]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/dm.c
dm: support REQ_OP_WRITE_ZEROES
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 #include <linux/wait.h>
24 #include <linux/pr.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 #ifdef CONFIG_PRINTK
29 /*
30 * ratelimit state to be used in DMXXX_LIMIT().
31 */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 DEFAULT_RATELIMIT_INTERVAL,
34 DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 static const char *_name = DM_NAME;
46
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49
50 static DEFINE_IDR(_minor_idr);
51
52 static DEFINE_SPINLOCK(_minor_lock);
53
54 static void do_deferred_remove(struct work_struct *w);
55
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57
58 static struct workqueue_struct *deferred_remove_workqueue;
59
60 /*
61 * One of these is allocated per bio.
62 */
63 struct dm_io {
64 struct mapped_device *md;
65 int error;
66 atomic_t io_count;
67 struct bio *bio;
68 unsigned long start_time;
69 spinlock_t endio_lock;
70 struct dm_stats_aux stats_aux;
71 };
72
73 #define MINOR_ALLOCED ((void *)-1)
74
75 /*
76 * Bits for the md->flags field.
77 */
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
80 #define DMF_FROZEN 2
81 #define DMF_FREEING 3
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
86
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node = DM_NUMA_NODE;
89
90 /*
91 * For mempools pre-allocation at the table loading time.
92 */
93 struct dm_md_mempools {
94 mempool_t *io_pool;
95 struct bio_set *bs;
96 };
97
98 struct table_device {
99 struct list_head list;
100 atomic_t count;
101 struct dm_dev dm_dev;
102 };
103
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107
108 /*
109 * Bio-based DM's mempools' reserved IOs set by the user.
110 */
111 #define RESERVED_BIO_BASED_IOS 16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 int param = ACCESS_ONCE(*module_param);
117 int modified_param = 0;
118 bool modified = true;
119
120 if (param < min)
121 modified_param = min;
122 else if (param > max)
123 modified_param = max;
124 else
125 modified = false;
126
127 if (modified) {
128 (void)cmpxchg(module_param, param, modified_param);
129 param = modified_param;
130 }
131
132 return param;
133 }
134
135 unsigned __dm_get_module_param(unsigned *module_param,
136 unsigned def, unsigned max)
137 {
138 unsigned param = ACCESS_ONCE(*module_param);
139 unsigned modified_param = 0;
140
141 if (!param)
142 modified_param = def;
143 else if (param > max)
144 modified_param = max;
145
146 if (modified_param) {
147 (void)cmpxchg(module_param, param, modified_param);
148 param = modified_param;
149 }
150
151 return param;
152 }
153
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 return __dm_get_module_param(&reserved_bio_based_ios,
157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160
161 static unsigned dm_get_numa_node(void)
162 {
163 return __dm_get_module_param_int(&dm_numa_node,
164 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166
167 static int __init local_init(void)
168 {
169 int r = -ENOMEM;
170
171 /* allocate a slab for the dm_ios */
172 _io_cache = KMEM_CACHE(dm_io, 0);
173 if (!_io_cache)
174 return r;
175
176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 if (!_rq_tio_cache)
178 goto out_free_io_cache;
179
180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 __alignof__(struct request), 0, NULL);
182 if (!_rq_cache)
183 goto out_free_rq_tio_cache;
184
185 r = dm_uevent_init();
186 if (r)
187 goto out_free_rq_cache;
188
189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 if (!deferred_remove_workqueue) {
191 r = -ENOMEM;
192 goto out_uevent_exit;
193 }
194
195 _major = major;
196 r = register_blkdev(_major, _name);
197 if (r < 0)
198 goto out_free_workqueue;
199
200 if (!_major)
201 _major = r;
202
203 return 0;
204
205 out_free_workqueue:
206 destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 dm_uevent_exit();
209 out_free_rq_cache:
210 kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 kmem_cache_destroy(_io_cache);
215
216 return r;
217 }
218
219 static void local_exit(void)
220 {
221 flush_scheduled_work();
222 destroy_workqueue(deferred_remove_workqueue);
223
224 kmem_cache_destroy(_rq_cache);
225 kmem_cache_destroy(_rq_tio_cache);
226 kmem_cache_destroy(_io_cache);
227 unregister_blkdev(_major, _name);
228 dm_uevent_exit();
229
230 _major = 0;
231
232 DMINFO("cleaned up");
233 }
234
235 static int (*_inits[])(void) __initdata = {
236 local_init,
237 dm_target_init,
238 dm_linear_init,
239 dm_stripe_init,
240 dm_io_init,
241 dm_kcopyd_init,
242 dm_interface_init,
243 dm_statistics_init,
244 };
245
246 static void (*_exits[])(void) = {
247 local_exit,
248 dm_target_exit,
249 dm_linear_exit,
250 dm_stripe_exit,
251 dm_io_exit,
252 dm_kcopyd_exit,
253 dm_interface_exit,
254 dm_statistics_exit,
255 };
256
257 static int __init dm_init(void)
258 {
259 const int count = ARRAY_SIZE(_inits);
260
261 int r, i;
262
263 for (i = 0; i < count; i++) {
264 r = _inits[i]();
265 if (r)
266 goto bad;
267 }
268
269 return 0;
270
271 bad:
272 while (i--)
273 _exits[i]();
274
275 return r;
276 }
277
278 static void __exit dm_exit(void)
279 {
280 int i = ARRAY_SIZE(_exits);
281
282 while (i--)
283 _exits[i]();
284
285 /*
286 * Should be empty by this point.
