]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
dm: uevent generate events
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 struct bio *bio;
41 atomic_t io_count;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 struct mapped_device {
75 struct rw_semaphore io_lock;
76 struct semaphore suspend_lock;
77 spinlock_t pushback_lock;
78 rwlock_t map_lock;
79 atomic_t holders;
80 atomic_t open_count;
81
82 unsigned long flags;
83
84 struct request_queue *queue;
85 struct gendisk *disk;
86 char name[16];
87
88 void *interface_ptr;
89
90 /*
91 * A list of ios that arrived while we were suspended.
92 */
93 atomic_t pending;
94 wait_queue_head_t wait;
95 struct bio_list deferred;
96 struct bio_list pushback;
97
98 /*
99 * The current mapping.
100 */
101 struct dm_table *map;
102
103 /*
104 * io objects are allocated from here.
105 */
106 mempool_t *io_pool;
107 mempool_t *tio_pool;
108
109 struct bio_set *bs;
110
111 /*
112 * Event handling.
113 */
114 atomic_t event_nr;
115 wait_queue_head_t eventq;
116 atomic_t uevent_seq;
117 struct list_head uevent_list;
118 spinlock_t uevent_lock; /* Protect access to uevent_list */
119
120 /*
121 * freeze/thaw support require holding onto a super block
122 */
123 struct super_block *frozen_sb;
124 struct block_device *suspended_bdev;
125
126 /* forced geometry settings */
127 struct hd_geometry geometry;
128 };
129
130 #define MIN_IOS 256
131 static struct kmem_cache *_io_cache;
132 static struct kmem_cache *_tio_cache;
133
134 static int __init local_init(void)
135 {
136 int r;
137
138 /* allocate a slab for the dm_ios */
139 _io_cache = KMEM_CACHE(dm_io, 0);
140 if (!_io_cache)
141 return -ENOMEM;
142
143 /* allocate a slab for the target ios */
144 _tio_cache = KMEM_CACHE(dm_target_io, 0);
145 if (!_tio_cache) {
146 kmem_cache_destroy(_io_cache);
147 return -ENOMEM;
148 }
149
150 r = dm_uevent_init();
151 if (r) {
152 kmem_cache_destroy(_tio_cache);
153 kmem_cache_destroy(_io_cache);
154 return r;
155 }
156
157 _major = major;
158 r = register_blkdev(_major, _name);
159 if (r < 0) {
160 kmem_cache_destroy(_tio_cache);
161 kmem_cache_destroy(_io_cache);
162 dm_uevent_exit();
163 return r;
164 }
165
166 if (!_major)
167 _major = r;
168
169 return 0;
170 }
171
172 static void local_exit(void)
173 {
174 kmem_cache_destroy(_tio_cache);
175 kmem_cache_destroy(_io_cache);
176 unregister_blkdev(_major, _name);
177 dm_uevent_exit();
178
179 _major = 0;
180
181 DMINFO("cleaned up");
182 }
183
184 int (*_inits[])(void) __initdata = {
185 local_init,
186 dm_target_init,
187 dm_linear_init,
188 dm_stripe_init,
189 dm_interface_init,
190 };
191
192 void (*_exits[])(void) = {
193 local_exit,
194 dm_target_exit,
195 dm_linear_exit,
196 dm_stripe_exit,
197 dm_interface_exit,
198 };
199
200 static int __init dm_init(void)
201 {
202 const int count = ARRAY_SIZE(_inits);
203
204 int r, i;
205
206 for (i = 0; i < count; i++) {
207 r = _inits[i]();
208 if (r)
209 goto bad;
210 }
211
212 return 0;
213
214 bad:
215 while (i--)
216 _exits[i]();
217
218 return r;
219 }
220
221 static void __exit dm_exit(void)
222 {
223 int i = ARRAY_SIZE(_exits);
224
225 while (i--)
226 _exits[i]();
227 }
228
229 /*
230 * Block device functions
231 */
232 static int dm_blk_open(struct inode *inode, struct file *file)
233 {
234 struct mapped_device *md;
235
236 spin_lock(&_minor_lock);
237
238 md = inode->i_bdev->bd_disk->private_data;
239 if (!md)
240 goto out;
241
242 if (test_bit(DMF_FREEING, &md->flags) ||
243 test_bit(DMF_DELETING, &md->flags)) {
244 md = NULL;
245 goto out;
246 }
247
248 dm_get(md);
249 atomic_inc(&md->open_count);
250
251 out:
252 spin_unlock(&_minor_lock);
253
254 return md ? 0 : -ENXIO;
255 }
256
257 static int dm_blk_close(struct inode *inode, struct file *file)
258 {
259 struct mapped_device *md;
260
261 md = inode->i_bdev->bd_disk->private_data;
262 atomic_dec(&md->open_count);
263 dm_put(md);
264 return 0;
265 }
266
267 int dm_open_count(struct mapped_device *md)
268 {
269 return atomic_read(&md->open_count);
270 }
271
272 /*
273 * Guarantees nothing is using the device before it's deleted.
