]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/dm.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32
33 #define DM_MSG_PREFIX "core"
34
35 /*
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
38 */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41
42 static const char *_name = DM_NAME;
43
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46
47 static DEFINE_IDR(_minor_idr);
48
49 static DEFINE_SPINLOCK(_minor_lock);
50
51 static void do_deferred_remove(struct work_struct *w);
52
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54
55 static struct workqueue_struct *deferred_remove_workqueue;
56
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59
60 void dm_issue_global_event(void)
61 {
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
64 }
65
66 /*
67 * One of these is allocated (on-stack) per original bio.
68 */
69 struct clone_info {
70 struct dm_table *map;
71 struct bio *bio;
72 struct dm_io *io;
73 sector_t sector;
74 unsigned sector_count;
75 };
76
77 /*
78 * One of these is allocated per clone bio.
79 */
80 #define DM_TIO_MAGIC 7282014
81 struct dm_target_io {
82 unsigned magic;
83 struct dm_io *io;
84 struct dm_target *ti;
85 unsigned target_bio_nr;
86 unsigned *len_ptr;
87 bool inside_dm_io;
88 struct bio clone;
89 };
90
91 /*
92 * One of these is allocated per original bio.
93 * It contains the first clone used for that original.
94 */
95 #define DM_IO_MAGIC 5191977
96 struct dm_io {
97 unsigned magic;
98 struct mapped_device *md;
99 blk_status_t status;
100 atomic_t io_count;
101 struct bio *orig_bio;
102 unsigned long start_time;
103 spinlock_t endio_lock;
104 struct dm_stats_aux stats_aux;
105 /* last member of dm_target_io is 'struct bio' */
106 struct dm_target_io tio;
107 };
108
109 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
110 #define DM_IO_BIO_OFFSET \
111 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
112
113 void *dm_per_bio_data(struct bio *bio, size_t data_size)
114 {
115 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
116 if (!tio->inside_dm_io)
117 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
118 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
119 }
120 EXPORT_SYMBOL_GPL(dm_per_bio_data);
121
122 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
123 {
124 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
125 if (io->magic == DM_IO_MAGIC)
126 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
127 BUG_ON(io->magic != DM_TIO_MAGIC);
128 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
129 }
130 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
131
132 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
133 {
134 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
135 }
136 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
137
138 #define MINOR_ALLOCED ((void *)-1)
139
140 /*
141 * Bits for the md->flags field.
142 */
143 #define DMF_BLOCK_IO_FOR_SUSPEND 0
144 #define DMF_SUSPENDED 1
145 #define DMF_FROZEN 2
146 #define DMF_FREEING 3
147 #define DMF_DELETING 4
148 #define DMF_NOFLUSH_SUSPENDING 5
149 #define DMF_DEFERRED_REMOVE 6
150 #define DMF_SUSPENDED_INTERNALLY 7
151 #define DMF_POST_SUSPENDING 8
152
153 #define DM_NUMA_NODE NUMA_NO_NODE
154 static int dm_numa_node = DM_NUMA_NODE;
155
156 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
157 static int swap_bios = DEFAULT_SWAP_BIOS;
158 static int get_swap_bios(void)
159 {
160 int latch = READ_ONCE(swap_bios);
161 if (unlikely(latch <= 0))
162 latch = DEFAULT_SWAP_BIOS;
163 return latch;
164 }
165
166 /*
167 * For mempools pre-allocation at the table loading time.
168 */
169 struct dm_md_mempools {
170 struct bio_set bs;
171 struct bio_set io_bs;
172 };
173
174 struct table_device {
175 struct list_head list;
176 refcount_t count;
177 struct dm_dev dm_dev;
178 };
179
180 /*
181 * Bio-based DM's mempools' reserved IOs set by the user.
182 */
183 #define RESERVED_BIO_BASED_IOS 16
184 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
185
186 static int __dm_get_module_param_int(int *module_param, int min, int max)
187 {
188 int param = READ_ONCE(*module_param);
189 int modified_param = 0;
190 bool modified = true;
191
192 if (param < min)
193 modified_param = min;
194 else if (param > max)
195 modified_param = max;
196 else
197 modified = false;
198
199 if (modified) {
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
202 }
203
204 return param;
205 }
206
207 unsigned __dm_get_module_param(unsigned *module_param,
208 unsigned def, unsigned max)
209 {
210 unsigned param = READ_ONCE(*module_param);
211 unsigned modified_param = 0;
212
213 if (!param)
214 modified_param = def;
215 else if (param > max)
216 modified_param = max;
217
218 if (modified_param) {
219 (void)cmpxchg(module_param, param, modified_param);
220 param = modified_param;
221 }
222
223 return param;
224 }
225
226 unsigned dm_get_reserved_bio_based_ios(void)
227 {
228 return __dm_get_module_param(&reserved_bio_based_ios,
229 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
230 }
231 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
232
233 static unsigned dm_get_numa_node(void)
234 {
235 return __dm_get_module_param_int(&dm_numa_node,
236 DM_NUMA_NODE, num_online_nodes() - 1);
237 }
238
239 static int __init local_init(void)
240 {
241 int r;
242
243 r = dm_uevent_init();
244 if (r)
245 return r;
246
247 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
248 if (!deferred_remove_workqueue) {
249 r = -ENOMEM;
250 goto out_uevent_exit;
251 }
252
253 _major = major;
254 r = register_blkdev(_major, _name);
255 if (r < 0)
256 goto out_free_workqueue;
257
258 if (!_major)
259 _major = r;
260
261 return 0;
262
263 out_free_workqueue:
264 destroy_workqueue(deferred_remove_workqueue);
265 out_uevent_exit:
266 dm_uevent_exit();
267
268 return r;
269 }
270
271 static void local_exit(void)
272 {
273 flush_scheduled_work();
274 destroy_workqueue(deferred_remove_workqueue);
275
276 unregister_blkdev(_major, _name);
277 dm_uevent_exit();
278
279 _major = 0;
280
281 DMINFO("cleaned up");
282 }
283
284 static int (*_inits[])(void) __initdata = {
285 local_init,
286 dm_target_init,
287 dm_linear_init,
288 dm_stripe_init,
289 dm_io_init,
290 dm_kcopyd_init,
291 dm_interface_init,
292 dm_statistics_init,
293 };
294
295 static void (*_exits[])(void) = {
296 local_exit,
297 dm_target_exit,
298 dm_linear_exit,
299 dm_stripe_exit,
300 dm_io_exit,
301 dm_kcopyd_exit,
302 dm_interface_exit,
303 dm_statistics_exit,
304 };
305
306 static int __init dm_init(void)
307 {
308 const int count = ARRAY_SIZE(_inits);
309
310 int r, i;
311
312 for (i = 0; i < count; i++) {
313 r = _inits[i]();
314 if (r)
315 goto bad;
316 }
317
318 return 0;
319
320 bad:
321 while (i--)
322 _exits[i]();
323
324 return r;
325 }
326
327 static void __exit dm_exit(void)
328 {
329 int i = ARRAY_SIZE(_exits);
330
331 while (i--)
332 _exits[i]();
333
334 /*
335 * Should be empty by this point.
336 */
337 idr_destroy(&_minor_idr);
338 }
339
340 /*
341 * Block device functions
342 */
343 int dm_deleting_md(struct mapped_device *md)
344 {
345 return test_bit(DMF_DELETING, &md->flags);
346 }
347
348 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 {
350 struct mapped_device *md;
351
352 spin_lock(&_minor_lock);
353
354 md = bdev->bd_disk->private_data;
355 if (!md)
356 goto out;
357
358 if (test_bit(DMF_FREEING, &md->flags) ||
359 dm_deleting_md(md)) {
360 md = NULL;
361 goto out;
362 }
363
364 dm_get(md);
365 atomic_inc(&md->open_count);
366 out:
367 spin_unlock(&_minor_lock);
368
369 return md ? 0 : -ENXIO;
370 }
371
372 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 {
374 struct mapped_device *md;
375
376 spin_lock(&_minor_lock);
377
378 md = disk->private_data;
379 if (WARN_ON(!md))
380 goto out;
381
382 if (atomic_dec_and_test(&md->open_count) &&
383 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
384 queue_work(deferred_remove_workqueue, &deferred_remove_work);
385
386 dm_put(md);
387 out:
388 spin_unlock(&_minor_lock);
389 }
390
391 int dm_open_count(struct mapped_device *md)
392 {
393 return atomic_read(&md->open_count);
394 }
395
396 /*
397 * Guarantees nothing is using the device before it's deleted.
398 */
399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 {
401 int r = 0;
402
403 spin_lock(&_minor_lock);
404
405 if (dm_open_count(md)) {
406 r = -EBUSY;
407 if (mark_deferred)
408 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
409 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
410 r = -EEXIST;
411 else
412 set_bit(DMF_DELETING, &md->flags);
413
414 spin_unlock(&_minor_lock);
415
416 return r;
417 }
418
419 int dm_cancel_deferred_remove(struct mapped_device *md)
420 {
421 int r = 0;
422
423 spin_lock(&_minor_lock);
424
425 if (test_bit(DMF_DELETING, &md->flags))
426 r = -EBUSY;
427 else
428 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429
430 spin_unlock(&_minor_lock);
431
432 return r;
433 }
434
435 static void do_deferred_remove(struct work_struct *w)
436 {
437 dm_deferred_remove();
438 }
439
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 struct mapped_device *md = bdev->bd_disk->private_data;
443
444 return dm_get_geometry(md, geo);
445 }
446
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 struct dm_report_zones_args *args = data;
451 sector_t sector_diff = args->tgt->begin - args->start;
452
453 /*
454 * Ignore zones beyond the target range.
455 */
456 if (zone->start >= args->start + args->tgt->len)
457 return 0;
458
459 /*
460 * Remap the start sector and write pointer position of the zone
461 * to match its position in the target range.
