]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/dm-thin.c
fff4c50df74db6b79fba68784fd4a02236031341
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203
204 /*
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 */
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
209
210 PM_FAIL, /* all I/O fails */
211 };
212
213 struct pool_features {
214 enum pool_mode mode;
215
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
232
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
237
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
241
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
244 bool suspended:1;
245 bool out_of_data_space:1;
246
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
249
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
255
256 unsigned long last_commit_jiffies;
257 unsigned ref_count;
258
259 spinlock_t lock;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
266
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
269
270 struct dm_thin_new_mapping *next_mapping;
271
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
274
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
277
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
281
282 struct dm_bio_prison_cell **cell_sort_array;
283
284 mempool_t mapping_pool;
285
286 struct bio flush_bio;
287 };
288
289 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
290
291 static enum pool_mode get_pool_mode(struct pool *pool)
292 {
293 return pool->pf.mode;
294 }
295
296 static void notify_of_pool_mode_change(struct pool *pool)
297 {
298 const char *descs[] = {
299 "write",
300 "out-of-data-space",
301 "read-only",
302 "read-only",
303 "fail"
304 };
305 const char *extra_desc = NULL;
306 enum pool_mode mode = get_pool_mode(pool);
307
308 if (mode == PM_OUT_OF_DATA_SPACE) {
309 if (!pool->pf.error_if_no_space)
310 extra_desc = " (queue IO)";
311 else
312 extra_desc = " (error IO)";
313 }
314
315 dm_table_event(pool->ti->table);
316 DMINFO("%s: switching pool to %s%s mode",
317 dm_device_name(pool->pool_md),
318 descs[(int)mode], extra_desc ? : "");
319 }
320
321 /*
322 * Target context for a pool.
323 */
324 struct pool_c {
325 struct dm_target *ti;
326 struct pool *pool;
327 struct dm_dev *data_dev;
328 struct dm_dev *metadata_dev;
329
330 dm_block_t low_water_blocks;
331 struct pool_features requested_pf; /* Features requested during table load */
332 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
333 };
334
335 /*
336 * Target context for a thin.
337 */
338 struct thin_c {
339 struct list_head list;
340 struct dm_dev *pool_dev;
341 struct dm_dev *origin_dev;
342 sector_t origin_size;
343 dm_thin_id dev_id;
344
345 struct pool *pool;
346 struct dm_thin_device *td;
347 struct mapped_device *thin_md;
348
349 bool requeue_mode:1;
350 spinlock_t lock;
351 struct list_head deferred_cells;
352 struct bio_list deferred_bio_list;
353 struct bio_list retry_on_resume_list;
354 struct rb_root sort_bio_list; /* sorted list of deferred bios */
355
356 /*
357 * Ensures the thin is not destroyed until the worker has finished
358 * iterating the active_thins list.
359 */
360 refcount_t refcount;
361 struct completion can_destroy;
362 };
363
364 /*----------------------------------------------------------------*/
365
366 static bool block_size_is_power_of_two(struct pool *pool)
367 {
368 return pool->sectors_per_block_shift >= 0;
369 }
370
371 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372 {
373 return block_size_is_power_of_two(pool) ?
374 (b << pool->sectors_per_block_shift) :
375 (b * pool->sectors_per_block);
376 }
377
378 /*----------------------------------------------------------------*/
379
380 struct discard_op {
381 struct thin_c *tc;
382 struct blk_plug plug;
383 struct bio *parent_bio;
384 struct bio *bio;
385 };
386
387 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388 {
389 BUG_ON(!parent);
390
391 op->tc = tc;
392 blk_start_plug(&op->plug);
393 op->parent_bio = parent;
394 op->bio = NULL;
395 }
396
397 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398 {
399 struct thin_c *tc = op->tc;
400 sector_t s = block_to_sectors(tc->pool, data_b);
401 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402
403 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404 GFP_NOWAIT, 0, &op->bio);
405 }
406
407 static void end_discard(struct discard_op *op, int r)
408 {
409 if (op->bio) {
410 /*
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
413 */
414 bio_chain(op->bio, op->parent_bio);
415 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
416 submit_bio(op->bio);
417 }
418
419 blk_finish_plug(&op->plug);
420
421 /*
422 * Even if r is set, there could be sub discards in flight that we
423 * need to wait for.
424 */
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(r);
427 bio_endio(op->parent_bio);
428 }
429
430 /*----------------------------------------------------------------*/
431
432 /*
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
435 */
436 static void wake_worker(struct pool *pool)
437 {
438 queue_work(pool->wq, &pool->worker);
439 }
440
441 /*----------------------------------------------------------------*/
442
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
445 {
446 int r;
447 struct dm_bio_prison_cell *cell_prealloc;
448
449 /*
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
452 */
453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 if (r)
457 /*
458 * We reused an old cell; we can get rid of
459 * the new one.
460 */
461 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462
463 return r;
464 }
465
466 static void cell_release(struct pool *pool,
467 struct dm_bio_prison_cell *cell,
468 struct bio_list *bios)
469 {
470 dm_cell_release(pool->prison, cell, bios);
471 dm_bio_prison_free_cell(pool->prison, cell);
472 }
473
474 static void cell_visit_release(struct pool *pool,
475 void (*fn)(void *, struct dm_bio_prison_cell *),
476 void *context,
477 struct dm_bio_prison_cell *cell)
478 {
479 dm_cell_visit_release(pool->prison, fn, context, cell);
480 dm_bio_prison_free_cell(pool->prison, cell);
481 }
482
483 static void cell_release_no_holder(struct pool *pool,
484 struct dm_bio_prison_cell *cell,
485 struct bio_list *bios)
486 {
487 dm_cell_release_no_holder(pool->prison, cell, bios);
488 dm_bio_prison_free_cell(pool->prison, cell);
489 }
490
491 static void cell_error_with_code(struct pool *pool,
492 struct dm_bio_prison_cell *cell, blk_status_t error_code)
493 {
494 dm_cell_error(pool->prison, cell, error_code);
495 dm_bio_prison_free_cell(pool->prison, cell);
496 }
497
498 static blk_status_t get_pool_io_error_code(struct pool *pool)
499 {
500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501 }
502
503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504 {
505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506 }
507
508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509 {
510 cell_error_with_code(pool, cell, 0);
511 }
512
513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514 {
515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516 }
517
518 /*----------------------------------------------------------------*/
519
520 /*
521 * A global list of pools that uses a struct mapped_device as a key.
522 */
523 static struct dm_thin_pool_table {
524 struct mutex mutex;
525 struct list_head pools;
526 } dm_thin_pool_table;
527
528 static void pool_table_init(void)
529 {
530 mutex_init(&dm_thin_pool_table.mutex);
531 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532 }
533
534 static void pool_table_exit(void)
535 {
536 mutex_destroy(&dm_thin_pool_table.mutex);
537 }
538
539 static void __pool_table_insert(struct pool *pool)
540 {
541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 list_add(&pool->list, &dm_thin_pool_table.pools);
543 }
544
545 static void __pool_table_remove(struct pool *pool)
546 {
547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 list_del(&pool->list);
549 }
550
551 static struct pool *__pool_table_lookup(struct mapped_device *md)
552 {
553 struct pool *pool = NULL, *tmp;
554
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556
557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 if (tmp->pool_md == md) {
559 pool = tmp;
560 break;
561 }
562 }
563
564 return pool;
565 }
566
567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568 {
569 struct pool *pool = NULL, *tmp;
570
571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572
573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 if (tmp->md_dev == md_dev) {
575 pool = tmp;
576 break;
577 }
578 }
579
580 return pool;
581 }
582
583 /*----------------------------------------------------------------*/
584
585 struct dm_thin_endio_hook {
586 struct thin_c *tc;
587 struct dm_deferred_entry *shared_read_entry;
588 struct dm_deferred_entry *all_io_entry;
589 struct dm_thin_new_mapping *overwrite_mapping;
590 struct rb_node rb_node;
591 struct dm_bio_prison_cell *cell;
592 };
593
594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595 {
596 bio_list_merge(bios, master);
597 bio_list_init(master);
598 }
599
600 static void error_bio_list(struct bio_list *bios, blk_status_t error)
601 {
602 struct bio *bio;
603
604 while ((bio = bio_list_pop(bios))) {
605 bio->bi_status = error;
606 bio_endio(bio);
607 }
608 }
609
610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611 blk_status_t error)
612 {
613 struct bio_list bios;
614
615 bio_list_init(&bios);
616
617 spin_lock_irq(&tc->lock);
618 __merge_bio_list(&bios, master);
619 spin_unlock_irq(&tc->lock);
620
621 error_bio_list(&bios, error);
622 }
623
624 static void requeue_deferred_cells(struct thin_c *tc)
625 {
626 struct pool *pool = tc->pool;
627 struct list_head cells;
628 struct dm_bio_prison_cell *cell, *tmp;
629
630 INIT_LIST_HEAD(&cells);
631
632 spin_lock_irq(&tc->lock);
633 list_splice_init(&tc->deferred_cells, &cells);
634 spin_unlock_irq(&tc->lock);
635
636 list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 cell_requeue(pool, cell);
638 }
639
640 static void requeue_io(struct thin_c *tc)
641 {
642 struct bio_list bios;
643
644 bio_list_init(&bios);
645
646 spin_lock_irq(&tc->lock);
647 __merge_bio_list(&bios, &tc->deferred_bio_list);
648 __merge_bio_list(&bios, &tc->retry_on_resume_list);
649 spin_unlock_irq(&tc->lock);
650
651 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
652 requeue_deferred_cells(tc);
653 }
654
655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656 {
657 struct thin_c *tc;
658
659 rcu_read_lock();
660 list_for_each_entry_rcu(tc, &pool->active_thins, list)
661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
662 rcu_read_unlock();
663 }
664
665 static void error_retry_list(struct pool *pool)
666 {
667 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
668 }
669
670 /*
671 * This section of code contains the logic for processing a thin device's IO.
672 * Much of the code depends on pool object resources (lists, workqueues, etc)
673 * but most is exclusively called from the thin target rather than the thin-pool
674 * target.
675 */
676
677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678 {
679 struct pool *pool = tc->pool;
680 sector_t block_nr = bio->bi_iter.bi_sector;
681
682 if (block_size_is_power_of_two(pool))
683 block_nr >>= pool->sectors_per_block_shift;
684 else
685 (void) sector_div(block_nr, pool->sectors_per_block);
686
687 return block_nr;
688 }
689
690 /*
691 * Returns the _complete_ blocks that this bio covers.
692 */
693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
694 dm_block_t *begin, dm_block_t *end)
695 {
696 struct pool *pool = tc->pool;
697 sector_t b = bio->bi_iter.bi_sector;
698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699
700 b += pool->sectors_per_block - 1ull; /* so we round up */
701
702 if (block_size_is_power_of_two(pool)) {
703 b >>= pool->sectors_per_block_shift;
704 e >>= pool->sectors_per_block_shift;
705 } else {
706 (void) sector_div(b, pool->sectors_per_block);
707 (void) sector_div(e, pool->sectors_per_block);
708 }
709
710 if (e < b)
711 /* Can happen if the bio is within a single block. */
712 e = b;
713
714 *begin = b;
715 *end = e;
716 }
717
718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719 {
720 struct pool *pool = tc->pool;
721 sector_t bi_sector = bio->bi_iter.bi_sector;
722
723 bio_set_dev(bio, tc->pool_dev->bdev);
724 if (block_size_is_power_of_two(pool))
725 bio->bi_iter.bi_sector =
726 (block << pool->sectors_per_block_shift) |
727 (bi_sector & (pool->sectors_per_block - 1));
728 else
729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
730 sector_div(bi_sector, pool->sectors_per_block);
731 }
732
733 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734 {
735 bio_set_dev(bio, tc->origin_dev->bdev);
736 }
737
738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739 {
740 return op_is_flush(bio->bi_opf) &&
741 dm_thin_changed_this_transaction(tc->td);
742 }
743
744 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745 {
746 struct dm_thin_endio_hook *h;
747
748 if (bio_op(bio) == REQ_OP_DISCARD)
749 return;
750
751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
753 }
754
755 static void issue(struct thin_c *tc, struct bio *bio)
756 {
757 struct pool *pool = tc->pool;
758
759 if (!bio_triggers_commit(tc, bio)) {
760 submit_bio_noacct(bio);
761 return;
762 }
763
764 /*
765 * Complete bio with an error if earlier I/O caused changes to
766 * the metadata that can't be committed e.g, due to I/O errors
767 * on the metadata device.
768 */
769 if (dm_thin_aborted_changes(tc->td)) {
770 bio_io_error(bio);
771 return;
772 }
773
774 /*
775 * Batch together any bios that trigger commits and then issue a
776 * single commit for them in process_deferred_bios().
777 */
778 spin_lock_irq(&pool->lock);
779 bio_list_add(&pool->deferred_flush_bios, bio);
780 spin_unlock_irq(&pool->lock);
781 }
782
783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784 {
785 remap_to_origin(tc, bio);
786 issue(tc, bio);
787 }
788
789 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
790 dm_block_t block)
791 {
792 remap(tc, bio, block);
793 issue(tc, bio);
794 }
795
796 /*----------------------------------------------------------------*/
797
798 /*
799 * Bio endio functions.
800 */
801 struct dm_thin_new_mapping {
802 struct list_head list;
803
804 bool pass_discard:1;
805 bool maybe_shared:1;
806
807 /*
808 * Track quiescing, copying and zeroing preparation actions. When this
809 * counter hits zero the block is prepared and can be inserted into the
810 * btree.
811 */
812 atomic_t prepare_actions;
813
814 blk_status_t status;
815 struct thin_c *tc;
816 dm_block_t virt_begin, virt_end;
817 dm_block_t data_block;
818 struct dm_bio_prison_cell *cell;
819
820 /*
821 * If the bio covers the whole area of a block then we can avoid
822 * zeroing or copying. Instead this bio is hooked. The bio will
823 * still be in the cell, so care has to be taken to avoid issuing
824 * the bio twice.
825 */
826 struct bio *bio;
827 bio_end_io_t *saved_bi_end_io;
828 };
829
830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831 {
832 struct pool *pool = m->tc->pool;
833
834 if (atomic_dec_and_test(&m->prepare_actions)) {
835 list_add_tail(&m->list, &pool->prepared_mappings);
836 wake_worker(pool);
837 }
838 }
839
840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842 unsigned long flags;
843 struct pool *pool = m->tc->pool;
844
845 spin_lock_irqsave(&pool->lock, flags);
846 __complete_mapping_preparation(m);
847 spin_unlock_irqrestore(&pool->lock, flags);
848 }
849
850 static void copy_complete(int read_err, unsigned long write_err, void *context)
851 {
852 struct dm_thin_new_mapping *m = context;
853
854 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
855 complete_mapping_preparation(m);
856 }
857
858 static void overwrite_endio(struct bio *bio)
859 {
860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 struct dm_thin_new_mapping *m = h->overwrite_mapping;
862
863 bio->bi_end_io = m->saved_bi_end_io;
864
865 m->status = bio->bi_status;
866 complete_mapping_preparation(m);
867 }
868
869 /*----------------------------------------------------------------*/
870
871 /*
872 * Workqueue.
