]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
dm: set queue ordered mode
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * For bio-based dm.
36 * One of these is allocated per bio.
37 */
38 struct dm_io {
39 struct mapped_device *md;
40 int error;
41 atomic_t io_count;
42 struct bio *bio;
43 unsigned long start_time;
44 };
45
46 /*
47 * For bio-based dm.
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
50 */
51 struct dm_target_io {
52 struct dm_io *io;
53 struct dm_target *ti;
54 union map_info info;
55 };
56
57 DEFINE_TRACE(block_bio_complete);
58
59 /*
60 * For request-based dm.
61 * One of these is allocated per request.
62 */
63 struct dm_rq_target_io {
64 struct mapped_device *md;
65 struct dm_target *ti;
66 struct request *orig, clone;
67 int error;
68 union map_info info;
69 };
70
71 /*
72 * For request-based dm.
73 * One of these is allocated per bio.
74 */
75 struct dm_rq_clone_bio_info {
76 struct bio *orig;
77 struct request *rq;
78 };
79
80 union map_info *dm_get_mapinfo(struct bio *bio)
81 {
82 if (bio && bio->bi_private)
83 return &((struct dm_target_io *)bio->bi_private)->info;
84 return NULL;
85 }
86
87 #define MINOR_ALLOCED ((void *)-1)
88
89 /*
90 * Bits for the md->flags field.
91 */
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98
99 /*
100 * Work processed by per-device workqueue.
101 */
102 struct mapped_device {
103 struct rw_semaphore io_lock;
104 struct mutex suspend_lock;
105 rwlock_t map_lock;
106 atomic_t holders;
107 atomic_t open_count;
108
109 unsigned long flags;
110
111 struct request_queue *queue;
112 struct gendisk *disk;
113 char name[16];
114
115 void *interface_ptr;
116
117 /*
118 * A list of ios that arrived while we were suspended.
119 */
120 atomic_t pending;
121 wait_queue_head_t wait;
122 struct work_struct work;
123 struct bio_list deferred;
124 spinlock_t deferred_lock;
125
126 /*
127 * Processing queue (flush/barriers)
128 */
129 struct workqueue_struct *wq;
130
131 /*
132 * The current mapping.
133 */
134 struct dm_table *map;
135
136 /*
137 * io objects are allocated from here.
138 */
139 mempool_t *io_pool;
140 mempool_t *tio_pool;
141
142 struct bio_set *bs;
143
144 /*
145 * Event handling.
146 */
147 atomic_t event_nr;
148 wait_queue_head_t eventq;
149 atomic_t uevent_seq;
150 struct list_head uevent_list;
151 spinlock_t uevent_lock; /* Protect access to uevent_list */
152
153 /*
154 * freeze/thaw support require holding onto a super block
155 */
156 struct super_block *frozen_sb;
157 struct block_device *suspended_bdev;
158
159 /* forced geometry settings */
160 struct hd_geometry geometry;
161
162 /* sysfs handle */
163 struct kobject kobj;
164 };
165
166 #define MIN_IOS 256
167 static struct kmem_cache *_io_cache;
168 static struct kmem_cache *_tio_cache;
169 static struct kmem_cache *_rq_tio_cache;
170 static struct kmem_cache *_rq_bio_info_cache;
171
172 static int __init local_init(void)
173 {
174 int r = -ENOMEM;
175
176 /* allocate a slab for the dm_ios */
177 _io_cache = KMEM_CACHE(dm_io, 0);
178 if (!_io_cache)
179 return r;
180
181 /* allocate a slab for the target ios */
182 _tio_cache = KMEM_CACHE(dm_target_io, 0);
183 if (!_tio_cache)
184 goto out_free_io_cache;
185
186 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
187 if (!_rq_tio_cache)
188 goto out_free_tio_cache;
189
190 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
191 if (!_rq_bio_info_cache)
192 goto out_free_rq_tio_cache;
193
194 r = dm_uevent_init();
195 if (r)
196 goto out_free_rq_bio_info_cache;
197
198 _major = major;
199 r = register_blkdev(_major, _name);
200 if (r < 0)
201 goto out_uevent_exit;
202
203 if (!_major)
204 _major = r;
205
206 return 0;
207
208 out_uevent_exit:
209 dm_uevent_exit();
210 out_free_rq_bio_info_cache:
211 kmem_cache_destroy(_rq_bio_info_cache);
212 out_free_rq_tio_cache:
213 kmem_cache_destroy(_rq_tio_cache);
214 out_free_tio_cache:
215 kmem_cache_destroy(_tio_cache);
216 out_free_io_cache:
217 kmem_cache_destroy(_io_cache);
218
219 return r;
220 }
221
222 static void local_exit(void)
223 {
224 kmem_cache_destroy(_rq_bio_info_cache);
225 kmem_cache_destroy(_rq_tio_cache);
226 kmem_cache_destroy(_tio_cache);
227 kmem_cache_destroy(_io_cache);
228 unregister_blkdev(_major, _name);
229 dm_uevent_exit();
230
231 _major = 0;
232
233 DMINFO("cleaned up");
234 }
235
236 static int (*_inits[])(void) __initdata = {
237 local_init,
238 dm_target_init,
239 dm_linear_init,
240 dm_stripe_init,
241 dm_kcopyd_init,
242 dm_interface_init,
243 };
244
245 static void (*_exits[])(void) = {
246 local_exit,
247 dm_target_exit,
248 dm_linear_exit,
249 dm_stripe_exit,
250 dm_kcopyd_exit,
251 dm_interface_exit,
252 };
253
254 static int __init dm_init(void)
255 {
256 const int count = ARRAY_SIZE(_inits);
257
258 int r, i;
259
260 for (i = 0; i < count; i++) {
261 r = _inits[i]();
262 if (r)
263 goto bad;
264 }
265
266 return 0;
267
268 bad:
269 while (i--)
270 _exits[i]();
271
272 return r;
273 }
274
275 static void __exit dm_exit(void)
276 {
277 int i = ARRAY_SIZE(_exits);
278
279 while (i--)
280 _exits[i]();
281 }
282
283 /*
284 * Block device functions
285 */
286 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
287 {
288 struct mapped_device *md;
289
290 spin_lock(&_minor_lock);
291
292 md = bdev->bd_disk->private_data;
293 if (!md)
294 goto out;
295
296 if (test_bit(DMF_FREEING, &md->flags) ||
297 test_bit(DMF_DELETING, &md->flags)) {
298 md = NULL;
299 goto out;
300 }
301
302 dm_get(md);
303 atomic_inc(&md->open_count);
304
305 out:
306 spin_unlock(&_minor_lock);
307
308 return md ? 0 : -ENXIO;
309 }
310
311 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
312 {
313 struct mapped_device *md = disk->private_data;
314 atomic_dec(&md->open_count);
315 dm_put(md);
316 return 0;
317 }
318
319 int dm_open_count(struct mapped_device *md)
320 {
321 return atomic_read(&md->open_count);
322 }
323
324 /*
325 * Guarantees nothing is using the device before it's deleted.