462 */
463 zone->start += sector_diff;
464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 if (zone->cond == BLK_ZONE_COND_FULL)
466 zone->wp = zone->start + zone->len;
467 else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 zone->wp = zone->start;
469 else
470 zone->wp += sector_diff;
471 }
472
473 args->next_sector = zone->start + zone->len;
474 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 struct mapped_device *md = disk->private_data;
482 struct dm_table *map;
483 int srcu_idx, ret;
484 struct dm_report_zones_args args = {
485 .next_sector = sector,
486 .orig_data = data,
487 .orig_cb = cb,
488 };
489
490 if (dm_suspended_md(md))
491 return -EAGAIN;
492
493 map = dm_get_live_table(md, &srcu_idx);
494 if (!map) {
495 ret = -EIO;
496 goto out;
497 }
498
499 do {
500 struct dm_target *tgt;
501
502 tgt = dm_table_find_target(map, args.next_sector);
503 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
504 ret = -EIO;
505 goto out;
506 }
507
508 args.tgt = tgt;
509 ret = tgt->type->report_zones(tgt, &args,
510 nr_zones - args.zone_idx);
511 if (ret < 0)
512 goto out;
513 } while (args.zone_idx < nr_zones &&
514 args.next_sector < get_capacity(disk));
515
516 ret = args.zone_idx;
517 out:
518 dm_put_live_table(md, srcu_idx);
519 return ret;
520 }
521 #else
522 #define dm_blk_report_zones NULL
523 #endif /* CONFIG_BLK_DEV_ZONED */
524
525 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
526 struct block_device **bdev)
527 {
528 struct dm_target *tgt;
529 struct dm_table *map;
530 int r;
531
532 retry:
533 r = -ENOTTY;
534 map = dm_get_live_table(md, srcu_idx);
535 if (!map || !dm_table_get_size(map))
536 return r;
537
538 /* We only support devices that have a single target */
539 if (dm_table_get_num_targets(map) != 1)
540 return r;
541
542 tgt = dm_table_get_target(map, 0);
543 if (!tgt->type->prepare_ioctl)
544 return r;
545
546 if (dm_suspended_md(md))
547 return -EAGAIN;
548
549 r = tgt->type->prepare_ioctl(tgt, bdev);
550 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
551 dm_put_live_table(md, *srcu_idx);
552 msleep(10);
553 goto retry;
554 }
555
556 return r;
557 }
558
559 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
560 {
561 dm_put_live_table(md, srcu_idx);
562 }
563
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 unsigned int cmd, unsigned long arg)
566 {
567 struct mapped_device *md = bdev->bd_disk->private_data;
568 int r, srcu_idx;
569
570 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 if (r < 0)
572 goto out;
573
574 if (r > 0) {
575 /*
576 * Target determined this ioctl is being issued against a
577 * subset of the parent bdev; require extra privileges.
578 */
579 if (!capable(CAP_SYS_RAWIO)) {
580 DMDEBUG_LIMIT(
581 "%s: sending ioctl %x to DM device without required privilege.",
582 current->comm, cmd);
583 r = -ENOIOCTLCMD;
584 goto out;
585 }
586 }
587
588 if (!bdev->bd_disk->fops->ioctl)
589 r = -ENOTTY;
590 else
591 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
592 out:
593 dm_unprepare_ioctl(md, srcu_idx);
594 return r;
595 }
596
597 u64 dm_start_time_ns_from_clone(struct bio *bio)
598 {
599 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
600 struct dm_io *io = tio->io;
601
602 return jiffies_to_nsecs(io->start_time);
603 }
604 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
605
606 static void start_io_acct(struct dm_io *io)
607 {
608 struct mapped_device *md = io->md;
609 struct bio *bio = io->orig_bio;
610
611 io->start_time = bio_start_io_acct(bio);
612 if (unlikely(dm_stats_used(&md->stats)))
613 dm_stats_account_io(&md->stats, bio_data_dir(bio),
614 bio->bi_iter.bi_sector, bio_sectors(bio),
615 false, 0, &io->stats_aux);
616 }
617
618 static void end_io_acct(struct dm_io *io)
619 {
620 struct mapped_device *md = io->md;
621 struct bio *bio = io->orig_bio;
622 unsigned long duration = jiffies - io->start_time;
623
624 bio_end_io_acct(bio, io->start_time);
625
626 if (unlikely(dm_stats_used(&md->stats)))
627 dm_stats_account_io(&md->stats, bio_data_dir(bio),
628 bio->bi_iter.bi_sector, bio_sectors(bio),
629 true, duration, &io->stats_aux);
630
631 /* nudge anyone waiting on suspend queue */
632 if (unlikely(wq_has_sleeper(&md->wait)))
633 wake_up(&md->wait);
634 }
635
636 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
637 {
638 struct dm_io *io;
639 struct dm_target_io *tio;
640 struct bio *clone;
641
642 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
643 if (!clone)
644 return NULL;
645
646 tio = container_of(clone, struct dm_target_io, clone);
647 tio->inside_dm_io = true;
648 tio->io = NULL;
649
650 io = container_of(tio, struct dm_io, tio);
651 io->magic = DM_IO_MAGIC;
652 io->status = 0;
653 atomic_set(&io->io_count, 1);
654 io->orig_bio = bio;
655 io->md = md;
656 spin_lock_init(&io->endio_lock);
657
658 start_io_acct(io);
659
660 return io;
661 }
662
663 static void free_io(struct mapped_device *md, struct dm_io *io)
664 {
665 bio_put(&io->tio.clone);
666 }
667
668 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
669 unsigned target_bio_nr, gfp_t gfp_mask)
670 {
671 struct dm_target_io *tio;
672
673 if (!ci->io->tio.io) {
674 /* the dm_target_io embedded in ci->io is available */
675 tio = &ci->io->tio;
676 } else {
677 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
678 if (!clone)
679 return NULL;
680
681 tio = container_of(clone, struct dm_target_io, clone);
682 tio->inside_dm_io = false;
683 }
684
685 tio->magic = DM_TIO_MAGIC;
686 tio->io = ci->io;
687 tio->ti = ti;
688 tio->target_bio_nr = target_bio_nr;
689
690 return tio;
691 }
692
693 static void free_tio(struct dm_target_io *tio)
694 {
695 if (tio->inside_dm_io)
696 return;
697 bio_put(&tio->clone);
698 }
699
700 /*
701 * Add the bio to the list of deferred io.
702 */
703 static void queue_io(struct mapped_device *md, struct bio *bio)
704 {
705 unsigned long flags;
706
707 spin_lock_irqsave(&md->deferred_lock, flags);
708 bio_list_add(&md->deferred, bio);
709 spin_unlock_irqrestore(&md->deferred_lock, flags);
710 queue_work(md->wq, &md->work);
711 }
712
713 /*
714 * Everyone (including functions in this file), should use this
715 * function to access the md->map field, and make sure they call
716 * dm_put_live_table() when finished.
717 */
718 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
719 {
720 *srcu_idx = srcu_read_lock(&md->io_barrier);
721
722 return srcu_dereference(md->map, &md->io_barrier);
723 }
724
725 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
726 {
727 srcu_read_unlock(&md->io_barrier, srcu_idx);
728 }
729
730 void dm_sync_table(struct mapped_device *md)
731 {
732 synchronize_srcu(&md->io_barrier);
733 synchronize_rcu_expedited();
734 }
735
736 /*
737 * A fast alternative to dm_get_live_table/dm_put_live_table.
738 * The caller must not block between these two functions.
739 */
740 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
741 {
742 rcu_read_lock();
743 return rcu_dereference(md->map);
744 }
745
746 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
747 {
748 rcu_read_unlock();
749 }
750
751 static char *_dm_claim_ptr = "I belong to device-mapper";
752
753 /*
754 * Open a table device so we can use it as a map destination.
755 */
756 static int open_table_device(struct table_device *td, dev_t dev,
757 struct mapped_device *md)
758 {
759 struct block_device *bdev;
760
761 int r;
762
763 BUG_ON(td->dm_dev.bdev);
764
765 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
766 if (IS_ERR(bdev))
767 return PTR_ERR(bdev);
768
769 r = bd_link_disk_holder(bdev, dm_disk(md));
770 if (r) {
771 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
772 return r;
773 }
774
775 td->dm_dev.bdev = bdev;
776 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
777 return 0;
778 }
779
780 /*
781 * Close a table device that we've been using.
782 */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 if (!td->dm_dev.bdev)
786 return;
787
788 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
789 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
790 put_dax(td->dm_dev.dax_dev);
791 td->dm_dev.bdev = NULL;
792 td->dm_dev.dax_dev = NULL;
793 }
794
795 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
796 fmode_t mode)
797 {
798 struct table_device *td;
799
800 list_for_each_entry(td, l, list)
801 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
802 return td;
803
804 return NULL;
805 }
806
807 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
808 struct dm_dev **result)
809 {
810 int r;
811 struct table_device *td;
812
813 mutex_lock(&md->table_devices_lock);
814 td = find_table_device(&md->table_devices, dev, mode);
815 if (!td) {
816 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
817 if (!td) {
818 mutex_unlock(&md->table_devices_lock);
819 return -ENOMEM;
820 }
821
822 td->dm_dev.mode = mode;
823 td->dm_dev.bdev = NULL;
824
825 if ((r = open_table_device(td, dev, md))) {
826 mutex_unlock(&md->table_devices_lock);
827 kfree(td);
828 return r;
829 }
830
831 format_dev_t(td->dm_dev.name, dev);
832
833 refcount_set(&td->count, 1);
834 list_add(&td->list, &md->table_devices);
835 } else {
836 refcount_inc(&td->count);
837 }
838 mutex_unlock(&md->table_devices_lock);
839
840 *result = &td->dm_dev;
841 return 0;
842 }
843 EXPORT_SYMBOL_GPL(dm_get_table_device);
844
845 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
846 {
847 struct table_device *td = container_of(d, struct table_device, dm_dev);
848
849 mutex_lock(&md->table_devices_lock);
850 if (refcount_dec_and_test(&td->count)) {
851 close_table_device(td, md);
852 list_del(&td->list);
853 kfree(td);
854 }
855 mutex_unlock(&md->table_devices_lock);
856 }
857 EXPORT_SYMBOL(dm_put_table_device);
858
859 static void free_table_devices(struct list_head *devices)
860 {
861 struct list_head *tmp, *next;
862
863 list_for_each_safe(tmp, next, devices) {
864 struct table_device *td = list_entry(tmp, struct table_device, list);
865
866 DMWARN("dm_destroy: %s still exists with %d references",
867 td->dm_dev.name, refcount_read(&td->count));
868 kfree(td);
869 }
870 }
871
872 /*
873 * Get the geometry associated with a dm device
874 */
875 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
876 {
877 *geo = md->geometry;
878
879 return 0;
880 }
881
882 /*
883 * Set the geometry of a device.
884 */
885 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
886 {
887 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
888
889 if (geo->start > sz) {
890 DMWARN("Start sector is beyond the geometry limits.");
891 return -EINVAL;
892 }
893
894 md->geometry = *geo;
895
896 return 0;
897 }
898
899 static int __noflush_suspending(struct mapped_device *md)
900 {
901 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
902 }
903
904 /*
905 * Decrements the number of outstanding ios that a bio has been
906 * cloned into, completing the original io if necc.
