]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-zoned-target.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-zoned-target.c
1 /*
2 * Copyright (C) 2017 Western Digital Corporation or its affiliates.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-zoned.h"
8
9 #include <linux/module.h>
10
11 #define DM_MSG_PREFIX "zoned"
12
13 #define DMZ_MIN_BIOS 8192
14
15 /*
16 * Zone BIO context.
17 */
18 struct dmz_bioctx {
19 struct dmz_target *target;
20 struct dm_zone *zone;
21 struct bio *bio;
22 atomic_t ref;
23 blk_status_t status;
24 };
25
26 /*
27 * Chunk work descriptor.
28 */
29 struct dm_chunk_work {
30 struct work_struct work;
31 atomic_t refcount;
32 struct dmz_target *target;
33 unsigned int chunk;
34 struct bio_list bio_list;
35 };
36
37 /*
38 * Target descriptor.
39 */
40 struct dmz_target {
41 struct dm_dev *ddev;
42
43 unsigned long flags;
44
45 /* Zoned block device information */
46 struct dmz_dev *dev;
47
48 /* For metadata handling */
49 struct dmz_metadata *metadata;
50
51 /* For reclaim */
52 struct dmz_reclaim *reclaim;
53
54 /* For chunk work */
55 struct mutex chunk_lock;
56 struct radix_tree_root chunk_rxtree;
57 struct workqueue_struct *chunk_wq;
58
59 /* For cloned BIOs to zones */
60 struct bio_set *bio_set;
61
62 /* For flush */
63 spinlock_t flush_lock;
64 struct bio_list flush_list;
65 struct delayed_work flush_work;
66 struct workqueue_struct *flush_wq;
67 };
68
69 /*
70 * Flush intervals (seconds).
71 */
72 #define DMZ_FLUSH_PERIOD (10 * HZ)
73
74 /*
75 * Target BIO completion.
76 */
77 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
78 {
79 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
80
81 if (bioctx->status == BLK_STS_OK && status != BLK_STS_OK)
82 bioctx->status = status;
83 bio_endio(bio);
84 }
85
86 /*
87 * Partial clone read BIO completion callback. This terminates the
88 * target BIO when there are no more references to its context.
89 */
90 static void dmz_read_bio_end_io(struct bio *bio)
91 {
92 struct dmz_bioctx *bioctx = bio->bi_private;
93 blk_status_t status = bio->bi_status;
94
95 bio_put(bio);
96 dmz_bio_endio(bioctx->bio, status);
97 }
98
99 /*
100 * Issue a BIO to a zone. The BIO may only partially process the
101 * original target BIO.
102 */
103 static int dmz_submit_read_bio(struct dmz_target *dmz, struct dm_zone *zone,
104 struct bio *bio, sector_t chunk_block,
105 unsigned int nr_blocks)
106 {
107 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
108 sector_t sector;
109 struct bio *clone;
110
111 /* BIO remap sector */
112 sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
113
114 /* If the read is not partial, there is no need to clone the BIO */
115 if (nr_blocks == dmz_bio_blocks(bio)) {
116 /* Setup and submit the BIO */
117 bio->bi_iter.bi_sector = sector;
118 atomic_inc(&bioctx->ref);
119 generic_make_request(bio);
120 return 0;
121 }
122
123 /* Partial BIO: we need to clone the BIO */
124 clone = bio_clone_fast(bio, GFP_NOIO, dmz->bio_set);
125 if (!clone)
126 return -ENOMEM;
127
128 /* Setup the clone */
129 clone->bi_iter.bi_sector = sector;
130 clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
131 clone->bi_end_io = dmz_read_bio_end_io;
132 clone->bi_private = bioctx;
133
134 bio_advance(bio, clone->bi_iter.bi_size);
135
136 /* Submit the clone */
137 atomic_inc(&bioctx->ref);
138 generic_make_request(clone);
139
140 return 0;
141 }
142
143 /*
144 * Zero out pages of discarded blocks accessed by a read BIO.
