]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
block: add a bi_error field to struct bio
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 struct dm_stats_aux stats_aux;
90 unsigned long duration_jiffies;
91 unsigned n_sectors;
92 };
93
94 /*
95 * For request-based dm - the bio clones we allocate are embedded in these
96 * structs.
97 *
98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99 * the bioset is created - this means the bio has to come at the end of the
100 * struct.
101 */
102 struct dm_rq_clone_bio_info {
103 struct bio *orig;
104 struct dm_rq_target_io *tio;
105 struct bio clone;
106 };
107
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 if (rq && rq->end_io_data)
111 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115
116 #define MINOR_ALLOCED ((void *)-1)
117
118 /*
119 * Bits for the md->flags field.
120 */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_MERGE_IS_OPTIONAL 6
128 #define DMF_DEFERRED_REMOVE 7
129 #define DMF_SUSPENDED_INTERNALLY 8
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
561 {
562 struct mapped_device *md = bdev->bd_disk->private_data;
563 int srcu_idx;
564 struct dm_table *map;
565 struct dm_target *tgt;
566 int r = -ENOTTY;
567
568 retry:
569 map = dm_get_live_table(md, &srcu_idx);
570
571 if (!map || !dm_table_get_size(map))
572 goto out;
573
574 /* We only support devices that have a single target */
575 if (dm_table_get_num_targets(map) != 1)
576 goto out;
577
578 tgt = dm_table_get_target(map, 0);
579 if (!tgt->type->ioctl)
580 goto out;
581
582 if (dm_suspended_md(md)) {
583 r = -EAGAIN;
584 goto out;
585 }
586
587 r = tgt->type->ioctl(tgt, cmd, arg);
588
589 out:
590 dm_put_live_table(md, srcu_idx);
591
592 if (r == -ENOTCONN) {
593 msleep(10);
594 goto retry;
595 }
596
597 return r;
598 }
599
600 static struct dm_io *alloc_io(struct mapped_device *md)
601 {
602 return mempool_alloc(md->io_pool, GFP_NOIO);
603 }
604
605 static void free_io(struct mapped_device *md, struct dm_io *io)
606 {
607 mempool_free(io, md->io_pool);
608 }
609
610 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
611 {
612 bio_put(&tio->clone);
613 }
614
615 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
616 gfp_t gfp_mask)
617 {
618 return mempool_alloc(md->io_pool, gfp_mask);
619 }
620
621 static void free_rq_tio(struct dm_rq_target_io *tio)
622 {
623 mempool_free(tio, tio->md->io_pool);
624 }
625
626 static struct request *alloc_clone_request(struct mapped_device *md,
627 gfp_t gfp_mask)
628 {
629 return mempool_alloc(md->rq_pool, gfp_mask);
630 }
631
632 static void free_clone_request(struct mapped_device *md, struct request *rq)
633 {
634 mempool_free(rq, md->rq_pool);
635 }
636
637 static int md_in_flight(struct mapped_device *md)
638 {
639 return atomic_read(&md->pending[READ]) +
640 atomic_read(&md->pending[WRITE]);
641 }
642
643 static void start_io_acct(struct dm_io *io)
644 {
645 struct mapped_device *md = io->md;
646 struct bio *bio = io->bio;
647 int cpu;
648 int rw = bio_data_dir(bio);
649
650 io->start_time = jiffies;
651
652 cpu = part_stat_lock();
653 part_round_stats(cpu, &dm_disk(md)->part0);
654 part_stat_unlock();
655 atomic_set(&dm_disk(md)->part0.in_flight[rw],
656 atomic_inc_return(&md->pending[rw]));
657
658 if (unlikely(dm_stats_used(&md->stats)))
659 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
660 bio_sectors(bio), false, 0, &io->stats_aux);
661 }
662
663 static void end_io_acct(struct dm_io *io)
664 {
665 struct mapped_device *md = io->md;
666 struct bio *bio = io->bio;
667 unsigned long duration = jiffies - io->start_time;
668 int pending;
669 int rw = bio_data_dir(bio);
670
671 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
672
673 if (unlikely(dm_stats_used(&md->stats)))
674 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
675 bio_sectors(bio), true, duration, &io->stats_aux);
676
677 /*
678 * After this is decremented the bio must not be touched if it is
679 * a flush.
680 */
681 pending = atomic_dec_return(&md->pending[rw]);
682 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
683 pending += atomic_read(&md->pending[rw^0x1]);
684
685 /* nudge anyone waiting on suspend queue */
686 if (!pending)
687 wake_up(&md->wait);
688 }
689
690 /*
691 * Add the bio to the list of deferred io.
692 */
693 static void queue_io(struct mapped_device *md, struct bio *bio)
694 {
695 unsigned long flags;
696
697 spin_lock_irqsave(&md->deferred_lock, flags);
698 bio_list_add(&md->deferred, bio);
699 spin_unlock_irqrestore(&md->deferred_lock, flags);
700 queue_work(md->wq, &md->work);
701 }
702
703 /*
704 * Everyone (including functions in this file), should use this
705 * function to access the md->map field, and make sure they call
706 * dm_put_live_table() when finished.
707 */
708 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
709 {
710 *srcu_idx = srcu_read_lock(&md->io_barrier);
711
712 return srcu_dereference(md->map, &md->io_barrier);
713 }
714
715 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
716 {
717 srcu_read_unlock(&md->io_barrier, srcu_idx);
718 }
719
720 void dm_sync_table(struct mapped_device *md)
721 {
722 synchronize_srcu(&md->io_barrier);
723 synchronize_rcu_expedited();
724 }
725
726 /*
727 * A fast alternative to dm_get_live_table/dm_put_live_table.
728 * The caller must not block between these two functions.
729 */
730 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
731 {
732 rcu_read_lock();
733 return rcu_dereference(md->map);
734 }
735
736 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
737 {
738 rcu_read_unlock();
739 }
740
741 /*
742 * Open a table device so we can use it as a map destination.
743 */
744 static int open_table_device(struct table_device *td, dev_t dev,
745 struct mapped_device *md)
746 {
747 static char *_claim_ptr = "I belong to device-mapper";
748 struct block_device *bdev;
749
750 int r;
751
752 BUG_ON(td->dm_dev.bdev);
753
754 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
755 if (IS_ERR(bdev))
756 return PTR_ERR(bdev);
757
758 r = bd_link_disk_holder(bdev, dm_disk(md));
759 if (r) {
760 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
761 return r;
762 }
763
764 td->dm_dev.bdev = bdev;
765 return 0;
766 }
767
768 /*
769 * Close a table device that we've been using.
770 */
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
772 {
773 if (!td->dm_dev.bdev)
774 return;
775
776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 td->dm_dev.bdev = NULL;
779 }
780
781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 fmode_t mode) {
783 struct table_device *td;
784
785 list_for_each_entry(td, l, list)
786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 return td;
788
789 return NULL;
790 }
791
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 struct dm_dev **result) {
794 int r;
795 struct table_device *td;
796
797 mutex_lock(&md->table_devices_lock);
798 td = find_table_device(&md->table_devices, dev, mode);
799 if (!td) {
800 td = kmalloc(sizeof(*td), GFP_KERNEL);
801 if (!td) {
802 mutex_unlock(&md->table_devices_lock);
803 return -ENOMEM;
804 }
805
806 td->dm_dev.mode = mode;
807 td->dm_dev.bdev = NULL;
808
809 if ((r = open_table_device(td, dev, md))) {
810 mutex_unlock(&md->table_devices_lock);
811 kfree(td);
812 return r;
813 }
814
815 format_dev_t(td->dm_dev.name, dev);
816
817 atomic_set(&td->count, 0);
818 list_add(&td->list, &md->table_devices);
819 }
820 atomic_inc(&td->count);
821 mutex_unlock(&md->table_devices_lock);
822
823 *result = &td->dm_dev;
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(dm_get_table_device);
827
828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (atomic_dec_and_test(&td->count)) {
834 close_table_device(td, md);
835 list_del(&td->list);
836 kfree(td);
837 }
838 mutex_unlock(&md->table_devices_lock);
839 }
840 EXPORT_SYMBOL(dm_put_table_device);
841
842 static void free_table_devices(struct list_head *devices)
843 {
844 struct list_head *tmp, *next;
845
846 list_for_each_safe(tmp, next, devices) {
847 struct table_device *td = list_entry(tmp, struct table_device, list);
848
849 DMWARN("dm_destroy: %s still exists with %d references",
850 td->dm_dev.name, atomic_read(&td->count));
851 kfree(td);
852 }
853 }
854
855 /*
856 * Get the geometry associated with a dm device
857 */
858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
859 {
860 *geo = md->geometry;
861
862 return 0;
863 }
864
865 /*
866 * Set the geometry of a device.
867 */
868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
871
872 if (geo->start > sz) {
873 DMWARN("Start sector is beyond the geometry limits.");
874 return -EINVAL;
875 }
876
877 md->geometry = *geo;
878
879 return 0;
880 }
881
882 /*-----------------------------------------------------------------
883 * CRUD START:
884 * A more elegant soln is in the works that uses the queue
885 * merge fn, unfortunately there are a couple of changes to
886 * the block layer that I want to make for this. So in the
887 * interests of getting something for people to use I give
888 * you this clearly demarcated crap.
889 *---------------------------------------------------------------*/
890
891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895
896 /*
897 * Decrements the number of outstanding ios that a bio has been
898 * cloned into, completing the original io if necc.
899 */
900 static void dec_pending(struct dm_io *io, int error)
901 {
902 unsigned long flags;
903 int io_error;
904 struct bio *bio;
905 struct mapped_device *md = io->md;
906
907 /* Push-back supersedes any I/O errors */
908 if (unlikely(error)) {
909 spin_lock_irqsave(&io->endio_lock, flags);
910 if (!(io->error > 0 && __noflush_suspending(md)))
911 io->error = error;
912 spin_unlock_irqrestore(&io->endio_lock, flags);
913 }
914
915 if (atomic_dec_and_test(&io->io_count)) {
916 if (io->error == DM_ENDIO_REQUEUE) {
917 /*
918 * Target requested pushing back the I/O.
919 */
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if (__noflush_suspending(md))
922 bio_list_add_head(&md->deferred, io->bio);
923 else
924 /* noflush suspend was interrupted. */
925 io->error = -EIO;
926 spin_unlock_irqrestore(&md->deferred_lock, flags);
927 }
928
929 io_error = io->error;
930 bio = io->bio;
931 end_io_acct(io);
932 free_io(md, io);
933
934 if (io_error == DM_ENDIO_REQUEUE)
935 return;
936
937 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
938 /*
939 * Preflush done for flush with data, reissue
940 * without REQ_FLUSH.
941 */
942 bio->bi_rw &= ~REQ_FLUSH;
943 queue_io(md, bio);
944 } else {
945 /* done with normal IO or empty flush */
946 trace_block_bio_complete(md->queue, bio, io_error);
947 bio->bi_error = io_error;
948 bio_endio(bio);
949 }
950 }
951 }
952
953 static void disable_write_same(struct mapped_device *md)
954 {
955 struct queue_limits *limits = dm_get_queue_limits(md);
956
957 /* device doesn't really support WRITE SAME, disable it */
958 limits->max_write_same_sectors = 0;
959 }
960
961 static void clone_endio(struct bio *bio)
962 {
963 int error = bio->bi_error;
964 int r = error;
965 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
966 struct dm_io *io = tio->io;
967 struct mapped_device *md = tio->io->md;
968 dm_endio_fn endio = tio->ti->type->end_io;
969
970 if (endio) {
971 r = endio(tio->ti, bio, error);
972 if (r < 0 || r == DM_ENDIO_REQUEUE)
973 /*
974 * error and requeue request are handled
975 * in dec_pending().
