]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm.c
dm: implement REQ_FLUSH/FUA support for bio-based dm
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/smp_lock.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
24
25 #include <trace/events/block.h>
26
27 #define DM_MSG_PREFIX "core"
28
29 /*
30 * Cookies are numeric values sent with CHANGE and REMOVE
31 * uevents while resuming, removing or renaming the device.
32 */
33 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
34 #define DM_COOKIE_LENGTH 24
35
36 static const char *_name = DM_NAME;
37
38 static unsigned int major = 0;
39 static unsigned int _major = 0;
40
41 static DEFINE_SPINLOCK(_minor_lock);
42 /*
43 * For bio-based dm.
44 * One of these is allocated per bio.
45 */
46 struct dm_io {
47 struct mapped_device *md;
48 int error;
49 atomic_t io_count;
50 struct bio *bio;
51 unsigned long start_time;
52 spinlock_t endio_lock;
53 };
54
55 /*
56 * For bio-based dm.
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
59 */
60 struct dm_target_io {
61 struct dm_io *io;
62 struct dm_target *ti;
63 union map_info info;
64 };
65
66 /*
67 * For request-based dm.
68 * One of these is allocated per request.
69 */
70 struct dm_rq_target_io {
71 struct mapped_device *md;
72 struct dm_target *ti;
73 struct request *orig, clone;
74 int error;
75 union map_info info;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per bio.
81 */
82 struct dm_rq_clone_bio_info {
83 struct bio *orig;
84 struct dm_rq_target_io *tio;
85 };
86
87 union map_info *dm_get_mapinfo(struct bio *bio)
88 {
89 if (bio && bio->bi_private)
90 return &((struct dm_target_io *)bio->bi_private)->info;
91 return NULL;
92 }
93
94 union map_info *dm_get_rq_mapinfo(struct request *rq)
95 {
96 if (rq && rq->end_io_data)
97 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
98 return NULL;
99 }
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
101
102 #define MINOR_ALLOCED ((void *)-1)
103
104 /*
105 * Bits for the md->flags field.
106 */
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
109 #define DMF_FROZEN 2
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
113 #define DMF_QUEUE_IO_TO_THREAD 6
114
115 /*
116 * Work processed by per-device workqueue.
117 */
118 struct mapped_device {
119 struct rw_semaphore io_lock;
120 struct mutex suspend_lock;
121 rwlock_t map_lock;
122 atomic_t holders;
123 atomic_t open_count;
124
125 unsigned long flags;
126
127 struct request_queue *queue;
128 unsigned type;
129 /* Protect queue and type against concurrent access. */
130 struct mutex type_lock;
131
132 struct gendisk *disk;
133 char name[16];
134
135 void *interface_ptr;
136
137 /*
138 * A list of ios that arrived while we were suspended.
139 */
140 atomic_t pending[2];
141 wait_queue_head_t wait;
142 struct work_struct work;
143 struct bio_list deferred;
144 spinlock_t deferred_lock;
145
146 /*
147 * An error from the flush request currently being processed.
148 */
149 int flush_error;
150
151 /*
152 * Protect barrier_error from concurrent endio processing
153 * in request-based dm.
154 */
155 spinlock_t barrier_error_lock;
156 int barrier_error;
157
158 /*
159 * Processing queue (flush/barriers)
160 */
161 struct workqueue_struct *wq;
162 struct work_struct barrier_work;
163
164 /* A pointer to the currently processing pre/post flush request */
165 struct request *flush_request;
166
167 /*
168 * The current mapping.
169 */
170 struct dm_table *map;
171
172 /*
173 * io objects are allocated from here.
174 */
175 mempool_t *io_pool;
176 mempool_t *tio_pool;
177
178 struct bio_set *bs;
179
180 /*
181 * Event handling.
182 */
183 atomic_t event_nr;
184 wait_queue_head_t eventq;
185 atomic_t uevent_seq;
186 struct list_head uevent_list;
187 spinlock_t uevent_lock; /* Protect access to uevent_list */
188
189 /*
190 * freeze/thaw support require holding onto a super block
191 */
192 struct super_block *frozen_sb;
193 struct block_device *bdev;
194
195 /* forced geometry settings */
196 struct hd_geometry geometry;
197
198 /* For saving the address of __make_request for request based dm */
199 make_request_fn *saved_make_request_fn;
200
201 /* sysfs handle */
202 struct kobject kobj;
203
204 /* zero-length flush that will be cloned and submitted to targets */
205 struct bio flush_bio;
206 };
207
208 /*
209 * For mempools pre-allocation at the table loading time.
210 */
211 struct dm_md_mempools {
212 mempool_t *io_pool;
213 mempool_t *tio_pool;
214 struct bio_set *bs;
215 };
216
217 #define MIN_IOS 256
218 static struct kmem_cache *_io_cache;
219 static struct kmem_cache *_tio_cache;
220 static struct kmem_cache *_rq_tio_cache;
221 static struct kmem_cache *_rq_bio_info_cache;
222
223 static int __init local_init(void)
224 {
225 int r = -ENOMEM;
226
227 /* allocate a slab for the dm_ios */
228 _io_cache = KMEM_CACHE(dm_io, 0);
229 if (!_io_cache)
230 return r;
231
232 /* allocate a slab for the target ios */
233 _tio_cache = KMEM_CACHE(dm_target_io, 0);
234 if (!_tio_cache)
235 goto out_free_io_cache;
236
237 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
238 if (!_rq_tio_cache)
239 goto out_free_tio_cache;
240
241 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
242 if (!_rq_bio_info_cache)
243 goto out_free_rq_tio_cache;
244
245 r = dm_uevent_init();
246 if (r)
247 goto out_free_rq_bio_info_cache;
248
249 _major = major;
250 r = register_blkdev(_major, _name);
251 if (r < 0)
252 goto out_uevent_exit;
253
254 if (!_major)
255 _major = r;
256
257 return 0;
258
259 out_uevent_exit:
260 dm_uevent_exit();
261 out_free_rq_bio_info_cache:
262 kmem_cache_destroy(_rq_bio_info_cache);
263 out_free_rq_tio_cache:
264 kmem_cache_destroy(_rq_tio_cache);
265 out_free_tio_cache:
266 kmem_cache_destroy(_tio_cache);
267 out_free_io_cache:
268 kmem_cache_destroy(_io_cache);
269
270 return r;
271 }
272
273 static void local_exit(void)
274 {
275 kmem_cache_destroy(_rq_bio_info_cache);
276 kmem_cache_destroy(_rq_tio_cache);
277 kmem_cache_destroy(_tio_cache);
278 kmem_cache_destroy(_io_cache);
279 unregister_blkdev(_major, _name);
280 dm_uevent_exit();
281
282 _major = 0;
283
284 DMINFO("cleaned up");
285 }
286
287 static int (*_inits[])(void) __initdata = {
288 local_init,
289 dm_target_init,
290 dm_linear_init,
291 dm_stripe_init,
292 dm_io_init,
293 dm_kcopyd_init,
294 dm_interface_init,
295 };
296
297 static void (*_exits[])(void) = {
298 local_exit,
299 dm_target_exit,
300 dm_linear_exit,
301 dm_stripe_exit,
302 dm_io_exit,
303 dm_kcopyd_exit,
304 dm_interface_exit,
305 };
306
307 static int __init dm_init(void)
308 {
309 const int count = ARRAY_SIZE(_inits);
310
311 int r, i;
312
313 for (i = 0; i < count; i++) {
314 r = _inits[i]();
315 if (r)
316 goto bad;
317 }
318
319 return 0;
320
321 bad:
322 while (i--)
323 _exits[i]();
324
325 return r;
326 }
327
328 static void __exit dm_exit(void)
329 {
330 int i = ARRAY_SIZE(_exits);
331
332 while (i--)
333 _exits[i]();
334 }
335
336 /*
337 * Block device functions
338 */
339 int dm_deleting_md(struct mapped_device *md)
340 {
341 return test_bit(DMF_DELETING, &md->flags);
342 }
343
344 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
345 {
346 struct mapped_device *md;
347
348 lock_kernel();
349 spin_lock(&_minor_lock);
350
351 md = bdev->bd_disk->private_data;
352 if (!md)
353 goto out;
354
355 if (test_bit(DMF_FREEING, &md->flags) ||
356 dm_deleting_md(md)) {
357 md = NULL;
358 goto out;
359 }
360
361 dm_get(md);
362 atomic_inc(&md->open_count);
363
364 out:
365 spin_unlock(&_minor_lock);
366 unlock_kernel();
367
368 return md ? 0 : -ENXIO;
369 }
370
371 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 struct mapped_device *md = disk->private_data;
374
375 lock_kernel();
376 atomic_dec(&md->open_count);
377 dm_put(md);
378 unlock_kernel();
379
380 return 0;
381 }
382
383 int dm_open_count(struct mapped_device *md)
384 {
385 return atomic_read(&md->open_count);
386 }
387
388 /*
389 * Guarantees nothing is using the device before it's deleted.