907 */
908 static void dec_pending(struct dm_io *io, blk_status_t error)
909 {
910 unsigned long flags;
911 blk_status_t io_error;
912 struct bio *bio;
913 struct mapped_device *md = io->md;
914
915 /* Push-back supersedes any I/O errors */
916 if (unlikely(error)) {
917 spin_lock_irqsave(&io->endio_lock, flags);
918 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
919 io->status = error;
920 spin_unlock_irqrestore(&io->endio_lock, flags);
921 }
922
923 if (atomic_dec_and_test(&io->io_count)) {
924 if (io->status == BLK_STS_DM_REQUEUE) {
925 /*
926 * Target requested pushing back the I/O.
927 */
928 spin_lock_irqsave(&md->deferred_lock, flags);
929 if (__noflush_suspending(md))
930 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
931 bio_list_add_head(&md->deferred, io->orig_bio);
932 else
933 /* noflush suspend was interrupted. */
934 io->status = BLK_STS_IOERR;
935 spin_unlock_irqrestore(&md->deferred_lock, flags);
936 }
937
938 io_error = io->status;
939 bio = io->orig_bio;
940 end_io_acct(io);
941 free_io(md, io);
942
943 if (io_error == BLK_STS_DM_REQUEUE)
944 return;
945
946 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
947 /*
948 * Preflush done for flush with data, reissue
949 * without REQ_PREFLUSH.
950 */
951 bio->bi_opf &= ~REQ_PREFLUSH;
952 queue_io(md, bio);
953 } else {
954 /* done with normal IO or empty flush */
955 if (io_error)
956 bio->bi_status = io_error;
957 bio_endio(bio);
958 }
959 }
960 }
961
962 void disable_discard(struct mapped_device *md)
963 {
964 struct queue_limits *limits = dm_get_queue_limits(md);
965
966 /* device doesn't really support DISCARD, disable it */
967 limits->max_discard_sectors = 0;
968 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
969 }
970
971 void disable_write_same(struct mapped_device *md)
972 {
973 struct queue_limits *limits = dm_get_queue_limits(md);
974
975 /* device doesn't really support WRITE SAME, disable it */
976 limits->max_write_same_sectors = 0;
977 }
978
979 void disable_write_zeroes(struct mapped_device *md)
980 {
981 struct queue_limits *limits = dm_get_queue_limits(md);
982
983 /* device doesn't really support WRITE ZEROES, disable it */
984 limits->max_write_zeroes_sectors = 0;
985 }
986
987 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
988 {
989 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
990 }
991
992 static void clone_endio(struct bio *bio)
993 {
994 blk_status_t error = bio->bi_status;
995 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 struct dm_io *io = tio->io;
997 struct mapped_device *md = tio->io->md;
998 dm_endio_fn endio = tio->ti->type->end_io;
999 struct bio *orig_bio = io->orig_bio;
1000 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1001
1002 if (unlikely(error == BLK_STS_TARGET)) {
1003 if (bio_op(bio) == REQ_OP_DISCARD &&
1004 !q->limits.max_discard_sectors)
1005 disable_discard(md);
1006 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1007 !q->limits.max_write_same_sectors)
1008 disable_write_same(md);
1009 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1010 !q->limits.max_write_zeroes_sectors)
1011 disable_write_zeroes(md);
1012 }
1013
1014 /*
1015 * For zone-append bios get offset in zone of the written
1016 * sector and add that to the original bio sector pos.
1017 */
1018 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1019 sector_t written_sector = bio->bi_iter.bi_sector;
1020 struct request_queue *q = orig_bio->bi_bdev->bd_disk->queue;
1021 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1022
1023 orig_bio->bi_iter.bi_sector += written_sector & mask;
1024 }
1025
1026 if (endio) {
1027 int r = endio(tio->ti, bio, &error);
1028 switch (r) {
1029 case DM_ENDIO_REQUEUE:
1030 error = BLK_STS_DM_REQUEUE;
1031 fallthrough;
1032 case DM_ENDIO_DONE:
1033 break;
1034 case DM_ENDIO_INCOMPLETE:
1035 /* The target will handle the io */
1036 return;
1037 default:
1038 DMWARN("unimplemented target endio return value: %d", r);
1039 BUG();
1040 }
1041 }
1042
1043 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1044 struct mapped_device *md = io->md;
1045 up(&md->swap_bios_semaphore);
1046 }
1047
1048 free_tio(tio);
1049 dec_pending(io, error);
1050 }
1051
1052 /*
1053 * Return maximum size of I/O possible at the supplied sector up to the current
1054 * target boundary.
1055 */
1056 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1057 sector_t target_offset)
1058 {
1059 return ti->len - target_offset;
1060 }
1061
1062 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1063 {
1064 sector_t target_offset = dm_target_offset(ti, sector);
1065 sector_t len = max_io_len_target_boundary(ti, target_offset);
1066 sector_t max_len;
1067
1068 /*
1069 * Does the target need to split IO even further?
1070 * - varied (per target) IO splitting is a tenet of DM; this
1071 * explains why stacked chunk_sectors based splitting via
1072 * blk_max_size_offset() isn't possible here. So pass in
1073 * ti->max_io_len to override stacked chunk_sectors.
1074 */
1075 if (ti->max_io_len) {
1076 max_len = blk_max_size_offset(ti->table->md->queue,
1077 target_offset, ti->max_io_len);
1078 if (len > max_len)
1079 len = max_len;
1080 }
1081
1082 return len;
1083 }
1084
1085 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1086 {
1087 if (len > UINT_MAX) {
1088 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1089 (unsigned long long)len, UINT_MAX);
1090 ti->error = "Maximum size of target IO is too large";
1091 return -EINVAL;
1092 }
1093
1094 ti->max_io_len = (uint32_t) len;
1095
1096 return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1099
1100 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1101 sector_t sector, int *srcu_idx)
1102 __acquires(md->io_barrier)
1103 {
1104 struct dm_table *map;
1105 struct dm_target *ti;
1106
1107 map = dm_get_live_table(md, srcu_idx);
1108 if (!map)
1109 return NULL;
1110
1111 ti = dm_table_find_target(map, sector);
1112 if (!ti)
1113 return NULL;
1114
1115 return ti;
1116 }
1117
1118 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1119 long nr_pages, void **kaddr, pfn_t *pfn)
1120 {
1121 struct mapped_device *md = dax_get_private(dax_dev);
1122 sector_t sector = pgoff * PAGE_SECTORS;
1123 struct dm_target *ti;
1124 long len, ret = -EIO;
1125 int srcu_idx;
1126
1127 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1128
1129 if (!ti)
1130 goto out;
1131 if (!ti->type->direct_access)
1132 goto out;
1133 len = max_io_len(ti, sector) / PAGE_SECTORS;
1134 if (len < 1)
1135 goto out;
1136 nr_pages = min(len, nr_pages);
1137 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1138
1139 out:
1140 dm_put_live_table(md, srcu_idx);
1141
1142 return ret;
1143 }
1144
1145 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1146 int blocksize, sector_t start, sector_t len)
1147 {
1148 struct mapped_device *md = dax_get_private(dax_dev);
1149 struct dm_table *map;
1150 bool ret = false;
1151 int srcu_idx;
1152
1153 map = dm_get_live_table(md, &srcu_idx);
1154 if (!map)
1155 goto out;
1156
1157 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1158
1159 out:
1160 dm_put_live_table(md, srcu_idx);
1161
1162 return ret;
1163 }
1164
1165 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1166 void *addr, size_t bytes, struct iov_iter *i)
1167 {
1168 struct mapped_device *md = dax_get_private(dax_dev);
1169 sector_t sector = pgoff * PAGE_SECTORS;
1170 struct dm_target *ti;
1171 long ret = 0;
1172 int srcu_idx;
1173
1174 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1175
1176 if (!ti)
1177 goto out;
1178 if (!ti->type->dax_copy_from_iter) {
1179 ret = copy_from_iter(addr, bytes, i);
1180 goto out;
1181 }
1182 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1183 out:
1184 dm_put_live_table(md, srcu_idx);
1185
1186 return ret;
1187 }
1188
1189 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1190 void *addr, size_t bytes, struct iov_iter *i)
1191 {
1192 struct mapped_device *md = dax_get_private(dax_dev);
1193 sector_t sector = pgoff * PAGE_SECTORS;
1194 struct dm_target *ti;
1195 long ret = 0;
1196 int srcu_idx;
1197
1198 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1199
1200 if (!ti)
1201 goto out;
1202 if (!ti->type->dax_copy_to_iter) {
1203 ret = copy_to_iter(addr, bytes, i);
1204 goto out;
1205 }
1206 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1207 out:
1208 dm_put_live_table(md, srcu_idx);
1209
1210 return ret;
1211 }
1212
1213 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1214 size_t nr_pages)
1215 {
1216 struct mapped_device *md = dax_get_private(dax_dev);
1217 sector_t sector = pgoff * PAGE_SECTORS;
1218 struct dm_target *ti;
1219 int ret = -EIO;
1220 int srcu_idx;
1221
1222 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1223
1224 if (!ti)
1225 goto out;
1226 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1227 /*
1228 * ->zero_page_range() is mandatory dax operation. If we are
1229 * here, something is wrong.
1230 */
1231 goto out;
1232 }
1233 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1234 out:
1235 dm_put_live_table(md, srcu_idx);
1236
1237 return ret;
1238 }
1239
1240 /*
1241 * A target may call dm_accept_partial_bio only from the map routine. It is
1242 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1243 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1244 *
1245 * dm_accept_partial_bio informs the dm that the target only wants to process
1246 * additional n_sectors sectors of the bio and the rest of the data should be
1247 * sent in a next bio.
1248 *
1249 * A diagram that explains the arithmetics:
1250 * +--------------------+---------------+-------+
1251 * | 1 | 2 | 3 |
1252 * +--------------------+---------------+-------+
1253 *
1254 * <-------------- *tio->len_ptr --------------->
1255 * <------- bi_size ------->
1256 * <-- n_sectors -->
1257 *
1258 * Region 1 was already iterated over with bio_advance or similar function.
1259 * (it may be empty if the target doesn't use bio_advance)
1260 * Region 2 is the remaining bio size that the target wants to process.
1261 * (it may be empty if region 1 is non-empty, although there is no reason
1262 * to make it empty)
1263 * The target requires that region 3 is to be sent in the next bio.
1264 *
1265 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1266 * the partially processed part (the sum of regions 1+2) must be the same for all
1267 * copies of the bio.
