]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24
25 #include <trace/events/block.h>
26
27 #define DM_MSG_PREFIX "core"
28
29 #ifdef CONFIG_PRINTK
30 /*
31 * ratelimit state to be used in DMXXX_LIMIT().
32 */
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 DEFAULT_RATELIMIT_INTERVAL,
35 DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
37 #endif
38
39 /*
40 * Cookies are numeric values sent with CHANGE and REMOVE
41 * uevents while resuming, removing or renaming the device.
42 */
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
45
46 static const char *_name = DM_NAME;
47
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
50
51 static DEFINE_IDR(_minor_idr);
52
53 static DEFINE_SPINLOCK(_minor_lock);
54
55 static void do_deferred_remove(struct work_struct *w);
56
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58
59 static struct workqueue_struct *deferred_remove_workqueue;
60
61 /*
62 * For bio-based dm.
63 * One of these is allocated per bio.
64 */
65 struct dm_io {
66 struct mapped_device *md;
67 int error;
68 atomic_t io_count;
69 struct bio *bio;
70 unsigned long start_time;
71 spinlock_t endio_lock;
72 struct dm_stats_aux stats_aux;
73 };
74
75 /*
76 * For request-based dm.
77 * One of these is allocated per request.
78 */
79 struct dm_rq_target_io {
80 struct mapped_device *md;
81 struct dm_target *ti;
82 struct request *orig, *clone;
83 struct kthread_work work;
84 int error;
85 union map_info info;
86 };
87
88 /*
89 * For request-based dm - the bio clones we allocate are embedded in these
90 * structs.
91 *
92 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93 * the bioset is created - this means the bio has to come at the end of the
94 * struct.
95 */
96 struct dm_rq_clone_bio_info {
97 struct bio *orig;
98 struct dm_rq_target_io *tio;
99 struct bio clone;
100 };
101
102 union map_info *dm_get_rq_mapinfo(struct request *rq)
103 {
104 if (rq && rq->end_io_data)
105 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
106 return NULL;
107 }
108 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
109
110 #define MINOR_ALLOCED ((void *)-1)
111
112 /*
113 * Bits for the md->flags field.
114 */
115 #define DMF_BLOCK_IO_FOR_SUSPEND 0
116 #define DMF_SUSPENDED 1
117 #define DMF_FROZEN 2
118 #define DMF_FREEING 3
119 #define DMF_DELETING 4
120 #define DMF_NOFLUSH_SUSPENDING 5
121 #define DMF_MERGE_IS_OPTIONAL 6
122 #define DMF_DEFERRED_REMOVE 7
123 #define DMF_SUSPENDED_INTERNALLY 8
124
125 /*
126 * A dummy definition to make RCU happy.
127 * struct dm_table should never be dereferenced in this file.
128 */
129 struct dm_table {
130 int undefined__;
131 };
132
133 /*
134 * Work processed by per-device workqueue.
135 */
136 struct mapped_device {
137 struct srcu_struct io_barrier;
138 struct mutex suspend_lock;
139 atomic_t holders;
140 atomic_t open_count;
141
142 /*
143 * The current mapping.
144 * Use dm_get_live_table{_fast} or take suspend_lock for
145 * dereference.
146 */
147 struct dm_table __rcu *map;
148
149 struct list_head table_devices;
150 struct mutex table_devices_lock;
151
152 unsigned long flags;
153
154 struct request_queue *queue;
155 unsigned type;
156 /* Protect queue and type against concurrent access. */
157 struct mutex type_lock;
158
159 struct target_type *immutable_target_type;
160
161 struct gendisk *disk;
162 char name[16];
163
164 void *interface_ptr;
165
166 /*
167 * A list of ios that arrived while we were suspended.
168 */
169 atomic_t pending[2];
170 wait_queue_head_t wait;
171 struct work_struct work;
172 struct bio_list deferred;
173 spinlock_t deferred_lock;
174
175 /*
176 * Processing queue (flush)
177 */
178 struct workqueue_struct *wq;
179
180 /*
181 * io objects are allocated from here.
182 */
183 mempool_t *io_pool;
184 mempool_t *rq_pool;
185
186 struct bio_set *bs;
187
188 /*
189 * Event handling.
190 */
191 atomic_t event_nr;
192 wait_queue_head_t eventq;
193 atomic_t uevent_seq;
194 struct list_head uevent_list;
195 spinlock_t uevent_lock; /* Protect access to uevent_list */
196
197 /*
198 * freeze/thaw support require holding onto a super block
199 */
200 struct super_block *frozen_sb;
201 struct block_device *bdev;
202
203 /* forced geometry settings */
204 struct hd_geometry geometry;
205
206 /* kobject and completion */
207 struct dm_kobject_holder kobj_holder;
208
209 /* zero-length flush that will be cloned and submitted to targets */
210 struct bio flush_bio;
211
212 /* the number of internal suspends */
213 unsigned internal_suspend_count;
214
215 struct dm_stats stats;
216
217 struct kthread_worker kworker;
218 struct task_struct *kworker_task;
219 };
220
221 /*
222 * For mempools pre-allocation at the table loading time.
223 */
224 struct dm_md_mempools {
225 mempool_t *io_pool;
226 mempool_t *rq_pool;
227 struct bio_set *bs;
228 };
229
230 struct table_device {
231 struct list_head list;
232 atomic_t count;
233 struct dm_dev dm_dev;
234 };
235
236 #define RESERVED_BIO_BASED_IOS 16
237 #define RESERVED_REQUEST_BASED_IOS 256
238 #define RESERVED_MAX_IOS 1024
239 static struct kmem_cache *_io_cache;
240 static struct kmem_cache *_rq_tio_cache;
241 static struct kmem_cache *_rq_cache;
242
243 /*
244 * Bio-based DM's mempools' reserved IOs set by the user.
245 */
246 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
247
248 /*
249 * Request-based DM's mempools' reserved IOs set by the user.
250 */
251 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
252
253 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
254 unsigned def, unsigned max)
255 {
256 unsigned ios = ACCESS_ONCE(*reserved_ios);
257 unsigned modified_ios = 0;
258
259 if (!ios)
260 modified_ios = def;
261 else if (ios > max)
262 modified_ios = max;
263
264 if (modified_ios) {
265 (void)cmpxchg(reserved_ios, ios, modified_ios);
266 ios = modified_ios;
267 }
268
269 return ios;
270 }
271
272 unsigned dm_get_reserved_bio_based_ios(void)
273 {
274 return __dm_get_reserved_ios(&reserved_bio_based_ios,
275 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
276 }
277 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
278
279 unsigned dm_get_reserved_rq_based_ios(void)
280 {
281 return __dm_get_reserved_ios(&reserved_rq_based_ios,
282 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
283 }
284 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
285
286 static int __init local_init(void)
287 {
288 int r = -ENOMEM;
289
290 /* allocate a slab for the dm_ios */
291 _io_cache = KMEM_CACHE(dm_io, 0);
292 if (!_io_cache)
293 return r;
294
295 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
296 if (!_rq_tio_cache)
297 goto out_free_io_cache;
298
299 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
300 __alignof__(struct request), 0, NULL);
301 if (!_rq_cache)
302 goto out_free_rq_tio_cache;
303
304 r = dm_uevent_init();
305 if (r)
306 goto out_free_rq_cache;
307
308 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
309 if (!deferred_remove_workqueue) {
310 r = -ENOMEM;
311 goto out_uevent_exit;
312 }
313
314 _major = major;
315 r = register_blkdev(_major, _name);
316 if (r < 0)
317 goto out_free_workqueue;
318
319 if (!_major)
320 _major = r;
321
322 return 0;
323
324 out_free_workqueue:
325 destroy_workqueue(deferred_remove_workqueue);
326 out_uevent_exit:
327 dm_uevent_exit();
328 out_free_rq_cache:
329 kmem_cache_destroy(_rq_cache);
330 out_free_rq_tio_cache:
331 kmem_cache_destroy(_rq_tio_cache);
332 out_free_io_cache:
333 kmem_cache_destroy(_io_cache);
334
335 return r;
336 }
337
338 static void local_exit(void)
339 {
340 flush_scheduled_work();
341 destroy_workqueue(deferred_remove_workqueue);
342
343 kmem_cache_destroy(_rq_cache);
344 kmem_cache_destroy(_rq_tio_cache);
345 kmem_cache_destroy(_io_cache);
346 unregister_blkdev(_major, _name);
347 dm_uevent_exit();
348
349 _major = 0;
350
351 DMINFO("cleaned up");
352 }
353
354 static int (*_inits[])(void) __initdata = {
355 local_init,
356 dm_target_init,
357 dm_linear_init,
358 dm_stripe_init,
359 dm_io_init,
360 dm_kcopyd_init,
361 dm_interface_init,
362 dm_statistics_init,
363 };
364
365 static void (*_exits[])(void) = {
366 local_exit,
367 dm_target_exit,
368 dm_linear_exit,
369 dm_stripe_exit,
370 dm_io_exit,
371 dm_kcopyd_exit,
372 dm_interface_exit,
373 dm_statistics_exit,
374 };
375
376 static int __init dm_init(void)
377 {
378 const int count = ARRAY_SIZE(_inits);
379
380 int r, i;
381
382 for (i = 0; i < count; i++) {
383 r = _inits[i]();
384 if (r)
385 goto bad;
386 }
387
388 return 0;
389
390 bad:
391 while (i--)
392 _exits[i]();
393
394 return r;
395 }
396
397 static void __exit dm_exit(void)
398 {
399 int i = ARRAY_SIZE(_exits);
400
401 while (i--)
402 _exits[i]();
403
404 /*
405 * Should be empty by this point.
406 */
407 idr_destroy(&_minor_idr);
408 }
409
410 /*
411 * Block device functions
412 */
413 int dm_deleting_md(struct mapped_device *md)
414 {
415 return test_bit(DMF_DELETING, &md->flags);
416 }
417
418 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
419 {
420 struct mapped_device *md;
421
422 spin_lock(&_minor_lock);
423
424 md = bdev->bd_disk->private_data;
425 if (!md)
426 goto out;
427
428 if (test_bit(DMF_FREEING, &md->flags) ||
429 dm_deleting_md(md)) {
430 md = NULL;
431 goto out;
432 }
433
434 dm_get(md);
435 atomic_inc(&md->open_count);
436 out:
437 spin_unlock(&_minor_lock);
438
439 return md ? 0 : -ENXIO;
440 }
441
442 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
443 {
444 struct mapped_device *md;
445
446 spin_lock(&_minor_lock);
447
448 md = disk->private_data;
449 if (WARN_ON(!md))
450 goto out;
451
452 if (atomic_dec_and_test(&md->open_count) &&
453 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
454 queue_work(deferred_remove_workqueue, &deferred_remove_work);
455
456 dm_put(md);
457 out:
458 spin_unlock(&_minor_lock);
459 }
460
461 int dm_open_count(struct mapped_device *md)
462 {
463 return atomic_read(&md->open_count);
464 }
465
466 /*
467 * Guarantees nothing is using the device before it's deleted.
