]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/dm.c
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27
28 #define DM_MSG_PREFIX "core"
29
30 /*
31 * Cookies are numeric values sent with CHANGE and REMOVE
32 * uevents while resuming, removing or renaming the device.
33 */
34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
35 #define DM_COOKIE_LENGTH 24
36
37 static const char *_name = DM_NAME;
38
39 static unsigned int major = 0;
40 static unsigned int _major = 0;
41
42 static DEFINE_IDR(_minor_idr);
43
44 static DEFINE_SPINLOCK(_minor_lock);
45
46 static void do_deferred_remove(struct work_struct *w);
47
48 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
49
50 static struct workqueue_struct *deferred_remove_workqueue;
51
52 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
54
55 void dm_issue_global_event(void)
56 {
57 atomic_inc(&dm_global_event_nr);
58 wake_up(&dm_global_eventq);
59 }
60
61 /*
62 * One of these is allocated per bio.
63 */
64 struct dm_io {
65 struct mapped_device *md;
66 blk_status_t status;
67 atomic_t io_count;
68 struct bio *bio;
69 unsigned long start_time;
70 spinlock_t endio_lock;
71 struct dm_stats_aux stats_aux;
72 };
73
74 #define MINOR_ALLOCED ((void *)-1)
75
76 /*
77 * Bits for the md->flags field.
78 */
79 #define DMF_BLOCK_IO_FOR_SUSPEND 0
80 #define DMF_SUSPENDED 1
81 #define DMF_FROZEN 2
82 #define DMF_FREEING 3
83 #define DMF_DELETING 4
84 #define DMF_NOFLUSH_SUSPENDING 5
85 #define DMF_DEFERRED_REMOVE 6
86 #define DMF_SUSPENDED_INTERNALLY 7
87
88 #define DM_NUMA_NODE NUMA_NO_NODE
89 static int dm_numa_node = DM_NUMA_NODE;
90
91 /*
92 * For mempools pre-allocation at the table loading time.
93 */
94 struct dm_md_mempools {
95 mempool_t *io_pool;
96 struct bio_set *bs;
97 };
98
99 struct table_device {
100 struct list_head list;
101 atomic_t count;
102 struct dm_dev dm_dev;
103 };
104
105 static struct kmem_cache *_io_cache;
106 static struct kmem_cache *_rq_tio_cache;
107 static struct kmem_cache *_rq_cache;
108
109 /*
110 * Bio-based DM's mempools' reserved IOs set by the user.
111 */
112 #define RESERVED_BIO_BASED_IOS 16
113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
114
115 static int __dm_get_module_param_int(int *module_param, int min, int max)
116 {
117 int param = ACCESS_ONCE(*module_param);
118 int modified_param = 0;
119 bool modified = true;
120
121 if (param < min)
122 modified_param = min;
123 else if (param > max)
124 modified_param = max;
125 else
126 modified = false;
127
128 if (modified) {
129 (void)cmpxchg(module_param, param, modified_param);
130 param = modified_param;
131 }
132
133 return param;
134 }
135
136 unsigned __dm_get_module_param(unsigned *module_param,
137 unsigned def, unsigned max)
138 {
139 unsigned param = ACCESS_ONCE(*module_param);
140 unsigned modified_param = 0;
141
142 if (!param)
143 modified_param = def;
144 else if (param > max)
145 modified_param = max;
146
147 if (modified_param) {
148 (void)cmpxchg(module_param, param, modified_param);
149 param = modified_param;
150 }
151
152 return param;
153 }
154
155 unsigned dm_get_reserved_bio_based_ios(void)
156 {
157 return __dm_get_module_param(&reserved_bio_based_ios,
158 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
159 }
160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
161
162 static unsigned dm_get_numa_node(void)
163 {
164 return __dm_get_module_param_int(&dm_numa_node,
165 DM_NUMA_NODE, num_online_nodes() - 1);
166 }
167
168 static int __init local_init(void)
169 {
170 int r = -ENOMEM;
171
172 /* allocate a slab for the dm_ios */
173 _io_cache = KMEM_CACHE(dm_io, 0);
174 if (!_io_cache)
175 return r;
176
177 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
178 if (!_rq_tio_cache)
179 goto out_free_io_cache;
180
181 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
182 __alignof__(struct request), 0, NULL);
183 if (!_rq_cache)
184 goto out_free_rq_tio_cache;
185
186 r = dm_uevent_init();
187 if (r)
188 goto out_free_rq_cache;
189
190 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
191 if (!deferred_remove_workqueue) {
192 r = -ENOMEM;
193 goto out_uevent_exit;
194 }
195
196 _major = major;
197 r = register_blkdev(_major, _name);
198 if (r < 0)
199 goto out_free_workqueue;
200
201 if (!_major)
202 _major = r;
203
204 return 0;
205
206 out_free_workqueue:
207 destroy_workqueue(deferred_remove_workqueue);
208 out_uevent_exit:
209 dm_uevent_exit();
210 out_free_rq_cache:
211 kmem_cache_destroy(_rq_cache);
212 out_free_rq_tio_cache:
213 kmem_cache_destroy(_rq_tio_cache);
214 out_free_io_cache:
215 kmem_cache_destroy(_io_cache);
216
217 return r;
218 }
219
220 static void local_exit(void)
221 {
222 flush_scheduled_work();
223 destroy_workqueue(deferred_remove_workqueue);
224
225 kmem_cache_destroy(_rq_cache);
226 kmem_cache_destroy(_rq_tio_cache);
227 kmem_cache_destroy(_io_cache);
228 unregister_blkdev(_major, _name);
229 dm_uevent_exit();
230
231 _major = 0;
232
233 DMINFO("cleaned up");
234 }
235
236 static int (*_inits[])(void) __initdata = {
237 local_init,
238 dm_target_init,
239 dm_linear_init,
240 dm_stripe_init,
241 dm_io_init,
242 dm_kcopyd_init,
243 dm_interface_init,
244 dm_statistics_init,
245 };
246
247 static void (*_exits[])(void) = {
248 local_exit,
249 dm_target_exit,
250 dm_linear_exit,
251 dm_stripe_exit,
252 dm_io_exit,
253 dm_kcopyd_exit,
254 dm_interface_exit,
255 dm_statistics_exit,
256 };
257
258 static int __init dm_init(void)
259 {
260 const int count = ARRAY_SIZE(_inits);
261
262 int r, i;
263
264 for (i = 0; i < count; i++) {
265 r = _inits[i]();
266 if (r)
267 goto bad;
268 }
269
270 return 0;
271
272 bad:
273 while (i--)
274 _exits[i]();
275
276 return r;
277 }
278
279 static void __exit dm_exit(void)
280 {
281 int i = ARRAY_SIZE(_exits);
282
283 while (i--)
284 _exits[i]();
285
286 /*
287 * Should be empty by this point.
288 */
289 idr_destroy(&_minor_idr);
290 }
291
292 /*
293 * Block device functions
294 */
295 int dm_deleting_md(struct mapped_device *md)
296 {
297 return test_bit(DMF_DELETING, &md->flags);
298 }
299
300 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
301 {
302 struct mapped_device *md;
303
304 spin_lock(&_minor_lock);
305
306 md = bdev->bd_disk->private_data;
307 if (!md)
308 goto out;
309
310 if (test_bit(DMF_FREEING, &md->flags) ||
311 dm_deleting_md(md)) {
312 md = NULL;
313 goto out;
314 }
315
316 dm_get(md);
317 atomic_inc(&md->open_count);
318 out:
319 spin_unlock(&_minor_lock);
320
321 return md ? 0 : -ENXIO;
322 }
323
324 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
325 {
326 struct mapped_device *md;
327
328 spin_lock(&_minor_lock);
329
330 md = disk->private_data;
331 if (WARN_ON(!md))
332 goto out;
333
334 if (atomic_dec_and_test(&md->open_count) &&
335 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
336 queue_work(deferred_remove_workqueue, &deferred_remove_work);
337
338 dm_put(md);
339 out:
340 spin_unlock(&_minor_lock);
341 }
342
343 int dm_open_count(struct mapped_device *md)
344 {
345 return atomic_read(&md->open_count);
346 }
347
348 /*
349 * Guarantees nothing is using the device before it's deleted.
350 */
351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
352 {
353 int r = 0;
354
355 spin_lock(&_minor_lock);
356
357 if (dm_open_count(md)) {
358 r = -EBUSY;
359 if (mark_deferred)
360 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
361 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
362 r = -EEXIST;
363 else
364 set_bit(DMF_DELETING, &md->flags);
365
366 spin_unlock(&_minor_lock);
367
368 return r;
369 }
370
371 int dm_cancel_deferred_remove(struct mapped_device *md)
372 {
373 int r = 0;
374
375 spin_lock(&_minor_lock);
376
377 if (test_bit(DMF_DELETING, &md->flags))
378 r = -EBUSY;
379 else
380 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
381
382 spin_unlock(&_minor_lock);
383
384 return r;
385 }
386
387 static void do_deferred_remove(struct work_struct *w)
388 {
389 dm_deferred_remove();
390 }
391
392 sector_t dm_get_size(struct mapped_device *md)
393 {
394 return get_capacity(md->disk);
395 }
396
397 struct request_queue *dm_get_md_queue(struct mapped_device *md)
398 {
399 return md->queue;
400 }
401
402 struct dm_stats *dm_get_stats(struct mapped_device *md)
403 {
404 return &md->stats;
405 }
406
407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 {
409 struct mapped_device *md = bdev->bd_disk->private_data;
410
411 return dm_get_geometry(md, geo);
412 }
413
414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
415 struct block_device **bdev,
416 fmode_t *mode)
417 {
418 struct dm_target *tgt;
419 struct dm_table *map;
420 int srcu_idx, r;
421
422 retry:
423 r = -ENOTTY;
424 map = dm_get_live_table(md, &srcu_idx);
425 if (!map || !dm_table_get_size(map))
426 goto out;
427
428 /* We only support devices that have a single target */
429 if (dm_table_get_num_targets(map) != 1)
430 goto out;
431
432 tgt = dm_table_get_target(map, 0);
433 if (!tgt->type->prepare_ioctl)
434 goto out;
435
436 if (dm_suspended_md(md)) {
437 r = -EAGAIN;
438 goto out;
439 }
440
441 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
442 if (r < 0)
443 goto out;
444
445 bdgrab(*bdev);
446 dm_put_live_table(md, srcu_idx);
447 return r;
448
449 out:
450 dm_put_live_table(md, srcu_idx);
451 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
452 msleep(10);
453 goto retry;
454 }
455 return r;
456 }
457
458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
459 unsigned int cmd, unsigned long arg)
460 {
461 struct mapped_device *md = bdev->bd_disk->private_data;
462 int r;
463
464 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
465 if (r < 0)
466 return r;
467
468 if (r > 0) {
469 /*
470 * Target determined this ioctl is being issued against a
471 * subset of the parent bdev; require extra privileges.