976 */
977 error = r;
978 else if (r == DM_ENDIO_INCOMPLETE)
979 /* The target will handle the io */
980 return;
981 else if (r) {
982 DMWARN("unimplemented target endio return value: %d", r);
983 BUG();
984 }
985 }
986
987 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
988 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
989 disable_write_same(md);
990
991 free_tio(md, tio);
992 dec_pending(io, error);
993 }
994
995 /*
996 * Partial completion handling for request-based dm
997 */
998 static void end_clone_bio(struct bio *clone)
999 {
1000 struct dm_rq_clone_bio_info *info =
1001 container_of(clone, struct dm_rq_clone_bio_info, clone);
1002 struct dm_rq_target_io *tio = info->tio;
1003 struct bio *bio = info->orig;
1004 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1005
1006 bio_put(clone);
1007
1008 if (tio->error)
1009 /*
1010 * An error has already been detected on the request.
1011 * Once error occurred, just let clone->end_io() handle
1012 * the remainder.
1013 */
1014 return;
1015 else if (bio->bi_error) {
1016 /*
1017 * Don't notice the error to the upper layer yet.
1018 * The error handling decision is made by the target driver,
1019 * when the request is completed.
1020 */
1021 tio->error = bio->bi_error;
1022 return;
1023 }
1024
1025 /*
1026 * I/O for the bio successfully completed.
1027 * Notice the data completion to the upper layer.
1028 */
1029
1030 /*
1031 * bios are processed from the head of the list.
1032 * So the completing bio should always be rq->bio.
1033 * If it's not, something wrong is happening.
1034 */
1035 if (tio->orig->bio != bio)
1036 DMERR("bio completion is going in the middle of the request");
1037
1038 /*
1039 * Update the original request.
1040 * Do not use blk_end_request() here, because it may complete
1041 * the original request before the clone, and break the ordering.
1042 */
1043 blk_update_request(tio->orig, 0, nr_bytes);
1044 }
1045
1046 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1047 {
1048 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1049 }
1050
1051 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1052 {
1053 if (unlikely(dm_stats_used(&md->stats))) {
1054 struct dm_rq_target_io *tio = tio_from_request(orig);
1055 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1056 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1057 tio->n_sectors, true, tio->duration_jiffies,
1058 &tio->stats_aux);
1059 }
1060 }
1061
1062 /*
1063 * Don't touch any member of the md after calling this function because
1064 * the md may be freed in dm_put() at the end of this function.
1065 * Or do dm_get() before calling this function and dm_put() later.
1066 */
1067 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1068 {
1069 int nr_requests_pending;
1070
1071 atomic_dec(&md->pending[rw]);
1072
1073 /* nudge anyone waiting on suspend queue */
1074 nr_requests_pending = md_in_flight(md);
1075 if (!nr_requests_pending)
1076 wake_up(&md->wait);
1077
1078 /*
1079 * Run this off this callpath, as drivers could invoke end_io while
1080 * inside their request_fn (and holding the queue lock). Calling
1081 * back into ->request_fn() could deadlock attempting to grab the
1082 * queue lock again.
1083 */
1084 if (run_queue) {
1085 if (md->queue->mq_ops)
1086 blk_mq_run_hw_queues(md->queue, true);
1087 else if (!nr_requests_pending ||
1088 (nr_requests_pending >= md->queue->nr_congestion_on))
1089 blk_run_queue_async(md->queue);
1090 }
1091
1092 /*
1093 * dm_put() must be at the end of this function. See the comment above
1094 */
1095 dm_put(md);
1096 }
1097
1098 static void free_rq_clone(struct request *clone)
1099 {
1100 struct dm_rq_target_io *tio = clone->end_io_data;
1101 struct mapped_device *md = tio->md;
1102
1103 blk_rq_unprep_clone(clone);
1104
1105 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1106 /* stacked on blk-mq queue(s) */
1107 tio->ti->type->release_clone_rq(clone);
1108 else if (!md->queue->mq_ops)
1109 /* request_fn queue stacked on request_fn queue(s) */
1110 free_clone_request(md, clone);
1111 /*
1112 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1113 * no need to call free_clone_request() because we leverage blk-mq by
1114 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1115 */
1116
1117 if (!md->queue->mq_ops)
1118 free_rq_tio(tio);
1119 }
1120
1121 /*
1122 * Complete the clone and the original request.
1123 * Must be called without clone's queue lock held,
1124 * see end_clone_request() for more details.
1125 */
1126 static void dm_end_request(struct request *clone, int error)
1127 {
1128 int rw = rq_data_dir(clone);
1129 struct dm_rq_target_io *tio = clone->end_io_data;
1130 struct mapped_device *md = tio->md;
1131 struct request *rq = tio->orig;
1132
1133 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1134 rq->errors = clone->errors;
1135 rq->resid_len = clone->resid_len;
1136
1137 if (rq->sense)
1138 /*
1139 * We are using the sense buffer of the original
1140 * request.
1141 * So setting the length of the sense data is enough.
1142 */
1143 rq->sense_len = clone->sense_len;
1144 }
1145
1146 free_rq_clone(clone);
1147 rq_end_stats(md, rq);
1148 if (!rq->q->mq_ops)
1149 blk_end_request_all(rq, error);
1150 else
1151 blk_mq_end_request(rq, error);
1152 rq_completed(md, rw, true);
1153 }
1154
1155 static void dm_unprep_request(struct request *rq)
1156 {
1157 struct dm_rq_target_io *tio = tio_from_request(rq);
1158 struct request *clone = tio->clone;
1159
1160 if (!rq->q->mq_ops) {
1161 rq->special = NULL;
1162 rq->cmd_flags &= ~REQ_DONTPREP;
1163 }
1164
1165 if (clone)
1166 free_rq_clone(clone);
1167 }
1168
1169 /*
1170 * Requeue the original request of a clone.
1171 */
1172 static void old_requeue_request(struct request *rq)
1173 {
1174 struct request_queue *q = rq->q;
1175 unsigned long flags;
1176
1177 spin_lock_irqsave(q->queue_lock, flags);
1178 blk_requeue_request(q, rq);
1179 blk_run_queue_async(q);
1180 spin_unlock_irqrestore(q->queue_lock, flags);
1181 }
1182
1183 static void dm_requeue_original_request(struct mapped_device *md,
1184 struct request *rq)
1185 {
1186 int rw = rq_data_dir(rq);
1187
1188 dm_unprep_request(rq);
1189
1190 rq_end_stats(md, rq);
1191 if (!rq->q->mq_ops)
1192 old_requeue_request(rq);
1193 else {
1194 blk_mq_requeue_request(rq);
1195 blk_mq_kick_requeue_list(rq->q);
1196 }
1197
1198 rq_completed(md, rw, false);
1199 }
1200
1201 static void old_stop_queue(struct request_queue *q)
1202 {
1203 unsigned long flags;
1204
1205 if (blk_queue_stopped(q))
1206 return;
1207
1208 spin_lock_irqsave(q->queue_lock, flags);
1209 blk_stop_queue(q);
1210 spin_unlock_irqrestore(q->queue_lock, flags);
1211 }
1212
1213 static void stop_queue(struct request_queue *q)
1214 {
1215 if (!q->mq_ops)
1216 old_stop_queue(q);
1217 else
1218 blk_mq_stop_hw_queues(q);
1219 }
1220
1221 static void old_start_queue(struct request_queue *q)
1222 {
1223 unsigned long flags;
1224
1225 spin_lock_irqsave(q->queue_lock, flags);
1226 if (blk_queue_stopped(q))
1227 blk_start_queue(q);
1228 spin_unlock_irqrestore(q->queue_lock, flags);
1229 }
1230
1231 static void start_queue(struct request_queue *q)
1232 {
1233 if (!q->mq_ops)
1234 old_start_queue(q);
1235 else
1236 blk_mq_start_stopped_hw_queues(q, true);
1237 }
1238
1239 static void dm_done(struct request *clone, int error, bool mapped)
1240 {
1241 int r = error;
1242 struct dm_rq_target_io *tio = clone->end_io_data;
1243 dm_request_endio_fn rq_end_io = NULL;
1244
1245 if (tio->ti) {
1246 rq_end_io = tio->ti->type->rq_end_io;
1247
1248 if (mapped && rq_end_io)
1249 r = rq_end_io(tio->ti, clone, error, &tio->info);
1250 }
1251
1252 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1253 !clone->q->limits.max_write_same_sectors))
1254 disable_write_same(tio->md);
1255
1256 if (r <= 0)
1257 /* The target wants to complete the I/O */
1258 dm_end_request(clone, r);
1259 else if (r == DM_ENDIO_INCOMPLETE)
1260 /* The target will handle the I/O */
1261 return;
1262 else if (r == DM_ENDIO_REQUEUE)
1263 /* The target wants to requeue the I/O */
1264 dm_requeue_original_request(tio->md, tio->orig);
1265 else {
1266 DMWARN("unimplemented target endio return value: %d", r);
1267 BUG();
1268 }
1269 }
1270
1271 /*
1272 * Request completion handler for request-based dm
1273 */
1274 static void dm_softirq_done(struct request *rq)
1275 {
1276 bool mapped = true;
1277 struct dm_rq_target_io *tio = tio_from_request(rq);
1278 struct request *clone = tio->clone;
1279 int rw;
1280
1281 if (!clone) {
1282 rq_end_stats(tio->md, rq);
1283 rw = rq_data_dir(rq);
1284 if (!rq->q->mq_ops) {
1285 blk_end_request_all(rq, tio->error);
1286 rq_completed(tio->md, rw, false);
1287 free_rq_tio(tio);
1288 } else {
1289 blk_mq_end_request(rq, tio->error);
1290 rq_completed(tio->md, rw, false);
1291 }
1292 return;
1293 }
1294
1295 if (rq->cmd_flags & REQ_FAILED)
1296 mapped = false;
1297
1298 dm_done(clone, tio->error, mapped);
1299 }
1300
1301 /*
1302 * Complete the clone and the original request with the error status
1303 * through softirq context.
1304 */
1305 static void dm_complete_request(struct request *rq, int error)
1306 {
1307 struct dm_rq_target_io *tio = tio_from_request(rq);
1308
1309 tio->error = error;
1310 blk_complete_request(rq);
1311 }
1312
1313 /*
1314 * Complete the not-mapped clone and the original request with the error status
1315 * through softirq context.
1316 * Target's rq_end_io() function isn't called.
1317 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1318 */
1319 static void dm_kill_unmapped_request(struct request *rq, int error)
1320 {
1321 rq->cmd_flags |= REQ_FAILED;
1322 dm_complete_request(rq, error);
1323 }
1324
1325 /*
1326 * Called with the clone's queue lock held (for non-blk-mq)
1327 */
1328 static void end_clone_request(struct request *clone, int error)
1329 {
1330 struct dm_rq_target_io *tio = clone->end_io_data;
1331
1332 if (!clone->q->mq_ops) {
1333 /*
1334 * For just cleaning up the information of the queue in which
1335 * the clone was dispatched.