468 */
469 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
470 {
471 int r = 0;
472
473 spin_lock(&_minor_lock);
474
475 if (dm_open_count(md)) {
476 r = -EBUSY;
477 if (mark_deferred)
478 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
479 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
480 r = -EEXIST;
481 else
482 set_bit(DMF_DELETING, &md->flags);
483
484 spin_unlock(&_minor_lock);
485
486 return r;
487 }
488
489 int dm_cancel_deferred_remove(struct mapped_device *md)
490 {
491 int r = 0;
492
493 spin_lock(&_minor_lock);
494
495 if (test_bit(DMF_DELETING, &md->flags))
496 r = -EBUSY;
497 else
498 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
499
500 spin_unlock(&_minor_lock);
501
502 return r;
503 }
504
505 static void do_deferred_remove(struct work_struct *w)
506 {
507 dm_deferred_remove();
508 }
509
510 sector_t dm_get_size(struct mapped_device *md)
511 {
512 return get_capacity(md->disk);
513 }
514
515 struct request_queue *dm_get_md_queue(struct mapped_device *md)
516 {
517 return md->queue;
518 }
519
520 struct dm_stats *dm_get_stats(struct mapped_device *md)
521 {
522 return &md->stats;
523 }
524
525 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
526 {
527 struct mapped_device *md = bdev->bd_disk->private_data;
528
529 return dm_get_geometry(md, geo);
530 }
531
532 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
533 unsigned int cmd, unsigned long arg)
534 {
535 struct mapped_device *md = bdev->bd_disk->private_data;
536 int srcu_idx;
537 struct dm_table *map;
538 struct dm_target *tgt;
539 int r = -ENOTTY;
540
541 retry:
542 map = dm_get_live_table(md, &srcu_idx);
543
544 if (!map || !dm_table_get_size(map))
545 goto out;
546
547 /* We only support devices that have a single target */
548 if (dm_table_get_num_targets(map) != 1)
549 goto out;
550
551 tgt = dm_table_get_target(map, 0);
552 if (!tgt->type->ioctl)
553 goto out;
554
555 if (dm_suspended_md(md)) {
556 r = -EAGAIN;
557 goto out;
558 }
559
560 r = tgt->type->ioctl(tgt, cmd, arg);
561
562 out:
563 dm_put_live_table(md, srcu_idx);
564
565 if (r == -ENOTCONN) {
566 msleep(10);
567 goto retry;
568 }
569
570 return r;
571 }
572
573 static struct dm_io *alloc_io(struct mapped_device *md)
574 {
575 return mempool_alloc(md->io_pool, GFP_NOIO);
576 }
577
578 static void free_io(struct mapped_device *md, struct dm_io *io)
579 {
580 mempool_free(io, md->io_pool);
581 }
582
583 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
584 {
585 bio_put(&tio->clone);
586 }
587
588 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
589 gfp_t gfp_mask)
590 {
591 return mempool_alloc(md->io_pool, gfp_mask);
592 }
593
594 static void free_rq_tio(struct dm_rq_target_io *tio)
595 {
596 mempool_free(tio, tio->md->io_pool);
597 }
598
599 static struct request *alloc_clone_request(struct mapped_device *md,
600 gfp_t gfp_mask)
601 {
602 return mempool_alloc(md->rq_pool, gfp_mask);
603 }
604
605 static void free_clone_request(struct mapped_device *md, struct request *rq)
606 {
607 mempool_free(rq, md->rq_pool);
608 }
609
610 static int md_in_flight(struct mapped_device *md)
611 {
612 return atomic_read(&md->pending[READ]) +
613 atomic_read(&md->pending[WRITE]);
614 }
615
616 static void start_io_acct(struct dm_io *io)
617 {
618 struct mapped_device *md = io->md;
619 struct bio *bio = io->bio;
620 int cpu;
621 int rw = bio_data_dir(bio);
622
623 io->start_time = jiffies;
624
625 cpu = part_stat_lock();
626 part_round_stats(cpu, &dm_disk(md)->part0);
627 part_stat_unlock();
628 atomic_set(&dm_disk(md)->part0.in_flight[rw],
629 atomic_inc_return(&md->pending[rw]));
630
631 if (unlikely(dm_stats_used(&md->stats)))
632 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
633 bio_sectors(bio), false, 0, &io->stats_aux);
634 }
635
636 static void end_io_acct(struct dm_io *io)
637 {
638 struct mapped_device *md = io->md;
639 struct bio *bio = io->bio;
640 unsigned long duration = jiffies - io->start_time;
641 int pending;
642 int rw = bio_data_dir(bio);
643
644 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
645
646 if (unlikely(dm_stats_used(&md->stats)))
647 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
648 bio_sectors(bio), true, duration, &io->stats_aux);
649
650 /*
651 * After this is decremented the bio must not be touched if it is
652 * a flush.
653 */
654 pending = atomic_dec_return(&md->pending[rw]);
655 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
656 pending += atomic_read(&md->pending[rw^0x1]);
657
658 /* nudge anyone waiting on suspend queue */
659 if (!pending)
660 wake_up(&md->wait);
661 }
662
663 /*
664 * Add the bio to the list of deferred io.
665 */
666 static void queue_io(struct mapped_device *md, struct bio *bio)
667 {
668 unsigned long flags;
669
670 spin_lock_irqsave(&md->deferred_lock, flags);
671 bio_list_add(&md->deferred, bio);
672 spin_unlock_irqrestore(&md->deferred_lock, flags);
673 queue_work(md->wq, &md->work);
674 }
675
676 /*
677 * Everyone (including functions in this file), should use this
678 * function to access the md->map field, and make sure they call
679 * dm_put_live_table() when finished.
680 */
681 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
682 {
683 *srcu_idx = srcu_read_lock(&md->io_barrier);
684
685 return srcu_dereference(md->map, &md->io_barrier);
686 }
687
688 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
689 {
690 srcu_read_unlock(&md->io_barrier, srcu_idx);
691 }
692
693 void dm_sync_table(struct mapped_device *md)
694 {
695 synchronize_srcu(&md->io_barrier);
696 synchronize_rcu_expedited();
697 }
698
699 /*
700 * A fast alternative to dm_get_live_table/dm_put_live_table.
701 * The caller must not block between these two functions.
702 */
703 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
704 {
705 rcu_read_lock();
706 return rcu_dereference(md->map);
707 }
708
709 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
710 {
711 rcu_read_unlock();
712 }
713
714 /*
715 * Open a table device so we can use it as a map destination.
716 */
717 static int open_table_device(struct table_device *td, dev_t dev,
718 struct mapped_device *md)
719 {
720 static char *_claim_ptr = "I belong to device-mapper";
721 struct block_device *bdev;
722
723 int r;
724
725 BUG_ON(td->dm_dev.bdev);
726
727 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
728 if (IS_ERR(bdev))
729 return PTR_ERR(bdev);
730
731 r = bd_link_disk_holder(bdev, dm_disk(md));
732 if (r) {
733 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
734 return r;
735 }
736
737 td->dm_dev.bdev = bdev;
738 return 0;
739 }
740
741 /*
742 * Close a table device that we've been using.
743 */
744 static void close_table_device(struct table_device *td, struct mapped_device *md)
745 {
746 if (!td->dm_dev.bdev)
747 return;
748
749 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
750 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
751 td->dm_dev.bdev = NULL;
752 }
753
754 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
755 fmode_t mode) {
756 struct table_device *td;
757
758 list_for_each_entry(td, l, list)
759 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
760 return td;
761
762 return NULL;
763 }
764
765 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
766 struct dm_dev **result) {
767 int r;
768 struct table_device *td;
769
770 mutex_lock(&md->table_devices_lock);
771 td = find_table_device(&md->table_devices, dev, mode);
772 if (!td) {
773 td = kmalloc(sizeof(*td), GFP_KERNEL);
774 if (!td) {
775 mutex_unlock(&md->table_devices_lock);
776 return -ENOMEM;
777 }
778
779 td->dm_dev.mode = mode;
780 td->dm_dev.bdev = NULL;
781
782 if ((r = open_table_device(td, dev, md))) {
783 mutex_unlock(&md->table_devices_lock);
784 kfree(td);
785 return r;
786 }
787
788 format_dev_t(td->dm_dev.name, dev);
789
790 atomic_set(&td->count, 0);
791 list_add(&td->list, &md->table_devices);
792 }
793 atomic_inc(&td->count);
794 mutex_unlock(&md->table_devices_lock);
795
796 *result = &td->dm_dev;
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(dm_get_table_device);
800
801 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
802 {
803 struct table_device *td = container_of(d, struct table_device, dm_dev);
804
805 mutex_lock(&md->table_devices_lock);
806 if (atomic_dec_and_test(&td->count)) {
807 close_table_device(td, md);
808 list_del(&td->list);
809 kfree(td);
810 }
811 mutex_unlock(&md->table_devices_lock);
812 }
813 EXPORT_SYMBOL(dm_put_table_device);
814
815 static void free_table_devices(struct list_head *devices)
816 {
817 struct list_head *tmp, *next;
818
819 list_for_each_safe(tmp, next, devices) {
820 struct table_device *td = list_entry(tmp, struct table_device, list);
821
822 DMWARN("dm_destroy: %s still exists with %d references",
823 td->dm_dev.name, atomic_read(&td->count));
824 kfree(td);
825 }
826 }
827
828 /*
829 * Get the geometry associated with a dm device
830 */
831 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 {
833 *geo = md->geometry;
834
835 return 0;
836 }
837
838 /*
839 * Set the geometry of a device.
840 */
841 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
842 {
843 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
844
845 if (geo->start > sz) {
846 DMWARN("Start sector is beyond the geometry limits.");
847 return -EINVAL;
848 }
849
850 md->geometry = *geo;
851
852 return 0;
853 }
854
855 /*-----------------------------------------------------------------
856 * CRUD START:
857 * A more elegant soln is in the works that uses the queue
858 * merge fn, unfortunately there are a couple of changes to
859 * the block layer that I want to make for this. So in the
860 * interests of getting something for people to use I give
861 * you this clearly demarcated crap.
862 *---------------------------------------------------------------*/
863
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868
869 /*
870 * Decrements the number of outstanding ios that a bio has been
871 * cloned into, completing the original io if necc.
872 */
873 static void dec_pending(struct dm_io *io, int error)
874 {
875 unsigned long flags;
876 int io_error;
877 struct bio *bio;
878 struct mapped_device *md = io->md;
879
880 /* Push-back supersedes any I/O errors */
881 if (unlikely(error)) {
882 spin_lock_irqsave(&io->endio_lock, flags);
883 if (!(io->error > 0 && __noflush_suspending(md)))
884 io->error = error;
885 spin_unlock_irqrestore(&io->endio_lock, flags);
886 }
887
888 if (atomic_dec_and_test(&io->io_count)) {
889 if (io->error == DM_ENDIO_REQUEUE) {
890 /*
891 * Target requested pushing back the I/O.
892 */
893 spin_lock_irqsave(&md->deferred_lock, flags);
894 if (__noflush_suspending(md))
895 bio_list_add_head(&md->deferred, io->bio);
896 else
897 /* noflush suspend was interrupted. */
898 io->error = -EIO;
899 spin_unlock_irqrestore(&md->deferred_lock, flags);
900 }
901
902 io_error = io->error;
903 bio = io->bio;
904 end_io_acct(io);
905 free_io(md, io);
906
907 if (io_error == DM_ENDIO_REQUEUE)
908 return;
909
910 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
911 /*
912 * Preflush done for flush with data, reissue
913 * without REQ_FLUSH.
914 */
915 bio->bi_rw &= ~REQ_FLUSH;
916 queue_io(md, bio);
917 } else {
918 /* done with normal IO or empty flush */
919 trace_block_bio_complete(md->queue, bio, io_error);
920 bio_endio(bio, io_error);
921 }
922 }
923 }
924
925 static void disable_write_same(struct mapped_device *md)
926 {
927 struct queue_limits *limits = dm_get_queue_limits(md);
928
929 /* device doesn't really support WRITE SAME, disable it */
930 limits->max_write_same_sectors = 0;
931 }
932
933 static void clone_endio(struct bio *bio, int error)
934 {
935 int r = error;
936 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
937 struct dm_io *io = tio->io;
938 struct mapped_device *md = tio->io->md;
939 dm_endio_fn endio = tio->ti->type->end_io;
940
941 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
942 error = -EIO;
943
944 if (endio) {
945 r = endio(tio->ti, bio, error);
946 if (r < 0 || r == DM_ENDIO_REQUEUE)
947 /*
948 * error and requeue request are handled
949 * in dec_pending().