1268 */
1269 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1270 {
1271 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1272 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1273 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1274 BUG_ON(bi_size > *tio->len_ptr);
1275 BUG_ON(n_sectors > bi_size);
1276 *tio->len_ptr -= bi_size - n_sectors;
1277 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1278 }
1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1280
1281 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1282 {
1283 mutex_lock(&md->swap_bios_lock);
1284 while (latch < md->swap_bios) {
1285 cond_resched();
1286 down(&md->swap_bios_semaphore);
1287 md->swap_bios--;
1288 }
1289 while (latch > md->swap_bios) {
1290 cond_resched();
1291 up(&md->swap_bios_semaphore);
1292 md->swap_bios++;
1293 }
1294 mutex_unlock(&md->swap_bios_lock);
1295 }
1296
1297 static blk_qc_t __map_bio(struct dm_target_io *tio)
1298 {
1299 int r;
1300 sector_t sector;
1301 struct bio *clone = &tio->clone;
1302 struct dm_io *io = tio->io;
1303 struct dm_target *ti = tio->ti;
1304 blk_qc_t ret = BLK_QC_T_NONE;
1305
1306 clone->bi_end_io = clone_endio;
1307
1308 /*
1309 * Map the clone. If r == 0 we don't need to do
1310 * anything, the target has assumed ownership of
1311 * this io.
1312 */
1313 atomic_inc(&io->io_count);
1314 sector = clone->bi_iter.bi_sector;
1315
1316 if (unlikely(swap_bios_limit(ti, clone))) {
1317 struct mapped_device *md = io->md;
1318 int latch = get_swap_bios();
1319 if (unlikely(latch != md->swap_bios))
1320 __set_swap_bios_limit(md, latch);
1321 down(&md->swap_bios_semaphore);
1322 }
1323
1324 r = ti->type->map(ti, clone);
1325 switch (r) {
1326 case DM_MAPIO_SUBMITTED:
1327 break;
1328 case DM_MAPIO_REMAPPED:
1329 /* the bio has been remapped so dispatch it */
1330 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1331 ret = submit_bio_noacct(clone);
1332 break;
1333 case DM_MAPIO_KILL:
1334 if (unlikely(swap_bios_limit(ti, clone))) {
1335 struct mapped_device *md = io->md;
1336 up(&md->swap_bios_semaphore);
1337 }
1338 free_tio(tio);
1339 dec_pending(io, BLK_STS_IOERR);
1340 break;
1341 case DM_MAPIO_REQUEUE:
1342 if (unlikely(swap_bios_limit(ti, clone))) {
1343 struct mapped_device *md = io->md;
1344 up(&md->swap_bios_semaphore);
1345 }
1346 free_tio(tio);
1347 dec_pending(io, BLK_STS_DM_REQUEUE);
1348 break;
1349 default:
1350 DMWARN("unimplemented target map return value: %d", r);
1351 BUG();
1352 }
1353
1354 return ret;
1355 }
1356
1357 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1358 {
1359 bio->bi_iter.bi_sector = sector;
1360 bio->bi_iter.bi_size = to_bytes(len);
1361 }
1362
1363 /*
1364 * Creates a bio that consists of range of complete bvecs.
1365 */
1366 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1367 sector_t sector, unsigned len)
1368 {
1369 struct bio *clone = &tio->clone;
1370 int r;
1371
1372 __bio_clone_fast(clone, bio);
1373
1374 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1375 if (r < 0)
1376 return r;
1377
1378 if (bio_integrity(bio)) {
1379 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1380 !dm_target_passes_integrity(tio->ti->type))) {
1381 DMWARN("%s: the target %s doesn't support integrity data.",
1382 dm_device_name(tio->io->md),
1383 tio->ti->type->name);
1384 return -EIO;
1385 }
1386
1387 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1388 if (r < 0)
1389 return r;
1390 }
1391
1392 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1393 clone->bi_iter.bi_size = to_bytes(len);
1394
1395 if (bio_integrity(bio))
1396 bio_integrity_trim(clone);
1397
1398 return 0;
1399 }
1400
1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1402 struct dm_target *ti, unsigned num_bios)
1403 {
1404 struct dm_target_io *tio;
1405 int try;
1406
1407 if (!num_bios)
1408 return;
1409
1410 if (num_bios == 1) {
1411 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1412 bio_list_add(blist, &tio->clone);
1413 return;
1414 }
1415
1416 for (try = 0; try < 2; try++) {
1417 int bio_nr;
1418 struct bio *bio;
1419
1420 if (try)
1421 mutex_lock(&ci->io->md->table_devices_lock);
1422 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1423 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1424 if (!tio)
1425 break;
1426
1427 bio_list_add(blist, &tio->clone);
1428 }
1429 if (try)
1430 mutex_unlock(&ci->io->md->table_devices_lock);
1431 if (bio_nr == num_bios)
1432 return;
1433
1434 while ((bio = bio_list_pop(blist))) {
1435 tio = container_of(bio, struct dm_target_io, clone);
1436 free_tio(tio);
1437 }
1438 }
1439 }
1440
1441 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1442 struct dm_target_io *tio, unsigned *len)
1443 {
1444 struct bio *clone = &tio->clone;
1445
1446 tio->len_ptr = len;
1447
1448 __bio_clone_fast(clone, ci->bio);
1449 if (len)
1450 bio_setup_sector(clone, ci->sector, *len);
1451
1452 return __map_bio(tio);
1453 }
1454
1455 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1456 unsigned num_bios, unsigned *len)
1457 {
1458 struct bio_list blist = BIO_EMPTY_LIST;
1459 struct bio *bio;
1460 struct dm_target_io *tio;
1461
1462 alloc_multiple_bios(&blist, ci, ti, num_bios);
1463
1464 while ((bio = bio_list_pop(&blist))) {
1465 tio = container_of(bio, struct dm_target_io, clone);
1466 (void) __clone_and_map_simple_bio(ci, tio, len);
1467 }
1468 }
1469
1470 static int __send_empty_flush(struct clone_info *ci)
1471 {
1472 unsigned target_nr = 0;
1473 struct dm_target *ti;
1474 struct bio flush_bio;
1475
1476 /*
1477 * Use an on-stack bio for this, it's safe since we don't
1478 * need to reference it after submit. It's just used as
1479 * the basis for the clone(s).
1480 */
1481 bio_init(&flush_bio, NULL, 0);
1482 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1483 bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1484
1485 ci->bio = &flush_bio;
1486 ci->sector_count = 0;
1487
1488 BUG_ON(bio_has_data(ci->bio));
1489 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1490 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1491
1492 bio_uninit(ci->bio);
1493 return 0;
1494 }
1495
1496 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1497 sector_t sector, unsigned *len)
1498 {
1499 struct bio *bio = ci->bio;
1500 struct dm_target_io *tio;
1501 int r;
1502
1503 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1504 tio->len_ptr = len;
1505 r = clone_bio(tio, bio, sector, *len);
1506 if (r < 0) {
1507 free_tio(tio);
1508 return r;
1509 }
1510 (void) __map_bio(tio);
1511
1512 return 0;
1513 }
1514
1515 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1516 unsigned num_bios)
1517 {
1518 unsigned len;
1519
1520 /*
1521 * Even though the device advertised support for this type of
1522 * request, that does not mean every target supports it, and
1523 * reconfiguration might also have changed that since the
1524 * check was performed.
1525 */
1526 if (!num_bios)
1527 return -EOPNOTSUPP;
1528
1529 len = min_t(sector_t, ci->sector_count,
1530 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1531
1532 __send_duplicate_bios(ci, ti, num_bios, &len);
1533
1534 ci->sector += len;
1535 ci->sector_count -= len;
1536
1537 return 0;
1538 }
1539
1540 static bool is_abnormal_io(struct bio *bio)
1541 {
1542 bool r = false;
1543
1544 switch (bio_op(bio)) {
1545 case REQ_OP_DISCARD:
1546 case REQ_OP_SECURE_ERASE:
1547 case REQ_OP_WRITE_SAME:
1548 case REQ_OP_WRITE_ZEROES:
1549 r = true;
1550 break;
1551 }
1552
1553 return r;
1554 }
1555
1556 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1557 int *result)
1558 {
1559 struct bio *bio = ci->bio;
1560 unsigned num_bios = 0;
1561
1562 switch (bio_op(bio)) {
1563 case REQ_OP_DISCARD:
1564 num_bios = ti->num_discard_bios;
1565 break;
1566 case REQ_OP_SECURE_ERASE:
1567 num_bios = ti->num_secure_erase_bios;
1568 break;
1569 case REQ_OP_WRITE_SAME:
1570 num_bios = ti->num_write_same_bios;
1571 break;
1572 case REQ_OP_WRITE_ZEROES:
1573 num_bios = ti->num_write_zeroes_bios;
1574 break;
1575 default:
1576 return false;
1577 }
1578
1579 *result = __send_changing_extent_only(ci, ti, num_bios);
1580 return true;
1581 }
1582
1583 /*
1584 * Select the correct strategy for processing a non-flush bio.
1585 */
1586 static int __split_and_process_non_flush(struct clone_info *ci)
1587 {
1588 struct dm_target *ti;
1589 unsigned len;
1590 int r;
1591
1592 ti = dm_table_find_target(ci->map, ci->sector);
1593 if (!ti)
1594 return -EIO;
1595
1596 if (__process_abnormal_io(ci, ti, &r))
1597 return r;
1598
1599 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1600
1601 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1602 if (r < 0)
1603 return r;
1604
1605 ci->sector += len;
1606 ci->sector_count -= len;
1607
1608 return 0;
1609 }
1610
1611 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1612 struct dm_table *map, struct bio *bio)
1613 {
1614 ci->map = map;
1615 ci->io = alloc_io(md, bio);
1616 ci->sector = bio->bi_iter.bi_sector;
1617 }
1618
1619 #define __dm_part_stat_sub(part, field, subnd) \
1620 (part_stat_get(part, field) -= (subnd))
1621
1622 /*
1623 * Entry point to split a bio into clones and submit them to the targets.
1624 */
1625 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1626 struct dm_table *map, struct bio *bio)
1627 {
1628 struct clone_info ci;
1629 blk_qc_t ret = BLK_QC_T_NONE;
1630 int error = 0;
1631
1632 init_clone_info(&ci, md, map, bio);
1633
1634 if (bio->bi_opf & REQ_PREFLUSH) {
1635 error = __send_empty_flush(&ci);
1636 /* dec_pending submits any data associated with flush */
1637 } else if (op_is_zone_mgmt(bio_op(bio))) {
1638 ci.bio = bio;
1639 ci.sector_count = 0;
1640 error = __split_and_process_non_flush(&ci);
1641 } else {
1642 ci.bio = bio;
1643 ci.sector_count = bio_sectors(bio);
1644 while (ci.sector_count && !error) {
1645 error = __split_and_process_non_flush(&ci);
1646 if (ci.sector_count && !error) {
1647 /*
1648 * Remainder must be passed to submit_bio_noacct()
1649 * so that it gets handled *after* bios already submitted
1650 * have been completely processed.
1651 * We take a clone of the original to store in
1652 * ci.io->orig_bio to be used by end_io_acct() and
1653 * for dec_pending to use for completion handling.