326 */
327 int dm_lock_for_deletion(struct mapped_device *md)
328 {
329 int r = 0;
330
331 spin_lock(&_minor_lock);
332
333 if (dm_open_count(md))
334 r = -EBUSY;
335 else
336 set_bit(DMF_DELETING, &md->flags);
337
338 spin_unlock(&_minor_lock);
339
340 return r;
341 }
342
343 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
344 {
345 struct mapped_device *md = bdev->bd_disk->private_data;
346
347 return dm_get_geometry(md, geo);
348 }
349
350 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
351 unsigned int cmd, unsigned long arg)
352 {
353 struct mapped_device *md = bdev->bd_disk->private_data;
354 struct dm_table *map = dm_get_table(md);
355 struct dm_target *tgt;
356 int r = -ENOTTY;
357
358 if (!map || !dm_table_get_size(map))
359 goto out;
360
361 /* We only support devices that have a single target */
362 if (dm_table_get_num_targets(map) != 1)
363 goto out;
364
365 tgt = dm_table_get_target(map, 0);
366
367 if (dm_suspended(md)) {
368 r = -EAGAIN;
369 goto out;
370 }
371
372 if (tgt->type->ioctl)
373 r = tgt->type->ioctl(tgt, cmd, arg);
374
375 out:
376 dm_table_put(map);
377
378 return r;
379 }
380
381 static struct dm_io *alloc_io(struct mapped_device *md)
382 {
383 return mempool_alloc(md->io_pool, GFP_NOIO);
384 }
385
386 static void free_io(struct mapped_device *md, struct dm_io *io)
387 {
388 mempool_free(io, md->io_pool);
389 }
390
391 static struct dm_target_io *alloc_tio(struct mapped_device *md)
392 {
393 return mempool_alloc(md->tio_pool, GFP_NOIO);
394 }
395
396 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
397 {
398 mempool_free(tio, md->tio_pool);
399 }
400
401 static void start_io_acct(struct dm_io *io)
402 {
403 struct mapped_device *md = io->md;
404 int cpu;
405
406 io->start_time = jiffies;
407
408 cpu = part_stat_lock();
409 part_round_stats(cpu, &dm_disk(md)->part0);
410 part_stat_unlock();
411 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
412 }
413
414 static void end_io_acct(struct dm_io *io)
415 {
416 struct mapped_device *md = io->md;
417 struct bio *bio = io->bio;
418 unsigned long duration = jiffies - io->start_time;
419 int pending, cpu;
420 int rw = bio_data_dir(bio);
421
422 cpu = part_stat_lock();
423 part_round_stats(cpu, &dm_disk(md)->part0);
424 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
425 part_stat_unlock();
426
427 dm_disk(md)->part0.in_flight = pending =
428 atomic_dec_return(&md->pending);
429
430 /* nudge anyone waiting on suspend queue */
431 if (!pending)
432 wake_up(&md->wait);
433 }
434
435 /*
436 * Add the bio to the list of deferred io.
437 */
438 static int queue_io(struct mapped_device *md, struct bio *bio)
439 {
440 down_write(&md->io_lock);
441
442 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
443 up_write(&md->io_lock);
444 return 1;
445 }
446
447 spin_lock_irq(&md->deferred_lock);
448 bio_list_add(&md->deferred, bio);
449 spin_unlock_irq(&md->deferred_lock);
450
451 up_write(&md->io_lock);
452 return 0; /* deferred successfully */
453 }
454
455 /*
456 * Everyone (including functions in this file), should use this
457 * function to access the md->map field, and make sure they call
458 * dm_table_put() when finished.
459 */
460 struct dm_table *dm_get_table(struct mapped_device *md)
461 {
462 struct dm_table *t;
463
464 read_lock(&md->map_lock);
465 t = md->map;
466 if (t)
467 dm_table_get(t);
468 read_unlock(&md->map_lock);
469
470 return t;
471 }
472
473 /*
474 * Get the geometry associated with a dm device
475 */
476 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
477 {
478 *geo = md->geometry;
479
480 return 0;
481 }
482
483 /*
484 * Set the geometry of a device.
485 */
486 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
487 {
488 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
489
490 if (geo->start > sz) {
491 DMWARN("Start sector is beyond the geometry limits.");
492 return -EINVAL;
493 }
494
495 md->geometry = *geo;
496
497 return 0;
498 }
499
500 /*-----------------------------------------------------------------
501 * CRUD START:
502 * A more elegant soln is in the works that uses the queue
503 * merge fn, unfortunately there are a couple of changes to
504 * the block layer that I want to make for this. So in the
505 * interests of getting something for people to use I give
506 * you this clearly demarcated crap.
