]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm.c
dm: allow remove to be deferred
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52
53 static void do_deferred_remove(struct work_struct *w);
54
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56
57 /*
58 * For bio-based dm.
59 * One of these is allocated per bio.
60 */
61 struct dm_io {
62 struct mapped_device *md;
63 int error;
64 atomic_t io_count;
65 struct bio *bio;
66 unsigned long start_time;
67 spinlock_t endio_lock;
68 struct dm_stats_aux stats_aux;
69 };
70
71 /*
72 * For request-based dm.
73 * One of these is allocated per request.
74 */
75 struct dm_rq_target_io {
76 struct mapped_device *md;
77 struct dm_target *ti;
78 struct request *orig, clone;
79 int error;
80 union map_info info;
81 };
82
83 /*
84 * For request-based dm - the bio clones we allocate are embedded in these
85 * structs.
86 *
87 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
88 * the bioset is created - this means the bio has to come at the end of the
89 * struct.
90 */
91 struct dm_rq_clone_bio_info {
92 struct bio *orig;
93 struct dm_rq_target_io *tio;
94 struct bio clone;
95 };
96
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 if (bio && bio->bi_private)
100 return &((struct dm_target_io *)bio->bi_private)->info;
101 return NULL;
102 }
103
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 if (rq && rq->end_io_data)
107 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111
112 #define MINOR_ALLOCED ((void *)-1)
113
114 /*
115 * Bits for the md->flags field.
116 */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124 #define DMF_DEFERRED_REMOVE 7
125
126 /*
127 * A dummy definition to make RCU happy.
128 * struct dm_table should never be dereferenced in this file.
129 */
130 struct dm_table {
131 int undefined__;
132 };
133
134 /*
135 * Work processed by per-device workqueue.
136 */
137 struct mapped_device {
138 struct srcu_struct io_barrier;
139 struct mutex suspend_lock;
140 atomic_t holders;
141 atomic_t open_count;
142
143 /*
144 * The current mapping.
145 * Use dm_get_live_table{_fast} or take suspend_lock for
146 * dereference.
147 */
148 struct dm_table *map;
149
150 unsigned long flags;
151
152 struct request_queue *queue;
153 unsigned type;
154 /* Protect queue and type against concurrent access. */
155 struct mutex type_lock;
156
157 struct target_type *immutable_target_type;
158
159 struct gendisk *disk;
160 char name[16];
161
162 void *interface_ptr;
163
164 /*
165 * A list of ios that arrived while we were suspended.
166 */
167 atomic_t pending[2];
168 wait_queue_head_t wait;
169 struct work_struct work;
170 struct bio_list deferred;
171 spinlock_t deferred_lock;
172
173 /*
174 * Processing queue (flush)
175 */
176 struct workqueue_struct *wq;
177
178 /*
179 * io objects are allocated from here.
180 */
181 mempool_t *io_pool;
182
183 struct bio_set *bs;
184
185 /*
186 * Event handling.
187 */
188 atomic_t event_nr;
189 wait_queue_head_t eventq;
190 atomic_t uevent_seq;
191 struct list_head uevent_list;
192 spinlock_t uevent_lock; /* Protect access to uevent_list */
193
194 /*
195 * freeze/thaw support require holding onto a super block
196 */
197 struct super_block *frozen_sb;
198 struct block_device *bdev;
199
200 /* forced geometry settings */
201 struct hd_geometry geometry;
202
203 /* sysfs handle */
204 struct kobject kobj;
205
206 /* zero-length flush that will be cloned and submitted to targets */
207 struct bio flush_bio;
208
209 struct dm_stats stats;
210 };
211
212 /*
213 * For mempools pre-allocation at the table loading time.
214 */
215 struct dm_md_mempools {
216 mempool_t *io_pool;
217 struct bio_set *bs;
218 };
219
220 #define RESERVED_BIO_BASED_IOS 16
221 #define RESERVED_REQUEST_BASED_IOS 256
222 #define RESERVED_MAX_IOS 1024
223 static struct kmem_cache *_io_cache;
224 static struct kmem_cache *_rq_tio_cache;
225
226 /*
227 * Bio-based DM's mempools' reserved IOs set by the user.
228 */
229 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
230
231 /*
232 * Request-based DM's mempools' reserved IOs set by the user.
233 */
234 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
235
236 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
237 unsigned def, unsigned max)
238 {
239 unsigned ios = ACCESS_ONCE(*reserved_ios);
240 unsigned modified_ios = 0;
241
242 if (!ios)
243 modified_ios = def;
244 else if (ios > max)
245 modified_ios = max;
246
247 if (modified_ios) {
248 (void)cmpxchg(reserved_ios, ios, modified_ios);
249 ios = modified_ios;
250 }
251
252 return ios;
253 }
254
255 unsigned dm_get_reserved_bio_based_ios(void)
256 {
257 return __dm_get_reserved_ios(&reserved_bio_based_ios,
258 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
259 }
260 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
261
262 unsigned dm_get_reserved_rq_based_ios(void)
263 {
264 return __dm_get_reserved_ios(&reserved_rq_based_ios,
265 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
266 }
267 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
268
269 static int __init local_init(void)
270 {
271 int r = -ENOMEM;
272
273 /* allocate a slab for the dm_ios */
274 _io_cache = KMEM_CACHE(dm_io, 0);
275 if (!_io_cache)
276 return r;
277
278 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
279 if (!_rq_tio_cache)
280 goto out_free_io_cache;
281
282 r = dm_uevent_init();
283 if (r)
284 goto out_free_rq_tio_cache;
285
286 _major = major;
287 r = register_blkdev(_major, _name);
288 if (r < 0)
289 goto out_uevent_exit;
290
291 if (!_major)
292 _major = r;
293
294 return 0;
295
296 out_uevent_exit:
297 dm_uevent_exit();
298 out_free_rq_tio_cache:
299 kmem_cache_destroy(_rq_tio_cache);
300 out_free_io_cache:
301 kmem_cache_destroy(_io_cache);
302
303 return r;
304 }
305
306 static void local_exit(void)
307 {
308 flush_scheduled_work();
309
310 kmem_cache_destroy(_rq_tio_cache);
311 kmem_cache_destroy(_io_cache);
312 unregister_blkdev(_major, _name);
313 dm_uevent_exit();
314
315 _major = 0;
316
317 DMINFO("cleaned up");
318 }
319
320 static int (*_inits[])(void) __initdata = {
321 local_init,
322 dm_target_init,
323 dm_linear_init,
324 dm_stripe_init,
325 dm_io_init,
326 dm_kcopyd_init,
327 dm_interface_init,
328 dm_statistics_init,
329 };
330
331 static void (*_exits[])(void) = {
332 local_exit,
333 dm_target_exit,
334 dm_linear_exit,
335 dm_stripe_exit,
336 dm_io_exit,
337 dm_kcopyd_exit,
338 dm_interface_exit,
339 dm_statistics_exit,
340 };
341
342 static int __init dm_init(void)
343 {
344 const int count = ARRAY_SIZE(_inits);
345
346 int r, i;
347
348 for (i = 0; i < count; i++) {
349 r = _inits[i]();
350 if (r)
351 goto bad;
352 }
353
354 return 0;
355
356 bad:
357 while (i--)
358 _exits[i]();
359
360 return r;
361 }
362
363 static void __exit dm_exit(void)
364 {
365 int i = ARRAY_SIZE(_exits);
366
367 while (i--)
368 _exits[i]();
369
370 /*
371 * Should be empty by this point.
372 */
373 idr_destroy(&_minor_idr);
374 }
375
376 /*
377 * Block device functions
378 */
379 int dm_deleting_md(struct mapped_device *md)
380 {
381 return test_bit(DMF_DELETING, &md->flags);
382 }
383
384 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
385 {
386 struct mapped_device *md;
387
388 spin_lock(&_minor_lock);
389
390 md = bdev->bd_disk->private_data;
391 if (!md)
392 goto out;
393
394 if (test_bit(DMF_FREEING, &md->flags) ||
395 dm_deleting_md(md)) {
396 md = NULL;
397 goto out;
398 }
399
400 dm_get(md);
401 atomic_inc(&md->open_count);
402
403 out:
404 spin_unlock(&_minor_lock);
405
406 return md ? 0 : -ENXIO;
407 }
408
409 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
410 {
411 struct mapped_device *md = disk->private_data;
412
413 spin_lock(&_minor_lock);
414
415 if (atomic_dec_and_test(&md->open_count) &&
416 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
417 schedule_work(&deferred_remove_work);
418
419 dm_put(md);
420
421 spin_unlock(&_minor_lock);
422 }
423
424 int dm_open_count(struct mapped_device *md)
425 {
426 return atomic_read(&md->open_count);
427 }
428
429 /*
430 * Guarantees nothing is using the device before it's deleted.