1654 */
1655 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1656 GFP_NOIO, &md->queue->bio_split);
1657 ci.io->orig_bio = b;
1658
1659 /*
1660 * Adjust IO stats for each split, otherwise upon queue
1661 * reentry there will be redundant IO accounting.
1662 * NOTE: this is a stop-gap fix, a proper fix involves
1663 * significant refactoring of DM core's bio splitting
1664 * (by eliminating DM's splitting and just using bio_split)
1665 */
1666 part_stat_lock();
1667 __dm_part_stat_sub(dm_disk(md)->part0,
1668 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1669 part_stat_unlock();
1670
1671 bio_chain(b, bio);
1672 trace_block_split(b, bio->bi_iter.bi_sector);
1673 ret = submit_bio_noacct(bio);
1674 break;
1675 }
1676 }
1677 }
1678
1679 /* drop the extra reference count */
1680 dec_pending(ci.io, errno_to_blk_status(error));
1681 return ret;
1682 }
1683
1684 static blk_qc_t dm_submit_bio(struct bio *bio)
1685 {
1686 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1687 blk_qc_t ret = BLK_QC_T_NONE;
1688 int srcu_idx;
1689 struct dm_table *map;
1690
1691 map = dm_get_live_table(md, &srcu_idx);
1692 if (unlikely(!map)) {
1693 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1694 dm_device_name(md));
1695 bio_io_error(bio);
1696 goto out;
1697 }
1698
1699 /* If suspended, queue this IO for later */
1700 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1701 if (bio->bi_opf & REQ_NOWAIT)
1702 bio_wouldblock_error(bio);
1703 else if (bio->bi_opf & REQ_RAHEAD)
1704 bio_io_error(bio);
1705 else
1706 queue_io(md, bio);
1707 goto out;
1708 }
1709
1710 /*
1711 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1712 * otherwise associated queue_limits won't be imposed.
1713 */
1714 if (is_abnormal_io(bio))
1715 blk_queue_split(&bio);
1716
1717 ret = __split_and_process_bio(md, map, bio);
1718 out:
1719 dm_put_live_table(md, srcu_idx);
1720 return ret;
1721 }
1722
1723 /*-----------------------------------------------------------------
1724 * An IDR is used to keep track of allocated minor numbers.
1725 *---------------------------------------------------------------*/
1726 static void free_minor(int minor)
1727 {
1728 spin_lock(&_minor_lock);
1729 idr_remove(&_minor_idr, minor);
1730 spin_unlock(&_minor_lock);
1731 }
1732
1733 /*
1734 * See if the device with a specific minor # is free.
1735 */
1736 static int specific_minor(int minor)
1737 {
1738 int r;
1739
1740 if (minor >= (1 << MINORBITS))
1741 return -EINVAL;
1742
1743 idr_preload(GFP_KERNEL);
1744 spin_lock(&_minor_lock);
1745
1746 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1747
1748 spin_unlock(&_minor_lock);
1749 idr_preload_end();
1750 if (r < 0)
1751 return r == -ENOSPC ? -EBUSY : r;
1752 return 0;
1753 }
1754
1755 static int next_free_minor(int *minor)
1756 {
1757 int r;
1758
1759 idr_preload(GFP_KERNEL);
1760 spin_lock(&_minor_lock);
1761
1762 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1763
1764 spin_unlock(&_minor_lock);
1765 idr_preload_end();
1766 if (r < 0)
1767 return r;
1768 *minor = r;
1769 return 0;
1770 }
1771
1772 static const struct block_device_operations dm_blk_dops;
1773 static const struct block_device_operations dm_rq_blk_dops;
1774 static const struct dax_operations dm_dax_ops;
1775
1776 static void dm_wq_work(struct work_struct *work);
1777
1778 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1779 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1780 {
1781 dm_destroy_keyslot_manager(q->ksm);
1782 }
1783
1784 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1785
1786 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1787 {
1788 }
1789 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1790
1791 static void cleanup_mapped_device(struct mapped_device *md)
1792 {
1793 if (md->wq)
1794 destroy_workqueue(md->wq);
1795 bioset_exit(&md->bs);
1796 bioset_exit(&md->io_bs);
1797
1798 if (md->dax_dev) {
1799 kill_dax(md->dax_dev);
1800 put_dax(md->dax_dev);
1801 md->dax_dev = NULL;
1802 }
1803
1804 if (md->disk) {
1805 spin_lock(&_minor_lock);
1806 md->disk->private_data = NULL;
1807 spin_unlock(&_minor_lock);
1808 del_gendisk(md->disk);
1809 put_disk(md->disk);
1810 }
1811
1812 if (md->queue) {
1813 dm_queue_destroy_keyslot_manager(md->queue);
1814 blk_cleanup_queue(md->queue);
1815 }
1816
1817 cleanup_srcu_struct(&md->io_barrier);
1818
1819 mutex_destroy(&md->suspend_lock);
1820 mutex_destroy(&md->type_lock);
1821 mutex_destroy(&md->table_devices_lock);
1822 mutex_destroy(&md->swap_bios_lock);
1823
1824 dm_mq_cleanup_mapped_device(md);
1825 }
1826
1827 /*
1828 * Allocate and initialise a blank device with a given minor.
1829 */
1830 static struct mapped_device *alloc_dev(int minor)
1831 {
1832 int r, numa_node_id = dm_get_numa_node();
1833 struct mapped_device *md;
1834 void *old_md;
1835
1836 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1837 if (!md) {
1838 DMWARN("unable to allocate device, out of memory.");
1839 return NULL;
1840 }
1841
1842 if (!try_module_get(THIS_MODULE))
1843 goto bad_module_get;
1844
1845 /* get a minor number for the dev */
1846 if (minor == DM_ANY_MINOR)
1847 r = next_free_minor(&minor);
1848 else
1849 r = specific_minor(minor);
1850 if (r < 0)
1851 goto bad_minor;
1852
1853 r = init_srcu_struct(&md->io_barrier);
1854 if (r < 0)
1855 goto bad_io_barrier;
1856
1857 md->numa_node_id = numa_node_id;
1858 md->init_tio_pdu = false;
1859 md->type = DM_TYPE_NONE;
1860 mutex_init(&md->suspend_lock);
1861 mutex_init(&md->type_lock);
1862 mutex_init(&md->table_devices_lock);
1863 spin_lock_init(&md->deferred_lock);
1864 atomic_set(&md->holders, 1);
1865 atomic_set(&md->open_count, 0);
1866 atomic_set(&md->event_nr, 0);
1867 atomic_set(&md->uevent_seq, 0);
1868 INIT_LIST_HEAD(&md->uevent_list);
1869 INIT_LIST_HEAD(&md->table_devices);
1870 spin_lock_init(&md->uevent_lock);
1871
1872 /*
1873 * default to bio-based until DM table is loaded and md->type
1874 * established. If request-based table is loaded: blk-mq will
1875 * override accordingly.
1876 */
1877 md->queue = blk_alloc_queue(numa_node_id);
1878 if (!md->queue)
1879 goto bad;
1880
1881 md->disk = alloc_disk_node(1, md->numa_node_id);
1882 if (!md->disk)
1883 goto bad;
1884
1885 init_waitqueue_head(&md->wait);
1886 INIT_WORK(&md->work, dm_wq_work);
1887 init_waitqueue_head(&md->eventq);
1888 init_completion(&md->kobj_holder.completion);
1889
1890 md->swap_bios = get_swap_bios();
1891 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1892 mutex_init(&md->swap_bios_lock);
1893
1894 md->disk->major = _major;
1895 md->disk->first_minor = minor;
1896 md->disk->fops = &dm_blk_dops;
1897 md->disk->queue = md->queue;
1898 md->disk->private_data = md;
1899 sprintf(md->disk->disk_name, "dm-%d", minor);
1900
1901 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1902 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1903 &dm_dax_ops, 0);
1904 if (IS_ERR(md->dax_dev))
1905 goto bad;
1906 }
1907
1908 add_disk_no_queue_reg(md->disk);
1909 format_dev_t(md->name, MKDEV(_major, minor));
1910
1911 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1912 if (!md->wq)
1913 goto bad;
1914
1915 dm_stats_init(&md->stats);
1916
1917 /* Populate the mapping, nobody knows we exist yet */
1918 spin_lock(&_minor_lock);
1919 old_md = idr_replace(&_minor_idr, md, minor);
1920 spin_unlock(&_minor_lock);
1921
1922 BUG_ON(old_md != MINOR_ALLOCED);
1923
1924 return md;
1925
1926 bad:
1927 cleanup_mapped_device(md);
1928 bad_io_barrier:
1929 free_minor(minor);
1930 bad_minor:
1931 module_put(THIS_MODULE);
1932 bad_module_get:
1933 kvfree(md);
1934 return NULL;
1935 }
1936
1937 static void unlock_fs(struct mapped_device *md);
1938
1939 static void free_dev(struct mapped_device *md)
1940 {
1941 int minor = MINOR(disk_devt(md->disk));
1942
1943 unlock_fs(md);
1944
1945 cleanup_mapped_device(md);
1946
1947 free_table_devices(&md->table_devices);
1948 dm_stats_cleanup(&md->stats);
1949 free_minor(minor);
1950
1951 module_put(THIS_MODULE);
1952 kvfree(md);
1953 }
1954
1955 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956 {
1957 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1958 int ret = 0;
1959
1960 if (dm_table_bio_based(t)) {
1961 /*
1962 * The md may already have mempools that need changing.
1963 * If so, reload bioset because front_pad may have changed
1964 * because a different table was loaded.
1965 */
1966 bioset_exit(&md->bs);
1967 bioset_exit(&md->io_bs);
1968
1969 } else if (bioset_initialized(&md->bs)) {
1970 /*
1971 * There's no need to reload with request-based dm
1972 * because the size of front_pad doesn't change.
1973 * Note for future: If you are to reload bioset,
1974 * prep-ed requests in the queue may refer
1975 * to bio from the old bioset, so you must walk
1976 * through the queue to unprep.
1977 */
1978 goto out;
1979 }
1980
1981 BUG_ON(!p ||
1982 bioset_initialized(&md->bs) ||
1983 bioset_initialized(&md->io_bs));
1984
1985 ret = bioset_init_from_src(&md->bs, &p->bs);
1986 if (ret)
1987 goto out;
1988 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1989 if (ret)
1990 bioset_exit(&md->bs);
1991 out:
1992 /* mempool bind completed, no longer need any mempools in the table */
1993 dm_table_free_md_mempools(t);
1994 return ret;
1995 }
1996
1997 /*
1998 * Bind a table to the device.