472 */
473 if (!capable(CAP_SYS_RAWIO)) {
474 DMWARN_LIMIT(
475 "%s: sending ioctl %x to DM device without required privilege.",
476 current->comm, cmd);
477 r = -ENOIOCTLCMD;
478 goto out;
479 }
480 }
481
482 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
483 out:
484 bdput(bdev);
485 return r;
486 }
487
488 static struct dm_io *alloc_io(struct mapped_device *md)
489 {
490 return mempool_alloc(md->io_pool, GFP_NOIO);
491 }
492
493 static void free_io(struct mapped_device *md, struct dm_io *io)
494 {
495 mempool_free(io, md->io_pool);
496 }
497
498 static void free_tio(struct dm_target_io *tio)
499 {
500 bio_put(&tio->clone);
501 }
502
503 int md_in_flight(struct mapped_device *md)
504 {
505 return atomic_read(&md->pending[READ]) +
506 atomic_read(&md->pending[WRITE]);
507 }
508
509 static void start_io_acct(struct dm_io *io)
510 {
511 struct mapped_device *md = io->md;
512 struct bio *bio = io->bio;
513 int cpu;
514 int rw = bio_data_dir(bio);
515
516 io->start_time = jiffies;
517
518 cpu = part_stat_lock();
519 part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
520 part_stat_unlock();
521 atomic_set(&dm_disk(md)->part0.in_flight[rw],
522 atomic_inc_return(&md->pending[rw]));
523
524 if (unlikely(dm_stats_used(&md->stats)))
525 dm_stats_account_io(&md->stats, bio_data_dir(bio),
526 bio->bi_iter.bi_sector, bio_sectors(bio),
527 false, 0, &io->stats_aux);
528 }
529
530 static void end_io_acct(struct dm_io *io)
531 {
532 struct mapped_device *md = io->md;
533 struct bio *bio = io->bio;
534 unsigned long duration = jiffies - io->start_time;
535 int pending;
536 int rw = bio_data_dir(bio);
537
538 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
539
540 if (unlikely(dm_stats_used(&md->stats)))
541 dm_stats_account_io(&md->stats, bio_data_dir(bio),
542 bio->bi_iter.bi_sector, bio_sectors(bio),
543 true, duration, &io->stats_aux);
544
545 /*
546 * After this is decremented the bio must not be touched if it is
547 * a flush.
548 */
549 pending = atomic_dec_return(&md->pending[rw]);
550 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
551 pending += atomic_read(&md->pending[rw^0x1]);
552
553 /* nudge anyone waiting on suspend queue */
554 if (!pending)
555 wake_up(&md->wait);
556 }
557
558 /*
559 * Add the bio to the list of deferred io.
560 */
561 static void queue_io(struct mapped_device *md, struct bio *bio)
562 {
563 unsigned long flags;
564
565 spin_lock_irqsave(&md->deferred_lock, flags);
566 bio_list_add(&md->deferred, bio);
567 spin_unlock_irqrestore(&md->deferred_lock, flags);
568 queue_work(md->wq, &md->work);
569 }
570
571 /*
572 * Everyone (including functions in this file), should use this
573 * function to access the md->map field, and make sure they call
574 * dm_put_live_table() when finished.
575 */
576 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
577 {
578 *srcu_idx = srcu_read_lock(&md->io_barrier);
579
580 return srcu_dereference(md->map, &md->io_barrier);
581 }
582
583 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
584 {
585 srcu_read_unlock(&md->io_barrier, srcu_idx);
586 }
587
588 void dm_sync_table(struct mapped_device *md)
589 {
590 synchronize_srcu(&md->io_barrier);
591 synchronize_rcu_expedited();
592 }
593
594 /*
595 * A fast alternative to dm_get_live_table/dm_put_live_table.
596 * The caller must not block between these two functions.
597 */
598 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
599 {
600 rcu_read_lock();
601 return rcu_dereference(md->map);
602 }
603
604 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
605 {
606 rcu_read_unlock();
607 }
608
609 /*
610 * Open a table device so we can use it as a map destination.
611 */
612 static int open_table_device(struct table_device *td, dev_t dev,
613 struct mapped_device *md)
614 {
615 static char *_claim_ptr = "I belong to device-mapper";
616 struct block_device *bdev;
617
618 int r;
619
620 BUG_ON(td->dm_dev.bdev);
621
622 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
623 if (IS_ERR(bdev))
624 return PTR_ERR(bdev);
625
626 r = bd_link_disk_holder(bdev, dm_disk(md));
627 if (r) {
628 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
629 return r;
630 }
631
632 td->dm_dev.bdev = bdev;
633 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
634 return 0;
635 }
636
637 /*
638 * Close a table device that we've been using.
639 */
640 static void close_table_device(struct table_device *td, struct mapped_device *md)
641 {
642 if (!td->dm_dev.bdev)
643 return;
644
645 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
646 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
647 put_dax(td->dm_dev.dax_dev);
648 td->dm_dev.bdev = NULL;
649 td->dm_dev.dax_dev = NULL;
650 }
651
652 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
653 fmode_t mode) {
654 struct table_device *td;
655
656 list_for_each_entry(td, l, list)
657 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
658 return td;
659
660 return NULL;
661 }
662
663 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
664 struct dm_dev **result) {
665 int r;
666 struct table_device *td;
667
668 mutex_lock(&md->table_devices_lock);
669 td = find_table_device(&md->table_devices, dev, mode);
670 if (!td) {
671 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
672 if (!td) {
673 mutex_unlock(&md->table_devices_lock);
674 return -ENOMEM;
675 }
676
677 td->dm_dev.mode = mode;
678 td->dm_dev.bdev = NULL;
679
680 if ((r = open_table_device(td, dev, md))) {
681 mutex_unlock(&md->table_devices_lock);
682 kfree(td);
683 return r;
684 }
685
686 format_dev_t(td->dm_dev.name, dev);
687
688 atomic_set(&td->count, 0);
689 list_add(&td->list, &md->table_devices);
690 }
691 atomic_inc(&td->count);
692 mutex_unlock(&md->table_devices_lock);
693
694 *result = &td->dm_dev;
695 return 0;
696 }
697 EXPORT_SYMBOL_GPL(dm_get_table_device);
698
699 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
700 {
701 struct table_device *td = container_of(d, struct table_device, dm_dev);
702
703 mutex_lock(&md->table_devices_lock);
704 if (atomic_dec_and_test(&td->count)) {
705 close_table_device(td, md);
706 list_del(&td->list);
707 kfree(td);
708 }
709 mutex_unlock(&md->table_devices_lock);
710 }
711 EXPORT_SYMBOL(dm_put_table_device);
712
713 static void free_table_devices(struct list_head *devices)
714 {
715 struct list_head *tmp, *next;
716
717 list_for_each_safe(tmp, next, devices) {
718 struct table_device *td = list_entry(tmp, struct table_device, list);
719
720 DMWARN("dm_destroy: %s still exists with %d references",
721 td->dm_dev.name, atomic_read(&td->count));
722 kfree(td);
723 }
724 }
725
726 /*
727 * Get the geometry associated with a dm device
728 */
729 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
730 {
731 *geo = md->geometry;
732
733 return 0;
734 }
735
736 /*
737 * Set the geometry of a device.
738 */
739 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
740 {
741 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
742
743 if (geo->start > sz) {
744 DMWARN("Start sector is beyond the geometry limits.");
745 return -EINVAL;
746 }
747
748 md->geometry = *geo;
749
750 return 0;
751 }
752
753 /*-----------------------------------------------------------------
754 * CRUD START:
755 * A more elegant soln is in the works that uses the queue
756 * merge fn, unfortunately there are a couple of changes to
757 * the block layer that I want to make for this. So in the
758 * interests of getting something for people to use I give
759 * you this clearly demarcated crap.
760 *---------------------------------------------------------------*/
761
762 static int __noflush_suspending(struct mapped_device *md)
763 {
764 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
765 }
766
767 /*
768 * Decrements the number of outstanding ios that a bio has been
769 * cloned into, completing the original io if necc.
770 */
771 static void dec_pending(struct dm_io *io, blk_status_t error)
772 {
773 unsigned long flags;
774 blk_status_t io_error;
775 struct bio *bio;
776 struct mapped_device *md = io->md;
777
778 /* Push-back supersedes any I/O errors */
779 if (unlikely(error)) {
780 spin_lock_irqsave(&io->endio_lock, flags);
781 if (!(io->status == BLK_STS_DM_REQUEUE &&
782 __noflush_suspending(md)))
783 io->status = error;
784 spin_unlock_irqrestore(&io->endio_lock, flags);
785 }
786
787 if (atomic_dec_and_test(&io->io_count)) {
788 if (io->status == BLK_STS_DM_REQUEUE) {
789 /*
790 * Target requested pushing back the I/O.
791 */
792 spin_lock_irqsave(&md->deferred_lock, flags);
793 if (__noflush_suspending(md))
794 bio_list_add_head(&md->deferred, io->bio);
795 else
796 /* noflush suspend was interrupted. */
797 io->status = BLK_STS_IOERR;
798 spin_unlock_irqrestore(&md->deferred_lock, flags);
799 }
800
801 io_error = io->status;
802 bio = io->bio;
803 end_io_acct(io);
804 free_io(md, io);
805
806 if (io_error == BLK_STS_DM_REQUEUE)
807 return;
808
809 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
810 /*
811 * Preflush done for flush with data, reissue
812 * without REQ_PREFLUSH.
