]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 struct dm_stats_aux stats_aux;
90 unsigned long duration_jiffies;
91 unsigned n_sectors;
92 };
93
94 /*
95 * For request-based dm - the bio clones we allocate are embedded in these
96 * structs.
97 *
98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99 * the bioset is created - this means the bio has to come at the end of the
100 * struct.
101 */
102 struct dm_rq_clone_bio_info {
103 struct bio *orig;
104 struct dm_rq_target_io *tio;
105 struct bio clone;
106 };
107
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 if (rq && rq->end_io_data)
111 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115
116 #define MINOR_ALLOCED ((void *)-1)
117
118 /*
119 * Bits for the md->flags field.
120 */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_MERGE_IS_OPTIONAL 6
128 #define DMF_DEFERRED_REMOVE 7
129 #define DMF_SUSPENDED_INTERNALLY 8
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
561 {
562 struct mapped_device *md = bdev->bd_disk->private_data;
563 int srcu_idx;
564 struct dm_table *map;
565 struct dm_target *tgt;
566 int r = -ENOTTY;
567
568 retry:
569 map = dm_get_live_table(md, &srcu_idx);
570
571 if (!map || !dm_table_get_size(map))
572 goto out;
573
574 /* We only support devices that have a single target */
575 if (dm_table_get_num_targets(map) != 1)
576 goto out;
577
578 tgt = dm_table_get_target(map, 0);
579 if (!tgt->type->ioctl)
580 goto out;
581
582 if (dm_suspended_md(md)) {
583 r = -EAGAIN;
584 goto out;
585 }
586
587 r = tgt->type->ioctl(tgt, cmd, arg);
588
589 out:
590 dm_put_live_table(md, srcu_idx);
591
592 if (r == -ENOTCONN) {
593 msleep(10);
594 goto retry;
595 }
596
597 return r;
598 }
599
600 static struct dm_io *alloc_io(struct mapped_device *md)
601 {
602 return mempool_alloc(md->io_pool, GFP_NOIO);
603 }
604
605 static void free_io(struct mapped_device *md, struct dm_io *io)
606 {
607 mempool_free(io, md->io_pool);
608 }
609
610 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
611 {
612 bio_put(&tio->clone);
613 }
614
615 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
616 gfp_t gfp_mask)
617 {
618 return mempool_alloc(md->io_pool, gfp_mask);
619 }
620
621 static void free_rq_tio(struct dm_rq_target_io *tio)
622 {
623 mempool_free(tio, tio->md->io_pool);
624 }
625
626 static struct request *alloc_clone_request(struct mapped_device *md,
627 gfp_t gfp_mask)
628 {
629 return mempool_alloc(md->rq_pool, gfp_mask);
630 }
631
632 static void free_clone_request(struct mapped_device *md, struct request *rq)
633 {
634 mempool_free(rq, md->rq_pool);
635 }
636
637 static int md_in_flight(struct mapped_device *md)
638 {
639 return atomic_read(&md->pending[READ]) +
640 atomic_read(&md->pending[WRITE]);
641 }
642
643 static void start_io_acct(struct dm_io *io)
644 {
645 struct mapped_device *md = io->md;
646 struct bio *bio = io->bio;
647 int cpu;
648 int rw = bio_data_dir(bio);
649
650 io->start_time = jiffies;
651
652 cpu = part_stat_lock();
653 part_round_stats(cpu, &dm_disk(md)->part0);
654 part_stat_unlock();
655 atomic_set(&dm_disk(md)->part0.in_flight[rw],
656 atomic_inc_return(&md->pending[rw]));
657
658 if (unlikely(dm_stats_used(&md->stats)))
659 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
660 bio_sectors(bio), false, 0, &io->stats_aux);
661 }
662
663 static void end_io_acct(struct dm_io *io)
664 {
665 struct mapped_device *md = io->md;
666 struct bio *bio = io->bio;
667 unsigned long duration = jiffies - io->start_time;
668 int pending;
669 int rw = bio_data_dir(bio);
670
671 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
672
673 if (unlikely(dm_stats_used(&md->stats)))
674 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
675 bio_sectors(bio), true, duration, &io->stats_aux);
676
677 /*
678 * After this is decremented the bio must not be touched if it is
679 * a flush.
680 */
681 pending = atomic_dec_return(&md->pending[rw]);
682 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
683 pending += atomic_read(&md->pending[rw^0x1]);
684
685 /* nudge anyone waiting on suspend queue */
686 if (!pending)
687 wake_up(&md->wait);
688 }
689
690 /*
691 * Add the bio to the list of deferred io.
692 */
693 static void queue_io(struct mapped_device *md, struct bio *bio)
694 {
695 unsigned long flags;
696
697 spin_lock_irqsave(&md->deferred_lock, flags);
698 bio_list_add(&md->deferred, bio);
699 spin_unlock_irqrestore(&md->deferred_lock, flags);
700 queue_work(md->wq, &md->work);
701 }
702
703 /*
704 * Everyone (including functions in this file), should use this
705 * function to access the md->map field, and make sure they call
706 * dm_put_live_table() when finished.
707 */
708 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
709 {
710 *srcu_idx = srcu_read_lock(&md->io_barrier);
711
712 return srcu_dereference(md->map, &md->io_barrier);
713 }
714
715 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
716 {
717 srcu_read_unlock(&md->io_barrier, srcu_idx);
718 }
719
720 void dm_sync_table(struct mapped_device *md)
721 {
722 synchronize_srcu(&md->io_barrier);
723 synchronize_rcu_expedited();
724 }
725
726 /*
727 * A fast alternative to dm_get_live_table/dm_put_live_table.
728 * The caller must not block between these two functions.
729 */
730 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
731 {
732 rcu_read_lock();
733 return rcu_dereference(md->map);
734 }
735
736 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
737 {
738 rcu_read_unlock();
739 }
740
741 /*
742 * Open a table device so we can use it as a map destination.
743 */
744 static int open_table_device(struct table_device *td, dev_t dev,
745 struct mapped_device *md)
746 {
747 static char *_claim_ptr = "I belong to device-mapper";
748 struct block_device *bdev;
749
750 int r;
751
752 BUG_ON(td->dm_dev.bdev);
753
754 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
755 if (IS_ERR(bdev))
756 return PTR_ERR(bdev);
757
758 r = bd_link_disk_holder(bdev, dm_disk(md));
759 if (r) {
760 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
761 return r;
762 }
763
764 td->dm_dev.bdev = bdev;
765 return 0;
766 }
767
768 /*
769 * Close a table device that we've been using.
770 */
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
772 {
773 if (!td->dm_dev.bdev)
774 return;
775
776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 td->dm_dev.bdev = NULL;
779 }
780
781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 fmode_t mode) {
783 struct table_device *td;
784
785 list_for_each_entry(td, l, list)
786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 return td;
788
789 return NULL;
790 }
791
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 struct dm_dev **result) {
794 int r;
795 struct table_device *td;
796
797 mutex_lock(&md->table_devices_lock);
798 td = find_table_device(&md->table_devices, dev, mode);
799 if (!td) {
800 td = kmalloc(sizeof(*td), GFP_KERNEL);
801 if (!td) {
802 mutex_unlock(&md->table_devices_lock);
803 return -ENOMEM;
804 }
805
806 td->dm_dev.mode = mode;
807 td->dm_dev.bdev = NULL;
808
809 if ((r = open_table_device(td, dev, md))) {
810 mutex_unlock(&md->table_devices_lock);
811 kfree(td);
812 return r;
813 }
814
815 format_dev_t(td->dm_dev.name, dev);
816
817 atomic_set(&td->count, 0);
818 list_add(&td->list, &md->table_devices);
819 }
820 atomic_inc(&td->count);
821 mutex_unlock(&md->table_devices_lock);
822
823 *result = &td->dm_dev;
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(dm_get_table_device);
827
828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (atomic_dec_and_test(&td->count)) {
834 close_table_device(td, md);
835 list_del(&td->list);
836 kfree(td);
837 }
838 mutex_unlock(&md->table_devices_lock);
839 }
840 EXPORT_SYMBOL(dm_put_table_device);
841
842 static void free_table_devices(struct list_head *devices)
843 {
844 struct list_head *tmp, *next;
845
846 list_for_each_safe(tmp, next, devices) {
847 struct table_device *td = list_entry(tmp, struct table_device, list);
848
849 DMWARN("dm_destroy: %s still exists with %d references",
850 td->dm_dev.name, atomic_read(&td->count));
851 kfree(td);
852 }
853 }
854
855 /*
856 * Get the geometry associated with a dm device
857 */
858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
859 {
860 *geo = md->geometry;
861
862 return 0;
863 }
864
865 /*
866 * Set the geometry of a device.
867 */
868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
871
872 if (geo->start > sz) {
873 DMWARN("Start sector is beyond the geometry limits.");
874 return -EINVAL;
875 }
876
877 md->geometry = *geo;
878
879 return 0;
880 }
881
882 /*-----------------------------------------------------------------
883 * CRUD START:
884 * A more elegant soln is in the works that uses the queue
885 * merge fn, unfortunately there are a couple of changes to
886 * the block layer that I want to make for this. So in the
887 * interests of getting something for people to use I give
888 * you this clearly demarcated crap.
889 *---------------------------------------------------------------*/
890
891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895
896 /*
897 * Decrements the number of outstanding ios that a bio has been
898 * cloned into, completing the original io if necc.
899 */
900 static void dec_pending(struct dm_io *io, int error)
901 {
902 unsigned long flags;
903 int io_error;
904 struct bio *bio;
905 struct mapped_device *md = io->md;
906
907 /* Push-back supersedes any I/O errors */
908 if (unlikely(error)) {
909 spin_lock_irqsave(&io->endio_lock, flags);
910 if (!(io->error > 0 && __noflush_suspending(md)))
911 io->error = error;
912 spin_unlock_irqrestore(&io->endio_lock, flags);
913 }
914
915 if (atomic_dec_and_test(&io->io_count)) {
916 if (io->error == DM_ENDIO_REQUEUE) {
917 /*
918 * Target requested pushing back the I/O.
919 */
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if (__noflush_suspending(md))
922 bio_list_add_head(&md->deferred, io->bio);
923 else
924 /* noflush suspend was interrupted. */
925 io->error = -EIO;
926 spin_unlock_irqrestore(&md->deferred_lock, flags);
927 }
928
929 io_error = io->error;
930 bio = io->bio;
931 end_io_acct(io);
932 free_io(md, io);
933
934 if (io_error == DM_ENDIO_REQUEUE)
935 return;
936
937 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
938 /*
939 * Preflush done for flush with data, reissue
940 * without REQ_FLUSH.
941 */
942 bio->bi_rw &= ~REQ_FLUSH;
943 queue_io(md, bio);
944 } else {
945 /* done with normal IO or empty flush */
946 trace_block_bio_complete(md->queue, bio, io_error);
947 bio_endio(bio, io_error);
948 }
949 }
950 }
951
952 static void disable_write_same(struct mapped_device *md)
953 {
954 struct queue_limits *limits = dm_get_queue_limits(md);
955
956 /* device doesn't really support WRITE SAME, disable it */
957 limits->max_write_same_sectors = 0;
958 }
959
960 static void clone_endio(struct bio *bio, int error)
961 {
962 int r = error;
963 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
964 struct dm_io *io = tio->io;
965 struct mapped_device *md = tio->io->md;
966 dm_endio_fn endio = tio->ti->type->end_io;
967
968 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
969 error = -EIO;
970
971 if (endio) {
972 r = endio(tio->ti, bio, error);
973 if (r < 0 || r == DM_ENDIO_REQUEUE)
974 /*
975 * error and requeue request are handled
976 * in dec_pending().