1336 * The clone is *NOT* freed actually here because it is alloced
1337 * from dm own mempool (REQ_ALLOCED isn't set).
1338 */
1339 __blk_put_request(clone->q, clone);
1340 }
1341
1342 /*
1343 * Actual request completion is done in a softirq context which doesn't
1344 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1345 * - another request may be submitted by the upper level driver
1346 * of the stacking during the completion
1347 * - the submission which requires queue lock may be done
1348 * against this clone's queue
1349 */
1350 dm_complete_request(tio->orig, error);
1351 }
1352
1353 /*
1354 * Return maximum size of I/O possible at the supplied sector up to the current
1355 * target boundary.
1356 */
1357 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1358 {
1359 sector_t target_offset = dm_target_offset(ti, sector);
1360
1361 return ti->len - target_offset;
1362 }
1363
1364 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1365 {
1366 sector_t len = max_io_len_target_boundary(sector, ti);
1367 sector_t offset, max_len;
1368
1369 /*
1370 * Does the target need to split even further?
1371 */
1372 if (ti->max_io_len) {
1373 offset = dm_target_offset(ti, sector);
1374 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1375 max_len = sector_div(offset, ti->max_io_len);
1376 else
1377 max_len = offset & (ti->max_io_len - 1);
1378 max_len = ti->max_io_len - max_len;
1379
1380 if (len > max_len)
1381 len = max_len;
1382 }
1383
1384 return len;
1385 }
1386
1387 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1388 {
1389 if (len > UINT_MAX) {
1390 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1391 (unsigned long long)len, UINT_MAX);
1392 ti->error = "Maximum size of target IO is too large";
1393 return -EINVAL;
1394 }
1395
1396 ti->max_io_len = (uint32_t) len;
1397
1398 return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1401
1402 /*
1403 * A target may call dm_accept_partial_bio only from the map routine. It is
1404 * allowed for all bio types except REQ_FLUSH.
1405 *
1406 * dm_accept_partial_bio informs the dm that the target only wants to process
1407 * additional n_sectors sectors of the bio and the rest of the data should be
1408 * sent in a next bio.
1409 *
1410 * A diagram that explains the arithmetics:
1411 * +--------------------+---------------+-------+
1412 * | 1 | 2 | 3 |
1413 * +--------------------+---------------+-------+
1414 *
1415 * <-------------- *tio->len_ptr --------------->
1416 * <------- bi_size ------->
1417 * <-- n_sectors -->
1418 *
1419 * Region 1 was already iterated over with bio_advance or similar function.
1420 * (it may be empty if the target doesn't use bio_advance)
1421 * Region 2 is the remaining bio size that the target wants to process.
1422 * (it may be empty if region 1 is non-empty, although there is no reason
1423 * to make it empty)
1424 * The target requires that region 3 is to be sent in the next bio.
1425 *
1426 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1427 * the partially processed part (the sum of regions 1+2) must be the same for all
1428 * copies of the bio.
1429 */
1430 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1431 {
1432 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1433 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1434 BUG_ON(bio->bi_rw & REQ_FLUSH);
1435 BUG_ON(bi_size > *tio->len_ptr);
1436 BUG_ON(n_sectors > bi_size);
1437 *tio->len_ptr -= bi_size - n_sectors;
1438 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1439 }
1440 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1441
1442 static void __map_bio(struct dm_target_io *tio)
1443 {
1444 int r;
1445 sector_t sector;
1446 struct mapped_device *md;
1447 struct bio *clone = &tio->clone;
1448 struct dm_target *ti = tio->ti;
1449
1450 clone->bi_end_io = clone_endio;
1451
1452 /*
1453 * Map the clone. If r == 0 we don't need to do
1454 * anything, the target has assumed ownership of
1455 * this io.
1456 */
1457 atomic_inc(&tio->io->io_count);
1458 sector = clone->bi_iter.bi_sector;
1459 r = ti->type->map(ti, clone);
1460 if (r == DM_MAPIO_REMAPPED) {
1461 /* the bio has been remapped so dispatch it */
1462
1463 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1464 tio->io->bio->bi_bdev->bd_dev, sector);
1465
1466 generic_make_request(clone);
1467 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1468 /* error the io and bail out, or requeue it if needed */
1469 md = tio->io->md;
1470 dec_pending(tio->io, r);
1471 free_tio(md, tio);
1472 } else if (r) {
1473 DMWARN("unimplemented target map return value: %d", r);
1474 BUG();
1475 }
1476 }
1477
1478 struct clone_info {
1479 struct mapped_device *md;
1480 struct dm_table *map;
1481 struct bio *bio;
1482 struct dm_io *io;
1483 sector_t sector;
1484 unsigned sector_count;
1485 };
1486
1487 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1488 {
1489 bio->bi_iter.bi_sector = sector;
1490 bio->bi_iter.bi_size = to_bytes(len);
1491 }
1492
1493 /*
1494 * Creates a bio that consists of range of complete bvecs.
1495 */
1496 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1497 sector_t sector, unsigned len)
1498 {
1499 struct bio *clone = &tio->clone;
1500
1501 __bio_clone_fast(clone, bio);
1502
1503 if (bio_integrity(bio))
1504 bio_integrity_clone(clone, bio, GFP_NOIO);
1505
1506 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1507 clone->bi_iter.bi_size = to_bytes(len);
1508
1509 if (bio_integrity(bio))
1510 bio_integrity_trim(clone, 0, len);
1511 }
1512
1513 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1514 struct dm_target *ti,
1515 unsigned target_bio_nr)
1516 {
1517 struct dm_target_io *tio;
1518 struct bio *clone;
1519
1520 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1521 tio = container_of(clone, struct dm_target_io, clone);
1522
1523 tio->io = ci->io;
1524 tio->ti = ti;
1525 tio->target_bio_nr = target_bio_nr;
1526
1527 return tio;
1528 }
1529
1530 static void __clone_and_map_simple_bio(struct clone_info *ci,
1531 struct dm_target *ti,
1532 unsigned target_bio_nr, unsigned *len)
1533 {
1534 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1535 struct bio *clone = &tio->clone;
1536
1537 tio->len_ptr = len;
1538
1539 __bio_clone_fast(clone, ci->bio);
1540 if (len)
1541 bio_setup_sector(clone, ci->sector, *len);
1542
1543 __map_bio(tio);
1544 }
1545
1546 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1547 unsigned num_bios, unsigned *len)
1548 {
1549 unsigned target_bio_nr;
1550
1551 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1552 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1553 }
1554
1555 static int __send_empty_flush(struct clone_info *ci)
1556 {
1557 unsigned target_nr = 0;
1558 struct dm_target *ti;
1559
1560 BUG_ON(bio_has_data(ci->bio));
1561 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1562 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1563
1564 return 0;
1565 }
1566
1567 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1568 sector_t sector, unsigned *len)
1569 {
1570 struct bio *bio = ci->bio;
1571 struct dm_target_io *tio;
1572 unsigned target_bio_nr;
1573 unsigned num_target_bios = 1;
1574
1575 /*
1576 * Does the target want to receive duplicate copies of the bio?
1577 */
1578 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1579 num_target_bios = ti->num_write_bios(ti, bio);
1580
1581 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1582 tio = alloc_tio(ci, ti, target_bio_nr);
1583 tio->len_ptr = len;
1584 clone_bio(tio, bio, sector, *len);
1585 __map_bio(tio);
1586 }
1587 }
1588
1589 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1590
1591 static unsigned get_num_discard_bios(struct dm_target *ti)
1592 {
1593 return ti->num_discard_bios;
1594 }
1595
1596 static unsigned get_num_write_same_bios(struct dm_target *ti)
1597 {
1598 return ti->num_write_same_bios;
1599 }
1600
1601 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1602
1603 static bool is_split_required_for_discard(struct dm_target *ti)
1604 {
1605 return ti->split_discard_bios;
1606 }
1607
1608 static int __send_changing_extent_only(struct clone_info *ci,
1609 get_num_bios_fn get_num_bios,
1610 is_split_required_fn is_split_required)
1611 {
1612 struct dm_target *ti;
1613 unsigned len;
1614 unsigned num_bios;
1615
1616 do {
1617 ti = dm_table_find_target(ci->map, ci->sector);
1618 if (!dm_target_is_valid(ti))
1619 return -EIO;
1620
1621 /*
1622 * Even though the device advertised support for this type of
1623 * request, that does not mean every target supports it, and
1624 * reconfiguration might also have changed that since the
1625 * check was performed.
1626 */
1627 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1628 if (!num_bios)
1629 return -EOPNOTSUPP;
1630
1631 if (is_split_required && !is_split_required(ti))
1632 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1633 else
1634 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1635
1636 __send_duplicate_bios(ci, ti, num_bios, &len);
1637
1638 ci->sector += len;
1639 } while (ci->sector_count -= len);
1640
1641 return 0;
1642 }
1643
1644 static int __send_discard(struct clone_info *ci)
1645 {
1646 return __send_changing_extent_only(ci, get_num_discard_bios,
1647 is_split_required_for_discard);
1648 }
1649
1650 static int __send_write_same(struct clone_info *ci)
1651 {
1652 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1653 }
1654
1655 /*
1656 * Select the correct strategy for processing a non-flush bio.
1657 */
1658 static int __split_and_process_non_flush(struct clone_info *ci)
1659 {
1660 struct bio *bio = ci->bio;
1661 struct dm_target *ti;
1662 unsigned len;
1663
1664 if (unlikely(bio->bi_rw & REQ_DISCARD))
1665 return __send_discard(ci);
1666 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1667 return __send_write_same(ci);
1668
1669 ti = dm_table_find_target(ci->map, ci->sector);
1670 if (!dm_target_is_valid(ti))
1671 return -EIO;
1672
1673 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1674
1675 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1676
1677 ci->sector += len;
1678 ci->sector_count -= len;
1679
1680 return 0;
1681 }
1682
1683 /*
1684 * Entry point to split a bio into clones and submit them to the targets.
1685 */
1686 static void __split_and_process_bio(struct mapped_device *md,
1687 struct dm_table *map, struct bio *bio)
1688 {
1689 struct clone_info ci;
1690 int error = 0;
1691
1692 if (unlikely(!map)) {
1693 bio_io_error(bio);
1694 return;
1695 }
1696
1697 ci.map = map;
1698 ci.md = md;
1699 ci.io = alloc_io(md);
1700 ci.io->error = 0;
1701 atomic_set(&ci.io->io_count, 1);
1702 ci.io->bio = bio;
1703 ci.io->md = md;
1704 spin_lock_init(&ci.io->endio_lock);
1705 ci.sector = bio->bi_iter.bi_sector;
1706
1707 start_io_acct(ci.io);
1708
1709 if (bio->bi_rw & REQ_FLUSH) {
1710 ci.bio = &ci.md->flush_bio;
1711 ci.sector_count = 0;
1712 error = __send_empty_flush(&ci);
1713 /* dec_pending submits any data associated with flush */
1714 } else {
1715 ci.bio = bio;
1716 ci.sector_count = bio_sectors(bio);
1717 while (ci.sector_count && !error)
1718 error = __split_and_process_non_flush(&ci);
1719 }
1720
1721 /* drop the extra reference count */
1722 dec_pending(ci.io, error);
1723 }
1724 /*-----------------------------------------------------------------
1725 * CRUD END
1726 *---------------------------------------------------------------*/
1727
1728 static int dm_merge_bvec(struct request_queue *q,
1729 struct bvec_merge_data *bvm,
1730 struct bio_vec *biovec)
1731 {
1732 struct mapped_device *md = q->queuedata;
1733 struct dm_table *map = dm_get_live_table_fast(md);
1734 struct dm_target *ti;
1735 sector_t max_sectors, max_size = 0;
1736
1737 if (unlikely(!map))
1738 goto out;
1739
1740 ti = dm_table_find_target(map, bvm->bi_sector);
1741 if (!dm_target_is_valid(ti))
1742 goto out;
1743
1744 /*
1745 * Find maximum amount of I/O that won't need splitting
1746 */
1747 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1748 (sector_t) queue_max_sectors(q));
1749 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1750
1751 /*
1752 * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t
1753 * to the targets' merge function since it holds sectors not bytes).