431 */
432 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
433 {
434 int r = 0;
435
436 spin_lock(&_minor_lock);
437
438 if (dm_open_count(md)) {
439 r = -EBUSY;
440 if (mark_deferred)
441 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
442 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
443 r = -EEXIST;
444 else
445 set_bit(DMF_DELETING, &md->flags);
446
447 spin_unlock(&_minor_lock);
448
449 return r;
450 }
451
452 int dm_cancel_deferred_remove(struct mapped_device *md)
453 {
454 int r = 0;
455
456 spin_lock(&_minor_lock);
457
458 if (test_bit(DMF_DELETING, &md->flags))
459 r = -EBUSY;
460 else
461 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
462
463 spin_unlock(&_minor_lock);
464
465 return r;
466 }
467
468 static void do_deferred_remove(struct work_struct *w)
469 {
470 dm_deferred_remove();
471 }
472
473 sector_t dm_get_size(struct mapped_device *md)
474 {
475 return get_capacity(md->disk);
476 }
477
478 struct dm_stats *dm_get_stats(struct mapped_device *md)
479 {
480 return &md->stats;
481 }
482
483 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
484 {
485 struct mapped_device *md = bdev->bd_disk->private_data;
486
487 return dm_get_geometry(md, geo);
488 }
489
490 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
491 unsigned int cmd, unsigned long arg)
492 {
493 struct mapped_device *md = bdev->bd_disk->private_data;
494 int srcu_idx;
495 struct dm_table *map;
496 struct dm_target *tgt;
497 int r = -ENOTTY;
498
499 retry:
500 map = dm_get_live_table(md, &srcu_idx);
501
502 if (!map || !dm_table_get_size(map))
503 goto out;
504
505 /* We only support devices that have a single target */
506 if (dm_table_get_num_targets(map) != 1)
507 goto out;
508
509 tgt = dm_table_get_target(map, 0);
510
511 if (dm_suspended_md(md)) {
512 r = -EAGAIN;
513 goto out;
514 }
515
516 if (tgt->type->ioctl)
517 r = tgt->type->ioctl(tgt, cmd, arg);
518
519 out:
520 dm_put_live_table(md, srcu_idx);
521
522 if (r == -ENOTCONN) {
523 msleep(10);
524 goto retry;
525 }
526
527 return r;
528 }
529
530 static struct dm_io *alloc_io(struct mapped_device *md)
531 {
532 return mempool_alloc(md->io_pool, GFP_NOIO);
533 }
534
535 static void free_io(struct mapped_device *md, struct dm_io *io)
536 {
537 mempool_free(io, md->io_pool);
538 }
539
540 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
541 {
542 bio_put(&tio->clone);
543 }
544
545 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
546 gfp_t gfp_mask)
547 {
548 return mempool_alloc(md->io_pool, gfp_mask);
549 }
550
551 static void free_rq_tio(struct dm_rq_target_io *tio)
552 {
553 mempool_free(tio, tio->md->io_pool);
554 }
555
556 static int md_in_flight(struct mapped_device *md)
557 {
558 return atomic_read(&md->pending[READ]) +
559 atomic_read(&md->pending[WRITE]);
560 }
561
562 static void start_io_acct(struct dm_io *io)
563 {
564 struct mapped_device *md = io->md;
565 struct bio *bio = io->bio;
566 int cpu;
567 int rw = bio_data_dir(bio);
568
569 io->start_time = jiffies;
570
571 cpu = part_stat_lock();
572 part_round_stats(cpu, &dm_disk(md)->part0);
573 part_stat_unlock();
574 atomic_set(&dm_disk(md)->part0.in_flight[rw],
575 atomic_inc_return(&md->pending[rw]));
576
577 if (unlikely(dm_stats_used(&md->stats)))
578 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
579 bio_sectors(bio), false, 0, &io->stats_aux);
580 }
581
582 static void end_io_acct(struct dm_io *io)
583 {
584 struct mapped_device *md = io->md;
585 struct bio *bio = io->bio;
586 unsigned long duration = jiffies - io->start_time;
587 int pending, cpu;
588 int rw = bio_data_dir(bio);
589
590 cpu = part_stat_lock();
591 part_round_stats(cpu, &dm_disk(md)->part0);
592 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
593 part_stat_unlock();
594
595 if (unlikely(dm_stats_used(&md->stats)))
596 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
597 bio_sectors(bio), true, duration, &io->stats_aux);
598
599 /*
600 * After this is decremented the bio must not be touched if it is
601 * a flush.
602 */
603 pending = atomic_dec_return(&md->pending[rw]);
604 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
605 pending += atomic_read(&md->pending[rw^0x1]);
606
607 /* nudge anyone waiting on suspend queue */
608 if (!pending)
609 wake_up(&md->wait);
610 }
611
612 /*
613 * Add the bio to the list of deferred io.
614 */
615 static void queue_io(struct mapped_device *md, struct bio *bio)
616 {
617 unsigned long flags;
618
619 spin_lock_irqsave(&md->deferred_lock, flags);
620 bio_list_add(&md->deferred, bio);
621 spin_unlock_irqrestore(&md->deferred_lock, flags);
622 queue_work(md->wq, &md->work);
623 }
624
625 /*
626 * Everyone (including functions in this file), should use this
627 * function to access the md->map field, and make sure they call
628 * dm_put_live_table() when finished.
629 */
630 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
631 {
632 *srcu_idx = srcu_read_lock(&md->io_barrier);
633
634 return srcu_dereference(md->map, &md->io_barrier);
635 }
636
637 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
638 {
639 srcu_read_unlock(&md->io_barrier, srcu_idx);
640 }
641
642 void dm_sync_table(struct mapped_device *md)
643 {
644 synchronize_srcu(&md->io_barrier);
645 synchronize_rcu_expedited();
646 }
647
648 /*
649 * A fast alternative to dm_get_live_table/dm_put_live_table.
650 * The caller must not block between these two functions.
651 */
652 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
653 {
654 rcu_read_lock();
655 return rcu_dereference(md->map);
656 }
657
658 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
659 {
660 rcu_read_unlock();
661 }
662
663 /*
664 * Get the geometry associated with a dm device
665 */
666 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
667 {
668 *geo = md->geometry;
669
670 return 0;
671 }
672
673 /*
674 * Set the geometry of a device.
675 */
676 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
677 {
678 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
679
680 if (geo->start > sz) {
681 DMWARN("Start sector is beyond the geometry limits.");
682 return -EINVAL;
683 }
684
685 md->geometry = *geo;
686
687 return 0;
688 }
689
690 /*-----------------------------------------------------------------
691 * CRUD START:
692 * A more elegant soln is in the works that uses the queue
693 * merge fn, unfortunately there are a couple of changes to
694 * the block layer that I want to make for this. So in the
695 * interests of getting something for people to use I give
696 * you this clearly demarcated crap.
697 *---------------------------------------------------------------*/
698
699 static int __noflush_suspending(struct mapped_device *md)
700 {
701 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
702 }
703
704 /*
705 * Decrements the number of outstanding ios that a bio has been
706 * cloned into, completing the original io if necc.
707 */
708 static void dec_pending(struct dm_io *io, int error)
709 {
710 unsigned long flags;
711 int io_error;
712 struct bio *bio;
713 struct mapped_device *md = io->md;
714
715 /* Push-back supersedes any I/O errors */
716 if (unlikely(error)) {
717 spin_lock_irqsave(&io->endio_lock, flags);
718 if (!(io->error > 0 && __noflush_suspending(md)))
719 io->error = error;
720 spin_unlock_irqrestore(&io->endio_lock, flags);
721 }
722
723 if (atomic_dec_and_test(&io->io_count)) {
724 if (io->error == DM_ENDIO_REQUEUE) {
725 /*
726 * Target requested pushing back the I/O.
727 */
728 spin_lock_irqsave(&md->deferred_lock, flags);
729 if (__noflush_suspending(md))
730 bio_list_add_head(&md->deferred, io->bio);
731 else
732 /* noflush suspend was interrupted. */
733 io->error = -EIO;
734 spin_unlock_irqrestore(&md->deferred_lock, flags);
735 }
736
737 io_error = io->error;
738 bio = io->bio;
739 end_io_acct(io);
740 free_io(md, io);
741
742 if (io_error == DM_ENDIO_REQUEUE)
743 return;
744
745 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
746 /*
747 * Preflush done for flush with data, reissue
748 * without REQ_FLUSH.
749 */
750 bio->bi_rw &= ~REQ_FLUSH;
751 queue_io(md, bio);
752 } else {
753 /* done with normal IO or empty flush */
754 trace_block_bio_complete(md->queue, bio, io_error);
755 bio_endio(bio, io_error);
756 }
757 }
758 }
759
760 static void clone_endio(struct bio *bio, int error)
761 {
762 int r = 0;
763 struct dm_target_io *tio = bio->bi_private;
764 struct dm_io *io = tio->io;
765 struct mapped_device *md = tio->io->md;
766 dm_endio_fn endio = tio->ti->type->end_io;
767
768 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
769 error = -EIO;
770
771 if (endio) {
772 r = endio(tio->ti, bio, error);
773 if (r < 0 || r == DM_ENDIO_REQUEUE)
774 /*
775 * error and requeue request are handled
776 * in dec_pending().
777 */
778 error = r;
779 else if (r == DM_ENDIO_INCOMPLETE)
780 /* The target will handle the io */
781 return;
782 else if (r) {
783 DMWARN("unimplemented target endio return value: %d", r);
784 BUG();
785 }
786 }
787
788 free_tio(md, tio);
789 dec_pending(io, error);
790 }
791
792 /*
793 * Partial completion handling for request-based dm
794 */
795 static void end_clone_bio(struct bio *clone, int error)
796 {
797 struct dm_rq_clone_bio_info *info = clone->bi_private;
798 struct dm_rq_target_io *tio = info->tio;
799 struct bio *bio = info->orig;
800 unsigned int nr_bytes = info->orig->bi_size;
801
802 bio_put(clone);
803
804 if (tio->error)
805 /*
806 * An error has already been detected on the request.
807 * Once error occurred, just let clone->end_io() handle
808 * the remainder.
809 */
810 return;
811 else if (error) {
812 /*
813 * Don't notice the error to the upper layer yet.
814 * The error handling decision is made by the target driver,
815 * when the request is completed.
816 */
817 tio->error = error;
818 return;
819 }
820
821 /*
822 * I/O for the bio successfully completed.
823 * Notice the data completion to the upper layer.
824 */
825
826 /*
827 * bios are processed from the head of the list.
828 * So the completing bio should always be rq->bio.
829 * If it's not, something wrong is happening.
830 */
831 if (tio->orig->bio != bio)
832 DMERR("bio completion is going in the middle of the request");
833
834 /*
835 * Update the original request.
836 * Do not use blk_end_request() here, because it may complete
837 * the original request before the clone, and break the ordering.
838 */
839 blk_update_request(tio->orig, 0, nr_bytes);
840 }
841
842 /*
843 * Don't touch any member of the md after calling this function because
844 * the md may be freed in dm_put() at the end of this function.
845 * Or do dm_get() before calling this function and dm_put() later.
846 */
847 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
848 {
849 atomic_dec(&md->pending[rw]);
850
851 /* nudge anyone waiting on suspend queue */
852 if (!md_in_flight(md))
853 wake_up(&md->wait);
854
855 /*
856 * Run this off this callpath, as drivers could invoke end_io while
857 * inside their request_fn (and holding the queue lock). Calling
858 * back into ->request_fn() could deadlock attempting to grab the
859 * queue lock again.