390 */
391 int dm_lock_for_deletion(struct mapped_device *md)
392 {
393 int r = 0;
394
395 spin_lock(&_minor_lock);
396
397 if (dm_open_count(md))
398 r = -EBUSY;
399 else
400 set_bit(DMF_DELETING, &md->flags);
401
402 spin_unlock(&_minor_lock);
403
404 return r;
405 }
406
407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 {
409 struct mapped_device *md = bdev->bd_disk->private_data;
410
411 return dm_get_geometry(md, geo);
412 }
413
414 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
415 unsigned int cmd, unsigned long arg)
416 {
417 struct mapped_device *md = bdev->bd_disk->private_data;
418 struct dm_table *map = dm_get_live_table(md);
419 struct dm_target *tgt;
420 int r = -ENOTTY;
421
422 if (!map || !dm_table_get_size(map))
423 goto out;
424
425 /* We only support devices that have a single target */
426 if (dm_table_get_num_targets(map) != 1)
427 goto out;
428
429 tgt = dm_table_get_target(map, 0);
430
431 if (dm_suspended_md(md)) {
432 r = -EAGAIN;
433 goto out;
434 }
435
436 if (tgt->type->ioctl)
437 r = tgt->type->ioctl(tgt, cmd, arg);
438
439 out:
440 dm_table_put(map);
441
442 return r;
443 }
444
445 static struct dm_io *alloc_io(struct mapped_device *md)
446 {
447 return mempool_alloc(md->io_pool, GFP_NOIO);
448 }
449
450 static void free_io(struct mapped_device *md, struct dm_io *io)
451 {
452 mempool_free(io, md->io_pool);
453 }
454
455 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
456 {
457 mempool_free(tio, md->tio_pool);
458 }
459
460 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
461 gfp_t gfp_mask)
462 {
463 return mempool_alloc(md->tio_pool, gfp_mask);
464 }
465
466 static void free_rq_tio(struct dm_rq_target_io *tio)
467 {
468 mempool_free(tio, tio->md->tio_pool);
469 }
470
471 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
472 {
473 return mempool_alloc(md->io_pool, GFP_ATOMIC);
474 }
475
476 static void free_bio_info(struct dm_rq_clone_bio_info *info)
477 {
478 mempool_free(info, info->tio->md->io_pool);
479 }
480
481 static int md_in_flight(struct mapped_device *md)
482 {
483 return atomic_read(&md->pending[READ]) +
484 atomic_read(&md->pending[WRITE]);
485 }
486
487 static void start_io_acct(struct dm_io *io)
488 {
489 struct mapped_device *md = io->md;
490 int cpu;
491 int rw = bio_data_dir(io->bio);
492
493 io->start_time = jiffies;
494
495 cpu = part_stat_lock();
496 part_round_stats(cpu, &dm_disk(md)->part0);
497 part_stat_unlock();
498 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
499 }
500
501 static void end_io_acct(struct dm_io *io)
502 {
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 /*
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
517 */
518 dm_disk(md)->part0.in_flight[rw] = pending =
519 atomic_dec_return(&md->pending[rw]);
520 pending += atomic_read(&md->pending[rw^0x1]);
521
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
525 }
526
527 /*
528 * Add the bio to the list of deferred io.
529 */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 down_write(&md->io_lock);
533
534 spin_lock_irq(&md->deferred_lock);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irq(&md->deferred_lock);
537
538 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
539 queue_work(md->wq, &md->work);
540
541 up_write(&md->io_lock);
542 }
543
544 /*
545 * Everyone (including functions in this file), should use this
546 * function to access the md->map field, and make sure they call
547 * dm_table_put() when finished.
548 */
549 struct dm_table *dm_get_live_table(struct mapped_device *md)
550 {
551 struct dm_table *t;
552 unsigned long flags;
553
554 read_lock_irqsave(&md->map_lock, flags);
555 t = md->map;
556 if (t)
557 dm_table_get(t);
558 read_unlock_irqrestore(&md->map_lock, flags);
559
560 return t;
561 }
562
563 /*
564 * Get the geometry associated with a dm device
565 */
566 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
567 {
568 *geo = md->geometry;
569
570 return 0;
571 }
572
573 /*
574 * Set the geometry of a device.
575 */
576 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
577 {
578 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
579
580 if (geo->start > sz) {
581 DMWARN("Start sector is beyond the geometry limits.");
582 return -EINVAL;
583 }
584
585 md->geometry = *geo;
586
587 return 0;
588 }
589
590 /*-----------------------------------------------------------------
591 * CRUD START:
592 * A more elegant soln is in the works that uses the queue
593 * merge fn, unfortunately there are a couple of changes to
594 * the block layer that I want to make for this. So in the
595 * interests of getting something for people to use I give
596 * you this clearly demarcated crap.
597 *---------------------------------------------------------------*/
598
599 static int __noflush_suspending(struct mapped_device *md)
600 {
601 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
602 }
603
604 /*
605 * Decrements the number of outstanding ios that a bio has been
606 * cloned into, completing the original io if necc.
607 */
608 static void dec_pending(struct dm_io *io, int error)
609 {
610 unsigned long flags;
611 int io_error;
612 struct bio *bio;
613 struct mapped_device *md = io->md;
614
615 /* Push-back supersedes any I/O errors */
616 if (unlikely(error)) {
617 spin_lock_irqsave(&io->endio_lock, flags);
618 if (!(io->error > 0 && __noflush_suspending(md)))
619 io->error = error;
620 spin_unlock_irqrestore(&io->endio_lock, flags);
621 }
622
623 if (atomic_dec_and_test(&io->io_count)) {
624 if (io->error == DM_ENDIO_REQUEUE) {
625 /*
626 * Target requested pushing back the I/O.
627 */
628 spin_lock_irqsave(&md->deferred_lock, flags);
629 if (__noflush_suspending(md)) {
630 if (!(io->bio->bi_rw & REQ_FLUSH))
631 bio_list_add_head(&md->deferred,
632 io->bio);
633 } else
634 /* noflush suspend was interrupted. */
635 io->error = -EIO;
636 spin_unlock_irqrestore(&md->deferred_lock, flags);
637 }
638
639 io_error = io->error;
640 bio = io->bio;
641
642 if (bio->bi_rw & REQ_FLUSH) {
643 /*
644 * There can be just one flush request so we use
645 * a per-device variable for error reporting.
646 * Note that you can't touch the bio after end_io_acct
647 */
648 if (!md->flush_error)
649 md->flush_error = io_error;
650 end_io_acct(io);
651 free_io(md, io);
652 } else {
653 end_io_acct(io);
654 free_io(md, io);
655
656 if (io_error != DM_ENDIO_REQUEUE) {
657 trace_block_bio_complete(md->queue, bio);
658
659 bio_endio(bio, io_error);
660 }
661 }
662 }
663 }
664
665 static void clone_endio(struct bio *bio, int error)
666 {
667 int r = 0;
668 struct dm_target_io *tio = bio->bi_private;
669 struct dm_io *io = tio->io;
670 struct mapped_device *md = tio->io->md;
671 dm_endio_fn endio = tio->ti->type->end_io;
672
673 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
674 error = -EIO;
675
676 if (endio) {
677 r = endio(tio->ti, bio, error, &tio->info);
678 if (r < 0 || r == DM_ENDIO_REQUEUE)
679 /*
680 * error and requeue request are handled
681 * in dec_pending().
682 */
683 error = r;
684 else if (r == DM_ENDIO_INCOMPLETE)
685 /* The target will handle the io */
686 return;
687 else if (r) {
688 DMWARN("unimplemented target endio return value: %d", r);
689 BUG();
690 }
691 }
692
693 /*
694 * Store md for cleanup instead of tio which is about to get freed.
695 */
696 bio->bi_private = md->bs;
697
698 free_tio(md, tio);
699 bio_put(bio);
700 dec_pending(io, error);
701 }
702
703 /*
704 * Partial completion handling for request-based dm
705 */
706 static void end_clone_bio(struct bio *clone, int error)
707 {
708 struct dm_rq_clone_bio_info *info = clone->bi_private;
709 struct dm_rq_target_io *tio = info->tio;
710 struct bio *bio = info->orig;
711 unsigned int nr_bytes = info->orig->bi_size;
712
713 bio_put(clone);
714
715 if (tio->error)
716 /*
717 * An error has already been detected on the request.
718 * Once error occurred, just let clone->end_io() handle
719 * the remainder.
720 */
721 return;
722 else if (error) {
723 /*
724 * Don't notice the error to the upper layer yet.
725 * The error handling decision is made by the target driver,
726 * when the request is completed.
727 */
728 tio->error = error;
729 return;
730 }
731
732 /*
733 * I/O for the bio successfully completed.
734 * Notice the data completion to the upper layer.
735 */
736
737 /*
738 * bios are processed from the head of the list.
739 * So the completing bio should always be rq->bio.
740 * If it's not, something wrong is happening.
741 */
742 if (tio->orig->bio != bio)
743 DMERR("bio completion is going in the middle of the request");
744
745 /*
746 * Update the original request.
747 * Do not use blk_end_request() here, because it may complete
748 * the original request before the clone, and break the ordering.
749 */
750 blk_update_request(tio->orig, 0, nr_bytes);
751 }
752
753 static void store_barrier_error(struct mapped_device *md, int error)
754 {
755 unsigned long flags;
756
757 spin_lock_irqsave(&md->barrier_error_lock, flags);
758 /*
759 * Basically, the first error is taken, but:
760 * -EOPNOTSUPP supersedes any I/O error.
761 * Requeue request supersedes any I/O error but -EOPNOTSUPP.
762 */
763 if (!md->barrier_error || error == -EOPNOTSUPP ||
764 (md->barrier_error != -EOPNOTSUPP &&
765 error == DM_ENDIO_REQUEUE))
766 md->barrier_error = error;
767 spin_unlock_irqrestore(&md->barrier_error_lock, flags);
768 }
769
770 /*
771 * Don't touch any member of the md after calling this function because
772 * the md may be freed in dm_put() at the end of this function.
773 * Or do dm_get() before calling this function and dm_put() later.
774 */
775 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
776 {
777 atomic_dec(&md->pending[rw]);
778
779 /* nudge anyone waiting on suspend queue */
780 if (!md_in_flight(md))
781 wake_up(&md->wait);
782
783 if (run_queue)
784 blk_run_queue(md->queue);
785
786 /*
787 * dm_put() must be at the end of this function. See the comment above
788 */
789 dm_put(md);
790 }
791
792 static void free_rq_clone(struct request *clone)
793 {
794 struct dm_rq_target_io *tio = clone->end_io_data;
795
796 blk_rq_unprep_clone(clone);
797 free_rq_tio(tio);
798 }
799
800 /*
801 * Complete the clone and the original request.
802 * Must be called without queue lock.
803 */
804 static void dm_end_request(struct request *clone, int error)
805 {
806 int rw = rq_data_dir(clone);
807 int run_queue = 1;
808 bool is_barrier = clone->cmd_flags & REQ_HARDBARRIER;
809 struct dm_rq_target_io *tio = clone->end_io_data;
810 struct mapped_device *md = tio->md;
811 struct request *rq = tio->orig;
812
813 if (rq->cmd_type == REQ_TYPE_BLOCK_PC && !is_barrier) {
814 rq->errors = clone->errors;
815 rq->resid_len = clone->resid_len;
816
817 if (rq->sense)
818 /*
819 * We are using the sense buffer of the original
820 * request.
821 * So setting the length of the sense data is enough.