977 */
978 error = r;
979 else if (r == DM_ENDIO_INCOMPLETE)
980 /* The target will handle the io */
981 return;
982 else if (r) {
983 DMWARN("unimplemented target endio return value: %d", r);
984 BUG();
985 }
986 }
987
988 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
989 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
990 disable_write_same(md);
991
992 free_tio(md, tio);
993 dec_pending(io, error);
994 }
995
996 /*
997 * Partial completion handling for request-based dm
998 */
999 static void end_clone_bio(struct bio *clone, int error)
1000 {
1001 struct dm_rq_clone_bio_info *info =
1002 container_of(clone, struct dm_rq_clone_bio_info, clone);
1003 struct dm_rq_target_io *tio = info->tio;
1004 struct bio *bio = info->orig;
1005 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1006
1007 bio_put(clone);
1008
1009 if (tio->error)
1010 /*
1011 * An error has already been detected on the request.
1012 * Once error occurred, just let clone->end_io() handle
1013 * the remainder.
1014 */
1015 return;
1016 else if (error) {
1017 /*
1018 * Don't notice the error to the upper layer yet.
1019 * The error handling decision is made by the target driver,
1020 * when the request is completed.
1021 */
1022 tio->error = error;
1023 return;
1024 }
1025
1026 /*
1027 * I/O for the bio successfully completed.
1028 * Notice the data completion to the upper layer.
1029 */
1030
1031 /*
1032 * bios are processed from the head of the list.
1033 * So the completing bio should always be rq->bio.
1034 * If it's not, something wrong is happening.
1035 */
1036 if (tio->orig->bio != bio)
1037 DMERR("bio completion is going in the middle of the request");
1038
1039 /*
1040 * Update the original request.
1041 * Do not use blk_end_request() here, because it may complete
1042 * the original request before the clone, and break the ordering.
1043 */
1044 blk_update_request(tio->orig, 0, nr_bytes);
1045 }
1046
1047 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1048 {
1049 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1050 }
1051
1052 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1053 {
1054 if (unlikely(dm_stats_used(&md->stats))) {
1055 struct dm_rq_target_io *tio = tio_from_request(orig);
1056 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1057 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1058 tio->n_sectors, true, tio->duration_jiffies,
1059 &tio->stats_aux);
1060 }
1061 }
1062
1063 /*
1064 * Don't touch any member of the md after calling this function because
1065 * the md may be freed in dm_put() at the end of this function.
1066 * Or do dm_get() before calling this function and dm_put() later.
1067 */
1068 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1069 {
1070 atomic_dec(&md->pending[rw]);
1071
1072 /* nudge anyone waiting on suspend queue */
1073 if (!md_in_flight(md))
1074 wake_up(&md->wait);
1075
1076 /*
1077 * Run this off this callpath, as drivers could invoke end_io while
1078 * inside their request_fn (and holding the queue lock). Calling
1079 * back into ->request_fn() could deadlock attempting to grab the
1080 * queue lock again.
1081 */
1082 if (run_queue) {
1083 if (md->queue->mq_ops)
1084 blk_mq_run_hw_queues(md->queue, true);
1085 else
1086 blk_run_queue_async(md->queue);
1087 }
1088
1089 /*
1090 * dm_put() must be at the end of this function. See the comment above
1091 */
1092 dm_put(md);
1093 }
1094
1095 static void free_rq_clone(struct request *clone)
1096 {
1097 struct dm_rq_target_io *tio = clone->end_io_data;
1098 struct mapped_device *md = tio->md;
1099
1100 blk_rq_unprep_clone(clone);
1101
1102 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1103 /* stacked on blk-mq queue(s) */
1104 tio->ti->type->release_clone_rq(clone);
1105 else if (!md->queue->mq_ops)
1106 /* request_fn queue stacked on request_fn queue(s) */
1107 free_clone_request(md, clone);
1108 /*
1109 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1110 * no need to call free_clone_request() because we leverage blk-mq by
1111 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1112 */
1113
1114 if (!md->queue->mq_ops)
1115 free_rq_tio(tio);
1116 }
1117
1118 /*
1119 * Complete the clone and the original request.
1120 * Must be called without clone's queue lock held,
1121 * see end_clone_request() for more details.
1122 */
1123 static void dm_end_request(struct request *clone, int error)
1124 {
1125 int rw = rq_data_dir(clone);
1126 struct dm_rq_target_io *tio = clone->end_io_data;
1127 struct mapped_device *md = tio->md;
1128 struct request *rq = tio->orig;
1129
1130 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1131 rq->errors = clone->errors;
1132 rq->resid_len = clone->resid_len;
1133
1134 if (rq->sense)
1135 /*
1136 * We are using the sense buffer of the original
1137 * request.
1138 * So setting the length of the sense data is enough.
1139 */
1140 rq->sense_len = clone->sense_len;
1141 }
1142
1143 free_rq_clone(clone);
1144 rq_end_stats(md, rq);
1145 if (!rq->q->mq_ops)
1146 blk_end_request_all(rq, error);
1147 else
1148 blk_mq_end_request(rq, error);
1149 rq_completed(md, rw, true);
1150 }
1151
1152 static void dm_unprep_request(struct request *rq)
1153 {
1154 struct dm_rq_target_io *tio = tio_from_request(rq);
1155 struct request *clone = tio->clone;
1156
1157 if (!rq->q->mq_ops) {
1158 rq->special = NULL;
1159 rq->cmd_flags &= ~REQ_DONTPREP;
1160 }
1161
1162 if (clone)
1163 free_rq_clone(clone);
1164 }
1165
1166 /*
1167 * Requeue the original request of a clone.
1168 */
1169 static void old_requeue_request(struct request *rq)
1170 {
1171 struct request_queue *q = rq->q;
1172 unsigned long flags;
1173
1174 spin_lock_irqsave(q->queue_lock, flags);
1175 blk_requeue_request(q, rq);
1176 blk_run_queue_async(q);
1177 spin_unlock_irqrestore(q->queue_lock, flags);
1178 }
1179
1180 static void dm_requeue_original_request(struct mapped_device *md,
1181 struct request *rq)
1182 {
1183 int rw = rq_data_dir(rq);
1184
1185 dm_unprep_request(rq);
1186
1187 rq_end_stats(md, rq);
1188 if (!rq->q->mq_ops)
1189 old_requeue_request(rq);
1190 else {
1191 blk_mq_requeue_request(rq);
1192 blk_mq_kick_requeue_list(rq->q);
1193 }
1194
1195 rq_completed(md, rw, false);
1196 }
1197
1198 static void old_stop_queue(struct request_queue *q)
1199 {
1200 unsigned long flags;
1201
1202 if (blk_queue_stopped(q))
1203 return;
1204
1205 spin_lock_irqsave(q->queue_lock, flags);
1206 blk_stop_queue(q);
1207 spin_unlock_irqrestore(q->queue_lock, flags);
1208 }
1209
1210 static void stop_queue(struct request_queue *q)
1211 {
1212 if (!q->mq_ops)
1213 old_stop_queue(q);
1214 else
1215 blk_mq_stop_hw_queues(q);
1216 }
1217
1218 static void old_start_queue(struct request_queue *q)
1219 {
1220 unsigned long flags;
1221
1222 spin_lock_irqsave(q->queue_lock, flags);
1223 if (blk_queue_stopped(q))
1224 blk_start_queue(q);
1225 spin_unlock_irqrestore(q->queue_lock, flags);
1226 }
1227
1228 static void start_queue(struct request_queue *q)
1229 {
1230 if (!q->mq_ops)
1231 old_start_queue(q);
1232 else
1233 blk_mq_start_stopped_hw_queues(q, true);
1234 }
1235
1236 static void dm_done(struct request *clone, int error, bool mapped)
1237 {
1238 int r = error;
1239 struct dm_rq_target_io *tio = clone->end_io_data;
1240 dm_request_endio_fn rq_end_io = NULL;
1241
1242 if (tio->ti) {
1243 rq_end_io = tio->ti->type->rq_end_io;
1244
1245 if (mapped && rq_end_io)
1246 r = rq_end_io(tio->ti, clone, error, &tio->info);
1247 }
1248
1249 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1250 !clone->q->limits.max_write_same_sectors))
1251 disable_write_same(tio->md);
1252
1253 if (r <= 0)
1254 /* The target wants to complete the I/O */
1255 dm_end_request(clone, r);
1256 else if (r == DM_ENDIO_INCOMPLETE)
1257 /* The target will handle the I/O */
1258 return;
1259 else if (r == DM_ENDIO_REQUEUE)
1260 /* The target wants to requeue the I/O */
1261 dm_requeue_original_request(tio->md, tio->orig);
1262 else {
1263 DMWARN("unimplemented target endio return value: %d", r);
1264 BUG();
1265 }
1266 }
1267
1268 /*
1269 * Request completion handler for request-based dm
1270 */
1271 static void dm_softirq_done(struct request *rq)
1272 {
1273 bool mapped = true;
1274 struct dm_rq_target_io *tio = tio_from_request(rq);
1275 struct request *clone = tio->clone;
1276 int rw;
1277
1278 if (!clone) {
1279 rq_end_stats(tio->md, rq);
1280 rw = rq_data_dir(rq);
1281 if (!rq->q->mq_ops) {
1282 blk_end_request_all(rq, tio->error);
1283 rq_completed(tio->md, rw, false);
1284 free_rq_tio(tio);
1285 } else {
1286 blk_mq_end_request(rq, tio->error);
1287 rq_completed(tio->md, rw, false);
1288 }
1289 return;
1290 }
1291
1292 if (rq->cmd_flags & REQ_FAILED)
1293 mapped = false;
1294
1295 dm_done(clone, tio->error, mapped);
1296 }
1297
1298 /*
1299 * Complete the clone and the original request with the error status
1300 * through softirq context.
1301 */
1302 static void dm_complete_request(struct request *rq, int error)
1303 {
1304 struct dm_rq_target_io *tio = tio_from_request(rq);
1305
1306 tio->error = error;
1307 blk_complete_request(rq);
1308 }
1309
1310 /*
1311 * Complete the not-mapped clone and the original request with the error status
1312 * through softirq context.
1313 * Target's rq_end_io() function isn't called.
1314 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1315 */
1316 static void dm_kill_unmapped_request(struct request *rq, int error)
1317 {
1318 rq->cmd_flags |= REQ_FAILED;
1319 dm_complete_request(rq, error);
1320 }
1321
1322 /*
1323 * Called with the clone's queue lock held (for non-blk-mq)
1324 */
1325 static void end_clone_request(struct request *clone, int error)
1326 {
1327 struct dm_rq_target_io *tio = clone->end_io_data;
1328
1329 if (!clone->q->mq_ops) {
1330 /*
1331 * For just cleaning up the information of the queue in which
1332 * the clone was dispatched.