813 */
814 bio->bi_opf &= ~REQ_PREFLUSH;
815 queue_io(md, bio);
816 } else {
817 /* done with normal IO or empty flush */
818 bio->bi_status = io_error;
819 bio_endio(bio);
820 }
821 }
822 }
823
824 void disable_write_same(struct mapped_device *md)
825 {
826 struct queue_limits *limits = dm_get_queue_limits(md);
827
828 /* device doesn't really support WRITE SAME, disable it */
829 limits->max_write_same_sectors = 0;
830 }
831
832 void disable_write_zeroes(struct mapped_device *md)
833 {
834 struct queue_limits *limits = dm_get_queue_limits(md);
835
836 /* device doesn't really support WRITE ZEROES, disable it */
837 limits->max_write_zeroes_sectors = 0;
838 }
839
840 static void clone_endio(struct bio *bio)
841 {
842 blk_status_t error = bio->bi_status;
843 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
844 struct dm_io *io = tio->io;
845 struct mapped_device *md = tio->io->md;
846 dm_endio_fn endio = tio->ti->type->end_io;
847
848 if (unlikely(error == BLK_STS_TARGET)) {
849 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
850 !bio->bi_disk->queue->limits.max_write_same_sectors)
851 disable_write_same(md);
852 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
853 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
854 disable_write_zeroes(md);
855 }
856
857 if (endio) {
858 int r = endio(tio->ti, bio, &error);
859 switch (r) {
860 case DM_ENDIO_REQUEUE:
861 error = BLK_STS_DM_REQUEUE;
862 /*FALLTHRU*/
863 case DM_ENDIO_DONE:
864 break;
865 case DM_ENDIO_INCOMPLETE:
866 /* The target will handle the io */
867 return;
868 default:
869 DMWARN("unimplemented target endio return value: %d", r);
870 BUG();
871 }
872 }
873
874 free_tio(tio);
875 dec_pending(io, error);
876 }
877
878 /*
879 * Return maximum size of I/O possible at the supplied sector up to the current
880 * target boundary.
881 */
882 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
883 {
884 sector_t target_offset = dm_target_offset(ti, sector);
885
886 return ti->len - target_offset;
887 }
888
889 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
890 {
891 sector_t len = max_io_len_target_boundary(sector, ti);
892 sector_t offset, max_len;
893
894 /*
895 * Does the target need to split even further?
896 */
897 if (ti->max_io_len) {
898 offset = dm_target_offset(ti, sector);
899 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
900 max_len = sector_div(offset, ti->max_io_len);
901 else
902 max_len = offset & (ti->max_io_len - 1);
903 max_len = ti->max_io_len - max_len;
904
905 if (len > max_len)
906 len = max_len;
907 }
908
909 return len;
910 }
911
912 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
913 {
914 if (len > UINT_MAX) {
915 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
916 (unsigned long long)len, UINT_MAX);
917 ti->error = "Maximum size of target IO is too large";
918 return -EINVAL;
919 }
920
921 ti->max_io_len = (uint32_t) len;
922
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
926
927 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
928 sector_t sector, int *srcu_idx)
929 {
930 struct dm_table *map;
931 struct dm_target *ti;
932
933 map = dm_get_live_table(md, srcu_idx);
934 if (!map)
935 return NULL;
936
937 ti = dm_table_find_target(map, sector);
938 if (!dm_target_is_valid(ti))
939 return NULL;
940
941 return ti;
942 }
943
944 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
945 long nr_pages, void **kaddr, pfn_t *pfn)
946 {
947 struct mapped_device *md = dax_get_private(dax_dev);
948 sector_t sector = pgoff * PAGE_SECTORS;
949 struct dm_target *ti;
950 long len, ret = -EIO;
951 int srcu_idx;
952
953 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
954
955 if (!ti)
956 goto out;
957 if (!ti->type->direct_access)
958 goto out;
959 len = max_io_len(sector, ti) / PAGE_SECTORS;
960 if (len < 1)
961 goto out;
962 nr_pages = min(len, nr_pages);
963 if (ti->type->direct_access)
964 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
965
966 out:
967 dm_put_live_table(md, srcu_idx);
968
969 return ret;
970 }
971
972 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
973 void *addr, size_t bytes, struct iov_iter *i)
974 {
975 struct mapped_device *md = dax_get_private(dax_dev);
976 sector_t sector = pgoff * PAGE_SECTORS;
977 struct dm_target *ti;
978 long ret = 0;
979 int srcu_idx;
980
981 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
982
983 if (!ti)
984 goto out;
985 if (!ti->type->dax_copy_from_iter) {
986 ret = copy_from_iter(addr, bytes, i);
987 goto out;
988 }
989 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
990 out:
991 dm_put_live_table(md, srcu_idx);
992
993 return ret;
994 }
995
996 /*
997 * A target may call dm_accept_partial_bio only from the map routine. It is
998 * allowed for all bio types except REQ_PREFLUSH.
999 *
1000 * dm_accept_partial_bio informs the dm that the target only wants to process
1001 * additional n_sectors sectors of the bio and the rest of the data should be
1002 * sent in a next bio.
1003 *
1004 * A diagram that explains the arithmetics:
1005 * +--------------------+---------------+-------+
1006 * | 1 | 2 | 3 |
1007 * +--------------------+---------------+-------+
1008 *
1009 * <-------------- *tio->len_ptr --------------->
1010 * <------- bi_size ------->
1011 * <-- n_sectors -->
1012 *
1013 * Region 1 was already iterated over with bio_advance or similar function.
1014 * (it may be empty if the target doesn't use bio_advance)
1015 * Region 2 is the remaining bio size that the target wants to process.
1016 * (it may be empty if region 1 is non-empty, although there is no reason
1017 * to make it empty)
1018 * The target requires that region 3 is to be sent in the next bio.
1019 *
1020 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1021 * the partially processed part (the sum of regions 1+2) must be the same for all
1022 * copies of the bio.
1023 */
1024 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1025 {
1026 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1027 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1028 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1029 BUG_ON(bi_size > *tio->len_ptr);
1030 BUG_ON(n_sectors > bi_size);
1031 *tio->len_ptr -= bi_size - n_sectors;
1032 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1033 }
1034 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1035
1036 /*
1037 * The zone descriptors obtained with a zone report indicate
1038 * zone positions within the target device. The zone descriptors
1039 * must be remapped to match their position within the dm device.
1040 * A target may call dm_remap_zone_report after completion of a
1041 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1042 * from the target device mapping to the dm device.
1043 */
1044 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1045 {
1046 #ifdef CONFIG_BLK_DEV_ZONED
1047 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1048 struct bio *report_bio = tio->io->bio;
1049 struct blk_zone_report_hdr *hdr = NULL;
1050 struct blk_zone *zone;
1051 unsigned int nr_rep = 0;
1052 unsigned int ofst;
1053 struct bio_vec bvec;
1054 struct bvec_iter iter;
1055 void *addr;
1056
1057 if (bio->bi_status)
1058 return;
1059
1060 /*
1061 * Remap the start sector of the reported zones. For sequential zones,
1062 * also remap the write pointer position.
1063 */
1064 bio_for_each_segment(bvec, report_bio, iter) {
1065 addr = kmap_atomic(bvec.bv_page);
1066
1067 /* Remember the report header in the first page */
1068 if (!hdr) {
1069 hdr = addr;
1070 ofst = sizeof(struct blk_zone_report_hdr);
1071 } else
1072 ofst = 0;
1073
1074 /* Set zones start sector */
1075 while (hdr->nr_zones && ofst < bvec.bv_len) {
1076 zone = addr + ofst;
1077 if (zone->start >= start + ti->len) {
1078 hdr->nr_zones = 0;
1079 break;
1080 }
1081 zone->start = zone->start + ti->begin - start;
1082 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1083 if (zone->cond == BLK_ZONE_COND_FULL)
1084 zone->wp = zone->start + zone->len;
1085 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1086 zone->wp = zone->start;
1087 else
1088 zone->wp = zone->wp + ti->begin - start;
1089 }
1090 ofst += sizeof(struct blk_zone);
1091 hdr->nr_zones--;
1092 nr_rep++;
1093 }
1094
1095 if (addr != hdr)
1096 kunmap_atomic(addr);
1097
1098 if (!hdr->nr_zones)
1099 break;
1100 }
1101
1102 if (hdr) {
1103 hdr->nr_zones = nr_rep;
1104 kunmap_atomic(hdr);
1105 }
1106
1107 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1108
1109 #else /* !CONFIG_BLK_DEV_ZONED */
1110 bio->bi_status = BLK_STS_NOTSUPP;
1111 #endif
1112 }
1113 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1114
1115 /*
1116 * Flush current->bio_list when the target map method blocks.
1117 * This fixes deadlocks in snapshot and possibly in other targets.
1118 */
1119 struct dm_offload {
1120 struct blk_plug plug;
1121 struct blk_plug_cb cb;
1122 };
1123
1124 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1125 {
1126 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1127 struct bio_list list;
1128 struct bio *bio;
1129 int i;
1130
1131 INIT_LIST_HEAD(&o->cb.list);
1132
1133 if (unlikely(!current->bio_list))
1134 return;
1135
1136 for (i = 0; i < 2; i++) {
1137 list = current->bio_list[i];
1138 bio_list_init(&current->bio_list[i]);
1139
1140 while ((bio = bio_list_pop(&list))) {
1141 struct bio_set *bs = bio->bi_pool;
1142 if (unlikely(!bs) || bs == fs_bio_set ||
1143 !bs->rescue_workqueue) {
1144 bio_list_add(&current->bio_list[i], bio);
1145 continue;
1146 }
1147
1148 spin_lock(&bs->rescue_lock);
1149 bio_list_add(&bs->rescue_list, bio);
1150 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1151 spin_unlock(&bs->rescue_lock);
1152 }
1153 }
1154 }
1155
1156 static void dm_offload_start(struct dm_offload *o)
1157 {
1158 blk_start_plug(&o->plug);
1159 o->cb.callback = flush_current_bio_list;
1160 list_add(&o->cb.list, &current->plug->cb_list);
1161 }
1162
1163 static void dm_offload_end(struct dm_offload *o)
1164 {
1165 list_del(&o->cb.list);
1166 blk_finish_plug(&o->plug);
1167 }
1168
1169 static void __map_bio(struct dm_target_io *tio)
1170 {
1171 int r;
1172 sector_t sector;
1173 struct dm_offload o;
1174 struct bio *clone = &tio->clone;
1175 struct dm_target *ti = tio->ti;
1176
1177 clone->bi_end_io = clone_endio;
1178
1179 /*
1180 * Map the clone. If r == 0 we don't need to do
1181 * anything, the target has assumed ownership of
1182 * this io.