873 */
874
875 /*
876 * Prepared mapping jobs.
877 */
878
879 /*
880 * This sends the bios in the cell, except the original holder, back
881 * to the deferred_bios list.
882 */
883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884 {
885 struct pool *pool = tc->pool;
886 unsigned long flags;
887 int has_work;
888
889 spin_lock_irqsave(&tc->lock, flags);
890 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
891 has_work = !bio_list_empty(&tc->deferred_bio_list);
892 spin_unlock_irqrestore(&tc->lock, flags);
893
894 if (has_work)
895 wake_worker(pool);
896 }
897
898 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
899
900 struct remap_info {
901 struct thin_c *tc;
902 struct bio_list defer_bios;
903 struct bio_list issue_bios;
904 };
905
906 static void __inc_remap_and_issue_cell(void *context,
907 struct dm_bio_prison_cell *cell)
908 {
909 struct remap_info *info = context;
910 struct bio *bio;
911
912 while ((bio = bio_list_pop(&cell->bios))) {
913 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
914 bio_list_add(&info->defer_bios, bio);
915 else {
916 inc_all_io_entry(info->tc->pool, bio);
917
918 /*
919 * We can't issue the bios with the bio prison lock
920 * held, so we add them to a list to issue on
921 * return from this function.
922 */
923 bio_list_add(&info->issue_bios, bio);
924 }
925 }
926 }
927
928 static void inc_remap_and_issue_cell(struct thin_c *tc,
929 struct dm_bio_prison_cell *cell,
930 dm_block_t block)
931 {
932 struct bio *bio;
933 struct remap_info info;
934
935 info.tc = tc;
936 bio_list_init(&info.defer_bios);
937 bio_list_init(&info.issue_bios);
938
939 /*
940 * We have to be careful to inc any bios we're about to issue
941 * before the cell is released, and avoid a race with new bios
942 * being added to the cell.
943 */
944 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
945 &info, cell);
946
947 while ((bio = bio_list_pop(&info.defer_bios)))
948 thin_defer_bio(tc, bio);
949
950 while ((bio = bio_list_pop(&info.issue_bios)))
951 remap_and_issue(info.tc, bio, block);
952 }
953
954 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
955 {
956 cell_error(m->tc->pool, m->cell);
957 list_del(&m->list);
958 mempool_free(m, &m->tc->pool->mapping_pool);
959 }
960
961 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
962 {
963 struct pool *pool = tc->pool;
964
965 /*
966 * If the bio has the REQ_FUA flag set we must commit the metadata
967 * before signaling its completion.
968 */
969 if (!bio_triggers_commit(tc, bio)) {
970 bio_endio(bio);
971 return;
972 }
973
974 /*
975 * Complete bio with an error if earlier I/O caused changes to the
976 * metadata that can't be committed, e.g, due to I/O errors on the
977 * metadata device.
978 */
979 if (dm_thin_aborted_changes(tc->td)) {
980 bio_io_error(bio);
981 return;
982 }
983
984 /*
985 * Batch together any bios that trigger commits and then issue a
986 * single commit for them in process_deferred_bios().
987 */
988 spin_lock_irq(&pool->lock);
989 bio_list_add(&pool->deferred_flush_completions, bio);
990 spin_unlock_irq(&pool->lock);
991 }
992
993 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 {
995 struct thin_c *tc = m->tc;
996 struct pool *pool = tc->pool;
997 struct bio *bio = m->bio;
998 int r;
999
1000 if (m->status) {
1001 cell_error(pool, m->cell);
1002 goto out;
1003 }
1004
1005 /*
1006 * Commit the prepared block into the mapping btree.
1007 * Any I/O for this block arriving after this point will get
1008 * remapped to it directly.
1009 */
1010 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011 if (r) {
1012 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013 cell_error(pool, m->cell);
1014 goto out;
1015 }
1016
1017 /*
1018 * Release any bios held while the block was being provisioned.
1019 * If we are processing a write bio that completely covers the block,
1020 * we already processed it so can ignore it now when processing
1021 * the bios in the cell.
1022 */
1023 if (bio) {
1024 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025 complete_overwrite_bio(tc, bio);
1026 } else {
1027 inc_all_io_entry(tc->pool, m->cell->holder);
1028 remap_and_issue(tc, m->cell->holder, m->data_block);
1029 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030 }
1031
1032 out:
1033 list_del(&m->list);
1034 mempool_free(m, &pool->mapping_pool);
1035 }
1036
1037 /*----------------------------------------------------------------*/
1038
1039 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 {
1041 struct thin_c *tc = m->tc;
1042 if (m->cell)
1043 cell_defer_no_holder(tc, m->cell);
1044 mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 bio_io_error(m->bio);
1050 free_discard_mapping(m);
1051 }
1052
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 bio_endio(m->bio);
1056 free_discard_mapping(m);
1057 }
1058
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 int r;
1062 struct thin_c *tc = m->tc;
1063
1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 if (r) {
1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 bio_io_error(m->bio);
1068 } else
1069 bio_endio(m->bio);
1070
1071 cell_defer_no_holder(tc, m->cell);
1072 mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 struct bio *discard_parent)
1079 {
1080 /*
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1083 */
1084 int r = 0;
1085 bool shared = true;
1086 struct thin_c *tc = m->tc;
1087 struct pool *pool = tc->pool;
1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 struct discard_op op;
1090
1091 begin_discard(&op, tc, discard_parent);
1092 while (b != end) {
1093 /* find start of unmapped run */
1094 for (; b < end; b++) {
1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 if (r)
1097 goto out;
1098
1099 if (!shared)
1100 break;
1101 }
1102
1103 if (b == end)
1104 break;
1105
1106 /* find end of run */
1107 for (e = b + 1; e != end; e++) {
1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 if (r)
1110 goto out;
1111
1112 if (shared)
1113 break;
1114 }
1115
1116 r = issue_discard(&op, b, e);
1117 if (r)
1118 goto out;
1119
1120 b = e;
1121 }
1122 out:
1123 end_discard(&op, r);
1124 }
1125
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128 unsigned long flags;
1129 struct pool *pool = m->tc->pool;
1130
1131 spin_lock_irqsave(&pool->lock, flags);
1132 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 spin_unlock_irqrestore(&pool->lock, flags);
1134 wake_worker(pool);
1135 }
1136
1137 static void passdown_endio(struct bio *bio)
1138 {
1139 /*
1140 * It doesn't matter if the passdown discard failed, we still want
1141 * to unmap (we ignore err).
1142 */
1143 queue_passdown_pt2(bio->bi_private);
1144 bio_put(bio);
1145 }
1146
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149 int r;
1150 struct thin_c *tc = m->tc;
1151 struct pool *pool = tc->pool;
1152 struct bio *discard_parent;
1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155 /*
1156 * Only this thread allocates blocks, so we can be sure that the
1157 * newly unmapped blocks will not be allocated before the end of
1158 * the function.
1159 */
1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 if (r) {
1162 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 bio_io_error(m->bio);
1164 cell_defer_no_holder(tc, m->cell);
1165 mempool_free(m, &pool->mapping_pool);
1166 return;
1167 }
1168
1169 /*
1170 * Increment the unmapped blocks. This prevents a race between the
1171 * passdown io and reallocation of freed blocks.
1172 */
1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 if (r) {
1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 bio_io_error(m->bio);
1177 cell_defer_no_holder(tc, m->cell);
1178 mempool_free(m, &pool->mapping_pool);
1179 return;
1180 }
1181
1182 discard_parent = bio_alloc(GFP_NOIO, 1);
1183 if (!discard_parent) {
1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 dm_device_name(tc->pool->pool_md));
1186 queue_passdown_pt2(m);
1187
1188 } else {
1189 discard_parent->bi_end_io = passdown_endio;
1190 discard_parent->bi_private = m;
1191
1192 if (m->maybe_shared)
1193 passdown_double_checking_shared_status(m, discard_parent);
1194 else {
1195 struct discard_op op;
1196
1197 begin_discard(&op, tc, discard_parent);
1198 r = issue_discard(&op, m->data_block, data_end);
1199 end_discard(&op, r);
1200 }
1201 }
1202 }
1203
1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 {
1206 int r;
1207 struct thin_c *tc = m->tc;
1208 struct pool *pool = tc->pool;
1209
1210 /*
1211 * The passdown has completed, so now we can decrement all those
1212 * unmapped blocks.
1213 */
1214 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215 m->data_block + (m->virt_end - m->virt_begin));
1216 if (r) {
1217 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218 bio_io_error(m->bio);
1219 } else
1220 bio_endio(m->bio);
1221
1222 cell_defer_no_holder(tc, m->cell);
1223 mempool_free(m, &pool->mapping_pool);
1224 }
1225
1226 static void process_prepared(struct pool *pool, struct list_head *head,
1227 process_mapping_fn *fn)
1228 {
1229 struct list_head maps;
1230 struct dm_thin_new_mapping *m, *tmp;
1231
1232 INIT_LIST_HEAD(&maps);
1233 spin_lock_irq(&pool->lock);
1234 list_splice_init(head, &maps);
1235 spin_unlock_irq(&pool->lock);
1236
1237 list_for_each_entry_safe(m, tmp, &maps, list)
1238 (*fn)(m);
1239 }
1240
1241 /*
1242 * Deferred bio jobs.
1243 */
1244 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245 {
1246 return bio->bi_iter.bi_size ==
1247 (pool->sectors_per_block << SECTOR_SHIFT);
1248 }
1249
1250 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251 {
1252 return (bio_data_dir(bio) == WRITE) &&
1253 io_overlaps_block(pool, bio);
1254 }
1255
1256 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1257 bio_end_io_t *fn)
1258 {
1259 *save = bio->bi_end_io;
1260 bio->bi_end_io = fn;
1261 }
1262
1263 static int ensure_next_mapping(struct pool *pool)
1264 {
1265 if (pool->next_mapping)
1266 return 0;
1267
1268 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269
1270 return pool->next_mapping ? 0 : -ENOMEM;
1271 }
1272
1273 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274 {
1275 struct dm_thin_new_mapping *m = pool->next_mapping;
1276
1277 BUG_ON(!pool->next_mapping);
1278
1279 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1280 INIT_LIST_HEAD(&m->list);
1281 m->bio = NULL;
1282
1283 pool->next_mapping = NULL;
1284
1285 return m;
1286 }
1287
1288 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1289 sector_t begin, sector_t end)
1290 {
1291 struct dm_io_region to;
1292
1293 to.bdev = tc->pool_dev->bdev;
1294 to.sector = begin;
1295 to.count = end - begin;
1296
1297 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1298 }
1299
1300 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301 dm_block_t data_begin,
1302 struct dm_thin_new_mapping *m)
1303 {
1304 struct pool *pool = tc->pool;
1305 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306
1307 h->overwrite_mapping = m;
1308 m->bio = bio;
1309 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310 inc_all_io_entry(pool, bio);
1311 remap_and_issue(tc, bio, data_begin);
1312 }
1313
1314 /*
1315 * A partial copy also needs to zero the uncopied region.
1316 */
1317 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318 struct dm_dev *origin, dm_block_t data_origin,
1319 dm_block_t data_dest,
1320 struct dm_bio_prison_cell *cell, struct bio *bio,
1321 sector_t len)
1322 {
1323 struct pool *pool = tc->pool;
1324 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325
1326 m->tc = tc;
1327 m->virt_begin = virt_block;
1328 m->virt_end = virt_block + 1u;
1329 m->data_block = data_dest;
1330 m->cell = cell;
1331
1332 /*
1333 * quiesce action + copy action + an extra reference held for the
1334 * duration of this function (we may need to inc later for a
1335 * partial zero).
1336 */
1337 atomic_set(&m->prepare_actions, 3);
1338
1339 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1340 complete_mapping_preparation(m); /* already quiesced */
1341
1342 /*
1343 * IO to pool_dev remaps to the pool target's data_dev.
1344 *
1345 * If the whole block of data is being overwritten, we can issue the
1346 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347 */
1348 if (io_overwrites_block(pool, bio))
1349 remap_and_issue_overwrite(tc, bio, data_dest, m);
1350 else {
1351 struct dm_io_region from, to;
1352
1353 from.bdev = origin->bdev;
1354 from.sector = data_origin * pool->sectors_per_block;
1355 from.count = len;
1356
1357 to.bdev = tc->pool_dev->bdev;
1358 to.sector = data_dest * pool->sectors_per_block;
1359 to.count = len;
1360
1361 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1362 0, copy_complete, m);
1363
1364 /*
1365 * Do we need to zero a tail region?
1366 */
1367 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1368 atomic_inc(&m->prepare_actions);
1369 ll_zero(tc, m,
1370 data_dest * pool->sectors_per_block + len,
1371 (data_dest + 1) * pool->sectors_per_block);
1372 }
1373 }
1374
1375 complete_mapping_preparation(m); /* drop our ref */
1376 }
1377
1378 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1379 dm_block_t data_origin, dm_block_t data_dest,
1380 struct dm_bio_prison_cell *cell, struct bio *bio)
1381 {
1382 schedule_copy(tc, virt_block, tc->pool_dev,
1383 data_origin, data_dest, cell, bio,
1384 tc->pool->sectors_per_block);
1385 }
1386
1387 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1388 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1389 struct bio *bio)
1390 {
1391 struct pool *pool = tc->pool;
1392 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393
1394 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1395 m->tc = tc;
1396 m->virt_begin = virt_block;
1397 m->virt_end = virt_block + 1u;
1398 m->data_block = data_block;
1399 m->cell = cell;
1400
1401 /*
1402 * If the whole block of data is being overwritten or we are not
1403 * zeroing pre-existing data, we can issue the bio immediately.
1404 * Otherwise we use kcopyd to zero the data first.