507 *---------------------------------------------------------------*/
508
509 static int __noflush_suspending(struct mapped_device *md)
510 {
511 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
512 }
513
514 /*
515 * Decrements the number of outstanding ios that a bio has been
516 * cloned into, completing the original io if necc.
517 */
518 static void dec_pending(struct dm_io *io, int error)
519 {
520 unsigned long flags;
521 int io_error;
522 struct bio *bio;
523 struct mapped_device *md = io->md;
524
525 /* Push-back supersedes any I/O errors */
526 if (error && !(io->error > 0 && __noflush_suspending(md)))
527 io->error = error;
528
529 if (atomic_dec_and_test(&io->io_count)) {
530 if (io->error == DM_ENDIO_REQUEUE) {
531 /*
532 * Target requested pushing back the I/O.
533 */
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 if (__noflush_suspending(md))
536 bio_list_add(&md->deferred, io->bio);
537 else
538 /* noflush suspend was interrupted. */
539 io->error = -EIO;
540 spin_unlock_irqrestore(&md->deferred_lock, flags);
541 }
542
543 end_io_acct(io);
544
545 io_error = io->error;
546 bio = io->bio;
547
548 free_io(md, io);
549
550 if (io_error != DM_ENDIO_REQUEUE) {
551 trace_block_bio_complete(md->queue, bio);
552
553 bio_endio(bio, io_error);
554 }
555 }
556 }
557
558 static void clone_endio(struct bio *bio, int error)
559 {
560 int r = 0;
561 struct dm_target_io *tio = bio->bi_private;
562 struct dm_io *io = tio->io;
563 struct mapped_device *md = tio->io->md;
564 dm_endio_fn endio = tio->ti->type->end_io;
565
566 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
567 error = -EIO;
568
569 if (endio) {
570 r = endio(tio->ti, bio, error, &tio->info);
571 if (r < 0 || r == DM_ENDIO_REQUEUE)
572 /*
573 * error and requeue request are handled
574 * in dec_pending().
575 */
576 error = r;
577 else if (r == DM_ENDIO_INCOMPLETE)
578 /* The target will handle the io */
579 return;
580 else if (r) {
581 DMWARN("unimplemented target endio return value: %d", r);
582 BUG();
583 }
584 }
585
586 /*
587 * Store md for cleanup instead of tio which is about to get freed.
588 */
589 bio->bi_private = md->bs;
590
591 free_tio(md, tio);
592 bio_put(bio);
593 dec_pending(io, error);
594 }
595
596 static sector_t max_io_len(struct mapped_device *md,
597 sector_t sector, struct dm_target *ti)
598 {
599 sector_t offset = sector - ti->begin;
600 sector_t len = ti->len - offset;
601
602 /*
603 * Does the target need to split even further ?
604 */
605 if (ti->split_io) {
606 sector_t boundary;
607 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
608 - offset;
609 if (len > boundary)
610 len = boundary;
611 }
612
613 return len;
614 }
615
616 static void __map_bio(struct dm_target *ti, struct bio *clone,
617 struct dm_target_io *tio)
618 {
619 int r;
620 sector_t sector;
621 struct mapped_device *md;
622
623 /*
624 * Sanity checks.
625 */
626 BUG_ON(!clone->bi_size);
627
628 clone->bi_end_io = clone_endio;
629 clone->bi_private = tio;
630
631 /*
632 * Map the clone. If r == 0 we don't need to do
633 * anything, the target has assumed ownership of
634 * this io.
635 */
636 atomic_inc(&tio->io->io_count);
637 sector = clone->bi_sector;
638 r = ti->type->map(ti, clone, &tio->info);
639 if (r == DM_MAPIO_REMAPPED) {
640 /* the bio has been remapped so dispatch it */
641
642 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
643 tio->io->bio->bi_bdev->bd_dev,
644 clone->bi_sector, sector);
645
646 generic_make_request(clone);
647 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
648 /* error the io and bail out, or requeue it if needed */
649 md = tio->io->md;
650 dec_pending(tio->io, r);
651 /*
652 * Store bio_set for cleanup.
653 */
654 clone->bi_private = md->bs;
655 bio_put(clone);
656 free_tio(md, tio);
657 } else if (r) {
658 DMWARN("unimplemented target map return value: %d", r);
659 BUG();
660 }
661 }
662
663 struct clone_info {
664 struct mapped_device *md;
665 struct dm_table *map;
666 struct bio *bio;
667 struct dm_io *io;
668 sector_t sector;
669 sector_t sector_count;
670 unsigned short idx;
671 };
672
673 static void dm_bio_destructor(struct bio *bio)
674 {
675 struct bio_set *bs = bio->bi_private;
676
677 bio_free(bio, bs);
678 }
679
680 /*
681 * Creates a little bio that is just does part of a bvec.
682 */
683 static struct bio *split_bvec(struct bio *bio, sector_t sector,
684 unsigned short idx, unsigned int offset,
685 unsigned int len, struct bio_set *bs)
686 {
687 struct bio *clone;
688 struct bio_vec *bv = bio->bi_io_vec + idx;
689
690 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
691 clone->bi_destructor = dm_bio_destructor;
692 *clone->bi_io_vec = *bv;
693
694 clone->bi_sector = sector;
695 clone->bi_bdev = bio->bi_bdev;
696 clone->bi_rw = bio->bi_rw;
697 clone->bi_vcnt = 1;
698 clone->bi_size = to_bytes(len);
699 clone->bi_io_vec->bv_offset = offset;
700 clone->bi_io_vec->bv_len = clone->bi_size;
701 clone->bi_flags |= 1 << BIO_CLONED;
702
703 return clone;
704 }
705
706 /*
707 * Creates a bio that consists of range of complete bvecs.