1999 */
2000 static void event_callback(void *context)
2001 {
2002 unsigned long flags;
2003 LIST_HEAD(uevents);
2004 struct mapped_device *md = (struct mapped_device *) context;
2005
2006 spin_lock_irqsave(&md->uevent_lock, flags);
2007 list_splice_init(&md->uevent_list, &uevents);
2008 spin_unlock_irqrestore(&md->uevent_lock, flags);
2009
2010 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2011
2012 atomic_inc(&md->event_nr);
2013 wake_up(&md->eventq);
2014 dm_issue_global_event();
2015 }
2016
2017 /*
2018 * Returns old map, which caller must destroy.
2019 */
2020 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2021 struct queue_limits *limits)
2022 {
2023 struct dm_table *old_map;
2024 struct request_queue *q = md->queue;
2025 bool request_based = dm_table_request_based(t);
2026 sector_t size;
2027 int ret;
2028
2029 lockdep_assert_held(&md->suspend_lock);
2030
2031 size = dm_table_get_size(t);
2032
2033 /*
2034 * Wipe any geometry if the size of the table changed.
2035 */
2036 if (size != dm_get_size(md))
2037 memset(&md->geometry, 0, sizeof(md->geometry));
2038
2039 if (!get_capacity(md->disk))
2040 set_capacity(md->disk, size);
2041 else
2042 set_capacity_and_notify(md->disk, size);
2043
2044 dm_table_event_callback(t, event_callback, md);
2045
2046 /*
2047 * The queue hasn't been stopped yet, if the old table type wasn't
2048 * for request-based during suspension. So stop it to prevent
2049 * I/O mapping before resume.
2050 * This must be done before setting the queue restrictions,
2051 * because request-based dm may be run just after the setting.
2052 */
2053 if (request_based)
2054 dm_stop_queue(q);
2055
2056 if (request_based) {
2057 /*
2058 * Leverage the fact that request-based DM targets are
2059 * immutable singletons - used to optimize dm_mq_queue_rq.
2060 */
2061 md->immutable_target = dm_table_get_immutable_target(t);
2062 }
2063
2064 ret = __bind_mempools(md, t);
2065 if (ret) {
2066 old_map = ERR_PTR(ret);
2067 goto out;
2068 }
2069
2070 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2071 rcu_assign_pointer(md->map, (void *)t);
2072 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2073
2074 dm_table_set_restrictions(t, q, limits);
2075 if (old_map)
2076 dm_sync_table(md);
2077
2078 out:
2079 return old_map;
2080 }
2081
2082 /*
2083 * Returns unbound table for the caller to free.
2084 */
2085 static struct dm_table *__unbind(struct mapped_device *md)
2086 {
2087 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2088
2089 if (!map)
2090 return NULL;
2091
2092 dm_table_event_callback(map, NULL, NULL);
2093 RCU_INIT_POINTER(md->map, NULL);
2094 dm_sync_table(md);
2095
2096 return map;
2097 }
2098
2099 /*
2100 * Constructor for a new device.
2101 */
2102 int dm_create(int minor, struct mapped_device **result)
2103 {
2104 int r;
2105 struct mapped_device *md;
2106
2107 md = alloc_dev(minor);
2108 if (!md)
2109 return -ENXIO;
2110
2111 r = dm_sysfs_init(md);
2112 if (r) {
2113 free_dev(md);
2114 return r;
2115 }
2116
2117 *result = md;
2118 return 0;
2119 }
2120
2121 /*
2122 * Functions to manage md->type.
2123 * All are required to hold md->type_lock.
2124 */
2125 void dm_lock_md_type(struct mapped_device *md)
2126 {
2127 mutex_lock(&md->type_lock);
2128 }
2129
2130 void dm_unlock_md_type(struct mapped_device *md)
2131 {
2132 mutex_unlock(&md->type_lock);
2133 }
2134
2135 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2136 {
2137 BUG_ON(!mutex_is_locked(&md->type_lock));
2138 md->type = type;
2139 }
2140
2141 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2142 {
2143 return md->type;
2144 }
2145
2146 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2147 {
2148 return md->immutable_target_type;
2149 }
2150
2151 /*
2152 * The queue_limits are only valid as long as you have a reference
2153 * count on 'md'.
2154 */
2155 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2156 {
2157 BUG_ON(!atomic_read(&md->holders));
2158 return &md->queue->limits;
2159 }
2160 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2161
2162 /*
2163 * Setup the DM device's queue based on md's type
2164 */
2165 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2166 {
2167 int r;
2168 struct queue_limits limits;
2169 enum dm_queue_mode type = dm_get_md_type(md);
2170
2171 switch (type) {
2172 case DM_TYPE_REQUEST_BASED:
2173 md->disk->fops = &dm_rq_blk_dops;
2174 r = dm_mq_init_request_queue(md, t);
2175 if (r) {
2176 DMERR("Cannot initialize queue for request-based dm mapped device");
2177 return r;
2178 }
2179 break;
2180 case DM_TYPE_BIO_BASED:
2181 case DM_TYPE_DAX_BIO_BASED:
2182 break;
2183 case DM_TYPE_NONE:
2184 WARN_ON_ONCE(true);
2185 break;
2186 }
2187
2188 r = dm_calculate_queue_limits(t, &limits);
2189 if (r) {
2190 DMERR("Cannot calculate initial queue limits");
2191 return r;
2192 }
2193 dm_table_set_restrictions(t, md->queue, &limits);
2194 blk_register_queue(md->disk);
2195
2196 return 0;
2197 }
2198
2199 struct mapped_device *dm_get_md(dev_t dev)
2200 {
2201 struct mapped_device *md;
2202 unsigned minor = MINOR(dev);
2203
2204 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2205 return NULL;
2206
2207 spin_lock(&_minor_lock);
2208
2209 md = idr_find(&_minor_idr, minor);
2210 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2211 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2212 md = NULL;
2213 goto out;
2214 }
2215 dm_get(md);
2216 out:
2217 spin_unlock(&_minor_lock);
2218
2219 return md;
2220 }
2221 EXPORT_SYMBOL_GPL(dm_get_md);
2222
2223 void *dm_get_mdptr(struct mapped_device *md)
2224 {
2225 return md->interface_ptr;
2226 }
2227
2228 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2229 {
2230 md->interface_ptr = ptr;
2231 }
2232
2233 void dm_get(struct mapped_device *md)
2234 {
2235 atomic_inc(&md->holders);
2236 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2237 }
2238
2239 int dm_hold(struct mapped_device *md)
2240 {
2241 spin_lock(&_minor_lock);
2242 if (test_bit(DMF_FREEING, &md->flags)) {
2243 spin_unlock(&_minor_lock);
2244 return -EBUSY;
2245 }
2246 dm_get(md);
2247 spin_unlock(&_minor_lock);
2248 return 0;
2249 }
2250 EXPORT_SYMBOL_GPL(dm_hold);
2251
2252 const char *dm_device_name(struct mapped_device *md)
2253 {
2254 return md->name;
2255 }
2256 EXPORT_SYMBOL_GPL(dm_device_name);
2257
2258 static void __dm_destroy(struct mapped_device *md, bool wait)
2259 {
2260 struct dm_table *map;
2261 int srcu_idx;
2262
2263 might_sleep();
2264
2265 spin_lock(&_minor_lock);
2266 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2267 set_bit(DMF_FREEING, &md->flags);
2268 spin_unlock(&_minor_lock);
2269
2270 blk_set_queue_dying(md->queue);
2271
2272 /*
2273 * Take suspend_lock so that presuspend and postsuspend methods
2274 * do not race with internal suspend.
2275 */
2276 mutex_lock(&md->suspend_lock);
2277 map = dm_get_live_table(md, &srcu_idx);
2278 if (!dm_suspended_md(md)) {
2279 dm_table_presuspend_targets(map);
2280 set_bit(DMF_SUSPENDED, &md->flags);
2281 set_bit(DMF_POST_SUSPENDING, &md->flags);
2282 dm_table_postsuspend_targets(map);
2283 }
2284 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2285 dm_put_live_table(md, srcu_idx);
2286 mutex_unlock(&md->suspend_lock);
2287
2288 /*
2289 * Rare, but there may be I/O requests still going to complete,
2290 * for example. Wait for all references to disappear.
2291 * No one should increment the reference count of the mapped_device,
2292 * after the mapped_device state becomes DMF_FREEING.
2293 */
2294 if (wait)
2295 while (atomic_read(&md->holders))
2296 msleep(1);
2297 else if (atomic_read(&md->holders))
2298 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2299 dm_device_name(md), atomic_read(&md->holders));
2300
2301 dm_sysfs_exit(md);
2302 dm_table_destroy(__unbind(md));
2303 free_dev(md);
2304 }
2305
2306 void dm_destroy(struct mapped_device *md)
2307 {
2308 __dm_destroy(md, true);
2309 }
2310
2311 void dm_destroy_immediate(struct mapped_device *md)
2312 {
2313 __dm_destroy(md, false);
2314 }
2315
2316 void dm_put(struct mapped_device *md)
2317 {
2318 atomic_dec(&md->holders);
2319 }
2320 EXPORT_SYMBOL_GPL(dm_put);
2321
2322 static bool md_in_flight_bios(struct mapped_device *md)
2323 {
2324 int cpu;
2325 struct block_device *part = dm_disk(md)->part0;
2326 long sum = 0;
2327
2328 for_each_possible_cpu(cpu) {
2329 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2330 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2331 }
2332
2333 return sum != 0;
2334 }
2335
2336 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2337 {
2338 int r = 0;
2339 DEFINE_WAIT(wait);
2340
2341 while (true) {
2342 prepare_to_wait(&md->wait, &wait, task_state);
2343
2344 if (!md_in_flight_bios(md))
2345 break;
2346
2347 if (signal_pending_state(task_state, current)) {
2348 r = -EINTR;
2349 break;
2350 }
2351
2352 io_schedule();
2353 }
2354 finish_wait(&md->wait, &wait);
2355
2356 return r;
2357 }
2358
2359 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2360 {
2361 int r = 0;
2362
2363 if (!queue_is_mq(md->queue))
2364 return dm_wait_for_bios_completion(md, task_state);
2365
2366 while (true) {
2367 if (!blk_mq_queue_inflight(md->queue))
2368 break;
2369
2370 if (signal_pending_state(task_state, current)) {
2371 r = -EINTR;
2372 break;
2373 }
2374
2375 msleep(5);
2376 }
2377
2378 return r;
2379 }
2380
2381 /*
2382 * Process the deferred bios
2383 */
2384 static void dm_wq_work(struct work_struct *work)
2385 {
2386 struct mapped_device *md = container_of(work, struct mapped_device, work);
2387 struct bio *bio;
2388
2389 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2390 spin_lock_irq(&md->deferred_lock);
2391 bio = bio_list_pop(&md->deferred);
2392 spin_unlock_irq(&md->deferred_lock);
2393
2394 if (!bio)
2395 break;
2396
2397 submit_bio_noacct(bio);
2398 }
2399 }
2400
2401 static void dm_queue_flush(struct mapped_device *md)
2402 {
2403 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2404 smp_mb__after_atomic();
2405 queue_work(md->wq, &md->work);
2406 }
2407
2408 /*
2409 * Swap in a new table, returning the old one for the caller to destroy.