1405 */
1406 if (pool->pf.zero_new_blocks) {
1407 if (io_overwrites_block(pool, bio))
1408 remap_and_issue_overwrite(tc, bio, data_block, m);
1409 else
1410 ll_zero(tc, m, data_block * pool->sectors_per_block,
1411 (data_block + 1) * pool->sectors_per_block);
1412 } else
1413 process_prepared_mapping(m);
1414 }
1415
1416 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1417 dm_block_t data_dest,
1418 struct dm_bio_prison_cell *cell, struct bio *bio)
1419 {
1420 struct pool *pool = tc->pool;
1421 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1422 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423
1424 if (virt_block_end <= tc->origin_size)
1425 schedule_copy(tc, virt_block, tc->origin_dev,
1426 virt_block, data_dest, cell, bio,
1427 pool->sectors_per_block);
1428
1429 else if (virt_block_begin < tc->origin_size)
1430 schedule_copy(tc, virt_block, tc->origin_dev,
1431 virt_block, data_dest, cell, bio,
1432 tc->origin_size - virt_block_begin);
1433
1434 else
1435 schedule_zero(tc, virt_block, data_dest, cell, bio);
1436 }
1437
1438 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439
1440 static void requeue_bios(struct pool *pool);
1441
1442 static bool is_read_only_pool_mode(enum pool_mode mode)
1443 {
1444 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1445 }
1446
1447 static bool is_read_only(struct pool *pool)
1448 {
1449 return is_read_only_pool_mode(get_pool_mode(pool));
1450 }
1451
1452 static void check_for_metadata_space(struct pool *pool)
1453 {
1454 int r;
1455 const char *ooms_reason = NULL;
1456 dm_block_t nr_free;
1457
1458 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1459 if (r)
1460 ooms_reason = "Could not get free metadata blocks";
1461 else if (!nr_free)
1462 ooms_reason = "No free metadata blocks";
1463
1464 if (ooms_reason && !is_read_only(pool)) {
1465 DMERR("%s", ooms_reason);
1466 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1467 }
1468 }
1469
1470 static void check_for_data_space(struct pool *pool)
1471 {
1472 int r;
1473 dm_block_t nr_free;
1474
1475 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1476 return;
1477
1478 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1479 if (r)
1480 return;
1481
1482 if (nr_free) {
1483 set_pool_mode(pool, PM_WRITE);
1484 requeue_bios(pool);
1485 }
1486 }
1487
1488 /*
1489 * A non-zero return indicates read_only or fail_io mode.
1490 * Many callers don't care about the return value.
1491 */
1492 static int commit(struct pool *pool)
1493 {
1494 int r;
1495
1496 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1497 return -EINVAL;
1498
1499 r = dm_pool_commit_metadata(pool->pmd);
1500 if (r)
1501 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1502 else {
1503 check_for_metadata_space(pool);
1504 check_for_data_space(pool);
1505 }
1506
1507 return r;
1508 }
1509
1510 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511 {
1512 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1513 DMWARN("%s: reached low water mark for data device: sending event.",
1514 dm_device_name(pool->pool_md));
1515 spin_lock_irq(&pool->lock);
1516 pool->low_water_triggered = true;
1517 spin_unlock_irq(&pool->lock);
1518 dm_table_event(pool->ti->table);
1519 }
1520 }
1521
1522 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523 {
1524 int r;
1525 dm_block_t free_blocks;
1526 struct pool *pool = tc->pool;
1527
1528 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1529 return -EINVAL;
1530
1531 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1532 if (r) {
1533 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1534 return r;
1535 }
1536
1537 check_low_water_mark(pool, free_blocks);
1538
1539 if (!free_blocks) {
1540 /*
1541 * Try to commit to see if that will free up some
1542 * more space.
1543 */
1544 r = commit(pool);
1545 if (r)
1546 return r;
1547
1548 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1549 if (r) {
1550 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1551 return r;
1552 }
1553
1554 if (!free_blocks) {
1555 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556 return -ENOSPC;
1557 }
1558 }
1559
1560 r = dm_pool_alloc_data_block(pool->pmd, result);
1561 if (r) {
1562 if (r == -ENOSPC)
1563 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1564 else
1565 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1566 return r;
1567 }
1568
1569 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1570 if (r) {
1571 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1572 return r;
1573 }
1574
1575 if (!free_blocks) {
1576 /* Let's commit before we use up the metadata reserve. */
1577 r = commit(pool);
1578 if (r)
1579 return r;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * If we have run out of space, queue bios until the device is
1587 * resumed, presumably after having been reloaded with more space.
1588 */
1589 static void retry_on_resume(struct bio *bio)
1590 {
1591 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1592 struct thin_c *tc = h->tc;
1593
1594 spin_lock_irq(&tc->lock);
1595 bio_list_add(&tc->retry_on_resume_list, bio);
1596 spin_unlock_irq(&tc->lock);
1597 }
1598
1599 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600 {
1601 enum pool_mode m = get_pool_mode(pool);
1602
1603 switch (m) {
1604 case PM_WRITE:
1605 /* Shouldn't get here */
1606 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607 return BLK_STS_IOERR;
1608
1609 case PM_OUT_OF_DATA_SPACE:
1610 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611
1612 case PM_OUT_OF_METADATA_SPACE:
1613 case PM_READ_ONLY:
1614 case PM_FAIL:
1615 return BLK_STS_IOERR;
1616 default:
1617 /* Shouldn't get here */
1618 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619 return BLK_STS_IOERR;
1620 }
1621 }
1622
1623 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624 {
1625 blk_status_t error = should_error_unserviceable_bio(pool);
1626
1627 if (error) {
1628 bio->bi_status = error;
1629 bio_endio(bio);
1630 } else
1631 retry_on_resume(bio);
1632 }
1633
1634 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635 {
1636 struct bio *bio;
1637 struct bio_list bios;
1638 blk_status_t error;
1639
1640 error = should_error_unserviceable_bio(pool);
1641 if (error) {
1642 cell_error_with_code(pool, cell, error);
1643 return;
1644 }
1645
1646 bio_list_init(&bios);
1647 cell_release(pool, cell, &bios);
1648
1649 while ((bio = bio_list_pop(&bios)))
1650 retry_on_resume(bio);
1651 }
1652
1653 static void process_discard_cell_no_passdown(struct thin_c *tc,
1654 struct dm_bio_prison_cell *virt_cell)
1655 {
1656 struct pool *pool = tc->pool;
1657 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1658
1659 /*
1660 * We don't need to lock the data blocks, since there's no
1661 * passdown. We only lock data blocks for allocation and breaking sharing.
1662 */
1663 m->tc = tc;
1664 m->virt_begin = virt_cell->key.block_begin;
1665 m->virt_end = virt_cell->key.block_end;
1666 m->cell = virt_cell;
1667 m->bio = virt_cell->holder;
1668
1669 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1670 pool->process_prepared_discard(m);
1671 }
1672
1673 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1674 struct bio *bio)
1675 {
1676 struct pool *pool = tc->pool;
1677
1678 int r;
1679 bool maybe_shared;
1680 struct dm_cell_key data_key;
1681 struct dm_bio_prison_cell *data_cell;
1682 struct dm_thin_new_mapping *m;
1683 dm_block_t virt_begin, virt_end, data_begin;
1684
1685 while (begin != end) {
1686 r = ensure_next_mapping(pool);
1687 if (r)
1688 /* we did our best */
1689 return;
1690
1691 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1692 &data_begin, &maybe_shared);
1693 if (r)
1694 /*
1695 * Silently fail, letting any mappings we've
1696 * created complete.
1697 */
1698 break;
1699
1700 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1701 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1702 /* contention, we'll give up with this range */
1703 begin = virt_end;
1704 continue;
1705 }
1706
1707 /*
1708 * IO may still be going to the destination block. We must
1709 * quiesce before we can do the removal.
1710 */
1711 m = get_next_mapping(pool);
1712 m->tc = tc;
1713 m->maybe_shared = maybe_shared;
1714 m->virt_begin = virt_begin;
1715 m->virt_end = virt_end;
1716 m->data_block = data_begin;
1717 m->cell = data_cell;
1718 m->bio = bio;
1719
1720 /*
1721 * The parent bio must not complete before sub discard bios are
1722 * chained to it (see end_discard's bio_chain)!
1723 *
1724 * This per-mapping bi_remaining increment is paired with
1725 * the implicit decrement that occurs via bio_endio() in
1726 * end_discard().
1727 */
1728 bio_inc_remaining(bio);
1729 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1730 pool->process_prepared_discard(m);
1731
1732 begin = virt_end;
1733 }
1734 }
1735
1736 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737 {
1738 struct bio *bio = virt_cell->holder;
1739 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1740
1741 /*
1742 * The virt_cell will only get freed once the origin bio completes.
1743 * This means it will remain locked while all the individual
1744 * passdown bios are in flight.
1745 */
1746 h->cell = virt_cell;
1747 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1748
1749 /*
1750 * We complete the bio now, knowing that the bi_remaining field
1751 * will prevent completion until the sub range discards have
1752 * completed.
1753 */
1754 bio_endio(bio);
1755 }
1756
1757 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758 {
1759 dm_block_t begin, end;
1760 struct dm_cell_key virt_key;
1761 struct dm_bio_prison_cell *virt_cell;
1762
1763 get_bio_block_range(tc, bio, &begin, &end);
1764 if (begin == end) {
1765 /*
1766 * The discard covers less than a block.
1767 */
1768 bio_endio(bio);
1769 return;
1770 }
1771
1772 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1773 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774 /*
1775 * Potential starvation issue: We're relying on the
1776 * fs/application being well behaved, and not trying to
1777 * send IO to a region at the same time as discarding it.
1778 * If they do this persistently then it's possible this
1779 * cell will never be granted.
1780 */
1781 return;
1782
1783 tc->pool->process_discard_cell(tc, virt_cell);
1784 }
1785
1786 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787 struct dm_cell_key *key,
1788 struct dm_thin_lookup_result *lookup_result,
1789 struct dm_bio_prison_cell *cell)
1790 {
1791 int r;
1792 dm_block_t data_block;
1793 struct pool *pool = tc->pool;
1794
1795 r = alloc_data_block(tc, &data_block);
1796 switch (r) {
1797 case 0:
1798 schedule_internal_copy(tc, block, lookup_result->block,
1799 data_block, cell, bio);
1800 break;
1801
1802 case -ENOSPC:
1803 retry_bios_on_resume(pool, cell);
1804 break;
1805
1806 default:
1807 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808 __func__, r);
1809 cell_error(pool, cell);
1810 break;
1811 }
1812 }
1813
1814 static void __remap_and_issue_shared_cell(void *context,
1815 struct dm_bio_prison_cell *cell)
1816 {
1817 struct remap_info *info = context;
1818 struct bio *bio;
1819
1820 while ((bio = bio_list_pop(&cell->bios))) {
1821 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1822 bio_op(bio) == REQ_OP_DISCARD)
1823 bio_list_add(&info->defer_bios, bio);
1824 else {
1825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826
1827 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1828 inc_all_io_entry(info->tc->pool, bio);
1829 bio_list_add(&info->issue_bios, bio);
1830 }
1831 }
1832 }
1833
1834 static void remap_and_issue_shared_cell(struct thin_c *tc,
1835 struct dm_bio_prison_cell *cell,
1836 dm_block_t block)
1837 {
1838 struct bio *bio;
1839 struct remap_info info;
1840
1841 info.tc = tc;
1842 bio_list_init(&info.defer_bios);
1843 bio_list_init(&info.issue_bios);
1844
1845 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1846 &info, cell);
1847
1848 while ((bio = bio_list_pop(&info.defer_bios)))
1849 thin_defer_bio(tc, bio);
1850
1851 while ((bio = bio_list_pop(&info.issue_bios)))
1852 remap_and_issue(tc, bio, block);
1853 }
1854
1855 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1856 dm_block_t block,
1857 struct dm_thin_lookup_result *lookup_result,
1858 struct dm_bio_prison_cell *virt_cell)
1859 {
1860 struct dm_bio_prison_cell *data_cell;
1861 struct pool *pool = tc->pool;
1862 struct dm_cell_key key;
1863
1864 /*
1865 * If cell is already occupied, then sharing is already in the process
1866 * of being broken so we have nothing further to do here.
1867 */
1868 build_data_key(tc->td, lookup_result->block, &key);
1869 if (bio_detain(pool, &key, bio, &data_cell)) {
1870 cell_defer_no_holder(tc, virt_cell);
1871 return;
1872 }
1873
1874 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1875 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1876 cell_defer_no_holder(tc, virt_cell);
1877 } else {
1878 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1879
1880 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1881 inc_all_io_entry(pool, bio);
1882 remap_and_issue(tc, bio, lookup_result->block);
1883
1884 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1885 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1886 }
1887 }
1888
1889 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1890 struct dm_bio_prison_cell *cell)
1891 {
1892 int r;
1893 dm_block_t data_block;
1894 struct pool *pool = tc->pool;
1895
1896 /*
1897 * Remap empty bios (flushes) immediately, without provisioning.
1898 */
1899 if (!bio->bi_iter.bi_size) {
1900 inc_all_io_entry(pool, bio);
1901 cell_defer_no_holder(tc, cell);
1902
1903 remap_and_issue(tc, bio, 0);
1904 return;
1905 }
1906
1907 /*
1908 * Fill read bios with zeroes and complete them immediately.
1909 */
1910 if (bio_data_dir(bio) == READ) {
1911 zero_fill_bio(bio);
1912 cell_defer_no_holder(tc, cell);
1913 bio_endio(bio);
1914 return;
1915 }
1916
1917 r = alloc_data_block(tc, &data_block);
1918 switch (r) {
1919 case 0:
1920 if (tc->origin_dev)
1921 schedule_external_copy(tc, block, data_block, cell, bio);
1922 else
1923 schedule_zero(tc, block, data_block, cell, bio);
1924 break;
1925
1926 case -ENOSPC:
1927 retry_bios_on_resume(pool, cell);
1928 break;
1929
1930 default:
1931 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932 __func__, r);
1933 cell_error(pool, cell);
1934 break;
1935 }
1936 }
1937
1938 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939 {
1940 int r;
1941 struct pool *pool = tc->pool;
1942 struct bio *bio = cell->holder;
1943 dm_block_t block = get_bio_block(tc, bio);
1944 struct dm_thin_lookup_result lookup_result;
1945
1946 if (tc->requeue_mode) {
1947 cell_requeue(pool, cell);
1948 return;
1949 }
1950
1951 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1952 switch (r) {
1953 case 0:
1954 if (lookup_result.shared)
1955 process_shared_bio(tc, bio, block, &lookup_result, cell);
1956 else {
1957 inc_all_io_entry(pool, bio);
1958 remap_and_issue(tc, bio, lookup_result.block);
1959 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960 }
1961 break;
1962
1963 case -ENODATA:
1964 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1965 inc_all_io_entry(pool, bio);
1966 cell_defer_no_holder(tc, cell);
1967
1968 if (bio_end_sector(bio) <= tc->origin_size)
1969 remap_to_origin_and_issue(tc, bio);
1970
1971 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1972 zero_fill_bio(bio);
1973 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1974 remap_to_origin_and_issue(tc, bio);
1975
1976 } else {
1977 zero_fill_bio(bio);
1978 bio_endio(bio);
1979 }
1980 } else
1981 provision_block(tc, bio, block, cell);
1982 break;
1983
1984 default:
1985 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986 __func__, r);
1987 cell_defer_no_holder(tc, cell);
1988 bio_io_error(bio);
1989 break;
1990 }
1991 }
1992
1993 static void process_bio(struct thin_c *tc, struct bio *bio)
1994 {
1995 struct pool *pool = tc->pool;
1996 dm_block_t block = get_bio_block(tc, bio);
1997 struct dm_bio_prison_cell *cell;
1998 struct dm_cell_key key;
1999
2000 /*
2001 * If cell is already occupied, then the block is already
2002 * being provisioned so we have nothing further to do here.