708 */
709 static struct bio *clone_bio(struct bio *bio, sector_t sector,
710 unsigned short idx, unsigned short bv_count,
711 unsigned int len, struct bio_set *bs)
712 {
713 struct bio *clone;
714
715 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
716 __bio_clone(clone, bio);
717 clone->bi_destructor = dm_bio_destructor;
718 clone->bi_sector = sector;
719 clone->bi_idx = idx;
720 clone->bi_vcnt = idx + bv_count;
721 clone->bi_size = to_bytes(len);
722 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
723
724 return clone;
725 }
726
727 static int __clone_and_map(struct clone_info *ci)
728 {
729 struct bio *clone, *bio = ci->bio;
730 struct dm_target *ti;
731 sector_t len = 0, max;
732 struct dm_target_io *tio;
733
734 ti = dm_table_find_target(ci->map, ci->sector);
735 if (!dm_target_is_valid(ti))
736 return -EIO;
737
738 max = max_io_len(ci->md, ci->sector, ti);
739
740 /*
741 * Allocate a target io object.
742 */
743 tio = alloc_tio(ci->md);
744 tio->io = ci->io;
745 tio->ti = ti;
746 memset(&tio->info, 0, sizeof(tio->info));
747
748 if (ci->sector_count <= max) {
749 /*
750 * Optimise for the simple case where we can do all of
751 * the remaining io with a single clone.
752 */
753 clone = clone_bio(bio, ci->sector, ci->idx,
754 bio->bi_vcnt - ci->idx, ci->sector_count,
755 ci->md->bs);
756 __map_bio(ti, clone, tio);
757 ci->sector_count = 0;
758
759 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
760 /*
761 * There are some bvecs that don't span targets.
762 * Do as many of these as possible.
763 */
764 int i;
765 sector_t remaining = max;
766 sector_t bv_len;
767
768 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
769 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
770
771 if (bv_len > remaining)
772 break;
773
774 remaining -= bv_len;
775 len += bv_len;
776 }
777
778 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
779 ci->md->bs);
780 __map_bio(ti, clone, tio);
781
782 ci->sector += len;
783 ci->sector_count -= len;
784 ci->idx = i;
785
786 } else {
787 /*
788 * Handle a bvec that must be split between two or more targets.
789 */
790 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
791 sector_t remaining = to_sector(bv->bv_len);
792 unsigned int offset = 0;
793
794 do {
795 if (offset) {
796 ti = dm_table_find_target(ci->map, ci->sector);
797 if (!dm_target_is_valid(ti))
798 return -EIO;
799
800 max = max_io_len(ci->md, ci->sector, ti);
801
802 tio = alloc_tio(ci->md);
803 tio->io = ci->io;
804 tio->ti = ti;
805 memset(&tio->info, 0, sizeof(tio->info));
806 }
807
808 len = min(remaining, max);
809
810 clone = split_bvec(bio, ci->sector, ci->idx,
811 bv->bv_offset + offset, len,
812 ci->md->bs);
813
814 __map_bio(ti, clone, tio);
815
816 ci->sector += len;
817 ci->sector_count -= len;
818 offset += to_bytes(len);
819 } while (remaining -= len);
820
821 ci->idx++;
822 }
823
824 return 0;
825 }
826
827 /*
828 * Split the bio into several clones and submit it to targets.
829 */
830 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
831 {
832 struct clone_info ci;
833 int error = 0;
834
835 ci.map = dm_get_table(md);
836 if (unlikely(!ci.map)) {
837 bio_io_error(bio);
838 return;
839 }
840 if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
841 dm_table_put(ci.map);
842 bio_endio(bio, -EOPNOTSUPP);
843 return;
844 }
845 ci.md = md;
846 ci.bio = bio;
847 ci.io = alloc_io(md);
848 ci.io->error = 0;
849 atomic_set(&ci.io->io_count, 1);
850 ci.io->bio = bio;
851 ci.io->md = md;
852 ci.sector = bio->bi_sector;
853 ci.sector_count = bio_sectors(bio);
854 ci.idx = bio->bi_idx;
855
856 start_io_acct(ci.io);
857 while (ci.sector_count && !error)
858 error = __clone_and_map(&ci);
859
860 /* drop the extra reference count */
861 dec_pending(ci.io, error);
862 dm_table_put(ci.map);
863 }
864 /*-----------------------------------------------------------------
865 * CRUD END
866 *---------------------------------------------------------------*/
867
868 static int dm_merge_bvec(struct request_queue *q,
869 struct bvec_merge_data *bvm,
870 struct bio_vec *biovec)
871 {
872 struct mapped_device *md = q->queuedata;
873 struct dm_table *map = dm_get_table(md);
874 struct dm_target *ti;
875 sector_t max_sectors;
876 int max_size = 0;
877
878 if (unlikely(!map))
879 goto out;
880
881 ti = dm_table_find_target(map, bvm->bi_sector);
882 if (!dm_target_is_valid(ti))
883 goto out_table;
884
885 /*
886 * Find maximum amount of I/O that won't need splitting
887 */
888 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
889 (sector_t) BIO_MAX_SECTORS);
890 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
891 if (max_size < 0)
892 max_size = 0;
893
894 /*
895 * merge_bvec_fn() returns number of bytes
896 * it can accept at this offset
897 * max is precomputed maximal io size
898 */
899 if (max_size && ti->type->merge)
900 max_size = ti->type->merge(ti, bvm, biovec, max_size);
901
902 out_table:
903 dm_table_put(map);
904
905 out:
906 /*
907 * Always allow an entire first page
908 */
909 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
910 max_size = biovec->bv_len;
911
912 return max_size;
913 }
914
915 /*
916 * The request function that just remaps the bio built up by
917 * dm_merge_bvec.