860 */
861 if (run_queue)
862 blk_run_queue_async(md->queue);
863
864 /*
865 * dm_put() must be at the end of this function. See the comment above
866 */
867 dm_put(md);
868 }
869
870 static void free_rq_clone(struct request *clone)
871 {
872 struct dm_rq_target_io *tio = clone->end_io_data;
873
874 blk_rq_unprep_clone(clone);
875 free_rq_tio(tio);
876 }
877
878 /*
879 * Complete the clone and the original request.
880 * Must be called without queue lock.
881 */
882 static void dm_end_request(struct request *clone, int error)
883 {
884 int rw = rq_data_dir(clone);
885 struct dm_rq_target_io *tio = clone->end_io_data;
886 struct mapped_device *md = tio->md;
887 struct request *rq = tio->orig;
888
889 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
890 rq->errors = clone->errors;
891 rq->resid_len = clone->resid_len;
892
893 if (rq->sense)
894 /*
895 * We are using the sense buffer of the original
896 * request.
897 * So setting the length of the sense data is enough.
898 */
899 rq->sense_len = clone->sense_len;
900 }
901
902 free_rq_clone(clone);
903 blk_end_request_all(rq, error);
904 rq_completed(md, rw, true);
905 }
906
907 static void dm_unprep_request(struct request *rq)
908 {
909 struct request *clone = rq->special;
910
911 rq->special = NULL;
912 rq->cmd_flags &= ~REQ_DONTPREP;
913
914 free_rq_clone(clone);
915 }
916
917 /*
918 * Requeue the original request of a clone.
919 */
920 void dm_requeue_unmapped_request(struct request *clone)
921 {
922 int rw = rq_data_dir(clone);
923 struct dm_rq_target_io *tio = clone->end_io_data;
924 struct mapped_device *md = tio->md;
925 struct request *rq = tio->orig;
926 struct request_queue *q = rq->q;
927 unsigned long flags;
928
929 dm_unprep_request(rq);
930
931 spin_lock_irqsave(q->queue_lock, flags);
932 blk_requeue_request(q, rq);
933 spin_unlock_irqrestore(q->queue_lock, flags);
934
935 rq_completed(md, rw, 0);
936 }
937 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
938
939 static void __stop_queue(struct request_queue *q)
940 {
941 blk_stop_queue(q);
942 }
943
944 static void stop_queue(struct request_queue *q)
945 {
946 unsigned long flags;
947
948 spin_lock_irqsave(q->queue_lock, flags);
949 __stop_queue(q);
950 spin_unlock_irqrestore(q->queue_lock, flags);
951 }
952
953 static void __start_queue(struct request_queue *q)
954 {
955 if (blk_queue_stopped(q))
956 blk_start_queue(q);
957 }
958
959 static void start_queue(struct request_queue *q)
960 {
961 unsigned long flags;
962
963 spin_lock_irqsave(q->queue_lock, flags);
964 __start_queue(q);
965 spin_unlock_irqrestore(q->queue_lock, flags);
966 }
967
968 static void dm_done(struct request *clone, int error, bool mapped)
969 {
970 int r = error;
971 struct dm_rq_target_io *tio = clone->end_io_data;
972 dm_request_endio_fn rq_end_io = NULL;
973
974 if (tio->ti) {
975 rq_end_io = tio->ti->type->rq_end_io;
976
977 if (mapped && rq_end_io)
978 r = rq_end_io(tio->ti, clone, error, &tio->info);
979 }
980
981 if (r <= 0)
982 /* The target wants to complete the I/O */
983 dm_end_request(clone, r);
984 else if (r == DM_ENDIO_INCOMPLETE)
985 /* The target will handle the I/O */
986 return;
987 else if (r == DM_ENDIO_REQUEUE)
988 /* The target wants to requeue the I/O */
989 dm_requeue_unmapped_request(clone);
990 else {
991 DMWARN("unimplemented target endio return value: %d", r);
992 BUG();
993 }
994 }
995
996 /*
997 * Request completion handler for request-based dm
998 */
999 static void dm_softirq_done(struct request *rq)
1000 {
1001 bool mapped = true;
1002 struct request *clone = rq->completion_data;
1003 struct dm_rq_target_io *tio = clone->end_io_data;
1004
1005 if (rq->cmd_flags & REQ_FAILED)
1006 mapped = false;
1007
1008 dm_done(clone, tio->error, mapped);
1009 }
1010
1011 /*
1012 * Complete the clone and the original request with the error status
1013 * through softirq context.
1014 */
1015 static void dm_complete_request(struct request *clone, int error)
1016 {
1017 struct dm_rq_target_io *tio = clone->end_io_data;
1018 struct request *rq = tio->orig;
1019
1020 tio->error = error;
1021 rq->completion_data = clone;
1022 blk_complete_request(rq);
1023 }
1024
1025 /*
1026 * Complete the not-mapped clone and the original request with the error status
1027 * through softirq context.
1028 * Target's rq_end_io() function isn't called.
1029 * This may be used when the target's map_rq() function fails.
1030 */
1031 void dm_kill_unmapped_request(struct request *clone, int error)
1032 {
1033 struct dm_rq_target_io *tio = clone->end_io_data;
1034 struct request *rq = tio->orig;
1035
1036 rq->cmd_flags |= REQ_FAILED;
1037 dm_complete_request(clone, error);
1038 }
1039 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1040
1041 /*
1042 * Called with the queue lock held
1043 */
1044 static void end_clone_request(struct request *clone, int error)
1045 {
1046 /*
1047 * For just cleaning up the information of the queue in which
1048 * the clone was dispatched.
1049 * The clone is *NOT* freed actually here because it is alloced from
1050 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1051 */
1052 __blk_put_request(clone->q, clone);
1053
1054 /*
1055 * Actual request completion is done in a softirq context which doesn't
1056 * hold the queue lock. Otherwise, deadlock could occur because:
1057 * - another request may be submitted by the upper level driver
1058 * of the stacking during the completion
1059 * - the submission which requires queue lock may be done
1060 * against this queue
1061 */
1062 dm_complete_request(clone, error);
1063 }
1064
1065 /*
1066 * Return maximum size of I/O possible at the supplied sector up to the current
1067 * target boundary.
1068 */
1069 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1070 {
1071 sector_t target_offset = dm_target_offset(ti, sector);
1072
1073 return ti->len - target_offset;
1074 }
1075
1076 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1077 {
1078 sector_t len = max_io_len_target_boundary(sector, ti);
1079 sector_t offset, max_len;
1080
1081 /*
1082 * Does the target need to split even further?
1083 */
1084 if (ti->max_io_len) {
1085 offset = dm_target_offset(ti, sector);
1086 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1087 max_len = sector_div(offset, ti->max_io_len);
1088 else
1089 max_len = offset & (ti->max_io_len - 1);
1090 max_len = ti->max_io_len - max_len;
1091
1092 if (len > max_len)
1093 len = max_len;
1094 }
1095
1096 return len;
1097 }
1098
1099 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1100 {
1101 if (len > UINT_MAX) {
1102 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1103 (unsigned long long)len, UINT_MAX);
1104 ti->error = "Maximum size of target IO is too large";
1105 return -EINVAL;
1106 }
1107
1108 ti->max_io_len = (uint32_t) len;
1109
1110 return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1113
1114 static void __map_bio(struct dm_target_io *tio)
1115 {
1116 int r;
1117 sector_t sector;
1118 struct mapped_device *md;
1119 struct bio *clone = &tio->clone;
1120 struct dm_target *ti = tio->ti;
1121
1122 clone->bi_end_io = clone_endio;
1123 clone->bi_private = tio;
1124
1125 /*
1126 * Map the clone. If r == 0 we don't need to do
1127 * anything, the target has assumed ownership of
1128 * this io.
1129 */
1130 atomic_inc(&tio->io->io_count);
1131 sector = clone->bi_sector;
1132 r = ti->type->map(ti, clone);
1133 if (r == DM_MAPIO_REMAPPED) {
1134 /* the bio has been remapped so dispatch it */
1135
1136 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1137 tio->io->bio->bi_bdev->bd_dev, sector);
1138
1139 generic_make_request(clone);
1140 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1141 /* error the io and bail out, or requeue it if needed */
1142 md = tio->io->md;
1143 dec_pending(tio->io, r);
1144 free_tio(md, tio);
1145 } else if (r) {
1146 DMWARN("unimplemented target map return value: %d", r);
1147 BUG();
1148 }
1149 }
1150
1151 struct clone_info {
1152 struct mapped_device *md;
1153 struct dm_table *map;
1154 struct bio *bio;
1155 struct dm_io *io;
1156 sector_t sector;
1157 sector_t sector_count;
1158 unsigned short idx;
1159 };
1160
1161 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1162 {
1163 bio->bi_sector = sector;
1164 bio->bi_size = to_bytes(len);
1165 }
1166
1167 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1168 {
1169 bio->bi_idx = idx;
1170 bio->bi_vcnt = idx + bv_count;
1171 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1172 }
1173
1174 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1175 unsigned short idx, unsigned len, unsigned offset,
1176 unsigned trim)
1177 {
1178 if (!bio_integrity(bio))
1179 return;
1180
1181 bio_integrity_clone(clone, bio, GFP_NOIO);
1182
1183 if (trim)
1184 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1185 }
1186
1187 /*
1188 * Creates a little bio that just does part of a bvec.
1189 */
1190 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1191 sector_t sector, unsigned short idx,
1192 unsigned offset, unsigned len)
1193 {
1194 struct bio *clone = &tio->clone;
1195 struct bio_vec *bv = bio->bi_io_vec + idx;
1196
1197 *clone->bi_io_vec = *bv;
1198
1199 bio_setup_sector(clone, sector, len);
1200
1201 clone->bi_bdev = bio->bi_bdev;
1202 clone->bi_rw = bio->bi_rw;
1203 clone->bi_vcnt = 1;
1204 clone->bi_io_vec->bv_offset = offset;
1205 clone->bi_io_vec->bv_len = clone->bi_size;
1206 clone->bi_flags |= 1 << BIO_CLONED;
1207
1208 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1209 }
1210
1211 /*
1212 * Creates a bio that consists of range of complete bvecs.