287 */
288 idr_destroy(&_minor_idr);
289 }
290
291 /*
292 * Block device functions
293 */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 return test_bit(DMF_DELETING, &md->flags);
297 }
298
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 struct mapped_device *md;
302
303 spin_lock(&_minor_lock);
304
305 md = bdev->bd_disk->private_data;
306 if (!md)
307 goto out;
308
309 if (test_bit(DMF_FREEING, &md->flags) ||
310 dm_deleting_md(md)) {
311 md = NULL;
312 goto out;
313 }
314
315 dm_get(md);
316 atomic_inc(&md->open_count);
317 out:
318 spin_unlock(&_minor_lock);
319
320 return md ? 0 : -ENXIO;
321 }
322
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 struct mapped_device *md;
326
327 spin_lock(&_minor_lock);
328
329 md = disk->private_data;
330 if (WARN_ON(!md))
331 goto out;
332
333 if (atomic_dec_and_test(&md->open_count) &&
334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 queue_work(deferred_remove_workqueue, &deferred_remove_work);
336
337 dm_put(md);
338 out:
339 spin_unlock(&_minor_lock);
340 }
341
342 int dm_open_count(struct mapped_device *md)
343 {
344 return atomic_read(&md->open_count);
345 }
346
347 /*
348 * Guarantees nothing is using the device before it's deleted.
349 */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 int r = 0;
353
354 spin_lock(&_minor_lock);
355
356 if (dm_open_count(md)) {
357 r = -EBUSY;
358 if (mark_deferred)
359 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 r = -EEXIST;
362 else
363 set_bit(DMF_DELETING, &md->flags);
364
365 spin_unlock(&_minor_lock);
366
367 return r;
368 }
369
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 int r = 0;
373
374 spin_lock(&_minor_lock);
375
376 if (test_bit(DMF_DELETING, &md->flags))
377 r = -EBUSY;
378 else
379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380
381 spin_unlock(&_minor_lock);
382
383 return r;
384 }
385
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 dm_deferred_remove();
389 }
390
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 return get_capacity(md->disk);
394 }
395
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 return md->queue;
399 }
400
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 return &md->stats;
404 }
405
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 struct block_device **bdev,
415 fmode_t *mode)
416 {
417 struct dm_target *tgt;
418 struct dm_table *map;
419 int srcu_idx, r;
420
421 retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, &srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 goto out;
426
427 /* We only support devices that have a single target */
428 if (dm_table_get_num_targets(map) != 1)
429 goto out;
430
431 tgt = dm_table_get_target(map, 0);
432 if (!tgt->type->prepare_ioctl)
433 goto out;
434
435 if (dm_suspended_md(md)) {
436 r = -EAGAIN;
437 goto out;
438 }
439
440 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 if (r < 0)
442 goto out;
443
444 bdgrab(*bdev);
445 dm_put_live_table(md, srcu_idx);
446 return r;
447
448 out:
449 dm_put_live_table(md, srcu_idx);
450 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 msleep(10);
452 goto retry;
453 }
454 return r;
455 }
456
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 unsigned int cmd, unsigned long arg)
459 {
460 struct mapped_device *md = bdev->bd_disk->private_data;
461 int r;
462
463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 if (r < 0)
465 return r;
466
467 if (r > 0) {
468 /*
469 * Target determined this ioctl is being issued against a
470 * subset of the parent bdev; require extra privileges.
471 */
472 if (!capable(CAP_SYS_RAWIO)) {
473 DMWARN_LIMIT(
474 "%s: sending ioctl %x to DM device without required privilege.",
475 current->comm, cmd);
476 r = -ENOIOCTLCMD;
477 goto out;
478 }
479 }
480
481 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
482 out:
483 bdput(bdev);
484 return r;
485 }
486
487 static struct dm_io *alloc_io(struct mapped_device *md)
488 {
489 return mempool_alloc(md->io_pool, GFP_NOIO);
490 }
491
492 static void free_io(struct mapped_device *md, struct dm_io *io)
493 {
494 mempool_free(io, md->io_pool);
495 }
496
497 static void free_tio(struct dm_target_io *tio)
498 {
499 bio_put(&tio->clone);
500 }
501
502 int md_in_flight(struct mapped_device *md)
503 {
504 return atomic_read(&md->pending[READ]) +
505 atomic_read(&md->pending[WRITE]);
506 }
507
508 static void start_io_acct(struct dm_io *io)
509 {
510 struct mapped_device *md = io->md;
511 struct bio *bio = io->bio;
512 int cpu;
513 int rw = bio_data_dir(bio);
514
515 io->start_time = jiffies;
516
517 cpu = part_stat_lock();
518 part_round_stats(cpu, &dm_disk(md)->part0);
519 part_stat_unlock();
520 atomic_set(&dm_disk(md)->part0.in_flight[rw],
521 atomic_inc_return(&md->pending[rw]));
522
523 if (unlikely(dm_stats_used(&md->stats)))
524 dm_stats_account_io(&md->stats, bio_data_dir(bio),
525 bio->bi_iter.bi_sector, bio_sectors(bio),
526 false, 0, &io->stats_aux);
527 }
528
529 static void end_io_acct(struct dm_io *io)
530 {
531 struct mapped_device *md = io->md;
532 struct bio *bio = io->bio;
533 unsigned long duration = jiffies - io->start_time;
534 int pending;
535 int rw = bio_data_dir(bio);
536
537 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
538
539 if (unlikely(dm_stats_used(&md->stats)))
540 dm_stats_account_io(&md->stats, bio_data_dir(bio),
541 bio->bi_iter.bi_sector, bio_sectors(bio),
542 true, duration, &io->stats_aux);
543
544 /*
545 * After this is decremented the bio must not be touched if it is
546 * a flush.
547 */
548 pending = atomic_dec_return(&md->pending[rw]);
549 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
550 pending += atomic_read(&md->pending[rw^0x1]);
551
552 /* nudge anyone waiting on suspend queue */
553 if (!pending)
554 wake_up(&md->wait);
555 }
556
557 /*
558 * Add the bio to the list of deferred io.
559 */
560 static void queue_io(struct mapped_device *md, struct bio *bio)
561 {
562 unsigned long flags;
563
564 spin_lock_irqsave(&md->deferred_lock, flags);
565 bio_list_add(&md->deferred, bio);
566 spin_unlock_irqrestore(&md->deferred_lock, flags);
567 queue_work(md->wq, &md->work);
568 }
569
570 /*
571 * Everyone (including functions in this file), should use this
572 * function to access the md->map field, and make sure they call
573 * dm_put_live_table() when finished.