1183 */
1184 atomic_inc(&tio->io->io_count);
1185 sector = clone->bi_iter.bi_sector;
1186
1187 dm_offload_start(&o);
1188 r = ti->type->map(ti, clone);
1189 dm_offload_end(&o);
1190
1191 switch (r) {
1192 case DM_MAPIO_SUBMITTED:
1193 break;
1194 case DM_MAPIO_REMAPPED:
1195 /* the bio has been remapped so dispatch it */
1196 trace_block_bio_remap(clone->bi_disk->queue, clone,
1197 bio_dev(tio->io->bio), sector);
1198 generic_make_request(clone);
1199 break;
1200 case DM_MAPIO_KILL:
1201 dec_pending(tio->io, BLK_STS_IOERR);
1202 free_tio(tio);
1203 break;
1204 case DM_MAPIO_REQUEUE:
1205 dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1206 free_tio(tio);
1207 break;
1208 default:
1209 DMWARN("unimplemented target map return value: %d", r);
1210 BUG();
1211 }
1212 }
1213
1214 struct clone_info {
1215 struct mapped_device *md;
1216 struct dm_table *map;
1217 struct bio *bio;
1218 struct dm_io *io;
1219 sector_t sector;
1220 unsigned sector_count;
1221 };
1222
1223 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1224 {
1225 bio->bi_iter.bi_sector = sector;
1226 bio->bi_iter.bi_size = to_bytes(len);
1227 }
1228
1229 /*
1230 * Creates a bio that consists of range of complete bvecs.
1231 */
1232 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1233 sector_t sector, unsigned len)
1234 {
1235 struct bio *clone = &tio->clone;
1236
1237 __bio_clone_fast(clone, bio);
1238
1239 if (unlikely(bio_integrity(bio) != NULL)) {
1240 int r;
1241
1242 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1243 !dm_target_passes_integrity(tio->ti->type))) {
1244 DMWARN("%s: the target %s doesn't support integrity data.",
1245 dm_device_name(tio->io->md),
1246 tio->ti->type->name);
1247 return -EIO;
1248 }
1249
1250 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1251 if (r < 0)
1252 return r;
1253 }
1254
1255 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1256 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1257 clone->bi_iter.bi_size = to_bytes(len);
1258
1259 if (unlikely(bio_integrity(bio) != NULL))
1260 bio_integrity_trim(clone);
1261
1262 return 0;
1263 }
1264
1265 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1266 struct dm_target *ti,
1267 unsigned target_bio_nr)
1268 {
1269 struct dm_target_io *tio;
1270 struct bio *clone;
1271
1272 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1273 tio = container_of(clone, struct dm_target_io, clone);
1274
1275 tio->io = ci->io;
1276 tio->ti = ti;
1277 tio->target_bio_nr = target_bio_nr;
1278
1279 return tio;
1280 }
1281
1282 static void __clone_and_map_simple_bio(struct clone_info *ci,
1283 struct dm_target *ti,
1284 unsigned target_bio_nr, unsigned *len)
1285 {
1286 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1287 struct bio *clone = &tio->clone;
1288
1289 tio->len_ptr = len;
1290
1291 __bio_clone_fast(clone, ci->bio);
1292 if (len)
1293 bio_setup_sector(clone, ci->sector, *len);
1294
1295 __map_bio(tio);
1296 }
1297
1298 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1299 unsigned num_bios, unsigned *len)
1300 {
1301 unsigned target_bio_nr;
1302
1303 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1304 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1305 }
1306
1307 static int __send_empty_flush(struct clone_info *ci)
1308 {
1309 unsigned target_nr = 0;
1310 struct dm_target *ti;
1311
1312 BUG_ON(bio_has_data(ci->bio));
1313 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1314 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1315
1316 return 0;
1317 }
1318
1319 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1320 sector_t sector, unsigned *len)
1321 {
1322 struct bio *bio = ci->bio;
1323 struct dm_target_io *tio;
1324 unsigned target_bio_nr;
1325 unsigned num_target_bios = 1;
1326 int r = 0;
1327
1328 /*
1329 * Does the target want to receive duplicate copies of the bio?
1330 */
1331 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1332 num_target_bios = ti->num_write_bios(ti, bio);
1333
1334 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1335 tio = alloc_tio(ci, ti, target_bio_nr);
1336 tio->len_ptr = len;
1337 r = clone_bio(tio, bio, sector, *len);
1338 if (r < 0) {
1339 free_tio(tio);
1340 break;
1341 }
1342 __map_bio(tio);
1343 }
1344
1345 return r;
1346 }
1347
1348 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1349
1350 static unsigned get_num_discard_bios(struct dm_target *ti)
1351 {
1352 return ti->num_discard_bios;
1353 }
1354
1355 static unsigned get_num_write_same_bios(struct dm_target *ti)
1356 {
1357 return ti->num_write_same_bios;
1358 }
1359
1360 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1361 {
1362 return ti->num_write_zeroes_bios;
1363 }
1364
1365 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1366
1367 static bool is_split_required_for_discard(struct dm_target *ti)
1368 {
1369 return ti->split_discard_bios;
1370 }
1371
1372 static int __send_changing_extent_only(struct clone_info *ci,
1373 get_num_bios_fn get_num_bios,
1374 is_split_required_fn is_split_required)
1375 {
1376 struct dm_target *ti;
1377 unsigned len;
1378 unsigned num_bios;
1379
1380 do {
1381 ti = dm_table_find_target(ci->map, ci->sector);
1382 if (!dm_target_is_valid(ti))
1383 return -EIO;
1384
1385 /*
1386 * Even though the device advertised support for this type of
1387 * request, that does not mean every target supports it, and
1388 * reconfiguration might also have changed that since the
1389 * check was performed.
1390 */
1391 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1392 if (!num_bios)
1393 return -EOPNOTSUPP;
1394
1395 if (is_split_required && !is_split_required(ti))
1396 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1397 else
1398 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1399
1400 __send_duplicate_bios(ci, ti, num_bios, &len);
1401
1402 ci->sector += len;
1403 } while (ci->sector_count -= len);
1404
1405 return 0;
1406 }
1407
1408 static int __send_discard(struct clone_info *ci)
1409 {
1410 return __send_changing_extent_only(ci, get_num_discard_bios,
1411 is_split_required_for_discard);
1412 }
1413
1414 static int __send_write_same(struct clone_info *ci)
1415 {
1416 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1417 }
1418
1419 static int __send_write_zeroes(struct clone_info *ci)
1420 {
1421 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1422 }
1423
1424 /*
1425 * Select the correct strategy for processing a non-flush bio.
1426 */
1427 static int __split_and_process_non_flush(struct clone_info *ci)
1428 {
1429 struct bio *bio = ci->bio;
1430 struct dm_target *ti;
1431 unsigned len;
1432 int r;
1433
1434 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1435 return __send_discard(ci);
1436 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1437 return __send_write_same(ci);
1438 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1439 return __send_write_zeroes(ci);
1440
1441 ti = dm_table_find_target(ci->map, ci->sector);
1442 if (!dm_target_is_valid(ti))
1443 return -EIO;
1444
1445 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1446 len = ci->sector_count;
1447 else
1448 len = min_t(sector_t, max_io_len(ci->sector, ti),
1449 ci->sector_count);
1450
1451 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1452 if (r < 0)
1453 return r;
1454
1455 ci->sector += len;
1456 ci->sector_count -= len;
1457
1458 return 0;
1459 }
1460
1461 /*
1462 * Entry point to split a bio into clones and submit them to the targets.
1463 */
1464 static void __split_and_process_bio(struct mapped_device *md,
1465 struct dm_table *map, struct bio *bio)
1466 {
1467 struct clone_info ci;
1468 int error = 0;
1469
1470 if (unlikely(!map)) {
1471 bio_io_error(bio);
1472 return;
1473 }
1474
1475 ci.map = map;
1476 ci.md = md;
1477 ci.io = alloc_io(md);
1478 ci.io->status = 0;
1479 atomic_set(&ci.io->io_count, 1);
1480 ci.io->bio = bio;
1481 ci.io->md = md;
1482 spin_lock_init(&ci.io->endio_lock);
1483 ci.sector = bio->bi_iter.bi_sector;
1484
1485 start_io_acct(ci.io);
1486
1487 if (bio->bi_opf & REQ_PREFLUSH) {
1488 ci.bio = &ci.md->flush_bio;
1489 ci.sector_count = 0;
1490 error = __send_empty_flush(&ci);
1491 /* dec_pending submits any data associated with flush */
1492 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1493 ci.bio = bio;
1494 ci.sector_count = 0;
1495 error = __split_and_process_non_flush(&ci);
1496 } else {
1497 ci.bio = bio;
1498 ci.sector_count = bio_sectors(bio);
1499 while (ci.sector_count && !error)
1500 error = __split_and_process_non_flush(&ci);
1501 }
1502
1503 /* drop the extra reference count */
1504 dec_pending(ci.io, errno_to_blk_status(error));
1505 }
1506 /*-----------------------------------------------------------------
1507 * CRUD END
1508 *---------------------------------------------------------------*/
1509
1510 /*
1511 * The request function that just remaps the bio built up by
1512 * dm_merge_bvec.
1513 */
1514 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1515 {
1516 int rw = bio_data_dir(bio);
1517 struct mapped_device *md = q->queuedata;
1518 int srcu_idx;
1519 struct dm_table *map;
1520
1521 map = dm_get_live_table(md, &srcu_idx);
1522
1523 generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1524
1525 /* if we're suspended, we have to queue this io for later */
1526 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1527 dm_put_live_table(md, srcu_idx);
1528
1529 if (!(bio->bi_opf & REQ_RAHEAD))
1530 queue_io(md, bio);
1531 else
1532 bio_io_error(bio);
1533 return BLK_QC_T_NONE;
1534 }
1535
1536 __split_and_process_bio(md, map, bio);
1537 dm_put_live_table(md, srcu_idx);
1538 return BLK_QC_T_NONE;
1539 }
1540
1541 static int dm_any_congested(void *congested_data, int bdi_bits)
1542 {
1543 int r = bdi_bits;
1544 struct mapped_device *md = congested_data;
1545 struct dm_table *map;
1546
1547 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1548 if (dm_request_based(md)) {
1549 /*
1550 * With request-based DM we only need to check the
1551 * top-level queue for congestion.