274 */
275 int dm_lock_for_deletion(struct mapped_device *md)
276 {
277 int r = 0;
278
279 spin_lock(&_minor_lock);
280
281 if (dm_open_count(md))
282 r = -EBUSY;
283 else
284 set_bit(DMF_DELETING, &md->flags);
285
286 spin_unlock(&_minor_lock);
287
288 return r;
289 }
290
291 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293 struct mapped_device *md = bdev->bd_disk->private_data;
294
295 return dm_get_geometry(md, geo);
296 }
297
298 static int dm_blk_ioctl(struct inode *inode, struct file *file,
299 unsigned int cmd, unsigned long arg)
300 {
301 struct mapped_device *md;
302 struct dm_table *map;
303 struct dm_target *tgt;
304 int r = -ENOTTY;
305
306 /* We don't really need this lock, but we do need 'inode'. */
307 unlock_kernel();
308
309 md = inode->i_bdev->bd_disk->private_data;
310
311 map = dm_get_table(md);
312
313 if (!map || !dm_table_get_size(map))
314 goto out;
315
316 /* We only support devices that have a single target */
317 if (dm_table_get_num_targets(map) != 1)
318 goto out;
319
320 tgt = dm_table_get_target(map, 0);
321
322 if (dm_suspended(md)) {
323 r = -EAGAIN;
324 goto out;
325 }
326
327 if (tgt->type->ioctl)
328 r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
329
330 out:
331 dm_table_put(map);
332
333 lock_kernel();
334 return r;
335 }
336
337 static struct dm_io *alloc_io(struct mapped_device *md)
338 {
339 return mempool_alloc(md->io_pool, GFP_NOIO);
340 }
341
342 static void free_io(struct mapped_device *md, struct dm_io *io)
343 {
344 mempool_free(io, md->io_pool);
345 }
346
347 static struct dm_target_io *alloc_tio(struct mapped_device *md)
348 {
349 return mempool_alloc(md->tio_pool, GFP_NOIO);
350 }
351
352 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
353 {
354 mempool_free(tio, md->tio_pool);
355 }
356
357 static void start_io_acct(struct dm_io *io)
358 {
359 struct mapped_device *md = io->md;
360
361 io->start_time = jiffies;
362
363 preempt_disable();
364 disk_round_stats(dm_disk(md));
365 preempt_enable();
366 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
367 }
368
369 static int end_io_acct(struct dm_io *io)
370 {
371 struct mapped_device *md = io->md;
372 struct bio *bio = io->bio;
373 unsigned long duration = jiffies - io->start_time;
374 int pending;
375 int rw = bio_data_dir(bio);
376
377 preempt_disable();
378 disk_round_stats(dm_disk(md));
379 preempt_enable();
380 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
381
382 disk_stat_add(dm_disk(md), ticks[rw], duration);
383
384 return !pending;
385 }
386
387 /*
388 * Add the bio to the list of deferred io.
389 */
390 static int queue_io(struct mapped_device *md, struct bio *bio)
391 {
392 down_write(&md->io_lock);
393
394 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
395 up_write(&md->io_lock);
396 return 1;
397 }
398
399 bio_list_add(&md->deferred, bio);
400
401 up_write(&md->io_lock);
402 return 0; /* deferred successfully */
403 }
404
405 /*
406 * Everyone (including functions in this file), should use this
407 * function to access the md->map field, and make sure they call
408 * dm_table_put() when finished.
409 */
410 struct dm_table *dm_get_table(struct mapped_device *md)
411 {
412 struct dm_table *t;
413
414 read_lock(&md->map_lock);
415 t = md->map;
416 if (t)
417 dm_table_get(t);
418 read_unlock(&md->map_lock);
419
420 return t;
421 }
422
423 /*
424 * Get the geometry associated with a dm device
425 */
426 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
427 {
428 *geo = md->geometry;
429
430 return 0;
431 }
432
433 /*
434 * Set the geometry of a device.
435 */
436 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
437 {
438 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
439
440 if (geo->start > sz) {
441 DMWARN("Start sector is beyond the geometry limits.");
442 return -EINVAL;
443 }
444
445 md->geometry = *geo;
446
447 return 0;
448 }
449
450 /*-----------------------------------------------------------------
451 * CRUD START:
452 * A more elegant soln is in the works that uses the queue
453 * merge fn, unfortunately there are a couple of changes to
454 * the block layer that I want to make for this. So in the
455 * interests of getting something for people to use I give
456 * you this clearly demarcated crap.
457 *---------------------------------------------------------------*/
458
459 static int __noflush_suspending(struct mapped_device *md)
460 {
461 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
462 }
463
464 /*
465 * Decrements the number of outstanding ios that a bio has been
466 * cloned into, completing the original io if necc.
467 */
468 static void dec_pending(struct dm_io *io, int error)
469 {
470 unsigned long flags;
471
472 /* Push-back supersedes any I/O errors */
473 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
474 io->error = error;
475
476 if (atomic_dec_and_test(&io->io_count)) {
477 if (io->error == DM_ENDIO_REQUEUE) {
478 /*
479 * Target requested pushing back the I/O.
480 * This must be handled before the sleeper on
481 * suspend queue merges the pushback list.
