]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-verity-fec.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-verity-fec.c
1 /*
2 * Copyright (C) 2015 Google, Inc.
3 *
4 * Author: Sami Tolvanen <samitolvanen@google.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 */
11
12 #include "dm-verity-fec.h"
13 #include <linux/math64.h>
14
15 #define DM_MSG_PREFIX "verity-fec"
16
17 /*
18 * If error correction has been configured, returns true.
19 */
20 bool verity_fec_is_enabled(struct dm_verity *v)
21 {
22 return v->fec && v->fec->dev;
23 }
24
25 /*
26 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
27 * length fields.
28 */
29 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
30 {
31 return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
32 }
33
34 /*
35 * Return an interleaved offset for a byte in RS block.
36 */
37 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
38 {
39 u32 mod;
40
41 mod = do_div(offset, v->fec->rsn);
42 return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
43 }
44
45 /*
46 * Decode an RS block using Reed-Solomon.
47 */
48 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
49 u8 *data, u8 *fec, int neras)
50 {
51 int i;
52 uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
53
54 for (i = 0; i < v->fec->roots; i++)
55 par[i] = fec[i];
56
57 return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
58 fio->erasures, 0, NULL);
59 }
60
61 /*
62 * Read error-correcting codes for the requested RS block. Returns a pointer
63 * to the data block. Caller is responsible for releasing buf.
64 */
65 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
66 unsigned *offset, struct dm_buffer **buf)
67 {
68 u64 position, block;
69 u8 *res;
70
71 position = (index + rsb) * v->fec->roots;
72 block = position >> v->data_dev_block_bits;
73 *offset = (unsigned)(position - (block << v->data_dev_block_bits));
74
75 res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
76 if (unlikely(IS_ERR(res))) {
77 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
78 v->data_dev->name, (unsigned long long)rsb,
79 (unsigned long long)(v->fec->start + block),
80 PTR_ERR(res));
81 *buf = NULL;
82 }
83
84 return res;
85 }
86
87 /* Loop over each preallocated buffer slot. */
88 #define fec_for_each_prealloc_buffer(__i) \
89 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
90
91 /* Loop over each extra buffer slot. */
92 #define fec_for_each_extra_buffer(io, __i) \
93 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
94
95 /* Loop over each allocated buffer. */
96 #define fec_for_each_buffer(io, __i) \
97 for (__i = 0; __i < (io)->nbufs; __i++)
98
99 /* Loop over each RS block in each allocated buffer. */
100 #define fec_for_each_buffer_rs_block(io, __i, __j) \
101 fec_for_each_buffer(io, __i) \
102 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
103
104 /*
105 * Return a pointer to the current RS block when called inside
106 * fec_for_each_buffer_rs_block.
107 */
108 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
109 struct dm_verity_fec_io *fio,
110 unsigned i, unsigned j)
111 {
112 return &fio->bufs[i][j * v->fec->rsn];
113 }
114
115 /*
116 * Return an index to the current RS block when called inside
117 * fec_for_each_buffer_rs_block.
118 */
119 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
120 {
121 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
122 }
123
124 /*
125 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
126 * starting from block_offset.
127 */
128 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
129 u64 rsb, int byte_index, unsigned block_offset,
130 int neras)
131 {
132 int r, corrected = 0, res;
133 struct dm_buffer *buf;
134 unsigned n, i, offset;
135 u8 *par, *block;
136
137 par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
138 if (IS_ERR(par))
139 return PTR_ERR(par);
140
141 /*
142 * Decode the RS blocks we have in bufs. Each RS block results in
143 * one corrected target byte and consumes fec->roots parity bytes.
144 */
145 fec_for_each_buffer_rs_block(fio, n, i) {
146 block = fec_buffer_rs_block(v, fio, n, i);
147 res = fec_decode_rs8(v, fio, block, &par[offset], neras);
148 if (res < 0) {
149 r = res;
150 goto error;
151 }
152
153 corrected += res;
154 fio->output[block_offset] = block[byte_index];
155
156 block_offset++;
157 if (block_offset >= 1 << v->data_dev_block_bits)
158 goto done;
159
160 /* read the next block when we run out of parity bytes */
161 offset += v->fec->roots;
162 if (offset >= 1 << v->data_dev_block_bits) {
163 dm_bufio_release(buf);
164
165 par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
166 if (unlikely(IS_ERR(par)))
167 return PTR_ERR(par);
168 }
169 }
170 done:
171 r = corrected;
172 error:
173 dm_bufio_release(buf);
174
175 if (r < 0 && neras)
176 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
177 v->data_dev->name, (unsigned long long)rsb, r);
178 else if (r > 0)
179 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
180 v->data_dev->name, (unsigned long long)rsb, r);
181
182 return r;
183 }
184
185 /*
186 * Locate data block erasures using verity hashes.