1552 */
1553 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1554 } else {
1555 map = dm_get_live_table_fast(md);
1556 if (map)
1557 r = dm_table_any_congested(map, bdi_bits);
1558 dm_put_live_table_fast(md);
1559 }
1560 }
1561
1562 return r;
1563 }
1564
1565 /*-----------------------------------------------------------------
1566 * An IDR is used to keep track of allocated minor numbers.
1567 *---------------------------------------------------------------*/
1568 static void free_minor(int minor)
1569 {
1570 spin_lock(&_minor_lock);
1571 idr_remove(&_minor_idr, minor);
1572 spin_unlock(&_minor_lock);
1573 }
1574
1575 /*
1576 * See if the device with a specific minor # is free.
1577 */
1578 static int specific_minor(int minor)
1579 {
1580 int r;
1581
1582 if (minor >= (1 << MINORBITS))
1583 return -EINVAL;
1584
1585 idr_preload(GFP_KERNEL);
1586 spin_lock(&_minor_lock);
1587
1588 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1589
1590 spin_unlock(&_minor_lock);
1591 idr_preload_end();
1592 if (r < 0)
1593 return r == -ENOSPC ? -EBUSY : r;
1594 return 0;
1595 }
1596
1597 static int next_free_minor(int *minor)
1598 {
1599 int r;
1600
1601 idr_preload(GFP_KERNEL);
1602 spin_lock(&_minor_lock);
1603
1604 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1605
1606 spin_unlock(&_minor_lock);
1607 idr_preload_end();
1608 if (r < 0)
1609 return r;
1610 *minor = r;
1611 return 0;
1612 }
1613
1614 static const struct block_device_operations dm_blk_dops;
1615 static const struct dax_operations dm_dax_ops;
1616
1617 static void dm_wq_work(struct work_struct *work);
1618
1619 void dm_init_md_queue(struct mapped_device *md)
1620 {
1621 /*
1622 * Request-based dm devices cannot be stacked on top of bio-based dm
1623 * devices. The type of this dm device may not have been decided yet.
1624 * The type is decided at the first table loading time.
1625 * To prevent problematic device stacking, clear the queue flag
1626 * for request stacking support until then.
1627 *
1628 * This queue is new, so no concurrency on the queue_flags.
1629 */
1630 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1631
1632 /*
1633 * Initialize data that will only be used by a non-blk-mq DM queue
1634 * - must do so here (in alloc_dev callchain) before queue is used
1635 */
1636 md->queue->queuedata = md;
1637 md->queue->backing_dev_info->congested_data = md;
1638 }
1639
1640 void dm_init_normal_md_queue(struct mapped_device *md)
1641 {
1642 md->use_blk_mq = false;
1643 dm_init_md_queue(md);
1644
1645 /*
1646 * Initialize aspects of queue that aren't relevant for blk-mq
1647 */
1648 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1649 }
1650
1651 static void cleanup_mapped_device(struct mapped_device *md)
1652 {
1653 if (md->wq)
1654 destroy_workqueue(md->wq);
1655 if (md->kworker_task)
1656 kthread_stop(md->kworker_task);
1657 mempool_destroy(md->io_pool);
1658 if (md->bs)
1659 bioset_free(md->bs);
1660
1661 if (md->dax_dev) {
1662 kill_dax(md->dax_dev);
1663 put_dax(md->dax_dev);
1664 md->dax_dev = NULL;
1665 }
1666
1667 if (md->disk) {
1668 spin_lock(&_minor_lock);
1669 md->disk->private_data = NULL;
1670 spin_unlock(&_minor_lock);
1671 del_gendisk(md->disk);
1672 put_disk(md->disk);
1673 }
1674
1675 if (md->queue)
1676 blk_cleanup_queue(md->queue);
1677
1678 cleanup_srcu_struct(&md->io_barrier);
1679
1680 if (md->bdev) {
1681 bdput(md->bdev);
1682 md->bdev = NULL;
1683 }
1684
1685 dm_mq_cleanup_mapped_device(md);
1686 }
1687
1688 /*
1689 * Allocate and initialise a blank device with a given minor.
1690 */
1691 static struct mapped_device *alloc_dev(int minor)
1692 {
1693 int r, numa_node_id = dm_get_numa_node();
1694 struct dax_device *dax_dev;
1695 struct mapped_device *md;
1696 void *old_md;
1697
1698 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1699 if (!md) {
1700 DMWARN("unable to allocate device, out of memory.");
1701 return NULL;
1702 }
1703
1704 if (!try_module_get(THIS_MODULE))
1705 goto bad_module_get;
1706
1707 /* get a minor number for the dev */
1708 if (minor == DM_ANY_MINOR)
1709 r = next_free_minor(&minor);
1710 else
1711 r = specific_minor(minor);
1712 if (r < 0)
1713 goto bad_minor;
1714
1715 r = init_srcu_struct(&md->io_barrier);
1716 if (r < 0)
1717 goto bad_io_barrier;
1718
1719 md->numa_node_id = numa_node_id;
1720 md->use_blk_mq = dm_use_blk_mq_default();
1721 md->init_tio_pdu = false;
1722 md->type = DM_TYPE_NONE;
1723 mutex_init(&md->suspend_lock);
1724 mutex_init(&md->type_lock);
1725 mutex_init(&md->table_devices_lock);
1726 spin_lock_init(&md->deferred_lock);
1727 atomic_set(&md->holders, 1);
1728 atomic_set(&md->open_count, 0);
1729 atomic_set(&md->event_nr, 0);
1730 atomic_set(&md->uevent_seq, 0);
1731 INIT_LIST_HEAD(&md->uevent_list);
1732 INIT_LIST_HEAD(&md->table_devices);
1733 spin_lock_init(&md->uevent_lock);
1734
1735 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1736 if (!md->queue)
1737 goto bad;
1738
1739 dm_init_md_queue(md);
1740
1741 md->disk = alloc_disk_node(1, numa_node_id);
1742 if (!md->disk)
1743 goto bad;
1744
1745 atomic_set(&md->pending[0], 0);
1746 atomic_set(&md->pending[1], 0);
1747 init_waitqueue_head(&md->wait);
1748 INIT_WORK(&md->work, dm_wq_work);
1749 init_waitqueue_head(&md->eventq);
1750 init_completion(&md->kobj_holder.completion);
1751 md->kworker_task = NULL;
1752
1753 md->disk->major = _major;
1754 md->disk->first_minor = minor;
1755 md->disk->fops = &dm_blk_dops;
1756 md->disk->queue = md->queue;
1757 md->disk->private_data = md;
1758 sprintf(md->disk->disk_name, "dm-%d", minor);
1759
1760 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1761 if (!dax_dev)
1762 goto bad;
1763 md->dax_dev = dax_dev;
1764
1765 add_disk(md->disk);
1766 format_dev_t(md->name, MKDEV(_major, minor));
1767
1768 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1769 if (!md->wq)
1770 goto bad;
1771
1772 md->bdev = bdget_disk(md->disk, 0);
1773 if (!md->bdev)
1774 goto bad;
1775
1776 bio_init(&md->flush_bio, NULL, 0);
1777 bio_set_dev(&md->flush_bio, md->bdev);
1778 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1779
1780 dm_stats_init(&md->stats);
1781
1782 /* Populate the mapping, nobody knows we exist yet */
1783 spin_lock(&_minor_lock);
1784 old_md = idr_replace(&_minor_idr, md, minor);
1785 spin_unlock(&_minor_lock);
1786
1787 BUG_ON(old_md != MINOR_ALLOCED);
1788
1789 return md;
1790
1791 bad:
1792 cleanup_mapped_device(md);
1793 bad_io_barrier:
1794 free_minor(minor);
1795 bad_minor:
1796 module_put(THIS_MODULE);
1797 bad_module_get:
1798 kfree(md);
1799 return NULL;
1800 }
1801
1802 static void unlock_fs(struct mapped_device *md);
1803
1804 static void free_dev(struct mapped_device *md)
1805 {
1806 int minor = MINOR(disk_devt(md->disk));
1807
1808 unlock_fs(md);
1809
1810 cleanup_mapped_device(md);
1811
1812 free_table_devices(&md->table_devices);
1813 dm_stats_cleanup(&md->stats);
1814 free_minor(minor);
1815
1816 module_put(THIS_MODULE);
1817 kfree(md);
1818 }
1819
1820 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1821 {
1822 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1823
1824 if (md->bs) {
1825 /* The md already has necessary mempools. */
1826 if (dm_table_bio_based(t)) {
1827 /*
1828 * Reload bioset because front_pad may have changed
1829 * because a different table was loaded.
1830 */
1831 bioset_free(md->bs);
1832 md->bs = p->bs;
1833 p->bs = NULL;
1834 }
1835 /*
1836 * There's no need to reload with request-based dm
1837 * because the size of front_pad doesn't change.
1838 * Note for future: If you are to reload bioset,
1839 * prep-ed requests in the queue may refer
1840 * to bio from the old bioset, so you must walk
1841 * through the queue to unprep.
1842 */
1843 goto out;
1844 }
1845
1846 BUG_ON(!p || md->io_pool || md->bs);
1847
1848 md->io_pool = p->io_pool;
1849 p->io_pool = NULL;
1850 md->bs = p->bs;
1851 p->bs = NULL;
1852
1853 out:
1854 /* mempool bind completed, no longer need any mempools in the table */
1855 dm_table_free_md_mempools(t);
1856 }
1857
1858 /*
1859 * Bind a table to the device.
1860 */
1861 static void event_callback(void *context)
1862 {
1863 unsigned long flags;
1864 LIST_HEAD(uevents);
1865 struct mapped_device *md = (struct mapped_device *) context;
1866
1867 spin_lock_irqsave(&md->uevent_lock, flags);
1868 list_splice_init(&md->uevent_list, &uevents);
1869 spin_unlock_irqrestore(&md->uevent_lock, flags);
1870
1871 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1872
1873 atomic_inc(&md->event_nr);
1874 wake_up(&md->eventq);
1875 dm_issue_global_event();
1876 }
1877
1878 /*
1879 * Protected by md->suspend_lock obtained by dm_swap_table().