2410 */
2411 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2412 {
2413 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2414 struct queue_limits limits;
2415 int r;
2416
2417 mutex_lock(&md->suspend_lock);
2418
2419 /* device must be suspended */
2420 if (!dm_suspended_md(md))
2421 goto out;
2422
2423 /*
2424 * If the new table has no data devices, retain the existing limits.
2425 * This helps multipath with queue_if_no_path if all paths disappear,
2426 * then new I/O is queued based on these limits, and then some paths
2427 * reappear.
2428 */
2429 if (dm_table_has_no_data_devices(table)) {
2430 live_map = dm_get_live_table_fast(md);
2431 if (live_map)
2432 limits = md->queue->limits;
2433 dm_put_live_table_fast(md);
2434 }
2435
2436 if (!live_map) {
2437 r = dm_calculate_queue_limits(table, &limits);
2438 if (r) {
2439 map = ERR_PTR(r);
2440 goto out;
2441 }
2442 }
2443
2444 map = __bind(md, table, &limits);
2445 dm_issue_global_event();
2446
2447 out:
2448 mutex_unlock(&md->suspend_lock);
2449 return map;
2450 }
2451
2452 /*
2453 * Functions to lock and unlock any filesystem running on the
2454 * device.
2455 */
2456 static int lock_fs(struct mapped_device *md)
2457 {
2458 int r;
2459
2460 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2461
2462 r = freeze_bdev(md->disk->part0);
2463 if (!r)
2464 set_bit(DMF_FROZEN, &md->flags);
2465 return r;
2466 }
2467
2468 static void unlock_fs(struct mapped_device *md)
2469 {
2470 if (!test_bit(DMF_FROZEN, &md->flags))
2471 return;
2472 thaw_bdev(md->disk->part0);
2473 clear_bit(DMF_FROZEN, &md->flags);
2474 }
2475
2476 /*
2477 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2478 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2479 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2480 *
2481 * If __dm_suspend returns 0, the device is completely quiescent
2482 * now. There is no request-processing activity. All new requests
2483 * are being added to md->deferred list.
2484 */
2485 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2486 unsigned suspend_flags, long task_state,
2487 int dmf_suspended_flag)
2488 {
2489 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2490 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2491 int r;
2492
2493 lockdep_assert_held(&md->suspend_lock);
2494
2495 /*
2496 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2497 * This flag is cleared before dm_suspend returns.
2498 */
2499 if (noflush)
2500 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2501 else
2502 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2503
2504 /*
2505 * This gets reverted if there's an error later and the targets
2506 * provide the .presuspend_undo hook.
2507 */
2508 dm_table_presuspend_targets(map);
2509
2510 /*
2511 * Flush I/O to the device.
2512 * Any I/O submitted after lock_fs() may not be flushed.
2513 * noflush takes precedence over do_lockfs.
2514 * (lock_fs() flushes I/Os and waits for them to complete.)
2515 */
2516 if (!noflush && do_lockfs) {
2517 r = lock_fs(md);
2518 if (r) {
2519 dm_table_presuspend_undo_targets(map);
2520 return r;
2521 }
2522 }
2523
2524 /*
2525 * Here we must make sure that no processes are submitting requests
2526 * to target drivers i.e. no one may be executing
2527 * __split_and_process_bio from dm_submit_bio.
2528 *
2529 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2530 * we take the write lock. To prevent any process from reentering
2531 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2532 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2533 * flush_workqueue(md->wq).
2534 */
2535 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2536 if (map)
2537 synchronize_srcu(&md->io_barrier);
2538
2539 /*
2540 * Stop md->queue before flushing md->wq in case request-based
2541 * dm defers requests to md->wq from md->queue.
2542 */
2543 if (dm_request_based(md))
2544 dm_stop_queue(md->queue);
2545
2546 flush_workqueue(md->wq);
2547
2548 /*
2549 * At this point no more requests are entering target request routines.
2550 * We call dm_wait_for_completion to wait for all existing requests
2551 * to finish.
2552 */
2553 r = dm_wait_for_completion(md, task_state);
2554 if (!r)
2555 set_bit(dmf_suspended_flag, &md->flags);
2556
2557 if (noflush)
2558 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2559 if (map)
2560 synchronize_srcu(&md->io_barrier);
2561
2562 /* were we interrupted ? */
2563 if (r < 0) {
2564 dm_queue_flush(md);
2565
2566 if (dm_request_based(md))
2567 dm_start_queue(md->queue);
2568
2569 unlock_fs(md);
2570 dm_table_presuspend_undo_targets(map);
2571 /* pushback list is already flushed, so skip flush */
2572 }
2573
2574 return r;
2575 }
2576
2577 /*
2578 * We need to be able to change a mapping table under a mounted
2579 * filesystem. For example we might want to move some data in
2580 * the background. Before the table can be swapped with
2581 * dm_bind_table, dm_suspend must be called to flush any in
2582 * flight bios and ensure that any further io gets deferred.
2583 */
2584 /*
2585 * Suspend mechanism in request-based dm.
2586 *
2587 * 1. Flush all I/Os by lock_fs() if needed.
2588 * 2. Stop dispatching any I/O by stopping the request_queue.
2589 * 3. Wait for all in-flight I/Os to be completed or requeued.
2590 *
2591 * To abort suspend, start the request_queue.
2592 */
2593 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2594 {
2595 struct dm_table *map = NULL;
2596 int r = 0;
2597
2598 retry:
2599 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2600
2601 if (dm_suspended_md(md)) {
2602 r = -EINVAL;
2603 goto out_unlock;
2604 }
2605
2606 if (dm_suspended_internally_md(md)) {
2607 /* already internally suspended, wait for internal resume */
2608 mutex_unlock(&md->suspend_lock);
2609 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2610 if (r)
2611 return r;
2612 goto retry;
2613 }
2614
2615 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2616
2617 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2618 if (r)
2619 goto out_unlock;
2620
2621 set_bit(DMF_POST_SUSPENDING, &md->flags);
2622 dm_table_postsuspend_targets(map);
2623 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2624
2625 out_unlock:
2626 mutex_unlock(&md->suspend_lock);
2627 return r;
2628 }
2629
2630 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2631 {
2632 if (map) {
2633 int r = dm_table_resume_targets(map);
2634 if (r)
2635 return r;
2636 }
2637
2638 dm_queue_flush(md);
2639
2640 /*
2641 * Flushing deferred I/Os must be done after targets are resumed
2642 * so that mapping of targets can work correctly.
2643 * Request-based dm is queueing the deferred I/Os in its request_queue.
2644 */
2645 if (dm_request_based(md))
2646 dm_start_queue(md->queue);
2647
2648 unlock_fs(md);
2649
2650 return 0;
2651 }
2652
2653 int dm_resume(struct mapped_device *md)
2654 {
2655 int r;
2656 struct dm_table *map = NULL;
2657
2658 retry:
2659 r = -EINVAL;
2660 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2661
2662 if (!dm_suspended_md(md))
2663 goto out;
2664
2665 if (dm_suspended_internally_md(md)) {
2666 /* already internally suspended, wait for internal resume */
2667 mutex_unlock(&md->suspend_lock);
2668 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2669 if (r)
2670 return r;
2671 goto retry;
2672 }
2673
2674 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2675 if (!map || !dm_table_get_size(map))
2676 goto out;
2677
2678 r = __dm_resume(md, map);
2679 if (r)
2680 goto out;
2681
2682 clear_bit(DMF_SUSPENDED, &md->flags);
2683 out:
2684 mutex_unlock(&md->suspend_lock);
2685
2686 return r;
2687 }
2688
2689 /*
2690 * Internal suspend/resume works like userspace-driven suspend. It waits
2691 * until all bios finish and prevents issuing new bios to the target drivers.
2692 * It may be used only from the kernel.
2693 */
2694
2695 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2696 {
2697 struct dm_table *map = NULL;
2698
2699 lockdep_assert_held(&md->suspend_lock);
2700
2701 if (md->internal_suspend_count++)
2702 return; /* nested internal suspend */
2703
2704 if (dm_suspended_md(md)) {
2705 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2706 return; /* nest suspend */
2707 }
2708
2709 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2710
2711 /*
2712 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2713 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2714 * would require changing .presuspend to return an error -- avoid this
2715 * until there is a need for more elaborate variants of internal suspend.
2716 */
2717 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2718 DMF_SUSPENDED_INTERNALLY);
2719
2720 set_bit(DMF_POST_SUSPENDING, &md->flags);
2721 dm_table_postsuspend_targets(map);
2722 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2723 }
2724
2725 static void __dm_internal_resume(struct mapped_device *md)
2726 {
2727 BUG_ON(!md->internal_suspend_count);
2728
2729 if (--md->internal_suspend_count)
2730 return; /* resume from nested internal suspend */
2731
2732 if (dm_suspended_md(md))
2733 goto done; /* resume from nested suspend */
2734
2735 /*
2736 * NOTE: existing callers don't need to call dm_table_resume_targets
2737 * (which may fail -- so best to avoid it for now by passing NULL map)
2738 */
2739 (void) __dm_resume(md, NULL);
2740
2741 done:
2742 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2743 smp_mb__after_atomic();
2744 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2745 }
2746
2747 void dm_internal_suspend_noflush(struct mapped_device *md)
2748 {
2749 mutex_lock(&md->suspend_lock);
2750 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2751 mutex_unlock(&md->suspend_lock);
2752 }
2753 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2754
2755 void dm_internal_resume(struct mapped_device *md)
2756 {
2757 mutex_lock(&md->suspend_lock);
2758 __dm_internal_resume(md);
2759 mutex_unlock(&md->suspend_lock);
2760 }
2761 EXPORT_SYMBOL_GPL(dm_internal_resume);
2762
2763 /*
2764 * Fast variants of internal suspend/resume hold md->suspend_lock,
2765 * which prevents interaction with userspace-driven suspend.
2766 */
2767
2768 void dm_internal_suspend_fast(struct mapped_device *md)
2769 {
2770 mutex_lock(&md->suspend_lock);
2771 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2772 return;
2773
2774 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2775 synchronize_srcu(&md->io_barrier);
2776 flush_workqueue(md->wq);
2777 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2778 }
2779 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2780
2781 void dm_internal_resume_fast(struct mapped_device *md)
2782 {
2783 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2784 goto done;
2785
2786 dm_queue_flush(md);
2787
2788 done:
2789 mutex_unlock(&md->suspend_lock);
2790 }
2791 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2792
2793 /*-----------------------------------------------------------------
2794 * Event notification.