2003 */
2004 build_virtual_key(tc->td, block, &key);
2005 if (bio_detain(pool, &key, bio, &cell))
2006 return;
2007
2008 process_cell(tc, cell);
2009 }
2010
2011 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2012 struct dm_bio_prison_cell *cell)
2013 {
2014 int r;
2015 int rw = bio_data_dir(bio);
2016 dm_block_t block = get_bio_block(tc, bio);
2017 struct dm_thin_lookup_result lookup_result;
2018
2019 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2020 switch (r) {
2021 case 0:
2022 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2023 handle_unserviceable_bio(tc->pool, bio);
2024 if (cell)
2025 cell_defer_no_holder(tc, cell);
2026 } else {
2027 inc_all_io_entry(tc->pool, bio);
2028 remap_and_issue(tc, bio, lookup_result.block);
2029 if (cell)
2030 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031 }
2032 break;
2033
2034 case -ENODATA:
2035 if (cell)
2036 cell_defer_no_holder(tc, cell);
2037 if (rw != READ) {
2038 handle_unserviceable_bio(tc->pool, bio);
2039 break;
2040 }
2041
2042 if (tc->origin_dev) {
2043 inc_all_io_entry(tc->pool, bio);
2044 remap_to_origin_and_issue(tc, bio);
2045 break;
2046 }
2047
2048 zero_fill_bio(bio);
2049 bio_endio(bio);
2050 break;
2051
2052 default:
2053 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2054 __func__, r);
2055 if (cell)
2056 cell_defer_no_holder(tc, cell);
2057 bio_io_error(bio);
2058 break;
2059 }
2060 }
2061
2062 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063 {
2064 __process_bio_read_only(tc, bio, NULL);
2065 }
2066
2067 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068 {
2069 __process_bio_read_only(tc, cell->holder, cell);
2070 }
2071
2072 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073 {
2074 bio_endio(bio);
2075 }
2076
2077 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078 {
2079 bio_io_error(bio);
2080 }
2081
2082 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083 {
2084 cell_success(tc->pool, cell);
2085 }
2086
2087 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088 {
2089 cell_error(tc->pool, cell);
2090 }
2091
2092 /*
2093 * FIXME: should we also commit due to size of transaction, measured in
2094 * metadata blocks?
2095 */
2096 static int need_commit_due_to_time(struct pool *pool)
2097 {
2098 return !time_in_range(jiffies, pool->last_commit_jiffies,
2099 pool->last_commit_jiffies + COMMIT_PERIOD);
2100 }
2101
2102 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104
2105 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106 {
2107 struct rb_node **rbp, *parent;
2108 struct dm_thin_endio_hook *pbd;
2109 sector_t bi_sector = bio->bi_iter.bi_sector;
2110
2111 rbp = &tc->sort_bio_list.rb_node;
2112 parent = NULL;
2113 while (*rbp) {
2114 parent = *rbp;
2115 pbd = thin_pbd(parent);
2116
2117 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2118 rbp = &(*rbp)->rb_left;
2119 else
2120 rbp = &(*rbp)->rb_right;
2121 }
2122
2123 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2124 rb_link_node(&pbd->rb_node, parent, rbp);
2125 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2126 }
2127
2128 static void __extract_sorted_bios(struct thin_c *tc)
2129 {
2130 struct rb_node *node;
2131 struct dm_thin_endio_hook *pbd;
2132 struct bio *bio;
2133
2134 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2135 pbd = thin_pbd(node);
2136 bio = thin_bio(pbd);
2137
2138 bio_list_add(&tc->deferred_bio_list, bio);
2139 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2140 }
2141
2142 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2143 }
2144
2145 static void __sort_thin_deferred_bios(struct thin_c *tc)
2146 {
2147 struct bio *bio;
2148 struct bio_list bios;
2149
2150 bio_list_init(&bios);
2151 bio_list_merge(&bios, &tc->deferred_bio_list);
2152 bio_list_init(&tc->deferred_bio_list);
2153
2154 /* Sort deferred_bio_list using rb-tree */
2155 while ((bio = bio_list_pop(&bios)))
2156 __thin_bio_rb_add(tc, bio);
2157
2158 /*
2159 * Transfer the sorted bios in sort_bio_list back to
2160 * deferred_bio_list to allow lockless submission of
2161 * all bios.
2162 */
2163 __extract_sorted_bios(tc);
2164 }
2165
2166 static void process_thin_deferred_bios(struct thin_c *tc)
2167 {
2168 struct pool *pool = tc->pool;
2169 struct bio *bio;
2170 struct bio_list bios;
2171 struct blk_plug plug;
2172 unsigned count = 0;
2173
2174 if (tc->requeue_mode) {
2175 error_thin_bio_list(tc, &tc->deferred_bio_list,
2176 BLK_STS_DM_REQUEUE);
2177 return;
2178 }
2179
2180 bio_list_init(&bios);
2181
2182 spin_lock_irq(&tc->lock);
2183
2184 if (bio_list_empty(&tc->deferred_bio_list)) {
2185 spin_unlock_irq(&tc->lock);
2186 return;
2187 }
2188
2189 __sort_thin_deferred_bios(tc);
2190
2191 bio_list_merge(&bios, &tc->deferred_bio_list);
2192 bio_list_init(&tc->deferred_bio_list);
2193
2194 spin_unlock_irq(&tc->lock);
2195
2196 blk_start_plug(&plug);
2197 while ((bio = bio_list_pop(&bios))) {
2198 /*
2199 * If we've got no free new_mapping structs, and processing
2200 * this bio might require one, we pause until there are some
2201 * prepared mappings to process.
2202 */
2203 if (ensure_next_mapping(pool)) {
2204 spin_lock_irq(&tc->lock);
2205 bio_list_add(&tc->deferred_bio_list, bio);
2206 bio_list_merge(&tc->deferred_bio_list, &bios);
2207 spin_unlock_irq(&tc->lock);
2208 break;
2209 }
2210
2211 if (bio_op(bio) == REQ_OP_DISCARD)
2212 pool->process_discard(tc, bio);
2213 else
2214 pool->process_bio(tc, bio);
2215
2216 if ((count++ & 127) == 0) {
2217 throttle_work_update(&pool->throttle);
2218 dm_pool_issue_prefetches(pool->pmd);
2219 }
2220 }
2221 blk_finish_plug(&plug);
2222 }
2223
2224 static int cmp_cells(const void *lhs, const void *rhs)
2225 {
2226 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2227 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2228
2229 BUG_ON(!lhs_cell->holder);
2230 BUG_ON(!rhs_cell->holder);
2231
2232 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2233 return -1;
2234
2235 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2236 return 1;
2237
2238 return 0;
2239 }
2240
2241 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2242 {
2243 unsigned count = 0;
2244 struct dm_bio_prison_cell *cell, *tmp;
2245
2246 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2247 if (count >= CELL_SORT_ARRAY_SIZE)
2248 break;
2249
2250 pool->cell_sort_array[count++] = cell;
2251 list_del(&cell->user_list);
2252 }
2253
2254 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2255
2256 return count;
2257 }
2258
2259 static void process_thin_deferred_cells(struct thin_c *tc)
2260 {
2261 struct pool *pool = tc->pool;
2262 struct list_head cells;
2263 struct dm_bio_prison_cell *cell;
2264 unsigned i, j, count;
2265
2266 INIT_LIST_HEAD(&cells);
2267
2268 spin_lock_irq(&tc->lock);
2269 list_splice_init(&tc->deferred_cells, &cells);
2270 spin_unlock_irq(&tc->lock);
2271
2272 if (list_empty(&cells))
2273 return;
2274
2275 do {
2276 count = sort_cells(tc->pool, &cells);
2277
2278 for (i = 0; i < count; i++) {
2279 cell = pool->cell_sort_array[i];
2280 BUG_ON(!cell->holder);
2281
2282 /*
2283 * If we've got no free new_mapping structs, and processing
2284 * this bio might require one, we pause until there are some
2285 * prepared mappings to process.
2286 */
2287 if (ensure_next_mapping(pool)) {
2288 for (j = i; j < count; j++)
2289 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2290
2291 spin_lock_irq(&tc->lock);
2292 list_splice(&cells, &tc->deferred_cells);
2293 spin_unlock_irq(&tc->lock);
2294 return;
2295 }
2296
2297 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2298 pool->process_discard_cell(tc, cell);
2299 else
2300 pool->process_cell(tc, cell);
2301 }
2302 } while (!list_empty(&cells));
2303 }
2304
2305 static void thin_get(struct thin_c *tc);
2306 static void thin_put(struct thin_c *tc);
2307
2308 /*
2309 * We can't hold rcu_read_lock() around code that can block. So we
2310 * find a thin with the rcu lock held; bump a refcount; then drop
2311 * the lock.
2312 */
2313 static struct thin_c *get_first_thin(struct pool *pool)
2314 {
2315 struct thin_c *tc = NULL;
2316
2317 rcu_read_lock();
2318 if (!list_empty(&pool->active_thins)) {
2319 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2320 thin_get(tc);
2321 }
2322 rcu_read_unlock();
2323
2324 return tc;
2325 }
2326
2327 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2328 {
2329 struct thin_c *old_tc = tc;
2330
2331 rcu_read_lock();
2332 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2333 thin_get(tc);
2334 thin_put(old_tc);
2335 rcu_read_unlock();
2336 return tc;
2337 }
2338 thin_put(old_tc);
2339 rcu_read_unlock();
2340
2341 return NULL;
2342 }
2343
2344 static void process_deferred_bios(struct pool *pool)
2345 {
2346 struct bio *bio;
2347 struct bio_list bios, bio_completions;
2348 struct thin_c *tc;
2349
2350 tc = get_first_thin(pool);
2351 while (tc) {
2352 process_thin_deferred_cells(tc);
2353 process_thin_deferred_bios(tc);
2354 tc = get_next_thin(pool, tc);
2355 }
2356
2357 /*
2358 * If there are any deferred flush bios, we must commit the metadata
2359 * before issuing them or signaling their completion.
2360 */
2361 bio_list_init(&bios);
2362 bio_list_init(&bio_completions);
2363
2364 spin_lock_irq(&pool->lock);
2365 bio_list_merge(&bios, &pool->deferred_flush_bios);
2366 bio_list_init(&pool->deferred_flush_bios);
2367
2368 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2369 bio_list_init(&pool->deferred_flush_completions);
2370 spin_unlock_irq(&pool->lock);
2371
2372 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2373 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2374 return;
2375
2376 if (commit(pool)) {
2377 bio_list_merge(&bios, &bio_completions);
2378
2379 while ((bio = bio_list_pop(&bios)))
2380 bio_io_error(bio);
2381 return;
2382 }
2383 pool->last_commit_jiffies = jiffies;
2384
2385 while ((bio = bio_list_pop(&bio_completions)))
2386 bio_endio(bio);
2387
2388 while ((bio = bio_list_pop(&bios))) {
2389 /*
2390 * The data device was flushed as part of metadata commit,
2391 * so complete redundant flushes immediately.
2392 */
2393 if (bio->bi_opf & REQ_PREFLUSH)
2394 bio_endio(bio);
2395 else
2396 submit_bio_noacct(bio);
2397 }
2398 }
2399
2400 static void do_worker(struct work_struct *ws)
2401 {
2402 struct pool *pool = container_of(ws, struct pool, worker);
2403
2404 throttle_work_start(&pool->throttle);
2405 dm_pool_issue_prefetches(pool->pmd);
2406 throttle_work_update(&pool->throttle);
2407 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2408 throttle_work_update(&pool->throttle);
2409 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2410 throttle_work_update(&pool->throttle);
2411 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2412 throttle_work_update(&pool->throttle);
2413 process_deferred_bios(pool);
2414 throttle_work_complete(&pool->throttle);
2415 }
2416
2417 /*
2418 * We want to commit periodically so that not too much
2419 * unwritten data builds up.
2420 */
2421 static void do_waker(struct work_struct *ws)
2422 {
2423 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2424 wake_worker(pool);
2425 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2426 }
2427
2428 /*
2429 * We're holding onto IO to allow userland time to react. After the
2430 * timeout either the pool will have been resized (and thus back in
2431 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2432 */
2433 static void do_no_space_timeout(struct work_struct *ws)
2434 {
2435 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2436 no_space_timeout);
2437
2438 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2439 pool->pf.error_if_no_space = true;
2440 notify_of_pool_mode_change(pool);
2441 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2442 }
2443 }
2444
2445 /*----------------------------------------------------------------*/
2446
2447 struct pool_work {
2448 struct work_struct worker;
2449 struct completion complete;
2450 };
2451
2452 static struct pool_work *to_pool_work(struct work_struct *ws)
2453 {
2454 return container_of(ws, struct pool_work, worker);
2455 }
2456
2457 static void pool_work_complete(struct pool_work *pw)
2458 {
2459 complete(&pw->complete);
2460 }
2461
2462 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2463 void (*fn)(struct work_struct *))
2464 {
2465 INIT_WORK_ONSTACK(&pw->worker, fn);
2466 init_completion(&pw->complete);
2467 queue_work(pool->wq, &pw->worker);
2468 wait_for_completion(&pw->complete);
2469 }
2470
2471 /*----------------------------------------------------------------*/
2472
2473 struct noflush_work {
2474 struct pool_work pw;
2475 struct thin_c *tc;
2476 };
2477
2478 static struct noflush_work *to_noflush(struct work_struct *ws)
2479 {
2480 return container_of(to_pool_work(ws), struct noflush_work, pw);
2481 }
2482
2483 static void do_noflush_start(struct work_struct *ws)
2484 {
2485 struct noflush_work *w = to_noflush(ws);
2486 w->tc->requeue_mode = true;
2487 requeue_io(w->tc);
2488 pool_work_complete(&w->pw);
2489 }
2490
2491 static void do_noflush_stop(struct work_struct *ws)
2492 {
2493 struct noflush_work *w = to_noflush(ws);
2494 w->tc->requeue_mode = false;
2495 pool_work_complete(&w->pw);
2496 }
2497
2498 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2499 {
2500 struct noflush_work w;
2501
2502 w.tc = tc;
2503 pool_work_wait(&w.pw, tc->pool, fn);
2504 }
2505
2506 /*----------------------------------------------------------------*/
2507
2508 static bool passdown_enabled(struct pool_c *pt)
2509 {
2510 return pt->adjusted_pf.discard_passdown;
2511 }
2512
2513 static void set_discard_callbacks(struct pool *pool)
2514 {
2515 struct pool_c *pt = pool->ti->private;
2516
2517 if (passdown_enabled(pt)) {
2518 pool->process_discard_cell = process_discard_cell_passdown;
2519 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2520 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2521 } else {
2522 pool->process_discard_cell = process_discard_cell_no_passdown;
2523 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2524 }
2525 }
2526
2527 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2528 {
2529 struct pool_c *pt = pool->ti->private;
2530 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2531 enum pool_mode old_mode = get_pool_mode(pool);
2532 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2533
2534 /*
2535 * Never allow the pool to transition to PM_WRITE mode if user
2536 * intervention is required to verify metadata and data consistency.