822 */
823 rq->sense_len = clone->sense_len;
824 }
825
826 free_rq_clone(clone);
827
828 if (unlikely(is_barrier)) {
829 if (unlikely(error))
830 store_barrier_error(md, error);
831 run_queue = 0;
832 } else
833 blk_end_request_all(rq, error);
834
835 rq_completed(md, rw, run_queue);
836 }
837
838 static void dm_unprep_request(struct request *rq)
839 {
840 struct request *clone = rq->special;
841
842 rq->special = NULL;
843 rq->cmd_flags &= ~REQ_DONTPREP;
844
845 free_rq_clone(clone);
846 }
847
848 /*
849 * Requeue the original request of a clone.
850 */
851 void dm_requeue_unmapped_request(struct request *clone)
852 {
853 int rw = rq_data_dir(clone);
854 struct dm_rq_target_io *tio = clone->end_io_data;
855 struct mapped_device *md = tio->md;
856 struct request *rq = tio->orig;
857 struct request_queue *q = rq->q;
858 unsigned long flags;
859
860 if (unlikely(clone->cmd_flags & REQ_HARDBARRIER)) {
861 /*
862 * Barrier clones share an original request.
863 * Leave it to dm_end_request(), which handles this special
864 * case.
865 */
866 dm_end_request(clone, DM_ENDIO_REQUEUE);
867 return;
868 }
869
870 dm_unprep_request(rq);
871
872 spin_lock_irqsave(q->queue_lock, flags);
873 if (elv_queue_empty(q))
874 blk_plug_device(q);
875 blk_requeue_request(q, rq);
876 spin_unlock_irqrestore(q->queue_lock, flags);
877
878 rq_completed(md, rw, 0);
879 }
880 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
881
882 static void __stop_queue(struct request_queue *q)
883 {
884 blk_stop_queue(q);
885 }
886
887 static void stop_queue(struct request_queue *q)
888 {
889 unsigned long flags;
890
891 spin_lock_irqsave(q->queue_lock, flags);
892 __stop_queue(q);
893 spin_unlock_irqrestore(q->queue_lock, flags);
894 }
895
896 static void __start_queue(struct request_queue *q)
897 {
898 if (blk_queue_stopped(q))
899 blk_start_queue(q);
900 }
901
902 static void start_queue(struct request_queue *q)
903 {
904 unsigned long flags;
905
906 spin_lock_irqsave(q->queue_lock, flags);
907 __start_queue(q);
908 spin_unlock_irqrestore(q->queue_lock, flags);
909 }
910
911 static void dm_done(struct request *clone, int error, bool mapped)
912 {
913 int r = error;
914 struct dm_rq_target_io *tio = clone->end_io_data;
915 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
916
917 if (mapped && rq_end_io)
918 r = rq_end_io(tio->ti, clone, error, &tio->info);
919
920 if (r <= 0)
921 /* The target wants to complete the I/O */
922 dm_end_request(clone, r);
923 else if (r == DM_ENDIO_INCOMPLETE)
924 /* The target will handle the I/O */
925 return;
926 else if (r == DM_ENDIO_REQUEUE)
927 /* The target wants to requeue the I/O */
928 dm_requeue_unmapped_request(clone);
929 else {
930 DMWARN("unimplemented target endio return value: %d", r);
931 BUG();
932 }
933 }
934
935 /*
936 * Request completion handler for request-based dm
937 */
938 static void dm_softirq_done(struct request *rq)
939 {
940 bool mapped = true;
941 struct request *clone = rq->completion_data;
942 struct dm_rq_target_io *tio = clone->end_io_data;
943
944 if (rq->cmd_flags & REQ_FAILED)
945 mapped = false;
946
947 dm_done(clone, tio->error, mapped);
948 }
949
950 /*
951 * Complete the clone and the original request with the error status
952 * through softirq context.
953 */
954 static void dm_complete_request(struct request *clone, int error)
955 {
956 struct dm_rq_target_io *tio = clone->end_io_data;
957 struct request *rq = tio->orig;
958
959 if (unlikely(clone->cmd_flags & REQ_HARDBARRIER)) {
960 /*
961 * Barrier clones share an original request. So can't use
962 * softirq_done with the original.
963 * Pass the clone to dm_done() directly in this special case.
964 * It is safe (even if clone->q->queue_lock is held here)
965 * because there is no I/O dispatching during the completion
966 * of barrier clone.
967 */
968 dm_done(clone, error, true);
969 return;
970 }
971
972 tio->error = error;
973 rq->completion_data = clone;
974 blk_complete_request(rq);
975 }
976
977 /*
978 * Complete the not-mapped clone and the original request with the error status
979 * through softirq context.
980 * Target's rq_end_io() function isn't called.
981 * This may be used when the target's map_rq() function fails.
982 */
983 void dm_kill_unmapped_request(struct request *clone, int error)
984 {
985 struct dm_rq_target_io *tio = clone->end_io_data;
986 struct request *rq = tio->orig;
987
988 if (unlikely(clone->cmd_flags & REQ_HARDBARRIER)) {
989 /*
990 * Barrier clones share an original request.
991 * Leave it to dm_end_request(), which handles this special
992 * case.
993 */
994 BUG_ON(error > 0);
995 dm_end_request(clone, error);
996 return;
997 }
998
999 rq->cmd_flags |= REQ_FAILED;
1000 dm_complete_request(clone, error);
1001 }
1002 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1003
1004 /*
1005 * Called with the queue lock held
1006 */
1007 static void end_clone_request(struct request *clone, int error)
1008 {
1009 /*
1010 * For just cleaning up the information of the queue in which
1011 * the clone was dispatched.
1012 * The clone is *NOT* freed actually here because it is alloced from
1013 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1014 */
1015 __blk_put_request(clone->q, clone);
1016
1017 /*
1018 * Actual request completion is done in a softirq context which doesn't
1019 * hold the queue lock. Otherwise, deadlock could occur because:
1020 * - another request may be submitted by the upper level driver
1021 * of the stacking during the completion
1022 * - the submission which requires queue lock may be done
1023 * against this queue
1024 */
1025 dm_complete_request(clone, error);
1026 }
1027
1028 /*
1029 * Return maximum size of I/O possible at the supplied sector up to the current
1030 * target boundary.
1031 */
1032 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1033 {
1034 sector_t target_offset = dm_target_offset(ti, sector);
1035
1036 return ti->len - target_offset;
1037 }
1038
1039 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1040 {
1041 sector_t len = max_io_len_target_boundary(sector, ti);
1042
1043 /*
1044 * Does the target need to split even further ?
1045 */
1046 if (ti->split_io) {
1047 sector_t boundary;
1048 sector_t offset = dm_target_offset(ti, sector);
1049 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
1050 - offset;
1051 if (len > boundary)
1052 len = boundary;
1053 }
1054
1055 return len;
1056 }
1057
1058 static void __map_bio(struct dm_target *ti, struct bio *clone,
1059 struct dm_target_io *tio)
1060 {
1061 int r;
1062 sector_t sector;
1063 struct mapped_device *md;
1064
1065 clone->bi_end_io = clone_endio;
1066 clone->bi_private = tio;
1067
1068 /*
1069 * Map the clone. If r == 0 we don't need to do
1070 * anything, the target has assumed ownership of
1071 * this io.
1072 */
1073 atomic_inc(&tio->io->io_count);
1074 sector = clone->bi_sector;
1075 r = ti->type->map(ti, clone, &tio->info);
1076 if (r == DM_MAPIO_REMAPPED) {
1077 /* the bio has been remapped so dispatch it */
1078
1079 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
1080 tio->io->bio->bi_bdev->bd_dev, sector);
1081
1082 generic_make_request(clone);
1083 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1084 /* error the io and bail out, or requeue it if needed */
1085 md = tio->io->md;
1086 dec_pending(tio->io, r);
1087 /*
1088 * Store bio_set for cleanup.
1089 */
1090 clone->bi_private = md->bs;
1091 bio_put(clone);
1092 free_tio(md, tio);
1093 } else if (r) {
1094 DMWARN("unimplemented target map return value: %d", r);
1095 BUG();
1096 }
1097 }
1098
1099 struct clone_info {
1100 struct mapped_device *md;
1101 struct dm_table *map;
1102 struct bio *bio;
1103 struct dm_io *io;
1104 sector_t sector;
1105 sector_t sector_count;
1106 unsigned short idx;
1107 };
1108
1109 static void dm_bio_destructor(struct bio *bio)
1110 {
1111 struct bio_set *bs = bio->bi_private;
1112
1113 bio_free(bio, bs);
1114 }
1115
1116 /*
1117 * Creates a little bio that just does part of a bvec.
1118 */
1119 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1120 unsigned short idx, unsigned int offset,
1121 unsigned int len, struct bio_set *bs)
1122 {
1123 struct bio *clone;
1124 struct bio_vec *bv = bio->bi_io_vec + idx;
1125
1126 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1127 clone->bi_destructor = dm_bio_destructor;
1128 *clone->bi_io_vec = *bv;
1129
1130 clone->bi_sector = sector;
1131 clone->bi_bdev = bio->bi_bdev;
1132 clone->bi_rw = bio->bi_rw;
1133 clone->bi_vcnt = 1;
1134 clone->bi_size = to_bytes(len);
1135 clone->bi_io_vec->bv_offset = offset;
1136 clone->bi_io_vec->bv_len = clone->bi_size;
1137 clone->bi_flags |= 1 << BIO_CLONED;
1138
1139 if (bio_integrity(bio)) {
1140 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1141 bio_integrity_trim(clone,
1142 bio_sector_offset(bio, idx, offset), len);
1143 }
1144
1145 return clone;
1146 }
1147
1148 /*
1149 * Creates a bio that consists of range of complete bvecs.
1150 */
1151 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1152 unsigned short idx, unsigned short bv_count,
1153 unsigned int len, struct bio_set *bs)
1154 {
1155 struct bio *clone;
1156
1157 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1158 __bio_clone(clone, bio);
1159 clone->bi_destructor = dm_bio_destructor;
1160 clone->bi_sector = sector;
1161 clone->bi_idx = idx;
1162 clone->bi_vcnt = idx + bv_count;
1163 clone->bi_size = to_bytes(len);
1164 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1165
1166 if (bio_integrity(bio)) {
1167 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1168
1169 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1170 bio_integrity_trim(clone,
1171 bio_sector_offset(bio, idx, 0), len);
1172 }
1173
1174 return clone;
1175 }
1176
1177 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1178 struct dm_target *ti)
1179 {
1180 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1181
1182 tio->io = ci->io;
1183 tio->ti = ti;
1184 memset(&tio->info, 0, sizeof(tio->info));
1185
1186 return tio;
1187 }
1188
1189 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1190 unsigned request_nr, sector_t len)
1191 {
1192 struct dm_target_io *tio = alloc_tio(ci, ti);
1193 struct bio *clone;
1194
1195 tio->info.target_request_nr = request_nr;
1196
1197 /*
1198 * Discard requests require the bio's inline iovecs be initialized.