950 */
951 error = r;
952 else if (r == DM_ENDIO_INCOMPLETE)
953 /* The target will handle the io */
954 return;
955 else if (r) {
956 DMWARN("unimplemented target endio return value: %d", r);
957 BUG();
958 }
959 }
960
961 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
962 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
963 disable_write_same(md);
964
965 free_tio(md, tio);
966 dec_pending(io, error);
967 }
968
969 /*
970 * Partial completion handling for request-based dm
971 */
972 static void end_clone_bio(struct bio *clone, int error)
973 {
974 struct dm_rq_clone_bio_info *info =
975 container_of(clone, struct dm_rq_clone_bio_info, clone);
976 struct dm_rq_target_io *tio = info->tio;
977 struct bio *bio = info->orig;
978 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
979
980 bio_put(clone);
981
982 if (tio->error)
983 /*
984 * An error has already been detected on the request.
985 * Once error occurred, just let clone->end_io() handle
986 * the remainder.
987 */
988 return;
989 else if (error) {
990 /*
991 * Don't notice the error to the upper layer yet.
992 * The error handling decision is made by the target driver,
993 * when the request is completed.
994 */
995 tio->error = error;
996 return;
997 }
998
999 /*
1000 * I/O for the bio successfully completed.
1001 * Notice the data completion to the upper layer.
1002 */
1003
1004 /*
1005 * bios are processed from the head of the list.
1006 * So the completing bio should always be rq->bio.
1007 * If it's not, something wrong is happening.
1008 */
1009 if (tio->orig->bio != bio)
1010 DMERR("bio completion is going in the middle of the request");
1011
1012 /*
1013 * Update the original request.
1014 * Do not use blk_end_request() here, because it may complete
1015 * the original request before the clone, and break the ordering.
1016 */
1017 blk_update_request(tio->orig, 0, nr_bytes);
1018 }
1019
1020 /*
1021 * Don't touch any member of the md after calling this function because
1022 * the md may be freed in dm_put() at the end of this function.
1023 * Or do dm_get() before calling this function and dm_put() later.
1024 */
1025 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1026 {
1027 atomic_dec(&md->pending[rw]);
1028
1029 /* nudge anyone waiting on suspend queue */
1030 if (!md_in_flight(md))
1031 wake_up(&md->wait);
1032
1033 /*
1034 * Run this off this callpath, as drivers could invoke end_io while
1035 * inside their request_fn (and holding the queue lock). Calling
1036 * back into ->request_fn() could deadlock attempting to grab the
1037 * queue lock again.
1038 */
1039 if (run_queue)
1040 blk_run_queue_async(md->queue);
1041
1042 /*
1043 * dm_put() must be at the end of this function. See the comment above
1044 */
1045 dm_put(md);
1046 }
1047
1048 static void free_rq_clone(struct request *clone)
1049 {
1050 struct dm_rq_target_io *tio = clone->end_io_data;
1051
1052 blk_rq_unprep_clone(clone);
1053 if (clone->q && clone->q->mq_ops)
1054 tio->ti->type->release_clone_rq(clone);
1055 else
1056 free_clone_request(tio->md, clone);
1057 free_rq_tio(tio);
1058 }
1059
1060 /*
1061 * Complete the clone and the original request.
1062 * Must be called without clone's queue lock held,
1063 * see end_clone_request() for more details.
1064 */
1065 static void dm_end_request(struct request *clone, int error)
1066 {
1067 int rw = rq_data_dir(clone);
1068 struct dm_rq_target_io *tio = clone->end_io_data;
1069 struct mapped_device *md = tio->md;
1070 struct request *rq = tio->orig;
1071
1072 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1073 rq->errors = clone->errors;
1074 rq->resid_len = clone->resid_len;
1075
1076 if (rq->sense)
1077 /*
1078 * We are using the sense buffer of the original
1079 * request.
1080 * So setting the length of the sense data is enough.
1081 */
1082 rq->sense_len = clone->sense_len;
1083 }
1084
1085 free_rq_clone(clone);
1086 blk_end_request_all(rq, error);
1087 rq_completed(md, rw, true);
1088 }
1089
1090 static void dm_unprep_request(struct request *rq)
1091 {
1092 struct dm_rq_target_io *tio = rq->special;
1093 struct request *clone = tio->clone;
1094
1095 rq->special = NULL;
1096 rq->cmd_flags &= ~REQ_DONTPREP;
1097
1098 if (clone)
1099 free_rq_clone(clone);
1100 }
1101
1102 /*
1103 * Requeue the original request of a clone.
1104 */
1105 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1106 struct request *rq)
1107 {
1108 int rw = rq_data_dir(rq);
1109 struct request_queue *q = rq->q;
1110 unsigned long flags;
1111
1112 dm_unprep_request(rq);
1113
1114 spin_lock_irqsave(q->queue_lock, flags);
1115 blk_requeue_request(q, rq);
1116 spin_unlock_irqrestore(q->queue_lock, flags);
1117
1118 rq_completed(md, rw, false);
1119 }
1120
1121 static void dm_requeue_unmapped_request(struct request *clone)
1122 {
1123 struct dm_rq_target_io *tio = clone->end_io_data;
1124
1125 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1126 }
1127
1128 static void __stop_queue(struct request_queue *q)
1129 {
1130 blk_stop_queue(q);
1131 }
1132
1133 static void stop_queue(struct request_queue *q)
1134 {
1135 unsigned long flags;
1136
1137 spin_lock_irqsave(q->queue_lock, flags);
1138 __stop_queue(q);
1139 spin_unlock_irqrestore(q->queue_lock, flags);
1140 }
1141
1142 static void __start_queue(struct request_queue *q)
1143 {
1144 if (blk_queue_stopped(q))
1145 blk_start_queue(q);
1146 }
1147
1148 static void start_queue(struct request_queue *q)
1149 {
1150 unsigned long flags;
1151
1152 spin_lock_irqsave(q->queue_lock, flags);
1153 __start_queue(q);
1154 spin_unlock_irqrestore(q->queue_lock, flags);
1155 }
1156
1157 static void dm_done(struct request *clone, int error, bool mapped)
1158 {
1159 int r = error;
1160 struct dm_rq_target_io *tio = clone->end_io_data;
1161 dm_request_endio_fn rq_end_io = NULL;
1162
1163 if (tio->ti) {
1164 rq_end_io = tio->ti->type->rq_end_io;
1165
1166 if (mapped && rq_end_io)
1167 r = rq_end_io(tio->ti, clone, error, &tio->info);
1168 }
1169
1170 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1171 !clone->q->limits.max_write_same_sectors))
1172 disable_write_same(tio->md);
1173
1174 if (r <= 0)
1175 /* The target wants to complete the I/O */
1176 dm_end_request(clone, r);
1177 else if (r == DM_ENDIO_INCOMPLETE)
1178 /* The target will handle the I/O */
1179 return;
1180 else if (r == DM_ENDIO_REQUEUE)
1181 /* The target wants to requeue the I/O */
1182 dm_requeue_unmapped_request(clone);
1183 else {
1184 DMWARN("unimplemented target endio return value: %d", r);
1185 BUG();
1186 }
1187 }
1188
1189 /*
1190 * Request completion handler for request-based dm
1191 */
1192 static void dm_softirq_done(struct request *rq)
1193 {
1194 bool mapped = true;
1195 struct dm_rq_target_io *tio = rq->special;
1196 struct request *clone = tio->clone;
1197
1198 if (!clone) {
1199 blk_end_request_all(rq, tio->error);
1200 rq_completed(tio->md, rq_data_dir(rq), false);
1201 free_rq_tio(tio);
1202 return;
1203 }
1204
1205 if (rq->cmd_flags & REQ_FAILED)
1206 mapped = false;
1207
1208 dm_done(clone, tio->error, mapped);
1209 }
1210
1211 /*
1212 * Complete the clone and the original request with the error status
1213 * through softirq context.
1214 */
1215 static void dm_complete_request(struct request *rq, int error)
1216 {
1217 struct dm_rq_target_io *tio = rq->special;
1218
1219 tio->error = error;
1220 blk_complete_request(rq);
1221 }
1222
1223 /*
1224 * Complete the not-mapped clone and the original request with the error status
1225 * through softirq context.
1226 * Target's rq_end_io() function isn't called.
1227 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1228 */
1229 static void dm_kill_unmapped_request(struct request *rq, int error)
1230 {
1231 rq->cmd_flags |= REQ_FAILED;
1232 dm_complete_request(rq, error);
1233 }
1234
1235 /*
1236 * Called with the clone's queue lock held
1237 */
1238 static void end_clone_request(struct request *clone, int error)
1239 {
1240 struct dm_rq_target_io *tio = clone->end_io_data;
1241
1242 if (!clone->q->mq_ops) {
1243 /*
1244 * For just cleaning up the information of the queue in which
1245 * the clone was dispatched.
1246 * The clone is *NOT* freed actually here because it is alloced
1247 * from dm own mempool (REQ_ALLOCED isn't set).
1248 */
1249 __blk_put_request(clone->q, clone);
1250 }
1251
1252 /*
1253 * Actual request completion is done in a softirq context which doesn't
1254 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1255 * - another request may be submitted by the upper level driver
1256 * of the stacking during the completion
1257 * - the submission which requires queue lock may be done
1258 * against this clone's queue
1259 */
1260 dm_complete_request(tio->orig, error);
1261 }
1262
1263 /*
1264 * Return maximum size of I/O possible at the supplied sector up to the current
1265 * target boundary.
1266 */
1267 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1268 {
1269 sector_t target_offset = dm_target_offset(ti, sector);
1270
1271 return ti->len - target_offset;
1272 }
1273
1274 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1275 {
1276 sector_t len = max_io_len_target_boundary(sector, ti);
1277 sector_t offset, max_len;
1278
1279 /*
1280 * Does the target need to split even further?
1281 */
1282 if (ti->max_io_len) {
1283 offset = dm_target_offset(ti, sector);
1284 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1285 max_len = sector_div(offset, ti->max_io_len);
1286 else
1287 max_len = offset & (ti->max_io_len - 1);
1288 max_len = ti->max_io_len - max_len;
1289
1290 if (len > max_len)
1291 len = max_len;
1292 }
1293
1294 return len;
1295 }
1296
1297 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1298 {
1299 if (len > UINT_MAX) {
1300 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1301 (unsigned long long)len, UINT_MAX);
1302 ti->error = "Maximum size of target IO is too large";
1303 return -EINVAL;
1304 }
1305
1306 ti->max_io_len = (uint32_t) len;
1307
1308 return 0;
1309 }
1310 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1311
1312 /*
1313 * A target may call dm_accept_partial_bio only from the map routine. It is
1314 * allowed for all bio types except REQ_FLUSH.
1315 *
1316 * dm_accept_partial_bio informs the dm that the target only wants to process
1317 * additional n_sectors sectors of the bio and the rest of the data should be
1318 * sent in a next bio.
1319 *
1320 * A diagram that explains the arithmetics:
1321 * +--------------------+---------------+-------+
1322 * | 1 | 2 | 3 |
1323 * +--------------------+---------------+-------+
1324 *
1325 * <-------------- *tio->len_ptr --------------->
1326 * <------- bi_size ------->
1327 * <-- n_sectors -->
1328 *
1329 * Region 1 was already iterated over with bio_advance or similar function.