2537 */
2538 if (new_mode == PM_WRITE && needs_check) {
2539 DMERR("%s: unable to switch pool to write mode until repaired.",
2540 dm_device_name(pool->pool_md));
2541 if (old_mode != new_mode)
2542 new_mode = old_mode;
2543 else
2544 new_mode = PM_READ_ONLY;
2545 }
2546 /*
2547 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2548 * not going to recover without a thin_repair. So we never let the
2549 * pool move out of the old mode.
2550 */
2551 if (old_mode == PM_FAIL)
2552 new_mode = old_mode;
2553
2554 switch (new_mode) {
2555 case PM_FAIL:
2556 dm_pool_metadata_read_only(pool->pmd);
2557 pool->process_bio = process_bio_fail;
2558 pool->process_discard = process_bio_fail;
2559 pool->process_cell = process_cell_fail;
2560 pool->process_discard_cell = process_cell_fail;
2561 pool->process_prepared_mapping = process_prepared_mapping_fail;
2562 pool->process_prepared_discard = process_prepared_discard_fail;
2563
2564 error_retry_list(pool);
2565 break;
2566
2567 case PM_OUT_OF_METADATA_SPACE:
2568 case PM_READ_ONLY:
2569 dm_pool_metadata_read_only(pool->pmd);
2570 pool->process_bio = process_bio_read_only;
2571 pool->process_discard = process_bio_success;
2572 pool->process_cell = process_cell_read_only;
2573 pool->process_discard_cell = process_cell_success;
2574 pool->process_prepared_mapping = process_prepared_mapping_fail;
2575 pool->process_prepared_discard = process_prepared_discard_success;
2576
2577 error_retry_list(pool);
2578 break;
2579
2580 case PM_OUT_OF_DATA_SPACE:
2581 /*
2582 * Ideally we'd never hit this state; the low water mark
2583 * would trigger userland to extend the pool before we
2584 * completely run out of data space. However, many small
2585 * IOs to unprovisioned space can consume data space at an
2586 * alarming rate. Adjust your low water mark if you're
2587 * frequently seeing this mode.
2588 */
2589 pool->out_of_data_space = true;
2590 pool->process_bio = process_bio_read_only;
2591 pool->process_discard = process_discard_bio;
2592 pool->process_cell = process_cell_read_only;
2593 pool->process_prepared_mapping = process_prepared_mapping;
2594 set_discard_callbacks(pool);
2595
2596 if (!pool->pf.error_if_no_space && no_space_timeout)
2597 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2598 break;
2599
2600 case PM_WRITE:
2601 if (old_mode == PM_OUT_OF_DATA_SPACE)
2602 cancel_delayed_work_sync(&pool->no_space_timeout);
2603 pool->out_of_data_space = false;
2604 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2605 dm_pool_metadata_read_write(pool->pmd);
2606 pool->process_bio = process_bio;
2607 pool->process_discard = process_discard_bio;
2608 pool->process_cell = process_cell;
2609 pool->process_prepared_mapping = process_prepared_mapping;
2610 set_discard_callbacks(pool);
2611 break;
2612 }
2613
2614 pool->pf.mode = new_mode;
2615 /*
2616 * The pool mode may have changed, sync it so bind_control_target()
2617 * doesn't cause an unexpected mode transition on resume.
2618 */
2619 pt->adjusted_pf.mode = new_mode;
2620
2621 if (old_mode != new_mode)
2622 notify_of_pool_mode_change(pool);
2623 }
2624
2625 static void abort_transaction(struct pool *pool)
2626 {
2627 const char *dev_name = dm_device_name(pool->pool_md);
2628
2629 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2630 if (dm_pool_abort_metadata(pool->pmd)) {
2631 DMERR("%s: failed to abort metadata transaction", dev_name);
2632 set_pool_mode(pool, PM_FAIL);
2633 }
2634
2635 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2636 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2637 set_pool_mode(pool, PM_FAIL);
2638 }
2639 }
2640
2641 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2642 {
2643 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2644 dm_device_name(pool->pool_md), op, r);
2645
2646 abort_transaction(pool);
2647 set_pool_mode(pool, PM_READ_ONLY);
2648 }
2649
2650 /*----------------------------------------------------------------*/
2651
2652 /*
2653 * Mapping functions.
2654 */
2655
2656 /*
2657 * Called only while mapping a thin bio to hand it over to the workqueue.
2658 */
2659 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2660 {
2661 struct pool *pool = tc->pool;
2662
2663 spin_lock_irq(&tc->lock);
2664 bio_list_add(&tc->deferred_bio_list, bio);
2665 spin_unlock_irq(&tc->lock);
2666
2667 wake_worker(pool);
2668 }
2669
2670 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671 {
2672 struct pool *pool = tc->pool;
2673
2674 throttle_lock(&pool->throttle);
2675 thin_defer_bio(tc, bio);
2676 throttle_unlock(&pool->throttle);
2677 }
2678
2679 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680 {
2681 struct pool *pool = tc->pool;
2682
2683 throttle_lock(&pool->throttle);
2684 spin_lock_irq(&tc->lock);
2685 list_add_tail(&cell->user_list, &tc->deferred_cells);
2686 spin_unlock_irq(&tc->lock);
2687 throttle_unlock(&pool->throttle);
2688
2689 wake_worker(pool);
2690 }
2691
2692 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2693 {
2694 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2695
2696 h->tc = tc;
2697 h->shared_read_entry = NULL;
2698 h->all_io_entry = NULL;
2699 h->overwrite_mapping = NULL;
2700 h->cell = NULL;
2701 }
2702
2703 /*
2704 * Non-blocking function called from the thin target's map function.
2705 */
2706 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2707 {
2708 int r;
2709 struct thin_c *tc = ti->private;
2710 dm_block_t block = get_bio_block(tc, bio);
2711 struct dm_thin_device *td = tc->td;
2712 struct dm_thin_lookup_result result;
2713 struct dm_bio_prison_cell *virt_cell, *data_cell;
2714 struct dm_cell_key key;
2715
2716 thin_hook_bio(tc, bio);
2717
2718 if (tc->requeue_mode) {
2719 bio->bi_status = BLK_STS_DM_REQUEUE;
2720 bio_endio(bio);
2721 return DM_MAPIO_SUBMITTED;
2722 }
2723
2724 if (get_pool_mode(tc->pool) == PM_FAIL) {
2725 bio_io_error(bio);
2726 return DM_MAPIO_SUBMITTED;
2727 }
2728
2729 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2730 thin_defer_bio_with_throttle(tc, bio);
2731 return DM_MAPIO_SUBMITTED;
2732 }
2733
2734 /*
2735 * We must hold the virtual cell before doing the lookup, otherwise
2736 * there's a race with discard.
2737 */
2738 build_virtual_key(tc->td, block, &key);
2739 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2740 return DM_MAPIO_SUBMITTED;
2741
2742 r = dm_thin_find_block(td, block, 0, &result);
2743
2744 /*
2745 * Note that we defer readahead too.
2746 */
2747 switch (r) {
2748 case 0:
2749 if (unlikely(result.shared)) {
2750 /*
2751 * We have a race condition here between the
2752 * result.shared value returned by the lookup and
2753 * snapshot creation, which may cause new
2754 * sharing.
2755 *
2756 * To avoid this always quiesce the origin before
2757 * taking the snap. You want to do this anyway to
2758 * ensure a consistent application view
2759 * (i.e. lockfs).
2760 *
2761 * More distant ancestors are irrelevant. The
2762 * shared flag will be set in their case.
2763 */
2764 thin_defer_cell(tc, virt_cell);
2765 return DM_MAPIO_SUBMITTED;
2766 }
2767
2768 build_data_key(tc->td, result.block, &key);
2769 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2770 cell_defer_no_holder(tc, virt_cell);
2771 return DM_MAPIO_SUBMITTED;
2772 }
2773
2774 inc_all_io_entry(tc->pool, bio);
2775 cell_defer_no_holder(tc, data_cell);
2776 cell_defer_no_holder(tc, virt_cell);
2777
2778 remap(tc, bio, result.block);
2779 return DM_MAPIO_REMAPPED;
2780
2781 case -ENODATA:
2782 case -EWOULDBLOCK:
2783 thin_defer_cell(tc, virt_cell);
2784 return DM_MAPIO_SUBMITTED;
2785
2786 default:
2787 /*
2788 * Must always call bio_io_error on failure.
2789 * dm_thin_find_block can fail with -EINVAL if the
2790 * pool is switched to fail-io mode.
2791 */
2792 bio_io_error(bio);
2793 cell_defer_no_holder(tc, virt_cell);
2794 return DM_MAPIO_SUBMITTED;
2795 }
2796 }
2797
2798 static void requeue_bios(struct pool *pool)
2799 {
2800 struct thin_c *tc;
2801
2802 rcu_read_lock();
2803 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2804 spin_lock_irq(&tc->lock);
2805 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2806 bio_list_init(&tc->retry_on_resume_list);
2807 spin_unlock_irq(&tc->lock);
2808 }
2809 rcu_read_unlock();
2810 }
2811
2812 /*----------------------------------------------------------------
2813 * Binding of control targets to a pool object
2814 *--------------------------------------------------------------*/
2815 static bool data_dev_supports_discard(struct pool_c *pt)
2816 {
2817 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2818
2819 return q && blk_queue_discard(q);
2820 }
2821
2822 static bool is_factor(sector_t block_size, uint32_t n)
2823 {
2824 return !sector_div(block_size, n);
2825 }
2826
2827 /*
2828 * If discard_passdown was enabled verify that the data device
2829 * supports discards. Disable discard_passdown if not.
2830 */
2831 static void disable_passdown_if_not_supported(struct pool_c *pt)
2832 {
2833 struct pool *pool = pt->pool;
2834 struct block_device *data_bdev = pt->data_dev->bdev;
2835 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2836 const char *reason = NULL;
2837 char buf[BDEVNAME_SIZE];
2838
2839 if (!pt->adjusted_pf.discard_passdown)
2840 return;
2841
2842 if (!data_dev_supports_discard(pt))
2843 reason = "discard unsupported";
2844
2845 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2846 reason = "max discard sectors smaller than a block";
2847
2848 if (reason) {
2849 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2850 pt->adjusted_pf.discard_passdown = false;
2851 }
2852 }
2853
2854 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2855 {
2856 struct pool_c *pt = ti->private;
2857
2858 /*
2859 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2860 */
2861 enum pool_mode old_mode = get_pool_mode(pool);
2862 enum pool_mode new_mode = pt->adjusted_pf.mode;
2863
2864 /*
2865 * Don't change the pool's mode until set_pool_mode() below.
2866 * Otherwise the pool's process_* function pointers may
2867 * not match the desired pool mode.
2868 */
2869 pt->adjusted_pf.mode = old_mode;
2870
2871 pool->ti = ti;
2872 pool->pf = pt->adjusted_pf;
2873 pool->low_water_blocks = pt->low_water_blocks;
2874
2875 set_pool_mode(pool, new_mode);
2876
2877 return 0;
2878 }
2879
2880 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2881 {
2882 if (pool->ti == ti)
2883 pool->ti = NULL;
2884 }
2885
2886 /*----------------------------------------------------------------
2887 * Pool creation
2888 *--------------------------------------------------------------*/
2889 /* Initialize pool features. */
2890 static void pool_features_init(struct pool_features *pf)
2891 {
2892 pf->mode = PM_WRITE;
2893 pf->zero_new_blocks = true;
2894 pf->discard_enabled = true;
2895 pf->discard_passdown = true;
2896 pf->error_if_no_space = false;
2897 }
2898
2899 static void __pool_destroy(struct pool *pool)
2900 {
2901 __pool_table_remove(pool);
2902
2903 vfree(pool->cell_sort_array);
2904 if (dm_pool_metadata_close(pool->pmd) < 0)
2905 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2906
2907 dm_bio_prison_destroy(pool->prison);
2908 dm_kcopyd_client_destroy(pool->copier);
2909
2910 if (pool->wq)
2911 destroy_workqueue(pool->wq);
2912
2913 if (pool->next_mapping)
2914 mempool_free(pool->next_mapping, &pool->mapping_pool);
2915 mempool_exit(&pool->mapping_pool);
2916 bio_uninit(&pool->flush_bio);
2917 dm_deferred_set_destroy(pool->shared_read_ds);
2918 dm_deferred_set_destroy(pool->all_io_ds);
2919 kfree(pool);
2920 }
2921
2922 static struct kmem_cache *_new_mapping_cache;
2923
2924 static struct pool *pool_create(struct mapped_device *pool_md,
2925 struct block_device *metadata_dev,
2926 struct block_device *data_dev,
2927 unsigned long block_size,
2928 int read_only, char **error)
2929 {
2930 int r;
2931 void *err_p;
2932 struct pool *pool;
2933 struct dm_pool_metadata *pmd;
2934 bool format_device = read_only ? false : true;
2935
2936 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2937 if (IS_ERR(pmd)) {
2938 *error = "Error creating metadata object";
2939 return (struct pool *)pmd;
2940 }
2941
2942 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2943 if (!pool) {
2944 *error = "Error allocating memory for pool";
2945 err_p = ERR_PTR(-ENOMEM);
2946 goto bad_pool;
2947 }
2948
2949 pool->pmd = pmd;
2950 pool->sectors_per_block = block_size;
2951 if (block_size & (block_size - 1))
2952 pool->sectors_per_block_shift = -1;
2953 else
2954 pool->sectors_per_block_shift = __ffs(block_size);
2955 pool->low_water_blocks = 0;
2956 pool_features_init(&pool->pf);
2957 pool->prison = dm_bio_prison_create();
2958 if (!pool->prison) {
2959 *error = "Error creating pool's bio prison";
2960 err_p = ERR_PTR(-ENOMEM);
2961 goto bad_prison;
2962 }
2963
2964 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2965 if (IS_ERR(pool->copier)) {
2966 r = PTR_ERR(pool->copier);
2967 *error = "Error creating pool's kcopyd client";
2968 err_p = ERR_PTR(r);
2969 goto bad_kcopyd_client;
2970 }
2971
2972 /*
2973 * Create singlethreaded workqueue that will service all devices
2974 * that use this metadata.