1754 * Just doing this as an interim fix for stable@ because the more
1755 * comprehensive cleanup of switching to sector_t will impact every
1756 * DM target that implements a ->merge hook.
1757 */
1758 if (max_size > INT_MAX)
1759 max_size = INT_MAX;
1760
1761 /*
1762 * merge_bvec_fn() returns number of bytes
1763 * it can accept at this offset
1764 * max is precomputed maximal io size
1765 */
1766 if (max_size && ti->type->merge)
1767 max_size = ti->type->merge(ti, bvm, biovec, (int) max_size);
1768 /*
1769 * If the target doesn't support merge method and some of the devices
1770 * provided their merge_bvec method (we know this by looking for the
1771 * max_hw_sectors that dm_set_device_limits may set), then we can't
1772 * allow bios with multiple vector entries. So always set max_size
1773 * to 0, and the code below allows just one page.
1774 */
1775 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1776 max_size = 0;
1777
1778 out:
1779 dm_put_live_table_fast(md);
1780 /*
1781 * Always allow an entire first page
1782 */
1783 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1784 max_size = biovec->bv_len;
1785
1786 return max_size;
1787 }
1788
1789 /*
1790 * The request function that just remaps the bio built up by
1791 * dm_merge_bvec.
1792 */
1793 static void dm_make_request(struct request_queue *q, struct bio *bio)
1794 {
1795 int rw = bio_data_dir(bio);
1796 struct mapped_device *md = q->queuedata;
1797 int srcu_idx;
1798 struct dm_table *map;
1799
1800 map = dm_get_live_table(md, &srcu_idx);
1801
1802 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1803
1804 /* if we're suspended, we have to queue this io for later */
1805 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1806 dm_put_live_table(md, srcu_idx);
1807
1808 if (bio_rw(bio) != READA)
1809 queue_io(md, bio);
1810 else
1811 bio_io_error(bio);
1812 return;
1813 }
1814
1815 __split_and_process_bio(md, map, bio);
1816 dm_put_live_table(md, srcu_idx);
1817 return;
1818 }
1819
1820 int dm_request_based(struct mapped_device *md)
1821 {
1822 return blk_queue_stackable(md->queue);
1823 }
1824
1825 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1826 {
1827 int r;
1828
1829 if (blk_queue_io_stat(clone->q))
1830 clone->cmd_flags |= REQ_IO_STAT;
1831
1832 clone->start_time = jiffies;
1833 r = blk_insert_cloned_request(clone->q, clone);
1834 if (r)
1835 /* must complete clone in terms of original request */
1836 dm_complete_request(rq, r);
1837 }
1838
1839 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1840 void *data)
1841 {
1842 struct dm_rq_target_io *tio = data;
1843 struct dm_rq_clone_bio_info *info =
1844 container_of(bio, struct dm_rq_clone_bio_info, clone);
1845
1846 info->orig = bio_orig;
1847 info->tio = tio;
1848 bio->bi_end_io = end_clone_bio;
1849
1850 return 0;
1851 }
1852
1853 static int setup_clone(struct request *clone, struct request *rq,
1854 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1855 {
1856 int r;
1857
1858 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1859 dm_rq_bio_constructor, tio);
1860 if (r)
1861 return r;
1862
1863 clone->cmd = rq->cmd;
1864 clone->cmd_len = rq->cmd_len;
1865 clone->sense = rq->sense;
1866 clone->end_io = end_clone_request;
1867 clone->end_io_data = tio;
1868
1869 tio->clone = clone;
1870
1871 return 0;
1872 }
1873
1874 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1875 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1876 {
1877 /*
1878 * Do not allocate a clone if tio->clone was already set
1879 * (see: dm_mq_queue_rq).
1880 */
1881 bool alloc_clone = !tio->clone;
1882 struct request *clone;
1883
1884 if (alloc_clone) {
1885 clone = alloc_clone_request(md, gfp_mask);
1886 if (!clone)
1887 return NULL;
1888 } else
1889 clone = tio->clone;
1890
1891 blk_rq_init(NULL, clone);
1892 if (setup_clone(clone, rq, tio, gfp_mask)) {
1893 /* -ENOMEM */
1894 if (alloc_clone)
1895 free_clone_request(md, clone);
1896 return NULL;
1897 }
1898
1899 return clone;
1900 }
1901
1902 static void map_tio_request(struct kthread_work *work);
1903
1904 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1905 struct mapped_device *md)
1906 {
1907 tio->md = md;
1908 tio->ti = NULL;
1909 tio->clone = NULL;
1910 tio->orig = rq;
1911 tio->error = 0;
1912 memset(&tio->info, 0, sizeof(tio->info));
1913 if (md->kworker_task)
1914 init_kthread_work(&tio->work, map_tio_request);
1915 }
1916
1917 static struct dm_rq_target_io *prep_tio(struct request *rq,
1918 struct mapped_device *md, gfp_t gfp_mask)
1919 {
1920 struct dm_rq_target_io *tio;
1921 int srcu_idx;
1922 struct dm_table *table;
1923
1924 tio = alloc_rq_tio(md, gfp_mask);
1925 if (!tio)
1926 return NULL;
1927
1928 init_tio(tio, rq, md);
1929
1930 table = dm_get_live_table(md, &srcu_idx);
1931 if (!dm_table_mq_request_based(table)) {
1932 if (!clone_rq(rq, md, tio, gfp_mask)) {
1933 dm_put_live_table(md, srcu_idx);
1934 free_rq_tio(tio);
1935 return NULL;
1936 }
1937 }
1938 dm_put_live_table(md, srcu_idx);
1939
1940 return tio;
1941 }
1942
1943 /*
1944 * Called with the queue lock held.
1945 */
1946 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1947 {
1948 struct mapped_device *md = q->queuedata;
1949 struct dm_rq_target_io *tio;
1950
1951 if (unlikely(rq->special)) {
1952 DMWARN("Already has something in rq->special.");
1953 return BLKPREP_KILL;
1954 }
1955
1956 tio = prep_tio(rq, md, GFP_ATOMIC);
1957 if (!tio)
1958 return BLKPREP_DEFER;
1959
1960 rq->special = tio;
1961 rq->cmd_flags |= REQ_DONTPREP;
1962
1963 return BLKPREP_OK;
1964 }
1965
1966 /*
1967 * Returns:
1968 * 0 : the request has been processed
1969 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1970 * < 0 : the request was completed due to failure
1971 */
1972 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1973 struct mapped_device *md)
1974 {
1975 int r;
1976 struct dm_target *ti = tio->ti;
1977 struct request *clone = NULL;
1978
1979 if (tio->clone) {
1980 clone = tio->clone;
1981 r = ti->type->map_rq(ti, clone, &tio->info);
1982 } else {
1983 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1984 if (r < 0) {
1985 /* The target wants to complete the I/O */
1986 dm_kill_unmapped_request(rq, r);
1987 return r;
1988 }
1989 if (r != DM_MAPIO_REMAPPED)
1990 return r;
1991 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1992 /* -ENOMEM */
1993 ti->type->release_clone_rq(clone);
1994 return DM_MAPIO_REQUEUE;
1995 }
1996 }
1997
1998 switch (r) {
1999 case DM_MAPIO_SUBMITTED:
2000 /* The target has taken the I/O to submit by itself later */
2001 break;
2002 case DM_MAPIO_REMAPPED:
2003 /* The target has remapped the I/O so dispatch it */
2004 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2005 blk_rq_pos(rq));
2006 dm_dispatch_clone_request(clone, rq);
2007 break;
2008 case DM_MAPIO_REQUEUE:
2009 /* The target wants to requeue the I/O */
2010 dm_requeue_original_request(md, tio->orig);
2011 break;
2012 default:
2013 if (r > 0) {
2014 DMWARN("unimplemented target map return value: %d", r);
2015 BUG();
2016 }
2017
2018 /* The target wants to complete the I/O */
2019 dm_kill_unmapped_request(rq, r);
2020 return r;
2021 }
2022
2023 return 0;
2024 }
2025
2026 static void map_tio_request(struct kthread_work *work)
2027 {
2028 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2029 struct request *rq = tio->orig;
2030 struct mapped_device *md = tio->md;
2031
2032 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2033 dm_requeue_original_request(md, rq);
2034 }
2035
2036 static void dm_start_request(struct mapped_device *md, struct request *orig)
2037 {
2038 if (!orig->q->mq_ops)
2039 blk_start_request(orig);
2040 else
2041 blk_mq_start_request(orig);
2042 atomic_inc(&md->pending[rq_data_dir(orig)]);
2043
2044 if (md->seq_rq_merge_deadline_usecs) {
2045 md->last_rq_pos = rq_end_sector(orig);
2046 md->last_rq_rw = rq_data_dir(orig);
2047 md->last_rq_start_time = ktime_get();
2048 }
2049
2050 if (unlikely(dm_stats_used(&md->stats))) {
2051 struct dm_rq_target_io *tio = tio_from_request(orig);
2052 tio->duration_jiffies = jiffies;
2053 tio->n_sectors = blk_rq_sectors(orig);
2054 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2055 tio->n_sectors, false, 0, &tio->stats_aux);
2056 }
2057
2058 /*
2059 * Hold the md reference here for the in-flight I/O.
2060 * We can't rely on the reference count by device opener,
2061 * because the device may be closed during the request completion
2062 * when all bios are completed.
2063 * See the comment in rq_completed() too.
2064 */
2065 dm_get(md);
2066 }
2067
2068 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2069
2070 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2071 {
2072 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2073 }
2074
2075 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2076 const char *buf, size_t count)
2077 {
2078 unsigned deadline;
2079
2080 if (!dm_request_based(md) || md->use_blk_mq)
2081 return count;
2082
2083 if (kstrtouint(buf, 10, &deadline))
2084 return -EINVAL;
2085
2086 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2087 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2088
2089 md->seq_rq_merge_deadline_usecs = deadline;
2090
2091 return count;
2092 }
2093
2094 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2095 {
2096 ktime_t kt_deadline;
2097
2098 if (!md->seq_rq_merge_deadline_usecs)
2099 return false;
2100
2101 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2102 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2103
2104 return !ktime_after(ktime_get(), kt_deadline);
2105 }
2106
2107 /*
2108 * q->request_fn for request-based dm.
