
4223 {
4224 struct thin_c *tc = ti->private;
4225
4226 if (tc->origin_dev)
4227 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4228
4229 return 0;
4230 }
4231
4232 /*
4233 * <nr mapped sectors> <highest mapped sector>
4234 */
4235 static void thin_status(struct dm_target *ti, status_type_t type,
4236 unsigned status_flags, char *result, unsigned maxlen)
4237 {
4238 int r;
4239 ssize_t sz = 0;
4240 dm_block_t mapped, highest;
4241 char buf[BDEVNAME_SIZE];
4242 struct thin_c *tc = ti->private;
4243
4244 if (get_pool_mode(tc->pool) == PM_FAIL) {
4245 DMEMIT("Fail");
4246 return;
4247 }
4248
4249 if (!tc->td)
4250 DMEMIT("-");
4251 else {
4252 switch (type) {
4253 case STATUSTYPE_INFO:
4254 r = dm_thin_get_mapped_count(tc->td, &mapped);
4255 if (r) {
4256 DMERR("dm_thin_get_mapped_count returned %d", r);
4257 goto err;
4258 }
4259
4260 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4261 if (r < 0) {
4262 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4263 goto err;
4264 }
4265
4266 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4267 if (r)
4268 DMEMIT("%llu", ((highest + 1) *
4269 tc->pool->sectors_per_block) - 1);
4270 else
4271 DMEMIT("-");
4272 break;
4273
4274 case STATUSTYPE_TABLE:
4275 DMEMIT("%s %lu",
4276 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4277 (unsigned long) tc->dev_id);
4278 if (tc->origin_dev)
4279 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4280 break;
4281 }
4282 }
4283
4284 return;
4285
4286 err:
4287 DMEMIT("Error");
4288 }
4289
4290 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4291 struct bio_vec *biovec, int max_size)
4292 {
4293 struct thin_c *tc = ti->private;
4294 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4295
4296 if (!q->merge_bvec_fn)
4297 return max_size;
4298
4299 bvm->bi_bdev = tc->pool_dev->bdev;
4300 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4301
4302 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4303 }
4304
4305 static int thin_iterate_devices(struct dm_target *ti,
4306 iterate_devices_callout_fn fn, void *data)
4307 {
4308 sector_t blocks;
4309 struct thin_c *tc = ti->private;
4310 struct pool *pool = tc->pool;
4311
4312 /*
4313 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4314 * we follow a more convoluted path through to the pool's target.
4315 */
4316 if (!pool->ti)
4317 return 0; /* nothing is bound */
4318
4319 blocks = pool->ti->len;
4320 (void) sector_div(blocks, pool->sectors_per_block);
4321 if (blocks)
4322 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4323
4324 return 0;
4325 }
4326
4327 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4328 {
4329 struct thin_c *tc = ti->private;
4330 struct pool *pool = tc->pool;
4331
4332 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4333 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4334 }
4335
4336 static struct target_type thin_target = {
4337 .name = "thin",
4338 .version = {1, 16, 0},
4339 .module = THIS_MODULE,
4340 .ctr = thin_ctr,
4341 .dtr = thin_dtr,
4342 .map = thin_map,
4343 .end_io = thin_endio,
4344 .preresume = thin_preresume,
4345 .presuspend = thin_presuspend,
4346 .postsuspend = thin_postsuspend,
4347 .status = thin_status,
4348 .merge = thin_merge,
4349 .iterate_devices = thin_iterate_devices,
4350 .io_hints = thin_io_hints,
4351 };
4352
4353 /*----------------------------------------------------------------*/
4354
4355 static int __init dm_thin_init(void)
4356 {
4357 int r;
4358
4359 pool_table_init();
4360
4361 r = dm_register_target(&thin_target);
4362 if (r)
4363 return r;
4364
4365 r = dm_register_target(&pool_target);
4366 if (r)
4367 goto bad_pool_target;
4368
4369 r = -ENOMEM;
4370
4371 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4372 if (!_new_mapping_cache)
4373 goto bad_new_mapping_cache;
4374
4375 return 0;
4376
4377 bad_new_mapping_cache:
4378 dm_unregister_target(&pool_target);
4379 bad_pool_target:
4380 dm_unregister_target(&thin_target);
4381
4382 return r;
4383 }
4384
4385 static void dm_thin_exit(void)
4386 {
4387 dm_unregister_target(&thin_target);
4388 dm_unregister_target(&pool_target);
4389
4390 kmem_cache_destroy(_new_mapping_cache);
4391 }
4392
4393 module_init(dm_thin_init);
4394 module_exit(dm_thin_exit);
4395
4396 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4397 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4398
4399 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4400 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4401 MODULE_LICENSE("GPL");