145 */
146 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
147 sector_t chunk_block, unsigned int nr_blocks)
148 {
149 unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
150
151 /* Clear nr_blocks */
152 swap(bio->bi_iter.bi_size, size);
153 zero_fill_bio(bio);
154 swap(bio->bi_iter.bi_size, size);
155
156 bio_advance(bio, size);
157 }
158
159 /*
160 * Process a read BIO.
161 */
162 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
163 struct bio *bio)
164 {
165 sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
166 unsigned int nr_blocks = dmz_bio_blocks(bio);
167 sector_t end_block = chunk_block + nr_blocks;
168 struct dm_zone *rzone, *bzone;
169 int ret;
170
171 /* Read into unmapped chunks need only zeroing the BIO buffer */
172 if (!zone) {
173 zero_fill_bio(bio);
174 return 0;
175 }
176
177 dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks",
178 (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
179 (dmz_is_rnd(zone) ? "RND" : "SEQ"),
180 dmz_id(dmz->metadata, zone),
181 (unsigned long long)chunk_block, nr_blocks);
182
183 /* Check block validity to determine the read location */
184 bzone = zone->bzone;
185 while (chunk_block < end_block) {
186 nr_blocks = 0;
187 if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) {
188 /* Test block validity in the data zone */
189 ret = dmz_block_valid(dmz->metadata, zone, chunk_block);
190 if (ret < 0)
191 return ret;
192 if (ret > 0) {
193 /* Read data zone blocks */
194 nr_blocks = ret;
195 rzone = zone;
196 }
197 }
198
199 /*
200 * No valid blocks found in the data zone.
201 * Check the buffer zone, if there is one.
202 */
203 if (!nr_blocks && bzone) {
204 ret = dmz_block_valid(dmz->metadata, bzone, chunk_block);
205 if (ret < 0)
206 return ret;
207 if (ret > 0) {
208 /* Read buffer zone blocks */
209 nr_blocks = ret;
210 rzone = bzone;
211 }
212 }
213
214 if (nr_blocks) {
215 /* Valid blocks found: read them */
216 nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block);
217 ret = dmz_submit_read_bio(dmz, rzone, bio, chunk_block, nr_blocks);
218 if (ret)
219 return ret;
220 chunk_block += nr_blocks;
221 } else {
222 /* No valid block: zeroout the current BIO block */
223 dmz_handle_read_zero(dmz, bio, chunk_block, 1);
224 chunk_block++;
225 }
226 }
227
228 return 0;
229 }
230
231 /*
232 * Issue a write BIO to a zone.
233 */
234 static void dmz_submit_write_bio(struct dmz_target *dmz, struct dm_zone *zone,
235 struct bio *bio, sector_t chunk_block,
236 unsigned int nr_blocks)
237 {
238 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
239
240 /* Setup and submit the BIO */
241 bio->bi_bdev = dmz->dev->bdev;
242 bio->bi_iter.bi_sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
243 atomic_inc(&bioctx->ref);
244 generic_make_request(bio);
245
246 if (dmz_is_seq(zone))
247 zone->wp_block += nr_blocks;
248 }
249
250 /*
251 * Write blocks directly in a data zone, at the write pointer.
252 * If a buffer zone is assigned, invalidate the blocks written
253 * in place.
254 */
255 static int dmz_handle_direct_write(struct dmz_target *dmz,
256 struct dm_zone *zone, struct bio *bio,
257 sector_t chunk_block,
258 unsigned int nr_blocks)
259 {
260 struct dmz_metadata *zmd = dmz->metadata;
261 struct dm_zone *bzone = zone->bzone;
262 int ret;
263
264 if (dmz_is_readonly(zone))
265 return -EROFS;
266
267 /* Submit write */
268 dmz_submit_write_bio(dmz, zone, bio, chunk_block, nr_blocks);
269
270 /*
271 * Validate the blocks in the data zone and invalidate
272 * in the buffer zone, if there is one.
273 */
274 ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
275 if (ret == 0 && bzone)
276 ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
277
278 return ret;
279 }
280
281 /*
282 * Write blocks in the buffer zone of @zone.