2109 * Called with the queue lock held.
2110 */
2111 static void dm_request_fn(struct request_queue *q)
2112 {
2113 struct mapped_device *md = q->queuedata;
2114 int srcu_idx;
2115 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2116 struct dm_target *ti;
2117 struct request *rq;
2118 struct dm_rq_target_io *tio;
2119 sector_t pos;
2120
2121 /*
2122 * For suspend, check blk_queue_stopped() and increment
2123 * ->pending within a single queue_lock not to increment the
2124 * number of in-flight I/Os after the queue is stopped in
2125 * dm_suspend().
2126 */
2127 while (!blk_queue_stopped(q)) {
2128 rq = blk_peek_request(q);
2129 if (!rq)
2130 goto out;
2131
2132 /* always use block 0 to find the target for flushes for now */
2133 pos = 0;
2134 if (!(rq->cmd_flags & REQ_FLUSH))
2135 pos = blk_rq_pos(rq);
2136
2137 ti = dm_table_find_target(map, pos);
2138 if (!dm_target_is_valid(ti)) {
2139 /*
2140 * Must perform setup, that rq_completed() requires,
2141 * before calling dm_kill_unmapped_request
2142 */
2143 DMERR_LIMIT("request attempted access beyond the end of device");
2144 dm_start_request(md, rq);
2145 dm_kill_unmapped_request(rq, -EIO);
2146 continue;
2147 }
2148
2149 if (dm_request_peeked_before_merge_deadline(md) &&
2150 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2151 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2152 goto delay_and_out;
2153
2154 if (ti->type->busy && ti->type->busy(ti))
2155 goto delay_and_out;
2156
2157 dm_start_request(md, rq);
2158
2159 tio = tio_from_request(rq);
2160 /* Establish tio->ti before queuing work (map_tio_request) */
2161 tio->ti = ti;
2162 queue_kthread_work(&md->kworker, &tio->work);
2163 BUG_ON(!irqs_disabled());
2164 }
2165
2166 goto out;
2167
2168 delay_and_out:
2169 blk_delay_queue(q, HZ / 100);
2170 out:
2171 dm_put_live_table(md, srcu_idx);
2172 }
2173
2174 static int dm_any_congested(void *congested_data, int bdi_bits)
2175 {
2176 int r = bdi_bits;
2177 struct mapped_device *md = congested_data;
2178 struct dm_table *map;
2179
2180 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2181 map = dm_get_live_table_fast(md);
2182 if (map) {
2183 /*
2184 * Request-based dm cares about only own queue for
2185 * the query about congestion status of request_queue
2186 */
2187 if (dm_request_based(md))
2188 r = md->queue->backing_dev_info.wb.state &
2189 bdi_bits;
2190 else
2191 r = dm_table_any_congested(map, bdi_bits);
2192 }
2193 dm_put_live_table_fast(md);
2194 }
2195
2196 return r;
2197 }
2198
2199 /*-----------------------------------------------------------------
2200 * An IDR is used to keep track of allocated minor numbers.
2201 *---------------------------------------------------------------*/
2202 static void free_minor(int minor)
2203 {
2204 spin_lock(&_minor_lock);
2205 idr_remove(&_minor_idr, minor);
2206 spin_unlock(&_minor_lock);
2207 }
2208
2209 /*
2210 * See if the device with a specific minor # is free.
2211 */
2212 static int specific_minor(int minor)
2213 {
2214 int r;
2215
2216 if (minor >= (1 << MINORBITS))
2217 return -EINVAL;
2218
2219 idr_preload(GFP_KERNEL);
2220 spin_lock(&_minor_lock);
2221
2222 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2223
2224 spin_unlock(&_minor_lock);
2225 idr_preload_end();
2226 if (r < 0)
2227 return r == -ENOSPC ? -EBUSY : r;
2228 return 0;
2229 }
2230
2231 static int next_free_minor(int *minor)
2232 {
2233 int r;
2234
2235 idr_preload(GFP_KERNEL);
2236 spin_lock(&_minor_lock);
2237
2238 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2239
2240 spin_unlock(&_minor_lock);
2241 idr_preload_end();
2242 if (r < 0)
2243 return r;
2244 *minor = r;
2245 return 0;
2246 }
2247
2248 static const struct block_device_operations dm_blk_dops;
2249
2250 static void dm_wq_work(struct work_struct *work);
2251
2252 static void dm_init_md_queue(struct mapped_device *md)
2253 {
2254 /*
2255 * Request-based dm devices cannot be stacked on top of bio-based dm
2256 * devices. The type of this dm device may not have been decided yet.
2257 * The type is decided at the first table loading time.
2258 * To prevent problematic device stacking, clear the queue flag
2259 * for request stacking support until then.
2260 *
2261 * This queue is new, so no concurrency on the queue_flags.
2262 */
2263 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2264 }
2265
2266 static void dm_init_old_md_queue(struct mapped_device *md)
2267 {
2268 md->use_blk_mq = false;
2269 dm_init_md_queue(md);
2270
2271 /*
2272 * Initialize aspects of queue that aren't relevant for blk-mq
2273 */
2274 md->queue->queuedata = md;
2275 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2276 md->queue->backing_dev_info.congested_data = md;
2277
2278 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2279 }
2280
2281 static void cleanup_mapped_device(struct mapped_device *md)
2282 {
2283 cleanup_srcu_struct(&md->io_barrier);
2284
2285 if (md->wq)
2286 destroy_workqueue(md->wq);
2287 if (md->kworker_task)
2288 kthread_stop(md->kworker_task);
2289 if (md->io_pool)
2290 mempool_destroy(md->io_pool);
2291 if (md->rq_pool)
2292 mempool_destroy(md->rq_pool);
2293 if (md->bs)
2294 bioset_free(md->bs);
2295
2296 if (md->disk) {
2297 spin_lock(&_minor_lock);
2298 md->disk->private_data = NULL;
2299 spin_unlock(&_minor_lock);
2300 if (blk_get_integrity(md->disk))
2301 blk_integrity_unregister(md->disk);
2302 del_gendisk(md->disk);
2303 put_disk(md->disk);
2304 }
2305
2306 if (md->queue)
2307 blk_cleanup_queue(md->queue);
2308
2309 if (md->bdev) {
2310 bdput(md->bdev);
2311 md->bdev = NULL;
2312 }
2313 }
2314
2315 /*
2316 * Allocate and initialise a blank device with a given minor.
2317 */
2318 static struct mapped_device *alloc_dev(int minor)
2319 {
2320 int r;
2321 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2322 void *old_md;
2323
2324 if (!md) {
2325 DMWARN("unable to allocate device, out of memory.");
2326 return NULL;
2327 }
2328
2329 if (!try_module_get(THIS_MODULE))
2330 goto bad_module_get;
2331
2332 /* get a minor number for the dev */
2333 if (minor == DM_ANY_MINOR)
2334 r = next_free_minor(&minor);
2335 else
2336 r = specific_minor(minor);
2337 if (r < 0)
2338 goto bad_minor;
2339
2340 r = init_srcu_struct(&md->io_barrier);
2341 if (r < 0)
2342 goto bad_io_barrier;
2343
2344 md->use_blk_mq = use_blk_mq;
2345 md->type = DM_TYPE_NONE;
2346 mutex_init(&md->suspend_lock);
2347 mutex_init(&md->type_lock);
2348 mutex_init(&md->table_devices_lock);
2349 spin_lock_init(&md->deferred_lock);
2350 atomic_set(&md->holders, 1);
2351 atomic_set(&md->open_count, 0);
2352 atomic_set(&md->event_nr, 0);
2353 atomic_set(&md->uevent_seq, 0);
2354 INIT_LIST_HEAD(&md->uevent_list);
2355 INIT_LIST_HEAD(&md->table_devices);
2356 spin_lock_init(&md->uevent_lock);
2357
2358 md->queue = blk_alloc_queue(GFP_KERNEL);
2359 if (!md->queue)
2360 goto bad;
2361
2362 dm_init_md_queue(md);
2363
2364 md->disk = alloc_disk(1);
2365 if (!md->disk)
2366 goto bad;
2367
2368 atomic_set(&md->pending[0], 0);
2369 atomic_set(&md->pending[1], 0);
2370 init_waitqueue_head(&md->wait);
2371 INIT_WORK(&md->work, dm_wq_work);
2372 init_waitqueue_head(&md->eventq);
2373 init_completion(&md->kobj_holder.completion);
2374 md->kworker_task = NULL;
2375
2376 md->disk->major = _major;
2377 md->disk->first_minor = minor;
2378 md->disk->fops = &dm_blk_dops;
2379 md->disk->queue = md->queue;
2380 md->disk->private_data = md;
2381 sprintf(md->disk->disk_name, "dm-%d", minor);
2382 add_disk(md->disk);
2383 format_dev_t(md->name, MKDEV(_major, minor));
2384
2385 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2386 if (!md->wq)
2387 goto bad;
2388
2389 md->bdev = bdget_disk(md->disk, 0);
2390 if (!md->bdev)
2391 goto bad;
2392
2393 bio_init(&md->flush_bio);
2394 md->flush_bio.bi_bdev = md->bdev;
2395 md->flush_bio.bi_rw = WRITE_FLUSH;
2396
2397 dm_stats_init(&md->stats);
2398
2399 /* Populate the mapping, nobody knows we exist yet */
2400 spin_lock(&_minor_lock);
2401 old_md = idr_replace(&_minor_idr, md, minor);
2402 spin_unlock(&_minor_lock);
2403
2404 BUG_ON(old_md != MINOR_ALLOCED);
2405
2406 return md;
2407
2408 bad:
2409 cleanup_mapped_device(md);
2410 bad_io_barrier:
2411 free_minor(minor);
2412 bad_minor:
2413 module_put(THIS_MODULE);
2414 bad_module_get:
2415 kfree(md);
2416 return NULL;
2417 }
2418
2419 static void unlock_fs(struct mapped_device *md);
2420
2421 static void free_dev(struct mapped_device *md)
2422 {
2423 int minor = MINOR(disk_devt(md->disk));
2424
2425 unlock_fs(md);
2426
2427 cleanup_mapped_device(md);
2428 if (md->use_blk_mq)
2429 blk_mq_free_tag_set(&md->tag_set);
2430
2431 free_table_devices(&md->table_devices);
2432 dm_stats_cleanup(&md->stats);
2433 free_minor(minor);
2434
2435 module_put(THIS_MODULE);
2436 kfree(md);
2437 }
2438
2439 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2440 {
2441 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2442
2443 if (md->bs) {
2444 /* The md already has necessary mempools. */
2445 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2446 /*
2447 * Reload bioset because front_pad may have changed
2448 * because a different table was loaded.
2449 */
2450 bioset_free(md->bs);
2451 md->bs = p->bs;
2452 p->bs = NULL;
2453 }
2454 /*
2455 * There's no need to reload with request-based dm
2456 * because the size of front_pad doesn't change.
2457 * Note for future: If you are to reload bioset,
2458 * prep-ed requests in the queue may refer
2459 * to bio from the old bioset, so you must walk
2460 * through the queue to unprep.