1330 * (it may be empty if the target doesn't use bio_advance)
1331 * Region 2 is the remaining bio size that the target wants to process.
1332 * (it may be empty if region 1 is non-empty, although there is no reason
1333 * to make it empty)
1334 * The target requires that region 3 is to be sent in the next bio.
1335 *
1336 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1337 * the partially processed part (the sum of regions 1+2) must be the same for all
1338 * copies of the bio.
1339 */
1340 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1341 {
1342 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1343 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1344 BUG_ON(bio->bi_rw & REQ_FLUSH);
1345 BUG_ON(bi_size > *tio->len_ptr);
1346 BUG_ON(n_sectors > bi_size);
1347 *tio->len_ptr -= bi_size - n_sectors;
1348 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1349 }
1350 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351
1352 static void __map_bio(struct dm_target_io *tio)
1353 {
1354 int r;
1355 sector_t sector;
1356 struct mapped_device *md;
1357 struct bio *clone = &tio->clone;
1358 struct dm_target *ti = tio->ti;
1359
1360 clone->bi_end_io = clone_endio;
1361
1362 /*
1363 * Map the clone. If r == 0 we don't need to do
1364 * anything, the target has assumed ownership of
1365 * this io.
1366 */
1367 atomic_inc(&tio->io->io_count);
1368 sector = clone->bi_iter.bi_sector;
1369 r = ti->type->map(ti, clone);
1370 if (r == DM_MAPIO_REMAPPED) {
1371 /* the bio has been remapped so dispatch it */
1372
1373 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1374 tio->io->bio->bi_bdev->bd_dev, sector);
1375
1376 generic_make_request(clone);
1377 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1378 /* error the io and bail out, or requeue it if needed */
1379 md = tio->io->md;
1380 dec_pending(tio->io, r);
1381 free_tio(md, tio);
1382 } else if (r) {
1383 DMWARN("unimplemented target map return value: %d", r);
1384 BUG();
1385 }
1386 }
1387
1388 struct clone_info {
1389 struct mapped_device *md;
1390 struct dm_table *map;
1391 struct bio *bio;
1392 struct dm_io *io;
1393 sector_t sector;
1394 unsigned sector_count;
1395 };
1396
1397 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1398 {
1399 bio->bi_iter.bi_sector = sector;
1400 bio->bi_iter.bi_size = to_bytes(len);
1401 }
1402
1403 /*
1404 * Creates a bio that consists of range of complete bvecs.
1405 */
1406 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1407 sector_t sector, unsigned len)
1408 {
1409 struct bio *clone = &tio->clone;
1410
1411 __bio_clone_fast(clone, bio);
1412
1413 if (bio_integrity(bio))
1414 bio_integrity_clone(clone, bio, GFP_NOIO);
1415
1416 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1417 clone->bi_iter.bi_size = to_bytes(len);
1418
1419 if (bio_integrity(bio))
1420 bio_integrity_trim(clone, 0, len);
1421 }
1422
1423 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1424 struct dm_target *ti,
1425 unsigned target_bio_nr)
1426 {
1427 struct dm_target_io *tio;
1428 struct bio *clone;
1429
1430 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1431 tio = container_of(clone, struct dm_target_io, clone);
1432
1433 tio->io = ci->io;
1434 tio->ti = ti;
1435 tio->target_bio_nr = target_bio_nr;
1436
1437 return tio;
1438 }
1439
1440 static void __clone_and_map_simple_bio(struct clone_info *ci,
1441 struct dm_target *ti,
1442 unsigned target_bio_nr, unsigned *len)
1443 {
1444 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1445 struct bio *clone = &tio->clone;
1446
1447 tio->len_ptr = len;
1448
1449 __bio_clone_fast(clone, ci->bio);
1450 if (len)
1451 bio_setup_sector(clone, ci->sector, *len);
1452
1453 __map_bio(tio);
1454 }
1455
1456 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1457 unsigned num_bios, unsigned *len)
1458 {
1459 unsigned target_bio_nr;
1460
1461 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1462 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1463 }
1464
1465 static int __send_empty_flush(struct clone_info *ci)
1466 {
1467 unsigned target_nr = 0;
1468 struct dm_target *ti;
1469
1470 BUG_ON(bio_has_data(ci->bio));
1471 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1472 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1473
1474 return 0;
1475 }
1476
1477 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1478 sector_t sector, unsigned *len)
1479 {
1480 struct bio *bio = ci->bio;
1481 struct dm_target_io *tio;
1482 unsigned target_bio_nr;
1483 unsigned num_target_bios = 1;
1484
1485 /*
1486 * Does the target want to receive duplicate copies of the bio?
1487 */
1488 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1489 num_target_bios = ti->num_write_bios(ti, bio);
1490
1491 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1492 tio = alloc_tio(ci, ti, target_bio_nr);
1493 tio->len_ptr = len;
1494 clone_bio(tio, bio, sector, *len);
1495 __map_bio(tio);
1496 }
1497 }
1498
1499 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1500
1501 static unsigned get_num_discard_bios(struct dm_target *ti)
1502 {
1503 return ti->num_discard_bios;
1504 }
1505
1506 static unsigned get_num_write_same_bios(struct dm_target *ti)
1507 {
1508 return ti->num_write_same_bios;
1509 }
1510
1511 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1512
1513 static bool is_split_required_for_discard(struct dm_target *ti)
1514 {
1515 return ti->split_discard_bios;
1516 }
1517
1518 static int __send_changing_extent_only(struct clone_info *ci,
1519 get_num_bios_fn get_num_bios,
1520 is_split_required_fn is_split_required)
1521 {
1522 struct dm_target *ti;
1523 unsigned len;
1524 unsigned num_bios;
1525
1526 do {
1527 ti = dm_table_find_target(ci->map, ci->sector);
1528 if (!dm_target_is_valid(ti))
1529 return -EIO;
1530
1531 /*
1532 * Even though the device advertised support for this type of
1533 * request, that does not mean every target supports it, and
1534 * reconfiguration might also have changed that since the
1535 * check was performed.
1536 */
1537 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1538 if (!num_bios)
1539 return -EOPNOTSUPP;
1540
1541 if (is_split_required && !is_split_required(ti))
1542 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1543 else
1544 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1545
1546 __send_duplicate_bios(ci, ti, num_bios, &len);
1547
1548 ci->sector += len;
1549 } while (ci->sector_count -= len);
1550
1551 return 0;
1552 }
1553
1554 static int __send_discard(struct clone_info *ci)
1555 {
1556 return __send_changing_extent_only(ci, get_num_discard_bios,
1557 is_split_required_for_discard);
1558 }
1559
1560 static int __send_write_same(struct clone_info *ci)
1561 {
1562 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1563 }
1564
1565 /*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
1568 static int __split_and_process_non_flush(struct clone_info *ci)
1569 {
1570 struct bio *bio = ci->bio;
1571 struct dm_target *ti;
1572 unsigned len;
1573
1574 if (unlikely(bio->bi_rw & REQ_DISCARD))
1575 return __send_discard(ci);
1576 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1577 return __send_write_same(ci);
1578
1579 ti = dm_table_find_target(ci->map, ci->sector);
1580 if (!dm_target_is_valid(ti))
1581 return -EIO;
1582
1583 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1584
1585 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1586
1587 ci->sector += len;
1588 ci->sector_count -= len;
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Entry point to split a bio into clones and submit them to the targets.
1595 */
1596 static void __split_and_process_bio(struct mapped_device *md,
1597 struct dm_table *map, struct bio *bio)
1598 {
1599 struct clone_info ci;
1600 int error = 0;
1601
1602 if (unlikely(!map)) {
1603 bio_io_error(bio);
1604 return;
1605 }
1606
1607 ci.map = map;
1608 ci.md = md;
1609 ci.io = alloc_io(md);
1610 ci.io->error = 0;
1611 atomic_set(&ci.io->io_count, 1);
1612 ci.io->bio = bio;
1613 ci.io->md = md;
1614 spin_lock_init(&ci.io->endio_lock);
1615 ci.sector = bio->bi_iter.bi_sector;
1616
1617 start_io_acct(ci.io);
1618
1619 if (bio->bi_rw & REQ_FLUSH) {
1620 ci.bio = &ci.md->flush_bio;
1621 ci.sector_count = 0;
1622 error = __send_empty_flush(&ci);
1623 /* dec_pending submits any data associated with flush */
1624 } else {
1625 ci.bio = bio;
1626 ci.sector_count = bio_sectors(bio);
1627 while (ci.sector_count && !error)
1628 error = __split_and_process_non_flush(&ci);
1629 }
1630
1631 /* drop the extra reference count */
1632 dec_pending(ci.io, error);
1633 }
1634 /*-----------------------------------------------------------------
1635 * CRUD END
1636 *---------------------------------------------------------------*/
1637
1638 static int dm_merge_bvec(struct request_queue *q,
1639 struct bvec_merge_data *bvm,
1640 struct bio_vec *biovec)
1641 {
1642 struct mapped_device *md = q->queuedata;
1643 struct dm_table *map = dm_get_live_table_fast(md);
1644 struct dm_target *ti;
1645 sector_t max_sectors;
1646 int max_size = 0;
1647
1648 if (unlikely(!map))
1649 goto out;
1650
1651 ti = dm_table_find_target(map, bvm->bi_sector);
1652 if (!dm_target_is_valid(ti))
1653 goto out;
1654
1655 /*
1656 * Find maximum amount of I/O that won't need splitting
1657 */
1658 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1659 (sector_t) queue_max_sectors(q));
1660 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1661 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1662 max_size = 0;
1663
1664 /*
1665 * merge_bvec_fn() returns number of bytes
1666 * it can accept at this offset
1667 * max is precomputed maximal io size
1668 */
1669 if (max_size && ti->type->merge)
1670 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1671 /*
1672 * If the target doesn't support merge method and some of the devices
1673 * provided their merge_bvec method (we know this by looking for the
1674 * max_hw_sectors that dm_set_device_limits may set), then we can't
1675 * allow bios with multiple vector entries. So always set max_size
1676 * to 0, and the code below allows just one page.
1677 */
1678 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1679 max_size = 0;
1680
1681 out:
1682 dm_put_live_table_fast(md);
1683 /*
1684 * Always allow an entire first page
1685 */
1686 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1687 max_size = biovec->bv_len;
1688
1689 return max_size;
1690 }
1691
1692 /*
1693 * The request function that just remaps the bio built up by
1694 * dm_merge_bvec.