283 * If no buffer zone is assigned yet, get one.
284 * Called with @zone write locked.
285 */
286 static int dmz_handle_buffered_write(struct dmz_target *dmz,
287 struct dm_zone *zone, struct bio *bio,
288 sector_t chunk_block,
289 unsigned int nr_blocks)
290 {
291 struct dmz_metadata *zmd = dmz->metadata;
292 struct dm_zone *bzone;
293 int ret;
294
295 /* Get the buffer zone. One will be allocated if needed */
296 bzone = dmz_get_chunk_buffer(zmd, zone);
297 if (!bzone)
298 return -ENOSPC;
299
300 if (dmz_is_readonly(bzone))
301 return -EROFS;
302
303 /* Submit write */
304 dmz_submit_write_bio(dmz, bzone, bio, chunk_block, nr_blocks);
305
306 /*
307 * Validate the blocks in the buffer zone
308 * and invalidate in the data zone.
309 */
310 ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
311 if (ret == 0 && chunk_block < zone->wp_block)
312 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
313
314 return ret;
315 }
316
317 /*
318 * Process a write BIO.
319 */
320 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
321 struct bio *bio)
322 {
323 sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
324 unsigned int nr_blocks = dmz_bio_blocks(bio);
325
326 if (!zone)
327 return -ENOSPC;
328
329 dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
330 (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
331 (dmz_is_rnd(zone) ? "RND" : "SEQ"),
332 dmz_id(dmz->metadata, zone),
333 (unsigned long long)chunk_block, nr_blocks);
334
335 if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) {
336 /*
337 * zone is a random zone or it is a sequential zone
338 * and the BIO is aligned to the zone write pointer:
339 * direct write the zone.
340 */
341 return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks);
342 }
343
344 /*
345 * This is an unaligned write in a sequential zone:
346 * use buffered write.
347 */
348 return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
349 }
350
351 /*
352 * Process a discard BIO.
353 */
354 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
355 struct bio *bio)
356 {
357 struct dmz_metadata *zmd = dmz->metadata;
358 sector_t block = dmz_bio_block(bio);
359 unsigned int nr_blocks = dmz_bio_blocks(bio);
360 sector_t chunk_block = dmz_chunk_block(dmz->dev, block);
361 int ret = 0;
362
363 /* For unmapped chunks, there is nothing to do */
364 if (!zone)
365 return 0;
366
367 if (dmz_is_readonly(zone))
368 return -EROFS;
369
370 dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
371 (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
372 dmz_id(zmd, zone),
373 (unsigned long long)chunk_block, nr_blocks);
374
375 /*
376 * Invalidate blocks in the data zone and its
377 * buffer zone if one is mapped.
378 */
379 if (dmz_is_rnd(zone) || chunk_block < zone->wp_block)
380 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
381 if (ret == 0 && zone->bzone)
382 ret = dmz_invalidate_blocks(zmd, zone->bzone,
383 chunk_block, nr_blocks);
384 return ret;
385 }
386
387 /*
388 * Process a BIO.
389 */
390 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
391 struct bio *bio)
392 {
393 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
394 struct dmz_metadata *zmd = dmz->metadata;
395 struct dm_zone *zone;
396 int ret;
397
398 /*
399 * Write may trigger a zone allocation. So make sure the
400 * allocation can succeed.
401 */
402 if (bio_op(bio) == REQ_OP_WRITE)
403 dmz_schedule_reclaim(dmz->reclaim);
404
405 dmz_lock_metadata(zmd);
406
407 /*
408 * Get the data zone mapping the chunk. There may be no
409 * mapping for read and discard. If a mapping is obtained,
410 + the zone returned will be set to active state.