918 */
919 static int dm_request(struct request_queue *q, struct bio *bio)
920 {
921 int r = -EIO;
922 int rw = bio_data_dir(bio);
923 struct mapped_device *md = q->queuedata;
924 int cpu;
925
926 down_read(&md->io_lock);
927
928 cpu = part_stat_lock();
929 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
930 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
931 part_stat_unlock();
932
933 /*
934 * If we're suspended we have to queue
935 * this io for later.
936 */
937 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
938 up_read(&md->io_lock);
939
940 if (bio_rw(bio) != READA)
941 r = queue_io(md, bio);
942
943 if (r <= 0)
944 goto out_req;
945
946 /*
947 * We're in a while loop, because someone could suspend
948 * before we get to the following read lock.
949 */
950 down_read(&md->io_lock);
951 }
952
953 __split_and_process_bio(md, bio);
954 up_read(&md->io_lock);
955 return 0;
956
957 out_req:
958 if (r < 0)
959 bio_io_error(bio);
960
961 return 0;
962 }
963
964 static void dm_unplug_all(struct request_queue *q)
965 {
966 struct mapped_device *md = q->queuedata;
967 struct dm_table *map = dm_get_table(md);
968
969 if (map) {
970 dm_table_unplug_all(map);
971 dm_table_put(map);
972 }
973 }
974
975 static int dm_any_congested(void *congested_data, int bdi_bits)
976 {
977 int r = bdi_bits;
978 struct mapped_device *md = congested_data;
979 struct dm_table *map;
980
981 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
982 map = dm_get_table(md);
983 if (map) {
984 r = dm_table_any_congested(map, bdi_bits);
985 dm_table_put(map);
986 }
987 }
988
989 return r;
990 }
991
992 /*-----------------------------------------------------------------
993 * An IDR is used to keep track of allocated minor numbers.
994 *---------------------------------------------------------------*/
995 static DEFINE_IDR(_minor_idr);
996
997 static void free_minor(int minor)
998 {
999 spin_lock(&_minor_lock);
1000 idr_remove(&_minor_idr, minor);
1001 spin_unlock(&_minor_lock);
1002 }
1003
1004 /*
1005 * See if the device with a specific minor # is free.
1006 */
1007 static int specific_minor(int minor)
1008 {
1009 int r, m;
1010
1011 if (minor >= (1 << MINORBITS))
1012 return -EINVAL;
1013
1014 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1015 if (!r)
1016 return -ENOMEM;
1017
1018 spin_lock(&_minor_lock);
1019
1020 if (idr_find(&_minor_idr, minor)) {
1021 r = -EBUSY;
1022 goto out;
1023 }
1024
1025 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1026 if (r)
1027 goto out;
1028
1029 if (m != minor) {
1030 idr_remove(&_minor_idr, m);
1031 r = -EBUSY;
1032 goto out;
1033 }
1034
1035 out:
1036 spin_unlock(&_minor_lock);
1037 return r;
1038 }
1039
1040 static int next_free_minor(int *minor)
1041 {
1042 int r, m;
1043
1044 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1045 if (!r)
1046 return -ENOMEM;
1047
1048 spin_lock(&_minor_lock);
1049
1050 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1051 if (r)
1052 goto out;
1053
1054 if (m >= (1 << MINORBITS)) {
1055 idr_remove(&_minor_idr, m);
1056 r = -ENOSPC;
1057 goto out;
1058 }
1059
1060 *minor = m;
1061
1062 out:
1063 spin_unlock(&_minor_lock);
1064 return r;
1065 }
1066
1067 static struct block_device_operations dm_blk_dops;
1068
1069 static void dm_wq_work(struct work_struct *work);
1070
1071 /*
1072 * Allocate and initialise a blank device with a given minor.
1073 */
1074 static struct mapped_device *alloc_dev(int minor)
1075 {
1076 int r;
1077 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1078 void *old_md;
1079
1080 if (!md) {
1081 DMWARN("unable to allocate device, out of memory.");
1082 return NULL;
1083 }
1084
1085 if (!try_module_get(THIS_MODULE))
1086 goto bad_module_get;
1087
1088 /* get a minor number for the dev */
1089 if (minor == DM_ANY_MINOR)
1090 r = next_free_minor(&minor);
1091 else
1092 r = specific_minor(minor);
1093 if (r < 0)
1094 goto bad_minor;
1095
1096 init_rwsem(&md->io_lock);
1097 mutex_init(&md->suspend_lock);
1098 spin_lock_init(&md->deferred_lock);
1099 rwlock_init(&md->map_lock);
1100 atomic_set(&md->holders, 1);
1101 atomic_set(&md->open_count, 0);
1102 atomic_set(&md->event_nr, 0);
1103 atomic_set(&md->uevent_seq, 0);
1104 INIT_LIST_HEAD(&md->uevent_list);
1105 spin_lock_init(&md->uevent_lock);
1106
1107 md->queue = blk_alloc_queue(GFP_KERNEL);
1108 if (!md->queue)
1109 goto bad_queue;
1110
1111 md->queue->queuedata = md;