1880 */
1881 static void __set_size(struct mapped_device *md, sector_t size)
1882 {
1883 lockdep_assert_held(&md->suspend_lock);
1884
1885 set_capacity(md->disk, size);
1886
1887 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1888 }
1889
1890 /*
1891 * Returns old map, which caller must destroy.
1892 */
1893 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1894 struct queue_limits *limits)
1895 {
1896 struct dm_table *old_map;
1897 struct request_queue *q = md->queue;
1898 sector_t size;
1899
1900 lockdep_assert_held(&md->suspend_lock);
1901
1902 size = dm_table_get_size(t);
1903
1904 /*
1905 * Wipe any geometry if the size of the table changed.
1906 */
1907 if (size != dm_get_size(md))
1908 memset(&md->geometry, 0, sizeof(md->geometry));
1909
1910 __set_size(md, size);
1911
1912 dm_table_event_callback(t, event_callback, md);
1913
1914 /*
1915 * The queue hasn't been stopped yet, if the old table type wasn't
1916 * for request-based during suspension. So stop it to prevent
1917 * I/O mapping before resume.
1918 * This must be done before setting the queue restrictions,
1919 * because request-based dm may be run just after the setting.
1920 */
1921 if (dm_table_request_based(t)) {
1922 dm_stop_queue(q);
1923 /*
1924 * Leverage the fact that request-based DM targets are
1925 * immutable singletons and establish md->immutable_target
1926 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1927 */
1928 md->immutable_target = dm_table_get_immutable_target(t);
1929 }
1930
1931 __bind_mempools(md, t);
1932
1933 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1934 rcu_assign_pointer(md->map, (void *)t);
1935 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1936
1937 dm_table_set_restrictions(t, q, limits);
1938 if (old_map)
1939 dm_sync_table(md);
1940
1941 return old_map;
1942 }
1943
1944 /*
1945 * Returns unbound table for the caller to free.
1946 */
1947 static struct dm_table *__unbind(struct mapped_device *md)
1948 {
1949 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1950
1951 if (!map)
1952 return NULL;
1953
1954 dm_table_event_callback(map, NULL, NULL);
1955 RCU_INIT_POINTER(md->map, NULL);
1956 dm_sync_table(md);
1957
1958 return map;
1959 }
1960
1961 /*
1962 * Constructor for a new device.
1963 */
1964 int dm_create(int minor, struct mapped_device **result)
1965 {
1966 struct mapped_device *md;
1967
1968 md = alloc_dev(minor);
1969 if (!md)
1970 return -ENXIO;
1971
1972 dm_sysfs_init(md);
1973
1974 *result = md;
1975 return 0;
1976 }
1977
1978 /*
1979 * Functions to manage md->type.
1980 * All are required to hold md->type_lock.
1981 */
1982 void dm_lock_md_type(struct mapped_device *md)
1983 {
1984 mutex_lock(&md->type_lock);
1985 }
1986
1987 void dm_unlock_md_type(struct mapped_device *md)
1988 {
1989 mutex_unlock(&md->type_lock);
1990 }
1991
1992 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1993 {
1994 BUG_ON(!mutex_is_locked(&md->type_lock));
1995 md->type = type;
1996 }
1997
1998 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1999 {
2000 return md->type;
2001 }
2002
2003 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2004 {
2005 return md->immutable_target_type;
2006 }
2007
2008 /*
2009 * The queue_limits are only valid as long as you have a reference
2010 * count on 'md'.
2011 */
2012 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2013 {
2014 BUG_ON(!atomic_read(&md->holders));
2015 return &md->queue->limits;
2016 }
2017 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2018
2019 /*
2020 * Setup the DM device's queue based on md's type
2021 */
2022 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2023 {
2024 int r;
2025 enum dm_queue_mode type = dm_get_md_type(md);
2026
2027 switch (type) {
2028 case DM_TYPE_REQUEST_BASED:
2029 r = dm_old_init_request_queue(md, t);
2030 if (r) {
2031 DMERR("Cannot initialize queue for request-based mapped device");
2032 return r;
2033 }
2034 break;
2035 case DM_TYPE_MQ_REQUEST_BASED:
2036 r = dm_mq_init_request_queue(md, t);
2037 if (r) {
2038 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2039 return r;
2040 }
2041 break;
2042 case DM_TYPE_BIO_BASED:
2043 case DM_TYPE_DAX_BIO_BASED:
2044 dm_init_normal_md_queue(md);
2045 blk_queue_make_request(md->queue, dm_make_request);
2046 /*
2047 * DM handles splitting bios as needed. Free the bio_split bioset
2048 * since it won't be used (saves 1 process per bio-based DM device).
2049 */
2050 bioset_free(md->queue->bio_split);
2051 md->queue->bio_split = NULL;
2052
2053 if (type == DM_TYPE_DAX_BIO_BASED)
2054 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2055 break;
2056 case DM_TYPE_NONE:
2057 WARN_ON_ONCE(true);
2058 break;
2059 }
2060
2061 return 0;
2062 }
2063
2064 struct mapped_device *dm_get_md(dev_t dev)
2065 {
2066 struct mapped_device *md;
2067 unsigned minor = MINOR(dev);
2068
2069 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2070 return NULL;
2071
2072 spin_lock(&_minor_lock);
2073
2074 md = idr_find(&_minor_idr, minor);
2075 if (md) {
2076 if ((md == MINOR_ALLOCED ||
2077 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2078 dm_deleting_md(md) ||
2079 test_bit(DMF_FREEING, &md->flags))) {
2080 md = NULL;
2081 goto out;
2082 }
2083 dm_get(md);
2084 }
2085
2086 out:
2087 spin_unlock(&_minor_lock);
2088
2089 return md;
2090 }
2091 EXPORT_SYMBOL_GPL(dm_get_md);
2092
2093 void *dm_get_mdptr(struct mapped_device *md)
2094 {
2095 return md->interface_ptr;
2096 }
2097
2098 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2099 {
2100 md->interface_ptr = ptr;
2101 }
2102
2103 void dm_get(struct mapped_device *md)
2104 {
2105 atomic_inc(&md->holders);
2106 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2107 }
2108
2109 int dm_hold(struct mapped_device *md)
2110 {
2111 spin_lock(&_minor_lock);
2112 if (test_bit(DMF_FREEING, &md->flags)) {
2113 spin_unlock(&_minor_lock);
2114 return -EBUSY;
2115 }
2116 dm_get(md);
2117 spin_unlock(&_minor_lock);
2118 return 0;
2119 }
2120 EXPORT_SYMBOL_GPL(dm_hold);
2121
2122 const char *dm_device_name(struct mapped_device *md)
2123 {
2124 return md->name;
2125 }
2126 EXPORT_SYMBOL_GPL(dm_device_name);
2127
2128 static void __dm_destroy(struct mapped_device *md, bool wait)
2129 {
2130 struct request_queue *q = dm_get_md_queue(md);
2131 struct dm_table *map;
2132 int srcu_idx;
2133
2134 might_sleep();
2135
2136 spin_lock(&_minor_lock);
2137 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2138 set_bit(DMF_FREEING, &md->flags);
2139 spin_unlock(&_minor_lock);
2140
2141 blk_set_queue_dying(q);
2142
2143 if (dm_request_based(md) && md->kworker_task)
2144 kthread_flush_worker(&md->kworker);
2145
2146 /*
2147 * Take suspend_lock so that presuspend and postsuspend methods
2148 * do not race with internal suspend.
2149 */
2150 mutex_lock(&md->suspend_lock);
2151 map = dm_get_live_table(md, &srcu_idx);
2152 if (!dm_suspended_md(md)) {
2153 dm_table_presuspend_targets(map);
2154 dm_table_postsuspend_targets(map);
2155 }
2156 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2157 dm_put_live_table(md, srcu_idx);
2158 mutex_unlock(&md->suspend_lock);
2159
2160 /*
2161 * Rare, but there may be I/O requests still going to complete,
2162 * for example. Wait for all references to disappear.
2163 * No one should increment the reference count of the mapped_device,
2164 * after the mapped_device state becomes DMF_FREEING.
2165 */
2166 if (wait)
2167 while (atomic_read(&md->holders))
2168 msleep(1);
2169 else if (atomic_read(&md->holders))
2170 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2171 dm_device_name(md), atomic_read(&md->holders));
2172
2173 dm_sysfs_exit(md);
2174 dm_table_destroy(__unbind(md));
2175 free_dev(md);
2176 }
2177
2178 void dm_destroy(struct mapped_device *md)
2179 {
2180 __dm_destroy(md, true);
2181 }
2182
2183 void dm_destroy_immediate(struct mapped_device *md)
2184 {
2185 __dm_destroy(md, false);
2186 }
2187
2188 void dm_put(struct mapped_device *md)
2189 {
2190 atomic_dec(&md->holders);
2191 }
2192 EXPORT_SYMBOL_GPL(dm_put);
2193
2194 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2195 {
2196 int r = 0;
2197 DEFINE_WAIT(wait);
2198
2199 while (1) {
2200 prepare_to_wait(&md->wait, &wait, task_state);
2201
2202 if (!md_in_flight(md))
2203 break;
2204
2205 if (signal_pending_state(task_state, current)) {
2206 r = -EINTR;
2207 break;
2208 }
2209
2210 io_schedule();
2211 }
2212 finish_wait(&md->wait, &wait);
2213
2214 return r;
2215 }
2216
2217 /*
2218 * Process the deferred bios
2219 */
2220 static void dm_wq_work(struct work_struct *work)
2221 {
2222 struct mapped_device *md = container_of(work, struct mapped_device,
2223 work);
2224 struct bio *c;
2225 int srcu_idx;
2226 struct dm_table *map;
2227
2228 map = dm_get_live_table(md, &srcu_idx);
2229
2230 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2231 spin_lock_irq(&md->deferred_lock);
2232 c = bio_list_pop(&md->deferred);
2233 spin_unlock_irq(&md->deferred_lock);
2234
2235 if (!c)
2236 break;
2237
2238 if (dm_request_based(md))
2239 generic_make_request(c);
2240 else
2241 __split_and_process_bio(md, map, c);
2242 }
2243
2244 dm_put_live_table(md, srcu_idx);
2245 }
2246
2247 static void dm_queue_flush(struct mapped_device *md)
2248 {
2249 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2250 smp_mb__after_atomic();
2251 queue_work(md->wq, &md->work);
2252 }
2253
2254 /*
2255 * Swap in a new table, returning the old one for the caller to destroy.