187 */
188 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
189 u8 *want_digest, u8 *data)
190 {
191 if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
192 data, 1 << v->data_dev_block_bits,
193 verity_io_real_digest(v, io))))
194 return 0;
195
196 return memcmp(verity_io_real_digest(v, io), want_digest,
197 v->digest_size) != 0;
198 }
199
200 /*
201 * Read data blocks that are part of the RS block and deinterleave as much as
202 * fits into buffers. Check for erasure locations if @neras is non-NULL.
203 */
204 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
205 u64 rsb, u64 target, unsigned block_offset,
206 int *neras)
207 {
208 bool is_zero;
209 int i, j, target_index = -1;
210 struct dm_buffer *buf;
211 struct dm_bufio_client *bufio;
212 struct dm_verity_fec_io *fio = fec_io(io);
213 u64 block, ileaved;
214 u8 *bbuf, *rs_block;
215 u8 want_digest[v->digest_size];
216 unsigned n, k;
217
218 if (neras)
219 *neras = 0;
220
221 /*
222 * read each of the rsn data blocks that are part of the RS block, and
223 * interleave contents to available bufs
224 */
225 for (i = 0; i < v->fec->rsn; i++) {
226 ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
227
228 /*
229 * target is the data block we want to correct, target_index is
230 * the index of this block within the rsn RS blocks
231 */
232 if (ileaved == target)
233 target_index = i;
234
235 block = ileaved >> v->data_dev_block_bits;
236 bufio = v->fec->data_bufio;
237
238 if (block >= v->data_blocks) {
239 block -= v->data_blocks;
240
241 /*
242 * blocks outside the area were assumed to contain
243 * zeros when encoding data was generated
244 */
245 if (unlikely(block >= v->fec->hash_blocks))
246 continue;
247
248 block += v->hash_start;
249 bufio = v->bufio;
250 }
251
252 bbuf = dm_bufio_read(bufio, block, &buf);
253 if (unlikely(IS_ERR(bbuf))) {
254 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
255 v->data_dev->name,
256 (unsigned long long)rsb,
257 (unsigned long long)block, PTR_ERR(bbuf));
258
259 /* assume the block is corrupted */
260 if (neras && *neras <= v->fec->roots)
261 fio->erasures[(*neras)++] = i;
262
263 continue;
264 }
265
266 /* locate erasures if the block is on the data device */
267 if (bufio == v->fec->data_bufio &&
268 verity_hash_for_block(v, io, block, want_digest,
269 &is_zero) == 0) {
270 /* skip known zero blocks entirely */
271 if (is_zero)
272 goto done;
273
274 /*
275 * skip if we have already found the theoretical
276 * maximum number (i.e. fec->roots) of erasures
277 */
278 if (neras && *neras <= v->fec->roots &&
279 fec_is_erasure(v, io, want_digest, bbuf))
280 fio->erasures[(*neras)++] = i;
281 }
282
283 /*
284 * deinterleave and copy the bytes that fit into bufs,
285 * starting from block_offset
286 */
287 fec_for_each_buffer_rs_block(fio, n, j) {
288 k = fec_buffer_rs_index(n, j) + block_offset;
289
290 if (k >= 1 << v->data_dev_block_bits)
291 goto done;
292
293 rs_block = fec_buffer_rs_block(v, fio, n, j);
294 rs_block[i] = bbuf[k];
295 }
296 done:
297 dm_bufio_release(buf);
298 }
299
300 return target_index;
301 }
302
303 /*
304 * Allocate RS control structure and FEC buffers from preallocated mempools,
305 * and attempt to allocate as many extra buffers as available.