482 */
483 spin_lock_irqsave(&io->md->pushback_lock, flags);
484 if (__noflush_suspending(io->md))
485 bio_list_add(&io->md->pushback, io->bio);
486 else
487 /* noflush suspend was interrupted. */
488 io->error = -EIO;
489 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
490 }
491
492 if (end_io_acct(io))
493 /* nudge anyone waiting on suspend queue */
494 wake_up(&io->md->wait);
495
496 if (io->error != DM_ENDIO_REQUEUE) {
497 blk_add_trace_bio(io->md->queue, io->bio,
498 BLK_TA_COMPLETE);
499
500 bio_endio(io->bio, io->error);
501 }
502
503 free_io(io->md, io);
504 }
505 }
506
507 static void clone_endio(struct bio *bio, int error)
508 {
509 int r = 0;
510 struct dm_target_io *tio = bio->bi_private;
511 struct mapped_device *md = tio->io->md;
512 dm_endio_fn endio = tio->ti->type->end_io;
513
514 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
515 error = -EIO;
516
517 if (endio) {
518 r = endio(tio->ti, bio, error, &tio->info);
519 if (r < 0 || r == DM_ENDIO_REQUEUE)
520 /*
521 * error and requeue request are handled
522 * in dec_pending().
523 */
524 error = r;
525 else if (r == DM_ENDIO_INCOMPLETE)
526 /* The target will handle the io */
527 return;
528 else if (r) {
529 DMWARN("unimplemented target endio return value: %d", r);
530 BUG();
531 }
532 }
533
534 dec_pending(tio->io, error);
535
536 /*
537 * Store md for cleanup instead of tio which is about to get freed.
538 */
539 bio->bi_private = md->bs;
540
541 bio_put(bio);
542 free_tio(md, tio);
543 }
544
545 static sector_t max_io_len(struct mapped_device *md,
546 sector_t sector, struct dm_target *ti)
547 {
548 sector_t offset = sector - ti->begin;
549 sector_t len = ti->len - offset;
550
551 /*
552 * Does the target need to split even further ?
553 */
554 if (ti->split_io) {
555 sector_t boundary;
556 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
557 - offset;
558 if (len > boundary)
559 len = boundary;
560 }
561
562 return len;
563 }
564
565 static void __map_bio(struct dm_target *ti, struct bio *clone,
566 struct dm_target_io *tio)
567 {
568 int r;
569 sector_t sector;
570 struct mapped_device *md;
571
572 /*
573 * Sanity checks.
574 */
575 BUG_ON(!clone->bi_size);
576
577 clone->bi_end_io = clone_endio;
578 clone->bi_private = tio;
579
580 /*
581 * Map the clone. If r == 0 we don't need to do
582 * anything, the target has assumed ownership of
583 * this io.
584 */
585 atomic_inc(&tio->io->io_count);
586 sector = clone->bi_sector;
587 r = ti->type->map(ti, clone, &tio->info);
588 if (r == DM_MAPIO_REMAPPED) {
589 /* the bio has been remapped so dispatch it */
590
591 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
592 tio->io->bio->bi_bdev->bd_dev,
593 clone->bi_sector, sector);
594
595 generic_make_request(clone);
596 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
597 /* error the io and bail out, or requeue it if needed */
598 md = tio->io->md;
599 dec_pending(tio->io, r);
600 /*
601 * Store bio_set for cleanup.
602 */
603 clone->bi_private = md->bs;
604 bio_put(clone);
605 free_tio(md, tio);
606 } else if (r) {
607 DMWARN("unimplemented target map return value: %d", r);
608 BUG();
609 }
610 }
611
612 struct clone_info {
613 struct mapped_device *md;
614 struct dm_table *map;
615 struct bio *bio;
616 struct dm_io *io;
617 sector_t sector;
618 sector_t sector_count;
619 unsigned short idx;
620 };
621
622 static void dm_bio_destructor(struct bio *bio)
623 {
624 struct bio_set *bs = bio->bi_private;
625
626 bio_free(bio, bs);
627 }
628
629 /*
630 * Creates a little bio that is just does part of a bvec.
631 */
632 static struct bio *split_bvec(struct bio *bio, sector_t sector,
633 unsigned short idx, unsigned int offset,
634 unsigned int len, struct bio_set *bs)
635 {
636 struct bio *clone;
637 struct bio_vec *bv = bio->bi_io_vec + idx;
638
639 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
640 clone->bi_destructor = dm_bio_destructor;
641 *clone->bi_io_vec = *bv;
642
643 clone->bi_sector = sector;
644 clone->bi_bdev = bio->bi_bdev;
645 clone->bi_rw = bio->bi_rw;
646 clone->bi_vcnt = 1;
647 clone->bi_size = to_bytes(len);
648 clone->bi_io_vec->bv_offset = offset;
649 clone->bi_io_vec->bv_len = clone->bi_size;
650
651 return clone;
652 }
653
654 /*
655 * Creates a bio that consists of range of complete bvecs.
656 */
657 static struct bio *clone_bio(struct bio *bio, sector_t sector,
658 unsigned short idx, unsigned short bv_count,
659 unsigned int len, struct bio_set *bs)
660 {
661 struct bio *clone;
662
663 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
664 __bio_clone(clone, bio);
665 clone->bi_destructor = dm_bio_destructor;
666 clone->bi_sector = sector;
667 clone->bi_idx = idx;
668 clone->bi_vcnt = idx + bv_count;
669 clone->bi_size = to_bytes(len);
670 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
671
672 return clone;
673 }
674
675 static void __clone_and_map(struct clone_info *ci)
676 {
677 struct bio *clone, *bio = ci->bio;
678 struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
679 sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
680 struct dm_target_io *tio;
681
682 /*
683 * Allocate a target io object.