1695 */
1696 static void _dm_request(struct request_queue *q, struct bio *bio)
1697 {
1698 int rw = bio_data_dir(bio);
1699 struct mapped_device *md = q->queuedata;
1700 int srcu_idx;
1701 struct dm_table *map;
1702
1703 map = dm_get_live_table(md, &srcu_idx);
1704
1705 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1706
1707 /* if we're suspended, we have to queue this io for later */
1708 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1709 dm_put_live_table(md, srcu_idx);
1710
1711 if (bio_rw(bio) != READA)
1712 queue_io(md, bio);
1713 else
1714 bio_io_error(bio);
1715 return;
1716 }
1717
1718 __split_and_process_bio(md, map, bio);
1719 dm_put_live_table(md, srcu_idx);
1720 return;
1721 }
1722
1723 int dm_request_based(struct mapped_device *md)
1724 {
1725 return blk_queue_stackable(md->queue);
1726 }
1727
1728 static void dm_request(struct request_queue *q, struct bio *bio)
1729 {
1730 struct mapped_device *md = q->queuedata;
1731
1732 if (dm_request_based(md))
1733 blk_queue_bio(q, bio);
1734 else
1735 _dm_request(q, bio);
1736 }
1737
1738 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1739 {
1740 int r;
1741
1742 if (blk_queue_io_stat(clone->q))
1743 clone->cmd_flags |= REQ_IO_STAT;
1744
1745 clone->start_time = jiffies;
1746 r = blk_insert_cloned_request(clone->q, clone);
1747 if (r)
1748 /* must complete clone in terms of original request */
1749 dm_complete_request(rq, r);
1750 }
1751
1752 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1753 void *data)
1754 {
1755 struct dm_rq_target_io *tio = data;
1756 struct dm_rq_clone_bio_info *info =
1757 container_of(bio, struct dm_rq_clone_bio_info, clone);
1758
1759 info->orig = bio_orig;
1760 info->tio = tio;
1761 bio->bi_end_io = end_clone_bio;
1762
1763 return 0;
1764 }
1765
1766 static int setup_clone(struct request *clone, struct request *rq,
1767 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1768 {
1769 int r;
1770
1771 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1772 dm_rq_bio_constructor, tio);
1773 if (r)
1774 return r;
1775
1776 clone->cmd = rq->cmd;
1777 clone->cmd_len = rq->cmd_len;
1778 clone->sense = rq->sense;
1779 clone->end_io = end_clone_request;
1780 clone->end_io_data = tio;
1781
1782 tio->clone = clone;
1783
1784 return 0;
1785 }
1786
1787 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1788 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1789 {
1790 struct request *clone = alloc_clone_request(md, gfp_mask);
1791
1792 if (!clone)
1793 return NULL;
1794
1795 blk_rq_init(NULL, clone);
1796 if (setup_clone(clone, rq, tio, gfp_mask)) {
1797 /* -ENOMEM */
1798 free_clone_request(md, clone);
1799 return NULL;
1800 }
1801
1802 return clone;
1803 }
1804
1805 static void map_tio_request(struct kthread_work *work);
1806
1807 static struct dm_rq_target_io *prep_tio(struct request *rq,
1808 struct mapped_device *md, gfp_t gfp_mask)
1809 {
1810 struct dm_rq_target_io *tio;
1811 int srcu_idx;
1812 struct dm_table *table;
1813
1814 tio = alloc_rq_tio(md, gfp_mask);
1815 if (!tio)
1816 return NULL;
1817
1818 tio->md = md;
1819 tio->ti = NULL;
1820 tio->clone = NULL;
1821 tio->orig = rq;
1822 tio->error = 0;
1823 memset(&tio->info, 0, sizeof(tio->info));
1824 init_kthread_work(&tio->work, map_tio_request);
1825
1826 table = dm_get_live_table(md, &srcu_idx);
1827 if (!dm_table_mq_request_based(table)) {
1828 if (!clone_rq(rq, md, tio, gfp_mask)) {
1829 dm_put_live_table(md, srcu_idx);
1830 free_rq_tio(tio);
1831 return NULL;
1832 }
1833 }
1834 dm_put_live_table(md, srcu_idx);
1835
1836 return tio;
1837 }
1838
1839 /*
1840 * Called with the queue lock held.
1841 */
1842 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1843 {
1844 struct mapped_device *md = q->queuedata;
1845 struct dm_rq_target_io *tio;
1846
1847 if (unlikely(rq->special)) {
1848 DMWARN("Already has something in rq->special.");
1849 return BLKPREP_KILL;
1850 }
1851
1852 tio = prep_tio(rq, md, GFP_ATOMIC);
1853 if (!tio)
1854 return BLKPREP_DEFER;
1855
1856 rq->special = tio;
1857 rq->cmd_flags |= REQ_DONTPREP;
1858
1859 return BLKPREP_OK;
1860 }
1861
1862 /*
1863 * Returns:
1864 * 0 : the request has been processed
1865 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1866 * < 0 : the request was completed due to failure
1867 */
1868 static int map_request(struct dm_target *ti, struct request *rq,
1869 struct mapped_device *md)
1870 {
1871 int r;
1872 struct dm_rq_target_io *tio = rq->special;
1873 struct request *clone = NULL;
1874
1875 if (tio->clone) {
1876 clone = tio->clone;
1877 r = ti->type->map_rq(ti, clone, &tio->info);
1878 } else {
1879 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1880 if (r < 0) {
1881 /* The target wants to complete the I/O */
1882 dm_kill_unmapped_request(rq, r);
1883 return r;
1884 }
1885 if (IS_ERR(clone))
1886 return DM_MAPIO_REQUEUE;
1887 if (setup_clone(clone, rq, tio, GFP_KERNEL)) {
1888 /* -ENOMEM */
1889 ti->type->release_clone_rq(clone);
1890 return DM_MAPIO_REQUEUE;
1891 }
1892 }
1893
1894 switch (r) {
1895 case DM_MAPIO_SUBMITTED:
1896 /* The target has taken the I/O to submit by itself later */
1897 break;
1898 case DM_MAPIO_REMAPPED:
1899 /* The target has remapped the I/O so dispatch it */
1900 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1901 blk_rq_pos(rq));
1902 dm_dispatch_clone_request(clone, rq);
1903 break;
1904 case DM_MAPIO_REQUEUE:
1905 /* The target wants to requeue the I/O */
1906 dm_requeue_unmapped_request(clone);
1907 break;
1908 default:
1909 if (r > 0) {
1910 DMWARN("unimplemented target map return value: %d", r);
1911 BUG();
1912 }
1913
1914 /* The target wants to complete the I/O */
1915 dm_kill_unmapped_request(rq, r);
1916 return r;
1917 }
1918
1919 return 0;
1920 }
1921
1922 static void map_tio_request(struct kthread_work *work)
1923 {
1924 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1925 struct request *rq = tio->orig;
1926 struct mapped_device *md = tio->md;
1927
1928 if (map_request(tio->ti, rq, md) == DM_MAPIO_REQUEUE)
1929 dm_requeue_unmapped_original_request(md, rq);
1930 }
1931
1932 static void dm_start_request(struct mapped_device *md, struct request *orig)
1933 {
1934 blk_start_request(orig);
1935 atomic_inc(&md->pending[rq_data_dir(orig)]);
1936
1937 /*
1938 * Hold the md reference here for the in-flight I/O.
1939 * We can't rely on the reference count by device opener,
1940 * because the device may be closed during the request completion
1941 * when all bios are completed.
1942 * See the comment in rq_completed() too.
1943 */
1944 dm_get(md);
1945 }
1946
1947 /*
1948 * q->request_fn for request-based dm.
1949 * Called with the queue lock held.
1950 */
1951 static void dm_request_fn(struct request_queue *q)
1952 {
1953 struct mapped_device *md = q->queuedata;
1954 int srcu_idx;
1955 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1956 struct dm_target *ti;
1957 struct request *rq;
1958 struct dm_rq_target_io *tio;
1959 sector_t pos;
1960
1961 /*
1962 * For suspend, check blk_queue_stopped() and increment
1963 * ->pending within a single queue_lock not to increment the
1964 * number of in-flight I/Os after the queue is stopped in
1965 * dm_suspend().
1966 */
1967 while (!blk_queue_stopped(q)) {
1968 rq = blk_peek_request(q);
1969 if (!rq)
1970 goto delay_and_out;
1971
1972 /* always use block 0 to find the target for flushes for now */
1973 pos = 0;
1974 if (!(rq->cmd_flags & REQ_FLUSH))
1975 pos = blk_rq_pos(rq);
1976
1977 ti = dm_table_find_target(map, pos);
1978 if (!dm_target_is_valid(ti)) {
1979 /*
1980 * Must perform setup, that rq_completed() requires,
1981 * before calling dm_kill_unmapped_request
1982 */
1983 DMERR_LIMIT("request attempted access beyond the end of device");
1984 dm_start_request(md, rq);
1985 dm_kill_unmapped_request(rq, -EIO);
1986 continue;
1987 }
1988
1989 if (ti->type->busy && ti->type->busy(ti))
1990 goto delay_and_out;
1991
1992 dm_start_request(md, rq);
1993
1994 tio = rq->special;
1995 /* Establish tio->ti before queuing work (map_tio_request) */
1996 tio->ti = ti;
1997 queue_kthread_work(&md->kworker, &tio->work);
1998 BUG_ON(!irqs_disabled());
1999 }
2000
2001 goto out;
2002
2003 delay_and_out:
2004 blk_delay_queue(q, HZ / 10);
2005 out:
2006 dm_put_live_table(md, srcu_idx);
2007 }
2008
2009 int dm_underlying_device_busy(struct request_queue *q)
2010 {
2011 return blk_lld_busy(q);
2012 }
2013 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
2014
2015 static int dm_lld_busy(struct request_queue *q)
2016 {
2017 int r;
2018 struct mapped_device *md = q->queuedata;
2019 struct dm_table *map = dm_get_live_table_fast(md);
2020
2021 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
2022 r = 1;
2023 else
2024 r = dm_table_any_busy_target(map);
2025
2026 dm_put_live_table_fast(md);
2027
2028 return r;
2029 }
2030
2031 static int dm_any_congested(void *congested_data, int bdi_bits)
2032 {
2033 int r = bdi_bits;
2034 struct mapped_device *md = congested_data;
2035 struct dm_table *map;
2036
2037 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2038 map = dm_get_live_table_fast(md);
2039 if (map) {
2040 /*
2041 * Request-based dm cares about only own queue for
2042 * the query about congestion status of request_queue
2043 */
2044 if (dm_request_based(md))
2045 r = md->queue->backing_dev_info.state &
2046 bdi_bits;
2047 else
2048 r = dm_table_any_congested(map, bdi_bits);
2049 }
2050 dm_put_live_table_fast(md);
2051 }
2052
2053 return r;
2054 }
2055
2056 /*-----------------------------------------------------------------
2057 * An IDR is used to keep track of allocated minor numbers.
2058 *---------------------------------------------------------------*/
2059 static void free_minor(int minor)
2060 {
2061 spin_lock(&_minor_lock);
2062 idr_remove(&_minor_idr, minor);
2063 spin_unlock(&_minor_lock);
2064 }
2065
2066 /*
2067 * See if the device with a specific minor # is free.
2068 */
2069 static int specific_minor(int minor)
2070 {
2071 int r;
2072
2073 if (minor >= (1 << MINORBITS))
2074 return -EINVAL;
2075
2076 idr_preload(GFP_KERNEL);
2077 spin_lock(&_minor_lock);
2078
2079 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2080
2081 spin_unlock(&_minor_lock);
2082 idr_preload_end();
2083 if (r < 0)
2084 return r == -ENOSPC ? -EBUSY : r;
2085 return 0;
2086 }
2087
2088 static int next_free_minor(int *minor)
2089 {
2090 int r;
2091
2092 idr_preload(GFP_KERNEL);
2093 spin_lock(&_minor_lock);
2094
2095 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2096
2097 spin_unlock(&_minor_lock);
2098 idr_preload_end();
2099 if (r < 0)
2100 return r;
2101 *minor = r;
2102 return 0;
2103 }
2104
2105 static const struct block_device_operations dm_blk_dops;
2106
2107 static void dm_wq_work(struct work_struct *work);
2108
2109 static void dm_init_md_queue(struct mapped_device *md)
2110 {
2111 /*
2112 * Request-based dm devices cannot be stacked on top of bio-based dm
2113 * devices. The type of this dm device has not been decided yet.
2114 * The type is decided at the first table loading time.
2115 * To prevent problematic device stacking, clear the queue flag
2116 * for request stacking support until then.
2117 *
2118 * This queue is new, so no concurrency on the queue_flags.