1333 * The clone is *NOT* freed actually here because it is alloced
1334 * from dm own mempool (REQ_ALLOCED isn't set).
1335 */
1336 __blk_put_request(clone->q, clone);
1337 }
1338
1339 /*
1340 * Actual request completion is done in a softirq context which doesn't
1341 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1342 * - another request may be submitted by the upper level driver
1343 * of the stacking during the completion
1344 * - the submission which requires queue lock may be done
1345 * against this clone's queue
1346 */
1347 dm_complete_request(tio->orig, error);
1348 }
1349
1350 /*
1351 * Return maximum size of I/O possible at the supplied sector up to the current
1352 * target boundary.
1353 */
1354 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1355 {
1356 sector_t target_offset = dm_target_offset(ti, sector);
1357
1358 return ti->len - target_offset;
1359 }
1360
1361 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1362 {
1363 sector_t len = max_io_len_target_boundary(sector, ti);
1364 sector_t offset, max_len;
1365
1366 /*
1367 * Does the target need to split even further?
1368 */
1369 if (ti->max_io_len) {
1370 offset = dm_target_offset(ti, sector);
1371 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1372 max_len = sector_div(offset, ti->max_io_len);
1373 else
1374 max_len = offset & (ti->max_io_len - 1);
1375 max_len = ti->max_io_len - max_len;
1376
1377 if (len > max_len)
1378 len = max_len;
1379 }
1380
1381 return len;
1382 }
1383
1384 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1385 {
1386 if (len > UINT_MAX) {
1387 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1388 (unsigned long long)len, UINT_MAX);
1389 ti->error = "Maximum size of target IO is too large";
1390 return -EINVAL;
1391 }
1392
1393 ti->max_io_len = (uint32_t) len;
1394
1395 return 0;
1396 }
1397 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1398
1399 /*
1400 * A target may call dm_accept_partial_bio only from the map routine. It is
1401 * allowed for all bio types except REQ_FLUSH.
1402 *
1403 * dm_accept_partial_bio informs the dm that the target only wants to process
1404 * additional n_sectors sectors of the bio and the rest of the data should be
1405 * sent in a next bio.
1406 *
1407 * A diagram that explains the arithmetics:
1408 * +--------------------+---------------+-------+
1409 * | 1 | 2 | 3 |
1410 * +--------------------+---------------+-------+
1411 *
1412 * <-------------- *tio->len_ptr --------------->
1413 * <------- bi_size ------->
1414 * <-- n_sectors -->
1415 *
1416 * Region 1 was already iterated over with bio_advance or similar function.
1417 * (it may be empty if the target doesn't use bio_advance)
1418 * Region 2 is the remaining bio size that the target wants to process.
1419 * (it may be empty if region 1 is non-empty, although there is no reason
1420 * to make it empty)
1421 * The target requires that region 3 is to be sent in the next bio.
1422 *
1423 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1424 * the partially processed part (the sum of regions 1+2) must be the same for all
1425 * copies of the bio.
1426 */
1427 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1428 {
1429 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1430 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1431 BUG_ON(bio->bi_rw & REQ_FLUSH);
1432 BUG_ON(bi_size > *tio->len_ptr);
1433 BUG_ON(n_sectors > bi_size);
1434 *tio->len_ptr -= bi_size - n_sectors;
1435 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1436 }
1437 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1438
1439 static void __map_bio(struct dm_target_io *tio)
1440 {
1441 int r;
1442 sector_t sector;
1443 struct mapped_device *md;
1444 struct bio *clone = &tio->clone;
1445 struct dm_target *ti = tio->ti;
1446
1447 clone->bi_end_io = clone_endio;
1448
1449 /*
1450 * Map the clone. If r == 0 we don't need to do
1451 * anything, the target has assumed ownership of
1452 * this io.
1453 */
1454 atomic_inc(&tio->io->io_count);
1455 sector = clone->bi_iter.bi_sector;
1456 r = ti->type->map(ti, clone);
1457 if (r == DM_MAPIO_REMAPPED) {
1458 /* the bio has been remapped so dispatch it */
1459
1460 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1461 tio->io->bio->bi_bdev->bd_dev, sector);
1462
1463 generic_make_request(clone);
1464 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1465 /* error the io and bail out, or requeue it if needed */
1466 md = tio->io->md;
1467 dec_pending(tio->io, r);
1468 free_tio(md, tio);
1469 } else if (r) {
1470 DMWARN("unimplemented target map return value: %d", r);
1471 BUG();
1472 }
1473 }
1474
1475 struct clone_info {
1476 struct mapped_device *md;
1477 struct dm_table *map;
1478 struct bio *bio;
1479 struct dm_io *io;
1480 sector_t sector;
1481 unsigned sector_count;
1482 };
1483
1484 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1485 {
1486 bio->bi_iter.bi_sector = sector;
1487 bio->bi_iter.bi_size = to_bytes(len);
1488 }
1489
1490 /*
1491 * Creates a bio that consists of range of complete bvecs.
1492 */
1493 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1494 sector_t sector, unsigned len)
1495 {
1496 struct bio *clone = &tio->clone;
1497
1498 __bio_clone_fast(clone, bio);
1499
1500 if (bio_integrity(bio))
1501 bio_integrity_clone(clone, bio, GFP_NOIO);
1502
1503 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1504 clone->bi_iter.bi_size = to_bytes(len);
1505
1506 if (bio_integrity(bio))
1507 bio_integrity_trim(clone, 0, len);
1508 }
1509
1510 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1511 struct dm_target *ti,
1512 unsigned target_bio_nr)
1513 {
1514 struct dm_target_io *tio;
1515 struct bio *clone;
1516
1517 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1518 tio = container_of(clone, struct dm_target_io, clone);
1519
1520 tio->io = ci->io;
1521 tio->ti = ti;
1522 tio->target_bio_nr = target_bio_nr;
1523
1524 return tio;
1525 }
1526
1527 static void __clone_and_map_simple_bio(struct clone_info *ci,
1528 struct dm_target *ti,
1529 unsigned target_bio_nr, unsigned *len)
1530 {
1531 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1532 struct bio *clone = &tio->clone;
1533
1534 tio->len_ptr = len;
1535
1536 __bio_clone_fast(clone, ci->bio);
1537 if (len)
1538 bio_setup_sector(clone, ci->sector, *len);
1539
1540 __map_bio(tio);
1541 }
1542
1543 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1544 unsigned num_bios, unsigned *len)
1545 {
1546 unsigned target_bio_nr;
1547
1548 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1549 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1550 }
1551
1552 static int __send_empty_flush(struct clone_info *ci)
1553 {
1554 unsigned target_nr = 0;
1555 struct dm_target *ti;
1556
1557 BUG_ON(bio_has_data(ci->bio));
1558 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1559 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1560
1561 return 0;
1562 }
1563
1564 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1565 sector_t sector, unsigned *len)
1566 {
1567 struct bio *bio = ci->bio;
1568 struct dm_target_io *tio;
1569 unsigned target_bio_nr;
1570 unsigned num_target_bios = 1;
1571
1572 /*
1573 * Does the target want to receive duplicate copies of the bio?
1574 */
1575 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1576 num_target_bios = ti->num_write_bios(ti, bio);
1577
1578 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1579 tio = alloc_tio(ci, ti, target_bio_nr);
1580 tio->len_ptr = len;
1581 clone_bio(tio, bio, sector, *len);
1582 __map_bio(tio);
1583 }
1584 }
1585
1586 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1587
1588 static unsigned get_num_discard_bios(struct dm_target *ti)
1589 {
1590 return ti->num_discard_bios;
1591 }
1592
1593 static unsigned get_num_write_same_bios(struct dm_target *ti)
1594 {
1595 return ti->num_write_same_bios;
1596 }
1597
1598 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1599
1600 static bool is_split_required_for_discard(struct dm_target *ti)
1601 {
1602 return ti->split_discard_bios;
1603 }
1604
1605 static int __send_changing_extent_only(struct clone_info *ci,
1606 get_num_bios_fn get_num_bios,
1607 is_split_required_fn is_split_required)
1608 {
1609 struct dm_target *ti;
1610 unsigned len;
1611 unsigned num_bios;
1612
1613 do {
1614 ti = dm_table_find_target(ci->map, ci->sector);
1615 if (!dm_target_is_valid(ti))
1616 return -EIO;
1617
1618 /*
1619 * Even though the device advertised support for this type of
1620 * request, that does not mean every target supports it, and
1621 * reconfiguration might also have changed that since the
1622 * check was performed.
1623 */
1624 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1625 if (!num_bios)
1626 return -EOPNOTSUPP;
1627
1628 if (is_split_required && !is_split_required(ti))
1629 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1630 else
1631 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1632
1633 __send_duplicate_bios(ci, ti, num_bios, &len);
1634
1635 ci->sector += len;
1636 } while (ci->sector_count -= len);
1637
1638 return 0;
1639 }
1640
1641 static int __send_discard(struct clone_info *ci)
1642 {
1643 return __send_changing_extent_only(ci, get_num_discard_bios,
1644 is_split_required_for_discard);
1645 }
1646
1647 static int __send_write_same(struct clone_info *ci)
1648 {
1649 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1650 }
1651
1652 /*
1653 * Select the correct strategy for processing a non-flush bio.
1654 */
1655 static int __split_and_process_non_flush(struct clone_info *ci)
1656 {
1657 struct bio *bio = ci->bio;
1658 struct dm_target *ti;
1659 unsigned len;
1660
1661 if (unlikely(bio->bi_rw & REQ_DISCARD))
1662 return __send_discard(ci);
1663 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1664 return __send_write_same(ci);
1665
1666 ti = dm_table_find_target(ci->map, ci->sector);
1667 if (!dm_target_is_valid(ti))
1668 return -EIO;
1669
1670 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1671
1672 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1673
1674 ci->sector += len;
1675 ci->sector_count -= len;
1676
1677 return 0;
1678 }
1679
1680 /*
1681 * Entry point to split a bio into clones and submit them to the targets.