684 */
685 tio = alloc_tio(ci->md);
686 tio->io = ci->io;
687 tio->ti = ti;
688 memset(&tio->info, 0, sizeof(tio->info));
689
690 if (ci->sector_count <= max) {
691 /*
692 * Optimise for the simple case where we can do all of
693 * the remaining io with a single clone.
694 */
695 clone = clone_bio(bio, ci->sector, ci->idx,
696 bio->bi_vcnt - ci->idx, ci->sector_count,
697 ci->md->bs);
698 __map_bio(ti, clone, tio);
699 ci->sector_count = 0;
700
701 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
702 /*
703 * There are some bvecs that don't span targets.
704 * Do as many of these as possible.
705 */
706 int i;
707 sector_t remaining = max;
708 sector_t bv_len;
709
710 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
711 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
712
713 if (bv_len > remaining)
714 break;
715
716 remaining -= bv_len;
717 len += bv_len;
718 }
719
720 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
721 ci->md->bs);
722 __map_bio(ti, clone, tio);
723
724 ci->sector += len;
725 ci->sector_count -= len;
726 ci->idx = i;
727
728 } else {
729 /*
730 * Handle a bvec that must be split between two or more targets.
731 */
732 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
733 sector_t remaining = to_sector(bv->bv_len);
734 unsigned int offset = 0;
735
736 do {
737 if (offset) {
738 ti = dm_table_find_target(ci->map, ci->sector);
739 max = max_io_len(ci->md, ci->sector, ti);
740
741 tio = alloc_tio(ci->md);
742 tio->io = ci->io;
743 tio->ti = ti;
744 memset(&tio->info, 0, sizeof(tio->info));
745 }
746
747 len = min(remaining, max);
748
749 clone = split_bvec(bio, ci->sector, ci->idx,
750 bv->bv_offset + offset, len,
751 ci->md->bs);
752
753 __map_bio(ti, clone, tio);
754
755 ci->sector += len;
756 ci->sector_count -= len;
757 offset += to_bytes(len);
758 } while (remaining -= len);
759
760 ci->idx++;
761 }
762 }
763
764 /*
765 * Split the bio into several clones.
766 */
767 static int __split_bio(struct mapped_device *md, struct bio *bio)
768 {
769 struct clone_info ci;
770
771 ci.map = dm_get_table(md);
772 if (unlikely(!ci.map))
773 return -EIO;
774
775 ci.md = md;
776 ci.bio = bio;
777 ci.io = alloc_io(md);
778 ci.io->error = 0;
779 atomic_set(&ci.io->io_count, 1);
780 ci.io->bio = bio;
781 ci.io->md = md;
782 ci.sector = bio->bi_sector;
783 ci.sector_count = bio_sectors(bio);
784 ci.idx = bio->bi_idx;
785
786 start_io_acct(ci.io);
787 while (ci.sector_count)
788 __clone_and_map(&ci);
789
790 /* drop the extra reference count */
791 dec_pending(ci.io, 0);
792 dm_table_put(ci.map);
793
794 return 0;
795 }
796 /*-----------------------------------------------------------------
797 * CRUD END
798 *---------------------------------------------------------------*/
799
800 /*
801 * The request function that just remaps the bio built up by
802 * dm_merge_bvec.
803 */
804 static int dm_request(struct request_queue *q, struct bio *bio)
805 {
806 int r = -EIO;
807 int rw = bio_data_dir(bio);
808 struct mapped_device *md = q->queuedata;
809
810 /*
811 * There is no use in forwarding any barrier request since we can't
812 * guarantee it is (or can be) handled by the targets correctly.
813 */
814 if (unlikely(bio_barrier(bio))) {
815 bio_endio(bio, -EOPNOTSUPP);
816 return 0;
817 }
818
819 down_read(&md->io_lock);
820
821 disk_stat_inc(dm_disk(md), ios[rw]);
822 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
823
824 /*
825 * If we're suspended we have to queue
826 * this io for later.
827 */
828 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
829 up_read(&md->io_lock);
830
831 if (bio_rw(bio) != READA)
832 r = queue_io(md, bio);
833
834 if (r <= 0)
835 goto out_req;
836
837 /*
838 * We're in a while loop, because someone could suspend
839 * before we get to the following read lock.
840 */
841 down_read(&md->io_lock);
842 }
843
844 r = __split_bio(md, bio);
845 up_read(&md->io_lock);
846
847 out_req:
848 if (r < 0)
849 bio_io_error(bio);
850
851 return 0;
852 }
853
854 static void dm_unplug_all(struct request_queue *q)
855 {
856 struct mapped_device *md = q->queuedata;
857 struct dm_table *map = dm_get_table(md);
858
859 if (map) {
860 dm_table_unplug_all(map);
861 dm_table_put(map);
862 }
863 }
864
865 static int dm_any_congested(void *congested_data, int bdi_bits)
866 {
867 int r;
868 struct mapped_device *md = (struct mapped_device *) congested_data;
869 struct dm_table *map = dm_get_table(md);
870
871 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
872 r = bdi_bits;
873 else
874 r = dm_table_any_congested(map, bdi_bits);
875
876 dm_table_put(map);
877 return r;
878 }
879
880 /*-----------------------------------------------------------------
881 * An IDR is used to keep track of allocated minor numbers.