574 */
575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
576 {
577 *srcu_idx = srcu_read_lock(&md->io_barrier);
578
579 return srcu_dereference(md->map, &md->io_barrier);
580 }
581
582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
583 {
584 srcu_read_unlock(&md->io_barrier, srcu_idx);
585 }
586
587 void dm_sync_table(struct mapped_device *md)
588 {
589 synchronize_srcu(&md->io_barrier);
590 synchronize_rcu_expedited();
591 }
592
593 /*
594 * A fast alternative to dm_get_live_table/dm_put_live_table.
595 * The caller must not block between these two functions.
596 */
597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
598 {
599 rcu_read_lock();
600 return rcu_dereference(md->map);
601 }
602
603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
604 {
605 rcu_read_unlock();
606 }
607
608 /*
609 * Open a table device so we can use it as a map destination.
610 */
611 static int open_table_device(struct table_device *td, dev_t dev,
612 struct mapped_device *md)
613 {
614 static char *_claim_ptr = "I belong to device-mapper";
615 struct block_device *bdev;
616
617 int r;
618
619 BUG_ON(td->dm_dev.bdev);
620
621 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
622 if (IS_ERR(bdev))
623 return PTR_ERR(bdev);
624
625 r = bd_link_disk_holder(bdev, dm_disk(md));
626 if (r) {
627 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
628 return r;
629 }
630
631 td->dm_dev.bdev = bdev;
632 return 0;
633 }
634
635 /*
636 * Close a table device that we've been using.
637 */
638 static void close_table_device(struct table_device *td, struct mapped_device *md)
639 {
640 if (!td->dm_dev.bdev)
641 return;
642
643 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
644 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
645 td->dm_dev.bdev = NULL;
646 }
647
648 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
649 fmode_t mode) {
650 struct table_device *td;
651
652 list_for_each_entry(td, l, list)
653 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
654 return td;
655
656 return NULL;
657 }
658
659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
660 struct dm_dev **result) {
661 int r;
662 struct table_device *td;
663
664 mutex_lock(&md->table_devices_lock);
665 td = find_table_device(&md->table_devices, dev, mode);
666 if (!td) {
667 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
668 if (!td) {
669 mutex_unlock(&md->table_devices_lock);
670 return -ENOMEM;
671 }
672
673 td->dm_dev.mode = mode;
674 td->dm_dev.bdev = NULL;
675
676 if ((r = open_table_device(td, dev, md))) {
677 mutex_unlock(&md->table_devices_lock);
678 kfree(td);
679 return r;
680 }
681
682 format_dev_t(td->dm_dev.name, dev);
683
684 atomic_set(&td->count, 0);
685 list_add(&td->list, &md->table_devices);
686 }
687 atomic_inc(&td->count);
688 mutex_unlock(&md->table_devices_lock);
689
690 *result = &td->dm_dev;
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(dm_get_table_device);
694
695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
696 {
697 struct table_device *td = container_of(d, struct table_device, dm_dev);
698
699 mutex_lock(&md->table_devices_lock);
700 if (atomic_dec_and_test(&td->count)) {
701 close_table_device(td, md);
702 list_del(&td->list);
703 kfree(td);
704 }
705 mutex_unlock(&md->table_devices_lock);
706 }
707 EXPORT_SYMBOL(dm_put_table_device);
708
709 static void free_table_devices(struct list_head *devices)
710 {
711 struct list_head *tmp, *next;
712
713 list_for_each_safe(tmp, next, devices) {
714 struct table_device *td = list_entry(tmp, struct table_device, list);
715
716 DMWARN("dm_destroy: %s still exists with %d references",
717 td->dm_dev.name, atomic_read(&td->count));
718 kfree(td);
719 }
720 }
721
722 /*
723 * Get the geometry associated with a dm device
724 */
725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
726 {
727 *geo = md->geometry;
728
729 return 0;
730 }
731
732 /*
733 * Set the geometry of a device.
734 */
735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
736 {
737 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
738
739 if (geo->start > sz) {
740 DMWARN("Start sector is beyond the geometry limits.");
741 return -EINVAL;
742 }
743
744 md->geometry = *geo;
745
746 return 0;
747 }
748
749 /*-----------------------------------------------------------------
750 * CRUD START:
751 * A more elegant soln is in the works that uses the queue
752 * merge fn, unfortunately there are a couple of changes to
753 * the block layer that I want to make for this. So in the
754 * interests of getting something for people to use I give
755 * you this clearly demarcated crap.
756 *---------------------------------------------------------------*/
757
758 static int __noflush_suspending(struct mapped_device *md)
759 {
760 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
761 }
762
763 /*
764 * Decrements the number of outstanding ios that a bio has been
765 * cloned into, completing the original io if necc.
766 */
767 static void dec_pending(struct dm_io *io, int error)
768 {
769 unsigned long flags;
770 int io_error;
771 struct bio *bio;
772 struct mapped_device *md = io->md;
773
774 /* Push-back supersedes any I/O errors */
775 if (unlikely(error)) {
776 spin_lock_irqsave(&io->endio_lock, flags);
777 if (!(io->error > 0 && __noflush_suspending(md)))
778 io->error = error;
779 spin_unlock_irqrestore(&io->endio_lock, flags);
780 }
781
782 if (atomic_dec_and_test(&io->io_count)) {
783 if (io->error == DM_ENDIO_REQUEUE) {
784 /*
785 * Target requested pushing back the I/O.
786 */
787 spin_lock_irqsave(&md->deferred_lock, flags);
788 if (__noflush_suspending(md))
789 bio_list_add_head(&md->deferred, io->bio);
790 else
791 /* noflush suspend was interrupted. */
792 io->error = -EIO;
793 spin_unlock_irqrestore(&md->deferred_lock, flags);
794 }
795
796 io_error = io->error;
797 bio = io->bio;
798 end_io_acct(io);
799 free_io(md, io);
800
801 if (io_error == DM_ENDIO_REQUEUE)
802 return;
803
804 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 /*
806 * Preflush done for flush with data, reissue
807 * without REQ_PREFLUSH.