1682 */
1683 static void __split_and_process_bio(struct mapped_device *md,
1684 struct dm_table *map, struct bio *bio)
1685 {
1686 struct clone_info ci;
1687 int error = 0;
1688
1689 if (unlikely(!map)) {
1690 bio_io_error(bio);
1691 return;
1692 }
1693
1694 ci.map = map;
1695 ci.md = md;
1696 ci.io = alloc_io(md);
1697 ci.io->error = 0;
1698 atomic_set(&ci.io->io_count, 1);
1699 ci.io->bio = bio;
1700 ci.io->md = md;
1701 spin_lock_init(&ci.io->endio_lock);
1702 ci.sector = bio->bi_iter.bi_sector;
1703
1704 start_io_acct(ci.io);
1705
1706 if (bio->bi_rw & REQ_FLUSH) {
1707 ci.bio = &ci.md->flush_bio;
1708 ci.sector_count = 0;
1709 error = __send_empty_flush(&ci);
1710 /* dec_pending submits any data associated with flush */
1711 } else {
1712 ci.bio = bio;
1713 ci.sector_count = bio_sectors(bio);
1714 while (ci.sector_count && !error)
1715 error = __split_and_process_non_flush(&ci);
1716 }
1717
1718 /* drop the extra reference count */
1719 dec_pending(ci.io, error);
1720 }
1721 /*-----------------------------------------------------------------
1722 * CRUD END
1723 *---------------------------------------------------------------*/
1724
1725 static int dm_merge_bvec(struct request_queue *q,
1726 struct bvec_merge_data *bvm,
1727 struct bio_vec *biovec)
1728 {
1729 struct mapped_device *md = q->queuedata;
1730 struct dm_table *map = dm_get_live_table_fast(md);
1731 struct dm_target *ti;
1732 sector_t max_sectors;
1733 int max_size = 0;
1734
1735 if (unlikely(!map))
1736 goto out;
1737
1738 ti = dm_table_find_target(map, bvm->bi_sector);
1739 if (!dm_target_is_valid(ti))
1740 goto out;
1741
1742 /*
1743 * Find maximum amount of I/O that won't need splitting
1744 */
1745 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1746 (sector_t) BIO_MAX_SECTORS);
1747 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1748 if (max_size < 0)
1749 max_size = 0;
1750
1751 /*
1752 * merge_bvec_fn() returns number of bytes
1753 * it can accept at this offset
1754 * max is precomputed maximal io size
1755 */
1756 if (max_size && ti->type->merge)
1757 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1758 /*
1759 * If the target doesn't support merge method and some of the devices
1760 * provided their merge_bvec method (we know this by looking at
1761 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1762 * entries. So always set max_size to 0, and the code below allows
1763 * just one page.
1764 */
1765 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1766 max_size = 0;
1767
1768 out:
1769 dm_put_live_table_fast(md);
1770 /*
1771 * Always allow an entire first page
1772 */
1773 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1774 max_size = biovec->bv_len;
1775
1776 return max_size;
1777 }
1778
1779 /*
1780 * The request function that just remaps the bio built up by
1781 * dm_merge_bvec.
1782 */
1783 static void dm_make_request(struct request_queue *q, struct bio *bio)
1784 {
1785 int rw = bio_data_dir(bio);
1786 struct mapped_device *md = q->queuedata;
1787 int srcu_idx;
1788 struct dm_table *map;
1789
1790 map = dm_get_live_table(md, &srcu_idx);
1791
1792 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1793
1794 /* if we're suspended, we have to queue this io for later */
1795 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1796 dm_put_live_table(md, srcu_idx);
1797
1798 if (bio_rw(bio) != READA)
1799 queue_io(md, bio);
1800 else
1801 bio_io_error(bio);
1802 return;
1803 }
1804
1805 __split_and_process_bio(md, map, bio);
1806 dm_put_live_table(md, srcu_idx);
1807 return;
1808 }
1809
1810 int dm_request_based(struct mapped_device *md)
1811 {
1812 return blk_queue_stackable(md->queue);
1813 }
1814
1815 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1816 {
1817 int r;
1818
1819 if (blk_queue_io_stat(clone->q))
1820 clone->cmd_flags |= REQ_IO_STAT;
1821
1822 clone->start_time = jiffies;
1823 r = blk_insert_cloned_request(clone->q, clone);
1824 if (r)
1825 /* must complete clone in terms of original request */
1826 dm_complete_request(rq, r);
1827 }
1828
1829 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1830 void *data)
1831 {
1832 struct dm_rq_target_io *tio = data;
1833 struct dm_rq_clone_bio_info *info =
1834 container_of(bio, struct dm_rq_clone_bio_info, clone);
1835
1836 info->orig = bio_orig;
1837 info->tio = tio;
1838 bio->bi_end_io = end_clone_bio;
1839
1840 return 0;
1841 }
1842
1843 static int setup_clone(struct request *clone, struct request *rq,
1844 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1845 {
1846 int r;
1847
1848 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1849 dm_rq_bio_constructor, tio);
1850 if (r)
1851 return r;
1852
1853 clone->cmd = rq->cmd;
1854 clone->cmd_len = rq->cmd_len;
1855 clone->sense = rq->sense;
1856 clone->end_io = end_clone_request;
1857 clone->end_io_data = tio;
1858
1859 tio->clone = clone;
1860
1861 return 0;
1862 }
1863
1864 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1865 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1866 {
1867 /*
1868 * Do not allocate a clone if tio->clone was already set
1869 * (see: dm_mq_queue_rq).
1870 */
1871 bool alloc_clone = !tio->clone;
1872 struct request *clone;
1873
1874 if (alloc_clone) {
1875 clone = alloc_clone_request(md, gfp_mask);
1876 if (!clone)
1877 return NULL;
1878 } else
1879 clone = tio->clone;
1880
1881 blk_rq_init(NULL, clone);
1882 if (setup_clone(clone, rq, tio, gfp_mask)) {
1883 /* -ENOMEM */
1884 if (alloc_clone)
1885 free_clone_request(md, clone);
1886 return NULL;
1887 }
1888
1889 return clone;
1890 }
1891
1892 static void map_tio_request(struct kthread_work *work);
1893
1894 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1895 struct mapped_device *md)
1896 {
1897 tio->md = md;
1898 tio->ti = NULL;
1899 tio->clone = NULL;
1900 tio->orig = rq;
1901 tio->error = 0;
1902 memset(&tio->info, 0, sizeof(tio->info));
1903 if (md->kworker_task)
1904 init_kthread_work(&tio->work, map_tio_request);
1905 }
1906
1907 static struct dm_rq_target_io *prep_tio(struct request *rq,
1908 struct mapped_device *md, gfp_t gfp_mask)
1909 {
1910 struct dm_rq_target_io *tio;
1911 int srcu_idx;
1912 struct dm_table *table;
1913
1914 tio = alloc_rq_tio(md, gfp_mask);
1915 if (!tio)
1916 return NULL;
1917
1918 init_tio(tio, rq, md);
1919
1920 table = dm_get_live_table(md, &srcu_idx);
1921 if (!dm_table_mq_request_based(table)) {
1922 if (!clone_rq(rq, md, tio, gfp_mask)) {
1923 dm_put_live_table(md, srcu_idx);
1924 free_rq_tio(tio);
1925 return NULL;
1926 }
1927 }
1928 dm_put_live_table(md, srcu_idx);
1929
1930 return tio;
1931 }
1932
1933 /*
1934 * Called with the queue lock held.
1935 */
1936 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1937 {
1938 struct mapped_device *md = q->queuedata;
1939 struct dm_rq_target_io *tio;
1940
1941 if (unlikely(rq->special)) {
1942 DMWARN("Already has something in rq->special.");
1943 return BLKPREP_KILL;
1944 }
1945
1946 tio = prep_tio(rq, md, GFP_ATOMIC);
1947 if (!tio)
1948 return BLKPREP_DEFER;
1949
1950 rq->special = tio;
1951 rq->cmd_flags |= REQ_DONTPREP;
1952
1953 return BLKPREP_OK;
1954 }
1955
1956 /*
1957 * Returns:
1958 * 0 : the request has been processed
1959 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1960 * < 0 : the request was completed due to failure
1961 */
1962 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1963 struct mapped_device *md)
1964 {
1965 int r;
1966 struct dm_target *ti = tio->ti;
1967 struct request *clone = NULL;
1968
1969 if (tio->clone) {
1970 clone = tio->clone;
1971 r = ti->type->map_rq(ti, clone, &tio->info);
1972 } else {
1973 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1974 if (r < 0) {
1975 /* The target wants to complete the I/O */
1976 dm_kill_unmapped_request(rq, r);
1977 return r;
1978 }
1979 if (r != DM_MAPIO_REMAPPED)
1980 return r;
1981 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1982 /* -ENOMEM */
1983 ti->type->release_clone_rq(clone);
1984 return DM_MAPIO_REQUEUE;
1985 }
1986 }
1987
1988 switch (r) {
1989 case DM_MAPIO_SUBMITTED:
1990 /* The target has taken the I/O to submit by itself later */
1991 break;
1992 case DM_MAPIO_REMAPPED:
1993 /* The target has remapped the I/O so dispatch it */
1994 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1995 blk_rq_pos(rq));
1996 dm_dispatch_clone_request(clone, rq);
1997 break;
1998 case DM_MAPIO_REQUEUE:
1999 /* The target wants to requeue the I/O */
2000 dm_requeue_original_request(md, tio->orig);
2001 break;
2002 default:
2003 if (r > 0) {
2004 DMWARN("unimplemented target map return value: %d", r);
2005 BUG();
2006 }
2007
2008 /* The target wants to complete the I/O */
2009 dm_kill_unmapped_request(rq, r);
2010 return r;
2011 }
2012
2013 return 0;
2014 }
2015
2016 static void map_tio_request(struct kthread_work *work)
2017 {
2018 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2019 struct request *rq = tio->orig;
2020 struct mapped_device *md = tio->md;
2021
2022 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2023 dm_requeue_original_request(md, rq);
2024 }
2025
2026 static void dm_start_request(struct mapped_device *md, struct request *orig)
2027 {
2028 if (!orig->q->mq_ops)
2029 blk_start_request(orig);
2030 else
2031 blk_mq_start_request(orig);
2032 atomic_inc(&md->pending[rq_data_dir(orig)]);
2033
2034 if (md->seq_rq_merge_deadline_usecs) {
2035 md->last_rq_pos = rq_end_sector(orig);
2036 md->last_rq_rw = rq_data_dir(orig);
2037 md->last_rq_start_time = ktime_get();
2038 }
2039
2040 if (unlikely(dm_stats_used(&md->stats))) {
2041 struct dm_rq_target_io *tio = tio_from_request(orig);
2042 tio->duration_jiffies = jiffies;
2043 tio->n_sectors = blk_rq_sectors(orig);
2044 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2045 tio->n_sectors, false, 0, &tio->stats_aux);
2046 }
2047
2048 /*
2049 * Hold the md reference here for the in-flight I/O.
2050 * We can't rely on the reference count by device opener,
2051 * because the device may be closed during the request completion
2052 * when all bios are completed.
2053 * See the comment in rq_completed() too.
2054 */
2055 dm_get(md);
2056 }
2057
2058 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2059
2060 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2061 {
2062 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2063 }
2064
2065 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2066 const char *buf, size_t count)
2067 {
2068 unsigned deadline;
2069
2070 if (!dm_request_based(md) || md->use_blk_mq)
2071 return count;
2072
2073 if (kstrtouint(buf, 10, &deadline))
2074 return -EINVAL;
2075
2076 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2077 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2078
2079 md->seq_rq_merge_deadline_usecs = deadline;
2080
2081 return count;
2082 }
2083
2084 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2085 {
2086 ktime_t kt_deadline;
2087
2088 if (!md->seq_rq_merge_deadline_usecs)
2089 return false;
2090
2091 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2092 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2093
2094 return !ktime_after(ktime_get(), kt_deadline);
2095 }
2096
2097 /*
2098 * q->request_fn for request-based dm.
2099 * Called with the queue lock held.