882 *---------------------------------------------------------------*/
883 static DEFINE_IDR(_minor_idr);
884
885 static void free_minor(int minor)
886 {
887 spin_lock(&_minor_lock);
888 idr_remove(&_minor_idr, minor);
889 spin_unlock(&_minor_lock);
890 }
891
892 /*
893 * See if the device with a specific minor # is free.
894 */
895 static int specific_minor(struct mapped_device *md, int minor)
896 {
897 int r, m;
898
899 if (minor >= (1 << MINORBITS))
900 return -EINVAL;
901
902 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
903 if (!r)
904 return -ENOMEM;
905
906 spin_lock(&_minor_lock);
907
908 if (idr_find(&_minor_idr, minor)) {
909 r = -EBUSY;
910 goto out;
911 }
912
913 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
914 if (r)
915 goto out;
916
917 if (m != minor) {
918 idr_remove(&_minor_idr, m);
919 r = -EBUSY;
920 goto out;
921 }
922
923 out:
924 spin_unlock(&_minor_lock);
925 return r;
926 }
927
928 static int next_free_minor(struct mapped_device *md, int *minor)
929 {
930 int r, m;
931
932 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
933 if (!r)
934 return -ENOMEM;
935
936 spin_lock(&_minor_lock);
937
938 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
939 if (r) {
940 goto out;
941 }
942
943 if (m >= (1 << MINORBITS)) {
944 idr_remove(&_minor_idr, m);
945 r = -ENOSPC;
946 goto out;
947 }
948
949 *minor = m;
950
951 out:
952 spin_unlock(&_minor_lock);
953 return r;
954 }
955
956 static struct block_device_operations dm_blk_dops;
957
958 /*
959 * Allocate and initialise a blank device with a given minor.
960 */
961 static struct mapped_device *alloc_dev(int minor)
962 {
963 int r;
964 struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
965 void *old_md;
966
967 if (!md) {
968 DMWARN("unable to allocate device, out of memory.");
969 return NULL;
970 }
971
972 if (!try_module_get(THIS_MODULE))
973 goto bad0;
974
975 /* get a minor number for the dev */
976 if (minor == DM_ANY_MINOR)
977 r = next_free_minor(md, &minor);
978 else
979 r = specific_minor(md, minor);
980 if (r < 0)
981 goto bad1;
982
983 memset(md, 0, sizeof(*md));
984 init_rwsem(&md->io_lock);
985 init_MUTEX(&md->suspend_lock);
986 spin_lock_init(&md->pushback_lock);
987 rwlock_init(&md->map_lock);
988 atomic_set(&md->holders, 1);
989 atomic_set(&md->open_count, 0);
990 atomic_set(&md->event_nr, 0);
991 atomic_set(&md->uevent_seq, 0);
992 INIT_LIST_HEAD(&md->uevent_list);
993 spin_lock_init(&md->uevent_lock);
994
995 md->queue = blk_alloc_queue(GFP_KERNEL);
996 if (!md->queue)
997 goto bad1_free_minor;
998
999 md->queue->queuedata = md;
1000 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1001 md->queue->backing_dev_info.congested_data = md;
1002 blk_queue_make_request(md->queue, dm_request);
1003 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1004 md->queue->unplug_fn = dm_unplug_all;
1005
1006 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1007 if (!md->io_pool)
1008 goto bad2;
1009
1010 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1011 if (!md->tio_pool)
1012 goto bad3;
1013
1014 md->bs = bioset_create(16, 16);
1015 if (!md->bs)
1016 goto bad_no_bioset;
1017
1018 md->disk = alloc_disk(1);
1019 if (!md->disk)
1020 goto bad4;
1021
1022 atomic_set(&md->pending, 0);
1023 init_waitqueue_head(&md->wait);
1024 init_waitqueue_head(&md->eventq);
1025
1026 md->disk->major = _major;
1027 md->disk->first_minor = minor;
1028 md->disk->fops = &dm_blk_dops;
1029 md->disk->queue = md->queue;
1030 md->disk->private_data = md;
1031 sprintf(md->disk->disk_name, "dm-%d", minor);
1032 add_disk(md->disk);
1033 format_dev_t(md->name, MKDEV(_major, minor));
1034
1035 /* Populate the mapping, nobody knows we exist yet */
1036 spin_lock(&_minor_lock);
1037 old_md = idr_replace(&_minor_idr, md, minor);
1038 spin_unlock(&_minor_lock);
1039
1040 BUG_ON(old_md != MINOR_ALLOCED);
1041
1042 return md;
1043
1044 bad4:
1045 bioset_free(md->bs);
1046 bad_no_bioset:
1047 mempool_destroy(md->tio_pool);
1048 bad3:
1049 mempool_destroy(md->io_pool);
1050 bad2:
1051 blk_cleanup_queue(md->queue);
1052 bad1_free_minor:
1053 free_minor(minor);
1054 bad1:
1055 module_put(THIS_MODULE);
1056 bad0:
1057 kfree(md);
1058 return NULL;
1059 }
1060
1061 static void unlock_fs(struct mapped_device *md);
1062
1063 static void free_dev(struct mapped_device *md)
1064 {
1065 int minor = md->disk->first_minor;
1066
1067 if (md->suspended_bdev) {
1068 unlock_fs(md);
1069 bdput(md->suspended_bdev);
1070 }
1071 mempool_destroy(md->tio_pool);
1072 mempool_destroy(md->io_pool);
1073 bioset_free(md->bs);
1074 del_gendisk(md->disk);
1075 free_minor(minor);
1076
1077 spin_lock(&_minor_lock);
1078 md->disk->private_data = NULL;
1079 spin_unlock(&_minor_lock);
1080
1081 put_disk(md->disk);
1082 blk_cleanup_queue(md->queue);
1083 module_put(THIS_MODULE);
1084 kfree(md);
1085 }
1086
1087 /*
1088 * Bind a table to the device.