1199 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1200 * and discard, so no need for concern about wasted bvec allocations.
1201 */
1202 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1203 __bio_clone(clone, ci->bio);
1204 clone->bi_destructor = dm_bio_destructor;
1205 if (len) {
1206 clone->bi_sector = ci->sector;
1207 clone->bi_size = to_bytes(len);
1208 }
1209
1210 __map_bio(ti, clone, tio);
1211 }
1212
1213 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1214 unsigned num_requests, sector_t len)
1215 {
1216 unsigned request_nr;
1217
1218 for (request_nr = 0; request_nr < num_requests; request_nr++)
1219 __issue_target_request(ci, ti, request_nr, len);
1220 }
1221
1222 static int __clone_and_map_flush(struct clone_info *ci)
1223 {
1224 unsigned target_nr = 0;
1225 struct dm_target *ti;
1226
1227 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1228 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1229
1230 ci->sector_count = 0;
1231
1232 return 0;
1233 }
1234
1235 /*
1236 * Perform all io with a single clone.
1237 */
1238 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1239 {
1240 struct bio *clone, *bio = ci->bio;
1241 struct dm_target_io *tio;
1242
1243 tio = alloc_tio(ci, ti);
1244 clone = clone_bio(bio, ci->sector, ci->idx,
1245 bio->bi_vcnt - ci->idx, ci->sector_count,
1246 ci->md->bs);
1247 __map_bio(ti, clone, tio);
1248 ci->sector_count = 0;
1249 }
1250
1251 static int __clone_and_map_discard(struct clone_info *ci)
1252 {
1253 struct dm_target *ti;
1254 sector_t len;
1255
1256 do {
1257 ti = dm_table_find_target(ci->map, ci->sector);
1258 if (!dm_target_is_valid(ti))
1259 return -EIO;
1260
1261 /*
1262 * Even though the device advertised discard support,
1263 * reconfiguration might have changed that since the
1264 * check was performed.
1265 */
1266 if (!ti->num_discard_requests)
1267 return -EOPNOTSUPP;
1268
1269 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1270
1271 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1272
1273 ci->sector += len;
1274 } while (ci->sector_count -= len);
1275
1276 return 0;
1277 }
1278
1279 static int __clone_and_map(struct clone_info *ci)
1280 {
1281 struct bio *clone, *bio = ci->bio;
1282 struct dm_target *ti;
1283 sector_t len = 0, max;
1284 struct dm_target_io *tio;
1285
1286 if (unlikely(bio->bi_rw & REQ_DISCARD))
1287 return __clone_and_map_discard(ci);
1288
1289 ti = dm_table_find_target(ci->map, ci->sector);
1290 if (!dm_target_is_valid(ti))
1291 return -EIO;
1292
1293 max = max_io_len(ci->sector, ti);
1294
1295 if (ci->sector_count <= max) {
1296 /*
1297 * Optimise for the simple case where we can do all of
1298 * the remaining io with a single clone.
1299 */
1300 __clone_and_map_simple(ci, ti);
1301
1302 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1303 /*
1304 * There are some bvecs that don't span targets.
1305 * Do as many of these as possible.
1306 */
1307 int i;
1308 sector_t remaining = max;
1309 sector_t bv_len;
1310
1311 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1312 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1313
1314 if (bv_len > remaining)
1315 break;
1316
1317 remaining -= bv_len;
1318 len += bv_len;
1319 }
1320
1321 tio = alloc_tio(ci, ti);
1322 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1323 ci->md->bs);
1324 __map_bio(ti, clone, tio);
1325
1326 ci->sector += len;
1327 ci->sector_count -= len;
1328 ci->idx = i;
1329
1330 } else {
1331 /*
1332 * Handle a bvec that must be split between two or more targets.
1333 */
1334 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1335 sector_t remaining = to_sector(bv->bv_len);
1336 unsigned int offset = 0;
1337
1338 do {
1339 if (offset) {
1340 ti = dm_table_find_target(ci->map, ci->sector);
1341 if (!dm_target_is_valid(ti))
1342 return -EIO;
1343
1344 max = max_io_len(ci->sector, ti);
1345 }
1346
1347 len = min(remaining, max);
1348
1349 tio = alloc_tio(ci, ti);
1350 clone = split_bvec(bio, ci->sector, ci->idx,
1351 bv->bv_offset + offset, len,
1352 ci->md->bs);
1353
1354 __map_bio(ti, clone, tio);
1355
1356 ci->sector += len;
1357 ci->sector_count -= len;
1358 offset += to_bytes(len);
1359 } while (remaining -= len);
1360
1361 ci->idx++;
1362 }
1363
1364 return 0;
1365 }
1366
1367 /*
1368 * Split the bio into several clones and submit it to targets.
1369 */
1370 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1371 {
1372 struct clone_info ci;
1373 int error = 0;
1374
1375 ci.map = dm_get_live_table(md);
1376 if (unlikely(!ci.map)) {
1377 if (!(bio->bi_rw & REQ_FLUSH))
1378 bio_io_error(bio);
1379 else
1380 if (!md->flush_error)
1381 md->flush_error = -EIO;
1382 return;
1383 }
1384
1385 ci.md = md;
1386 ci.bio = bio;
1387 ci.io = alloc_io(md);
1388 ci.io->error = 0;
1389 atomic_set(&ci.io->io_count, 1);
1390 ci.io->bio = bio;
1391 ci.io->md = md;
1392 spin_lock_init(&ci.io->endio_lock);
1393 ci.sector = bio->bi_sector;
1394 if (!(bio->bi_rw & REQ_FLUSH))
1395 ci.sector_count = bio_sectors(bio);
1396 else {
1397 /* all FLUSH bio's reaching here should be empty */
1398 WARN_ON_ONCE(bio_has_data(bio));
1399 ci.sector_count = 1;
1400 }
1401 ci.idx = bio->bi_idx;
1402
1403 start_io_acct(ci.io);
1404 while (ci.sector_count && !error) {
1405 if (!(bio->bi_rw & REQ_FLUSH))
1406 error = __clone_and_map(&ci);
1407 else
1408 error = __clone_and_map_flush(&ci);
1409 }
1410
1411 /* drop the extra reference count */
1412 dec_pending(ci.io, error);
1413 dm_table_put(ci.map);
1414 }
1415 /*-----------------------------------------------------------------
1416 * CRUD END
1417 *---------------------------------------------------------------*/
1418
1419 static int dm_merge_bvec(struct request_queue *q,
1420 struct bvec_merge_data *bvm,
1421 struct bio_vec *biovec)
1422 {
1423 struct mapped_device *md = q->queuedata;
1424 struct dm_table *map = dm_get_live_table(md);
1425 struct dm_target *ti;
1426 sector_t max_sectors;
1427 int max_size = 0;
1428
1429 if (unlikely(!map))
1430 goto out;
1431
1432 ti = dm_table_find_target(map, bvm->bi_sector);
1433 if (!dm_target_is_valid(ti))
1434 goto out_table;
1435
1436 /*
1437 * Find maximum amount of I/O that won't need splitting
1438 */
1439 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1440 (sector_t) BIO_MAX_SECTORS);
1441 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1442 if (max_size < 0)
1443 max_size = 0;
1444
1445 /*
1446 * merge_bvec_fn() returns number of bytes
1447 * it can accept at this offset
1448 * max is precomputed maximal io size
1449 */
1450 if (max_size && ti->type->merge)
1451 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1452 /*
1453 * If the target doesn't support merge method and some of the devices
1454 * provided their merge_bvec method (we know this by looking at
1455 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1456 * entries. So always set max_size to 0, and the code below allows
1457 * just one page.
1458 */
1459 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1460
1461 max_size = 0;
1462
1463 out_table:
1464 dm_table_put(map);
1465
1466 out:
1467 /*
1468 * Always allow an entire first page
1469 */
1470 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1471 max_size = biovec->bv_len;
1472
1473 return max_size;
1474 }
1475
1476 /*
1477 * The request function that just remaps the bio built up by
1478 * dm_merge_bvec.
1479 */
1480 static int _dm_request(struct request_queue *q, struct bio *bio)
1481 {
1482 int rw = bio_data_dir(bio);
1483 struct mapped_device *md = q->queuedata;
1484 int cpu;
1485
1486 down_read(&md->io_lock);
1487
1488 cpu = part_stat_lock();
1489 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1490 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1491 part_stat_unlock();
1492
1493 /*
1494 * If we're suspended or the thread is processing flushes
1495 * we have to queue this io for later.