1112 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1113 md->queue->backing_dev_info.congested_data = md;
1114 blk_queue_make_request(md->queue, dm_request);
1115 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1116 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1117 md->queue->unplug_fn = dm_unplug_all;
1118 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1119
1120 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1121 if (!md->io_pool)
1122 goto bad_io_pool;
1123
1124 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1125 if (!md->tio_pool)
1126 goto bad_tio_pool;
1127
1128 md->bs = bioset_create(16, 0);
1129 if (!md->bs)
1130 goto bad_no_bioset;
1131
1132 md->disk = alloc_disk(1);
1133 if (!md->disk)
1134 goto bad_disk;
1135
1136 atomic_set(&md->pending, 0);
1137 init_waitqueue_head(&md->wait);
1138 INIT_WORK(&md->work, dm_wq_work);
1139 init_waitqueue_head(&md->eventq);
1140
1141 md->disk->major = _major;
1142 md->disk->first_minor = minor;
1143 md->disk->fops = &dm_blk_dops;
1144 md->disk->queue = md->queue;
1145 md->disk->private_data = md;
1146 sprintf(md->disk->disk_name, "dm-%d", minor);
1147 add_disk(md->disk);
1148 format_dev_t(md->name, MKDEV(_major, minor));
1149
1150 md->wq = create_singlethread_workqueue("kdmflush");
1151 if (!md->wq)
1152 goto bad_thread;
1153
1154 /* Populate the mapping, nobody knows we exist yet */
1155 spin_lock(&_minor_lock);
1156 old_md = idr_replace(&_minor_idr, md, minor);
1157 spin_unlock(&_minor_lock);
1158
1159 BUG_ON(old_md != MINOR_ALLOCED);
1160
1161 return md;
1162
1163 bad_thread:
1164 put_disk(md->disk);
1165 bad_disk:
1166 bioset_free(md->bs);
1167 bad_no_bioset:
1168 mempool_destroy(md->tio_pool);
1169 bad_tio_pool:
1170 mempool_destroy(md->io_pool);
1171 bad_io_pool:
1172 blk_cleanup_queue(md->queue);
1173 bad_queue:
1174 free_minor(minor);
1175 bad_minor:
1176 module_put(THIS_MODULE);
1177 bad_module_get:
1178 kfree(md);
1179 return NULL;
1180 }
1181
1182 static void unlock_fs(struct mapped_device *md);
1183
1184 static void free_dev(struct mapped_device *md)
1185 {
1186 int minor = MINOR(disk_devt(md->disk));
1187
1188 if (md->suspended_bdev) {
1189 unlock_fs(md);
1190 bdput(md->suspended_bdev);
1191 }
1192 destroy_workqueue(md->wq);
1193 mempool_destroy(md->tio_pool);
1194 mempool_destroy(md->io_pool);
1195 bioset_free(md->bs);
1196 del_gendisk(md->disk);
1197 free_minor(minor);
1198
1199 spin_lock(&_minor_lock);
1200 md->disk->private_data = NULL;
1201 spin_unlock(&_minor_lock);
1202
1203 put_disk(md->disk);
1204 blk_cleanup_queue(md->queue);
1205 module_put(THIS_MODULE);
1206 kfree(md);
1207 }
1208
1209 /*
1210 * Bind a table to the device.
1211 */
1212 static void event_callback(void *context)
1213 {
1214 unsigned long flags;
1215 LIST_HEAD(uevents);
1216 struct mapped_device *md = (struct mapped_device *) context;
1217
1218 spin_lock_irqsave(&md->uevent_lock, flags);
1219 list_splice_init(&md->uevent_list, &uevents);
1220 spin_unlock_irqrestore(&md->uevent_lock, flags);
1221
1222 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1223
1224 atomic_inc(&md->event_nr);
1225 wake_up(&md->eventq);
1226 }
1227
1228 static void __set_size(struct mapped_device *md, sector_t size)
1229 {
1230 set_capacity(md->disk, size);
1231
1232 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1233 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1234 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1235 }
1236
1237 static int __bind(struct mapped_device *md, struct dm_table *t)
1238 {
1239 struct request_queue *q = md->queue;
1240 sector_t size;
1241
1242 size = dm_table_get_size(t);
1243
1244 /*
1245 * Wipe any geometry if the size of the table changed.
1246 */
1247 if (size != get_capacity(md->disk))
1248 memset(&md->geometry, 0, sizeof(md->geometry));
1249
1250 if (md->suspended_bdev)
1251 __set_size(md, size);
1252
1253 if (!size) {
1254 dm_table_destroy(t);
1255 return 0;
1256 }
1257
1258 dm_table_event_callback(t, event_callback, md);
1259
1260 write_lock(&md->map_lock);
1261 md->map = t;
1262 dm_table_set_restrictions(t, q);
1263 write_unlock(&md->map_lock);
1264
1265 return 0;
1266 }
1267
1268 static void __unbind(struct mapped_device *md)
1269 {
1270 struct dm_table *map = md->map;
1271
1272 if (!map)
1273 return;
1274
1275 dm_table_event_callback(map, NULL, NULL);
1276 write_lock(&md->map_lock);
1277 md->map = NULL;
1278 write_unlock(&md->map_lock);
1279 dm_table_destroy(map);
1280 }
1281
1282 /*
1283 * Constructor for a new device.