2975 */
2976 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2977 if (!pool->wq) {
2978 *error = "Error creating pool's workqueue";
2979 err_p = ERR_PTR(-ENOMEM);
2980 goto bad_wq;
2981 }
2982
2983 throttle_init(&pool->throttle);
2984 INIT_WORK(&pool->worker, do_worker);
2985 INIT_DELAYED_WORK(&pool->waker, do_waker);
2986 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2987 spin_lock_init(&pool->lock);
2988 bio_list_init(&pool->deferred_flush_bios);
2989 bio_list_init(&pool->deferred_flush_completions);
2990 INIT_LIST_HEAD(&pool->prepared_mappings);
2991 INIT_LIST_HEAD(&pool->prepared_discards);
2992 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2993 INIT_LIST_HEAD(&pool->active_thins);
2994 pool->low_water_triggered = false;
2995 pool->suspended = true;
2996 pool->out_of_data_space = false;
2997 bio_init(&pool->flush_bio, NULL, 0);
2998
2999 pool->shared_read_ds = dm_deferred_set_create();
3000 if (!pool->shared_read_ds) {
3001 *error = "Error creating pool's shared read deferred set";
3002 err_p = ERR_PTR(-ENOMEM);
3003 goto bad_shared_read_ds;
3004 }
3005
3006 pool->all_io_ds = dm_deferred_set_create();
3007 if (!pool->all_io_ds) {
3008 *error = "Error creating pool's all io deferred set";
3009 err_p = ERR_PTR(-ENOMEM);
3010 goto bad_all_io_ds;
3011 }
3012
3013 pool->next_mapping = NULL;
3014 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3015 _new_mapping_cache);
3016 if (r) {
3017 *error = "Error creating pool's mapping mempool";
3018 err_p = ERR_PTR(r);
3019 goto bad_mapping_pool;
3020 }
3021
3022 pool->cell_sort_array =
3023 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3024 sizeof(*pool->cell_sort_array)));
3025 if (!pool->cell_sort_array) {
3026 *error = "Error allocating cell sort array";
3027 err_p = ERR_PTR(-ENOMEM);
3028 goto bad_sort_array;
3029 }
3030
3031 pool->ref_count = 1;
3032 pool->last_commit_jiffies = jiffies;
3033 pool->pool_md = pool_md;
3034 pool->md_dev = metadata_dev;
3035 pool->data_dev = data_dev;
3036 __pool_table_insert(pool);
3037
3038 return pool;
3039
3040 bad_sort_array:
3041 mempool_exit(&pool->mapping_pool);
3042 bad_mapping_pool:
3043 dm_deferred_set_destroy(pool->all_io_ds);
3044 bad_all_io_ds:
3045 dm_deferred_set_destroy(pool->shared_read_ds);
3046 bad_shared_read_ds:
3047 destroy_workqueue(pool->wq);
3048 bad_wq:
3049 dm_kcopyd_client_destroy(pool->copier);
3050 bad_kcopyd_client:
3051 dm_bio_prison_destroy(pool->prison);
3052 bad_prison:
3053 kfree(pool);
3054 bad_pool:
3055 if (dm_pool_metadata_close(pmd))
3056 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3057
3058 return err_p;
3059 }
3060
3061 static void __pool_inc(struct pool *pool)
3062 {
3063 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3064 pool->ref_count++;
3065 }
3066
3067 static void __pool_dec(struct pool *pool)
3068 {
3069 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3070 BUG_ON(!pool->ref_count);
3071 if (!--pool->ref_count)
3072 __pool_destroy(pool);
3073 }
3074
3075 static struct pool *__pool_find(struct mapped_device *pool_md,
3076 struct block_device *metadata_dev,
3077 struct block_device *data_dev,
3078 unsigned long block_size, int read_only,
3079 char **error, int *created)
3080 {
3081 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3082
3083 if (pool) {
3084 if (pool->pool_md != pool_md) {
3085 *error = "metadata device already in use by a pool";
3086 return ERR_PTR(-EBUSY);
3087 }
3088 if (pool->data_dev != data_dev) {
3089 *error = "data device already in use by a pool";
3090 return ERR_PTR(-EBUSY);
3091 }
3092 __pool_inc(pool);
3093
3094 } else {
3095 pool = __pool_table_lookup(pool_md);
3096 if (pool) {
3097 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3098 *error = "different pool cannot replace a pool";
3099 return ERR_PTR(-EINVAL);
3100 }
3101 __pool_inc(pool);
3102
3103 } else {
3104 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3105 *created = 1;
3106 }
3107 }
3108
3109 return pool;
3110 }
3111
3112 /*----------------------------------------------------------------
3113 * Pool target methods
3114 *--------------------------------------------------------------*/
3115 static void pool_dtr(struct dm_target *ti)
3116 {
3117 struct pool_c *pt = ti->private;
3118
3119 mutex_lock(&dm_thin_pool_table.mutex);
3120
3121 unbind_control_target(pt->pool, ti);
3122 __pool_dec(pt->pool);
3123 dm_put_device(ti, pt->metadata_dev);
3124 dm_put_device(ti, pt->data_dev);
3125 kfree(pt);
3126
3127 mutex_unlock(&dm_thin_pool_table.mutex);
3128 }
3129
3130 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3131 struct dm_target *ti)
3132 {
3133 int r;
3134 unsigned argc;
3135 const char *arg_name;
3136
3137 static const struct dm_arg _args[] = {
3138 {0, 4, "Invalid number of pool feature arguments"},
3139 };
3140
3141 /*
3142 * No feature arguments supplied.
3143 */
3144 if (!as->argc)
3145 return 0;
3146
3147 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3148 if (r)
3149 return -EINVAL;
3150
3151 while (argc && !r) {
3152 arg_name = dm_shift_arg(as);
3153 argc--;
3154
3155 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3156 pf->zero_new_blocks = false;
3157
3158 else if (!strcasecmp(arg_name, "ignore_discard"))
3159 pf->discard_enabled = false;
3160
3161 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3162 pf->discard_passdown = false;
3163
3164 else if (!strcasecmp(arg_name, "read_only"))
3165 pf->mode = PM_READ_ONLY;
3166
3167 else if (!strcasecmp(arg_name, "error_if_no_space"))
3168 pf->error_if_no_space = true;
3169
3170 else {
3171 ti->error = "Unrecognised pool feature requested";
3172 r = -EINVAL;
3173 break;
3174 }
3175 }
3176
3177 return r;
3178 }
3179
3180 static void metadata_low_callback(void *context)
3181 {
3182 struct pool *pool = context;
3183
3184 DMWARN("%s: reached low water mark for metadata device: sending event.",
3185 dm_device_name(pool->pool_md));
3186
3187 dm_table_event(pool->ti->table);
3188 }
3189
3190 /*
3191 * We need to flush the data device **before** committing the metadata.
3192 *
3193 * This ensures that the data blocks of any newly inserted mappings are
3194 * properly written to non-volatile storage and won't be lost in case of a
3195 * crash.
3196 *
3197 * Failure to do so can result in data corruption in the case of internal or
3198 * external snapshots and in the case of newly provisioned blocks, when block
3199 * zeroing is enabled.
3200 */
3201 static int metadata_pre_commit_callback(void *context)
3202 {
3203 struct pool *pool = context;
3204 struct bio *flush_bio = &pool->flush_bio;
3205
3206 bio_reset(flush_bio);
3207 bio_set_dev(flush_bio, pool->data_dev);
3208 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3209
3210 return submit_bio_wait(flush_bio);
3211 }
3212
3213 static sector_t get_dev_size(struct block_device *bdev)
3214 {
3215 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3216 }
3217
3218 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3219 {
3220 sector_t metadata_dev_size = get_dev_size(bdev);
3221 char buffer[BDEVNAME_SIZE];
3222
3223 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3224 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3225 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3226 }
3227
3228 static sector_t get_metadata_dev_size(struct block_device *bdev)
3229 {
3230 sector_t metadata_dev_size = get_dev_size(bdev);
3231
3232 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3233 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3234
3235 return metadata_dev_size;
3236 }
3237
3238 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3239 {
3240 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3241
3242 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3243
3244 return metadata_dev_size;
3245 }
3246
3247 /*
3248 * When a metadata threshold is crossed a dm event is triggered, and
3249 * userland should respond by growing the metadata device. We could let
3250 * userland set the threshold, like we do with the data threshold, but I'm
3251 * not sure they know enough to do this well.
3252 */
3253 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3254 {
3255 /*
3256 * 4M is ample for all ops with the possible exception of thin
3257 * device deletion which is harmless if it fails (just retry the
3258 * delete after you've grown the device).
3259 */
3260 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3261 return min((dm_block_t)1024ULL /* 4M */, quarter);
3262 }
3263
3264 /*
3265 * thin-pool <metadata dev> <data dev>
3266 * <data block size (sectors)>
3267 * <low water mark (blocks)>
3268 * [<#feature args> [<arg>]*]
3269 *
3270 * Optional feature arguments are:
3271 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3272 * ignore_discard: disable discard
3273 * no_discard_passdown: don't pass discards down to the data device
3274 * read_only: Don't allow any changes to be made to the pool metadata.
3275 * error_if_no_space: error IOs, instead of queueing, if no space.
3276 */
3277 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3278 {
3279 int r, pool_created = 0;
3280 struct pool_c *pt;
3281 struct pool *pool;
3282 struct pool_features pf;
3283 struct dm_arg_set as;
3284 struct dm_dev *data_dev;
3285 unsigned long block_size;
3286 dm_block_t low_water_blocks;
3287 struct dm_dev *metadata_dev;
3288 fmode_t metadata_mode;
3289
3290 /*
3291 * FIXME Remove validation from scope of lock.
3292 */
3293 mutex_lock(&dm_thin_pool_table.mutex);
3294
3295 if (argc < 4) {
3296 ti->error = "Invalid argument count";
3297 r = -EINVAL;
3298 goto out_unlock;
3299 }
3300
3301 as.argc = argc;
3302 as.argv = argv;
3303
3304 /* make sure metadata and data are different devices */
3305 if (!strcmp(argv[0], argv[1])) {
3306 ti->error = "Error setting metadata or data device";
3307 r = -EINVAL;
3308 goto out_unlock;
3309 }
3310
3311 /*
3312 * Set default pool features.
3313 */
3314 pool_features_init(&pf);
3315
3316 dm_consume_args(&as, 4);
3317 r = parse_pool_features(&as, &pf, ti);
3318 if (r)
3319 goto out_unlock;
3320
3321 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3322 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3323 if (r) {
3324 ti->error = "Error opening metadata block device";
3325 goto out_unlock;
3326 }
3327 warn_if_metadata_device_too_big(metadata_dev->bdev);
3328
3329 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3330 if (r) {
3331 ti->error = "Error getting data device";
3332 goto out_metadata;
3333 }
3334
3335 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3336 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3337 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3338 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3339 ti->error = "Invalid block size";
3340 r = -EINVAL;
3341 goto out;
3342 }
3343
3344 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3345 ti->error = "Invalid low water mark";
3346 r = -EINVAL;
3347 goto out;
3348 }
3349
3350 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3351 if (!pt) {
3352 r = -ENOMEM;
3353 goto out;
3354 }
3355
3356 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3357 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3358 if (IS_ERR(pool)) {
3359 r = PTR_ERR(pool);
3360 goto out_free_pt;
3361 }
3362
3363 /*
3364 * 'pool_created' reflects whether this is the first table load.
3365 * Top level discard support is not allowed to be changed after
3366 * initial load. This would require a pool reload to trigger thin
3367 * device changes.
3368 */
3369 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3370 ti->error = "Discard support cannot be disabled once enabled";
3371 r = -EINVAL;
3372 goto out_flags_changed;
3373 }
3374
3375 pt->pool = pool;
3376 pt->ti = ti;
3377 pt->metadata_dev = metadata_dev;
3378 pt->data_dev = data_dev;
3379 pt->low_water_blocks = low_water_blocks;
3380 pt->adjusted_pf = pt->requested_pf = pf;
3381 ti->num_flush_bios = 1;
3382
3383 /*
3384 * Only need to enable discards if the pool should pass
3385 * them down to the data device. The thin device's discard
3386 * processing will cause mappings to be removed from the btree.
3387 */
3388 if (pf.discard_enabled && pf.discard_passdown) {
3389 ti->num_discard_bios = 1;
3390
3391 /*
3392 * Setting 'discards_supported' circumvents the normal
3393 * stacking of discard limits (this keeps the pool and
3394 * thin devices' discard limits consistent).
3395 */
3396 ti->discards_supported = true;
3397 }
3398 ti->private = pt;
3399
3400 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3401 calc_metadata_threshold(pt),
3402 metadata_low_callback,
3403 pool);
3404 if (r)
3405 goto out_flags_changed;
3406
3407 dm_pool_register_pre_commit_callback(pool->pmd,
3408 metadata_pre_commit_callback, pool);
3409
3410 mutex_unlock(&dm_thin_pool_table.mutex);
3411
3412 return 0;
3413
3414 out_flags_changed:
3415 __pool_dec(pool);
3416 out_free_pt:
3417 kfree(pt);
3418 out:
3419 dm_put_device(ti, data_dev);
3420 out_metadata:
3421 dm_put_device(ti, metadata_dev);
3422 out_unlock:
3423 mutex_unlock(&dm_thin_pool_table.mutex);
3424
3425 return r;
3426 }
3427
3428 static int pool_map(struct dm_target *ti, struct bio *bio)
3429 {
3430 int r;
3431 struct pool_c *pt = ti->private;
3432 struct pool *pool = pt->pool;
3433
3434 /*
3435 * As this is a singleton target, ti->begin is always zero.
3436 */
3437 spin_lock_irq(&pool->lock);
3438 bio_set_dev(bio, pt->data_dev->bdev);
3439 r = DM_MAPIO_REMAPPED;
3440 spin_unlock_irq(&pool->lock);
3441
3442 return r;
3443 }
3444
3445 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3446 {
3447 int r;
3448 struct pool_c *pt = ti->private;
3449 struct pool *pool = pt->pool;
3450 sector_t data_size = ti->len;
3451 dm_block_t sb_data_size;
3452
3453 *need_commit = false;
3454
3455 (void) sector_div(data_size, pool->sectors_per_block);
3456
3457 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3458 if (r) {
3459 DMERR("%s: failed to retrieve data device size",
3460 dm_device_name(pool->pool_md));
3461 return r;
3462 }
3463
3464 if (data_size < sb_data_size) {
3465 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3466 dm_device_name(pool->pool_md),
3467 (unsigned long long)data_size, sb_data_size);
3468 return -EINVAL;
3469
3470 } else if (data_size > sb_data_size) {
3471 if (dm_pool_metadata_needs_check(pool->pmd)) {
3472 DMERR("%s: unable to grow the data device until repaired.",
3473 dm_device_name(pool->pool_md));
3474 return 0;
3475 }
3476
3477 if (sb_data_size)
3478 DMINFO("%s: growing the data device from %llu to %llu blocks",
3479 dm_device_name(pool->pool_md),
3480 sb_data_size, (unsigned long long)data_size);
3481 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3482 if (r) {
3483 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3484 return r;
3485 }
3486
3487 *need_commit = true;
3488 }
3489
3490 return 0;
3491 }
3492
3493 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3494 {
3495 int r;
3496 struct pool_c *pt = ti->private;
3497 struct pool *pool = pt->pool;
3498 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3499
3500 *need_commit = false;
3501
3502 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3503
3504 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3505 if (r) {
3506 DMERR("%s: failed to retrieve metadata device size",
3507 dm_device_name(pool->pool_md));
3508 return r;
3509 }
3510
3511 if (metadata_dev_size < sb_metadata_dev_size) {
3512 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3513 dm_device_name(pool->pool_md),
3514 metadata_dev_size, sb_metadata_dev_size);
3515 return -EINVAL;
3516
3517 } else if (metadata_dev_size > sb_metadata_dev_size) {
3518 if (dm_pool_metadata_needs_check(pool->pmd)) {
3519 DMERR("%s: unable to grow the metadata device until repaired.",
3520 dm_device_name(pool->pool_md));
3521 return 0;
3522 }
3523
3524 warn_if_metadata_device_too_big(pool->md_dev);
3525 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3526 dm_device_name(pool->pool_md),
3527 sb_metadata_dev_size, metadata_dev_size);
3528
3529 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3530 set_pool_mode(pool, PM_WRITE);
3531
3532 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3533 if (r) {
3534 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3535 return r;
3536 }
3537
3538 *need_commit = true;
3539 }
3540
3541 return 0;
3542 }
3543
3544 /*
3545 * Retrieves the number of blocks of the data device from
3546 * the superblock and compares it to the actual device size,
3547 * thus resizing the data device in case it has grown.