306 */
307 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
308 {
309 unsigned n;
310
311 if (!fio->rs) {
312 fio->rs = mempool_alloc(v->fec->rs_pool, 0);
313 if (unlikely(!fio->rs)) {
314 DMERR("failed to allocate RS");
315 return -ENOMEM;
316 }
317 }
318
319 fec_for_each_prealloc_buffer(n) {
320 if (fio->bufs[n])
321 continue;
322
323 fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO);
324 if (unlikely(!fio->bufs[n])) {
325 DMERR("failed to allocate FEC buffer");
326 return -ENOMEM;
327 }
328 }
329
330 /* try to allocate the maximum number of buffers */
331 fec_for_each_extra_buffer(fio, n) {
332 if (fio->bufs[n])
333 continue;
334
335 fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO);
336 /* we can manage with even one buffer if necessary */
337 if (unlikely(!fio->bufs[n]))
338 break;
339 }
340 fio->nbufs = n;
341
342 if (!fio->output) {
343 fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
344
345 if (!fio->output) {
346 DMERR("failed to allocate FEC page");
347 return -ENOMEM;
348 }
349 }
350
351 return 0;
352 }
353
354 /*
355 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
356 * zeroed before deinterleaving.
357 */
358 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
359 {
360 unsigned n;
361
362 fec_for_each_buffer(fio, n)
363 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
364
365 memset(fio->erasures, 0, sizeof(fio->erasures));
366 }
367
368 /*
369 * Decode all RS blocks in a single data block and return the target block
370 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
371 * hashes to locate erasures.
372 */
373 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
374 struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
375 bool use_erasures)
376 {
377 int r, neras = 0;
378 unsigned pos;
379
380 r = fec_alloc_bufs(v, fio);
381 if (unlikely(r < 0))
382 return r;
383
384 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
385 fec_init_bufs(v, fio);
386
387 r = fec_read_bufs(v, io, rsb, offset, pos,
388 use_erasures ? &neras : NULL);
389 if (unlikely(r < 0))
390 return r;
391
392 r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
393 if (r < 0)
394 return r;
395
396 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
397 }
398
399 /* Always re-validate the corrected block against the expected hash */
400 r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
401 1 << v->data_dev_block_bits,
402 verity_io_real_digest(v, io));
403 if (unlikely(r < 0))
404 return r;
405
406 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
407 v->digest_size)) {
408 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
409 v->data_dev->name, (unsigned long long)rsb, neras);
410 return -EILSEQ;
411 }
412
413 return 0;
414 }
415
416 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
417 size_t len)
418 {
419 struct dm_verity_fec_io *fio = fec_io(io);
420
421 memcpy(data, &fio->output[fio->output_pos], len);
422 fio->output_pos += len;
423
424 return 0;
425 }
426
427 /*
428 * Correct errors in a block. Copies corrected block to dest if non-NULL,
429 * otherwise to a bio_vec starting from iter.
430 */
431 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
432 enum verity_block_type type, sector_t block, u8 *dest,
433 struct bvec_iter *iter)
434 {
435 int r;
436 struct dm_verity_fec_io *fio = fec_io(io);
437 u64 offset, res, rsb;
438
439 if (!verity_fec_is_enabled(v))
440 return -EOPNOTSUPP;
441
442 if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
443 DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
444 return -EIO;
445 }
446
447 fio->level++;
448
449 if (type == DM_VERITY_BLOCK_TYPE_METADATA)
450 block += v->data_blocks;
451
452 /*
453 * For RS(M, N), the continuous FEC data is divided into blocks of N
454 * bytes. Since block size may not be divisible by N, the last block
455 * is zero padded when decoding.
456 *
457 * Each byte of the block is covered by a different RS(M, N) code,
458 * and each code is interleaved over N blocks to make it less likely
459 * that bursty corruption will leave us in unrecoverable state.
460 */
461
462 offset = block << v->data_dev_block_bits;
463 res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
464
465 /*
466 * The base RS block we can feed to the interleaver to find out all
467 * blocks required for decoding.
468 */
469 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
470
471 /*
472 * Locating erasures is slow, so attempt to recover the block without
473 * them first. Do a second attempt with erasures if the corruption is
474 * bad enough.
475 */
476 r = fec_decode_rsb(v, io, fio, rsb, offset, false);
477 if (r < 0) {
478 r = fec_decode_rsb(v, io, fio, rsb, offset, true);
479 if (r < 0)
480 goto done;
481 }
482
483 if (dest)
484 memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
485 else if (iter) {
486 fio->output_pos = 0;
487 r = verity_for_bv_block(v, io, iter, fec_bv_copy);
488 }
489
490 done:
491 fio->level--;
492 return r;
493 }
494
495 /*
496 * Clean up per-bio data.