1496 */
1497 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1498 (bio->bi_rw & REQ_FLUSH)) {
1499 up_read(&md->io_lock);
1500
1501 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1502 bio_rw(bio) == READA) {
1503 bio_io_error(bio);
1504 return 0;
1505 }
1506
1507 queue_io(md, bio);
1508
1509 return 0;
1510 }
1511
1512 __split_and_process_bio(md, bio);
1513 up_read(&md->io_lock);
1514 return 0;
1515 }
1516
1517 static int dm_make_request(struct request_queue *q, struct bio *bio)
1518 {
1519 struct mapped_device *md = q->queuedata;
1520
1521 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1522 }
1523
1524 static int dm_request_based(struct mapped_device *md)
1525 {
1526 return blk_queue_stackable(md->queue);
1527 }
1528
1529 static int dm_request(struct request_queue *q, struct bio *bio)
1530 {
1531 struct mapped_device *md = q->queuedata;
1532
1533 if (dm_request_based(md))
1534 return dm_make_request(q, bio);
1535
1536 return _dm_request(q, bio);
1537 }
1538
1539 static bool dm_rq_is_flush_request(struct request *rq)
1540 {
1541 if (rq->cmd_flags & REQ_FLUSH)
1542 return true;
1543 else
1544 return false;
1545 }
1546
1547 void dm_dispatch_request(struct request *rq)
1548 {
1549 int r;
1550
1551 if (blk_queue_io_stat(rq->q))
1552 rq->cmd_flags |= REQ_IO_STAT;
1553
1554 rq->start_time = jiffies;
1555 r = blk_insert_cloned_request(rq->q, rq);
1556 if (r)
1557 dm_complete_request(rq, r);
1558 }
1559 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1560
1561 static void dm_rq_bio_destructor(struct bio *bio)
1562 {
1563 struct dm_rq_clone_bio_info *info = bio->bi_private;
1564 struct mapped_device *md = info->tio->md;
1565
1566 free_bio_info(info);
1567 bio_free(bio, md->bs);
1568 }
1569
1570 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1571 void *data)
1572 {
1573 struct dm_rq_target_io *tio = data;
1574 struct mapped_device *md = tio->md;
1575 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1576
1577 if (!info)
1578 return -ENOMEM;
1579
1580 info->orig = bio_orig;
1581 info->tio = tio;
1582 bio->bi_end_io = end_clone_bio;
1583 bio->bi_private = info;
1584 bio->bi_destructor = dm_rq_bio_destructor;
1585
1586 return 0;
1587 }
1588
1589 static int setup_clone(struct request *clone, struct request *rq,
1590 struct dm_rq_target_io *tio)
1591 {
1592 int r;
1593
1594 if (dm_rq_is_flush_request(rq)) {
1595 blk_rq_init(NULL, clone);
1596 clone->cmd_type = REQ_TYPE_FS;
1597 clone->cmd_flags |= (REQ_HARDBARRIER | WRITE);
1598 } else {
1599 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1600 dm_rq_bio_constructor, tio);
1601 if (r)
1602 return r;
1603
1604 clone->cmd = rq->cmd;
1605 clone->cmd_len = rq->cmd_len;
1606 clone->sense = rq->sense;
1607 clone->buffer = rq->buffer;
1608 }
1609
1610 clone->end_io = end_clone_request;
1611 clone->end_io_data = tio;
1612
1613 return 0;
1614 }
1615
1616 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1617 gfp_t gfp_mask)
1618 {
1619 struct request *clone;
1620 struct dm_rq_target_io *tio;
1621
1622 tio = alloc_rq_tio(md, gfp_mask);
1623 if (!tio)
1624 return NULL;
1625
1626 tio->md = md;
1627 tio->ti = NULL;
1628 tio->orig = rq;
1629 tio->error = 0;
1630 memset(&tio->info, 0, sizeof(tio->info));
1631
1632 clone = &tio->clone;
1633 if (setup_clone(clone, rq, tio)) {
1634 /* -ENOMEM */
1635 free_rq_tio(tio);
1636 return NULL;
1637 }
1638
1639 return clone;
1640 }
1641
1642 /*
1643 * Called with the queue lock held.
1644 */
1645 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1646 {
1647 struct mapped_device *md = q->queuedata;
1648 struct request *clone;
1649
1650 if (unlikely(dm_rq_is_flush_request(rq)))
1651 return BLKPREP_OK;
1652
1653 if (unlikely(rq->special)) {
1654 DMWARN("Already has something in rq->special.");
1655 return BLKPREP_KILL;
1656 }
1657
1658 clone = clone_rq(rq, md, GFP_ATOMIC);
1659 if (!clone)
1660 return BLKPREP_DEFER;
1661
1662 rq->special = clone;
1663 rq->cmd_flags |= REQ_DONTPREP;
1664
1665 return BLKPREP_OK;
1666 }
1667
1668 /*
1669 * Returns:
1670 * 0 : the request has been processed (not requeued)
1671 * !0 : the request has been requeued
1672 */
1673 static int map_request(struct dm_target *ti, struct request *clone,
1674 struct mapped_device *md)
1675 {
1676 int r, requeued = 0;
1677 struct dm_rq_target_io *tio = clone->end_io_data;
1678
1679 /*
1680 * Hold the md reference here for the in-flight I/O.
1681 * We can't rely on the reference count by device opener,
1682 * because the device may be closed during the request completion
1683 * when all bios are completed.
1684 * See the comment in rq_completed() too.
1685 */
1686 dm_get(md);
1687
1688 tio->ti = ti;
1689 r = ti->type->map_rq(ti, clone, &tio->info);
1690 switch (r) {
1691 case DM_MAPIO_SUBMITTED:
1692 /* The target has taken the I/O to submit by itself later */
1693 break;
1694 case DM_MAPIO_REMAPPED:
1695 /* The target has remapped the I/O so dispatch it */
1696 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1697 blk_rq_pos(tio->orig));
1698 dm_dispatch_request(clone);
1699 break;
1700 case DM_MAPIO_REQUEUE:
1701 /* The target wants to requeue the I/O */
1702 dm_requeue_unmapped_request(clone);
1703 requeued = 1;
1704 break;
1705 default:
1706 if (r > 0) {
1707 DMWARN("unimplemented target map return value: %d", r);
1708 BUG();
1709 }
1710
1711 /* The target wants to complete the I/O */
1712 dm_kill_unmapped_request(clone, r);
1713 break;
1714 }
1715
1716 return requeued;
1717 }
1718
1719 /*
1720 * q->request_fn for request-based dm.
1721 * Called with the queue lock held.
1722 */
1723 static void dm_request_fn(struct request_queue *q)
1724 {
1725 struct mapped_device *md = q->queuedata;
1726 struct dm_table *map = dm_get_live_table(md);
1727 struct dm_target *ti;
1728 struct request *rq, *clone;
1729
1730 /*
1731 * For suspend, check blk_queue_stopped() and increment
1732 * ->pending within a single queue_lock not to increment the
1733 * number of in-flight I/Os after the queue is stopped in
1734 * dm_suspend().
1735 */
1736 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1737 rq = blk_peek_request(q);
1738 if (!rq)
1739 goto plug_and_out;
1740
1741 if (unlikely(dm_rq_is_flush_request(rq))) {
1742 BUG_ON(md->flush_request);
1743 md->flush_request = rq;
1744 blk_start_request(rq);
1745 queue_work(md->wq, &md->barrier_work);
1746 goto out;
1747 }
1748
1749 ti = dm_table_find_target(map, blk_rq_pos(rq));
1750 if (ti->type->busy && ti->type->busy(ti))
1751 goto plug_and_out;
1752
1753 blk_start_request(rq);
1754 clone = rq->special;
1755 atomic_inc(&md->pending[rq_data_dir(clone)]);
1756
1757 spin_unlock(q->queue_lock);
1758 if (map_request(ti, clone, md))
1759 goto requeued;
1760
1761 spin_lock_irq(q->queue_lock);
1762 }
1763
1764 goto out;
1765
1766 requeued:
1767 spin_lock_irq(q->queue_lock);
1768
1769 plug_and_out:
1770 if (!elv_queue_empty(q))
1771 /* Some requests still remain, retry later */
1772 blk_plug_device(q);
1773
1774 out:
1775 dm_table_put(map);
1776
1777 return;
1778 }
1779
1780 int dm_underlying_device_busy(struct request_queue *q)
1781 {
1782 return blk_lld_busy(q);
1783 }
1784 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1785
1786 static int dm_lld_busy(struct request_queue *q)
1787 {
1788 int r;
1789 struct mapped_device *md = q->queuedata;
1790 struct dm_table *map = dm_get_live_table(md);
1791
1792 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1793 r = 1;
1794 else
1795 r = dm_table_any_busy_target(map);
1796
1797 dm_table_put(map);
1798
1799 return r;
1800 }
1801
1802 static void dm_unplug_all(struct request_queue *q)
1803 {
1804 struct mapped_device *md = q->queuedata;
1805 struct dm_table *map = dm_get_live_table(md);
1806
1807 if (map) {
1808 if (dm_request_based(md))
1809 generic_unplug_device(q);
1810
1811 dm_table_unplug_all(map);
1812 dm_table_put(map);
1813 }
1814 }
1815
1816 static int dm_any_congested(void *congested_data, int bdi_bits)
1817 {
1818 int r = bdi_bits;
1819 struct mapped_device *md = congested_data;
1820 struct dm_table *map;
1821
1822 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1823 map = dm_get_live_table(md);
1824 if (map) {
1825 /*
1826 * Request-based dm cares about only own queue for
1827 * the query about congestion status of request_queue
1828 */
1829 if (dm_request_based(md))
1830 r = md->queue->backing_dev_info.state &
1831 bdi_bits;
1832 else
1833 r = dm_table_any_congested(map, bdi_bits);
1834
1835 dm_table_put(map);
1836 }
1837 }
1838
1839 return r;
1840 }
1841
1842 /*-----------------------------------------------------------------
1843 * An IDR is used to keep track of allocated minor numbers.
1844 *---------------------------------------------------------------*/
1845 static DEFINE_IDR(_minor_idr);
1846
1847 static void free_minor(int minor)
1848 {
1849 spin_lock(&_minor_lock);
1850 idr_remove(&_minor_idr, minor);
1851 spin_unlock(&_minor_lock);
1852 }
1853
1854 /*
1855 * See if the device with a specific minor # is free.
1856 */
1857 static int specific_minor(int minor)
1858 {
1859 int r, m;
1860
1861 if (minor >= (1 << MINORBITS))
1862 return -EINVAL;
1863
1864 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1865 if (!r)
1866 return -ENOMEM;
1867
1868 spin_lock(&_minor_lock);
1869
1870 if (idr_find(&_minor_idr, minor)) {
1871 r = -EBUSY;
1872 goto out;
1873 }
1874
1875 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1876 if (r)
1877 goto out;
1878
1879 if (m != minor) {
1880 idr_remove(&_minor_idr, m);
1881 r = -EBUSY;
1882 goto out;
1883 }
1884
1885 out:
1886 spin_unlock(&_minor_lock);
1887 return r;
1888 }
1889
1890 static int next_free_minor(int *minor)
1891 {
1892 int r, m;
1893
1894 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1895 if (!r)
1896 return -ENOMEM;
1897
1898 spin_lock(&_minor_lock);
1899
1900 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1901 if (r)
1902 goto out;
1903
1904 if (m >= (1 << MINORBITS)) {
1905 idr_remove(&_minor_idr, m);
1906 r = -ENOSPC;
1907 goto out;
1908 }
1909
1910 *minor = m;
1911
1912 out:
1913 spin_unlock(&_minor_lock);
1914 return r;
1915 }
1916
1917 static const struct block_device_operations dm_blk_dops;
1918
1919 static void dm_wq_work(struct work_struct *work);
1920 static void dm_rq_barrier_work(struct work_struct *work);
1921
1922 static void dm_init_md_queue(struct mapped_device *md)
1923 {
1924 /*
1925 * Request-based dm devices cannot be stacked on top of bio-based dm
1926 * devices. The type of this dm device has not been decided yet.