2119 */
2120 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2121
2122 md->queue->queuedata = md;
2123 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2124 md->queue->backing_dev_info.congested_data = md;
2125 blk_queue_make_request(md->queue, dm_request);
2126 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2127 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2128 }
2129
2130 /*
2131 * Allocate and initialise a blank device with a given minor.
2132 */
2133 static struct mapped_device *alloc_dev(int minor)
2134 {
2135 int r;
2136 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2137 void *old_md;
2138
2139 if (!md) {
2140 DMWARN("unable to allocate device, out of memory.");
2141 return NULL;
2142 }
2143
2144 if (!try_module_get(THIS_MODULE))
2145 goto bad_module_get;
2146
2147 /* get a minor number for the dev */
2148 if (minor == DM_ANY_MINOR)
2149 r = next_free_minor(&minor);
2150 else
2151 r = specific_minor(minor);
2152 if (r < 0)
2153 goto bad_minor;
2154
2155 r = init_srcu_struct(&md->io_barrier);
2156 if (r < 0)
2157 goto bad_io_barrier;
2158
2159 md->type = DM_TYPE_NONE;
2160 mutex_init(&md->suspend_lock);
2161 mutex_init(&md->type_lock);
2162 mutex_init(&md->table_devices_lock);
2163 spin_lock_init(&md->deferred_lock);
2164 atomic_set(&md->holders, 1);
2165 atomic_set(&md->open_count, 0);
2166 atomic_set(&md->event_nr, 0);
2167 atomic_set(&md->uevent_seq, 0);
2168 INIT_LIST_HEAD(&md->uevent_list);
2169 INIT_LIST_HEAD(&md->table_devices);
2170 spin_lock_init(&md->uevent_lock);
2171
2172 md->queue = blk_alloc_queue(GFP_KERNEL);
2173 if (!md->queue)
2174 goto bad_queue;
2175
2176 dm_init_md_queue(md);
2177
2178 md->disk = alloc_disk(1);
2179 if (!md->disk)
2180 goto bad_disk;
2181
2182 atomic_set(&md->pending[0], 0);
2183 atomic_set(&md->pending[1], 0);
2184 init_waitqueue_head(&md->wait);
2185 INIT_WORK(&md->work, dm_wq_work);
2186 init_waitqueue_head(&md->eventq);
2187 init_completion(&md->kobj_holder.completion);
2188 md->kworker_task = NULL;
2189
2190 md->disk->major = _major;
2191 md->disk->first_minor = minor;
2192 md->disk->fops = &dm_blk_dops;
2193 md->disk->queue = md->queue;
2194 md->disk->private_data = md;
2195 sprintf(md->disk->disk_name, "dm-%d", minor);
2196 add_disk(md->disk);
2197 format_dev_t(md->name, MKDEV(_major, minor));
2198
2199 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2200 if (!md->wq)
2201 goto bad_thread;
2202
2203 md->bdev = bdget_disk(md->disk, 0);
2204 if (!md->bdev)
2205 goto bad_bdev;
2206
2207 bio_init(&md->flush_bio);
2208 md->flush_bio.bi_bdev = md->bdev;
2209 md->flush_bio.bi_rw = WRITE_FLUSH;
2210
2211 dm_stats_init(&md->stats);
2212
2213 /* Populate the mapping, nobody knows we exist yet */
2214 spin_lock(&_minor_lock);
2215 old_md = idr_replace(&_minor_idr, md, minor);
2216 spin_unlock(&_minor_lock);
2217
2218 BUG_ON(old_md != MINOR_ALLOCED);
2219
2220 return md;
2221
2222 bad_bdev:
2223 destroy_workqueue(md->wq);
2224 bad_thread:
2225 del_gendisk(md->disk);
2226 put_disk(md->disk);
2227 bad_disk:
2228 blk_cleanup_queue(md->queue);
2229 bad_queue:
2230 cleanup_srcu_struct(&md->io_barrier);
2231 bad_io_barrier:
2232 free_minor(minor);
2233 bad_minor:
2234 module_put(THIS_MODULE);
2235 bad_module_get:
2236 kfree(md);
2237 return NULL;
2238 }
2239
2240 static void unlock_fs(struct mapped_device *md);
2241
2242 static void free_dev(struct mapped_device *md)
2243 {
2244 int minor = MINOR(disk_devt(md->disk));
2245
2246 unlock_fs(md);
2247 destroy_workqueue(md->wq);
2248
2249 if (md->kworker_task)
2250 kthread_stop(md->kworker_task);
2251 if (md->io_pool)
2252 mempool_destroy(md->io_pool);
2253 if (md->rq_pool)
2254 mempool_destroy(md->rq_pool);
2255 if (md->bs)
2256 bioset_free(md->bs);
2257
2258 cleanup_srcu_struct(&md->io_barrier);
2259 free_table_devices(&md->table_devices);
2260 dm_stats_cleanup(&md->stats);
2261
2262 spin_lock(&_minor_lock);
2263 md->disk->private_data = NULL;
2264 spin_unlock(&_minor_lock);
2265 if (blk_get_integrity(md->disk))
2266 blk_integrity_unregister(md->disk);
2267 del_gendisk(md->disk);
2268 put_disk(md->disk);
2269 blk_cleanup_queue(md->queue);
2270 bdput(md->bdev);
2271 free_minor(minor);
2272
2273 module_put(THIS_MODULE);
2274 kfree(md);
2275 }
2276
2277 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2278 {
2279 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2280
2281 if (md->io_pool && md->bs) {
2282 /* The md already has necessary mempools. */
2283 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2284 /*
2285 * Reload bioset because front_pad may have changed
2286 * because a different table was loaded.
2287 */
2288 bioset_free(md->bs);
2289 md->bs = p->bs;
2290 p->bs = NULL;
2291 }
2292 /*
2293 * There's no need to reload with request-based dm
2294 * because the size of front_pad doesn't change.
2295 * Note for future: If you are to reload bioset,
2296 * prep-ed requests in the queue may refer
2297 * to bio from the old bioset, so you must walk
2298 * through the queue to unprep.
2299 */
2300 goto out;
2301 }
2302
2303 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2304
2305 md->io_pool = p->io_pool;
2306 p->io_pool = NULL;
2307 md->rq_pool = p->rq_pool;
2308 p->rq_pool = NULL;
2309 md->bs = p->bs;
2310 p->bs = NULL;
2311
2312 out:
2313 /* mempool bind completed, now no need any mempools in the table */
2314 dm_table_free_md_mempools(t);
2315 }
2316
2317 /*
2318 * Bind a table to the device.
2319 */
2320 static void event_callback(void *context)
2321 {
2322 unsigned long flags;
2323 LIST_HEAD(uevents);
2324 struct mapped_device *md = (struct mapped_device *) context;
2325
2326 spin_lock_irqsave(&md->uevent_lock, flags);
2327 list_splice_init(&md->uevent_list, &uevents);
2328 spin_unlock_irqrestore(&md->uevent_lock, flags);
2329
2330 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2331
2332 atomic_inc(&md->event_nr);
2333 wake_up(&md->eventq);
2334 }
2335
2336 /*
2337 * Protected by md->suspend_lock obtained by dm_swap_table().
2338 */
2339 static void __set_size(struct mapped_device *md, sector_t size)
2340 {
2341 set_capacity(md->disk, size);
2342
2343 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2344 }
2345
2346 /*
2347 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2348 *
2349 * If this function returns 0, then the device is either a non-dm
2350 * device without a merge_bvec_fn, or it is a dm device that is
2351 * able to split any bios it receives that are too big.
2352 */
2353 int dm_queue_merge_is_compulsory(struct request_queue *q)
2354 {
2355 struct mapped_device *dev_md;
2356
2357 if (!q->merge_bvec_fn)
2358 return 0;
2359
2360 if (q->make_request_fn == dm_request) {
2361 dev_md = q->queuedata;
2362 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2363 return 0;
2364 }
2365
2366 return 1;
2367 }
2368
2369 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2370 struct dm_dev *dev, sector_t start,
2371 sector_t len, void *data)
2372 {
2373 struct block_device *bdev = dev->bdev;
2374 struct request_queue *q = bdev_get_queue(bdev);
2375
2376 return dm_queue_merge_is_compulsory(q);
2377 }
2378
2379 /*
2380 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2381 * on the properties of the underlying devices.
2382 */
2383 static int dm_table_merge_is_optional(struct dm_table *table)
2384 {
2385 unsigned i = 0;
2386 struct dm_target *ti;
2387
2388 while (i < dm_table_get_num_targets(table)) {
2389 ti = dm_table_get_target(table, i++);
2390
2391 if (ti->type->iterate_devices &&
2392 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2393 return 0;
2394 }
2395
2396 return 1;
2397 }
2398
2399 /*
2400 * Returns old map, which caller must destroy.
2401 */
2402 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2403 struct queue_limits *limits)
2404 {
2405 struct dm_table *old_map;
2406 struct request_queue *q = md->queue;
2407 sector_t size;
2408 int merge_is_optional;
2409
2410 size = dm_table_get_size(t);
2411
2412 /*
2413 * Wipe any geometry if the size of the table changed.
2414 */
2415 if (size != dm_get_size(md))
2416 memset(&md->geometry, 0, sizeof(md->geometry));
2417
2418 __set_size(md, size);
2419
2420 dm_table_event_callback(t, event_callback, md);
2421
2422 /*
2423 * The queue hasn't been stopped yet, if the old table type wasn't
2424 * for request-based during suspension. So stop it to prevent
2425 * I/O mapping before resume.
2426 * This must be done before setting the queue restrictions,
2427 * because request-based dm may be run just after the setting.
2428 */
2429 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2430 stop_queue(q);
2431
2432 __bind_mempools(md, t);
2433
2434 merge_is_optional = dm_table_merge_is_optional(t);
2435
2436 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2437 rcu_assign_pointer(md->map, t);
2438 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2439
2440 dm_table_set_restrictions(t, q, limits);
2441 if (merge_is_optional)
2442 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2443 else
2444 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2445 if (old_map)
2446 dm_sync_table(md);
2447
2448 return old_map;
2449 }
2450
2451 /*
2452 * Returns unbound table for the caller to free.
2453 */
2454 static struct dm_table *__unbind(struct mapped_device *md)
2455 {
2456 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2457
2458 if (!map)
2459 return NULL;
2460
2461 dm_table_event_callback(map, NULL, NULL);
2462 RCU_INIT_POINTER(md->map, NULL);
2463 dm_sync_table(md);
2464
2465 return map;
2466 }
2467
2468 /*
2469 * Constructor for a new device.
2470 */
2471 int dm_create(int minor, struct mapped_device **result)
2472 {
2473 struct mapped_device *md;
2474
2475 md = alloc_dev(minor);
2476 if (!md)
2477 return -ENXIO;
2478
2479 dm_sysfs_init(md);
2480
2481 *result = md;
2482 return 0;
2483 }
2484
2485 /*
2486 * Functions to manage md->type.
2487 * All are required to hold md->type_lock.
2488 */
2489 void dm_lock_md_type(struct mapped_device *md)
2490 {
2491 mutex_lock(&md->type_lock);
2492 }
2493
2494 void dm_unlock_md_type(struct mapped_device *md)
2495 {
2496 mutex_unlock(&md->type_lock);
2497 }
2498
2499 void dm_set_md_type(struct mapped_device *md, unsigned type)
2500 {
2501 BUG_ON(!mutex_is_locked(&md->type_lock));
2502 md->type = type;
2503 }
2504
2505 unsigned dm_get_md_type(struct mapped_device *md)
2506 {
2507 BUG_ON(!mutex_is_locked(&md->type_lock));
2508 return md->type;
2509 }
2510
2511 static bool dm_md_type_request_based(struct mapped_device *md)
2512 {
2513 unsigned table_type = dm_get_md_type(md);
2514
2515 return (table_type == DM_TYPE_REQUEST_BASED ||
2516 table_type == DM_TYPE_MQ_REQUEST_BASED);
2517 }
2518
2519 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2520 {
2521 return md->immutable_target_type;
2522 }
2523
2524 /*
2525 * The queue_limits are only valid as long as you have a reference
2526 * count on 'md'.