3548 *
3549 * This both copes with opening preallocated data devices in the ctr
3550 * being followed by a resume
3551 * -and-
3552 * calling the resume method individually after userspace has
3553 * grown the data device in reaction to a table event.
3554 */
3555 static int pool_preresume(struct dm_target *ti)
3556 {
3557 int r;
3558 bool need_commit1, need_commit2;
3559 struct pool_c *pt = ti->private;
3560 struct pool *pool = pt->pool;
3561
3562 /*
3563 * Take control of the pool object.
3564 */
3565 r = bind_control_target(pool, ti);
3566 if (r)
3567 return r;
3568
3569 r = maybe_resize_data_dev(ti, &need_commit1);
3570 if (r)
3571 return r;
3572
3573 r = maybe_resize_metadata_dev(ti, &need_commit2);
3574 if (r)
3575 return r;
3576
3577 if (need_commit1 || need_commit2)
3578 (void) commit(pool);
3579
3580 return 0;
3581 }
3582
3583 static void pool_suspend_active_thins(struct pool *pool)
3584 {
3585 struct thin_c *tc;
3586
3587 /* Suspend all active thin devices */
3588 tc = get_first_thin(pool);
3589 while (tc) {
3590 dm_internal_suspend_noflush(tc->thin_md);
3591 tc = get_next_thin(pool, tc);
3592 }
3593 }
3594
3595 static void pool_resume_active_thins(struct pool *pool)
3596 {
3597 struct thin_c *tc;
3598
3599 /* Resume all active thin devices */
3600 tc = get_first_thin(pool);
3601 while (tc) {
3602 dm_internal_resume(tc->thin_md);
3603 tc = get_next_thin(pool, tc);
3604 }
3605 }
3606
3607 static void pool_resume(struct dm_target *ti)
3608 {
3609 struct pool_c *pt = ti->private;
3610 struct pool *pool = pt->pool;
3611
3612 /*
3613 * Must requeue active_thins' bios and then resume
3614 * active_thins _before_ clearing 'suspend' flag.
3615 */
3616 requeue_bios(pool);
3617 pool_resume_active_thins(pool);
3618
3619 spin_lock_irq(&pool->lock);
3620 pool->low_water_triggered = false;
3621 pool->suspended = false;
3622 spin_unlock_irq(&pool->lock);
3623
3624 do_waker(&pool->waker.work);
3625 }
3626
3627 static void pool_presuspend(struct dm_target *ti)
3628 {
3629 struct pool_c *pt = ti->private;
3630 struct pool *pool = pt->pool;
3631
3632 spin_lock_irq(&pool->lock);
3633 pool->suspended = true;
3634 spin_unlock_irq(&pool->lock);
3635
3636 pool_suspend_active_thins(pool);
3637 }
3638
3639 static void pool_presuspend_undo(struct dm_target *ti)
3640 {
3641 struct pool_c *pt = ti->private;
3642 struct pool *pool = pt->pool;
3643
3644 pool_resume_active_thins(pool);
3645
3646 spin_lock_irq(&pool->lock);
3647 pool->suspended = false;
3648 spin_unlock_irq(&pool->lock);
3649 }
3650
3651 static void pool_postsuspend(struct dm_target *ti)
3652 {
3653 struct pool_c *pt = ti->private;
3654 struct pool *pool = pt->pool;
3655
3656 cancel_delayed_work_sync(&pool->waker);
3657 cancel_delayed_work_sync(&pool->no_space_timeout);
3658 flush_workqueue(pool->wq);
3659 (void) commit(pool);
3660 }
3661
3662 static int check_arg_count(unsigned argc, unsigned args_required)
3663 {
3664 if (argc != args_required) {
3665 DMWARN("Message received with %u arguments instead of %u.",
3666 argc, args_required);
3667 return -EINVAL;
3668 }
3669
3670 return 0;
3671 }
3672
3673 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3674 {
3675 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3676 *dev_id <= MAX_DEV_ID)
3677 return 0;
3678
3679 if (warning)
3680 DMWARN("Message received with invalid device id: %s", arg);
3681
3682 return -EINVAL;
3683 }
3684
3685 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3686 {
3687 dm_thin_id dev_id;
3688 int r;
3689
3690 r = check_arg_count(argc, 2);
3691 if (r)
3692 return r;
3693
3694 r = read_dev_id(argv[1], &dev_id, 1);
3695 if (r)
3696 return r;
3697
3698 r = dm_pool_create_thin(pool->pmd, dev_id);
3699 if (r) {
3700 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3701 argv[1]);
3702 return r;
3703 }
3704
3705 return 0;
3706 }
3707
3708 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3709 {
3710 dm_thin_id dev_id;
3711 dm_thin_id origin_dev_id;
3712 int r;
3713
3714 r = check_arg_count(argc, 3);
3715 if (r)
3716 return r;
3717
3718 r = read_dev_id(argv[1], &dev_id, 1);
3719 if (r)
3720 return r;
3721
3722 r = read_dev_id(argv[2], &origin_dev_id, 1);
3723 if (r)
3724 return r;
3725
3726 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3727 if (r) {
3728 DMWARN("Creation of new snapshot %s of device %s failed.",
3729 argv[1], argv[2]);
3730 return r;
3731 }
3732
3733 return 0;
3734 }
3735
3736 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3737 {
3738 dm_thin_id dev_id;
3739 int r;
3740
3741 r = check_arg_count(argc, 2);
3742 if (r)
3743 return r;
3744
3745 r = read_dev_id(argv[1], &dev_id, 1);
3746 if (r)
3747 return r;
3748
3749 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3750 if (r)
3751 DMWARN("Deletion of thin device %s failed.", argv[1]);
3752
3753 return r;
3754 }
3755
3756 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3757 {
3758 dm_thin_id old_id, new_id;
3759 int r;
3760
3761 r = check_arg_count(argc, 3);
3762 if (r)
3763 return r;
3764
3765 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3766 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3767 return -EINVAL;
3768 }
3769
3770 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3771 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3772 return -EINVAL;
3773 }
3774
3775 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3776 if (r) {
3777 DMWARN("Failed to change transaction id from %s to %s.",
3778 argv[1], argv[2]);
3779 return r;
3780 }
3781
3782 return 0;
3783 }
3784
3785 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3786 {
3787 int r;
3788
3789 r = check_arg_count(argc, 1);
3790 if (r)
3791 return r;
3792
3793 (void) commit(pool);
3794
3795 r = dm_pool_reserve_metadata_snap(pool->pmd);
3796 if (r)
3797 DMWARN("reserve_metadata_snap message failed.");
3798
3799 return r;
3800 }
3801
3802 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3803 {
3804 int r;
3805
3806 r = check_arg_count(argc, 1);
3807 if (r)
3808 return r;
3809
3810 r = dm_pool_release_metadata_snap(pool->pmd);
3811 if (r)
3812 DMWARN("release_metadata_snap message failed.");
3813
3814 return r;
3815 }
3816
3817 /*
3818 * Messages supported:
3819 * create_thin <dev_id>
3820 * create_snap <dev_id> <origin_id>
3821 * delete <dev_id>
3822 * set_transaction_id <current_trans_id> <new_trans_id>
3823 * reserve_metadata_snap
3824 * release_metadata_snap
3825 */
3826 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3827 char *result, unsigned maxlen)
3828 {
3829 int r = -EINVAL;
3830 struct pool_c *pt = ti->private;
3831 struct pool *pool = pt->pool;
3832
3833 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3834 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3835 dm_device_name(pool->pool_md));
3836 return -EOPNOTSUPP;
3837 }
3838
3839 if (!strcasecmp(argv[0], "create_thin"))
3840 r = process_create_thin_mesg(argc, argv, pool);
3841
3842 else if (!strcasecmp(argv[0], "create_snap"))
3843 r = process_create_snap_mesg(argc, argv, pool);
3844
3845 else if (!strcasecmp(argv[0], "delete"))
3846 r = process_delete_mesg(argc, argv, pool);
3847
3848 else if (!strcasecmp(argv[0], "set_transaction_id"))
3849 r = process_set_transaction_id_mesg(argc, argv, pool);
3850
3851 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3852 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3853
3854 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3855 r = process_release_metadata_snap_mesg(argc, argv, pool);
3856
3857 else
3858 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3859
3860 if (!r)
3861 (void) commit(pool);
3862
3863 return r;
3864 }
3865
3866 static void emit_flags(struct pool_features *pf, char *result,
3867 unsigned sz, unsigned maxlen)
3868 {
3869 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3870 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3871 pf->error_if_no_space;
3872 DMEMIT("%u ", count);
3873
3874 if (!pf->zero_new_blocks)
3875 DMEMIT("skip_block_zeroing ");
3876
3877 if (!pf->discard_enabled)
3878 DMEMIT("ignore_discard ");
3879
3880 if (!pf->discard_passdown)
3881 DMEMIT("no_discard_passdown ");
3882
3883 if (pf->mode == PM_READ_ONLY)
3884 DMEMIT("read_only ");
3885
3886 if (pf->error_if_no_space)
3887 DMEMIT("error_if_no_space ");
3888 }
3889
3890 /*
3891 * Status line is:
3892 * <transaction id> <used metadata sectors>/<total metadata sectors>
3893 * <used data sectors>/<total data sectors> <held metadata root>
3894 * <pool mode> <discard config> <no space config> <needs_check>
3895 */
3896 static void pool_status(struct dm_target *ti, status_type_t type,
3897 unsigned status_flags, char *result, unsigned maxlen)
3898 {
3899 int r;
3900 unsigned sz = 0;
3901 uint64_t transaction_id;
3902 dm_block_t nr_free_blocks_data;
3903 dm_block_t nr_free_blocks_metadata;
3904 dm_block_t nr_blocks_data;
3905 dm_block_t nr_blocks_metadata;
3906 dm_block_t held_root;
3907 enum pool_mode mode;
3908 char buf[BDEVNAME_SIZE];
3909 char buf2[BDEVNAME_SIZE];
3910 struct pool_c *pt = ti->private;
3911 struct pool *pool = pt->pool;
3912
3913 switch (type) {
3914 case STATUSTYPE_INFO:
3915 if (get_pool_mode(pool) == PM_FAIL) {
3916 DMEMIT("Fail");
3917 break;
3918 }
3919
3920 /* Commit to ensure statistics aren't out-of-date */
3921 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3922 (void) commit(pool);
3923
3924 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3925 if (r) {
3926 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3927 dm_device_name(pool->pool_md), r);
3928 goto err;
3929 }
3930
3931 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3932 if (r) {
3933 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3934 dm_device_name(pool->pool_md), r);
3935 goto err;
3936 }
3937
3938 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3939 if (r) {
3940 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3941 dm_device_name(pool->pool_md), r);
3942 goto err;
3943 }
3944
3945 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3946 if (r) {
3947 DMERR("%s: dm_pool_get_free_block_count returned %d",
3948 dm_device_name(pool->pool_md), r);
3949 goto err;
3950 }
3951
3952 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3953 if (r) {
3954 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3955 dm_device_name(pool->pool_md), r);
3956 goto err;
3957 }
3958
3959 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3960 if (r) {
3961 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3962 dm_device_name(pool->pool_md), r);
3963 goto err;
3964 }
3965
3966 DMEMIT("%llu %llu/%llu %llu/%llu ",
3967 (unsigned long long)transaction_id,
3968 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3969 (unsigned long long)nr_blocks_metadata,
3970 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3971 (unsigned long long)nr_blocks_data);
3972
3973 if (held_root)
3974 DMEMIT("%llu ", held_root);
3975 else
3976 DMEMIT("- ");
3977
3978 mode = get_pool_mode(pool);
3979 if (mode == PM_OUT_OF_DATA_SPACE)
3980 DMEMIT("out_of_data_space ");
3981 else if (is_read_only_pool_mode(mode))
3982 DMEMIT("ro ");
3983 else
3984 DMEMIT("rw ");
3985
3986 if (!pool->pf.discard_enabled)
3987 DMEMIT("ignore_discard ");
3988 else if (pool->pf.discard_passdown)
3989 DMEMIT("discard_passdown ");
3990 else
3991 DMEMIT("no_discard_passdown ");
3992
3993 if (pool->pf.error_if_no_space)
3994 DMEMIT("error_if_no_space ");
3995 else
3996 DMEMIT("queue_if_no_space ");
3997
3998 if (dm_pool_metadata_needs_check(pool->pmd))
3999 DMEMIT("needs_check ");
4000 else
4001 DMEMIT("- ");
4002
4003 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4004
4005 break;
4006
4007 case STATUSTYPE_TABLE:
4008 DMEMIT("%s %s %lu %llu ",
4009 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4010 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4011 (unsigned long)pool->sectors_per_block,
4012 (unsigned long long)pt->low_water_blocks);
4013 emit_flags(&pt->requested_pf, result, sz, maxlen);
4014 break;
4015 }
4016 return;
4017
4018 err:
4019 DMEMIT("Error");
4020 }
4021
4022 static int pool_iterate_devices(struct dm_target *ti,
4023 iterate_devices_callout_fn fn, void *data)
4024 {
4025 struct pool_c *pt = ti->private;
4026
4027 return fn(ti, pt->data_dev, 0, ti->len, data);
4028 }
4029
4030 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4031 {
4032 struct pool_c *pt = ti->private;
4033 struct pool *pool = pt->pool;
4034 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4035
4036 /*
4037 * If max_sectors is smaller than pool->sectors_per_block adjust it
4038 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4039 * This is especially beneficial when the pool's data device is a RAID
4040 * device that has a full stripe width that matches pool->sectors_per_block
4041 * -- because even though partial RAID stripe-sized IOs will be issued to a
4042 * single RAID stripe; when aggregated they will end on a full RAID stripe
4043 * boundary.. which avoids additional partial RAID stripe writes cascading
4044 */
4045 if (limits->max_sectors < pool->sectors_per_block) {
4046 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4047 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4048 limits->max_sectors--;
4049 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4050 }
4051 }
4052
4053 /*
4054 * If the system-determined stacked limits are compatible with the
4055 * pool's blocksize (io_opt is a factor) do not override them.