1927 * The type is decided at the first table loading time.
1928 * To prevent problematic device stacking, clear the queue flag
1929 * for request stacking support until then.
1930 *
1931 * This queue is new, so no concurrency on the queue_flags.
1932 */
1933 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1934
1935 md->queue->queuedata = md;
1936 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1937 md->queue->backing_dev_info.congested_data = md;
1938 blk_queue_make_request(md->queue, dm_request);
1939 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1940 md->queue->unplug_fn = dm_unplug_all;
1941 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1942 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1943 }
1944
1945 /*
1946 * Allocate and initialise a blank device with a given minor.
1947 */
1948 static struct mapped_device *alloc_dev(int minor)
1949 {
1950 int r;
1951 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1952 void *old_md;
1953
1954 if (!md) {
1955 DMWARN("unable to allocate device, out of memory.");
1956 return NULL;
1957 }
1958
1959 if (!try_module_get(THIS_MODULE))
1960 goto bad_module_get;
1961
1962 /* get a minor number for the dev */
1963 if (minor == DM_ANY_MINOR)
1964 r = next_free_minor(&minor);
1965 else
1966 r = specific_minor(minor);
1967 if (r < 0)
1968 goto bad_minor;
1969
1970 md->type = DM_TYPE_NONE;
1971 init_rwsem(&md->io_lock);
1972 mutex_init(&md->suspend_lock);
1973 mutex_init(&md->type_lock);
1974 spin_lock_init(&md->deferred_lock);
1975 spin_lock_init(&md->barrier_error_lock);
1976 rwlock_init(&md->map_lock);
1977 atomic_set(&md->holders, 1);
1978 atomic_set(&md->open_count, 0);
1979 atomic_set(&md->event_nr, 0);
1980 atomic_set(&md->uevent_seq, 0);
1981 INIT_LIST_HEAD(&md->uevent_list);
1982 spin_lock_init(&md->uevent_lock);
1983
1984 md->queue = blk_alloc_queue(GFP_KERNEL);
1985 if (!md->queue)
1986 goto bad_queue;
1987
1988 dm_init_md_queue(md);
1989
1990 md->disk = alloc_disk(1);
1991 if (!md->disk)
1992 goto bad_disk;
1993
1994 atomic_set(&md->pending[0], 0);
1995 atomic_set(&md->pending[1], 0);
1996 init_waitqueue_head(&md->wait);
1997 INIT_WORK(&md->work, dm_wq_work);
1998 INIT_WORK(&md->barrier_work, dm_rq_barrier_work);
1999 init_waitqueue_head(&md->eventq);
2000
2001 md->disk->major = _major;
2002 md->disk->first_minor = minor;
2003 md->disk->fops = &dm_blk_dops;
2004 md->disk->queue = md->queue;
2005 md->disk->private_data = md;
2006 sprintf(md->disk->disk_name, "dm-%d", minor);
2007 add_disk(md->disk);
2008 format_dev_t(md->name, MKDEV(_major, minor));
2009
2010 md->wq = create_singlethread_workqueue("kdmflush");
2011 if (!md->wq)
2012 goto bad_thread;
2013
2014 md->bdev = bdget_disk(md->disk, 0);
2015 if (!md->bdev)
2016 goto bad_bdev;
2017
2018 /* Populate the mapping, nobody knows we exist yet */
2019 spin_lock(&_minor_lock);
2020 old_md = idr_replace(&_minor_idr, md, minor);
2021 spin_unlock(&_minor_lock);
2022
2023 BUG_ON(old_md != MINOR_ALLOCED);
2024
2025 return md;
2026
2027 bad_bdev:
2028 destroy_workqueue(md->wq);
2029 bad_thread:
2030 del_gendisk(md->disk);
2031 put_disk(md->disk);
2032 bad_disk:
2033 blk_cleanup_queue(md->queue);
2034 bad_queue:
2035 free_minor(minor);
2036 bad_minor:
2037 module_put(THIS_MODULE);
2038 bad_module_get:
2039 kfree(md);
2040 return NULL;
2041 }
2042
2043 static void unlock_fs(struct mapped_device *md);
2044
2045 static void free_dev(struct mapped_device *md)
2046 {
2047 int minor = MINOR(disk_devt(md->disk));
2048
2049 unlock_fs(md);
2050 bdput(md->bdev);
2051 destroy_workqueue(md->wq);
2052 if (md->tio_pool)
2053 mempool_destroy(md->tio_pool);
2054 if (md->io_pool)
2055 mempool_destroy(md->io_pool);
2056 if (md->bs)
2057 bioset_free(md->bs);
2058 blk_integrity_unregister(md->disk);
2059 del_gendisk(md->disk);
2060 free_minor(minor);
2061
2062 spin_lock(&_minor_lock);
2063 md->disk->private_data = NULL;
2064 spin_unlock(&_minor_lock);
2065
2066 put_disk(md->disk);
2067 blk_cleanup_queue(md->queue);
2068 module_put(THIS_MODULE);
2069 kfree(md);
2070 }
2071
2072 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2073 {
2074 struct dm_md_mempools *p;
2075
2076 if (md->io_pool && md->tio_pool && md->bs)
2077 /* the md already has necessary mempools */
2078 goto out;
2079
2080 p = dm_table_get_md_mempools(t);
2081 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
2082
2083 md->io_pool = p->io_pool;
2084 p->io_pool = NULL;
2085 md->tio_pool = p->tio_pool;
2086 p->tio_pool = NULL;
2087 md->bs = p->bs;
2088 p->bs = NULL;
2089
2090 out:
2091 /* mempool bind completed, now no need any mempools in the table */
2092 dm_table_free_md_mempools(t);
2093 }
2094
2095 /*
2096 * Bind a table to the device.
2097 */
2098 static void event_callback(void *context)
2099 {
2100 unsigned long flags;
2101 LIST_HEAD(uevents);
2102 struct mapped_device *md = (struct mapped_device *) context;
2103
2104 spin_lock_irqsave(&md->uevent_lock, flags);
2105 list_splice_init(&md->uevent_list, &uevents);
2106 spin_unlock_irqrestore(&md->uevent_lock, flags);
2107
2108 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2109
2110 atomic_inc(&md->event_nr);
2111 wake_up(&md->eventq);
2112 }
2113
2114 static void __set_size(struct mapped_device *md, sector_t size)
2115 {
2116 set_capacity(md->disk, size);
2117
2118 mutex_lock(&md->bdev->bd_inode->i_mutex);
2119 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2120 mutex_unlock(&md->bdev->bd_inode->i_mutex);
2121 }
2122
2123 /*
2124 * Returns old map, which caller must destroy.
2125 */
2126 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127 struct queue_limits *limits)
2128 {
2129 struct dm_table *old_map;
2130 struct request_queue *q = md->queue;
2131 sector_t size;
2132 unsigned long flags;
2133
2134 size = dm_table_get_size(t);
2135
2136 /*
2137 * Wipe any geometry if the size of the table changed.
2138 */
2139 if (size != get_capacity(md->disk))
2140 memset(&md->geometry, 0, sizeof(md->geometry));
2141
2142 __set_size(md, size);
2143
2144 dm_table_event_callback(t, event_callback, md);
2145
2146 /*
2147 * The queue hasn't been stopped yet, if the old table type wasn't
2148 * for request-based during suspension. So stop it to prevent
2149 * I/O mapping before resume.
2150 * This must be done before setting the queue restrictions,
2151 * because request-based dm may be run just after the setting.
2152 */
2153 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2154 stop_queue(q);
2155
2156 __bind_mempools(md, t);
2157
2158 write_lock_irqsave(&md->map_lock, flags);
2159 old_map = md->map;
2160 md->map = t;
2161 dm_table_set_restrictions(t, q, limits);
2162 write_unlock_irqrestore(&md->map_lock, flags);
2163
2164 return old_map;
2165 }
2166
2167 /*
2168 * Returns unbound table for the caller to free.
2169 */
2170 static struct dm_table *__unbind(struct mapped_device *md)
2171 {
2172 struct dm_table *map = md->map;
2173 unsigned long flags;
2174
2175 if (!map)
2176 return NULL;
2177
2178 dm_table_event_callback(map, NULL, NULL);
2179 write_lock_irqsave(&md->map_lock, flags);
2180 md->map = NULL;
2181 write_unlock_irqrestore(&md->map_lock, flags);
2182
2183 return map;
2184 }
2185
2186 /*
2187 * Constructor for a new device.
2188 */
2189 int dm_create(int minor, struct mapped_device **result)
2190 {
2191 struct mapped_device *md;
2192
2193 md = alloc_dev(minor);
2194 if (!md)
2195 return -ENXIO;
2196
2197 dm_sysfs_init(md);
2198
2199 *result = md;
2200 return 0;
2201 }
2202
2203 /*
2204 * Functions to manage md->type.
2205 * All are required to hold md->type_lock.