2527 */
2528 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2529 {
2530 BUG_ON(!atomic_read(&md->holders));
2531 return &md->queue->limits;
2532 }
2533 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2534
2535 /*
2536 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2537 */
2538 static int dm_init_request_based_queue(struct mapped_device *md)
2539 {
2540 struct request_queue *q = NULL;
2541
2542 if (md->queue->elevator)
2543 return 1;
2544
2545 /* Fully initialize the queue */
2546 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2547 if (!q)
2548 return 0;
2549
2550 md->queue = q;
2551 dm_init_md_queue(md);
2552 blk_queue_softirq_done(md->queue, dm_softirq_done);
2553 blk_queue_prep_rq(md->queue, dm_prep_fn);
2554 blk_queue_lld_busy(md->queue, dm_lld_busy);
2555
2556 /* Also initialize the request-based DM worker thread */
2557 init_kthread_worker(&md->kworker);
2558 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2559 "kdmwork-%s", dm_device_name(md));
2560
2561 elv_register_queue(md->queue);
2562
2563 return 1;
2564 }
2565
2566 /*
2567 * Setup the DM device's queue based on md's type
2568 */
2569 int dm_setup_md_queue(struct mapped_device *md)
2570 {
2571 if (dm_md_type_request_based(md) && !dm_init_request_based_queue(md)) {
2572 DMWARN("Cannot initialize queue for request-based mapped device");
2573 return -EINVAL;
2574 }
2575
2576 return 0;
2577 }
2578
2579 struct mapped_device *dm_get_md(dev_t dev)
2580 {
2581 struct mapped_device *md;
2582 unsigned minor = MINOR(dev);
2583
2584 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2585 return NULL;
2586
2587 spin_lock(&_minor_lock);
2588
2589 md = idr_find(&_minor_idr, minor);
2590 if (md) {
2591 if ((md == MINOR_ALLOCED ||
2592 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2593 dm_deleting_md(md) ||
2594 test_bit(DMF_FREEING, &md->flags))) {
2595 md = NULL;
2596 goto out;
2597 }
2598 dm_get(md);
2599 }
2600
2601 out:
2602 spin_unlock(&_minor_lock);
2603
2604 return md;
2605 }
2606 EXPORT_SYMBOL_GPL(dm_get_md);
2607
2608 void *dm_get_mdptr(struct mapped_device *md)
2609 {
2610 return md->interface_ptr;
2611 }
2612
2613 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2614 {
2615 md->interface_ptr = ptr;
2616 }
2617
2618 void dm_get(struct mapped_device *md)
2619 {
2620 atomic_inc(&md->holders);
2621 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2622 }
2623
2624 int dm_hold(struct mapped_device *md)
2625 {
2626 spin_lock(&_minor_lock);
2627 if (test_bit(DMF_FREEING, &md->flags)) {
2628 spin_unlock(&_minor_lock);
2629 return -EBUSY;
2630 }
2631 dm_get(md);
2632 spin_unlock(&_minor_lock);
2633 return 0;
2634 }
2635 EXPORT_SYMBOL_GPL(dm_hold);
2636
2637 const char *dm_device_name(struct mapped_device *md)
2638 {
2639 return md->name;
2640 }
2641 EXPORT_SYMBOL_GPL(dm_device_name);
2642
2643 static void __dm_destroy(struct mapped_device *md, bool wait)
2644 {
2645 struct dm_table *map;
2646 int srcu_idx;
2647
2648 might_sleep();
2649
2650 map = dm_get_live_table(md, &srcu_idx);
2651
2652 spin_lock(&_minor_lock);
2653 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2654 set_bit(DMF_FREEING, &md->flags);
2655 spin_unlock(&_minor_lock);
2656
2657 if (dm_request_based(md))
2658 flush_kthread_worker(&md->kworker);
2659
2660 /*
2661 * Take suspend_lock so that presuspend and postsuspend methods
2662 * do not race with internal suspend.
2663 */
2664 mutex_lock(&md->suspend_lock);
2665 if (!dm_suspended_md(md)) {
2666 dm_table_presuspend_targets(map);
2667 dm_table_postsuspend_targets(map);
2668 }
2669 mutex_unlock(&md->suspend_lock);
2670
2671 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2672 dm_put_live_table(md, srcu_idx);
2673
2674 /*
2675 * Rare, but there may be I/O requests still going to complete,
2676 * for example. Wait for all references to disappear.
2677 * No one should increment the reference count of the mapped_device,
2678 * after the mapped_device state becomes DMF_FREEING.
2679 */
2680 if (wait)
2681 while (atomic_read(&md->holders))
2682 msleep(1);
2683 else if (atomic_read(&md->holders))
2684 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2685 dm_device_name(md), atomic_read(&md->holders));
2686
2687 dm_sysfs_exit(md);
2688 dm_table_destroy(__unbind(md));
2689 free_dev(md);
2690 }
2691
2692 void dm_destroy(struct mapped_device *md)
2693 {
2694 __dm_destroy(md, true);
2695 }
2696
2697 void dm_destroy_immediate(struct mapped_device *md)
2698 {
2699 __dm_destroy(md, false);
2700 }
2701
2702 void dm_put(struct mapped_device *md)
2703 {
2704 atomic_dec(&md->holders);
2705 }
2706 EXPORT_SYMBOL_GPL(dm_put);
2707
2708 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2709 {
2710 int r = 0;
2711 DECLARE_WAITQUEUE(wait, current);
2712
2713 add_wait_queue(&md->wait, &wait);
2714
2715 while (1) {
2716 set_current_state(interruptible);
2717
2718 if (!md_in_flight(md))
2719 break;
2720
2721 if (interruptible == TASK_INTERRUPTIBLE &&
2722 signal_pending(current)) {
2723 r = -EINTR;
2724 break;
2725 }
2726
2727 io_schedule();
2728 }
2729 set_current_state(TASK_RUNNING);
2730
2731 remove_wait_queue(&md->wait, &wait);
2732
2733 return r;
2734 }
2735
2736 /*
2737 * Process the deferred bios
2738 */
2739 static void dm_wq_work(struct work_struct *work)
2740 {
2741 struct mapped_device *md = container_of(work, struct mapped_device,
2742 work);
2743 struct bio *c;
2744 int srcu_idx;
2745 struct dm_table *map;
2746
2747 map = dm_get_live_table(md, &srcu_idx);
2748
2749 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2750 spin_lock_irq(&md->deferred_lock);
2751 c = bio_list_pop(&md->deferred);
2752 spin_unlock_irq(&md->deferred_lock);
2753
2754 if (!c)
2755 break;
2756
2757 if (dm_request_based(md))
2758 generic_make_request(c);
2759 else
2760 __split_and_process_bio(md, map, c);
2761 }
2762
2763 dm_put_live_table(md, srcu_idx);
2764 }
2765
2766 static void dm_queue_flush(struct mapped_device *md)
2767 {
2768 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2769 smp_mb__after_atomic();
2770 queue_work(md->wq, &md->work);
2771 }
2772
2773 /*
2774 * Swap in a new table, returning the old one for the caller to destroy.
2775 */
2776 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2777 {
2778 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2779 struct queue_limits limits;
2780 int r;
2781
2782 mutex_lock(&md->suspend_lock);
2783
2784 /* device must be suspended */
2785 if (!dm_suspended_md(md))
2786 goto out;
2787
2788 /*
2789 * If the new table has no data devices, retain the existing limits.
2790 * This helps multipath with queue_if_no_path if all paths disappear,
2791 * then new I/O is queued based on these limits, and then some paths
2792 * reappear.
2793 */
2794 if (dm_table_has_no_data_devices(table)) {
2795 live_map = dm_get_live_table_fast(md);
2796 if (live_map)
2797 limits = md->queue->limits;
2798 dm_put_live_table_fast(md);
2799 }
2800
2801 if (!live_map) {
2802 r = dm_calculate_queue_limits(table, &limits);
2803 if (r) {
2804 map = ERR_PTR(r);
2805 goto out;
2806 }
2807 }
2808
2809 map = __bind(md, table, &limits);
2810
2811 out:
2812 mutex_unlock(&md->suspend_lock);
2813 return map;
2814 }
2815
2816 /*
2817 * Functions to lock and unlock any filesystem running on the
2818 * device.
2819 */
2820 static int lock_fs(struct mapped_device *md)
2821 {
2822 int r;
2823
2824 WARN_ON(md->frozen_sb);
2825
2826 md->frozen_sb = freeze_bdev(md->bdev);
2827 if (IS_ERR(md->frozen_sb)) {
2828 r = PTR_ERR(md->frozen_sb);
2829 md->frozen_sb = NULL;
2830 return r;
2831 }
2832
2833 set_bit(DMF_FROZEN, &md->flags);
2834
2835 return 0;
2836 }
2837
2838 static void unlock_fs(struct mapped_device *md)
2839 {
2840 if (!test_bit(DMF_FROZEN, &md->flags))
2841 return;
2842
2843 thaw_bdev(md->bdev, md->frozen_sb);
2844 md->frozen_sb = NULL;
2845 clear_bit(DMF_FROZEN, &md->flags);
2846 }
2847
2848 /*
2849 * If __dm_suspend returns 0, the device is completely quiescent
2850 * now. There is no request-processing activity. All new requests
2851 * are being added to md->deferred list.
2852 *
2853 * Caller must hold md->suspend_lock
2854 */
2855 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2856 unsigned suspend_flags, int interruptible)
2857 {
2858 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2859 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2860 int r;
2861
2862 /*
2863 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2864 * This flag is cleared before dm_suspend returns.
2865 */
2866 if (noflush)
2867 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2868
2869 /*
2870 * This gets reverted if there's an error later and the targets
2871 * provide the .presuspend_undo hook.
2872 */
2873 dm_table_presuspend_targets(map);
2874
2875 /*
2876 * Flush I/O to the device.
2877 * Any I/O submitted after lock_fs() may not be flushed.
2878 * noflush takes precedence over do_lockfs.
2879 * (lock_fs() flushes I/Os and waits for them to complete.)
2880 */
2881 if (!noflush && do_lockfs) {
2882 r = lock_fs(md);
2883 if (r) {
2884 dm_table_presuspend_undo_targets(map);
2885 return r;
2886 }
2887 }
2888
2889 /*
2890 * Here we must make sure that no processes are submitting requests
2891 * to target drivers i.e. no one may be executing
2892 * __split_and_process_bio. This is called from dm_request and
2893 * dm_wq_work.
2894 *
2895 * To get all processes out of __split_and_process_bio in dm_request,
2896 * we take the write lock. To prevent any process from reentering
2897 * __split_and_process_bio from dm_request and quiesce the thread
2898 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2899 * flush_workqueue(md->wq).
2900 */
2901 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2902 if (map)
2903 synchronize_srcu(&md->io_barrier);
2904
2905 /*
2906 * Stop md->queue before flushing md->wq in case request-based
2907 * dm defers requests to md->wq from md->queue.
2908 */
2909 if (dm_request_based(md)) {
2910 stop_queue(md->queue);
2911 flush_kthread_worker(&md->kworker);
2912 }
2913
2914 flush_workqueue(md->wq);
2915
2916 /*
2917 * At this point no more requests are entering target request routines.