1284 */
1285 int dm_create(int minor, struct mapped_device **result)
1286 {
1287 struct mapped_device *md;
1288
1289 md = alloc_dev(minor);
1290 if (!md)
1291 return -ENXIO;
1292
1293 dm_sysfs_init(md);
1294
1295 *result = md;
1296 return 0;
1297 }
1298
1299 static struct mapped_device *dm_find_md(dev_t dev)
1300 {
1301 struct mapped_device *md;
1302 unsigned minor = MINOR(dev);
1303
1304 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1305 return NULL;
1306
1307 spin_lock(&_minor_lock);
1308
1309 md = idr_find(&_minor_idr, minor);
1310 if (md && (md == MINOR_ALLOCED ||
1311 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1312 test_bit(DMF_FREEING, &md->flags))) {
1313 md = NULL;
1314 goto out;
1315 }
1316
1317 out:
1318 spin_unlock(&_minor_lock);
1319
1320 return md;
1321 }
1322
1323 struct mapped_device *dm_get_md(dev_t dev)
1324 {
1325 struct mapped_device *md = dm_find_md(dev);
1326
1327 if (md)
1328 dm_get(md);
1329
1330 return md;
1331 }
1332
1333 void *dm_get_mdptr(struct mapped_device *md)
1334 {
1335 return md->interface_ptr;
1336 }
1337
1338 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1339 {
1340 md->interface_ptr = ptr;
1341 }
1342
1343 void dm_get(struct mapped_device *md)
1344 {
1345 atomic_inc(&md->holders);
1346 }
1347
1348 const char *dm_device_name(struct mapped_device *md)
1349 {
1350 return md->name;
1351 }
1352 EXPORT_SYMBOL_GPL(dm_device_name);
1353
1354 void dm_put(struct mapped_device *md)
1355 {
1356 struct dm_table *map;
1357
1358 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1359
1360 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1361 map = dm_get_table(md);
1362 idr_replace(&_minor_idr, MINOR_ALLOCED,
1363 MINOR(disk_devt(dm_disk(md))));
1364 set_bit(DMF_FREEING, &md->flags);
1365 spin_unlock(&_minor_lock);
1366 if (!dm_suspended(md)) {
1367 dm_table_presuspend_targets(map);
1368 dm_table_postsuspend_targets(map);
1369 }
1370 dm_sysfs_exit(md);
1371 dm_table_put(map);
1372 __unbind(md);
1373 free_dev(md);
1374 }
1375 }
1376 EXPORT_SYMBOL_GPL(dm_put);
1377
1378 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1379 {
1380 int r = 0;
1381 DECLARE_WAITQUEUE(wait, current);
1382
1383 dm_unplug_all(md->queue);
1384
1385 add_wait_queue(&md->wait, &wait);
1386
1387 while (1) {
1388 set_current_state(interruptible);
1389
1390 smp_mb();
1391 if (!atomic_read(&md->pending))
1392 break;
1393
1394 if (interruptible == TASK_INTERRUPTIBLE &&
1395 signal_pending(current)) {
1396 r = -EINTR;
1397 break;
1398 }
1399
1400 io_schedule();
1401 }
1402 set_current_state(TASK_RUNNING);
1403
1404 remove_wait_queue(&md->wait, &wait);
1405
1406 return r;
1407 }
1408
1409 /*
1410 * Process the deferred bios
1411 */
1412 static void dm_wq_work(struct work_struct *work)
1413 {
1414 struct mapped_device *md = container_of(work, struct mapped_device,
1415 work);
1416 struct bio *c;
1417
1418 down_write(&md->io_lock);
1419
1420 next_bio:
1421 spin_lock_irq(&md->deferred_lock);
1422 c = bio_list_pop(&md->deferred);
1423 spin_unlock_irq(&md->deferred_lock);
1424
1425 if (c) {
1426 __split_and_process_bio(md, c);
1427 goto next_bio;
1428 }
1429
1430 clear_bit(DMF_BLOCK_IO, &md->flags);
1431
1432 up_write(&md->io_lock);
1433 }
1434
1435 static void dm_queue_flush(struct mapped_device *md)
1436 {
1437 queue_work(md->wq, &md->work);
1438 flush_workqueue(md->wq);
1439 }
1440
1441 /*
1442 * Swap in a new table (destroying old one).
1443 */
1444 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1445 {
1446 int r = -EINVAL;
1447
1448 mutex_lock(&md->suspend_lock);
1449
1450 /* device must be suspended */
1451 if (!dm_suspended(md))
1452 goto out;
1453
1454 /* without bdev, the device size cannot be changed */
1455 if (!md->suspended_bdev)
1456 if (get_capacity(md->disk) != dm_table_get_size(table))
1457 goto out;
1458
1459 __unbind(md);
1460 r = __bind(md, table);
1461
1462 out:
1463 mutex_unlock(&md->suspend_lock);
1464 return r;
1465 }
1466
1467 /*
1468 * Functions to lock and unlock any filesystem running on the
1469 * device.
1470 */
1471 static int lock_fs(struct mapped_device *md)
1472 {
1473 int r;
1474
1475 WARN_ON(md->frozen_sb);
1476
1477 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1478 if (IS_ERR(md->frozen_sb)) {
1479 r = PTR_ERR(md->frozen_sb);
1480 md->frozen_sb = NULL;
1481 return r;
1482 }
1483
1484 set_bit(DMF_FROZEN, &md->flags);
1485
1486 /* don't bdput right now, we don't want the bdev
1487 * to go away while it is locked.
1488 */
1489 return 0;
1490 }
1491
1492 static void unlock_fs(struct mapped_device *md)
1493 {
1494 if (!test_bit(DMF_FROZEN, &md->flags))
1495 return;
1496
1497 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1498 md->frozen_sb = NULL;
1499 clear_bit(DMF_FROZEN, &md->flags);
1500 }
1501
1502 /*
1503 * We need to be able to change a mapping table under a mounted
1504 * filesystem. For example we might want to move some data in
1505 * the background. Before the table can be swapped with
1506 * dm_bind_table, dm_suspend must be called to flush any in
1507 * flight bios and ensure that any further io gets deferred.
1508 */
1509 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1510 {
1511 struct dm_table *map = NULL;
1512 int r = 0;
1513 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1514 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1515
1516 mutex_lock(&md->suspend_lock);
1517
1518 if (dm_suspended(md)) {
1519 r = -EINVAL;
1520 goto out_unlock;
1521 }
1522
1523 map = dm_get_table(md);
1524
1525 /*
1526 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1527 * This flag is cleared before dm_suspend returns.