1213 */
1214 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1215 sector_t sector, unsigned short idx,
1216 unsigned short bv_count, unsigned len)
1217 {
1218 struct bio *clone = &tio->clone;
1219 unsigned trim = 0;
1220
1221 __bio_clone(clone, bio);
1222 bio_setup_sector(clone, sector, len);
1223 bio_setup_bv(clone, idx, bv_count);
1224
1225 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1226 trim = 1;
1227 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1228 }
1229
1230 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1231 struct dm_target *ti, int nr_iovecs,
1232 unsigned target_bio_nr)
1233 {
1234 struct dm_target_io *tio;
1235 struct bio *clone;
1236
1237 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1238 tio = container_of(clone, struct dm_target_io, clone);
1239
1240 tio->io = ci->io;
1241 tio->ti = ti;
1242 memset(&tio->info, 0, sizeof(tio->info));
1243 tio->target_bio_nr = target_bio_nr;
1244
1245 return tio;
1246 }
1247
1248 static void __clone_and_map_simple_bio(struct clone_info *ci,
1249 struct dm_target *ti,
1250 unsigned target_bio_nr, sector_t len)
1251 {
1252 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1253 struct bio *clone = &tio->clone;
1254
1255 /*
1256 * Discard requests require the bio's inline iovecs be initialized.
1257 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1258 * and discard, so no need for concern about wasted bvec allocations.
1259 */
1260 __bio_clone(clone, ci->bio);
1261 if (len)
1262 bio_setup_sector(clone, ci->sector, len);
1263
1264 __map_bio(tio);
1265 }
1266
1267 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1268 unsigned num_bios, sector_t len)
1269 {
1270 unsigned target_bio_nr;
1271
1272 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1273 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1274 }
1275
1276 static int __send_empty_flush(struct clone_info *ci)
1277 {
1278 unsigned target_nr = 0;
1279 struct dm_target *ti;
1280
1281 BUG_ON(bio_has_data(ci->bio));
1282 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1283 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1284
1285 return 0;
1286 }
1287
1288 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1289 sector_t sector, int nr_iovecs,
1290 unsigned short idx, unsigned short bv_count,
1291 unsigned offset, unsigned len,
1292 unsigned split_bvec)
1293 {
1294 struct bio *bio = ci->bio;
1295 struct dm_target_io *tio;
1296 unsigned target_bio_nr;
1297 unsigned num_target_bios = 1;
1298
1299 /*
1300 * Does the target want to receive duplicate copies of the bio?
1301 */
1302 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1303 num_target_bios = ti->num_write_bios(ti, bio);
1304
1305 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1306 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1307 if (split_bvec)
1308 clone_split_bio(tio, bio, sector, idx, offset, len);
1309 else
1310 clone_bio(tio, bio, sector, idx, bv_count, len);
1311 __map_bio(tio);
1312 }
1313 }
1314
1315 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1316
1317 static unsigned get_num_discard_bios(struct dm_target *ti)
1318 {
1319 return ti->num_discard_bios;
1320 }
1321
1322 static unsigned get_num_write_same_bios(struct dm_target *ti)
1323 {
1324 return ti->num_write_same_bios;
1325 }
1326
1327 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1328
1329 static bool is_split_required_for_discard(struct dm_target *ti)
1330 {
1331 return ti->split_discard_bios;
1332 }
1333
1334 static int __send_changing_extent_only(struct clone_info *ci,
1335 get_num_bios_fn get_num_bios,
1336 is_split_required_fn is_split_required)
1337 {
1338 struct dm_target *ti;
1339 sector_t len;
1340 unsigned num_bios;
1341
1342 do {
1343 ti = dm_table_find_target(ci->map, ci->sector);
1344 if (!dm_target_is_valid(ti))
1345 return -EIO;
1346
1347 /*
1348 * Even though the device advertised support for this type of
1349 * request, that does not mean every target supports it, and
1350 * reconfiguration might also have changed that since the
1351 * check was performed.
1352 */
1353 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1354 if (!num_bios)
1355 return -EOPNOTSUPP;
1356
1357 if (is_split_required && !is_split_required(ti))
1358 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1359 else
1360 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1361
1362 __send_duplicate_bios(ci, ti, num_bios, len);
1363
1364 ci->sector += len;
1365 } while (ci->sector_count -= len);
1366
1367 return 0;
1368 }
1369
1370 static int __send_discard(struct clone_info *ci)
1371 {
1372 return __send_changing_extent_only(ci, get_num_discard_bios,
1373 is_split_required_for_discard);
1374 }
1375
1376 static int __send_write_same(struct clone_info *ci)
1377 {
1378 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1379 }
1380
1381 /*
1382 * Find maximum number of sectors / bvecs we can process with a single bio.
1383 */
1384 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1385 {
1386 struct bio *bio = ci->bio;
1387 sector_t bv_len, total_len = 0;
1388
1389 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1390 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1391
1392 if (bv_len > max)
1393 break;
1394
1395 max -= bv_len;
1396 total_len += bv_len;
1397 }
1398
1399 return total_len;
1400 }
1401
1402 static int __split_bvec_across_targets(struct clone_info *ci,
1403 struct dm_target *ti, sector_t max)
1404 {
1405 struct bio *bio = ci->bio;
1406 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1407 sector_t remaining = to_sector(bv->bv_len);
1408 unsigned offset = 0;
1409 sector_t len;
1410
1411 do {
1412 if (offset) {
1413 ti = dm_table_find_target(ci->map, ci->sector);
1414 if (!dm_target_is_valid(ti))
1415 return -EIO;
1416
1417 max = max_io_len(ci->sector, ti);
1418 }
1419
1420 len = min(remaining, max);
1421
1422 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1423 bv->bv_offset + offset, len, 1);
1424
1425 ci->sector += len;
1426 ci->sector_count -= len;
1427 offset += to_bytes(len);
1428 } while (remaining -= len);
1429
1430 ci->idx++;
1431
1432 return 0;
1433 }
1434
1435 /*
1436 * Select the correct strategy for processing a non-flush bio.
1437 */
1438 static int __split_and_process_non_flush(struct clone_info *ci)
1439 {
1440 struct bio *bio = ci->bio;
1441 struct dm_target *ti;
1442 sector_t len, max;
1443 int idx;
1444
1445 if (unlikely(bio->bi_rw & REQ_DISCARD))
1446 return __send_discard(ci);
1447 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1448 return __send_write_same(ci);
1449
1450 ti = dm_table_find_target(ci->map, ci->sector);
1451 if (!dm_target_is_valid(ti))
1452 return -EIO;
1453
1454 max = max_io_len(ci->sector, ti);
1455
1456 /*
1457 * Optimise for the simple case where we can do all of
1458 * the remaining io with a single clone.
1459 */
1460 if (ci->sector_count <= max) {
1461 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1462 ci->idx, bio->bi_vcnt - ci->idx, 0,
1463 ci->sector_count, 0);
1464 ci->sector_count = 0;
1465 return 0;
1466 }
1467
1468 /*
1469 * There are some bvecs that don't span targets.
1470 * Do as many of these as possible.
1471 */
1472 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1473 len = __len_within_target(ci, max, &idx);
1474
1475 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1476 ci->idx, idx - ci->idx, 0, len, 0);
1477
1478 ci->sector += len;
1479 ci->sector_count -= len;
1480 ci->idx = idx;
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Handle a bvec that must be split between two or more targets.
1487 */
1488 return __split_bvec_across_targets(ci, ti, max);
1489 }
1490
1491 /*
1492 * Entry point to split a bio into clones and submit them to the targets.
1493 */
1494 static void __split_and_process_bio(struct mapped_device *md,
1495 struct dm_table *map, struct bio *bio)
1496 {
1497 struct clone_info ci;
1498 int error = 0;
1499
1500 if (unlikely(!map)) {
1501 bio_io_error(bio);
1502 return;
1503 }
1504
1505 ci.map = map;
1506 ci.md = md;
1507 ci.io = alloc_io(md);
1508 ci.io->error = 0;
1509 atomic_set(&ci.io->io_count, 1);
1510 ci.io->bio = bio;
1511 ci.io->md = md;
1512 spin_lock_init(&ci.io->endio_lock);
1513 ci.sector = bio->bi_sector;
1514 ci.idx = bio->bi_idx;
1515
1516 start_io_acct(ci.io);
1517
1518 if (bio->bi_rw & REQ_FLUSH) {
1519 ci.bio = &ci.md->flush_bio;
1520 ci.sector_count = 0;
1521 error = __send_empty_flush(&ci);
1522 /* dec_pending submits any data associated with flush */
1523 } else {
1524 ci.bio = bio;
1525 ci.sector_count = bio_sectors(bio);
1526 while (ci.sector_count && !error)
1527 error = __split_and_process_non_flush(&ci);
1528 }
1529
1530 /* drop the extra reference count */
1531 dec_pending(ci.io, error);
1532 }
1533 /*-----------------------------------------------------------------
1534 * CRUD END
1535 *---------------------------------------------------------------*/
1536
1537 static int dm_merge_bvec(struct request_queue *q,
1538 struct bvec_merge_data *bvm,
1539 struct bio_vec *biovec)
1540 {
1541 struct mapped_device *md = q->queuedata;
1542 struct dm_table *map = dm_get_live_table_fast(md);
1543 struct dm_target *ti;
1544 sector_t max_sectors;
1545 int max_size = 0;
1546
1547 if (unlikely(!map))
1548 goto out;
1549
1550 ti = dm_table_find_target(map, bvm->bi_sector);
1551 if (!dm_target_is_valid(ti))
1552 goto out;
1553
1554 /*
1555 * Find maximum amount of I/O that won't need splitting
1556 */
1557 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1558 (sector_t) BIO_MAX_SECTORS);
1559 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1560 if (max_size < 0)
1561 max_size = 0;
1562
1563 /*
1564 * merge_bvec_fn() returns number of bytes
1565 * it can accept at this offset
1566 * max is precomputed maximal io size
1567 */
1568 if (max_size && ti->type->merge)
1569 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1570 /*
1571 * If the target doesn't support merge method and some of the devices
1572 * provided their merge_bvec method (we know this by looking at
1573 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1574 * entries. So always set max_size to 0, and the code below allows
1575 * just one page.
1576 */
1577 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1578
1579 max_size = 0;
1580
1581 out:
1582 dm_put_live_table_fast(md);
1583 /*
1584 * Always allow an entire first page
1585 */
1586 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1587 max_size = biovec->bv_len;
1588
1589 return max_size;
1590 }
1591
1592 /*
1593 * The request function that just remaps the bio built up by
1594 * dm_merge_bvec.