808 */
809 bio->bi_opf &= ~REQ_PREFLUSH;
810 queue_io(md, bio);
811 } else {
812 /* done with normal IO or empty flush */
813 bio->bi_error = io_error;
814 bio_endio(bio);
815 }
816 }
817 }
818
819 void disable_write_same(struct mapped_device *md)
820 {
821 struct queue_limits *limits = dm_get_queue_limits(md);
822
823 /* device doesn't really support WRITE SAME, disable it */
824 limits->max_write_same_sectors = 0;
825 }
826
827 void disable_write_zeroes(struct mapped_device *md)
828 {
829 struct queue_limits *limits = dm_get_queue_limits(md);
830
831 /* device doesn't really support WRITE ZEROES, disable it */
832 limits->max_write_zeroes_sectors = 0;
833 }
834
835 static void clone_endio(struct bio *bio)
836 {
837 int error = bio->bi_error;
838 int r = error;
839 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
840 struct dm_io *io = tio->io;
841 struct mapped_device *md = tio->io->md;
842 dm_endio_fn endio = tio->ti->type->end_io;
843
844 if (endio) {
845 r = endio(tio->ti, bio, error);
846 if (r < 0 || r == DM_ENDIO_REQUEUE)
847 /*
848 * error and requeue request are handled
849 * in dec_pending().
850 */
851 error = r;
852 else if (r == DM_ENDIO_INCOMPLETE)
853 /* The target will handle the io */
854 return;
855 else if (r) {
856 DMWARN("unimplemented target endio return value: %d", r);
857 BUG();
858 }
859 }
860
861 if (unlikely(r == -EREMOTEIO)) {
862 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
863 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
864 disable_write_same(md);
865 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
866 !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
867 disable_write_zeroes(md);
868 }
869
870 free_tio(tio);
871 dec_pending(io, error);
872 }
873
874 /*
875 * Return maximum size of I/O possible at the supplied sector up to the current
876 * target boundary.
877 */
878 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
879 {
880 sector_t target_offset = dm_target_offset(ti, sector);
881
882 return ti->len - target_offset;
883 }
884
885 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
886 {
887 sector_t len = max_io_len_target_boundary(sector, ti);
888 sector_t offset, max_len;
889
890 /*
891 * Does the target need to split even further?
892 */
893 if (ti->max_io_len) {
894 offset = dm_target_offset(ti, sector);
895 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
896 max_len = sector_div(offset, ti->max_io_len);
897 else
898 max_len = offset & (ti->max_io_len - 1);
899 max_len = ti->max_io_len - max_len;
900
901 if (len > max_len)
902 len = max_len;
903 }
904
905 return len;
906 }
907
908 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
909 {
910 if (len > UINT_MAX) {
911 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
912 (unsigned long long)len, UINT_MAX);
913 ti->error = "Maximum size of target IO is too large";
914 return -EINVAL;
915 }
916
917 ti->max_io_len = (uint32_t) len;
918
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
922
923 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
924 void **kaddr, pfn_t *pfn, long size)
925 {
926 struct mapped_device *md = bdev->bd_disk->private_data;
927 struct dm_table *map;
928 struct dm_target *ti;
929 int srcu_idx;
930 long len, ret = -EIO;
931
932 map = dm_get_live_table(md, &srcu_idx);
933 if (!map)
934 goto out;
935
936 ti = dm_table_find_target(map, sector);
937 if (!dm_target_is_valid(ti))
938 goto out;
939
940 len = max_io_len(sector, ti) << SECTOR_SHIFT;
941 size = min(len, size);
942
943 if (ti->type->direct_access)
944 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
945 out:
946 dm_put_live_table(md, srcu_idx);
947 return min(ret, size);
948 }
949
950 /*
951 * A target may call dm_accept_partial_bio only from the map routine. It is
952 * allowed for all bio types except REQ_PREFLUSH.
953 *
954 * dm_accept_partial_bio informs the dm that the target only wants to process
955 * additional n_sectors sectors of the bio and the rest of the data should be
956 * sent in a next bio.
957 *
958 * A diagram that explains the arithmetics:
959 * +--------------------+---------------+-------+
960 * | 1 | 2 | 3 |
961 * +--------------------+---------------+-------+
962 *
963 * <-------------- *tio->len_ptr --------------->
964 * <------- bi_size ------->
965 * <-- n_sectors -->
966 *
967 * Region 1 was already iterated over with bio_advance or similar function.
968 * (it may be empty if the target doesn't use bio_advance)
969 * Region 2 is the remaining bio size that the target wants to process.
970 * (it may be empty if region 1 is non-empty, although there is no reason
971 * to make it empty)
972 * The target requires that region 3 is to be sent in the next bio.
973 *
974 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
975 * the partially processed part (the sum of regions 1+2) must be the same for all
976 * copies of the bio.
977 */
978 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
979 {
980 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
981 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
982 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
983 BUG_ON(bi_size > *tio->len_ptr);
984 BUG_ON(n_sectors > bi_size);
985 *tio->len_ptr -= bi_size - n_sectors;
986 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
987 }
988 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
989
990 /*
991 * Flush current->bio_list when the target map method blocks.
992 * This fixes deadlocks in snapshot and possibly in other targets.