497 */
498 void verity_fec_finish_io(struct dm_verity_io *io)
499 {
500 unsigned n;
501 struct dm_verity_fec *f = io->v->fec;
502 struct dm_verity_fec_io *fio = fec_io(io);
503
504 if (!verity_fec_is_enabled(io->v))
505 return;
506
507 mempool_free(fio->rs, f->rs_pool);
508
509 fec_for_each_prealloc_buffer(n)
510 mempool_free(fio->bufs[n], f->prealloc_pool);
511
512 fec_for_each_extra_buffer(fio, n)
513 mempool_free(fio->bufs[n], f->extra_pool);
514
515 mempool_free(fio->output, f->output_pool);
516 }
517
518 /*
519 * Initialize per-bio data.
520 */
521 void verity_fec_init_io(struct dm_verity_io *io)
522 {
523 struct dm_verity_fec_io *fio = fec_io(io);
524
525 if (!verity_fec_is_enabled(io->v))
526 return;
527
528 fio->rs = NULL;
529 memset(fio->bufs, 0, sizeof(fio->bufs));
530 fio->nbufs = 0;
531 fio->output = NULL;
532 fio->level = 0;
533 }
534
535 /*
536 * Append feature arguments and values to the status table.
537 */
538 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
539 char *result, unsigned maxlen)
540 {
541 if (!verity_fec_is_enabled(v))
542 return sz;
543
544 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
545 DM_VERITY_OPT_FEC_BLOCKS " %llu "
546 DM_VERITY_OPT_FEC_START " %llu "
547 DM_VERITY_OPT_FEC_ROOTS " %d",
548 v->fec->dev->name,
549 (unsigned long long)v->fec->blocks,
550 (unsigned long long)v->fec->start,
551 v->fec->roots);
552
553 return sz;
554 }
555
556 void verity_fec_dtr(struct dm_verity *v)
557 {
558 struct dm_verity_fec *f = v->fec;
559
560 if (!verity_fec_is_enabled(v))
561 goto out;
562
563 mempool_destroy(f->rs_pool);
564 mempool_destroy(f->prealloc_pool);
565 mempool_destroy(f->extra_pool);
566 kmem_cache_destroy(f->cache);
567
568 if (f->data_bufio)
569 dm_bufio_client_destroy(f->data_bufio);
570 if (f->bufio)
571 dm_bufio_client_destroy(f->bufio);
572
573 if (f->dev)
574 dm_put_device(v->ti, f->dev);
575 out:
576 kfree(f);
577 v->fec = NULL;
578 }
579
580 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
581 {
582 struct dm_verity *v = (struct dm_verity *)pool_data;
583
584 return init_rs(8, 0x11d, 0, 1, v->fec->roots);
585 }
586
587 static void fec_rs_free(void *element, void *pool_data)
588 {
589 struct rs_control *rs = (struct rs_control *)element;
590
591 if (rs)
592 free_rs(rs);
593 }
594
595 bool verity_is_fec_opt_arg(const char *arg_name)
596 {
597 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
598 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
599 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
600 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
601 }
602
603 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
604 unsigned *argc, const char *arg_name)
605 {
606 int r;
607 struct dm_target *ti = v->ti;
608 const char *arg_value;
609 unsigned long long num_ll;
610 unsigned char num_c;
611 char dummy;
612
613 if (!*argc) {
614 ti->error = "FEC feature arguments require a value";
615 return -EINVAL;
616 }
617
618 arg_value = dm_shift_arg(as);
619 (*argc)--;
620
621 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
622 r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
623 if (r) {
624 ti->error = "FEC device lookup failed";
625 return r;
626 }
627
628 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
629 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
630 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
631 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
632 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
633 return -EINVAL;
634 }
635 v->fec->blocks = num_ll;
636
637 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
638 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
639 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
640 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
641 ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
642 return -EINVAL;
643 }
644 v->fec->start = num_ll;
645
646 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
647 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
648 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
649 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
650 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
651 return -EINVAL;
652 }
653 v->fec->roots = num_c;
654
655 } else {
656 ti->error = "Unrecognized verity FEC feature request";
657 return -EINVAL;
658 }
659
660 return 0;
661 }
662
663 /*
664 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
665 */
666 int verity_fec_ctr_alloc(struct dm_verity *v)
667 {
668 struct dm_verity_fec *f;
669
670 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
671 if (!f) {
672 v->ti->error = "Cannot allocate FEC structure";
673 return -ENOMEM;
674 }
675 v->fec = f;
676
677 return 0;
678 }
679
680 /*
681 * Validate arguments and preallocate memory. Must be called after arguments
682 * have been parsed using verity_fec_parse_opt_args.