1595 */
1596 static void _dm_request(struct request_queue *q, struct bio *bio)
1597 {
1598 int rw = bio_data_dir(bio);
1599 struct mapped_device *md = q->queuedata;
1600 int cpu;
1601 int srcu_idx;
1602 struct dm_table *map;
1603
1604 map = dm_get_live_table(md, &srcu_idx);
1605
1606 cpu = part_stat_lock();
1607 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1608 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1609 part_stat_unlock();
1610
1611 /* if we're suspended, we have to queue this io for later */
1612 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1613 dm_put_live_table(md, srcu_idx);
1614
1615 if (bio_rw(bio) != READA)
1616 queue_io(md, bio);
1617 else
1618 bio_io_error(bio);
1619 return;
1620 }
1621
1622 __split_and_process_bio(md, map, bio);
1623 dm_put_live_table(md, srcu_idx);
1624 return;
1625 }
1626
1627 int dm_request_based(struct mapped_device *md)
1628 {
1629 return blk_queue_stackable(md->queue);
1630 }
1631
1632 static void dm_request(struct request_queue *q, struct bio *bio)
1633 {
1634 struct mapped_device *md = q->queuedata;
1635
1636 if (dm_request_based(md))
1637 blk_queue_bio(q, bio);
1638 else
1639 _dm_request(q, bio);
1640 }
1641
1642 void dm_dispatch_request(struct request *rq)
1643 {
1644 int r;
1645
1646 if (blk_queue_io_stat(rq->q))
1647 rq->cmd_flags |= REQ_IO_STAT;
1648
1649 rq->start_time = jiffies;
1650 r = blk_insert_cloned_request(rq->q, rq);
1651 if (r)
1652 dm_complete_request(rq, r);
1653 }
1654 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1655
1656 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1657 void *data)
1658 {
1659 struct dm_rq_target_io *tio = data;
1660 struct dm_rq_clone_bio_info *info =
1661 container_of(bio, struct dm_rq_clone_bio_info, clone);
1662
1663 info->orig = bio_orig;
1664 info->tio = tio;
1665 bio->bi_end_io = end_clone_bio;
1666 bio->bi_private = info;
1667
1668 return 0;
1669 }
1670
1671 static int setup_clone(struct request *clone, struct request *rq,
1672 struct dm_rq_target_io *tio)
1673 {
1674 int r;
1675
1676 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1677 dm_rq_bio_constructor, tio);
1678 if (r)
1679 return r;
1680
1681 clone->cmd = rq->cmd;
1682 clone->cmd_len = rq->cmd_len;
1683 clone->sense = rq->sense;
1684 clone->buffer = rq->buffer;
1685 clone->end_io = end_clone_request;
1686 clone->end_io_data = tio;
1687
1688 return 0;
1689 }
1690
1691 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1692 gfp_t gfp_mask)
1693 {
1694 struct request *clone;
1695 struct dm_rq_target_io *tio;
1696
1697 tio = alloc_rq_tio(md, gfp_mask);
1698 if (!tio)
1699 return NULL;
1700
1701 tio->md = md;
1702 tio->ti = NULL;
1703 tio->orig = rq;
1704 tio->error = 0;
1705 memset(&tio->info, 0, sizeof(tio->info));
1706
1707 clone = &tio->clone;
1708 if (setup_clone(clone, rq, tio)) {
1709 /* -ENOMEM */
1710 free_rq_tio(tio);
1711 return NULL;
1712 }
1713
1714 return clone;
1715 }
1716
1717 /*
1718 * Called with the queue lock held.
1719 */
1720 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1721 {
1722 struct mapped_device *md = q->queuedata;
1723 struct request *clone;
1724
1725 if (unlikely(rq->special)) {
1726 DMWARN("Already has something in rq->special.");
1727 return BLKPREP_KILL;
1728 }
1729
1730 clone = clone_rq(rq, md, GFP_ATOMIC);
1731 if (!clone)
1732 return BLKPREP_DEFER;
1733
1734 rq->special = clone;
1735 rq->cmd_flags |= REQ_DONTPREP;
1736
1737 return BLKPREP_OK;
1738 }
1739
1740 /*
1741 * Returns:
1742 * 0 : the request has been processed (not requeued)
1743 * !0 : the request has been requeued
1744 */
1745 static int map_request(struct dm_target *ti, struct request *clone,
1746 struct mapped_device *md)
1747 {
1748 int r, requeued = 0;
1749 struct dm_rq_target_io *tio = clone->end_io_data;
1750
1751 tio->ti = ti;
1752 r = ti->type->map_rq(ti, clone, &tio->info);
1753 switch (r) {
1754 case DM_MAPIO_SUBMITTED:
1755 /* The target has taken the I/O to submit by itself later */
1756 break;
1757 case DM_MAPIO_REMAPPED:
1758 /* The target has remapped the I/O so dispatch it */
1759 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1760 blk_rq_pos(tio->orig));
1761 dm_dispatch_request(clone);
1762 break;
1763 case DM_MAPIO_REQUEUE:
1764 /* The target wants to requeue the I/O */
1765 dm_requeue_unmapped_request(clone);
1766 requeued = 1;
1767 break;
1768 default:
1769 if (r > 0) {
1770 DMWARN("unimplemented target map return value: %d", r);
1771 BUG();
1772 }
1773
1774 /* The target wants to complete the I/O */
1775 dm_kill_unmapped_request(clone, r);
1776 break;
1777 }
1778
1779 return requeued;
1780 }
1781
1782 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1783 {
1784 struct request *clone;
1785
1786 blk_start_request(orig);
1787 clone = orig->special;
1788 atomic_inc(&md->pending[rq_data_dir(clone)]);
1789
1790 /*
1791 * Hold the md reference here for the in-flight I/O.
1792 * We can't rely on the reference count by device opener,
1793 * because the device may be closed during the request completion
1794 * when all bios are completed.
1795 * See the comment in rq_completed() too.
1796 */
1797 dm_get(md);
1798
1799 return clone;
1800 }
1801
1802 /*
1803 * q->request_fn for request-based dm.
1804 * Called with the queue lock held.
1805 */
1806 static void dm_request_fn(struct request_queue *q)
1807 {
1808 struct mapped_device *md = q->queuedata;
1809 int srcu_idx;
1810 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1811 struct dm_target *ti;
1812 struct request *rq, *clone;
1813 sector_t pos;
1814
1815 /*
1816 * For suspend, check blk_queue_stopped() and increment
1817 * ->pending within a single queue_lock not to increment the
1818 * number of in-flight I/Os after the queue is stopped in
1819 * dm_suspend().
1820 */
1821 while (!blk_queue_stopped(q)) {
1822 rq = blk_peek_request(q);
1823 if (!rq)
1824 goto delay_and_out;
1825
1826 /* always use block 0 to find the target for flushes for now */
1827 pos = 0;
1828 if (!(rq->cmd_flags & REQ_FLUSH))
1829 pos = blk_rq_pos(rq);
1830
1831 ti = dm_table_find_target(map, pos);
1832 if (!dm_target_is_valid(ti)) {
1833 /*
1834 * Must perform setup, that dm_done() requires,
1835 * before calling dm_kill_unmapped_request
1836 */
1837 DMERR_LIMIT("request attempted access beyond the end of device");
1838 clone = dm_start_request(md, rq);
1839 dm_kill_unmapped_request(clone, -EIO);
1840 continue;
1841 }
1842
1843 if (ti->type->busy && ti->type->busy(ti))
1844 goto delay_and_out;
1845
1846 clone = dm_start_request(md, rq);
1847
1848 spin_unlock(q->queue_lock);
1849 if (map_request(ti, clone, md))
1850 goto requeued;
1851
1852 BUG_ON(!irqs_disabled());
1853 spin_lock(q->queue_lock);
1854 }
1855
1856 goto out;
1857
1858 requeued:
1859 BUG_ON(!irqs_disabled());
1860 spin_lock(q->queue_lock);
1861
1862 delay_and_out:
1863 blk_delay_queue(q, HZ / 10);
1864 out:
1865 dm_put_live_table(md, srcu_idx);
1866 }
1867
1868 int dm_underlying_device_busy(struct request_queue *q)
1869 {
1870 return blk_lld_busy(q);
1871 }
1872 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1873
1874 static int dm_lld_busy(struct request_queue *q)
1875 {
1876 int r;
1877 struct mapped_device *md = q->queuedata;
1878 struct dm_table *map = dm_get_live_table_fast(md);
1879
1880 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1881 r = 1;
1882 else
1883 r = dm_table_any_busy_target(map);
1884
1885 dm_put_live_table_fast(md);
1886
1887 return r;
1888 }
1889
1890 static int dm_any_congested(void *congested_data, int bdi_bits)
1891 {
1892 int r = bdi_bits;
1893 struct mapped_device *md = congested_data;
1894 struct dm_table *map;
1895
1896 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1897 map = dm_get_live_table_fast(md);
1898 if (map) {
1899 /*
1900 * Request-based dm cares about only own queue for
1901 * the query about congestion status of request_queue
1902 */
1903 if (dm_request_based(md))
1904 r = md->queue->backing_dev_info.state &
1905 bdi_bits;
1906 else
1907 r = dm_table_any_congested(map, bdi_bits);
1908 }
1909 dm_put_live_table_fast(md);
1910 }
1911
1912 return r;
1913 }
1914
1915 /*-----------------------------------------------------------------
1916 * An IDR is used to keep track of allocated minor numbers.
1917 *---------------------------------------------------------------*/
1918 static void free_minor(int minor)
1919 {
1920 spin_lock(&_minor_lock);
1921 idr_remove(&_minor_idr, minor);
1922 spin_unlock(&_minor_lock);
1923 }
1924
1925 /*
1926 * See if the device with a specific minor # is free.