2256 */
2257 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2258 {
2259 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2260 struct queue_limits limits;
2261 int r;
2262
2263 mutex_lock(&md->suspend_lock);
2264
2265 /* device must be suspended */
2266 if (!dm_suspended_md(md))
2267 goto out;
2268
2269 /*
2270 * If the new table has no data devices, retain the existing limits.
2271 * This helps multipath with queue_if_no_path if all paths disappear,
2272 * then new I/O is queued based on these limits, and then some paths
2273 * reappear.
2274 */
2275 if (dm_table_has_no_data_devices(table)) {
2276 live_map = dm_get_live_table_fast(md);
2277 if (live_map)
2278 limits = md->queue->limits;
2279 dm_put_live_table_fast(md);
2280 }
2281
2282 if (!live_map) {
2283 r = dm_calculate_queue_limits(table, &limits);
2284 if (r) {
2285 map = ERR_PTR(r);
2286 goto out;
2287 }
2288 }
2289
2290 map = __bind(md, table, &limits);
2291 dm_issue_global_event();
2292
2293 out:
2294 mutex_unlock(&md->suspend_lock);
2295 return map;
2296 }
2297
2298 /*
2299 * Functions to lock and unlock any filesystem running on the
2300 * device.
2301 */
2302 static int lock_fs(struct mapped_device *md)
2303 {
2304 int r;
2305
2306 WARN_ON(md->frozen_sb);
2307
2308 md->frozen_sb = freeze_bdev(md->bdev);
2309 if (IS_ERR(md->frozen_sb)) {
2310 r = PTR_ERR(md->frozen_sb);
2311 md->frozen_sb = NULL;
2312 return r;
2313 }
2314
2315 set_bit(DMF_FROZEN, &md->flags);
2316
2317 return 0;
2318 }
2319
2320 static void unlock_fs(struct mapped_device *md)
2321 {
2322 if (!test_bit(DMF_FROZEN, &md->flags))
2323 return;
2324
2325 thaw_bdev(md->bdev, md->frozen_sb);
2326 md->frozen_sb = NULL;
2327 clear_bit(DMF_FROZEN, &md->flags);
2328 }
2329
2330 /*
2331 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2332 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2333 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2334 *
2335 * If __dm_suspend returns 0, the device is completely quiescent
2336 * now. There is no request-processing activity. All new requests
2337 * are being added to md->deferred list.
2338 */
2339 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2340 unsigned suspend_flags, long task_state,
2341 int dmf_suspended_flag)
2342 {
2343 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2344 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2345 int r;
2346
2347 lockdep_assert_held(&md->suspend_lock);
2348
2349 /*
2350 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2351 * This flag is cleared before dm_suspend returns.
2352 */
2353 if (noflush)
2354 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2355 else
2356 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2357
2358 /*
2359 * This gets reverted if there's an error later and the targets
2360 * provide the .presuspend_undo hook.
2361 */
2362 dm_table_presuspend_targets(map);
2363
2364 /*
2365 * Flush I/O to the device.
2366 * Any I/O submitted after lock_fs() may not be flushed.
2367 * noflush takes precedence over do_lockfs.
2368 * (lock_fs() flushes I/Os and waits for them to complete.)
2369 */
2370 if (!noflush && do_lockfs) {
2371 r = lock_fs(md);
2372 if (r) {
2373 dm_table_presuspend_undo_targets(map);
2374 return r;
2375 }
2376 }
2377
2378 /*
2379 * Here we must make sure that no processes are submitting requests
2380 * to target drivers i.e. no one may be executing
2381 * __split_and_process_bio. This is called from dm_request and
2382 * dm_wq_work.
2383 *
2384 * To get all processes out of __split_and_process_bio in dm_request,
2385 * we take the write lock. To prevent any process from reentering
2386 * __split_and_process_bio from dm_request and quiesce the thread
2387 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2388 * flush_workqueue(md->wq).
2389 */
2390 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2391 if (map)
2392 synchronize_srcu(&md->io_barrier);
2393
2394 /*
2395 * Stop md->queue before flushing md->wq in case request-based
2396 * dm defers requests to md->wq from md->queue.
2397 */
2398 if (dm_request_based(md)) {
2399 dm_stop_queue(md->queue);
2400 if (md->kworker_task)
2401 kthread_flush_worker(&md->kworker);
2402 }
2403
2404 flush_workqueue(md->wq);
2405
2406 /*
2407 * At this point no more requests are entering target request routines.
2408 * We call dm_wait_for_completion to wait for all existing requests
2409 * to finish.
2410 */
2411 r = dm_wait_for_completion(md, task_state);
2412 if (!r)
2413 set_bit(dmf_suspended_flag, &md->flags);
2414
2415 if (noflush)
2416 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2417 if (map)
2418 synchronize_srcu(&md->io_barrier);
2419
2420 /* were we interrupted ? */
2421 if (r < 0) {
2422 dm_queue_flush(md);
2423
2424 if (dm_request_based(md))
2425 dm_start_queue(md->queue);
2426
2427 unlock_fs(md);
2428 dm_table_presuspend_undo_targets(map);
2429 /* pushback list is already flushed, so skip flush */
2430 }
2431
2432 return r;
2433 }
2434
2435 /*
2436 * We need to be able to change a mapping table under a mounted
2437 * filesystem. For example we might want to move some data in
2438 * the background. Before the table can be swapped with
2439 * dm_bind_table, dm_suspend must be called to flush any in
2440 * flight bios and ensure that any further io gets deferred.
2441 */
2442 /*
2443 * Suspend mechanism in request-based dm.
2444 *
2445 * 1. Flush all I/Os by lock_fs() if needed.
2446 * 2. Stop dispatching any I/O by stopping the request_queue.
2447 * 3. Wait for all in-flight I/Os to be completed or requeued.
2448 *
2449 * To abort suspend, start the request_queue.
2450 */
2451 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2452 {
2453 struct dm_table *map = NULL;
2454 int r = 0;
2455
2456 retry:
2457 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2458
2459 if (dm_suspended_md(md)) {
2460 r = -EINVAL;
2461 goto out_unlock;
2462 }
2463
2464 if (dm_suspended_internally_md(md)) {
2465 /* already internally suspended, wait for internal resume */
2466 mutex_unlock(&md->suspend_lock);
2467 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2468 if (r)
2469 return r;
2470 goto retry;
2471 }
2472
2473 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2474
2475 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2476 if (r)
2477 goto out_unlock;
2478
2479 dm_table_postsuspend_targets(map);
2480
2481 out_unlock:
2482 mutex_unlock(&md->suspend_lock);
2483 return r;
2484 }
2485
2486 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2487 {
2488 if (map) {
2489 int r = dm_table_resume_targets(map);
2490 if (r)
2491 return r;
2492 }
2493
2494 dm_queue_flush(md);
2495
2496 /*
2497 * Flushing deferred I/Os must be done after targets are resumed
2498 * so that mapping of targets can work correctly.
2499 * Request-based dm is queueing the deferred I/Os in its request_queue.
2500 */
2501 if (dm_request_based(md))
2502 dm_start_queue(md->queue);
2503
2504 unlock_fs(md);
2505
2506 return 0;
2507 }
2508
2509 int dm_resume(struct mapped_device *md)
2510 {
2511 int r;
2512 struct dm_table *map = NULL;
2513
2514 retry:
2515 r = -EINVAL;
2516 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2517
2518 if (!dm_suspended_md(md))
2519 goto out;
2520
2521 if (dm_suspended_internally_md(md)) {
2522 /* already internally suspended, wait for internal resume */
2523 mutex_unlock(&md->suspend_lock);
2524 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2525 if (r)
2526 return r;
2527 goto retry;
2528 }
2529
2530 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2531 if (!map || !dm_table_get_size(map))
2532 goto out;
2533
2534 r = __dm_resume(md, map);
2535 if (r)
2536 goto out;
2537
2538 clear_bit(DMF_SUSPENDED, &md->flags);
2539 out:
2540 mutex_unlock(&md->suspend_lock);
2541
2542 return r;
2543 }
2544
2545 /*
2546 * Internal suspend/resume works like userspace-driven suspend. It waits
2547 * until all bios finish and prevents issuing new bios to the target drivers.
2548 * It may be used only from the kernel.
2549 */
2550
2551 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2552 {
2553 struct dm_table *map = NULL;
2554
2555 lockdep_assert_held(&md->suspend_lock);
2556
2557 if (md->internal_suspend_count++)
2558 return; /* nested internal suspend */
2559
2560 if (dm_suspended_md(md)) {
2561 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2562 return; /* nest suspend */
2563 }
2564
2565 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2566
2567 /*
2568 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2569 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2570 * would require changing .presuspend to return an error -- avoid this
2571 * until there is a need for more elaborate variants of internal suspend.
2572 */
2573 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2574 DMF_SUSPENDED_INTERNALLY);
2575
2576 dm_table_postsuspend_targets(map);
2577 }
2578
2579 static void __dm_internal_resume(struct mapped_device *md)
2580 {
2581 BUG_ON(!md->internal_suspend_count);
2582
2583 if (--md->internal_suspend_count)
2584 return; /* resume from nested internal suspend */
2585
2586 if (dm_suspended_md(md))
2587 goto done; /* resume from nested suspend */
2588
2589 /*
2590 * NOTE: existing callers don't need to call dm_table_resume_targets
2591 * (which may fail -- so best to avoid it for now by passing NULL map)
2592 */
2593 (void) __dm_resume(md, NULL);
2594
2595 done:
2596 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2597 smp_mb__after_atomic();
2598 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2599 }
2600
2601 void dm_internal_suspend_noflush(struct mapped_device *md)
2602 {
2603 mutex_lock(&md->suspend_lock);
2604 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2605 mutex_unlock(&md->suspend_lock);
2606 }
2607 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2608
2609 void dm_internal_resume(struct mapped_device *md)
2610 {
2611 mutex_lock(&md->suspend_lock);
2612 __dm_internal_resume(md);
2613 mutex_unlock(&md->suspend_lock);
2614 }
2615 EXPORT_SYMBOL_GPL(dm_internal_resume);
2616
2617 /*
2618 * Fast variants of internal suspend/resume hold md->suspend_lock,
2619 * which prevents interaction with userspace-driven suspend.