411 */
412 zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio),
413 bio_op(bio));
414 if (IS_ERR(zone)) {
415 ret = PTR_ERR(zone);
416 goto out;
417 }
418
419 /* Process the BIO */
420 if (zone) {
421 dmz_activate_zone(zone);
422 bioctx->zone = zone;
423 }
424
425 switch (bio_op(bio)) {
426 case REQ_OP_READ:
427 ret = dmz_handle_read(dmz, zone, bio);
428 break;
429 case REQ_OP_WRITE:
430 ret = dmz_handle_write(dmz, zone, bio);
431 break;
432 case REQ_OP_DISCARD:
433 case REQ_OP_WRITE_ZEROES:
434 ret = dmz_handle_discard(dmz, zone, bio);
435 break;
436 default:
437 dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x",
438 bio_op(bio));
439 ret = -EIO;
440 }
441
442 /*
443 * Release the chunk mapping. This will check that the mapping
444 * is still valid, that is, that the zone used still has valid blocks.
445 */
446 if (zone)
447 dmz_put_chunk_mapping(zmd, zone);
448 out:
449 dmz_bio_endio(bio, errno_to_blk_status(ret));
450
451 dmz_unlock_metadata(zmd);
452 }
453
454 /*
455 * Increment a chunk reference counter.
456 */
457 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
458 {
459 atomic_inc(&cw->refcount);
460 }
461
462 /*
463 * Decrement a chunk work reference count and
464 * free it if it becomes 0.
465 */
466 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
467 {
468 if (atomic_dec_and_test(&cw->refcount)) {
469 WARN_ON(!bio_list_empty(&cw->bio_list));
470 radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
471 kfree(cw);
472 }
473 }
474
475 /*
476 * Chunk BIO work function.
477 */
478 static void dmz_chunk_work(struct work_struct *work)
479 {
480 struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
481 struct dmz_target *dmz = cw->target;
482 struct bio *bio;
483
484 mutex_lock(&dmz->chunk_lock);
485
486 /* Process the chunk BIOs */
487 while ((bio = bio_list_pop(&cw->bio_list))) {
488 mutex_unlock(&dmz->chunk_lock);
489 dmz_handle_bio(dmz, cw, bio);
490 mutex_lock(&dmz->chunk_lock);
491 dmz_put_chunk_work(cw);
492 }
493
494 /* Queueing the work incremented the work refcount */
495 dmz_put_chunk_work(cw);
496
497 mutex_unlock(&dmz->chunk_lock);
498 }
499
500 /*
501 * Flush work.
502 */
503 static void dmz_flush_work(struct work_struct *work)
504 {
505 struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
506 struct bio *bio;
507 int ret;
508
509 /* Flush dirty metadata blocks */
510 ret = dmz_flush_metadata(dmz->metadata);
511
512 /* Process queued flush requests */
513 while (1) {
514 spin_lock(&dmz->flush_lock);
515 bio = bio_list_pop(&dmz->flush_list);
516 spin_unlock(&dmz->flush_lock);
517
518 if (!bio)
519 break;
520
521 dmz_bio_endio(bio, errno_to_blk_status(ret));
522 }
523
524 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
525 }
526
527 /*
528 * Get a chunk work and start it to process a new BIO.
529 * If the BIO chunk has no work yet, create one.
530 */
531 static void dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
532 {
533 unsigned int chunk = dmz_bio_chunk(dmz->dev, bio);
534 struct dm_chunk_work *cw;
535
536 mutex_lock(&dmz->chunk_lock);
537
538 /* Get the BIO chunk work. If one is not active yet, create one */
539 cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
540 if (!cw) {
541 int ret;
542
543 /* Create a new chunk work */
544 cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOFS);
545 if (!cw)
546 goto out;
547
548 INIT_WORK(&cw->work, dmz_chunk_work);
549 atomic_set(&cw->refcount, 0);
550 cw->target = dmz;
551 cw->chunk = chunk;
552 bio_list_init(&cw->bio_list);
553
554 ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
555 if (unlikely(ret)) {
556 kfree(cw);
557 cw = NULL;
558 goto out;
559 }
560 }
561
562 bio_list_add(&cw->bio_list, bio);
563 dmz_get_chunk_work(cw);
564
565 if (queue_work(dmz->chunk_wq, &cw->work))
566 dmz_get_chunk_work(cw);
567 out:
568 mutex_unlock(&dmz->chunk_lock);
569 }
570
571 /*
572 * Process a new BIO.