1927 */
1928 static int specific_minor(int minor)
1929 {
1930 int r;
1931
1932 if (minor >= (1 << MINORBITS))
1933 return -EINVAL;
1934
1935 idr_preload(GFP_KERNEL);
1936 spin_lock(&_minor_lock);
1937
1938 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1939
1940 spin_unlock(&_minor_lock);
1941 idr_preload_end();
1942 if (r < 0)
1943 return r == -ENOSPC ? -EBUSY : r;
1944 return 0;
1945 }
1946
1947 static int next_free_minor(int *minor)
1948 {
1949 int r;
1950
1951 idr_preload(GFP_KERNEL);
1952 spin_lock(&_minor_lock);
1953
1954 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1955
1956 spin_unlock(&_minor_lock);
1957 idr_preload_end();
1958 if (r < 0)
1959 return r;
1960 *minor = r;
1961 return 0;
1962 }
1963
1964 static const struct block_device_operations dm_blk_dops;
1965
1966 static void dm_wq_work(struct work_struct *work);
1967
1968 static void dm_init_md_queue(struct mapped_device *md)
1969 {
1970 /*
1971 * Request-based dm devices cannot be stacked on top of bio-based dm
1972 * devices. The type of this dm device has not been decided yet.
1973 * The type is decided at the first table loading time.
1974 * To prevent problematic device stacking, clear the queue flag
1975 * for request stacking support until then.
1976 *
1977 * This queue is new, so no concurrency on the queue_flags.
1978 */
1979 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1980
1981 md->queue->queuedata = md;
1982 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1983 md->queue->backing_dev_info.congested_data = md;
1984 blk_queue_make_request(md->queue, dm_request);
1985 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1986 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1987 }
1988
1989 /*
1990 * Allocate and initialise a blank device with a given minor.
1991 */
1992 static struct mapped_device *alloc_dev(int minor)
1993 {
1994 int r;
1995 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1996 void *old_md;
1997
1998 if (!md) {
1999 DMWARN("unable to allocate device, out of memory.");
2000 return NULL;
2001 }
2002
2003 if (!try_module_get(THIS_MODULE))
2004 goto bad_module_get;
2005
2006 /* get a minor number for the dev */
2007 if (minor == DM_ANY_MINOR)
2008 r = next_free_minor(&minor);
2009 else
2010 r = specific_minor(minor);
2011 if (r < 0)
2012 goto bad_minor;
2013
2014 r = init_srcu_struct(&md->io_barrier);
2015 if (r < 0)
2016 goto bad_io_barrier;
2017
2018 md->type = DM_TYPE_NONE;
2019 mutex_init(&md->suspend_lock);
2020 mutex_init(&md->type_lock);
2021 spin_lock_init(&md->deferred_lock);
2022 atomic_set(&md->holders, 1);
2023 atomic_set(&md->open_count, 0);
2024 atomic_set(&md->event_nr, 0);
2025 atomic_set(&md->uevent_seq, 0);
2026 INIT_LIST_HEAD(&md->uevent_list);
2027 spin_lock_init(&md->uevent_lock);
2028
2029 md->queue = blk_alloc_queue(GFP_KERNEL);
2030 if (!md->queue)
2031 goto bad_queue;
2032
2033 dm_init_md_queue(md);
2034
2035 md->disk = alloc_disk(1);
2036 if (!md->disk)
2037 goto bad_disk;
2038
2039 atomic_set(&md->pending[0], 0);
2040 atomic_set(&md->pending[1], 0);
2041 init_waitqueue_head(&md->wait);
2042 INIT_WORK(&md->work, dm_wq_work);
2043 init_waitqueue_head(&md->eventq);
2044
2045 md->disk->major = _major;
2046 md->disk->first_minor = minor;
2047 md->disk->fops = &dm_blk_dops;
2048 md->disk->queue = md->queue;
2049 md->disk->private_data = md;
2050 sprintf(md->disk->disk_name, "dm-%d", minor);
2051 add_disk(md->disk);
2052 format_dev_t(md->name, MKDEV(_major, minor));
2053
2054 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2055 if (!md->wq)
2056 goto bad_thread;
2057
2058 md->bdev = bdget_disk(md->disk, 0);
2059 if (!md->bdev)
2060 goto bad_bdev;
2061
2062 bio_init(&md->flush_bio);
2063 md->flush_bio.bi_bdev = md->bdev;
2064 md->flush_bio.bi_rw = WRITE_FLUSH;
2065
2066 dm_stats_init(&md->stats);
2067
2068 /* Populate the mapping, nobody knows we exist yet */
2069 spin_lock(&_minor_lock);
2070 old_md = idr_replace(&_minor_idr, md, minor);
2071 spin_unlock(&_minor_lock);
2072
2073 BUG_ON(old_md != MINOR_ALLOCED);
2074
2075 return md;
2076
2077 bad_bdev:
2078 destroy_workqueue(md->wq);
2079 bad_thread:
2080 del_gendisk(md->disk);
2081 put_disk(md->disk);
2082 bad_disk:
2083 blk_cleanup_queue(md->queue);
2084 bad_queue:
2085 cleanup_srcu_struct(&md->io_barrier);
2086 bad_io_barrier:
2087 free_minor(minor);
2088 bad_minor:
2089 module_put(THIS_MODULE);
2090 bad_module_get:
2091 kfree(md);
2092 return NULL;
2093 }
2094
2095 static void unlock_fs(struct mapped_device *md);
2096
2097 static void free_dev(struct mapped_device *md)
2098 {
2099 int minor = MINOR(disk_devt(md->disk));
2100
2101 unlock_fs(md);
2102 bdput(md->bdev);
2103 destroy_workqueue(md->wq);
2104 if (md->io_pool)
2105 mempool_destroy(md->io_pool);
2106 if (md->bs)
2107 bioset_free(md->bs);
2108 blk_integrity_unregister(md->disk);
2109 del_gendisk(md->disk);
2110 cleanup_srcu_struct(&md->io_barrier);
2111 free_minor(minor);
2112
2113 spin_lock(&_minor_lock);
2114 md->disk->private_data = NULL;
2115 spin_unlock(&_minor_lock);
2116
2117 put_disk(md->disk);
2118 blk_cleanup_queue(md->queue);
2119 dm_stats_cleanup(&md->stats);
2120 module_put(THIS_MODULE);
2121 kfree(md);
2122 }
2123
2124 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2125 {
2126 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2127
2128 if (md->io_pool && md->bs) {
2129 /* The md already has necessary mempools. */
2130 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2131 /*
2132 * Reload bioset because front_pad may have changed
2133 * because a different table was loaded.
2134 */
2135 bioset_free(md->bs);
2136 md->bs = p->bs;
2137 p->bs = NULL;
2138 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2139 /*
2140 * There's no need to reload with request-based dm
2141 * because the size of front_pad doesn't change.
2142 * Note for future: If you are to reload bioset,
2143 * prep-ed requests in the queue may refer
2144 * to bio from the old bioset, so you must walk
2145 * through the queue to unprep.
2146 */
2147 }
2148 goto out;
2149 }
2150
2151 BUG_ON(!p || md->io_pool || md->bs);
2152
2153 md->io_pool = p->io_pool;
2154 p->io_pool = NULL;
2155 md->bs = p->bs;
2156 p->bs = NULL;
2157
2158 out:
2159 /* mempool bind completed, now no need any mempools in the table */
2160 dm_table_free_md_mempools(t);
2161 }
2162
2163 /*
2164 * Bind a table to the device.
2165 */
2166 static void event_callback(void *context)
2167 {
2168 unsigned long flags;
2169 LIST_HEAD(uevents);
2170 struct mapped_device *md = (struct mapped_device *) context;
2171
2172 spin_lock_irqsave(&md->uevent_lock, flags);
2173 list_splice_init(&md->uevent_list, &uevents);
2174 spin_unlock_irqrestore(&md->uevent_lock, flags);
2175
2176 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2177
2178 atomic_inc(&md->event_nr);
2179 wake_up(&md->eventq);
2180 }
2181
2182 /*
2183 * Protected by md->suspend_lock obtained by dm_swap_table().
2184 */
2185 static void __set_size(struct mapped_device *md, sector_t size)
2186 {
2187 set_capacity(md->disk, size);
2188
2189 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2190 }
2191
2192 /*
2193 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2194 *
2195 * If this function returns 0, then the device is either a non-dm
2196 * device without a merge_bvec_fn, or it is a dm device that is
2197 * able to split any bios it receives that are too big.
2198 */
2199 int dm_queue_merge_is_compulsory(struct request_queue *q)
2200 {
2201 struct mapped_device *dev_md;
2202
2203 if (!q->merge_bvec_fn)
2204 return 0;
2205
2206 if (q->make_request_fn == dm_request) {
2207 dev_md = q->queuedata;
2208 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2209 return 0;
2210 }
2211
2212 return 1;
2213 }
2214
2215 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2216 struct dm_dev *dev, sector_t start,
2217 sector_t len, void *data)
2218 {
2219 struct block_device *bdev = dev->bdev;
2220 struct request_queue *q = bdev_get_queue(bdev);
2221
2222 return dm_queue_merge_is_compulsory(q);
2223 }
2224
2225 /*
2226 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2227 * on the properties of the underlying devices.
2228 */
2229 static int dm_table_merge_is_optional(struct dm_table *table)
2230 {
2231 unsigned i = 0;
2232 struct dm_target *ti;
2233
2234 while (i < dm_table_get_num_targets(table)) {
2235 ti = dm_table_get_target(table, i++);
2236
2237 if (ti->type->iterate_devices &&
2238 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2239 return 0;
2240 }
2241
2242 return 1;
2243 }
2244
2245 /*
2246 * Returns old map, which caller must destroy.
2247 */
2248 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2249 struct queue_limits *limits)
2250 {
2251 struct dm_table *old_map;
2252 struct request_queue *q = md->queue;
2253 sector_t size;
2254 int merge_is_optional;
2255
2256 size = dm_table_get_size(t);
2257
2258 /*
2259 * Wipe any geometry if the size of the table changed.
2260 */
2261 if (size != dm_get_size(md))
2262 memset(&md->geometry, 0, sizeof(md->geometry));
2263
2264 __set_size(md, size);
2265
2266 dm_table_event_callback(t, event_callback, md);
2267
2268 /*
2269 * The queue hasn't been stopped yet, if the old table type wasn't
2270 * for request-based during suspension. So stop it to prevent
2271 * I/O mapping before resume.
2272 * This must be done before setting the queue restrictions,
2273 * because request-based dm may be run just after the setting.