2100 */
2101 static void dm_request_fn(struct request_queue *q)
2102 {
2103 struct mapped_device *md = q->queuedata;
2104 int srcu_idx;
2105 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2106 struct dm_target *ti;
2107 struct request *rq;
2108 struct dm_rq_target_io *tio;
2109 sector_t pos;
2110
2111 /*
2112 * For suspend, check blk_queue_stopped() and increment
2113 * ->pending within a single queue_lock not to increment the
2114 * number of in-flight I/Os after the queue is stopped in
2115 * dm_suspend().
2116 */
2117 while (!blk_queue_stopped(q)) {
2118 rq = blk_peek_request(q);
2119 if (!rq)
2120 goto out;
2121
2122 /* always use block 0 to find the target for flushes for now */
2123 pos = 0;
2124 if (!(rq->cmd_flags & REQ_FLUSH))
2125 pos = blk_rq_pos(rq);
2126
2127 ti = dm_table_find_target(map, pos);
2128 if (!dm_target_is_valid(ti)) {
2129 /*
2130 * Must perform setup, that rq_completed() requires,
2131 * before calling dm_kill_unmapped_request
2132 */
2133 DMERR_LIMIT("request attempted access beyond the end of device");
2134 dm_start_request(md, rq);
2135 dm_kill_unmapped_request(rq, -EIO);
2136 continue;
2137 }
2138
2139 if (dm_request_peeked_before_merge_deadline(md) &&
2140 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2141 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2142 goto delay_and_out;
2143
2144 if (ti->type->busy && ti->type->busy(ti))
2145 goto delay_and_out;
2146
2147 dm_start_request(md, rq);
2148
2149 tio = tio_from_request(rq);
2150 /* Establish tio->ti before queuing work (map_tio_request) */
2151 tio->ti = ti;
2152 queue_kthread_work(&md->kworker, &tio->work);
2153 BUG_ON(!irqs_disabled());
2154 }
2155
2156 goto out;
2157
2158 delay_and_out:
2159 blk_delay_queue(q, HZ / 100);
2160 out:
2161 dm_put_live_table(md, srcu_idx);
2162 }
2163
2164 static int dm_any_congested(void *congested_data, int bdi_bits)
2165 {
2166 int r = bdi_bits;
2167 struct mapped_device *md = congested_data;
2168 struct dm_table *map;
2169
2170 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2171 map = dm_get_live_table_fast(md);
2172 if (map) {
2173 /*
2174 * Request-based dm cares about only own queue for
2175 * the query about congestion status of request_queue
2176 */
2177 if (dm_request_based(md))
2178 r = md->queue->backing_dev_info.wb.state &
2179 bdi_bits;
2180 else
2181 r = dm_table_any_congested(map, bdi_bits);
2182 }
2183 dm_put_live_table_fast(md);
2184 }
2185
2186 return r;
2187 }
2188
2189 /*-----------------------------------------------------------------
2190 * An IDR is used to keep track of allocated minor numbers.
2191 *---------------------------------------------------------------*/
2192 static void free_minor(int minor)
2193 {
2194 spin_lock(&_minor_lock);
2195 idr_remove(&_minor_idr, minor);
2196 spin_unlock(&_minor_lock);
2197 }
2198
2199 /*
2200 * See if the device with a specific minor # is free.
2201 */
2202 static int specific_minor(int minor)
2203 {
2204 int r;
2205
2206 if (minor >= (1 << MINORBITS))
2207 return -EINVAL;
2208
2209 idr_preload(GFP_KERNEL);
2210 spin_lock(&_minor_lock);
2211
2212 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2213
2214 spin_unlock(&_minor_lock);
2215 idr_preload_end();
2216 if (r < 0)
2217 return r == -ENOSPC ? -EBUSY : r;
2218 return 0;
2219 }
2220
2221 static int next_free_minor(int *minor)
2222 {
2223 int r;
2224
2225 idr_preload(GFP_KERNEL);
2226 spin_lock(&_minor_lock);
2227
2228 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2229
2230 spin_unlock(&_minor_lock);
2231 idr_preload_end();
2232 if (r < 0)
2233 return r;
2234 *minor = r;
2235 return 0;
2236 }
2237
2238 static const struct block_device_operations dm_blk_dops;
2239
2240 static void dm_wq_work(struct work_struct *work);
2241
2242 static void dm_init_md_queue(struct mapped_device *md)
2243 {
2244 /*
2245 * Request-based dm devices cannot be stacked on top of bio-based dm
2246 * devices. The type of this dm device may not have been decided yet.
2247 * The type is decided at the first table loading time.
2248 * To prevent problematic device stacking, clear the queue flag
2249 * for request stacking support until then.
2250 *
2251 * This queue is new, so no concurrency on the queue_flags.
2252 */
2253 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2254 }
2255
2256 static void dm_init_old_md_queue(struct mapped_device *md)
2257 {
2258 md->use_blk_mq = false;
2259 dm_init_md_queue(md);
2260
2261 /*
2262 * Initialize aspects of queue that aren't relevant for blk-mq
2263 */
2264 md->queue->queuedata = md;
2265 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2266 md->queue->backing_dev_info.congested_data = md;
2267
2268 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2269 }
2270
2271 static void cleanup_mapped_device(struct mapped_device *md)
2272 {
2273 if (md->wq)
2274 destroy_workqueue(md->wq);
2275 if (md->kworker_task)
2276 kthread_stop(md->kworker_task);
2277 if (md->io_pool)
2278 mempool_destroy(md->io_pool);
2279 if (md->rq_pool)
2280 mempool_destroy(md->rq_pool);
2281 if (md->bs)
2282 bioset_free(md->bs);
2283
2284 cleanup_srcu_struct(&md->io_barrier);
2285
2286 if (md->disk) {
2287 spin_lock(&_minor_lock);
2288 md->disk->private_data = NULL;
2289 spin_unlock(&_minor_lock);
2290 if (blk_get_integrity(md->disk))
2291 blk_integrity_unregister(md->disk);
2292 del_gendisk(md->disk);
2293 put_disk(md->disk);
2294 }
2295
2296 if (md->queue)
2297 blk_cleanup_queue(md->queue);
2298
2299 if (md->bdev) {
2300 bdput(md->bdev);
2301 md->bdev = NULL;
2302 }
2303 }
2304
2305 /*
2306 * Allocate and initialise a blank device with a given minor.
2307 */
2308 static struct mapped_device *alloc_dev(int minor)
2309 {
2310 int r;
2311 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2312 void *old_md;
2313
2314 if (!md) {
2315 DMWARN("unable to allocate device, out of memory.");
2316 return NULL;
2317 }
2318
2319 if (!try_module_get(THIS_MODULE))
2320 goto bad_module_get;
2321
2322 /* get a minor number for the dev */
2323 if (minor == DM_ANY_MINOR)
2324 r = next_free_minor(&minor);
2325 else
2326 r = specific_minor(minor);
2327 if (r < 0)
2328 goto bad_minor;
2329
2330 r = init_srcu_struct(&md->io_barrier);
2331 if (r < 0)
2332 goto bad_io_barrier;
2333
2334 md->use_blk_mq = use_blk_mq;
2335 md->type = DM_TYPE_NONE;
2336 mutex_init(&md->suspend_lock);
2337 mutex_init(&md->type_lock);
2338 mutex_init(&md->table_devices_lock);
2339 spin_lock_init(&md->deferred_lock);
2340 atomic_set(&md->holders, 1);
2341 atomic_set(&md->open_count, 0);
2342 atomic_set(&md->event_nr, 0);
2343 atomic_set(&md->uevent_seq, 0);
2344 INIT_LIST_HEAD(&md->uevent_list);
2345 INIT_LIST_HEAD(&md->table_devices);
2346 spin_lock_init(&md->uevent_lock);
2347
2348 md->queue = blk_alloc_queue(GFP_KERNEL);
2349 if (!md->queue)
2350 goto bad;
2351
2352 dm_init_md_queue(md);
2353
2354 md->disk = alloc_disk(1);
2355 if (!md->disk)
2356 goto bad;
2357
2358 atomic_set(&md->pending[0], 0);
2359 atomic_set(&md->pending[1], 0);
2360 init_waitqueue_head(&md->wait);
2361 INIT_WORK(&md->work, dm_wq_work);
2362 init_waitqueue_head(&md->eventq);
2363 init_completion(&md->kobj_holder.completion);
2364 md->kworker_task = NULL;
2365
2366 md->disk->major = _major;
2367 md->disk->first_minor = minor;
2368 md->disk->fops = &dm_blk_dops;
2369 md->disk->queue = md->queue;
2370 md->disk->private_data = md;
2371 sprintf(md->disk->disk_name, "dm-%d", minor);
2372 add_disk(md->disk);
2373 format_dev_t(md->name, MKDEV(_major, minor));
2374
2375 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2376 if (!md->wq)
2377 goto bad;
2378
2379 md->bdev = bdget_disk(md->disk, 0);
2380 if (!md->bdev)
2381 goto bad;
2382
2383 bio_init(&md->flush_bio);
2384 md->flush_bio.bi_bdev = md->bdev;
2385 md->flush_bio.bi_rw = WRITE_FLUSH;
2386
2387 dm_stats_init(&md->stats);
2388
2389 /* Populate the mapping, nobody knows we exist yet */
2390 spin_lock(&_minor_lock);
2391 old_md = idr_replace(&_minor_idr, md, minor);
2392 spin_unlock(&_minor_lock);
2393
2394 BUG_ON(old_md != MINOR_ALLOCED);
2395
2396 return md;
2397
2398 bad:
2399 cleanup_mapped_device(md);
2400 bad_io_barrier:
2401 free_minor(minor);
2402 bad_minor:
2403 module_put(THIS_MODULE);
2404 bad_module_get:
2405 kfree(md);
2406 return NULL;
2407 }
2408
2409 static void unlock_fs(struct mapped_device *md);
2410
2411 static void free_dev(struct mapped_device *md)
2412 {
2413 int minor = MINOR(disk_devt(md->disk));
2414
2415 unlock_fs(md);
2416
2417 cleanup_mapped_device(md);
2418 if (md->use_blk_mq)
2419 blk_mq_free_tag_set(&md->tag_set);
2420
2421 free_table_devices(&md->table_devices);
2422 dm_stats_cleanup(&md->stats);
2423 free_minor(minor);
2424
2425 module_put(THIS_MODULE);
2426 kfree(md);
2427 }
2428
2429 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2430 {
2431 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2432
2433 if (md->bs) {
2434 /* The md already has necessary mempools. */
2435 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2436 /*
2437 * Reload bioset because front_pad may have changed
2438 * because a different table was loaded.
2439 */
2440 bioset_free(md->bs);
2441 md->bs = p->bs;
2442 p->bs = NULL;
2443 }
2444 /*
2445 * There's no need to reload with request-based dm
2446 * because the size of front_pad doesn't change.
2447 * Note for future: If you are to reload bioset,
2448 * prep-ed requests in the queue may refer
2449 * to bio from the old bioset, so you must walk
2450 * through the queue to unprep.
2451 */
2452 goto out;
2453 }
2454
2455 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2456
2457 md->io_pool = p->io_pool;
2458 p->io_pool = NULL;
2459 md->rq_pool = p->rq_pool;
2460 p->rq_pool = NULL;
2461 md->bs = p->bs;
2462 p->bs = NULL;
2463
2464 out:
2465 /* mempool bind completed, no longer need any mempools in the table */
2466 dm_table_free_md_mempools(t);
2467 }
2468
2469 /*
2470 * Bind a table to the device.