1089 */
1090 static void event_callback(void *context)
1091 {
1092 unsigned long flags;
1093 LIST_HEAD(uevents);
1094 struct mapped_device *md = (struct mapped_device *) context;
1095
1096 spin_lock_irqsave(&md->uevent_lock, flags);
1097 list_splice_init(&md->uevent_list, &uevents);
1098 spin_unlock_irqrestore(&md->uevent_lock, flags);
1099
1100 dm_send_uevents(&uevents, &md->disk->kobj);
1101
1102 atomic_inc(&md->event_nr);
1103 wake_up(&md->eventq);
1104 }
1105
1106 static void __set_size(struct mapped_device *md, sector_t size)
1107 {
1108 set_capacity(md->disk, size);
1109
1110 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1111 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1112 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1113 }
1114
1115 static int __bind(struct mapped_device *md, struct dm_table *t)
1116 {
1117 struct request_queue *q = md->queue;
1118 sector_t size;
1119
1120 size = dm_table_get_size(t);
1121
1122 /*
1123 * Wipe any geometry if the size of the table changed.
1124 */
1125 if (size != get_capacity(md->disk))
1126 memset(&md->geometry, 0, sizeof(md->geometry));
1127
1128 if (md->suspended_bdev)
1129 __set_size(md, size);
1130 if (size == 0)
1131 return 0;
1132
1133 dm_table_get(t);
1134 dm_table_event_callback(t, event_callback, md);
1135
1136 write_lock(&md->map_lock);
1137 md->map = t;
1138 dm_table_set_restrictions(t, q);
1139 write_unlock(&md->map_lock);
1140
1141 return 0;
1142 }
1143
1144 static void __unbind(struct mapped_device *md)
1145 {
1146 struct dm_table *map = md->map;
1147
1148 if (!map)
1149 return;
1150
1151 dm_table_event_callback(map, NULL, NULL);
1152 write_lock(&md->map_lock);
1153 md->map = NULL;
1154 write_unlock(&md->map_lock);
1155 dm_table_put(map);
1156 }
1157
1158 /*
1159 * Constructor for a new device.
1160 */
1161 int dm_create(int minor, struct mapped_device **result)
1162 {
1163 struct mapped_device *md;
1164
1165 md = alloc_dev(minor);
1166 if (!md)
1167 return -ENXIO;
1168
1169 *result = md;
1170 return 0;
1171 }
1172
1173 static struct mapped_device *dm_find_md(dev_t dev)
1174 {
1175 struct mapped_device *md;
1176 unsigned minor = MINOR(dev);
1177
1178 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1179 return NULL;
1180
1181 spin_lock(&_minor_lock);
1182
1183 md = idr_find(&_minor_idr, minor);
1184 if (md && (md == MINOR_ALLOCED ||
1185 (dm_disk(md)->first_minor != minor) ||
1186 test_bit(DMF_FREEING, &md->flags))) {
1187 md = NULL;
1188 goto out;
1189 }
1190
1191 out:
1192 spin_unlock(&_minor_lock);
1193
1194 return md;
1195 }
1196
1197 struct mapped_device *dm_get_md(dev_t dev)
1198 {
1199 struct mapped_device *md = dm_find_md(dev);
1200
1201 if (md)
1202 dm_get(md);
1203
1204 return md;
1205 }
1206
1207 void *dm_get_mdptr(struct mapped_device *md)
1208 {
1209 return md->interface_ptr;
1210 }
1211
1212 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1213 {
1214 md->interface_ptr = ptr;
1215 }
1216
1217 void dm_get(struct mapped_device *md)
1218 {
1219 atomic_inc(&md->holders);
1220 }
1221
1222 const char *dm_device_name(struct mapped_device *md)
1223 {
1224 return md->name;
1225 }
1226 EXPORT_SYMBOL_GPL(dm_device_name);
1227
1228 void dm_put(struct mapped_device *md)
1229 {
1230 struct dm_table *map;
1231
1232 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1233
1234 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1235 map = dm_get_table(md);
1236 idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1237 set_bit(DMF_FREEING, &md->flags);
1238 spin_unlock(&_minor_lock);
1239 if (!dm_suspended(md)) {
1240 dm_table_presuspend_targets(map);
1241 dm_table_postsuspend_targets(map);
1242 }
1243 __unbind(md);
1244 dm_table_put(map);
1245 free_dev(md);
1246 }
1247 }
1248 EXPORT_SYMBOL_GPL(dm_put);
1249
1250 /*
1251 * Process the deferred bios
1252 */
1253 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1254 {
1255 struct bio *n;
1256
1257 while (c) {
1258 n = c->bi_next;
1259 c->bi_next = NULL;
1260 if (__split_bio(md, c))
1261 bio_io_error(c);
1262 c = n;
1263 }
1264 }
1265
1266 /*
1267 * Swap in a new table (destroying old one).