2274 */
2275 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2276 stop_queue(q);
2277
2278 __bind_mempools(md, t);
2279
2280 merge_is_optional = dm_table_merge_is_optional(t);
2281
2282 old_map = md->map;
2283 rcu_assign_pointer(md->map, t);
2284 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2285
2286 dm_table_set_restrictions(t, q, limits);
2287 if (merge_is_optional)
2288 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2289 else
2290 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2291 dm_sync_table(md);
2292
2293 return old_map;
2294 }
2295
2296 /*
2297 * Returns unbound table for the caller to free.
2298 */
2299 static struct dm_table *__unbind(struct mapped_device *md)
2300 {
2301 struct dm_table *map = md->map;
2302
2303 if (!map)
2304 return NULL;
2305
2306 dm_table_event_callback(map, NULL, NULL);
2307 rcu_assign_pointer(md->map, NULL);
2308 dm_sync_table(md);
2309
2310 return map;
2311 }
2312
2313 /*
2314 * Constructor for a new device.
2315 */
2316 int dm_create(int minor, struct mapped_device **result)
2317 {
2318 struct mapped_device *md;
2319
2320 md = alloc_dev(minor);
2321 if (!md)
2322 return -ENXIO;
2323
2324 dm_sysfs_init(md);
2325
2326 *result = md;
2327 return 0;
2328 }
2329
2330 /*
2331 * Functions to manage md->type.
2332 * All are required to hold md->type_lock.
2333 */
2334 void dm_lock_md_type(struct mapped_device *md)
2335 {
2336 mutex_lock(&md->type_lock);
2337 }
2338
2339 void dm_unlock_md_type(struct mapped_device *md)
2340 {
2341 mutex_unlock(&md->type_lock);
2342 }
2343
2344 void dm_set_md_type(struct mapped_device *md, unsigned type)
2345 {
2346 BUG_ON(!mutex_is_locked(&md->type_lock));
2347 md->type = type;
2348 }
2349
2350 unsigned dm_get_md_type(struct mapped_device *md)
2351 {
2352 BUG_ON(!mutex_is_locked(&md->type_lock));
2353 return md->type;
2354 }
2355
2356 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2357 {
2358 return md->immutable_target_type;
2359 }
2360
2361 /*
2362 * The queue_limits are only valid as long as you have a reference
2363 * count on 'md'.
2364 */
2365 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2366 {
2367 BUG_ON(!atomic_read(&md->holders));
2368 return &md->queue->limits;
2369 }
2370 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2371
2372 /*
2373 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2374 */
2375 static int dm_init_request_based_queue(struct mapped_device *md)
2376 {
2377 struct request_queue *q = NULL;
2378
2379 if (md->queue->elevator)
2380 return 1;
2381
2382 /* Fully initialize the queue */
2383 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2384 if (!q)
2385 return 0;
2386
2387 md->queue = q;
2388 dm_init_md_queue(md);
2389 blk_queue_softirq_done(md->queue, dm_softirq_done);
2390 blk_queue_prep_rq(md->queue, dm_prep_fn);
2391 blk_queue_lld_busy(md->queue, dm_lld_busy);
2392
2393 elv_register_queue(md->queue);
2394
2395 return 1;
2396 }
2397
2398 /*
2399 * Setup the DM device's queue based on md's type
2400 */
2401 int dm_setup_md_queue(struct mapped_device *md)
2402 {
2403 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2404 !dm_init_request_based_queue(md)) {
2405 DMWARN("Cannot initialize queue for request-based mapped device");
2406 return -EINVAL;
2407 }
2408
2409 return 0;
2410 }
2411
2412 static struct mapped_device *dm_find_md(dev_t dev)
2413 {
2414 struct mapped_device *md;
2415 unsigned minor = MINOR(dev);
2416
2417 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2418 return NULL;
2419
2420 spin_lock(&_minor_lock);
2421
2422 md = idr_find(&_minor_idr, minor);
2423 if (md && (md == MINOR_ALLOCED ||
2424 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2425 dm_deleting_md(md) ||
2426 test_bit(DMF_FREEING, &md->flags))) {
2427 md = NULL;
2428 goto out;
2429 }
2430
2431 out:
2432 spin_unlock(&_minor_lock);
2433
2434 return md;
2435 }
2436
2437 struct mapped_device *dm_get_md(dev_t dev)
2438 {
2439 struct mapped_device *md = dm_find_md(dev);
2440
2441 if (md)
2442 dm_get(md);
2443
2444 return md;
2445 }
2446 EXPORT_SYMBOL_GPL(dm_get_md);
2447
2448 void *dm_get_mdptr(struct mapped_device *md)
2449 {
2450 return md->interface_ptr;
2451 }
2452
2453 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2454 {
2455 md->interface_ptr = ptr;
2456 }
2457
2458 void dm_get(struct mapped_device *md)
2459 {
2460 atomic_inc(&md->holders);
2461 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2462 }
2463
2464 const char *dm_device_name(struct mapped_device *md)
2465 {
2466 return md->name;
2467 }
2468 EXPORT_SYMBOL_GPL(dm_device_name);
2469
2470 static void __dm_destroy(struct mapped_device *md, bool wait)
2471 {
2472 struct dm_table *map;
2473 int srcu_idx;
2474
2475 might_sleep();
2476
2477 spin_lock(&_minor_lock);
2478 map = dm_get_live_table(md, &srcu_idx);
2479 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2480 set_bit(DMF_FREEING, &md->flags);
2481 spin_unlock(&_minor_lock);
2482
2483 if (!dm_suspended_md(md)) {
2484 dm_table_presuspend_targets(map);
2485 dm_table_postsuspend_targets(map);
2486 }
2487
2488 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2489 dm_put_live_table(md, srcu_idx);
2490
2491 /*
2492 * Rare, but there may be I/O requests still going to complete,
2493 * for example. Wait for all references to disappear.
2494 * No one should increment the reference count of the mapped_device,
2495 * after the mapped_device state becomes DMF_FREEING.
2496 */
2497 if (wait)
2498 while (atomic_read(&md->holders))
2499 msleep(1);
2500 else if (atomic_read(&md->holders))
2501 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2502 dm_device_name(md), atomic_read(&md->holders));
2503
2504 dm_sysfs_exit(md);
2505 dm_table_destroy(__unbind(md));
2506 free_dev(md);
2507 }
2508
2509 void dm_destroy(struct mapped_device *md)
2510 {
2511 __dm_destroy(md, true);
2512 }
2513
2514 void dm_destroy_immediate(struct mapped_device *md)
2515 {
2516 __dm_destroy(md, false);
2517 }
2518
2519 void dm_put(struct mapped_device *md)
2520 {
2521 atomic_dec(&md->holders);
2522 }
2523 EXPORT_SYMBOL_GPL(dm_put);
2524
2525 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2526 {
2527 int r = 0;
2528 DECLARE_WAITQUEUE(wait, current);
2529
2530 add_wait_queue(&md->wait, &wait);
2531
2532 while (1) {
2533 set_current_state(interruptible);
2534
2535 if (!md_in_flight(md))
2536 break;
2537
2538 if (interruptible == TASK_INTERRUPTIBLE &&
2539 signal_pending(current)) {
2540 r = -EINTR;
2541 break;
2542 }
2543
2544 io_schedule();
2545 }
2546 set_current_state(TASK_RUNNING);
2547
2548 remove_wait_queue(&md->wait, &wait);
2549
2550 return r;
2551 }
2552
2553 /*
2554 * Process the deferred bios
2555 */
2556 static void dm_wq_work(struct work_struct *work)
2557 {
2558 struct mapped_device *md = container_of(work, struct mapped_device,
2559 work);
2560 struct bio *c;
2561 int srcu_idx;
2562 struct dm_table *map;
2563
2564 map = dm_get_live_table(md, &srcu_idx);
2565
2566 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2567 spin_lock_irq(&md->deferred_lock);
2568 c = bio_list_pop(&md->deferred);
2569 spin_unlock_irq(&md->deferred_lock);
2570
2571 if (!c)
2572 break;
2573
2574 if (dm_request_based(md))
2575 generic_make_request(c);
2576 else
2577 __split_and_process_bio(md, map, c);
2578 }
2579
2580 dm_put_live_table(md, srcu_idx);
2581 }
2582
2583 static void dm_queue_flush(struct mapped_device *md)
2584 {
2585 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2586 smp_mb__after_clear_bit();
2587 queue_work(md->wq, &md->work);
2588 }
2589
2590 /*
2591 * Swap in a new table, returning the old one for the caller to destroy.
2592 */
2593 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2594 {
2595 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2596 struct queue_limits limits;
2597 int r;
2598
2599 mutex_lock(&md->suspend_lock);
2600
2601 /* device must be suspended */
2602 if (!dm_suspended_md(md))
2603 goto out;
2604
2605 /*
2606 * If the new table has no data devices, retain the existing limits.
2607 * This helps multipath with queue_if_no_path if all paths disappear,
2608 * then new I/O is queued based on these limits, and then some paths
2609 * reappear.
2610 */
2611 if (dm_table_has_no_data_devices(table)) {
2612 live_map = dm_get_live_table_fast(md);
2613 if (live_map)
2614 limits = md->queue->limits;
2615 dm_put_live_table_fast(md);
2616 }
2617
2618 if (!live_map) {
2619 r = dm_calculate_queue_limits(table, &limits);
2620 if (r) {
2621 map = ERR_PTR(r);
2622 goto out;
2623 }
2624 }
2625
2626 map = __bind(md, table, &limits);
2627
2628 out:
2629 mutex_unlock(&md->suspend_lock);
2630 return map;
2631 }
2632
2633 /*
2634 * Functions to lock and unlock any filesystem running on the
2635 * device.