683 */
684 int verity_fec_ctr(struct dm_verity *v)
685 {
686 struct dm_verity_fec *f = v->fec;
687 struct dm_target *ti = v->ti;
688 u64 hash_blocks;
689
690 if (!verity_fec_is_enabled(v)) {
691 verity_fec_dtr(v);
692 return 0;
693 }
694
695 /*
696 * FEC is computed over data blocks, possible metadata, and
697 * hash blocks. In other words, FEC covers total of fec_blocks
698 * blocks consisting of the following:
699 *
700 * data blocks | hash blocks | metadata (optional)
701 *
702 * We allow metadata after hash blocks to support a use case
703 * where all data is stored on the same device and FEC covers
704 * the entire area.
705 *
706 * If metadata is included, we require it to be available on the
707 * hash device after the hash blocks.
708 */
709
710 hash_blocks = v->hash_blocks - v->hash_start;
711
712 /*
713 * Require matching block sizes for data and hash devices for
714 * simplicity.
715 */
716 if (v->data_dev_block_bits != v->hash_dev_block_bits) {
717 ti->error = "Block sizes must match to use FEC";
718 return -EINVAL;
719 }
720
721 if (!f->roots) {
722 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
723 return -EINVAL;
724 }
725 f->rsn = DM_VERITY_FEC_RSM - f->roots;
726
727 if (!f->blocks) {
728 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
729 return -EINVAL;
730 }
731
732 f->rounds = f->blocks;
733 if (sector_div(f->rounds, f->rsn))
734 f->rounds++;
735
736 /*
737 * Due to optional metadata, f->blocks can be larger than
738 * data_blocks and hash_blocks combined.
739 */
740 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
741 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
742 return -EINVAL;
743 }
744
745 /*
746 * Metadata is accessed through the hash device, so we require
747 * it to be large enough.
748 */
749 f->hash_blocks = f->blocks - v->data_blocks;
750 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
751 ti->error = "Hash device is too small for "
752 DM_VERITY_OPT_FEC_BLOCKS;
753 return -E2BIG;
754 }
755
756 f->bufio = dm_bufio_client_create(f->dev->bdev,
757 1 << v->data_dev_block_bits,
758 1, 0, NULL, NULL);
759 if (IS_ERR(f->bufio)) {
760 ti->error = "Cannot initialize FEC bufio client";
761 return PTR_ERR(f->bufio);
762 }
763
764 if (dm_bufio_get_device_size(f->bufio) <
765 ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
766 ti->error = "FEC device is too small";
767 return -E2BIG;
768 }
769
770 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
771 1 << v->data_dev_block_bits,
772 1, 0, NULL, NULL);
773 if (IS_ERR(f->data_bufio)) {
774 ti->error = "Cannot initialize FEC data bufio client";
775 return PTR_ERR(f->data_bufio);
776 }
777
778 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
779 ti->error = "Data device is too small";
780 return -E2BIG;
781 }
782
783 /* Preallocate an rs_control structure for each worker thread */
784 f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
785 fec_rs_free, (void *) v);
786 if (!f->rs_pool) {
787 ti->error = "Cannot allocate RS pool";
788 return -ENOMEM;
789 }
790
791 f->cache = kmem_cache_create("dm_verity_fec_buffers",
792 f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
793 0, 0, NULL);
794 if (!f->cache) {
795 ti->error = "Cannot create FEC buffer cache";
796 return -ENOMEM;
797 }
798
799 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
800 f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
801 DM_VERITY_FEC_BUF_PREALLOC,
802 f->cache);
803 if (!f->prealloc_pool) {
804 ti->error = "Cannot allocate FEC buffer prealloc pool";
805 return -ENOMEM;
806 }
807
808 f->extra_pool = mempool_create_slab_pool(0, f->cache);
809 if (!f->extra_pool) {
810 ti->error = "Cannot allocate FEC buffer extra pool";
811 return -ENOMEM;
812 }
813
814 /* Preallocate an output buffer for each thread */
815 f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
816 1 << v->data_dev_block_bits);
817 if (!f->output_pool) {
818 ti->error = "Cannot allocate FEC output pool";
819 return -ENOMEM;
820 }
821
822 /* Reserve space for our per-bio data */
823 ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
824
825 return 0;
826 }