1268 */
1269 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1270 {
1271 int r = -EINVAL;
1272
1273 down(&md->suspend_lock);
1274
1275 /* device must be suspended */
1276 if (!dm_suspended(md))
1277 goto out;
1278
1279 /* without bdev, the device size cannot be changed */
1280 if (!md->suspended_bdev)
1281 if (get_capacity(md->disk) != dm_table_get_size(table))
1282 goto out;
1283
1284 __unbind(md);
1285 r = __bind(md, table);
1286
1287 out:
1288 up(&md->suspend_lock);
1289 return r;
1290 }
1291
1292 /*
1293 * Functions to lock and unlock any filesystem running on the
1294 * device.
1295 */
1296 static int lock_fs(struct mapped_device *md)
1297 {
1298 int r;
1299
1300 WARN_ON(md->frozen_sb);
1301
1302 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1303 if (IS_ERR(md->frozen_sb)) {
1304 r = PTR_ERR(md->frozen_sb);
1305 md->frozen_sb = NULL;
1306 return r;
1307 }
1308
1309 set_bit(DMF_FROZEN, &md->flags);
1310
1311 /* don't bdput right now, we don't want the bdev
1312 * to go away while it is locked.
1313 */
1314 return 0;
1315 }
1316
1317 static void unlock_fs(struct mapped_device *md)
1318 {
1319 if (!test_bit(DMF_FROZEN, &md->flags))
1320 return;
1321
1322 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1323 md->frozen_sb = NULL;
1324 clear_bit(DMF_FROZEN, &md->flags);
1325 }
1326
1327 /*
1328 * We need to be able to change a mapping table under a mounted
1329 * filesystem. For example we might want to move some data in
1330 * the background. Before the table can be swapped with
1331 * dm_bind_table, dm_suspend must be called to flush any in
1332 * flight bios and ensure that any further io gets deferred.
1333 */
1334 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1335 {
1336 struct dm_table *map = NULL;
1337 unsigned long flags;
1338 DECLARE_WAITQUEUE(wait, current);
1339 struct bio *def;
1340 int r = -EINVAL;
1341 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1342 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1343
1344 down(&md->suspend_lock);
1345
1346 if (dm_suspended(md))
1347 goto out_unlock;
1348
1349 map = dm_get_table(md);
1350
1351 /*
1352 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1353 * This flag is cleared before dm_suspend returns.
1354 */
1355 if (noflush)
1356 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1357
1358 /* This does not get reverted if there's an error later. */
1359 dm_table_presuspend_targets(map);
1360
1361 /* bdget() can stall if the pending I/Os are not flushed */
1362 if (!noflush) {
1363 md->suspended_bdev = bdget_disk(md->disk, 0);
1364 if (!md->suspended_bdev) {
1365 DMWARN("bdget failed in dm_suspend");
1366 r = -ENOMEM;
1367 goto flush_and_out;
1368 }
1369 }
1370
1371 /*
1372 * Flush I/O to the device.
1373 * noflush supersedes do_lockfs, because lock_fs() needs to flush I/Os.
1374 */
1375 if (do_lockfs && !noflush) {
1376 r = lock_fs(md);
1377 if (r)
1378 goto out;
1379 }
1380
1381 /*
1382 * First we set the BLOCK_IO flag so no more ios will be mapped.
1383 */
1384 down_write(&md->io_lock);
1385 set_bit(DMF_BLOCK_IO, &md->flags);
1386
1387 add_wait_queue(&md->wait, &wait);
1388 up_write(&md->io_lock);
1389
1390 /* unplug */
1391 if (map)
1392 dm_table_unplug_all(map);
1393
1394 /*
1395 * Then we wait for the already mapped ios to
1396 * complete.