2636 */
2637 static int lock_fs(struct mapped_device *md)
2638 {
2639 int r;
2640
2641 WARN_ON(md->frozen_sb);
2642
2643 md->frozen_sb = freeze_bdev(md->bdev);
2644 if (IS_ERR(md->frozen_sb)) {
2645 r = PTR_ERR(md->frozen_sb);
2646 md->frozen_sb = NULL;
2647 return r;
2648 }
2649
2650 set_bit(DMF_FROZEN, &md->flags);
2651
2652 return 0;
2653 }
2654
2655 static void unlock_fs(struct mapped_device *md)
2656 {
2657 if (!test_bit(DMF_FROZEN, &md->flags))
2658 return;
2659
2660 thaw_bdev(md->bdev, md->frozen_sb);
2661 md->frozen_sb = NULL;
2662 clear_bit(DMF_FROZEN, &md->flags);
2663 }
2664
2665 /*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem. For example we might want to move some data in
2668 * the background. Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672 /*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
2681 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682 {
2683 struct dm_table *map = NULL;
2684 int r = 0;
2685 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2686 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2687
2688 mutex_lock(&md->suspend_lock);
2689
2690 if (dm_suspended_md(md)) {
2691 r = -EINVAL;
2692 goto out_unlock;
2693 }
2694
2695 map = md->map;
2696
2697 /*
2698 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2699 * This flag is cleared before dm_suspend returns.
2700 */
2701 if (noflush)
2702 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2703
2704 /* This does not get reverted if there's an error later. */
2705 dm_table_presuspend_targets(map);
2706
2707 /*
2708 * Flush I/O to the device.
2709 * Any I/O submitted after lock_fs() may not be flushed.
2710 * noflush takes precedence over do_lockfs.
2711 * (lock_fs() flushes I/Os and waits for them to complete.)
2712 */
2713 if (!noflush && do_lockfs) {
2714 r = lock_fs(md);
2715 if (r)
2716 goto out_unlock;
2717 }
2718
2719 /*
2720 * Here we must make sure that no processes are submitting requests
2721 * to target drivers i.e. no one may be executing
2722 * __split_and_process_bio. This is called from dm_request and
2723 * dm_wq_work.
2724 *
2725 * To get all processes out of __split_and_process_bio in dm_request,
2726 * we take the write lock. To prevent any process from reentering
2727 * __split_and_process_bio from dm_request and quiesce the thread
2728 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2729 * flush_workqueue(md->wq).
2730 */
2731 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2732 synchronize_srcu(&md->io_barrier);
2733
2734 /*
2735 * Stop md->queue before flushing md->wq in case request-based
2736 * dm defers requests to md->wq from md->queue.
2737 */
2738 if (dm_request_based(md))
2739 stop_queue(md->queue);
2740
2741 flush_workqueue(md->wq);
2742
2743 /*
2744 * At this point no more requests are entering target request routines.
2745 * We call dm_wait_for_completion to wait for all existing requests
2746 * to finish.
2747 */
2748 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2749
2750 if (noflush)
2751 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2752 synchronize_srcu(&md->io_barrier);
2753
2754 /* were we interrupted ? */
2755 if (r < 0) {
2756 dm_queue_flush(md);
2757
2758 if (dm_request_based(md))
2759 start_queue(md->queue);
2760
2761 unlock_fs(md);
2762 goto out_unlock; /* pushback list is already flushed, so skip flush */
2763 }
2764
2765 /*
2766 * If dm_wait_for_completion returned 0, the device is completely
2767 * quiescent now. There is no request-processing activity. All new
2768 * requests are being added to md->deferred list.
2769 */
2770
2771 set_bit(DMF_SUSPENDED, &md->flags);
2772
2773 dm_table_postsuspend_targets(map);
2774
2775 out_unlock:
2776 mutex_unlock(&md->suspend_lock);
2777 return r;
2778 }
2779
2780 int dm_resume(struct mapped_device *md)
2781 {
2782 int r = -EINVAL;
2783 struct dm_table *map = NULL;
2784
2785 mutex_lock(&md->suspend_lock);
2786 if (!dm_suspended_md(md))
2787 goto out;
2788
2789 map = md->map;
2790 if (!map || !dm_table_get_size(map))
2791 goto out;
2792
2793 r = dm_table_resume_targets(map);
2794 if (r)
2795 goto out;
2796
2797 dm_queue_flush(md);
2798
2799 /*
2800 * Flushing deferred I/Os must be done after targets are resumed
2801 * so that mapping of targets can work correctly.
2802 * Request-based dm is queueing the deferred I/Os in its request_queue.
2803 */
2804 if (dm_request_based(md))
2805 start_queue(md->queue);
2806
2807 unlock_fs(md);
2808
2809 clear_bit(DMF_SUSPENDED, &md->flags);
2810
2811 r = 0;
2812 out:
2813 mutex_unlock(&md->suspend_lock);
2814
2815 return r;
2816 }
2817
2818 /*
2819 * Internal suspend/resume works like userspace-driven suspend. It waits
2820 * until all bios finish and prevents issuing new bios to the target drivers.
2821 * It may be used only from the kernel.
2822 *
2823 * Internal suspend holds md->suspend_lock, which prevents interaction with
2824 * userspace-driven suspend.
2825 */
2826
2827 void dm_internal_suspend(struct mapped_device *md)
2828 {
2829 mutex_lock(&md->suspend_lock);
2830 if (dm_suspended_md(md))
2831 return;
2832
2833 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2834 synchronize_srcu(&md->io_barrier);
2835 flush_workqueue(md->wq);
2836 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2837 }
2838
2839 void dm_internal_resume(struct mapped_device *md)
2840 {
2841 if (dm_suspended_md(md))
2842 goto done;
2843
2844 dm_queue_flush(md);
2845
2846 done:
2847 mutex_unlock(&md->suspend_lock);
2848 }
2849
2850 /*-----------------------------------------------------------------
2851 * Event notification.
2852 *---------------------------------------------------------------*/
2853 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2854 unsigned cookie)
2855 {
2856 char udev_cookie[DM_COOKIE_LENGTH];
2857 char *envp[] = { udev_cookie, NULL };
2858
2859 if (!cookie)
2860 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2861 else {
2862 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2863 DM_COOKIE_ENV_VAR_NAME, cookie);
2864 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2865 action, envp);
2866 }
2867 }
2868
2869 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2870 {
2871 return atomic_add_return(1, &md->uevent_seq);
2872 }
2873
2874 uint32_t dm_get_event_nr(struct mapped_device *md)
2875 {
2876 return atomic_read(&md->event_nr);
2877 }
2878
2879 int dm_wait_event(struct mapped_device *md, int event_nr)
2880 {
2881 return wait_event_interruptible(md->eventq,
2882 (event_nr != atomic_read(&md->event_nr)));
2883 }
2884
2885 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2886 {
2887 unsigned long flags;
2888
2889 spin_lock_irqsave(&md->uevent_lock, flags);
2890 list_add(elist, &md->uevent_list);
2891 spin_unlock_irqrestore(&md->uevent_lock, flags);
2892 }
2893
2894 /*
2895 * The gendisk is only valid as long as you have a reference
2896 * count on 'md'.
2897 */
2898 struct gendisk *dm_disk(struct mapped_device *md)
2899 {
2900 return md->disk;
2901 }
2902
2903 struct kobject *dm_kobject(struct mapped_device *md)
2904 {
2905 return &md->kobj;
2906 }
2907
2908 /*
2909 * struct mapped_device should not be exported outside of dm.c
2910 * so use this check to verify that kobj is part of md structure
2911 */
2912 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2913 {
2914 struct mapped_device *md;
2915
2916 md = container_of(kobj, struct mapped_device, kobj);
2917 if (&md->kobj != kobj)
2918 return NULL;
2919
2920 if (test_bit(DMF_FREEING, &md->flags) ||
2921 dm_deleting_md(md))
2922 return NULL;
2923
2924 dm_get(md);
2925 return md;
2926 }
2927
2928 int dm_suspended_md(struct mapped_device *md)
2929 {
2930 return test_bit(DMF_SUSPENDED, &md->flags);
2931 }
2932
2933 int dm_test_deferred_remove_flag(struct mapped_device *md)
2934 {
2935 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2936 }
2937
2938 int dm_suspended(struct dm_target *ti)
2939 {
2940 return dm_suspended_md(dm_table_get_md(ti->table));
2941 }
2942 EXPORT_SYMBOL_GPL(dm_suspended);
2943
2944 int dm_noflush_suspending(struct dm_target *ti)
2945 {
2946 return __noflush_suspending(dm_table_get_md(ti->table));
2947 }
2948 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2949
2950 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2951 {
2952 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2953 struct kmem_cache *cachep;
2954 unsigned int pool_size;
2955 unsigned int front_pad;
2956
2957 if (!pools)
2958 return NULL;
2959
2960 if (type == DM_TYPE_BIO_BASED) {
2961 cachep = _io_cache;
2962 pool_size = dm_get_reserved_bio_based_ios();
2963 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2964 } else if (type == DM_TYPE_REQUEST_BASED) {
2965 cachep = _rq_tio_cache;
2966 pool_size = dm_get_reserved_rq_based_ios();
2967 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2968 /* per_bio_data_size is not used. See __bind_mempools(). */
2969 WARN_ON(per_bio_data_size != 0);
2970 } else
2971 goto out;
2972
2973 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2974 if (!pools->io_pool)
2975 goto out;
2976
2977 pools->bs = bioset_create(pool_size, front_pad);
2978 if (!pools->bs)
2979 goto out;
2980
2981 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2982 goto out;
2983
2984 return pools;
2985
2986 out:
2987 dm_free_md_mempools(pools);
2988
2989 return NULL;
2990 }
2991
2992 void dm_free_md_mempools(struct dm_md_mempools *pools)
2993 {
2994 if (!pools)
2995 return;
2996
2997 if (pools->io_pool)
2998 mempool_destroy(pools->io_pool);
2999
3000 if (pools->bs)
3001 bioset_free(pools->bs);
3002
3003 kfree(pools);
3004 }
3005
3006 static const struct block_device_operations dm_blk_dops = {
3007 .open = dm_blk_open,
3008 .release = dm_blk_close,
3009 .ioctl = dm_blk_ioctl,
3010 .getgeo = dm_blk_getgeo,
3011 .owner = THIS_MODULE
3012 };
3013
3014 EXPORT_SYMBOL(dm_get_mapinfo);
3015
3016 /*
3017 * module hooks
3018 */
3019 module_init(dm_init);
3020 module_exit(dm_exit);
3021
3022 module_param(major, uint, 0);
3023 MODULE_PARM_DESC(major, "The major number of the device mapper");
3024
3025 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3026 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3027
3028 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3029 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3030
3031 MODULE_DESCRIPTION(DM_NAME " driver");
3032 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3033 MODULE_LICENSE("GPL");