2471 */
2472 static void event_callback(void *context)
2473 {
2474 unsigned long flags;
2475 LIST_HEAD(uevents);
2476 struct mapped_device *md = (struct mapped_device *) context;
2477
2478 spin_lock_irqsave(&md->uevent_lock, flags);
2479 list_splice_init(&md->uevent_list, &uevents);
2480 spin_unlock_irqrestore(&md->uevent_lock, flags);
2481
2482 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2483
2484 atomic_inc(&md->event_nr);
2485 wake_up(&md->eventq);
2486 }
2487
2488 /*
2489 * Protected by md->suspend_lock obtained by dm_swap_table().
2490 */
2491 static void __set_size(struct mapped_device *md, sector_t size)
2492 {
2493 set_capacity(md->disk, size);
2494
2495 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2496 }
2497
2498 /*
2499 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2500 *
2501 * If this function returns 0, then the device is either a non-dm
2502 * device without a merge_bvec_fn, or it is a dm device that is
2503 * able to split any bios it receives that are too big.
2504 */
2505 int dm_queue_merge_is_compulsory(struct request_queue *q)
2506 {
2507 struct mapped_device *dev_md;
2508
2509 if (!q->merge_bvec_fn)
2510 return 0;
2511
2512 if (q->make_request_fn == dm_make_request) {
2513 dev_md = q->queuedata;
2514 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2515 return 0;
2516 }
2517
2518 return 1;
2519 }
2520
2521 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2522 struct dm_dev *dev, sector_t start,
2523 sector_t len, void *data)
2524 {
2525 struct block_device *bdev = dev->bdev;
2526 struct request_queue *q = bdev_get_queue(bdev);
2527
2528 return dm_queue_merge_is_compulsory(q);
2529 }
2530
2531 /*
2532 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2533 * on the properties of the underlying devices.
2534 */
2535 static int dm_table_merge_is_optional(struct dm_table *table)
2536 {
2537 unsigned i = 0;
2538 struct dm_target *ti;
2539
2540 while (i < dm_table_get_num_targets(table)) {
2541 ti = dm_table_get_target(table, i++);
2542
2543 if (ti->type->iterate_devices &&
2544 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2545 return 0;
2546 }
2547
2548 return 1;
2549 }
2550
2551 /*
2552 * Returns old map, which caller must destroy.
2553 */
2554 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2555 struct queue_limits *limits)
2556 {
2557 struct dm_table *old_map;
2558 struct request_queue *q = md->queue;
2559 sector_t size;
2560 int merge_is_optional;
2561
2562 size = dm_table_get_size(t);
2563
2564 /*
2565 * Wipe any geometry if the size of the table changed.
2566 */
2567 if (size != dm_get_size(md))
2568 memset(&md->geometry, 0, sizeof(md->geometry));
2569
2570 __set_size(md, size);
2571
2572 dm_table_event_callback(t, event_callback, md);
2573
2574 /*
2575 * The queue hasn't been stopped yet, if the old table type wasn't
2576 * for request-based during suspension. So stop it to prevent
2577 * I/O mapping before resume.
2578 * This must be done before setting the queue restrictions,
2579 * because request-based dm may be run just after the setting.
2580 */
2581 if (dm_table_request_based(t))
2582 stop_queue(q);
2583
2584 __bind_mempools(md, t);
2585
2586 merge_is_optional = dm_table_merge_is_optional(t);
2587
2588 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2589 rcu_assign_pointer(md->map, t);
2590 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2591
2592 dm_table_set_restrictions(t, q, limits);
2593 if (merge_is_optional)
2594 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2595 else
2596 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2597 if (old_map)
2598 dm_sync_table(md);
2599
2600 return old_map;
2601 }
2602
2603 /*
2604 * Returns unbound table for the caller to free.
2605 */
2606 static struct dm_table *__unbind(struct mapped_device *md)
2607 {
2608 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2609
2610 if (!map)
2611 return NULL;
2612
2613 dm_table_event_callback(map, NULL, NULL);
2614 RCU_INIT_POINTER(md->map, NULL);
2615 dm_sync_table(md);
2616
2617 return map;
2618 }
2619
2620 /*
2621 * Constructor for a new device.
2622 */
2623 int dm_create(int minor, struct mapped_device **result)
2624 {
2625 struct mapped_device *md;
2626
2627 md = alloc_dev(minor);
2628 if (!md)
2629 return -ENXIO;
2630
2631 dm_sysfs_init(md);
2632
2633 *result = md;
2634 return 0;
2635 }
2636
2637 /*
2638 * Functions to manage md->type.
2639 * All are required to hold md->type_lock.
2640 */
2641 void dm_lock_md_type(struct mapped_device *md)
2642 {
2643 mutex_lock(&md->type_lock);
2644 }
2645
2646 void dm_unlock_md_type(struct mapped_device *md)
2647 {
2648 mutex_unlock(&md->type_lock);
2649 }
2650
2651 void dm_set_md_type(struct mapped_device *md, unsigned type)
2652 {
2653 BUG_ON(!mutex_is_locked(&md->type_lock));
2654 md->type = type;
2655 }
2656
2657 unsigned dm_get_md_type(struct mapped_device *md)
2658 {
2659 BUG_ON(!mutex_is_locked(&md->type_lock));
2660 return md->type;
2661 }
2662
2663 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2664 {
2665 return md->immutable_target_type;
2666 }
2667
2668 /*
2669 * The queue_limits are only valid as long as you have a reference
2670 * count on 'md'.
2671 */
2672 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2673 {
2674 BUG_ON(!atomic_read(&md->holders));
2675 return &md->queue->limits;
2676 }
2677 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2678
2679 static void init_rq_based_worker_thread(struct mapped_device *md)
2680 {
2681 /* Initialize the request-based DM worker thread */
2682 init_kthread_worker(&md->kworker);
2683 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2684 "kdmwork-%s", dm_device_name(md));
2685 }
2686
2687 /*
2688 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2689 */
2690 static int dm_init_request_based_queue(struct mapped_device *md)
2691 {
2692 struct request_queue *q = NULL;
2693
2694 /* Fully initialize the queue */
2695 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2696 if (!q)
2697 return -EINVAL;
2698
2699 /* disable dm_request_fn's merge heuristic by default */
2700 md->seq_rq_merge_deadline_usecs = 0;
2701
2702 md->queue = q;
2703 dm_init_old_md_queue(md);
2704 blk_queue_softirq_done(md->queue, dm_softirq_done);
2705 blk_queue_prep_rq(md->queue, dm_prep_fn);
2706
2707 init_rq_based_worker_thread(md);
2708
2709 elv_register_queue(md->queue);
2710
2711 return 0;
2712 }
2713
2714 static int dm_mq_init_request(void *data, struct request *rq,
2715 unsigned int hctx_idx, unsigned int request_idx,
2716 unsigned int numa_node)
2717 {
2718 struct mapped_device *md = data;
2719 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2720
2721 /*
2722 * Must initialize md member of tio, otherwise it won't
2723 * be available in dm_mq_queue_rq.
2724 */
2725 tio->md = md;
2726
2727 return 0;
2728 }
2729
2730 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2731 const struct blk_mq_queue_data *bd)
2732 {
2733 struct request *rq = bd->rq;
2734 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2735 struct mapped_device *md = tio->md;
2736 int srcu_idx;
2737 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2738 struct dm_target *ti;
2739 sector_t pos;
2740
2741 /* always use block 0 to find the target for flushes for now */
2742 pos = 0;
2743 if (!(rq->cmd_flags & REQ_FLUSH))
2744 pos = blk_rq_pos(rq);
2745
2746 ti = dm_table_find_target(map, pos);
2747 if (!dm_target_is_valid(ti)) {
2748 dm_put_live_table(md, srcu_idx);
2749 DMERR_LIMIT("request attempted access beyond the end of device");
2750 /*
2751 * Must perform setup, that rq_completed() requires,
2752 * before returning BLK_MQ_RQ_QUEUE_ERROR
2753 */
2754 dm_start_request(md, rq);
2755 return BLK_MQ_RQ_QUEUE_ERROR;
2756 }
2757 dm_put_live_table(md, srcu_idx);
2758
2759 if (ti->type->busy && ti->type->busy(ti))
2760 return BLK_MQ_RQ_QUEUE_BUSY;
2761
2762 dm_start_request(md, rq);
2763
2764 /* Init tio using md established in .init_request */
2765 init_tio(tio, rq, md);
2766
2767 /*
2768 * Establish tio->ti before queuing work (map_tio_request)
2769 * or making direct call to map_request().