1528 */
1529 if (noflush)
1530 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1531
1532 /* This does not get reverted if there's an error later. */
1533 dm_table_presuspend_targets(map);
1534
1535 /* bdget() can stall if the pending I/Os are not flushed */
1536 if (!noflush) {
1537 md->suspended_bdev = bdget_disk(md->disk, 0);
1538 if (!md->suspended_bdev) {
1539 DMWARN("bdget failed in dm_suspend");
1540 r = -ENOMEM;
1541 goto out;
1542 }
1543
1544 /*
1545 * Flush I/O to the device. noflush supersedes do_lockfs,
1546 * because lock_fs() needs to flush I/Os.
1547 */
1548 if (do_lockfs) {
1549 r = lock_fs(md);
1550 if (r)
1551 goto out;
1552 }
1553 }
1554
1555 /*
1556 * First we set the BLOCK_IO flag so no more ios will be mapped.
1557 */
1558 down_write(&md->io_lock);
1559 set_bit(DMF_BLOCK_IO, &md->flags);
1560
1561 up_write(&md->io_lock);
1562
1563 /*
1564 * Wait for the already-mapped ios to complete.
1565 */
1566 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1567
1568 down_write(&md->io_lock);
1569
1570 if (noflush)
1571 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1572 up_write(&md->io_lock);
1573
1574 /* were we interrupted ? */
1575 if (r < 0) {
1576 dm_queue_flush(md);
1577
1578 unlock_fs(md);
1579 goto out; /* pushback list is already flushed, so skip flush */
1580 }
1581
1582 dm_table_postsuspend_targets(map);
1583
1584 set_bit(DMF_SUSPENDED, &md->flags);
1585
1586 out:
1587 if (r && md->suspended_bdev) {
1588 bdput(md->suspended_bdev);
1589 md->suspended_bdev = NULL;
1590 }
1591
1592 dm_table_put(map);
1593
1594 out_unlock:
1595 mutex_unlock(&md->suspend_lock);
1596 return r;
1597 }
1598
1599 int dm_resume(struct mapped_device *md)
1600 {
1601 int r = -EINVAL;
1602 struct dm_table *map = NULL;
1603
1604 mutex_lock(&md->suspend_lock);
1605 if (!dm_suspended(md))
1606 goto out;
1607
1608 map = dm_get_table(md);
1609 if (!map || !dm_table_get_size(map))
1610 goto out;
1611
1612 r = dm_table_resume_targets(map);
1613 if (r)
1614 goto out;
1615
1616 dm_queue_flush(md);
1617
1618 unlock_fs(md);
1619
1620 if (md->suspended_bdev) {
1621 bdput(md->suspended_bdev);
1622 md->suspended_bdev = NULL;
1623 }
1624
1625 clear_bit(DMF_SUSPENDED, &md->flags);
1626
1627 dm_table_unplug_all(map);
1628
1629 dm_kobject_uevent(md);
1630
1631 r = 0;
1632
1633 out:
1634 dm_table_put(map);
1635 mutex_unlock(&md->suspend_lock);
1636
1637 return r;
1638 }
1639
1640 /*-----------------------------------------------------------------
1641 * Event notification.
1642 *---------------------------------------------------------------*/
1643 void dm_kobject_uevent(struct mapped_device *md)
1644 {
1645 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1646 }
1647
1648 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1649 {
1650 return atomic_add_return(1, &md->uevent_seq);
1651 }
1652
1653 uint32_t dm_get_event_nr(struct mapped_device *md)
1654 {
1655 return atomic_read(&md->event_nr);
1656 }
1657
1658 int dm_wait_event(struct mapped_device *md, int event_nr)
1659 {
1660 return wait_event_interruptible(md->eventq,
1661 (event_nr != atomic_read(&md->event_nr)));
1662 }
1663
1664 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1665 {
1666 unsigned long flags;
1667
1668 spin_lock_irqsave(&md->uevent_lock, flags);
1669 list_add(elist, &md->uevent_list);
1670 spin_unlock_irqrestore(&md->uevent_lock, flags);
1671 }
1672
1673 /*
1674 * The gendisk is only valid as long as you have a reference
1675 * count on 'md'.
1676 */
1677 struct gendisk *dm_disk(struct mapped_device *md)
1678 {
1679 return md->disk;
1680 }
1681
1682 struct kobject *dm_kobject(struct mapped_device *md)
1683 {
1684 return &md->kobj;
1685 }
1686
1687 /*
1688 * struct mapped_device should not be exported outside of dm.c
1689 * so use this check to verify that kobj is part of md structure
1690 */
1691 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1692 {
1693 struct mapped_device *md;
1694
1695 md = container_of(kobj, struct mapped_device, kobj);
1696 if (&md->kobj != kobj)
1697 return NULL;
1698
1699 dm_get(md);
1700 return md;
1701 }
1702
1703 int dm_suspended(struct mapped_device *md)
1704 {
1705 return test_bit(DMF_SUSPENDED, &md->flags);
1706 }
1707
1708 int dm_noflush_suspending(struct dm_target *ti)
1709 {
1710 struct mapped_device *md = dm_table_get_md(ti->table);
1711 int r = __noflush_suspending(md);
1712
1713 dm_put(md);
1714
1715 return r;
1716 }
1717 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1718
1719 static struct block_device_operations dm_blk_dops = {
1720 .open = dm_blk_open,
1721 .release = dm_blk_close,
1722 .ioctl = dm_blk_ioctl,
1723 .getgeo = dm_blk_getgeo,
1724 .owner = THIS_MODULE
1725 };
1726
1727 EXPORT_SYMBOL(dm_get_mapinfo);
1728
1729 /*
1730 * module hooks
1731 */
1732 module_init(dm_init);
1733 module_exit(dm_exit);
1734
1735 module_param(major, uint, 0);
1736 MODULE_PARM_DESC(major, "The major number of the device mapper");
1737 MODULE_DESCRIPTION(DM_NAME " driver");
1738 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1739 MODULE_LICENSE("GPL");