2620 */
2621
2622 void dm_internal_suspend_fast(struct mapped_device *md)
2623 {
2624 mutex_lock(&md->suspend_lock);
2625 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2626 return;
2627
2628 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2629 synchronize_srcu(&md->io_barrier);
2630 flush_workqueue(md->wq);
2631 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2632 }
2633 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2634
2635 void dm_internal_resume_fast(struct mapped_device *md)
2636 {
2637 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2638 goto done;
2639
2640 dm_queue_flush(md);
2641
2642 done:
2643 mutex_unlock(&md->suspend_lock);
2644 }
2645 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2646
2647 /*-----------------------------------------------------------------
2648 * Event notification.
2649 *---------------------------------------------------------------*/
2650 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2651 unsigned cookie)
2652 {
2653 char udev_cookie[DM_COOKIE_LENGTH];
2654 char *envp[] = { udev_cookie, NULL };
2655
2656 if (!cookie)
2657 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2658 else {
2659 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2660 DM_COOKIE_ENV_VAR_NAME, cookie);
2661 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2662 action, envp);
2663 }
2664 }
2665
2666 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2667 {
2668 return atomic_add_return(1, &md->uevent_seq);
2669 }
2670
2671 uint32_t dm_get_event_nr(struct mapped_device *md)
2672 {
2673 return atomic_read(&md->event_nr);
2674 }
2675
2676 int dm_wait_event(struct mapped_device *md, int event_nr)
2677 {
2678 return wait_event_interruptible(md->eventq,
2679 (event_nr != atomic_read(&md->event_nr)));
2680 }
2681
2682 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2683 {
2684 unsigned long flags;
2685
2686 spin_lock_irqsave(&md->uevent_lock, flags);
2687 list_add(elist, &md->uevent_list);
2688 spin_unlock_irqrestore(&md->uevent_lock, flags);
2689 }
2690
2691 /*
2692 * The gendisk is only valid as long as you have a reference
2693 * count on 'md'.
2694 */
2695 struct gendisk *dm_disk(struct mapped_device *md)
2696 {
2697 return md->disk;
2698 }
2699 EXPORT_SYMBOL_GPL(dm_disk);
2700
2701 struct kobject *dm_kobject(struct mapped_device *md)
2702 {
2703 return &md->kobj_holder.kobj;
2704 }
2705
2706 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2707 {
2708 struct mapped_device *md;
2709
2710 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2711
2712 if (test_bit(DMF_FREEING, &md->flags) ||
2713 dm_deleting_md(md))
2714 return NULL;
2715
2716 dm_get(md);
2717 return md;
2718 }
2719
2720 int dm_suspended_md(struct mapped_device *md)
2721 {
2722 return test_bit(DMF_SUSPENDED, &md->flags);
2723 }
2724
2725 int dm_suspended_internally_md(struct mapped_device *md)
2726 {
2727 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2728 }
2729
2730 int dm_test_deferred_remove_flag(struct mapped_device *md)
2731 {
2732 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2733 }
2734
2735 int dm_suspended(struct dm_target *ti)
2736 {
2737 return dm_suspended_md(dm_table_get_md(ti->table));
2738 }
2739 EXPORT_SYMBOL_GPL(dm_suspended);
2740
2741 int dm_noflush_suspending(struct dm_target *ti)
2742 {
2743 return __noflush_suspending(dm_table_get_md(ti->table));
2744 }
2745 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2746
2747 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2748 unsigned integrity, unsigned per_io_data_size)
2749 {
2750 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2751 unsigned int pool_size = 0;
2752 unsigned int front_pad;
2753
2754 if (!pools)
2755 return NULL;
2756
2757 switch (type) {
2758 case DM_TYPE_BIO_BASED:
2759 case DM_TYPE_DAX_BIO_BASED:
2760 pool_size = dm_get_reserved_bio_based_ios();
2761 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2762
2763 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2764 if (!pools->io_pool)
2765 goto out;
2766 break;
2767 case DM_TYPE_REQUEST_BASED:
2768 case DM_TYPE_MQ_REQUEST_BASED:
2769 pool_size = dm_get_reserved_rq_based_ios();
2770 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2771 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2772 break;
2773 default:
2774 BUG();
2775 }
2776
2777 pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2778 if (!pools->bs)
2779 goto out;
2780
2781 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2782 goto out;
2783
2784 return pools;
2785
2786 out:
2787 dm_free_md_mempools(pools);
2788
2789 return NULL;
2790 }
2791
2792 void dm_free_md_mempools(struct dm_md_mempools *pools)
2793 {
2794 if (!pools)
2795 return;
2796
2797 mempool_destroy(pools->io_pool);
2798
2799 if (pools->bs)
2800 bioset_free(pools->bs);
2801
2802 kfree(pools);
2803 }
2804
2805 struct dm_pr {
2806 u64 old_key;
2807 u64 new_key;
2808 u32 flags;
2809 bool fail_early;
2810 };
2811
2812 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2813 void *data)
2814 {
2815 struct mapped_device *md = bdev->bd_disk->private_data;
2816 struct dm_table *table;
2817 struct dm_target *ti;
2818 int ret = -ENOTTY, srcu_idx;
2819
2820 table = dm_get_live_table(md, &srcu_idx);
2821 if (!table || !dm_table_get_size(table))
2822 goto out;
2823
2824 /* We only support devices that have a single target */
2825 if (dm_table_get_num_targets(table) != 1)
2826 goto out;
2827 ti = dm_table_get_target(table, 0);
2828
2829 ret = -EINVAL;
2830 if (!ti->type->iterate_devices)
2831 goto out;
2832
2833 ret = ti->type->iterate_devices(ti, fn, data);
2834 out:
2835 dm_put_live_table(md, srcu_idx);
2836 return ret;
2837 }
2838
2839 /*
2840 * For register / unregister we need to manually call out to every path.
2841 */
2842 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2843 sector_t start, sector_t len, void *data)
2844 {
2845 struct dm_pr *pr = data;
2846 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2847
2848 if (!ops || !ops->pr_register)
2849 return -EOPNOTSUPP;
2850 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2851 }
2852
2853 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2854 u32 flags)
2855 {
2856 struct dm_pr pr = {
2857 .old_key = old_key,
2858 .new_key = new_key,
2859 .flags = flags,
2860 .fail_early = true,
2861 };
2862 int ret;
2863
2864 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2865 if (ret && new_key) {
2866 /* unregister all paths if we failed to register any path */
2867 pr.old_key = new_key;
2868 pr.new_key = 0;
2869 pr.flags = 0;
2870 pr.fail_early = false;
2871 dm_call_pr(bdev, __dm_pr_register, &pr);
2872 }
2873
2874 return ret;
2875 }
2876
2877 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2878 u32 flags)
2879 {
2880 struct mapped_device *md = bdev->bd_disk->private_data;
2881 const struct pr_ops *ops;
2882 fmode_t mode;
2883 int r;
2884
2885 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2886 if (r < 0)
2887 return r;
2888
2889 ops = bdev->bd_disk->fops->pr_ops;
2890 if (ops && ops->pr_reserve)
2891 r = ops->pr_reserve(bdev, key, type, flags);
2892 else
2893 r = -EOPNOTSUPP;
2894
2895 bdput(bdev);
2896 return r;
2897 }
2898
2899 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2900 {
2901 struct mapped_device *md = bdev->bd_disk->private_data;
2902 const struct pr_ops *ops;
2903 fmode_t mode;
2904 int r;
2905
2906 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2907 if (r < 0)
2908 return r;
2909
2910 ops = bdev->bd_disk->fops->pr_ops;
2911 if (ops && ops->pr_release)
2912 r = ops->pr_release(bdev, key, type);
2913 else
2914 r = -EOPNOTSUPP;
2915
2916 bdput(bdev);
2917 return r;
2918 }
2919
2920 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2921 enum pr_type type, bool abort)
2922 {
2923 struct mapped_device *md = bdev->bd_disk->private_data;
2924 const struct pr_ops *ops;
2925 fmode_t mode;
2926 int r;
2927
2928 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2929 if (r < 0)
2930 return r;
2931
2932 ops = bdev->bd_disk->fops->pr_ops;
2933 if (ops && ops->pr_preempt)
2934 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2935 else
2936 r = -EOPNOTSUPP;
2937
2938 bdput(bdev);
2939 return r;
2940 }
2941
2942 static int dm_pr_clear(struct block_device *bdev, u64 key)
2943 {
2944 struct mapped_device *md = bdev->bd_disk->private_data;
2945 const struct pr_ops *ops;
2946 fmode_t mode;
2947 int r;
2948
2949 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2950 if (r < 0)
2951 return r;
2952
2953 ops = bdev->bd_disk->fops->pr_ops;
2954 if (ops && ops->pr_clear)
2955 r = ops->pr_clear(bdev, key);
2956 else
2957 r = -EOPNOTSUPP;
2958
2959 bdput(bdev);
2960 return r;
2961 }
2962
2963 static const struct pr_ops dm_pr_ops = {
2964 .pr_register = dm_pr_register,
2965 .pr_reserve = dm_pr_reserve,
2966 .pr_release = dm_pr_release,
2967 .pr_preempt = dm_pr_preempt,
2968 .pr_clear = dm_pr_clear,
2969 };
2970
2971 static const struct block_device_operations dm_blk_dops = {
2972 .open = dm_blk_open,
2973 .release = dm_blk_close,
2974 .ioctl = dm_blk_ioctl,
2975 .getgeo = dm_blk_getgeo,
2976 .pr_ops = &dm_pr_ops,
2977 .owner = THIS_MODULE
2978 };
2979
2980 static const struct dax_operations dm_dax_ops = {
2981 .direct_access = dm_dax_direct_access,
2982 .copy_from_iter = dm_dax_copy_from_iter,
2983 };
2984
2985 /*
2986 * module hooks
2987 */
2988 module_init(dm_init);
2989 module_exit(dm_exit);
2990
2991 module_param(major, uint, 0);
2992 MODULE_PARM_DESC(major, "The major number of the device mapper");
2993
2994 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2995 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2996
2997 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2998 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2999
3000 MODULE_DESCRIPTION(DM_NAME " driver");
3001 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3002 MODULE_LICENSE("GPL");