573 */
574 static int dmz_map(struct dm_target *ti, struct bio *bio)
575 {
576 struct dmz_target *dmz = ti->private;
577 struct dmz_dev *dev = dmz->dev;
578 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
579 sector_t sector = bio->bi_iter.bi_sector;
580 unsigned int nr_sectors = bio_sectors(bio);
581 sector_t chunk_sector;
582
583 dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
584 bio_op(bio), (unsigned long long)sector, nr_sectors,
585 (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
586 (unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)),
587 (unsigned int)dmz_bio_blocks(bio));
588
589 bio->bi_bdev = dev->bdev;
590
591 if (!nr_sectors && (bio_op(bio) != REQ_OP_FLUSH) && (bio_op(bio) != REQ_OP_WRITE))
592 return DM_MAPIO_REMAPPED;
593
594 /* The BIO should be block aligned */
595 if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
596 return DM_MAPIO_KILL;
597
598 /* Initialize the BIO context */
599 bioctx->target = dmz;
600 bioctx->zone = NULL;
601 bioctx->bio = bio;
602 atomic_set(&bioctx->ref, 1);
603 bioctx->status = BLK_STS_OK;
604
605 /* Set the BIO pending in the flush list */
606 if (bio_op(bio) == REQ_OP_FLUSH || (!nr_sectors && bio_op(bio) == REQ_OP_WRITE)) {
607 spin_lock(&dmz->flush_lock);
608 bio_list_add(&dmz->flush_list, bio);
609 spin_unlock(&dmz->flush_lock);
610 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
611 return DM_MAPIO_SUBMITTED;
612 }
613
614 /* Split zone BIOs to fit entirely into a zone */
615 chunk_sector = sector & (dev->zone_nr_sectors - 1);
616 if (chunk_sector + nr_sectors > dev->zone_nr_sectors)
617 dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector);
618
619 /* Now ready to handle this BIO */
620 dmz_reclaim_bio_acc(dmz->reclaim);
621 dmz_queue_chunk_work(dmz, bio);
622
623 return DM_MAPIO_SUBMITTED;
624 }
625
626 /*
627 * Completed target BIO processing.
628 */
629 static int dmz_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
630 {
631 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
632
633 if (bioctx->status == BLK_STS_OK && *error)
634 bioctx->status = *error;
635
636 if (!atomic_dec_and_test(&bioctx->ref))
637 return DM_ENDIO_INCOMPLETE;
638
639 /* Done */
640 bio->bi_status = bioctx->status;
641
642 if (bioctx->zone) {
643 struct dm_zone *zone = bioctx->zone;
644
645 if (*error && bio_op(bio) == REQ_OP_WRITE) {
646 if (dmz_is_seq(zone))
647 set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
648 }
649 dmz_deactivate_zone(zone);
650 }
651
652 return DM_ENDIO_DONE;
653 }
654
655 /*
656 * Get zoned device information.
657 */
658 static int dmz_get_zoned_device(struct dm_target *ti, char *path)
659 {
660 struct dmz_target *dmz = ti->private;
661 struct request_queue *q;
662 struct dmz_dev *dev;
663 int ret;
664
665 /* Get the target device */
666 ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev);
667 if (ret) {
668 ti->error = "Get target device failed";
669 dmz->ddev = NULL;
670 return ret;
671 }
672
673 dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL);
674 if (!dev) {
675 ret = -ENOMEM;
676 goto err;
677 }
678
679 dev->bdev = dmz->ddev->bdev;
680 (void)bdevname(dev->bdev, dev->name);
681
682 if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) {
683 ti->error = "Not a zoned block device";
684 ret = -EINVAL;
685 goto err;
686 }
687
688 dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
689 if (ti->begin || (ti->len != dev->capacity)) {
690 ti->error = "Partial mapping not supported";
691 ret = -EINVAL;
692 goto err;
693 }
694
695 q = bdev_get_queue(dev->bdev);
696 dev->zone_nr_sectors = q->limits.chunk_sectors;
697 dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors);
698
699 dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors);
700 dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks);
701
702 dev->nr_zones = (dev->capacity + dev->zone_nr_sectors - 1)
703 >> dev->zone_nr_sectors_shift;
704
705 dmz->dev = dev;
706
707 return 0;
708 err:
709 dm_put_device(ti, dmz->ddev);
710 kfree(dev);
711
712 return ret;
713 }
714
715 /*
716 * Cleanup zoned device information.