4056 */
4057 if (io_opt_sectors < pool->sectors_per_block ||
4058 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4059 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4060 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4061 else
4062 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4063 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4064 }
4065
4066 /*
4067 * pt->adjusted_pf is a staging area for the actual features to use.
4068 * They get transferred to the live pool in bind_control_target()
4069 * called from pool_preresume().
4070 */
4071 if (!pt->adjusted_pf.discard_enabled) {
4072 /*
4073 * Must explicitly disallow stacking discard limits otherwise the
4074 * block layer will stack them if pool's data device has support.
4075 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4076 * user to see that, so make sure to set all discard limits to 0.
4077 */
4078 limits->discard_granularity = 0;
4079 return;
4080 }
4081
4082 disable_passdown_if_not_supported(pt);
4083
4084 /*
4085 * The pool uses the same discard limits as the underlying data
4086 * device. DM core has already set this up.
4087 */
4088 }
4089
4090 static struct target_type pool_target = {
4091 .name = "thin-pool",
4092 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4093 DM_TARGET_IMMUTABLE,
4094 .version = {1, 22, 0},
4095 .module = THIS_MODULE,
4096 .ctr = pool_ctr,
4097 .dtr = pool_dtr,
4098 .map = pool_map,
4099 .presuspend = pool_presuspend,
4100 .presuspend_undo = pool_presuspend_undo,
4101 .postsuspend = pool_postsuspend,
4102 .preresume = pool_preresume,
4103 .resume = pool_resume,
4104 .message = pool_message,
4105 .status = pool_status,
4106 .iterate_devices = pool_iterate_devices,
4107 .io_hints = pool_io_hints,
4108 };
4109
4110 /*----------------------------------------------------------------
4111 * Thin target methods
4112 *--------------------------------------------------------------*/
4113 static void thin_get(struct thin_c *tc)
4114 {
4115 refcount_inc(&tc->refcount);
4116 }
4117
4118 static void thin_put(struct thin_c *tc)
4119 {
4120 if (refcount_dec_and_test(&tc->refcount))
4121 complete(&tc->can_destroy);
4122 }
4123
4124 static void thin_dtr(struct dm_target *ti)
4125 {
4126 struct thin_c *tc = ti->private;
4127
4128 spin_lock_irq(&tc->pool->lock);
4129 list_del_rcu(&tc->list);
4130 spin_unlock_irq(&tc->pool->lock);
4131 synchronize_rcu();
4132
4133 thin_put(tc);
4134 wait_for_completion(&tc->can_destroy);
4135
4136 mutex_lock(&dm_thin_pool_table.mutex);
4137
4138 __pool_dec(tc->pool);
4139 dm_pool_close_thin_device(tc->td);
4140 dm_put_device(ti, tc->pool_dev);
4141 if (tc->origin_dev)
4142 dm_put_device(ti, tc->origin_dev);
4143 kfree(tc);
4144
4145 mutex_unlock(&dm_thin_pool_table.mutex);
4146 }
4147
4148 /*
4149 * Thin target parameters:
4150 *
4151 * <pool_dev> <dev_id> [origin_dev]
4152 *
4153 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4154 * dev_id: the internal device identifier
4155 * origin_dev: a device external to the pool that should act as the origin
4156 *
4157 * If the pool device has discards disabled, they get disabled for the thin
4158 * device as well.
4159 */
4160 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4161 {
4162 int r;
4163 struct thin_c *tc;
4164 struct dm_dev *pool_dev, *origin_dev;
4165 struct mapped_device *pool_md;
4166
4167 mutex_lock(&dm_thin_pool_table.mutex);
4168
4169 if (argc != 2 && argc != 3) {
4170 ti->error = "Invalid argument count";
4171 r = -EINVAL;
4172 goto out_unlock;
4173 }
4174
4175 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4176 if (!tc) {
4177 ti->error = "Out of memory";
4178 r = -ENOMEM;
4179 goto out_unlock;
4180 }
4181 tc->thin_md = dm_table_get_md(ti->table);
4182 spin_lock_init(&tc->lock);
4183 INIT_LIST_HEAD(&tc->deferred_cells);
4184 bio_list_init(&tc->deferred_bio_list);
4185 bio_list_init(&tc->retry_on_resume_list);
4186 tc->sort_bio_list = RB_ROOT;
4187
4188 if (argc == 3) {
4189 if (!strcmp(argv[0], argv[2])) {
4190 ti->error = "Error setting origin device";
4191 r = -EINVAL;
4192 goto bad_origin_dev;
4193 }
4194
4195 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4196 if (r) {
4197 ti->error = "Error opening origin device";
4198 goto bad_origin_dev;
4199 }
4200 tc->origin_dev = origin_dev;
4201 }
4202
4203 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4204 if (r) {
4205 ti->error = "Error opening pool device";
4206 goto bad_pool_dev;
4207 }
4208 tc->pool_dev = pool_dev;
4209
4210 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4211 ti->error = "Invalid device id";
4212 r = -EINVAL;
4213 goto bad_common;
4214 }
4215
4216 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4217 if (!pool_md) {
4218 ti->error = "Couldn't get pool mapped device";
4219 r = -EINVAL;
4220 goto bad_common;
4221 }
4222
4223 tc->pool = __pool_table_lookup(pool_md);
4224 if (!tc->pool) {
4225 ti->error = "Couldn't find pool object";
4226 r = -EINVAL;
4227 goto bad_pool_lookup;
4228 }
4229 __pool_inc(tc->pool);
4230
4231 if (get_pool_mode(tc->pool) == PM_FAIL) {
4232 ti->error = "Couldn't open thin device, Pool is in fail mode";
4233 r = -EINVAL;
4234 goto bad_pool;
4235 }
4236
4237 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4238 if (r) {
4239 ti->error = "Couldn't open thin internal device";
4240 goto bad_pool;
4241 }
4242
4243 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4244 if (r)
4245 goto bad;
4246
4247 ti->num_flush_bios = 1;
4248 ti->flush_supported = true;
4249 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4250
4251 /* In case the pool supports discards, pass them on. */
4252 if (tc->pool->pf.discard_enabled) {
4253 ti->discards_supported = true;
4254 ti->num_discard_bios = 1;
4255 }
4256
4257 mutex_unlock(&dm_thin_pool_table.mutex);
4258
4259 spin_lock_irq(&tc->pool->lock);
4260 if (tc->pool->suspended) {
4261 spin_unlock_irq(&tc->pool->lock);
4262 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4263 ti->error = "Unable to activate thin device while pool is suspended";
4264 r = -EINVAL;
4265 goto bad;
4266 }
4267 refcount_set(&tc->refcount, 1);
4268 init_completion(&tc->can_destroy);
4269 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4270 spin_unlock_irq(&tc->pool->lock);
4271 /*
4272 * This synchronize_rcu() call is needed here otherwise we risk a
4273 * wake_worker() call finding no bios to process (because the newly
4274 * added tc isn't yet visible). So this reduces latency since we
4275 * aren't then dependent on the periodic commit to wake_worker().
4276 */
4277 synchronize_rcu();
4278
4279 dm_put(pool_md);
4280
4281 return 0;
4282
4283 bad:
4284 dm_pool_close_thin_device(tc->td);
4285 bad_pool:
4286 __pool_dec(tc->pool);
4287 bad_pool_lookup:
4288 dm_put(pool_md);
4289 bad_common:
4290 dm_put_device(ti, tc->pool_dev);
4291 bad_pool_dev:
4292 if (tc->origin_dev)
4293 dm_put_device(ti, tc->origin_dev);
4294 bad_origin_dev:
4295 kfree(tc);
4296 out_unlock:
4297 mutex_unlock(&dm_thin_pool_table.mutex);
4298
4299 return r;
4300 }
4301
4302 static int thin_map(struct dm_target *ti, struct bio *bio)
4303 {
4304 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4305
4306 return thin_bio_map(ti, bio);
4307 }
4308
4309 static int thin_endio(struct dm_target *ti, struct bio *bio,
4310 blk_status_t *err)
4311 {
4312 unsigned long flags;
4313 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4314 struct list_head work;
4315 struct dm_thin_new_mapping *m, *tmp;
4316 struct pool *pool = h->tc->pool;
4317
4318 if (h->shared_read_entry) {
4319 INIT_LIST_HEAD(&work);
4320 dm_deferred_entry_dec(h->shared_read_entry, &work);
4321
4322 spin_lock_irqsave(&pool->lock, flags);
4323 list_for_each_entry_safe(m, tmp, &work, list) {
4324 list_del(&m->list);
4325 __complete_mapping_preparation(m);
4326 }
4327 spin_unlock_irqrestore(&pool->lock, flags);
4328 }
4329
4330 if (h->all_io_entry) {
4331 INIT_LIST_HEAD(&work);
4332 dm_deferred_entry_dec(h->all_io_entry, &work);
4333 if (!list_empty(&work)) {
4334 spin_lock_irqsave(&pool->lock, flags);
4335 list_for_each_entry_safe(m, tmp, &work, list)
4336 list_add_tail(&m->list, &pool->prepared_discards);
4337 spin_unlock_irqrestore(&pool->lock, flags);
4338 wake_worker(pool);
4339 }
4340 }
4341
4342 if (h->cell)
4343 cell_defer_no_holder(h->tc, h->cell);
4344
4345 return DM_ENDIO_DONE;
4346 }
4347
4348 static void thin_presuspend(struct dm_target *ti)
4349 {
4350 struct thin_c *tc = ti->private;
4351
4352 if (dm_noflush_suspending(ti))
4353 noflush_work(tc, do_noflush_start);
4354 }
4355
4356 static void thin_postsuspend(struct dm_target *ti)
4357 {
4358 struct thin_c *tc = ti->private;
4359
4360 /*
4361 * The dm_noflush_suspending flag has been cleared by now, so
4362 * unfortunately we must always run this.
4363 */
4364 noflush_work(tc, do_noflush_stop);
4365 }
4366
4367 static int thin_preresume(struct dm_target *ti)
4368 {
4369 struct thin_c *tc = ti->private;
4370
4371 if (tc->origin_dev)
4372 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4373
4374 return 0;
4375 }
4376
4377 /*
4378 * <nr mapped sectors> <highest mapped sector>
4379 */
4380 static void thin_status(struct dm_target *ti, status_type_t type,
4381 unsigned status_flags, char *result, unsigned maxlen)
4382 {
4383 int r;
4384 ssize_t sz = 0;
4385 dm_block_t mapped, highest;
4386 char buf[BDEVNAME_SIZE];
4387 struct thin_c *tc = ti->private;
4388
4389 if (get_pool_mode(tc->pool) == PM_FAIL) {
4390 DMEMIT("Fail");
4391 return;
4392 }
4393
4394 if (!tc->td)
4395 DMEMIT("-");
4396 else {
4397 switch (type) {
4398 case STATUSTYPE_INFO:
4399 r = dm_thin_get_mapped_count(tc->td, &mapped);
4400 if (r) {
4401 DMERR("dm_thin_get_mapped_count returned %d", r);
4402 goto err;
4403 }
4404
4405 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4406 if (r < 0) {
4407 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4408 goto err;
4409 }
4410
4411 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4412 if (r)
4413 DMEMIT("%llu", ((highest + 1) *
4414 tc->pool->sectors_per_block) - 1);
4415 else
4416 DMEMIT("-");
4417 break;
4418
4419 case STATUSTYPE_TABLE:
4420 DMEMIT("%s %lu",
4421 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4422 (unsigned long) tc->dev_id);
4423 if (tc->origin_dev)
4424 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4425 break;
4426 }
4427 }
4428
4429 return;
4430
4431 err:
4432 DMEMIT("Error");
4433 }
4434
4435 static int thin_iterate_devices(struct dm_target *ti,
4436 iterate_devices_callout_fn fn, void *data)
4437 {
4438 sector_t blocks;
4439 struct thin_c *tc = ti->private;
4440 struct pool *pool = tc->pool;
4441
4442 /*
4443 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4444 * we follow a more convoluted path through to the pool's target.
4445 */
4446 if (!pool->ti)
4447 return 0; /* nothing is bound */
4448
4449 blocks = pool->ti->len;
4450 (void) sector_div(blocks, pool->sectors_per_block);
4451 if (blocks)
4452 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4453
4454 return 0;
4455 }
4456
4457 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4458 {
4459 struct thin_c *tc = ti->private;
4460 struct pool *pool = tc->pool;
4461
4462 if (!pool->pf.discard_enabled)
4463 return;
4464
4465 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4466 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4467 }
4468
4469 static struct target_type thin_target = {
4470 .name = "thin",
4471 .version = {1, 22, 0},
4472 .module = THIS_MODULE,
4473 .ctr = thin_ctr,
4474 .dtr = thin_dtr,
4475 .map = thin_map,
4476 .end_io = thin_endio,
4477 .preresume = thin_preresume,
4478 .presuspend = thin_presuspend,
4479 .postsuspend = thin_postsuspend,
4480 .status = thin_status,
4481 .iterate_devices = thin_iterate_devices,
4482 .io_hints = thin_io_hints,
4483 };
4484
4485 /*----------------------------------------------------------------*/
4486
4487 static int __init dm_thin_init(void)
4488 {
4489 int r = -ENOMEM;
4490
4491 pool_table_init();
4492
4493 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4494 if (!_new_mapping_cache)
4495 return r;
4496
4497 r = dm_register_target(&thin_target);
4498 if (r)
4499 goto bad_new_mapping_cache;
4500
4501 r = dm_register_target(&pool_target);
4502 if (r)
4503 goto bad_thin_target;
4504
4505 return 0;
4506
4507 bad_thin_target:
4508 dm_unregister_target(&thin_target);
4509 bad_new_mapping_cache:
4510 kmem_cache_destroy(_new_mapping_cache);
4511
4512 return r;
4513 }
4514
4515 static void dm_thin_exit(void)
4516 {
4517 dm_unregister_target(&thin_target);
4518 dm_unregister_target(&pool_target);
4519
4520 kmem_cache_destroy(_new_mapping_cache);
4521
4522 pool_table_exit();
4523 }
4524
4525 module_init(dm_thin_init);
4526 module_exit(dm_thin_exit);
4527
4528 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4529 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4530
4531 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4532 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4533 MODULE_LICENSE("GPL");