2795 *---------------------------------------------------------------*/
2796 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2797 unsigned cookie)
2798 {
2799 int r;
2800 unsigned noio_flag;
2801 char udev_cookie[DM_COOKIE_LENGTH];
2802 char *envp[] = { udev_cookie, NULL };
2803
2804 noio_flag = memalloc_noio_save();
2805
2806 if (!cookie)
2807 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2808 else {
2809 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810 DM_COOKIE_ENV_VAR_NAME, cookie);
2811 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812 action, envp);
2813 }
2814
2815 memalloc_noio_restore(noio_flag);
2816
2817 return r;
2818 }
2819
2820 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2821 {
2822 return atomic_add_return(1, &md->uevent_seq);
2823 }
2824
2825 uint32_t dm_get_event_nr(struct mapped_device *md)
2826 {
2827 return atomic_read(&md->event_nr);
2828 }
2829
2830 int dm_wait_event(struct mapped_device *md, int event_nr)
2831 {
2832 return wait_event_interruptible(md->eventq,
2833 (event_nr != atomic_read(&md->event_nr)));
2834 }
2835
2836 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2837 {
2838 unsigned long flags;
2839
2840 spin_lock_irqsave(&md->uevent_lock, flags);
2841 list_add(elist, &md->uevent_list);
2842 spin_unlock_irqrestore(&md->uevent_lock, flags);
2843 }
2844
2845 /*
2846 * The gendisk is only valid as long as you have a reference
2847 * count on 'md'.
2848 */
2849 struct gendisk *dm_disk(struct mapped_device *md)
2850 {
2851 return md->disk;
2852 }
2853 EXPORT_SYMBOL_GPL(dm_disk);
2854
2855 struct kobject *dm_kobject(struct mapped_device *md)
2856 {
2857 return &md->kobj_holder.kobj;
2858 }
2859
2860 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2861 {
2862 struct mapped_device *md;
2863
2864 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2865
2866 spin_lock(&_minor_lock);
2867 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2868 md = NULL;
2869 goto out;
2870 }
2871 dm_get(md);
2872 out:
2873 spin_unlock(&_minor_lock);
2874
2875 return md;
2876 }
2877
2878 int dm_suspended_md(struct mapped_device *md)
2879 {
2880 return test_bit(DMF_SUSPENDED, &md->flags);
2881 }
2882
2883 static int dm_post_suspending_md(struct mapped_device *md)
2884 {
2885 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2886 }
2887
2888 int dm_suspended_internally_md(struct mapped_device *md)
2889 {
2890 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2891 }
2892
2893 int dm_test_deferred_remove_flag(struct mapped_device *md)
2894 {
2895 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2896 }
2897
2898 int dm_suspended(struct dm_target *ti)
2899 {
2900 return dm_suspended_md(ti->table->md);
2901 }
2902 EXPORT_SYMBOL_GPL(dm_suspended);
2903
2904 int dm_post_suspending(struct dm_target *ti)
2905 {
2906 return dm_post_suspending_md(ti->table->md);
2907 }
2908 EXPORT_SYMBOL_GPL(dm_post_suspending);
2909
2910 int dm_noflush_suspending(struct dm_target *ti)
2911 {
2912 return __noflush_suspending(ti->table->md);
2913 }
2914 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2915
2916 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2917 unsigned integrity, unsigned per_io_data_size,
2918 unsigned min_pool_size)
2919 {
2920 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2921 unsigned int pool_size = 0;
2922 unsigned int front_pad, io_front_pad;
2923 int ret;
2924
2925 if (!pools)
2926 return NULL;
2927
2928 switch (type) {
2929 case DM_TYPE_BIO_BASED:
2930 case DM_TYPE_DAX_BIO_BASED:
2931 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2932 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2933 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2934 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2935 if (ret)
2936 goto out;
2937 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2938 goto out;
2939 break;
2940 case DM_TYPE_REQUEST_BASED:
2941 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2942 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2943 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2944 break;
2945 default:
2946 BUG();
2947 }
2948
2949 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2950 if (ret)
2951 goto out;
2952
2953 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2954 goto out;
2955
2956 return pools;
2957
2958 out:
2959 dm_free_md_mempools(pools);
2960
2961 return NULL;
2962 }
2963
2964 void dm_free_md_mempools(struct dm_md_mempools *pools)
2965 {
2966 if (!pools)
2967 return;
2968
2969 bioset_exit(&pools->bs);
2970 bioset_exit(&pools->io_bs);
2971
2972 kfree(pools);
2973 }
2974
2975 struct dm_pr {
2976 u64 old_key;
2977 u64 new_key;
2978 u32 flags;
2979 bool fail_early;
2980 };
2981
2982 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2983 void *data)
2984 {
2985 struct mapped_device *md = bdev->bd_disk->private_data;
2986 struct dm_table *table;
2987 struct dm_target *ti;
2988 int ret = -ENOTTY, srcu_idx;
2989
2990 table = dm_get_live_table(md, &srcu_idx);
2991 if (!table || !dm_table_get_size(table))
2992 goto out;
2993
2994 /* We only support devices that have a single target */
2995 if (dm_table_get_num_targets(table) != 1)
2996 goto out;
2997 ti = dm_table_get_target(table, 0);
2998
2999 ret = -EINVAL;
3000 if (!ti->type->iterate_devices)
3001 goto out;
3002
3003 ret = ti->type->iterate_devices(ti, fn, data);
3004 out:
3005 dm_put_live_table(md, srcu_idx);
3006 return ret;
3007 }
3008
3009 /*
3010 * For register / unregister we need to manually call out to every path.
3011 */
3012 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3013 sector_t start, sector_t len, void *data)
3014 {
3015 struct dm_pr *pr = data;
3016 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3017
3018 if (!ops || !ops->pr_register)
3019 return -EOPNOTSUPP;
3020 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3021 }
3022
3023 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3024 u32 flags)
3025 {
3026 struct dm_pr pr = {
3027 .old_key = old_key,
3028 .new_key = new_key,
3029 .flags = flags,
3030 .fail_early = true,
3031 };
3032 int ret;
3033
3034 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3035 if (ret && new_key) {
3036 /* unregister all paths if we failed to register any path */
3037 pr.old_key = new_key;
3038 pr.new_key = 0;
3039 pr.flags = 0;
3040 pr.fail_early = false;
3041 dm_call_pr(bdev, __dm_pr_register, &pr);
3042 }
3043
3044 return ret;
3045 }
3046
3047 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3048 u32 flags)
3049 {
3050 struct mapped_device *md = bdev->bd_disk->private_data;
3051 const struct pr_ops *ops;
3052 int r, srcu_idx;
3053
3054 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3055 if (r < 0)
3056 goto out;
3057
3058 ops = bdev->bd_disk->fops->pr_ops;
3059 if (ops && ops->pr_reserve)
3060 r = ops->pr_reserve(bdev, key, type, flags);
3061 else
3062 r = -EOPNOTSUPP;
3063 out:
3064 dm_unprepare_ioctl(md, srcu_idx);
3065 return r;
3066 }
3067
3068 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3069 {
3070 struct mapped_device *md = bdev->bd_disk->private_data;
3071 const struct pr_ops *ops;
3072 int r, srcu_idx;
3073
3074 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3075 if (r < 0)
3076 goto out;
3077
3078 ops = bdev->bd_disk->fops->pr_ops;
3079 if (ops && ops->pr_release)
3080 r = ops->pr_release(bdev, key, type);
3081 else
3082 r = -EOPNOTSUPP;
3083 out:
3084 dm_unprepare_ioctl(md, srcu_idx);
3085 return r;
3086 }
3087
3088 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3089 enum pr_type type, bool abort)
3090 {
3091 struct mapped_device *md = bdev->bd_disk->private_data;
3092 const struct pr_ops *ops;
3093 int r, srcu_idx;
3094
3095 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3096 if (r < 0)
3097 goto out;
3098
3099 ops = bdev->bd_disk->fops->pr_ops;
3100 if (ops && ops->pr_preempt)
3101 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3102 else
3103 r = -EOPNOTSUPP;
3104 out:
3105 dm_unprepare_ioctl(md, srcu_idx);
3106 return r;
3107 }
3108
3109 static int dm_pr_clear(struct block_device *bdev, u64 key)
3110 {
3111 struct mapped_device *md = bdev->bd_disk->private_data;
3112 const struct pr_ops *ops;
3113 int r, srcu_idx;
3114
3115 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3116 if (r < 0)
3117 goto out;
3118
3119 ops = bdev->bd_disk->fops->pr_ops;
3120 if (ops && ops->pr_clear)
3121 r = ops->pr_clear(bdev, key);
3122 else
3123 r = -EOPNOTSUPP;
3124 out:
3125 dm_unprepare_ioctl(md, srcu_idx);
3126 return r;
3127 }
3128
3129 static const struct pr_ops dm_pr_ops = {
3130 .pr_register = dm_pr_register,
3131 .pr_reserve = dm_pr_reserve,
3132 .pr_release = dm_pr_release,
3133 .pr_preempt = dm_pr_preempt,
3134 .pr_clear = dm_pr_clear,
3135 };
3136
3137 static const struct block_device_operations dm_blk_dops = {
3138 .submit_bio = dm_submit_bio,
3139 .open = dm_blk_open,
3140 .release = dm_blk_close,
3141 .ioctl = dm_blk_ioctl,
3142 .getgeo = dm_blk_getgeo,
3143 .report_zones = dm_blk_report_zones,
3144 .pr_ops = &dm_pr_ops,
3145 .owner = THIS_MODULE
3146 };
3147
3148 static const struct block_device_operations dm_rq_blk_dops = {
3149 .open = dm_blk_open,
3150 .release = dm_blk_close,
3151 .ioctl = dm_blk_ioctl,
3152 .getgeo = dm_blk_getgeo,
3153 .pr_ops = &dm_pr_ops,
3154 .owner = THIS_MODULE
3155 };
3156
3157 static const struct dax_operations dm_dax_ops = {
3158 .direct_access = dm_dax_direct_access,
3159 .dax_supported = dm_dax_supported,
3160 .copy_from_iter = dm_dax_copy_from_iter,
3161 .copy_to_iter = dm_dax_copy_to_iter,
3162 .zero_page_range = dm_dax_zero_page_range,
3163 };
3164
3165 /*
3166 * module hooks
3167 */
3168 module_init(dm_init);
3169 module_exit(dm_exit);
3170
3171 module_param(major, uint, 0);
3172 MODULE_PARM_DESC(major, "The major number of the device mapper");
3173
3174 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3175 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3176
3177 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3178 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3179
3180 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3181 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3182
3183 MODULE_DESCRIPTION(DM_NAME " driver");
3184 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3185 MODULE_LICENSE("GPL");