2206 */
2207 void dm_lock_md_type(struct mapped_device *md)
2208 {
2209 mutex_lock(&md->type_lock);
2210 }
2211
2212 void dm_unlock_md_type(struct mapped_device *md)
2213 {
2214 mutex_unlock(&md->type_lock);
2215 }
2216
2217 void dm_set_md_type(struct mapped_device *md, unsigned type)
2218 {
2219 md->type = type;
2220 }
2221
2222 unsigned dm_get_md_type(struct mapped_device *md)
2223 {
2224 return md->type;
2225 }
2226
2227 /*
2228 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2229 */
2230 static int dm_init_request_based_queue(struct mapped_device *md)
2231 {
2232 struct request_queue *q = NULL;
2233
2234 if (md->queue->elevator)
2235 return 1;
2236
2237 /* Fully initialize the queue */
2238 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2239 if (!q)
2240 return 0;
2241
2242 md->queue = q;
2243 md->saved_make_request_fn = md->queue->make_request_fn;
2244 dm_init_md_queue(md);
2245 blk_queue_softirq_done(md->queue, dm_softirq_done);
2246 blk_queue_prep_rq(md->queue, dm_prep_fn);
2247 blk_queue_lld_busy(md->queue, dm_lld_busy);
2248 /* no flush support for request based dm yet */
2249 blk_queue_flush(md->queue, 0);
2250
2251 elv_register_queue(md->queue);
2252
2253 return 1;
2254 }
2255
2256 /*
2257 * Setup the DM device's queue based on md's type
2258 */
2259 int dm_setup_md_queue(struct mapped_device *md)
2260 {
2261 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2262 !dm_init_request_based_queue(md)) {
2263 DMWARN("Cannot initialize queue for request-based mapped device");
2264 return -EINVAL;
2265 }
2266
2267 return 0;
2268 }
2269
2270 static struct mapped_device *dm_find_md(dev_t dev)
2271 {
2272 struct mapped_device *md;
2273 unsigned minor = MINOR(dev);
2274
2275 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2276 return NULL;
2277
2278 spin_lock(&_minor_lock);
2279
2280 md = idr_find(&_minor_idr, minor);
2281 if (md && (md == MINOR_ALLOCED ||
2282 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2283 dm_deleting_md(md) ||
2284 test_bit(DMF_FREEING, &md->flags))) {
2285 md = NULL;
2286 goto out;
2287 }
2288
2289 out:
2290 spin_unlock(&_minor_lock);
2291
2292 return md;
2293 }
2294
2295 struct mapped_device *dm_get_md(dev_t dev)
2296 {
2297 struct mapped_device *md = dm_find_md(dev);
2298
2299 if (md)
2300 dm_get(md);
2301
2302 return md;
2303 }
2304
2305 void *dm_get_mdptr(struct mapped_device *md)
2306 {
2307 return md->interface_ptr;
2308 }
2309
2310 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2311 {
2312 md->interface_ptr = ptr;
2313 }
2314
2315 void dm_get(struct mapped_device *md)
2316 {
2317 atomic_inc(&md->holders);
2318 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2319 }
2320
2321 const char *dm_device_name(struct mapped_device *md)
2322 {
2323 return md->name;
2324 }
2325 EXPORT_SYMBOL_GPL(dm_device_name);
2326
2327 static void __dm_destroy(struct mapped_device *md, bool wait)
2328 {
2329 struct dm_table *map;
2330
2331 might_sleep();
2332
2333 spin_lock(&_minor_lock);
2334 map = dm_get_live_table(md);
2335 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2336 set_bit(DMF_FREEING, &md->flags);
2337 spin_unlock(&_minor_lock);
2338
2339 if (!dm_suspended_md(md)) {
2340 dm_table_presuspend_targets(map);
2341 dm_table_postsuspend_targets(map);
2342 }
2343
2344 /*
2345 * Rare, but there may be I/O requests still going to complete,
2346 * for example. Wait for all references to disappear.
2347 * No one should increment the reference count of the mapped_device,
2348 * after the mapped_device state becomes DMF_FREEING.
2349 */
2350 if (wait)
2351 while (atomic_read(&md->holders))
2352 msleep(1);
2353 else if (atomic_read(&md->holders))
2354 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2355 dm_device_name(md), atomic_read(&md->holders));
2356
2357 dm_sysfs_exit(md);
2358 dm_table_put(map);
2359 dm_table_destroy(__unbind(md));
2360 free_dev(md);
2361 }
2362
2363 void dm_destroy(struct mapped_device *md)
2364 {
2365 __dm_destroy(md, true);
2366 }
2367
2368 void dm_destroy_immediate(struct mapped_device *md)
2369 {
2370 __dm_destroy(md, false);
2371 }
2372
2373 void dm_put(struct mapped_device *md)
2374 {
2375 atomic_dec(&md->holders);
2376 }
2377 EXPORT_SYMBOL_GPL(dm_put);
2378
2379 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2380 {
2381 int r = 0;
2382 DECLARE_WAITQUEUE(wait, current);
2383
2384 dm_unplug_all(md->queue);
2385
2386 add_wait_queue(&md->wait, &wait);
2387
2388 while (1) {
2389 set_current_state(interruptible);
2390
2391 smp_mb();
2392 if (!md_in_flight(md))
2393 break;
2394
2395 if (interruptible == TASK_INTERRUPTIBLE &&
2396 signal_pending(current)) {
2397 r = -EINTR;
2398 break;
2399 }
2400
2401 io_schedule();
2402 }
2403 set_current_state(TASK_RUNNING);
2404
2405 remove_wait_queue(&md->wait, &wait);
2406
2407 return r;
2408 }
2409
2410 static void process_flush(struct mapped_device *md, struct bio *bio)
2411 {
2412 md->flush_error = 0;
2413
2414 /* handle REQ_FLUSH */
2415 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2416
2417 bio_init(&md->flush_bio);
2418 md->flush_bio.bi_bdev = md->bdev;
2419 md->flush_bio.bi_rw = WRITE_FLUSH;
2420 __split_and_process_bio(md, &md->flush_bio);
2421
2422 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2423
2424 /* if it's an empty flush or the preflush failed, we're done */
2425 if (!bio_has_data(bio) || md->flush_error) {
2426 if (md->flush_error != DM_ENDIO_REQUEUE)
2427 bio_endio(bio, md->flush_error);
2428 else {
2429 spin_lock_irq(&md->deferred_lock);
2430 bio_list_add_head(&md->deferred, bio);
2431 spin_unlock_irq(&md->deferred_lock);
2432 }
2433 return;
2434 }
2435
2436 /* issue data + REQ_FUA */
2437 bio->bi_rw &= ~REQ_FLUSH;
2438 __split_and_process_bio(md, bio);
2439 }
2440
2441 /*
2442 * Process the deferred bios
2443 */
2444 static void dm_wq_work(struct work_struct *work)
2445 {
2446 struct mapped_device *md = container_of(work, struct mapped_device,
2447 work);
2448 struct bio *c;
2449
2450 down_write(&md->io_lock);
2451
2452 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2453 spin_lock_irq(&md->deferred_lock);
2454 c = bio_list_pop(&md->deferred);
2455 spin_unlock_irq(&md->deferred_lock);
2456
2457 if (!c) {
2458 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2459 break;
2460 }
2461
2462 up_write(&md->io_lock);
2463
2464 if (dm_request_based(md))
2465 generic_make_request(c);
2466 else {
2467 if (c->bi_rw & REQ_FLUSH)
2468 process_flush(md, c);
2469 else
2470 __split_and_process_bio(md, c);
2471 }
2472
2473 down_write(&md->io_lock);
2474 }
2475
2476 up_write(&md->io_lock);
2477 }
2478
2479 static void dm_queue_flush(struct mapped_device *md)
2480 {
2481 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2482 smp_mb__after_clear_bit();
2483 queue_work(md->wq, &md->work);
2484 }
2485
2486 static void dm_rq_set_target_request_nr(struct request *clone, unsigned request_nr)
2487 {
2488 struct dm_rq_target_io *tio = clone->end_io_data;
2489
2490 tio->info.target_request_nr = request_nr;
2491 }
2492
2493 /* Issue barrier requests to targets and wait for their completion. */
2494 static int dm_rq_barrier(struct mapped_device *md)
2495 {
2496 int i, j;
2497 struct dm_table *map = dm_get_live_table(md);
2498 unsigned num_targets = dm_table_get_num_targets(map);
2499 struct dm_target *ti;
2500 struct request *clone;
2501
2502 md->barrier_error = 0;
2503
2504 for (i = 0; i < num_targets; i++) {
2505 ti = dm_table_get_target(map, i);
2506 for (j = 0; j < ti->num_flush_requests; j++) {
2507 clone = clone_rq(md->flush_request, md, GFP_NOIO);
2508 dm_rq_set_target_request_nr(clone, j);
2509 atomic_inc(&md->pending[rq_data_dir(clone)]);
2510 map_request(ti, clone, md);
2511 }
2512 }
2513
2514 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2515 dm_table_put(map);
2516
2517 return md->barrier_error;
2518 }
2519
2520 static void dm_rq_barrier_work(struct work_struct *work)
2521 {
2522 int error;
2523 struct mapped_device *md = container_of(work, struct mapped_device,
2524 barrier_work);
2525 struct request_queue *q = md->queue;
2526 struct request *rq;
2527 unsigned long flags;
2528
2529 /*
2530 * Hold the md reference here and leave it at the last part so that
2531 * the md can't be deleted by device opener when the barrier request
2532 * completes.
2533 */
2534 dm_get(md);
2535
2536 error = dm_rq_barrier(md);
2537
2538 rq = md->flush_request;
2539 md->flush_request = NULL;
2540
2541 if (error == DM_ENDIO_REQUEUE) {
2542 spin_lock_irqsave(q->queue_lock, flags);
2543 blk_requeue_request(q, rq);
2544 spin_unlock_irqrestore(q->queue_lock, flags);
2545 } else
2546 blk_end_request_all(rq, error);
2547
2548 blk_run_queue(q);
2549
2550 dm_put(md);
2551 }
2552
2553 /*
2554 * Swap in a new table, returning the old one for the caller to destroy.
2555 */
2556 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2557 {
2558 struct dm_table *map = ERR_PTR(-EINVAL);
2559 struct queue_limits limits;
2560 int r;
2561
2562 mutex_lock(&md->suspend_lock);
2563
2564 /* device must be suspended */
2565 if (!dm_suspended_md(md))
2566 goto out;
2567
2568 r = dm_calculate_queue_limits(table, &limits);
2569 if (r) {
2570 map = ERR_PTR(r);
2571 goto out;
2572 }
2573
2574 map = __bind(md, table, &limits);
2575
2576 out:
2577 mutex_unlock(&md->suspend_lock);
2578 return map;
2579 }
2580
2581 /*
2582 * Functions to lock and unlock any filesystem running on the
2583 * device.