2770 */
2771 tio->ti = ti;
2772
2773 /* Clone the request if underlying devices aren't blk-mq */
2774 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2775 /* clone request is allocated at the end of the pdu */
2776 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2777 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2778 queue_kthread_work(&md->kworker, &tio->work);
2779 } else {
2780 /* Direct call is fine since .queue_rq allows allocations */
2781 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2782 /* Undo dm_start_request() before requeuing */
2783 rq_end_stats(md, rq);
2784 rq_completed(md, rq_data_dir(rq), false);
2785 return BLK_MQ_RQ_QUEUE_BUSY;
2786 }
2787 }
2788
2789 return BLK_MQ_RQ_QUEUE_OK;
2790 }
2791
2792 static struct blk_mq_ops dm_mq_ops = {
2793 .queue_rq = dm_mq_queue_rq,
2794 .map_queue = blk_mq_map_queue,
2795 .complete = dm_softirq_done,
2796 .init_request = dm_mq_init_request,
2797 };
2798
2799 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2800 {
2801 unsigned md_type = dm_get_md_type(md);
2802 struct request_queue *q;
2803 int err;
2804
2805 memset(&md->tag_set, 0, sizeof(md->tag_set));
2806 md->tag_set.ops = &dm_mq_ops;
2807 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2808 md->tag_set.numa_node = NUMA_NO_NODE;
2809 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2810 md->tag_set.nr_hw_queues = 1;
2811 if (md_type == DM_TYPE_REQUEST_BASED) {
2812 /* make the memory for non-blk-mq clone part of the pdu */
2813 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2814 } else
2815 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2816 md->tag_set.driver_data = md;
2817
2818 err = blk_mq_alloc_tag_set(&md->tag_set);
2819 if (err)
2820 return err;
2821
2822 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2823 if (IS_ERR(q)) {
2824 err = PTR_ERR(q);
2825 goto out_tag_set;
2826 }
2827 md->queue = q;
2828 dm_init_md_queue(md);
2829
2830 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2831 blk_mq_register_disk(md->disk);
2832
2833 if (md_type == DM_TYPE_REQUEST_BASED)
2834 init_rq_based_worker_thread(md);
2835
2836 return 0;
2837
2838 out_tag_set:
2839 blk_mq_free_tag_set(&md->tag_set);
2840 return err;
2841 }
2842
2843 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2844 {
2845 if (type == DM_TYPE_BIO_BASED)
2846 return type;
2847
2848 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2849 }
2850
2851 /*
2852 * Setup the DM device's queue based on md's type
2853 */
2854 int dm_setup_md_queue(struct mapped_device *md)
2855 {
2856 int r;
2857 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2858
2859 switch (md_type) {
2860 case DM_TYPE_REQUEST_BASED:
2861 r = dm_init_request_based_queue(md);
2862 if (r) {
2863 DMWARN("Cannot initialize queue for request-based mapped device");
2864 return r;
2865 }
2866 break;
2867 case DM_TYPE_MQ_REQUEST_BASED:
2868 r = dm_init_request_based_blk_mq_queue(md);
2869 if (r) {
2870 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2871 return r;
2872 }
2873 break;
2874 case DM_TYPE_BIO_BASED:
2875 dm_init_old_md_queue(md);
2876 blk_queue_make_request(md->queue, dm_make_request);
2877 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2878 break;
2879 }
2880
2881 return 0;
2882 }
2883
2884 struct mapped_device *dm_get_md(dev_t dev)
2885 {
2886 struct mapped_device *md;
2887 unsigned minor = MINOR(dev);
2888
2889 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2890 return NULL;
2891
2892 spin_lock(&_minor_lock);
2893
2894 md = idr_find(&_minor_idr, minor);
2895 if (md) {
2896 if ((md == MINOR_ALLOCED ||
2897 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2898 dm_deleting_md(md) ||
2899 test_bit(DMF_FREEING, &md->flags))) {
2900 md = NULL;
2901 goto out;
2902 }
2903 dm_get(md);
2904 }
2905
2906 out:
2907 spin_unlock(&_minor_lock);
2908
2909 return md;
2910 }
2911 EXPORT_SYMBOL_GPL(dm_get_md);
2912
2913 void *dm_get_mdptr(struct mapped_device *md)
2914 {
2915 return md->interface_ptr;
2916 }
2917
2918 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2919 {
2920 md->interface_ptr = ptr;
2921 }
2922
2923 void dm_get(struct mapped_device *md)
2924 {
2925 atomic_inc(&md->holders);
2926 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2927 }
2928
2929 int dm_hold(struct mapped_device *md)
2930 {
2931 spin_lock(&_minor_lock);
2932 if (test_bit(DMF_FREEING, &md->flags)) {
2933 spin_unlock(&_minor_lock);
2934 return -EBUSY;
2935 }
2936 dm_get(md);
2937 spin_unlock(&_minor_lock);
2938 return 0;
2939 }
2940 EXPORT_SYMBOL_GPL(dm_hold);
2941
2942 const char *dm_device_name(struct mapped_device *md)
2943 {
2944 return md->name;
2945 }
2946 EXPORT_SYMBOL_GPL(dm_device_name);
2947
2948 static void __dm_destroy(struct mapped_device *md, bool wait)
2949 {
2950 struct dm_table *map;
2951 int srcu_idx;
2952
2953 might_sleep();
2954
2955 map = dm_get_live_table(md, &srcu_idx);
2956
2957 spin_lock(&_minor_lock);
2958 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2959 set_bit(DMF_FREEING, &md->flags);
2960 spin_unlock(&_minor_lock);
2961
2962 if (dm_request_based(md) && md->kworker_task)
2963 flush_kthread_worker(&md->kworker);
2964
2965 /*
2966 * Take suspend_lock so that presuspend and postsuspend methods
2967 * do not race with internal suspend.
2968 */
2969 mutex_lock(&md->suspend_lock);
2970 if (!dm_suspended_md(md)) {
2971 dm_table_presuspend_targets(map);
2972 dm_table_postsuspend_targets(map);
2973 }
2974 mutex_unlock(&md->suspend_lock);
2975
2976 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2977 dm_put_live_table(md, srcu_idx);
2978
2979 /*
2980 * Rare, but there may be I/O requests still going to complete,
2981 * for example. Wait for all references to disappear.
2982 * No one should increment the reference count of the mapped_device,
2983 * after the mapped_device state becomes DMF_FREEING.
2984 */
2985 if (wait)
2986 while (atomic_read(&md->holders))
2987 msleep(1);
2988 else if (atomic_read(&md->holders))
2989 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2990 dm_device_name(md), atomic_read(&md->holders));
2991
2992 dm_sysfs_exit(md);
2993 dm_table_destroy(__unbind(md));
2994 free_dev(md);
2995 }
2996
2997 void dm_destroy(struct mapped_device *md)
2998 {
2999 __dm_destroy(md, true);
3000 }
3001
3002 void dm_destroy_immediate(struct mapped_device *md)
3003 {
3004 __dm_destroy(md, false);
3005 }
3006
3007 void dm_put(struct mapped_device *md)
3008 {
3009 atomic_dec(&md->holders);
3010 }
3011 EXPORT_SYMBOL_GPL(dm_put);
3012
3013 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
3014 {
3015 int r = 0;
3016 DECLARE_WAITQUEUE(wait, current);
3017
3018 add_wait_queue(&md->wait, &wait);
3019
3020 while (1) {
3021 set_current_state(interruptible);
3022
3023 if (!md_in_flight(md))
3024 break;
3025
3026 if (interruptible == TASK_INTERRUPTIBLE &&
3027 signal_pending(current)) {
3028 r = -EINTR;
3029 break;
3030 }
3031
3032 io_schedule();
3033 }
3034 set_current_state(TASK_RUNNING);
3035
3036 remove_wait_queue(&md->wait, &wait);
3037
3038 return r;
3039 }
3040
3041 /*
3042 * Process the deferred bios
3043 */
3044 static void dm_wq_work(struct work_struct *work)
3045 {
3046 struct mapped_device *md = container_of(work, struct mapped_device,
3047 work);
3048 struct bio *c;
3049 int srcu_idx;
3050 struct dm_table *map;
3051
3052 map = dm_get_live_table(md, &srcu_idx);
3053
3054 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3055 spin_lock_irq(&md->deferred_lock);
3056 c = bio_list_pop(&md->deferred);
3057 spin_unlock_irq(&md->deferred_lock);
3058
3059 if (!c)
3060 break;
3061
3062 if (dm_request_based(md))
3063 generic_make_request(c);
3064 else
3065 __split_and_process_bio(md, map, c);
3066 }
3067
3068 dm_put_live_table(md, srcu_idx);
3069 }
3070
3071 static void dm_queue_flush(struct mapped_device *md)
3072 {
3073 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3074 smp_mb__after_atomic();
3075 queue_work(md->wq, &md->work);
3076 }
3077
3078 /*
3079 * Swap in a new table, returning the old one for the caller to destroy.
3080 */
3081 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3082 {
3083 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3084 struct queue_limits limits;
3085 int r;
3086
3087 mutex_lock(&md->suspend_lock);
3088
3089 /* device must be suspended */
3090 if (!dm_suspended_md(md))
3091 goto out;
3092
3093 /*
3094 * If the new table has no data devices, retain the existing limits.
3095 * This helps multipath with queue_if_no_path if all paths disappear,
3096 * then new I/O is queued based on these limits, and then some paths
3097 * reappear.
3098 */
3099 if (dm_table_has_no_data_devices(table)) {
3100 live_map = dm_get_live_table_fast(md);
3101 if (live_map)
3102 limits = md->queue->limits;
3103 dm_put_live_table_fast(md);
3104 }
3105
3106 if (!live_map) {
3107 r = dm_calculate_queue_limits(table, &limits);
3108 if (r) {
3109 map = ERR_PTR(r);
3110 goto out;
3111 }
3112 }
3113
3114 map = __bind(md, table, &limits);
3115
3116 out:
3117 mutex_unlock(&md->suspend_lock);
3118 return map;
3119 }
3120
3121 /*
3122 * Functions to lock and unlock any filesystem running on the
3123 * device.
3124 */
3125 static int lock_fs(struct mapped_device *md)
3126 {
3127 int r;
3128
3129 WARN_ON(md->frozen_sb);
3130
3131 md->frozen_sb = freeze_bdev(md->bdev);
3132 if (IS_ERR(md->frozen_sb)) {
3133 r = PTR_ERR(md->frozen_sb);
3134 md->frozen_sb = NULL;
3135 return r;
3136 }
3137
3138 set_bit(DMF_FROZEN, &md->flags);
3139
3140 return 0;
3141 }
3142
3143 static void unlock_fs(struct mapped_device *md)
3144 {
3145 if (!test_bit(DMF_FROZEN, &md->flags))
3146 return;
3147
3148 thaw_bdev(md->bdev, md->frozen_sb);
3149 md->frozen_sb = NULL;
3150 clear_bit(DMF_FROZEN, &md->flags);
3151 }
3152
3153 /*
3154 * If __dm_suspend returns 0, the device is completely quiescent
3155 * now. There is no request-processing activity. All new requests
3156 * are being added to md->deferred list.
3157 *
3158 * Caller must hold md->suspend_lock
3159 */
3160 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3161 unsigned suspend_flags, int interruptible)
3162 {
3163 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3164 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3165 int r;
3166
3167 /*
3168 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3169 * This flag is cleared before dm_suspend returns.
3170 */
3171 if (noflush)
3172 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3173
3174 /*
3175 * This gets reverted if there's an error later and the targets
3176 * provide the .presuspend_undo hook.
3177 */
3178 dm_table_presuspend_targets(map);
3179
3180 /*
3181 * Flush I/O to the device.
3182 * Any I/O submitted after lock_fs() may not be flushed.
3183 * noflush takes precedence over do_lockfs.
3184 * (lock_fs() flushes I/Os and waits for them to complete.)
3185 */
3186 if (!noflush && do_lockfs) {
3187 r = lock_fs(md);
3188 if (r) {
3189 dm_table_presuspend_undo_targets(map);
3190 return r;
3191 }
3192 }
3193
3194 /*
3195 * Here we must make sure that no processes are submitting requests
3196 * to target drivers i.e. no one may be executing
3197 * __split_and_process_bio. This is called from dm_request and
3198 * dm_wq_work.
3199 *
3200 * To get all processes out of __split_and_process_bio in dm_request,
3201 * we take the write lock. To prevent any process from reentering
3202 * __split_and_process_bio from dm_request and quiesce the thread
3203 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3204 * flush_workqueue(md->wq).
3205 */
3206 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3207 if (map)
3208 synchronize_srcu(&md->io_barrier);
3209
3210 /*
3211 * Stop md->queue before flushing md->wq in case request-based
3212 * dm defers requests to md->wq from md->queue.
3213 */
3214 if (dm_request_based(md)) {
3215 stop_queue(md->queue);
3216 if (md->kworker_task)
3217 flush_kthread_worker(&md->kworker);
3218 }
3219
3220 flush_workqueue(md->wq);
3221
3222 /*
3223 * At this point no more requests are entering target request routines.
3224 * We call dm_wait_for_completion to wait for all existing requests
3225 * to finish.
3226 */
3227 r = dm_wait_for_completion(md, interruptible);
3228
3229 if (noflush)
3230 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3231 if (map)
3232 synchronize_srcu(&md->io_barrier);
3233
3234 /* were we interrupted ? */
3235 if (r < 0) {
3236 dm_queue_flush(md);
3237
3238 if (dm_request_based(md))
3239 start_queue(md->queue);
3240
3241 unlock_fs(md);
3242 dm_table_presuspend_undo_targets(map);
3243 /* pushback list is already flushed, so skip flush */
3244 }
3245
3246 return r;
3247 }
3248
3249 /*
3250 * We need to be able to change a mapping table under a mounted
3251 * filesystem. For example we might want to move some data in
3252 * the background. Before the table can be swapped with
3253 * dm_bind_table, dm_suspend must be called to flush any in
3254 * flight bios and ensure that any further io gets deferred.