2461 */
2462 goto out;
2463 }
2464
2465 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2466
2467 md->io_pool = p->io_pool;
2468 p->io_pool = NULL;
2469 md->rq_pool = p->rq_pool;
2470 p->rq_pool = NULL;
2471 md->bs = p->bs;
2472 p->bs = NULL;
2473
2474 out:
2475 /* mempool bind completed, no longer need any mempools in the table */
2476 dm_table_free_md_mempools(t);
2477 }
2478
2479 /*
2480 * Bind a table to the device.
2481 */
2482 static void event_callback(void *context)
2483 {
2484 unsigned long flags;
2485 LIST_HEAD(uevents);
2486 struct mapped_device *md = (struct mapped_device *) context;
2487
2488 spin_lock_irqsave(&md->uevent_lock, flags);
2489 list_splice_init(&md->uevent_list, &uevents);
2490 spin_unlock_irqrestore(&md->uevent_lock, flags);
2491
2492 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2493
2494 atomic_inc(&md->event_nr);
2495 wake_up(&md->eventq);
2496 }
2497
2498 /*
2499 * Protected by md->suspend_lock obtained by dm_swap_table().
2500 */
2501 static void __set_size(struct mapped_device *md, sector_t size)
2502 {
2503 set_capacity(md->disk, size);
2504
2505 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2506 }
2507
2508 /*
2509 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2510 *
2511 * If this function returns 0, then the device is either a non-dm
2512 * device without a merge_bvec_fn, or it is a dm device that is
2513 * able to split any bios it receives that are too big.
2514 */
2515 int dm_queue_merge_is_compulsory(struct request_queue *q)
2516 {
2517 struct mapped_device *dev_md;
2518
2519 if (!q->merge_bvec_fn)
2520 return 0;
2521
2522 if (q->make_request_fn == dm_make_request) {
2523 dev_md = q->queuedata;
2524 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2525 return 0;
2526 }
2527
2528 return 1;
2529 }
2530
2531 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2532 struct dm_dev *dev, sector_t start,
2533 sector_t len, void *data)
2534 {
2535 struct block_device *bdev = dev->bdev;
2536 struct request_queue *q = bdev_get_queue(bdev);
2537
2538 return dm_queue_merge_is_compulsory(q);
2539 }
2540
2541 /*
2542 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2543 * on the properties of the underlying devices.
2544 */
2545 static int dm_table_merge_is_optional(struct dm_table *table)
2546 {
2547 unsigned i = 0;
2548 struct dm_target *ti;
2549
2550 while (i < dm_table_get_num_targets(table)) {
2551 ti = dm_table_get_target(table, i++);
2552
2553 if (ti->type->iterate_devices &&
2554 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2555 return 0;
2556 }
2557
2558 return 1;
2559 }
2560
2561 /*
2562 * Returns old map, which caller must destroy.
2563 */
2564 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2565 struct queue_limits *limits)
2566 {
2567 struct dm_table *old_map;
2568 struct request_queue *q = md->queue;
2569 sector_t size;
2570 int merge_is_optional;
2571
2572 size = dm_table_get_size(t);
2573
2574 /*
2575 * Wipe any geometry if the size of the table changed.
2576 */
2577 if (size != dm_get_size(md))
2578 memset(&md->geometry, 0, sizeof(md->geometry));
2579
2580 __set_size(md, size);
2581
2582 dm_table_event_callback(t, event_callback, md);
2583
2584 /*
2585 * The queue hasn't been stopped yet, if the old table type wasn't
2586 * for request-based during suspension. So stop it to prevent
2587 * I/O mapping before resume.
2588 * This must be done before setting the queue restrictions,
2589 * because request-based dm may be run just after the setting.
2590 */
2591 if (dm_table_request_based(t))
2592 stop_queue(q);
2593
2594 __bind_mempools(md, t);
2595
2596 merge_is_optional = dm_table_merge_is_optional(t);
2597
2598 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2599 rcu_assign_pointer(md->map, t);
2600 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2601
2602 dm_table_set_restrictions(t, q, limits);
2603 if (merge_is_optional)
2604 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2605 else
2606 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2607 if (old_map)
2608 dm_sync_table(md);
2609
2610 return old_map;
2611 }
2612
2613 /*
2614 * Returns unbound table for the caller to free.
2615 */
2616 static struct dm_table *__unbind(struct mapped_device *md)
2617 {
2618 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2619
2620 if (!map)
2621 return NULL;
2622
2623 dm_table_event_callback(map, NULL, NULL);
2624 RCU_INIT_POINTER(md->map, NULL);
2625 dm_sync_table(md);
2626
2627 return map;
2628 }
2629
2630 /*
2631 * Constructor for a new device.
2632 */
2633 int dm_create(int minor, struct mapped_device **result)
2634 {
2635 struct mapped_device *md;
2636
2637 md = alloc_dev(minor);
2638 if (!md)
2639 return -ENXIO;
2640
2641 dm_sysfs_init(md);
2642
2643 *result = md;
2644 return 0;
2645 }
2646
2647 /*
2648 * Functions to manage md->type.
2649 * All are required to hold md->type_lock.
2650 */
2651 void dm_lock_md_type(struct mapped_device *md)
2652 {
2653 mutex_lock(&md->type_lock);
2654 }
2655
2656 void dm_unlock_md_type(struct mapped_device *md)
2657 {
2658 mutex_unlock(&md->type_lock);
2659 }
2660
2661 void dm_set_md_type(struct mapped_device *md, unsigned type)
2662 {
2663 BUG_ON(!mutex_is_locked(&md->type_lock));
2664 md->type = type;
2665 }
2666
2667 unsigned dm_get_md_type(struct mapped_device *md)
2668 {
2669 BUG_ON(!mutex_is_locked(&md->type_lock));
2670 return md->type;
2671 }
2672
2673 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2674 {
2675 return md->immutable_target_type;
2676 }
2677
2678 /*
2679 * The queue_limits are only valid as long as you have a reference
2680 * count on 'md'.
2681 */
2682 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2683 {
2684 BUG_ON(!atomic_read(&md->holders));
2685 return &md->queue->limits;
2686 }
2687 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2688
2689 static void init_rq_based_worker_thread(struct mapped_device *md)
2690 {
2691 /* Initialize the request-based DM worker thread */
2692 init_kthread_worker(&md->kworker);
2693 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2694 "kdmwork-%s", dm_device_name(md));
2695 }
2696
2697 /*
2698 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2699 */
2700 static int dm_init_request_based_queue(struct mapped_device *md)
2701 {
2702 struct request_queue *q = NULL;
2703
2704 /* Fully initialize the queue */
2705 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2706 if (!q)
2707 return -EINVAL;
2708
2709 /* disable dm_request_fn's merge heuristic by default */
2710 md->seq_rq_merge_deadline_usecs = 0;
2711
2712 md->queue = q;
2713 dm_init_old_md_queue(md);
2714 blk_queue_softirq_done(md->queue, dm_softirq_done);
2715 blk_queue_prep_rq(md->queue, dm_prep_fn);
2716
2717 init_rq_based_worker_thread(md);
2718
2719 elv_register_queue(md->queue);
2720
2721 return 0;
2722 }
2723
2724 static int dm_mq_init_request(void *data, struct request *rq,
2725 unsigned int hctx_idx, unsigned int request_idx,
2726 unsigned int numa_node)
2727 {
2728 struct mapped_device *md = data;
2729 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2730
2731 /*
2732 * Must initialize md member of tio, otherwise it won't
2733 * be available in dm_mq_queue_rq.
2734 */
2735 tio->md = md;
2736
2737 return 0;
2738 }
2739
2740 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2741 const struct blk_mq_queue_data *bd)
2742 {
2743 struct request *rq = bd->rq;
2744 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2745 struct mapped_device *md = tio->md;
2746 int srcu_idx;
2747 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2748 struct dm_target *ti;
2749 sector_t pos;
2750
2751 /* always use block 0 to find the target for flushes for now */
2752 pos = 0;
2753 if (!(rq->cmd_flags & REQ_FLUSH))
2754 pos = blk_rq_pos(rq);
2755
2756 ti = dm_table_find_target(map, pos);
2757 if (!dm_target_is_valid(ti)) {
2758 dm_put_live_table(md, srcu_idx);
2759 DMERR_LIMIT("request attempted access beyond the end of device");
2760 /*
2761 * Must perform setup, that rq_completed() requires,
2762 * before returning BLK_MQ_RQ_QUEUE_ERROR
2763 */
2764 dm_start_request(md, rq);
2765 return BLK_MQ_RQ_QUEUE_ERROR;
2766 }
2767 dm_put_live_table(md, srcu_idx);
2768
2769 if (ti->type->busy && ti->type->busy(ti))
2770 return BLK_MQ_RQ_QUEUE_BUSY;
2771
2772 dm_start_request(md, rq);
2773
2774 /* Init tio using md established in .init_request */
2775 init_tio(tio, rq, md);
2776
2777 /*
2778 * Establish tio->ti before queuing work (map_tio_request)
2779 * or making direct call to map_request().