993 */
994 struct dm_offload {
995 struct blk_plug plug;
996 struct blk_plug_cb cb;
997 };
998
999 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1000 {
1001 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1002 struct bio_list list;
1003 struct bio *bio;
1004 int i;
1005
1006 INIT_LIST_HEAD(&o->cb.list);
1007
1008 if (unlikely(!current->bio_list))
1009 return;
1010
1011 for (i = 0; i < 2; i++) {
1012 list = current->bio_list[i];
1013 bio_list_init(&current->bio_list[i]);
1014
1015 while ((bio = bio_list_pop(&list))) {
1016 struct bio_set *bs = bio->bi_pool;
1017 if (unlikely(!bs) || bs == fs_bio_set) {
1018 bio_list_add(&current->bio_list[i], bio);
1019 continue;
1020 }
1021
1022 spin_lock(&bs->rescue_lock);
1023 bio_list_add(&bs->rescue_list, bio);
1024 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1025 spin_unlock(&bs->rescue_lock);
1026 }
1027 }
1028 }
1029
1030 static void dm_offload_start(struct dm_offload *o)
1031 {
1032 blk_start_plug(&o->plug);
1033 o->cb.callback = flush_current_bio_list;
1034 list_add(&o->cb.list, &current->plug->cb_list);
1035 }
1036
1037 static void dm_offload_end(struct dm_offload *o)
1038 {
1039 list_del(&o->cb.list);
1040 blk_finish_plug(&o->plug);
1041 }
1042
1043 static void __map_bio(struct dm_target_io *tio)
1044 {
1045 int r;
1046 sector_t sector;
1047 struct dm_offload o;
1048 struct bio *clone = &tio->clone;
1049 struct dm_target *ti = tio->ti;
1050
1051 clone->bi_end_io = clone_endio;
1052
1053 /*
1054 * Map the clone. If r == 0 we don't need to do
1055 * anything, the target has assumed ownership of
1056 * this io.
1057 */
1058 atomic_inc(&tio->io->io_count);
1059 sector = clone->bi_iter.bi_sector;
1060
1061 dm_offload_start(&o);
1062 r = ti->type->map(ti, clone);
1063 dm_offload_end(&o);
1064
1065 if (r == DM_MAPIO_REMAPPED) {
1066 /* the bio has been remapped so dispatch it */
1067
1068 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1069 tio->io->bio->bi_bdev->bd_dev, sector);
1070
1071 generic_make_request(clone);
1072 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1073 /* error the io and bail out, or requeue it if needed */
1074 dec_pending(tio->io, r);
1075 free_tio(tio);
1076 } else if (r != DM_MAPIO_SUBMITTED) {
1077 DMWARN("unimplemented target map return value: %d", r);
1078 BUG();
1079 }
1080 }
1081
1082 struct clone_info {
1083 struct mapped_device *md;
1084 struct dm_table *map;
1085 struct bio *bio;
1086 struct dm_io *io;
1087 sector_t sector;
1088 unsigned sector_count;
1089 };
1090
1091 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1092 {
1093 bio->bi_iter.bi_sector = sector;
1094 bio->bi_iter.bi_size = to_bytes(len);
1095 }
1096
1097 /*
1098 * Creates a bio that consists of range of complete bvecs.
1099 */
1100 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1101 sector_t sector, unsigned len)
1102 {
1103 struct bio *clone = &tio->clone;
1104
1105 __bio_clone_fast(clone, bio);
1106
1107 if (bio_integrity(bio)) {
1108 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1109 if (r < 0)
1110 return r;
1111 }
1112
1113 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1114 clone->bi_iter.bi_size = to_bytes(len);
1115
1116 if (bio_integrity(bio))
1117 bio_integrity_trim(clone, 0, len);
1118
1119 return 0;
1120 }
1121
1122 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1123 struct dm_target *ti,
1124 unsigned target_bio_nr)
1125 {
1126 struct dm_target_io *tio;
1127 struct bio *clone;
1128
1129 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1130 tio = container_of(clone, struct dm_target_io, clone);
1131
1132 tio->io = ci->io;
1133 tio->ti = ti;
1134 tio->target_bio_nr = target_bio_nr;
1135
1136 return tio;
1137 }
1138
1139 static void __clone_and_map_simple_bio(struct clone_info *ci,
1140 struct dm_target *ti,
1141 unsigned target_bio_nr, unsigned *len)
1142 {
1143 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1144 struct bio *clone = &tio->clone;
1145
1146 tio->len_ptr = len;
1147
1148 __bio_clone_fast(clone, ci->bio);
1149 if (len)
1150 bio_setup_sector(clone, ci->sector, *len);
1151
1152 __map_bio(tio);
1153 }
1154
1155 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1156 unsigned num_bios, unsigned *len)
1157 {
1158 unsigned target_bio_nr;
1159
1160 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1161 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1162 }
1163
1164 static int __send_empty_flush(struct clone_info *ci)
1165 {
1166 unsigned target_nr = 0;
1167 struct dm_target *ti;
1168
1169 BUG_ON(bio_has_data(ci->bio));
1170 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1171 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1172
1173 return 0;
1174 }
1175
1176 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1177 sector_t sector, unsigned *len)
1178 {
1179 struct bio *bio = ci->bio;
1180 struct dm_target_io *tio;
1181 unsigned target_bio_nr;
1182 unsigned num_target_bios = 1;
1183 int r = 0;
1184
1185 /*
1186 * Does the target want to receive duplicate copies of the bio?
1187 */
1188 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1189 num_target_bios = ti->num_write_bios(ti, bio);
1190
1191 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1192 tio = alloc_tio(ci, ti, target_bio_nr);
1193 tio->len_ptr = len;
1194 r = clone_bio(tio, bio, sector, *len);
1195 if (r < 0) {
1196 free_tio(tio);
1197 break;
1198 }
1199 __map_bio(tio);
1200 }
1201
1202 return r;
1203 }
1204
1205 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1206
1207 static unsigned get_num_discard_bios(struct dm_target *ti)
1208 {
1209 return ti->num_discard_bios;
1210 }
1211
1212 static unsigned get_num_write_same_bios(struct dm_target *ti)
1213 {
1214 return ti->num_write_same_bios;
1215 }
1216
1217 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1218 {
1219 return ti->num_write_zeroes_bios;
1220 }
1221
1222 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1223
1224 static bool is_split_required_for_discard(struct dm_target *ti)
1225 {
1226 return ti->split_discard_bios;
1227 }
1228
1229 static int __send_changing_extent_only(struct clone_info *ci,
1230 get_num_bios_fn get_num_bios,
1231 is_split_required_fn is_split_required)
1232 {
1233 struct dm_target *ti;
1234 unsigned len;
1235 unsigned num_bios;
1236
1237 do {
1238 ti = dm_table_find_target(ci->map, ci->sector);
1239 if (!dm_target_is_valid(ti))
1240 return -EIO;
1241
1242 /*
1243 * Even though the device advertised support for this type of
1244 * request, that does not mean every target supports it, and
1245 * reconfiguration might also have changed that since the
1246 * check was performed.