717 */
718 static void dmz_put_zoned_device(struct dm_target *ti)
719 {
720 struct dmz_target *dmz = ti->private;
721
722 dm_put_device(ti, dmz->ddev);
723 kfree(dmz->dev);
724 dmz->dev = NULL;
725 }
726
727 /*
728 * Setup target.
729 */
730 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
731 {
732 struct dmz_target *dmz;
733 struct dmz_dev *dev;
734 int ret;
735
736 /* Check arguments */
737 if (argc != 1) {
738 ti->error = "Invalid argument count";
739 return -EINVAL;
740 }
741
742 /* Allocate and initialize the target descriptor */
743 dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
744 if (!dmz) {
745 ti->error = "Unable to allocate the zoned target descriptor";
746 return -ENOMEM;
747 }
748 ti->private = dmz;
749
750 /* Get the target zoned block device */
751 ret = dmz_get_zoned_device(ti, argv[0]);
752 if (ret) {
753 dmz->ddev = NULL;
754 goto err;
755 }
756
757 /* Initialize metadata */
758 dev = dmz->dev;
759 ret = dmz_ctr_metadata(dev, &dmz->metadata);
760 if (ret) {
761 ti->error = "Metadata initialization failed";
762 goto err_dev;
763 }
764
765 /* Set target (no write same support) */
766 ti->max_io_len = dev->zone_nr_sectors << 9;
767 ti->num_flush_bios = 1;
768 ti->num_discard_bios = 1;
769 ti->num_write_zeroes_bios = 1;
770 ti->per_io_data_size = sizeof(struct dmz_bioctx);
771 ti->flush_supported = true;
772 ti->discards_supported = true;
773 ti->split_discard_bios = true;
774
775 /* The exposed capacity is the number of chunks that can be mapped */
776 ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift;
777
778 /* Zone BIO */
779 dmz->bio_set = bioset_create(DMZ_MIN_BIOS, 0, 0);
780 if (!dmz->bio_set) {
781 ti->error = "Create BIO set failed";
782 ret = -ENOMEM;
783 goto err_meta;
784 }
785
786 /* Chunk BIO work */
787 mutex_init(&dmz->chunk_lock);
788 INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOFS);
789 dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND,
790 0, dev->name);
791 if (!dmz->chunk_wq) {
792 ti->error = "Create chunk workqueue failed";
793 ret = -ENOMEM;
794 goto err_bio;
795 }
796
797 /* Flush work */
798 spin_lock_init(&dmz->flush_lock);
799 bio_list_init(&dmz->flush_list);
800 INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
801 dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
802 dev->name);
803 if (!dmz->flush_wq) {
804 ti->error = "Create flush workqueue failed";
805 ret = -ENOMEM;
806 goto err_cwq;
807 }
808 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
809
810 /* Initialize reclaim */
811 ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim);
812 if (ret) {
813 ti->error = "Zone reclaim initialization failed";
814 goto err_fwq;
815 }
816
817 dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)",
818 (unsigned long long)ti->len,
819 (unsigned long long)dmz_sect2blk(ti->len));
820
821 return 0;
822 err_fwq:
823 destroy_workqueue(dmz->flush_wq);
824 err_cwq:
825 destroy_workqueue(dmz->chunk_wq);
826 err_bio:
827 bioset_free(dmz->bio_set);
828 err_meta:
829 dmz_dtr_metadata(dmz->metadata);
830 err_dev:
831 dmz_put_zoned_device(ti);
832 err:
833 kfree(dmz);
834
835 return ret;
836 }
837
838 /*
839 * Cleanup target.