2780 */
2781 tio->ti = ti;
2782
2783 /* Clone the request if underlying devices aren't blk-mq */
2784 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2785 /* clone request is allocated at the end of the pdu */
2786 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2787 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2788 queue_kthread_work(&md->kworker, &tio->work);
2789 } else {
2790 /* Direct call is fine since .queue_rq allows allocations */
2791 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2792 /* Undo dm_start_request() before requeuing */
2793 rq_end_stats(md, rq);
2794 rq_completed(md, rq_data_dir(rq), false);
2795 return BLK_MQ_RQ_QUEUE_BUSY;
2796 }
2797 }
2798
2799 return BLK_MQ_RQ_QUEUE_OK;
2800 }
2801
2802 static struct blk_mq_ops dm_mq_ops = {
2803 .queue_rq = dm_mq_queue_rq,
2804 .map_queue = blk_mq_map_queue,
2805 .complete = dm_softirq_done,
2806 .init_request = dm_mq_init_request,
2807 };
2808
2809 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2810 {
2811 unsigned md_type = dm_get_md_type(md);
2812 struct request_queue *q;
2813 int err;
2814
2815 memset(&md->tag_set, 0, sizeof(md->tag_set));
2816 md->tag_set.ops = &dm_mq_ops;
2817 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2818 md->tag_set.numa_node = NUMA_NO_NODE;
2819 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2820 md->tag_set.nr_hw_queues = 1;
2821 if (md_type == DM_TYPE_REQUEST_BASED) {
2822 /* make the memory for non-blk-mq clone part of the pdu */
2823 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2824 } else
2825 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2826 md->tag_set.driver_data = md;
2827
2828 err = blk_mq_alloc_tag_set(&md->tag_set);
2829 if (err)
2830 return err;
2831
2832 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2833 if (IS_ERR(q)) {
2834 err = PTR_ERR(q);
2835 goto out_tag_set;
2836 }
2837 md->queue = q;
2838 dm_init_md_queue(md);
2839
2840 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2841 blk_mq_register_disk(md->disk);
2842
2843 if (md_type == DM_TYPE_REQUEST_BASED)
2844 init_rq_based_worker_thread(md);
2845
2846 return 0;
2847
2848 out_tag_set:
2849 blk_mq_free_tag_set(&md->tag_set);
2850 return err;
2851 }
2852
2853 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2854 {
2855 if (type == DM_TYPE_BIO_BASED)
2856 return type;
2857
2858 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2859 }
2860
2861 /*
2862 * Setup the DM device's queue based on md's type
2863 */
2864 int dm_setup_md_queue(struct mapped_device *md)
2865 {
2866 int r;
2867 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2868
2869 switch (md_type) {
2870 case DM_TYPE_REQUEST_BASED:
2871 r = dm_init_request_based_queue(md);
2872 if (r) {
2873 DMWARN("Cannot initialize queue for request-based mapped device");
2874 return r;
2875 }
2876 break;
2877 case DM_TYPE_MQ_REQUEST_BASED:
2878 r = dm_init_request_based_blk_mq_queue(md);
2879 if (r) {
2880 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2881 return r;
2882 }
2883 break;
2884 case DM_TYPE_BIO_BASED:
2885 dm_init_old_md_queue(md);
2886 blk_queue_make_request(md->queue, dm_make_request);
2887 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2888 break;
2889 }
2890
2891 return 0;
2892 }
2893
2894 struct mapped_device *dm_get_md(dev_t dev)
2895 {
2896 struct mapped_device *md;
2897 unsigned minor = MINOR(dev);
2898
2899 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2900 return NULL;
2901
2902 spin_lock(&_minor_lock);
2903
2904 md = idr_find(&_minor_idr, minor);
2905 if (md) {
2906 if ((md == MINOR_ALLOCED ||
2907 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2908 dm_deleting_md(md) ||
2909 test_bit(DMF_FREEING, &md->flags))) {
2910 md = NULL;
2911 goto out;
2912 }
2913 dm_get(md);
2914 }
2915
2916 out:
2917 spin_unlock(&_minor_lock);
2918
2919 return md;
2920 }
2921 EXPORT_SYMBOL_GPL(dm_get_md);
2922
2923 void *dm_get_mdptr(struct mapped_device *md)
2924 {
2925 return md->interface_ptr;
2926 }
2927
2928 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2929 {
2930 md->interface_ptr = ptr;
2931 }
2932
2933 void dm_get(struct mapped_device *md)
2934 {
2935 atomic_inc(&md->holders);
2936 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2937 }
2938
2939 int dm_hold(struct mapped_device *md)
2940 {
2941 spin_lock(&_minor_lock);
2942 if (test_bit(DMF_FREEING, &md->flags)) {
2943 spin_unlock(&_minor_lock);
2944 return -EBUSY;
2945 }
2946 dm_get(md);
2947 spin_unlock(&_minor_lock);
2948 return 0;
2949 }
2950 EXPORT_SYMBOL_GPL(dm_hold);
2951
2952 const char *dm_device_name(struct mapped_device *md)
2953 {
2954 return md->name;
2955 }
2956 EXPORT_SYMBOL_GPL(dm_device_name);
2957
2958 static void __dm_destroy(struct mapped_device *md, bool wait)
2959 {
2960 struct dm_table *map;
2961 int srcu_idx;
2962
2963 might_sleep();
2964
2965 map = dm_get_live_table(md, &srcu_idx);
2966
2967 spin_lock(&_minor_lock);
2968 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2969 set_bit(DMF_FREEING, &md->flags);
2970 spin_unlock(&_minor_lock);
2971
2972 if (dm_request_based(md) && md->kworker_task)
2973 flush_kthread_worker(&md->kworker);
2974
2975 /*
2976 * Take suspend_lock so that presuspend and postsuspend methods
2977 * do not race with internal suspend.
2978 */
2979 mutex_lock(&md->suspend_lock);
2980 if (!dm_suspended_md(md)) {
2981 dm_table_presuspend_targets(map);
2982 dm_table_postsuspend_targets(map);
2983 }
2984 mutex_unlock(&md->suspend_lock);
2985
2986 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2987 dm_put_live_table(md, srcu_idx);
2988
2989 /*
2990 * Rare, but there may be I/O requests still going to complete,
2991 * for example. Wait for all references to disappear.
2992 * No one should increment the reference count of the mapped_device,
2993 * after the mapped_device state becomes DMF_FREEING.
2994 */
2995 if (wait)
2996 while (atomic_read(&md->holders))
2997 msleep(1);
2998 else if (atomic_read(&md->holders))
2999 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
3000 dm_device_name(md), atomic_read(&md->holders));
3001
3002 dm_sysfs_exit(md);
3003 dm_table_destroy(__unbind(md));
3004 free_dev(md);
3005 }
3006
3007 void dm_destroy(struct mapped_device *md)
3008 {
3009 __dm_destroy(md, true);
3010 }
3011
3012 void dm_destroy_immediate(struct mapped_device *md)
3013 {
3014 __dm_destroy(md, false);
3015 }
3016
3017 void dm_put(struct mapped_device *md)
3018 {
3019 atomic_dec(&md->holders);
3020 }
3021 EXPORT_SYMBOL_GPL(dm_put);
3022
3023 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
3024 {
3025 int r = 0;
3026 DECLARE_WAITQUEUE(wait, current);
3027
3028 add_wait_queue(&md->wait, &wait);
3029
3030 while (1) {
3031 set_current_state(interruptible);
3032
3033 if (!md_in_flight(md))
3034 break;
3035
3036 if (interruptible == TASK_INTERRUPTIBLE &&
3037 signal_pending(current)) {
3038 r = -EINTR;
3039 break;
3040 }
3041
3042 io_schedule();
3043 }
3044 set_current_state(TASK_RUNNING);
3045
3046 remove_wait_queue(&md->wait, &wait);
3047
3048 return r;
3049 }
3050
3051 /*
3052 * Process the deferred bios
3053 */
3054 static void dm_wq_work(struct work_struct *work)
3055 {
3056 struct mapped_device *md = container_of(work, struct mapped_device,
3057 work);
3058 struct bio *c;
3059 int srcu_idx;
3060 struct dm_table *map;
3061
3062 map = dm_get_live_table(md, &srcu_idx);
3063
3064 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3065 spin_lock_irq(&md->deferred_lock);
3066 c = bio_list_pop(&md->deferred);
3067 spin_unlock_irq(&md->deferred_lock);
3068
3069 if (!c)
3070 break;
3071
3072 if (dm_request_based(md))
3073 generic_make_request(c);
3074 else
3075 __split_and_process_bio(md, map, c);
3076 }
3077
3078 dm_put_live_table(md, srcu_idx);
3079 }
3080
3081 static void dm_queue_flush(struct mapped_device *md)
3082 {
3083 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3084 smp_mb__after_atomic();
3085 queue_work(md->wq, &md->work);
3086 }
3087
3088 /*
3089 * Swap in a new table, returning the old one for the caller to destroy.
3090 */
3091 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3092 {
3093 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3094 struct queue_limits limits;
3095 int r;
3096
3097 mutex_lock(&md->suspend_lock);
3098
3099 /* device must be suspended */
3100 if (!dm_suspended_md(md))
3101 goto out;
3102
3103 /*
3104 * If the new table has no data devices, retain the existing limits.
3105 * This helps multipath with queue_if_no_path if all paths disappear,
3106 * then new I/O is queued based on these limits, and then some paths
3107 * reappear.
3108 */
3109 if (dm_table_has_no_data_devices(table)) {
3110 live_map = dm_get_live_table_fast(md);
3111 if (live_map)
3112 limits = md->queue->limits;
3113 dm_put_live_table_fast(md);
3114 }
3115
3116 if (!live_map) {
3117 r = dm_calculate_queue_limits(table, &limits);
3118 if (r) {
3119 map = ERR_PTR(r);
3120 goto out;
3121 }
3122 }
3123
3124 map = __bind(md, table, &limits);
3125
3126 out:
3127 mutex_unlock(&md->suspend_lock);
3128 return map;
3129 }
3130
3131 /*
3132 * Functions to lock and unlock any filesystem running on the
3133 * device.
3134 */
3135 static int lock_fs(struct mapped_device *md)
3136 {
3137 int r;
3138
3139 WARN_ON(md->frozen_sb);
3140
3141 md->frozen_sb = freeze_bdev(md->bdev);
3142 if (IS_ERR(md->frozen_sb)) {
3143 r = PTR_ERR(md->frozen_sb);
3144 md->frozen_sb = NULL;
3145 return r;
3146 }
3147
3148 set_bit(DMF_FROZEN, &md->flags);
3149
3150 return 0;
3151 }
3152
3153 static void unlock_fs(struct mapped_device *md)
3154 {
3155 if (!test_bit(DMF_FROZEN, &md->flags))
3156 return;
3157
3158 thaw_bdev(md->bdev, md->frozen_sb);
3159 md->frozen_sb = NULL;
3160 clear_bit(DMF_FROZEN, &md->flags);
3161 }
3162
3163 /*
3164 * If __dm_suspend returns 0, the device is completely quiescent
3165 * now. There is no request-processing activity. All new requests
3166 * are being added to md->deferred list.
3167 *
3168 * Caller must hold md->suspend_lock
3169 */
3170 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3171 unsigned suspend_flags, int interruptible)
3172 {
3173 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3174 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3175 int r;
3176
3177 /*
3178 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3179 * This flag is cleared before dm_suspend returns.
3180 */
3181 if (noflush)
3182 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3183
3184 /*
3185 * This gets reverted if there's an error later and the targets
3186 * provide the .presuspend_undo hook.
3187 */
3188 dm_table_presuspend_targets(map);
3189
3190 /*
3191 * Flush I/O to the device.
3192 * Any I/O submitted after lock_fs() may not be flushed.
3193 * noflush takes precedence over do_lockfs.
3194 * (lock_fs() flushes I/Os and waits for them to complete.)
3195 */
3196 if (!noflush && do_lockfs) {
3197 r = lock_fs(md);
3198 if (r) {
3199 dm_table_presuspend_undo_targets(map);
3200 return r;
3201 }
3202 }
3203
3204 /*
3205 * Here we must make sure that no processes are submitting requests
3206 * to target drivers i.e. no one may be executing
3207 * __split_and_process_bio. This is called from dm_request and
3208 * dm_wq_work.
3209 *
3210 * To get all processes out of __split_and_process_bio in dm_request,
3211 * we take the write lock. To prevent any process from reentering
3212 * __split_and_process_bio from dm_request and quiesce the thread
3213 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3214 * flush_workqueue(md->wq).
3215 */
3216 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3217 if (map)
3218 synchronize_srcu(&md->io_barrier);
3219
3220 /*
3221 * Stop md->queue before flushing md->wq in case request-based
3222 * dm defers requests to md->wq from md->queue.
3223 */
3224 if (dm_request_based(md)) {
3225 stop_queue(md->queue);
3226 if (md->kworker_task)
3227 flush_kthread_worker(&md->kworker);
3228 }
3229
3230 flush_workqueue(md->wq);
3231
3232 /*
3233 * At this point no more requests are entering target request routines.
3234 * We call dm_wait_for_completion to wait for all existing requests
3235 * to finish.
3236 */
3237 r = dm_wait_for_completion(md, interruptible);
3238
3239 if (noflush)
3240 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3241 if (map)
3242 synchronize_srcu(&md->io_barrier);
3243
3244 /* were we interrupted ? */
3245 if (r < 0) {
3246 dm_queue_flush(md);
3247
3248 if (dm_request_based(md))
3249 start_queue(md->queue);
3250
3251 unlock_fs(md);
3252 dm_table_presuspend_undo_targets(map);
3253 /* pushback list is already flushed, so skip flush */
3254 }
3255
3256 return r;
3257 }
3258
3259 /*
3260 * We need to be able to change a mapping table under a mounted
3261 * filesystem. For example we might want to move some data in
3262 * the background. Before the table can be swapped with
3263 * dm_bind_table, dm_suspend must be called to flush any in
3264 * flight bios and ensure that any further io gets deferred.