2918 * We call dm_wait_for_completion to wait for all existing requests
2919 * to finish.
2920 */
2921 r = dm_wait_for_completion(md, interruptible);
2922
2923 if (noflush)
2924 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2925 if (map)
2926 synchronize_srcu(&md->io_barrier);
2927
2928 /* were we interrupted ? */
2929 if (r < 0) {
2930 dm_queue_flush(md);
2931
2932 if (dm_request_based(md))
2933 start_queue(md->queue);
2934
2935 unlock_fs(md);
2936 dm_table_presuspend_undo_targets(map);
2937 /* pushback list is already flushed, so skip flush */
2938 }
2939
2940 return r;
2941 }
2942
2943 /*
2944 * We need to be able to change a mapping table under a mounted
2945 * filesystem. For example we might want to move some data in
2946 * the background. Before the table can be swapped with
2947 * dm_bind_table, dm_suspend must be called to flush any in
2948 * flight bios and ensure that any further io gets deferred.
2949 */
2950 /*
2951 * Suspend mechanism in request-based dm.
2952 *
2953 * 1. Flush all I/Os by lock_fs() if needed.
2954 * 2. Stop dispatching any I/O by stopping the request_queue.
2955 * 3. Wait for all in-flight I/Os to be completed or requeued.
2956 *
2957 * To abort suspend, start the request_queue.
2958 */
2959 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2960 {
2961 struct dm_table *map = NULL;
2962 int r = 0;
2963
2964 retry:
2965 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2966
2967 if (dm_suspended_md(md)) {
2968 r = -EINVAL;
2969 goto out_unlock;
2970 }
2971
2972 if (dm_suspended_internally_md(md)) {
2973 /* already internally suspended, wait for internal resume */
2974 mutex_unlock(&md->suspend_lock);
2975 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2976 if (r)
2977 return r;
2978 goto retry;
2979 }
2980
2981 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2982
2983 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2984 if (r)
2985 goto out_unlock;
2986
2987 set_bit(DMF_SUSPENDED, &md->flags);
2988
2989 dm_table_postsuspend_targets(map);
2990
2991 out_unlock:
2992 mutex_unlock(&md->suspend_lock);
2993 return r;
2994 }
2995
2996 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2997 {
2998 if (map) {
2999 int r = dm_table_resume_targets(map);
3000 if (r)
3001 return r;
3002 }
3003
3004 dm_queue_flush(md);
3005
3006 /*
3007 * Flushing deferred I/Os must be done after targets are resumed
3008 * so that mapping of targets can work correctly.
3009 * Request-based dm is queueing the deferred I/Os in its request_queue.
3010 */
3011 if (dm_request_based(md))
3012 start_queue(md->queue);
3013
3014 unlock_fs(md);
3015
3016 return 0;
3017 }
3018
3019 int dm_resume(struct mapped_device *md)
3020 {
3021 int r = -EINVAL;
3022 struct dm_table *map = NULL;
3023
3024 retry:
3025 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3026
3027 if (!dm_suspended_md(md))
3028 goto out;
3029
3030 if (dm_suspended_internally_md(md)) {
3031 /* already internally suspended, wait for internal resume */
3032 mutex_unlock(&md->suspend_lock);
3033 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3034 if (r)
3035 return r;
3036 goto retry;
3037 }
3038
3039 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3040 if (!map || !dm_table_get_size(map))
3041 goto out;
3042
3043 r = __dm_resume(md, map);
3044 if (r)
3045 goto out;
3046
3047 clear_bit(DMF_SUSPENDED, &md->flags);
3048
3049 r = 0;
3050 out:
3051 mutex_unlock(&md->suspend_lock);
3052
3053 return r;
3054 }
3055
3056 /*
3057 * Internal suspend/resume works like userspace-driven suspend. It waits
3058 * until all bios finish and prevents issuing new bios to the target drivers.
3059 * It may be used only from the kernel.
3060 */
3061
3062 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3063 {
3064 struct dm_table *map = NULL;
3065
3066 if (md->internal_suspend_count++)
3067 return; /* nested internal suspend */
3068
3069 if (dm_suspended_md(md)) {
3070 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3071 return; /* nest suspend */
3072 }
3073
3074 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3075
3076 /*
3077 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3078 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3079 * would require changing .presuspend to return an error -- avoid this
3080 * until there is a need for more elaborate variants of internal suspend.
3081 */
3082 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3083
3084 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3085
3086 dm_table_postsuspend_targets(map);
3087 }
3088
3089 static void __dm_internal_resume(struct mapped_device *md)
3090 {
3091 BUG_ON(!md->internal_suspend_count);
3092
3093 if (--md->internal_suspend_count)
3094 return; /* resume from nested internal suspend */
3095
3096 if (dm_suspended_md(md))
3097 goto done; /* resume from nested suspend */
3098
3099 /*
3100 * NOTE: existing callers don't need to call dm_table_resume_targets
3101 * (which may fail -- so best to avoid it for now by passing NULL map)
3102 */
3103 (void) __dm_resume(md, NULL);
3104
3105 done:
3106 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107 smp_mb__after_atomic();
3108 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3109 }
3110
3111 void dm_internal_suspend_noflush(struct mapped_device *md)
3112 {
3113 mutex_lock(&md->suspend_lock);
3114 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3115 mutex_unlock(&md->suspend_lock);
3116 }
3117 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3118
3119 void dm_internal_resume(struct mapped_device *md)
3120 {
3121 mutex_lock(&md->suspend_lock);
3122 __dm_internal_resume(md);
3123 mutex_unlock(&md->suspend_lock);
3124 }
3125 EXPORT_SYMBOL_GPL(dm_internal_resume);
3126
3127 /*
3128 * Fast variants of internal suspend/resume hold md->suspend_lock,
3129 * which prevents interaction with userspace-driven suspend.
3130 */
3131
3132 void dm_internal_suspend_fast(struct mapped_device *md)
3133 {
3134 mutex_lock(&md->suspend_lock);
3135 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3136 return;
3137
3138 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3139 synchronize_srcu(&md->io_barrier);
3140 flush_workqueue(md->wq);
3141 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3142 }
3143 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3144
3145 void dm_internal_resume_fast(struct mapped_device *md)
3146 {
3147 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3148 goto done;
3149
3150 dm_queue_flush(md);
3151
3152 done:
3153 mutex_unlock(&md->suspend_lock);
3154 }
3155 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3156
3157 /*-----------------------------------------------------------------
3158 * Event notification.
3159 *---------------------------------------------------------------*/
3160 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3161 unsigned cookie)
3162 {
3163 char udev_cookie[DM_COOKIE_LENGTH];
3164 char *envp[] = { udev_cookie, NULL };
3165
3166 if (!cookie)
3167 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3168 else {
3169 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3170 DM_COOKIE_ENV_VAR_NAME, cookie);
3171 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3172 action, envp);
3173 }
3174 }
3175
3176 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3177 {
3178 return atomic_add_return(1, &md->uevent_seq);
3179 }
3180
3181 uint32_t dm_get_event_nr(struct mapped_device *md)
3182 {
3183 return atomic_read(&md->event_nr);
3184 }
3185
3186 int dm_wait_event(struct mapped_device *md, int event_nr)
3187 {
3188 return wait_event_interruptible(md->eventq,
3189 (event_nr != atomic_read(&md->event_nr)));
3190 }
3191
3192 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3193 {
3194 unsigned long flags;
3195
3196 spin_lock_irqsave(&md->uevent_lock, flags);
3197 list_add(elist, &md->uevent_list);
3198 spin_unlock_irqrestore(&md->uevent_lock, flags);
3199 }
3200
3201 /*
3202 * The gendisk is only valid as long as you have a reference
3203 * count on 'md'.
3204 */
3205 struct gendisk *dm_disk(struct mapped_device *md)
3206 {
3207 return md->disk;
3208 }
3209
3210 struct kobject *dm_kobject(struct mapped_device *md)
3211 {
3212 return &md->kobj_holder.kobj;
3213 }
3214
3215 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3216 {
3217 struct mapped_device *md;
3218
3219 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3220
3221 if (test_bit(DMF_FREEING, &md->flags) ||
3222 dm_deleting_md(md))
3223 return NULL;
3224
3225 dm_get(md);
3226 return md;
3227 }
3228
3229 int dm_suspended_md(struct mapped_device *md)
3230 {
3231 return test_bit(DMF_SUSPENDED, &md->flags);
3232 }
3233
3234 int dm_suspended_internally_md(struct mapped_device *md)
3235 {
3236 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3237 }
3238
3239 int dm_test_deferred_remove_flag(struct mapped_device *md)
3240 {
3241 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3242 }
3243
3244 int dm_suspended(struct dm_target *ti)
3245 {
3246 return dm_suspended_md(dm_table_get_md(ti->table));
3247 }
3248 EXPORT_SYMBOL_GPL(dm_suspended);
3249
3250 int dm_noflush_suspending(struct dm_target *ti)
3251 {
3252 return __noflush_suspending(dm_table_get_md(ti->table));
3253 }
3254 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3255
3256 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3257 {
3258 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3259 struct kmem_cache *cachep;
3260 unsigned int pool_size = 0;
3261 unsigned int front_pad;
3262
3263 if (!pools)
3264 return NULL;
3265
3266 switch (type) {
3267 case DM_TYPE_BIO_BASED:
3268 cachep = _io_cache;
3269 pool_size = dm_get_reserved_bio_based_ios();
3270 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3271 break;
3272 case DM_TYPE_REQUEST_BASED:
3273 pool_size = dm_get_reserved_rq_based_ios();
3274 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3275 if (!pools->rq_pool)
3276 goto out;
3277 /* fall through to setup remaining rq-based pools */
3278 case DM_TYPE_MQ_REQUEST_BASED:
3279 cachep = _rq_tio_cache;
3280 if (!pool_size)
3281 pool_size = dm_get_reserved_rq_based_ios();
3282 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3283 /* per_bio_data_size is not used. See __bind_mempools(). */
3284 WARN_ON(per_bio_data_size != 0);
3285 break;
3286 default:
3287 goto out;
3288 }
3289
3290 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3291 if (!pools->io_pool)
3292 goto out;
3293
3294 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3295 if (!pools->bs)
3296 goto out;
3297
3298 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3299 goto out;
3300
3301 return pools;
3302
3303 out:
3304 dm_free_md_mempools(pools);
3305
3306 return NULL;
3307 }
3308
3309 void dm_free_md_mempools(struct dm_md_mempools *pools)
3310 {
3311 if (!pools)
3312 return;
3313
3314 if (pools->io_pool)
3315 mempool_destroy(pools->io_pool);
3316
3317 if (pools->rq_pool)
3318 mempool_destroy(pools->rq_pool);
3319
3320 if (pools->bs)
3321 bioset_free(pools->bs);
3322
3323 kfree(pools);
3324 }
3325
3326 static const struct block_device_operations dm_blk_dops = {
3327 .open = dm_blk_open,
3328 .release = dm_blk_close,
3329 .ioctl = dm_blk_ioctl,
3330 .getgeo = dm_blk_getgeo,
3331 .owner = THIS_MODULE
3332 };
3333
3334 /*
3335 * module hooks
3336 */
3337 module_init(dm_init);
3338 module_exit(dm_exit);
3339
3340 module_param(major, uint, 0);
3341 MODULE_PARM_DESC(major, "The major number of the device mapper");
3342
3343 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3344 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3345
3346 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3347 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3348
3349 MODULE_DESCRIPTION(DM_NAME " driver");
3350 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3351 MODULE_LICENSE("GPL");