1247 */
1248 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1249 if (!num_bios)
1250 return -EOPNOTSUPP;
1251
1252 if (is_split_required && !is_split_required(ti))
1253 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1254 else
1255 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1256
1257 __send_duplicate_bios(ci, ti, num_bios, &len);
1258
1259 ci->sector += len;
1260 } while (ci->sector_count -= len);
1261
1262 return 0;
1263 }
1264
1265 static int __send_discard(struct clone_info *ci)
1266 {
1267 return __send_changing_extent_only(ci, get_num_discard_bios,
1268 is_split_required_for_discard);
1269 }
1270
1271 static int __send_write_same(struct clone_info *ci)
1272 {
1273 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1274 }
1275
1276 static int __send_write_zeroes(struct clone_info *ci)
1277 {
1278 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1279 }
1280
1281 /*
1282 * Select the correct strategy for processing a non-flush bio.
1283 */
1284 static int __split_and_process_non_flush(struct clone_info *ci)
1285 {
1286 struct bio *bio = ci->bio;
1287 struct dm_target *ti;
1288 unsigned len;
1289 int r;
1290
1291 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1292 return __send_discard(ci);
1293 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1294 return __send_write_same(ci);
1295 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1296 return __send_write_zeroes(ci);
1297
1298 ti = dm_table_find_target(ci->map, ci->sector);
1299 if (!dm_target_is_valid(ti))
1300 return -EIO;
1301
1302 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1303
1304 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1305 if (r < 0)
1306 return r;
1307
1308 ci->sector += len;
1309 ci->sector_count -= len;
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Entry point to split a bio into clones and submit them to the targets.
1316 */
1317 static void __split_and_process_bio(struct mapped_device *md,
1318 struct dm_table *map, struct bio *bio)
1319 {
1320 struct clone_info ci;
1321 int error = 0;
1322
1323 if (unlikely(!map)) {
1324 bio_io_error(bio);
1325 return;
1326 }
1327
1328 ci.map = map;
1329 ci.md = md;
1330 ci.io = alloc_io(md);
1331 ci.io->error = 0;
1332 atomic_set(&ci.io->io_count, 1);
1333 ci.io->bio = bio;
1334 ci.io->md = md;
1335 spin_lock_init(&ci.io->endio_lock);
1336 ci.sector = bio->bi_iter.bi_sector;
1337
1338 start_io_acct(ci.io);
1339
1340 if (bio->bi_opf & REQ_PREFLUSH) {
1341 ci.bio = &ci.md->flush_bio;
1342 ci.sector_count = 0;
1343 error = __send_empty_flush(&ci);
1344 /* dec_pending submits any data associated with flush */
1345 } else {
1346 ci.bio = bio;
1347 ci.sector_count = bio_sectors(bio);
1348 while (ci.sector_count && !error)
1349 error = __split_and_process_non_flush(&ci);
1350 }
1351
1352 /* drop the extra reference count */
1353 dec_pending(ci.io, error);
1354 }
1355 /*-----------------------------------------------------------------
1356 * CRUD END
1357 *---------------------------------------------------------------*/
1358
1359 /*
1360 * The request function that just remaps the bio built up by
1361 * dm_merge_bvec.
1362 */
1363 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1364 {
1365 int rw = bio_data_dir(bio);
1366 struct mapped_device *md = q->queuedata;
1367 int srcu_idx;
1368 struct dm_table *map;
1369
1370 map = dm_get_live_table(md, &srcu_idx);
1371
1372 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1373
1374 /* if we're suspended, we have to queue this io for later */
1375 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1376 dm_put_live_table(md, srcu_idx);
1377
1378 if (!(bio->bi_opf & REQ_RAHEAD))
1379 queue_io(md, bio);
1380 else
1381 bio_io_error(bio);
1382 return BLK_QC_T_NONE;
1383 }
1384
1385 __split_and_process_bio(md, map, bio);
1386 dm_put_live_table(md, srcu_idx);
1387 return BLK_QC_T_NONE;
1388 }
1389
1390 static int dm_any_congested(void *congested_data, int bdi_bits)
1391 {
1392 int r = bdi_bits;
1393 struct mapped_device *md = congested_data;
1394 struct dm_table *map;
1395
1396 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1397 if (dm_request_based(md)) {
1398 /*
1399 * With request-based DM we only need to check the
1400 * top-level queue for congestion.
1401 */
1402 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1403 } else {
1404 map = dm_get_live_table_fast(md);
1405 if (map)
1406 r = dm_table_any_congested(map, bdi_bits);
1407 dm_put_live_table_fast(md);
1408 }
1409 }
1410
1411 return r;
1412 }
1413
1414 /*-----------------------------------------------------------------
1415 * An IDR is used to keep track of allocated minor numbers.
1416 *---------------------------------------------------------------*/
1417 static void free_minor(int minor)
1418 {
1419 spin_lock(&_minor_lock);
1420 idr_remove(&_minor_idr, minor);
1421 spin_unlock(&_minor_lock);
1422 }
1423
1424 /*
1425 * See if the device with a specific minor # is free.
1426 */
1427 static int specific_minor(int minor)
1428 {
1429 int r;
1430
1431 if (minor >= (1 << MINORBITS))
1432 return -EINVAL;
1433
1434 idr_preload(GFP_KERNEL);
1435 spin_lock(&_minor_lock);
1436
1437 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1438
1439 spin_unlock(&_minor_lock);
1440 idr_preload_end();
1441 if (r < 0)
1442 return r == -ENOSPC ? -EBUSY : r;
1443 return 0;
1444 }
1445
1446 static int next_free_minor(int *minor)
1447 {
1448 int r;
1449
1450 idr_preload(GFP_KERNEL);
1451 spin_lock(&_minor_lock);
1452
1453 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1454
1455 spin_unlock(&_minor_lock);
1456 idr_preload_end();
1457 if (r < 0)
1458 return r;
1459 *minor = r;
1460 return 0;
1461 }
1462
1463 static const struct block_device_operations dm_blk_dops;
1464
1465 static void dm_wq_work(struct work_struct *work);
1466
1467 void dm_init_md_queue(struct mapped_device *md)
1468 {
1469 /*
1470 * Request-based dm devices cannot be stacked on top of bio-based dm
1471 * devices. The type of this dm device may not have been decided yet.