3265 */
3266 /*
3267 * Suspend mechanism in request-based dm.
3268 *
3269 * 1. Flush all I/Os by lock_fs() if needed.
3270 * 2. Stop dispatching any I/O by stopping the request_queue.
3271 * 3. Wait for all in-flight I/Os to be completed or requeued.
3272 *
3273 * To abort suspend, start the request_queue.
3274 */
3275 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3276 {
3277 struct dm_table *map = NULL;
3278 int r = 0;
3279
3280 retry:
3281 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3282
3283 if (dm_suspended_md(md)) {
3284 r = -EINVAL;
3285 goto out_unlock;
3286 }
3287
3288 if (dm_suspended_internally_md(md)) {
3289 /* already internally suspended, wait for internal resume */
3290 mutex_unlock(&md->suspend_lock);
3291 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3292 if (r)
3293 return r;
3294 goto retry;
3295 }
3296
3297 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3298
3299 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3300 if (r)
3301 goto out_unlock;
3302
3303 set_bit(DMF_SUSPENDED, &md->flags);
3304
3305 dm_table_postsuspend_targets(map);
3306
3307 out_unlock:
3308 mutex_unlock(&md->suspend_lock);
3309 return r;
3310 }
3311
3312 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3313 {
3314 if (map) {
3315 int r = dm_table_resume_targets(map);
3316 if (r)
3317 return r;
3318 }
3319
3320 dm_queue_flush(md);
3321
3322 /*
3323 * Flushing deferred I/Os must be done after targets are resumed
3324 * so that mapping of targets can work correctly.
3325 * Request-based dm is queueing the deferred I/Os in its request_queue.
3326 */
3327 if (dm_request_based(md))
3328 start_queue(md->queue);
3329
3330 unlock_fs(md);
3331
3332 return 0;
3333 }
3334
3335 int dm_resume(struct mapped_device *md)
3336 {
3337 int r = -EINVAL;
3338 struct dm_table *map = NULL;
3339
3340 retry:
3341 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3342
3343 if (!dm_suspended_md(md))
3344 goto out;
3345
3346 if (dm_suspended_internally_md(md)) {
3347 /* already internally suspended, wait for internal resume */
3348 mutex_unlock(&md->suspend_lock);
3349 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3350 if (r)
3351 return r;
3352 goto retry;
3353 }
3354
3355 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3356 if (!map || !dm_table_get_size(map))
3357 goto out;
3358
3359 r = __dm_resume(md, map);
3360 if (r)
3361 goto out;
3362
3363 clear_bit(DMF_SUSPENDED, &md->flags);
3364
3365 r = 0;
3366 out:
3367 mutex_unlock(&md->suspend_lock);
3368
3369 return r;
3370 }
3371
3372 /*
3373 * Internal suspend/resume works like userspace-driven suspend. It waits
3374 * until all bios finish and prevents issuing new bios to the target drivers.
3375 * It may be used only from the kernel.
3376 */
3377
3378 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3379 {
3380 struct dm_table *map = NULL;
3381
3382 if (md->internal_suspend_count++)
3383 return; /* nested internal suspend */
3384
3385 if (dm_suspended_md(md)) {
3386 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3387 return; /* nest suspend */
3388 }
3389
3390 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3391
3392 /*
3393 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3394 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3395 * would require changing .presuspend to return an error -- avoid this
3396 * until there is a need for more elaborate variants of internal suspend.
3397 */
3398 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3399
3400 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3401
3402 dm_table_postsuspend_targets(map);
3403 }
3404
3405 static void __dm_internal_resume(struct mapped_device *md)
3406 {
3407 BUG_ON(!md->internal_suspend_count);
3408
3409 if (--md->internal_suspend_count)
3410 return; /* resume from nested internal suspend */
3411
3412 if (dm_suspended_md(md))
3413 goto done; /* resume from nested suspend */
3414
3415 /*
3416 * NOTE: existing callers don't need to call dm_table_resume_targets
3417 * (which may fail -- so best to avoid it for now by passing NULL map)
3418 */
3419 (void) __dm_resume(md, NULL);
3420
3421 done:
3422 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3423 smp_mb__after_atomic();
3424 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3425 }
3426
3427 void dm_internal_suspend_noflush(struct mapped_device *md)
3428 {
3429 mutex_lock(&md->suspend_lock);
3430 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3431 mutex_unlock(&md->suspend_lock);
3432 }
3433 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3434
3435 void dm_internal_resume(struct mapped_device *md)
3436 {
3437 mutex_lock(&md->suspend_lock);
3438 __dm_internal_resume(md);
3439 mutex_unlock(&md->suspend_lock);
3440 }
3441 EXPORT_SYMBOL_GPL(dm_internal_resume);
3442
3443 /*
3444 * Fast variants of internal suspend/resume hold md->suspend_lock,
3445 * which prevents interaction with userspace-driven suspend.
3446 */
3447
3448 void dm_internal_suspend_fast(struct mapped_device *md)
3449 {
3450 mutex_lock(&md->suspend_lock);
3451 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3452 return;
3453
3454 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3455 synchronize_srcu(&md->io_barrier);
3456 flush_workqueue(md->wq);
3457 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3458 }
3459 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3460
3461 void dm_internal_resume_fast(struct mapped_device *md)
3462 {
3463 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3464 goto done;
3465
3466 dm_queue_flush(md);
3467
3468 done:
3469 mutex_unlock(&md->suspend_lock);
3470 }
3471 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3472
3473 /*-----------------------------------------------------------------
3474 * Event notification.
3475 *---------------------------------------------------------------*/
3476 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3477 unsigned cookie)
3478 {
3479 char udev_cookie[DM_COOKIE_LENGTH];
3480 char *envp[] = { udev_cookie, NULL };
3481
3482 if (!cookie)
3483 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3484 else {
3485 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3486 DM_COOKIE_ENV_VAR_NAME, cookie);
3487 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3488 action, envp);
3489 }
3490 }
3491
3492 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3493 {
3494 return atomic_add_return(1, &md->uevent_seq);
3495 }
3496
3497 uint32_t dm_get_event_nr(struct mapped_device *md)
3498 {
3499 return atomic_read(&md->event_nr);
3500 }
3501
3502 int dm_wait_event(struct mapped_device *md, int event_nr)
3503 {
3504 return wait_event_interruptible(md->eventq,
3505 (event_nr != atomic_read(&md->event_nr)));
3506 }
3507
3508 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3509 {
3510 unsigned long flags;
3511
3512 spin_lock_irqsave(&md->uevent_lock, flags);
3513 list_add(elist, &md->uevent_list);
3514 spin_unlock_irqrestore(&md->uevent_lock, flags);
3515 }
3516
3517 /*
3518 * The gendisk is only valid as long as you have a reference
3519 * count on 'md'.
3520 */
3521 struct gendisk *dm_disk(struct mapped_device *md)
3522 {
3523 return md->disk;
3524 }
3525 EXPORT_SYMBOL_GPL(dm_disk);
3526
3527 struct kobject *dm_kobject(struct mapped_device *md)
3528 {
3529 return &md->kobj_holder.kobj;
3530 }
3531
3532 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3533 {
3534 struct mapped_device *md;
3535
3536 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3537
3538 if (test_bit(DMF_FREEING, &md->flags) ||
3539 dm_deleting_md(md))
3540 return NULL;
3541
3542 dm_get(md);
3543 return md;
3544 }
3545
3546 int dm_suspended_md(struct mapped_device *md)
3547 {
3548 return test_bit(DMF_SUSPENDED, &md->flags);
3549 }
3550
3551 int dm_suspended_internally_md(struct mapped_device *md)
3552 {
3553 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3554 }
3555
3556 int dm_test_deferred_remove_flag(struct mapped_device *md)
3557 {
3558 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3559 }
3560
3561 int dm_suspended(struct dm_target *ti)
3562 {
3563 return dm_suspended_md(dm_table_get_md(ti->table));
3564 }
3565 EXPORT_SYMBOL_GPL(dm_suspended);
3566
3567 int dm_noflush_suspending(struct dm_target *ti)
3568 {
3569 return __noflush_suspending(dm_table_get_md(ti->table));
3570 }
3571 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3572
3573 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3574 unsigned integrity, unsigned per_bio_data_size)
3575 {
3576 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3577 struct kmem_cache *cachep = NULL;
3578 unsigned int pool_size = 0;
3579 unsigned int front_pad;
3580
3581 if (!pools)
3582 return NULL;
3583
3584 type = filter_md_type(type, md);
3585
3586 switch (type) {
3587 case DM_TYPE_BIO_BASED:
3588 cachep = _io_cache;
3589 pool_size = dm_get_reserved_bio_based_ios();
3590 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3591 break;
3592 case DM_TYPE_REQUEST_BASED:
3593 cachep = _rq_tio_cache;
3594 pool_size = dm_get_reserved_rq_based_ios();
3595 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3596 if (!pools->rq_pool)
3597 goto out;
3598 /* fall through to setup remaining rq-based pools */
3599 case DM_TYPE_MQ_REQUEST_BASED:
3600 if (!pool_size)
3601 pool_size = dm_get_reserved_rq_based_ios();
3602 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3603 /* per_bio_data_size is not used. See __bind_mempools(). */
3604 WARN_ON(per_bio_data_size != 0);
3605 break;
3606 default:
3607 BUG();
3608 }
3609
3610 if (cachep) {
3611 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3612 if (!pools->io_pool)
3613 goto out;
3614 }
3615
3616 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3617 if (!pools->bs)
3618 goto out;
3619
3620 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3621 goto out;
3622
3623 return pools;
3624
3625 out:
3626 dm_free_md_mempools(pools);
3627
3628 return NULL;
3629 }
3630
3631 void dm_free_md_mempools(struct dm_md_mempools *pools)
3632 {
3633 if (!pools)
3634 return;
3635
3636 if (pools->io_pool)
3637 mempool_destroy(pools->io_pool);
3638
3639 if (pools->rq_pool)
3640 mempool_destroy(pools->rq_pool);
3641
3642 if (pools->bs)
3643 bioset_free(pools->bs);
3644
3645 kfree(pools);
3646 }
3647
3648 static const struct block_device_operations dm_blk_dops = {
3649 .open = dm_blk_open,
3650 .release = dm_blk_close,
3651 .ioctl = dm_blk_ioctl,
3652 .getgeo = dm_blk_getgeo,
3653 .owner = THIS_MODULE
3654 };
3655
3656 /*
3657 * module hooks
3658 */
3659 module_init(dm_init);
3660 module_exit(dm_exit);
3661
3662 module_param(major, uint, 0);
3663 MODULE_PARM_DESC(major, "The major number of the device mapper");
3664
3665 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3666 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3667
3668 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3669 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3670
3671 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3672 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3673
3674 MODULE_DESCRIPTION(DM_NAME " driver");
3675 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3676 MODULE_LICENSE("GPL");