1397 */
1398 while (1) {
1399 set_current_state(TASK_INTERRUPTIBLE);
1400
1401 if (!atomic_read(&md->pending) || signal_pending(current))
1402 break;
1403
1404 io_schedule();
1405 }
1406 set_current_state(TASK_RUNNING);
1407
1408 down_write(&md->io_lock);
1409 remove_wait_queue(&md->wait, &wait);
1410
1411 if (noflush) {
1412 spin_lock_irqsave(&md->pushback_lock, flags);
1413 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1414 bio_list_merge_head(&md->deferred, &md->pushback);
1415 bio_list_init(&md->pushback);
1416 spin_unlock_irqrestore(&md->pushback_lock, flags);
1417 }
1418
1419 /* were we interrupted ? */
1420 r = -EINTR;
1421 if (atomic_read(&md->pending)) {
1422 clear_bit(DMF_BLOCK_IO, &md->flags);
1423 def = bio_list_get(&md->deferred);
1424 __flush_deferred_io(md, def);
1425 up_write(&md->io_lock);
1426 unlock_fs(md);
1427 goto out; /* pushback list is already flushed, so skip flush */
1428 }
1429 up_write(&md->io_lock);
1430
1431 dm_table_postsuspend_targets(map);
1432
1433 set_bit(DMF_SUSPENDED, &md->flags);
1434
1435 r = 0;
1436
1437 flush_and_out:
1438 if (r && noflush) {
1439 /*
1440 * Because there may be already I/Os in the pushback list,
1441 * flush them before return.
1442 */
1443 down_write(&md->io_lock);
1444
1445 spin_lock_irqsave(&md->pushback_lock, flags);
1446 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1447 bio_list_merge_head(&md->deferred, &md->pushback);
1448 bio_list_init(&md->pushback);
1449 spin_unlock_irqrestore(&md->pushback_lock, flags);
1450
1451 def = bio_list_get(&md->deferred);
1452 __flush_deferred_io(md, def);
1453 up_write(&md->io_lock);
1454 }
1455
1456 out:
1457 if (r && md->suspended_bdev) {
1458 bdput(md->suspended_bdev);
1459 md->suspended_bdev = NULL;
1460 }
1461
1462 dm_table_put(map);
1463
1464 out_unlock:
1465 up(&md->suspend_lock);
1466 return r;
1467 }
1468
1469 int dm_resume(struct mapped_device *md)
1470 {
1471 int r = -EINVAL;
1472 struct bio *def;
1473 struct dm_table *map = NULL;
1474
1475 down(&md->suspend_lock);
1476 if (!dm_suspended(md))
1477 goto out;
1478
1479 map = dm_get_table(md);
1480 if (!map || !dm_table_get_size(map))
1481 goto out;
1482
1483 r = dm_table_resume_targets(map);
1484 if (r)
1485 goto out;
1486
1487 down_write(&md->io_lock);
1488 clear_bit(DMF_BLOCK_IO, &md->flags);
1489
1490 def = bio_list_get(&md->deferred);
1491 __flush_deferred_io(md, def);
1492 up_write(&md->io_lock);
1493
1494 unlock_fs(md);
1495
1496 if (md->suspended_bdev) {
1497 bdput(md->suspended_bdev);
1498 md->suspended_bdev = NULL;
1499 }
1500
1501 clear_bit(DMF_SUSPENDED, &md->flags);
1502
1503 dm_table_unplug_all(map);
1504
1505 kobject_uevent(&md->disk->kobj, KOBJ_CHANGE);
1506
1507 r = 0;
1508
1509 out:
1510 dm_table_put(map);
1511 up(&md->suspend_lock);
1512
1513 return r;
1514 }
1515
1516 /*-----------------------------------------------------------------
1517 * Event notification.
1518 *---------------------------------------------------------------*/
1519 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1520 {
1521 return atomic_add_return(1, &md->uevent_seq);
1522 }
1523
1524 uint32_t dm_get_event_nr(struct mapped_device *md)
1525 {
1526 return atomic_read(&md->event_nr);
1527 }
1528
1529 int dm_wait_event(struct mapped_device *md, int event_nr)
1530 {
1531 return wait_event_interruptible(md->eventq,
1532 (event_nr != atomic_read(&md->event_nr)));
1533 }
1534
1535 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1536 {
1537 unsigned long flags;
1538
1539 spin_lock_irqsave(&md->uevent_lock, flags);
1540 list_add(elist, &md->uevent_list);
1541 spin_unlock_irqrestore(&md->uevent_lock, flags);
1542 }
1543
1544 /*
1545 * The gendisk is only valid as long as you have a reference
1546 * count on 'md'.
1547 */
1548 struct gendisk *dm_disk(struct mapped_device *md)
1549 {
1550 return md->disk;
1551 }
1552
1553 int dm_suspended(struct mapped_device *md)
1554 {
1555 return test_bit(DMF_SUSPENDED, &md->flags);
1556 }
1557
1558 int dm_noflush_suspending(struct dm_target *ti)
1559 {
1560 struct mapped_device *md = dm_table_get_md(ti->table);
1561 int r = __noflush_suspending(md);
1562
1563 dm_put(md);
1564
1565 return r;
1566 }
1567 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1568
1569 static struct block_device_operations dm_blk_dops = {
1570 .open = dm_blk_open,
1571 .release = dm_blk_close,
1572 .ioctl = dm_blk_ioctl,
1573 .getgeo = dm_blk_getgeo,
1574 .owner = THIS_MODULE
1575 };
1576
1577 EXPORT_SYMBOL(dm_get_mapinfo);
1578
1579 /*
1580 * module hooks
1581 */
1582 module_init(dm_init);
1583 module_exit(dm_exit);
1584
1585 module_param(major, uint, 0);
1586 MODULE_PARM_DESC(major, "The major number of the device mapper");
1587 MODULE_DESCRIPTION(DM_NAME " driver");
1588 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1589 MODULE_LICENSE("GPL");