1472 * The type is decided at the first table loading time.
1473 * To prevent problematic device stacking, clear the queue flag
1474 * for request stacking support until then.
1475 *
1476 * This queue is new, so no concurrency on the queue_flags.
1477 */
1478 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1479
1480 /*
1481 * Initialize data that will only be used by a non-blk-mq DM queue
1482 * - must do so here (in alloc_dev callchain) before queue is used
1483 */
1484 md->queue->queuedata = md;
1485 md->queue->backing_dev_info->congested_data = md;
1486 }
1487
1488 void dm_init_normal_md_queue(struct mapped_device *md)
1489 {
1490 md->use_blk_mq = false;
1491 dm_init_md_queue(md);
1492
1493 /*
1494 * Initialize aspects of queue that aren't relevant for blk-mq
1495 */
1496 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1497 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1498 }
1499
1500 static void cleanup_mapped_device(struct mapped_device *md)
1501 {
1502 if (md->wq)
1503 destroy_workqueue(md->wq);
1504 if (md->kworker_task)
1505 kthread_stop(md->kworker_task);
1506 mempool_destroy(md->io_pool);
1507 if (md->bs)
1508 bioset_free(md->bs);
1509
1510 if (md->disk) {
1511 spin_lock(&_minor_lock);
1512 md->disk->private_data = NULL;
1513 spin_unlock(&_minor_lock);
1514 del_gendisk(md->disk);
1515 put_disk(md->disk);
1516 }
1517
1518 if (md->queue)
1519 blk_cleanup_queue(md->queue);
1520
1521 cleanup_srcu_struct(&md->io_barrier);
1522
1523 if (md->bdev) {
1524 bdput(md->bdev);
1525 md->bdev = NULL;
1526 }
1527
1528 dm_mq_cleanup_mapped_device(md);
1529 }
1530
1531 /*
1532 * Allocate and initialise a blank device with a given minor.
1533 */
1534 static struct mapped_device *alloc_dev(int minor)
1535 {
1536 int r, numa_node_id = dm_get_numa_node();
1537 struct mapped_device *md;
1538 void *old_md;
1539
1540 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1541 if (!md) {
1542 DMWARN("unable to allocate device, out of memory.");
1543 return NULL;
1544 }
1545
1546 if (!try_module_get(THIS_MODULE))
1547 goto bad_module_get;
1548
1549 /* get a minor number for the dev */
1550 if (minor == DM_ANY_MINOR)
1551 r = next_free_minor(&minor);
1552 else
1553 r = specific_minor(minor);
1554 if (r < 0)
1555 goto bad_minor;
1556
1557 r = init_srcu_struct(&md->io_barrier);
1558 if (r < 0)
1559 goto bad_io_barrier;
1560
1561 md->numa_node_id = numa_node_id;
1562 md->use_blk_mq = dm_use_blk_mq_default();
1563 md->init_tio_pdu = false;
1564 md->type = DM_TYPE_NONE;
1565 mutex_init(&md->suspend_lock);
1566 mutex_init(&md->type_lock);
1567 mutex_init(&md->table_devices_lock);
1568 spin_lock_init(&md->deferred_lock);
1569 atomic_set(&md->holders, 1);
1570 atomic_set(&md->open_count, 0);
1571 atomic_set(&md->event_nr, 0);
1572 atomic_set(&md->uevent_seq, 0);
1573 INIT_LIST_HEAD(&md->uevent_list);
1574 INIT_LIST_HEAD(&md->table_devices);
1575 spin_lock_init(&md->uevent_lock);
1576
1577 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1578 if (!md->queue)
1579 goto bad;
1580
1581 dm_init_md_queue(md);
1582
1583 md->disk = alloc_disk_node(1, numa_node_id);
1584 if (!md->disk)
1585 goto bad;
1586
1587 atomic_set(&md->pending[0], 0);
1588 atomic_set(&md->pending[1], 0);
1589 init_waitqueue_head(&md->wait);
1590 INIT_WORK(&md->work, dm_wq_work);
1591 init_waitqueue_head(&md->eventq);
1592 init_completion(&md->kobj_holder.completion);
1593 md->kworker_task = NULL;
1594
1595 md->disk->major = _major;
1596 md->disk->first_minor = minor;
1597 md->disk->fops = &dm_blk_dops;
1598 md->disk->queue = md->queue;
1599 md->disk->private_data = md;
1600 sprintf(md->disk->disk_name, "dm-%d", minor);
1601 add_disk(md->disk);
1602 format_dev_t(md->name, MKDEV(_major, minor));
1603
1604 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1605 if (!md->wq)
1606 goto bad;
1607
1608 md->bdev = bdget_disk(md->disk, 0);
1609 if (!md->bdev)
1610 goto bad;
1611
1612 bio_init(&md->flush_bio, NULL, 0);
1613 md->flush_bio.bi_bdev = md->bdev;
1614 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1615
1616 dm_stats_init(&md->stats);
1617
1618 /* Populate the mapping, nobody knows we exist yet */
1619 spin_lock(&_minor_lock);
1620 old_md = idr_replace(&_minor_idr, md, minor);
1621 spin_unlock(&_minor_lock);
1622
1623 BUG_ON(old_md != MINOR_ALLOCED);
1624
1625 return md;
1626
1627 bad:
1628 cleanup_mapped_device(md);
1629 bad_io_barrier:
1630 free_minor(minor);
1631 bad_minor:
1632 module_put(THIS_MODULE);
1633 bad_module_get:
1634 kfree(md);
1635 return NULL;
1636 }
1637
1638 static void unlock_fs(struct mapped_device *md);
1639
1640 static void free_dev(struct mapped_device *md)
1641 {
1642 int minor = MINOR(disk_devt(md->disk));
1643
1644 unlock_fs(md);
1645
1646 cleanup_mapped_device(md);
1647
1648 free_table_devices(&md->table_devices);
1649 dm_stats_cleanup(&md->stats);
1650 free_minor(minor);
1651
1652 module_put(THIS_MODULE);
1653 kfree(md);
1654 }
1655
1656 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1657 {
1658 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1659
1660 if (md->bs) {
1661 /* The md already has necessary mempools. */
1662 if (dm_table_bio_based(t)) {
1663 /*
1664 * Reload bioset because front_pad may have changed
1665 * because a different table was loaded.