2584 */
2585 static int lock_fs(struct mapped_device *md)
2586 {
2587 int r;
2588
2589 WARN_ON(md->frozen_sb);
2590
2591 md->frozen_sb = freeze_bdev(md->bdev);
2592 if (IS_ERR(md->frozen_sb)) {
2593 r = PTR_ERR(md->frozen_sb);
2594 md->frozen_sb = NULL;
2595 return r;
2596 }
2597
2598 set_bit(DMF_FROZEN, &md->flags);
2599
2600 return 0;
2601 }
2602
2603 static void unlock_fs(struct mapped_device *md)
2604 {
2605 if (!test_bit(DMF_FROZEN, &md->flags))
2606 return;
2607
2608 thaw_bdev(md->bdev, md->frozen_sb);
2609 md->frozen_sb = NULL;
2610 clear_bit(DMF_FROZEN, &md->flags);
2611 }
2612
2613 /*
2614 * We need to be able to change a mapping table under a mounted
2615 * filesystem. For example we might want to move some data in
2616 * the background. Before the table can be swapped with
2617 * dm_bind_table, dm_suspend must be called to flush any in
2618 * flight bios and ensure that any further io gets deferred.
2619 */
2620 /*
2621 * Suspend mechanism in request-based dm.
2622 *
2623 * 1. Flush all I/Os by lock_fs() if needed.
2624 * 2. Stop dispatching any I/O by stopping the request_queue.
2625 * 3. Wait for all in-flight I/Os to be completed or requeued.
2626 *
2627 * To abort suspend, start the request_queue.
2628 */
2629 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2630 {
2631 struct dm_table *map = NULL;
2632 int r = 0;
2633 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2634 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2635
2636 mutex_lock(&md->suspend_lock);
2637
2638 if (dm_suspended_md(md)) {
2639 r = -EINVAL;
2640 goto out_unlock;
2641 }
2642
2643 map = dm_get_live_table(md);
2644
2645 /*
2646 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2647 * This flag is cleared before dm_suspend returns.
2648 */
2649 if (noflush)
2650 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2651
2652 /* This does not get reverted if there's an error later. */
2653 dm_table_presuspend_targets(map);
2654
2655 /*
2656 * Flush I/O to the device.
2657 * Any I/O submitted after lock_fs() may not be flushed.
2658 * noflush takes precedence over do_lockfs.
2659 * (lock_fs() flushes I/Os and waits for them to complete.)
2660 */
2661 if (!noflush && do_lockfs) {
2662 r = lock_fs(md);
2663 if (r)
2664 goto out;
2665 }
2666
2667 /*
2668 * Here we must make sure that no processes are submitting requests
2669 * to target drivers i.e. no one may be executing
2670 * __split_and_process_bio. This is called from dm_request and
2671 * dm_wq_work.
2672 *
2673 * To get all processes out of __split_and_process_bio in dm_request,
2674 * we take the write lock. To prevent any process from reentering
2675 * __split_and_process_bio from dm_request, we set
2676 * DMF_QUEUE_IO_TO_THREAD.
2677 *
2678 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2679 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2680 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2681 * further calls to __split_and_process_bio from dm_wq_work.
2682 */
2683 down_write(&md->io_lock);
2684 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2685 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2686 up_write(&md->io_lock);
2687
2688 /*
2689 * Request-based dm uses md->wq for barrier (dm_rq_barrier_work) which
2690 * can be kicked until md->queue is stopped. So stop md->queue before
2691 * flushing md->wq.
2692 */
2693 if (dm_request_based(md))
2694 stop_queue(md->queue);
2695
2696 flush_workqueue(md->wq);
2697
2698 /*
2699 * At this point no more requests are entering target request routines.
2700 * We call dm_wait_for_completion to wait for all existing requests
2701 * to finish.
2702 */
2703 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2704
2705 down_write(&md->io_lock);
2706 if (noflush)
2707 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2708 up_write(&md->io_lock);
2709
2710 /* were we interrupted ? */
2711 if (r < 0) {
2712 dm_queue_flush(md);
2713
2714 if (dm_request_based(md))
2715 start_queue(md->queue);
2716
2717 unlock_fs(md);
2718 goto out; /* pushback list is already flushed, so skip flush */
2719 }
2720
2721 /*
2722 * If dm_wait_for_completion returned 0, the device is completely
2723 * quiescent now. There is no request-processing activity. All new
2724 * requests are being added to md->deferred list.
2725 */
2726
2727 set_bit(DMF_SUSPENDED, &md->flags);
2728
2729 dm_table_postsuspend_targets(map);
2730
2731 out:
2732 dm_table_put(map);
2733
2734 out_unlock:
2735 mutex_unlock(&md->suspend_lock);
2736 return r;
2737 }
2738
2739 int dm_resume(struct mapped_device *md)
2740 {
2741 int r = -EINVAL;
2742 struct dm_table *map = NULL;
2743
2744 mutex_lock(&md->suspend_lock);
2745 if (!dm_suspended_md(md))
2746 goto out;
2747
2748 map = dm_get_live_table(md);
2749 if (!map || !dm_table_get_size(map))
2750 goto out;
2751
2752 r = dm_table_resume_targets(map);
2753 if (r)
2754 goto out;
2755
2756 dm_queue_flush(md);
2757
2758 /*
2759 * Flushing deferred I/Os must be done after targets are resumed
2760 * so that mapping of targets can work correctly.
2761 * Request-based dm is queueing the deferred I/Os in its request_queue.
2762 */
2763 if (dm_request_based(md))
2764 start_queue(md->queue);
2765
2766 unlock_fs(md);
2767
2768 clear_bit(DMF_SUSPENDED, &md->flags);
2769
2770 dm_table_unplug_all(map);
2771 r = 0;
2772 out:
2773 dm_table_put(map);
2774 mutex_unlock(&md->suspend_lock);
2775
2776 return r;
2777 }
2778
2779 /*-----------------------------------------------------------------
2780 * Event notification.
2781 *---------------------------------------------------------------*/
2782 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2783 unsigned cookie)
2784 {
2785 char udev_cookie[DM_COOKIE_LENGTH];
2786 char *envp[] = { udev_cookie, NULL };
2787
2788 if (!cookie)
2789 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2790 else {
2791 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2792 DM_COOKIE_ENV_VAR_NAME, cookie);
2793 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2794 action, envp);
2795 }
2796 }
2797
2798 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2799 {
2800 return atomic_add_return(1, &md->uevent_seq);
2801 }
2802
2803 uint32_t dm_get_event_nr(struct mapped_device *md)
2804 {
2805 return atomic_read(&md->event_nr);
2806 }
2807
2808 int dm_wait_event(struct mapped_device *md, int event_nr)
2809 {
2810 return wait_event_interruptible(md->eventq,
2811 (event_nr != atomic_read(&md->event_nr)));
2812 }
2813
2814 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2815 {
2816 unsigned long flags;
2817
2818 spin_lock_irqsave(&md->uevent_lock, flags);
2819 list_add(elist, &md->uevent_list);
2820 spin_unlock_irqrestore(&md->uevent_lock, flags);
2821 }
2822
2823 /*
2824 * The gendisk is only valid as long as you have a reference
2825 * count on 'md'.
2826 */
2827 struct gendisk *dm_disk(struct mapped_device *md)
2828 {
2829 return md->disk;
2830 }
2831
2832 struct kobject *dm_kobject(struct mapped_device *md)
2833 {
2834 return &md->kobj;
2835 }
2836
2837 /*
2838 * struct mapped_device should not be exported outside of dm.c
2839 * so use this check to verify that kobj is part of md structure
2840 */
2841 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2842 {
2843 struct mapped_device *md;
2844
2845 md = container_of(kobj, struct mapped_device, kobj);
2846 if (&md->kobj != kobj)
2847 return NULL;
2848
2849 if (test_bit(DMF_FREEING, &md->flags) ||
2850 dm_deleting_md(md))
2851 return NULL;
2852
2853 dm_get(md);
2854 return md;
2855 }
2856
2857 int dm_suspended_md(struct mapped_device *md)
2858 {
2859 return test_bit(DMF_SUSPENDED, &md->flags);
2860 }
2861
2862 int dm_suspended(struct dm_target *ti)
2863 {
2864 return dm_suspended_md(dm_table_get_md(ti->table));
2865 }
2866 EXPORT_SYMBOL_GPL(dm_suspended);
2867
2868 int dm_noflush_suspending(struct dm_target *ti)
2869 {
2870 return __noflush_suspending(dm_table_get_md(ti->table));
2871 }
2872 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2873
2874 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2875 {
2876 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2877
2878 if (!pools)
2879 return NULL;
2880
2881 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2882 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2883 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2884 if (!pools->io_pool)
2885 goto free_pools_and_out;
2886
2887 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2888 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2889 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2890 if (!pools->tio_pool)
2891 goto free_io_pool_and_out;
2892
2893 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2894 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2895 if (!pools->bs)
2896 goto free_tio_pool_and_out;
2897
2898 return pools;
2899
2900 free_tio_pool_and_out:
2901 mempool_destroy(pools->tio_pool);
2902
2903 free_io_pool_and_out:
2904 mempool_destroy(pools->io_pool);
2905
2906 free_pools_and_out:
2907 kfree(pools);
2908
2909 return NULL;
2910 }
2911
2912 void dm_free_md_mempools(struct dm_md_mempools *pools)
2913 {
2914 if (!pools)
2915 return;
2916
2917 if (pools->io_pool)
2918 mempool_destroy(pools->io_pool);
2919
2920 if (pools->tio_pool)
2921 mempool_destroy(pools->tio_pool);
2922
2923 if (pools->bs)
2924 bioset_free(pools->bs);
2925
2926 kfree(pools);
2927 }
2928
2929 static const struct block_device_operations dm_blk_dops = {
2930 .open = dm_blk_open,
2931 .release = dm_blk_close,
2932 .ioctl = dm_blk_ioctl,
2933 .getgeo = dm_blk_getgeo,
2934 .owner = THIS_MODULE
2935 };
2936
2937 EXPORT_SYMBOL(dm_get_mapinfo);
2938
2939 /*
2940 * module hooks
2941 */
2942 module_init(dm_init);
2943 module_exit(dm_exit);
2944
2945 module_param(major, uint, 0);
2946 MODULE_PARM_DESC(major, "The major number of the device mapper");
2947 MODULE_DESCRIPTION(DM_NAME " driver");
2948 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2949 MODULE_LICENSE("GPL");