3255 */
3256 /*
3257 * Suspend mechanism in request-based dm.
3258 *
3259 * 1. Flush all I/Os by lock_fs() if needed.
3260 * 2. Stop dispatching any I/O by stopping the request_queue.
3261 * 3. Wait for all in-flight I/Os to be completed or requeued.
3262 *
3263 * To abort suspend, start the request_queue.
3264 */
3265 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3266 {
3267 struct dm_table *map = NULL;
3268 int r = 0;
3269
3270 retry:
3271 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3272
3273 if (dm_suspended_md(md)) {
3274 r = -EINVAL;
3275 goto out_unlock;
3276 }
3277
3278 if (dm_suspended_internally_md(md)) {
3279 /* already internally suspended, wait for internal resume */
3280 mutex_unlock(&md->suspend_lock);
3281 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3282 if (r)
3283 return r;
3284 goto retry;
3285 }
3286
3287 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3288
3289 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3290 if (r)
3291 goto out_unlock;
3292
3293 set_bit(DMF_SUSPENDED, &md->flags);
3294
3295 dm_table_postsuspend_targets(map);
3296
3297 out_unlock:
3298 mutex_unlock(&md->suspend_lock);
3299 return r;
3300 }
3301
3302 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3303 {
3304 if (map) {
3305 int r = dm_table_resume_targets(map);
3306 if (r)
3307 return r;
3308 }
3309
3310 dm_queue_flush(md);
3311
3312 /*
3313 * Flushing deferred I/Os must be done after targets are resumed
3314 * so that mapping of targets can work correctly.
3315 * Request-based dm is queueing the deferred I/Os in its request_queue.
3316 */
3317 if (dm_request_based(md))
3318 start_queue(md->queue);
3319
3320 unlock_fs(md);
3321
3322 return 0;
3323 }
3324
3325 int dm_resume(struct mapped_device *md)
3326 {
3327 int r = -EINVAL;
3328 struct dm_table *map = NULL;
3329
3330 retry:
3331 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3332
3333 if (!dm_suspended_md(md))
3334 goto out;
3335
3336 if (dm_suspended_internally_md(md)) {
3337 /* already internally suspended, wait for internal resume */
3338 mutex_unlock(&md->suspend_lock);
3339 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3340 if (r)
3341 return r;
3342 goto retry;
3343 }
3344
3345 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3346 if (!map || !dm_table_get_size(map))
3347 goto out;
3348
3349 r = __dm_resume(md, map);
3350 if (r)
3351 goto out;
3352
3353 clear_bit(DMF_SUSPENDED, &md->flags);
3354
3355 r = 0;
3356 out:
3357 mutex_unlock(&md->suspend_lock);
3358
3359 return r;
3360 }
3361
3362 /*
3363 * Internal suspend/resume works like userspace-driven suspend. It waits
3364 * until all bios finish and prevents issuing new bios to the target drivers.
3365 * It may be used only from the kernel.
3366 */
3367
3368 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3369 {
3370 struct dm_table *map = NULL;
3371
3372 if (md->internal_suspend_count++)
3373 return; /* nested internal suspend */
3374
3375 if (dm_suspended_md(md)) {
3376 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3377 return; /* nest suspend */
3378 }
3379
3380 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3381
3382 /*
3383 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3384 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3385 * would require changing .presuspend to return an error -- avoid this
3386 * until there is a need for more elaborate variants of internal suspend.
3387 */
3388 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3389
3390 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3391
3392 dm_table_postsuspend_targets(map);
3393 }
3394
3395 static void __dm_internal_resume(struct mapped_device *md)
3396 {
3397 BUG_ON(!md->internal_suspend_count);
3398
3399 if (--md->internal_suspend_count)
3400 return; /* resume from nested internal suspend */
3401
3402 if (dm_suspended_md(md))
3403 goto done; /* resume from nested suspend */
3404
3405 /*
3406 * NOTE: existing callers don't need to call dm_table_resume_targets
3407 * (which may fail -- so best to avoid it for now by passing NULL map)
3408 */
3409 (void) __dm_resume(md, NULL);
3410
3411 done:
3412 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3413 smp_mb__after_atomic();
3414 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3415 }
3416
3417 void dm_internal_suspend_noflush(struct mapped_device *md)
3418 {
3419 mutex_lock(&md->suspend_lock);
3420 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3421 mutex_unlock(&md->suspend_lock);
3422 }
3423 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3424
3425 void dm_internal_resume(struct mapped_device *md)
3426 {
3427 mutex_lock(&md->suspend_lock);
3428 __dm_internal_resume(md);
3429 mutex_unlock(&md->suspend_lock);
3430 }
3431 EXPORT_SYMBOL_GPL(dm_internal_resume);
3432
3433 /*
3434 * Fast variants of internal suspend/resume hold md->suspend_lock,
3435 * which prevents interaction with userspace-driven suspend.
3436 */
3437
3438 void dm_internal_suspend_fast(struct mapped_device *md)
3439 {
3440 mutex_lock(&md->suspend_lock);
3441 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3442 return;
3443
3444 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3445 synchronize_srcu(&md->io_barrier);
3446 flush_workqueue(md->wq);
3447 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3448 }
3449 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3450
3451 void dm_internal_resume_fast(struct mapped_device *md)
3452 {
3453 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3454 goto done;
3455
3456 dm_queue_flush(md);
3457
3458 done:
3459 mutex_unlock(&md->suspend_lock);
3460 }
3461 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3462
3463 /*-----------------------------------------------------------------
3464 * Event notification.
3465 *---------------------------------------------------------------*/
3466 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3467 unsigned cookie)
3468 {
3469 char udev_cookie[DM_COOKIE_LENGTH];
3470 char *envp[] = { udev_cookie, NULL };
3471
3472 if (!cookie)
3473 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3474 else {
3475 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3476 DM_COOKIE_ENV_VAR_NAME, cookie);
3477 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3478 action, envp);
3479 }
3480 }
3481
3482 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3483 {
3484 return atomic_add_return(1, &md->uevent_seq);
3485 }
3486
3487 uint32_t dm_get_event_nr(struct mapped_device *md)
3488 {
3489 return atomic_read(&md->event_nr);
3490 }
3491
3492 int dm_wait_event(struct mapped_device *md, int event_nr)
3493 {
3494 return wait_event_interruptible(md->eventq,
3495 (event_nr != atomic_read(&md->event_nr)));
3496 }
3497
3498 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3499 {
3500 unsigned long flags;
3501
3502 spin_lock_irqsave(&md->uevent_lock, flags);
3503 list_add(elist, &md->uevent_list);
3504 spin_unlock_irqrestore(&md->uevent_lock, flags);
3505 }
3506
3507 /*
3508 * The gendisk is only valid as long as you have a reference
3509 * count on 'md'.
3510 */
3511 struct gendisk *dm_disk(struct mapped_device *md)
3512 {
3513 return md->disk;
3514 }
3515 EXPORT_SYMBOL_GPL(dm_disk);
3516
3517 struct kobject *dm_kobject(struct mapped_device *md)
3518 {
3519 return &md->kobj_holder.kobj;
3520 }
3521
3522 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3523 {
3524 struct mapped_device *md;
3525
3526 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3527
3528 if (test_bit(DMF_FREEING, &md->flags) ||
3529 dm_deleting_md(md))
3530 return NULL;
3531
3532 dm_get(md);
3533 return md;
3534 }
3535
3536 int dm_suspended_md(struct mapped_device *md)
3537 {
3538 return test_bit(DMF_SUSPENDED, &md->flags);
3539 }
3540
3541 int dm_suspended_internally_md(struct mapped_device *md)
3542 {
3543 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3544 }
3545
3546 int dm_test_deferred_remove_flag(struct mapped_device *md)
3547 {
3548 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3549 }
3550
3551 int dm_suspended(struct dm_target *ti)
3552 {
3553 return dm_suspended_md(dm_table_get_md(ti->table));
3554 }
3555 EXPORT_SYMBOL_GPL(dm_suspended);
3556
3557 int dm_noflush_suspending(struct dm_target *ti)
3558 {
3559 return __noflush_suspending(dm_table_get_md(ti->table));
3560 }
3561 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3562
3563 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3564 unsigned integrity, unsigned per_bio_data_size)
3565 {
3566 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3567 struct kmem_cache *cachep = NULL;
3568 unsigned int pool_size = 0;
3569 unsigned int front_pad;
3570
3571 if (!pools)
3572 return NULL;
3573
3574 type = filter_md_type(type, md);
3575
3576 switch (type) {
3577 case DM_TYPE_BIO_BASED:
3578 cachep = _io_cache;
3579 pool_size = dm_get_reserved_bio_based_ios();
3580 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3581 break;
3582 case DM_TYPE_REQUEST_BASED:
3583 cachep = _rq_tio_cache;
3584 pool_size = dm_get_reserved_rq_based_ios();
3585 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3586 if (!pools->rq_pool)
3587 goto out;
3588 /* fall through to setup remaining rq-based pools */
3589 case DM_TYPE_MQ_REQUEST_BASED:
3590 if (!pool_size)
3591 pool_size = dm_get_reserved_rq_based_ios();
3592 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3593 /* per_bio_data_size is not used. See __bind_mempools(). */
3594 WARN_ON(per_bio_data_size != 0);
3595 break;
3596 default:
3597 BUG();
3598 }
3599
3600 if (cachep) {
3601 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3602 if (!pools->io_pool)
3603 goto out;
3604 }
3605
3606 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3607 if (!pools->bs)
3608 goto out;
3609
3610 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3611 goto out;
3612
3613 return pools;
3614
3615 out:
3616 dm_free_md_mempools(pools);
3617
3618 return NULL;
3619 }
3620
3621 void dm_free_md_mempools(struct dm_md_mempools *pools)
3622 {
3623 if (!pools)
3624 return;
3625
3626 if (pools->io_pool)
3627 mempool_destroy(pools->io_pool);
3628
3629 if (pools->rq_pool)
3630 mempool_destroy(pools->rq_pool);
3631
3632 if (pools->bs)
3633 bioset_free(pools->bs);
3634
3635 kfree(pools);
3636 }
3637
3638 static const struct block_device_operations dm_blk_dops = {
3639 .open = dm_blk_open,
3640 .release = dm_blk_close,
3641 .ioctl = dm_blk_ioctl,
3642 .getgeo = dm_blk_getgeo,
3643 .owner = THIS_MODULE
3644 };
3645
3646 /*
3647 * module hooks
3648 */
3649 module_init(dm_init);
3650 module_exit(dm_exit);
3651
3652 module_param(major, uint, 0);
3653 MODULE_PARM_DESC(major, "The major number of the device mapper");
3654
3655 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3656 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3657
3658 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3659 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3660
3661 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3662 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3663
3664 MODULE_DESCRIPTION(DM_NAME " driver");
3665 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3666 MODULE_LICENSE("GPL");