840 */
841 static void dmz_dtr(struct dm_target *ti)
842 {
843 struct dmz_target *dmz = ti->private;
844
845 flush_workqueue(dmz->chunk_wq);
846 destroy_workqueue(dmz->chunk_wq);
847
848 dmz_dtr_reclaim(dmz->reclaim);
849
850 cancel_delayed_work_sync(&dmz->flush_work);
851 destroy_workqueue(dmz->flush_wq);
852
853 (void) dmz_flush_metadata(dmz->metadata);
854
855 dmz_dtr_metadata(dmz->metadata);
856
857 bioset_free(dmz->bio_set);
858
859 dmz_put_zoned_device(ti);
860
861 kfree(dmz);
862 }
863
864 /*
865 * Setup target request queue limits.
866 */
867 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
868 {
869 struct dmz_target *dmz = ti->private;
870 unsigned int chunk_sectors = dmz->dev->zone_nr_sectors;
871
872 limits->logical_block_size = DMZ_BLOCK_SIZE;
873 limits->physical_block_size = DMZ_BLOCK_SIZE;
874
875 blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
876 blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
877
878 limits->discard_alignment = DMZ_BLOCK_SIZE;
879 limits->discard_granularity = DMZ_BLOCK_SIZE;
880 limits->max_discard_sectors = chunk_sectors;
881 limits->max_hw_discard_sectors = chunk_sectors;
882 limits->max_write_zeroes_sectors = chunk_sectors;
883
884 /* FS hint to try to align to the device zone size */
885 limits->chunk_sectors = chunk_sectors;
886 limits->max_sectors = chunk_sectors;
887
888 /* We are exposing a drive-managed zoned block device */
889 limits->zoned = BLK_ZONED_NONE;
890 }
891
892 /*
893 * Pass on ioctl to the backend device.
894 */
895 static int dmz_prepare_ioctl(struct dm_target *ti,
896 struct block_device **bdev, fmode_t *mode)
897 {
898 struct dmz_target *dmz = ti->private;
899
900 *bdev = dmz->dev->bdev;
901
902 return 0;
903 }
904
905 /*
906 * Stop works on suspend.
907 */
908 static void dmz_suspend(struct dm_target *ti)
909 {
910 struct dmz_target *dmz = ti->private;
911
912 flush_workqueue(dmz->chunk_wq);
913 dmz_suspend_reclaim(dmz->reclaim);
914 cancel_delayed_work_sync(&dmz->flush_work);
915 }
916
917 /*
918 * Restart works on resume or if suspend failed.
919 */
920 static void dmz_resume(struct dm_target *ti)
921 {
922 struct dmz_target *dmz = ti->private;
923
924 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
925 dmz_resume_reclaim(dmz->reclaim);
926 }
927
928 static int dmz_iterate_devices(struct dm_target *ti,
929 iterate_devices_callout_fn fn, void *data)
930 {
931 struct dmz_target *dmz = ti->private;
932
933 return fn(ti, dmz->ddev, 0, dmz->dev->capacity, data);
934 }
935
936 static struct target_type dmz_type = {
937 .name = "zoned",
938 .version = {1, 0, 0},
939 .features = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM,
940 .module = THIS_MODULE,
941 .ctr = dmz_ctr,
942 .dtr = dmz_dtr,
943 .map = dmz_map,
944 .end_io = dmz_end_io,
945 .io_hints = dmz_io_hints,
946 .prepare_ioctl = dmz_prepare_ioctl,
947 .postsuspend = dmz_suspend,
948 .resume = dmz_resume,
949 .iterate_devices = dmz_iterate_devices,
950 };
951
952 static int __init dmz_init(void)
953 {
954 return dm_register_target(&dmz_type);
955 }
956
957 static void __exit dmz_exit(void)
958 {
959 dm_unregister_target(&dmz_type);
960 }
961
962 module_init(dmz_init);
963 module_exit(dmz_exit);
964
965 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
966 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
967 MODULE_LICENSE("GPL");