1666 */
1667 bioset_free(md->bs);
1668 md->bs = p->bs;
1669 p->bs = NULL;
1670 }
1671 /*
1672 * There's no need to reload with request-based dm
1673 * because the size of front_pad doesn't change.
1674 * Note for future: If you are to reload bioset,
1675 * prep-ed requests in the queue may refer
1676 * to bio from the old bioset, so you must walk
1677 * through the queue to unprep.
1678 */
1679 goto out;
1680 }
1681
1682 BUG_ON(!p || md->io_pool || md->bs);
1683
1684 md->io_pool = p->io_pool;
1685 p->io_pool = NULL;
1686 md->bs = p->bs;
1687 p->bs = NULL;
1688
1689 out:
1690 /* mempool bind completed, no longer need any mempools in the table */
1691 dm_table_free_md_mempools(t);
1692 }
1693
1694 /*
1695 * Bind a table to the device.
1696 */
1697 static void event_callback(void *context)
1698 {
1699 unsigned long flags;
1700 LIST_HEAD(uevents);
1701 struct mapped_device *md = (struct mapped_device *) context;
1702
1703 spin_lock_irqsave(&md->uevent_lock, flags);
1704 list_splice_init(&md->uevent_list, &uevents);
1705 spin_unlock_irqrestore(&md->uevent_lock, flags);
1706
1707 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1708
1709 atomic_inc(&md->event_nr);
1710 wake_up(&md->eventq);
1711 }
1712
1713 /*
1714 * Protected by md->suspend_lock obtained by dm_swap_table().
1715 */
1716 static void __set_size(struct mapped_device *md, sector_t size)
1717 {
1718 set_capacity(md->disk, size);
1719
1720 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1721 }
1722
1723 /*
1724 * Returns old map, which caller must destroy.
1725 */
1726 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1727 struct queue_limits *limits)
1728 {
1729 struct dm_table *old_map;
1730 struct request_queue *q = md->queue;
1731 sector_t size;
1732
1733 lockdep_assert_held(&md->suspend_lock);
1734
1735 size = dm_table_get_size(t);
1736
1737 /*
1738 * Wipe any geometry if the size of the table changed.
1739 */
1740 if (size != dm_get_size(md))
1741 memset(&md->geometry, 0, sizeof(md->geometry));
1742
1743 __set_size(md, size);
1744
1745 dm_table_event_callback(t, event_callback, md);
1746
1747 /*
1748 * The queue hasn't been stopped yet, if the old table type wasn't
1749 * for request-based during suspension. So stop it to prevent
1750 * I/O mapping before resume.
1751 * This must be done before setting the queue restrictions,
1752 * because request-based dm may be run just after the setting.
1753 */
1754 if (dm_table_request_based(t)) {
1755 dm_stop_queue(q);
1756 /*
1757 * Leverage the fact that request-based DM targets are
1758 * immutable singletons and establish md->immutable_target
1759 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1760 */
1761 md->immutable_target = dm_table_get_immutable_target(t);
1762 }
1763
1764 __bind_mempools(md, t);
1765
1766 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1767 rcu_assign_pointer(md->map, (void *)t);
1768 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1769
1770 dm_table_set_restrictions(t, q, limits);
1771 if (old_map)
1772 dm_sync_table(md);
1773
1774 return old_map;
1775 }
1776
1777 /*
1778 * Returns unbound table for the caller to free.
1779 */
1780 static struct dm_table *__unbind(struct mapped_device *md)
1781 {
1782 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1783
1784 if (!map)
1785 return NULL;
1786
1787 dm_table_event_callback(map, NULL, NULL);
1788 RCU_INIT_POINTER(md->map, NULL);
1789 dm_sync_table(md);
1790
1791 return map;
1792 }
1793
1794 /*
1795 * Constructor for a new device.
1796 */
1797 int dm_create(int minor, struct mapped_device **result)
1798 {
1799 struct mapped_device *md;
1800
1801 md = alloc_dev(minor);
1802 if (!md)
1803 return -ENXIO;
1804
1805 dm_sysfs_init(md);
1806
1807 *result = md;
1808 return 0;
1809 }
1810
1811 /*
1812 * Functions to manage md->type.
1813 * All are required to hold md->type_lock.
1814 */
1815 void dm_lock_md_type(struct mapped_device *md)
1816 {
1817 mutex_lock(&md->type_lock);
1818 }
1819
1820 void dm_unlock_md_type(struct mapped_device *md)
1821 {
1822 mutex_unlock(&md->type_lock);
1823 }
1824
1825 void dm_set_md_type(struct mapped_device *md, unsigned type)
1826 {
1827 BUG_ON(!mutex_is_locked(&md->type_lock));
1828 md->type = type;
1829 }
1830
1831 unsigned dm_get_md_type(struct mapped_device *md)
1832 {
1833 return md->type;
1834 }
1835
1836 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1837 {
1838 return md->immutable_target_type;
1839 }
1840
1841 /*
1842 * The queue_limits are only valid as long as you have a reference
1843 * count on 'md'.
1844 */
1845 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1846 {
1847 BUG_ON(!atomic_read(&md->holders));
1848 return &md->queue->limits;
1849 }
1850 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1851
1852 /*
1853 * Setup the DM device's queue based on md's type
1854 */
1855 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1856 {
1857 int r;
1858 unsigned type = dm_get_md_type(md);
1859
1860 switch (type) {
1861 case DM_TYPE_REQUEST_BASED:
1862 r = dm_old_init_request_queue(md, t);
1863 if (r) {
1864 DMERR("Cannot initialize queue for request-based mapped device");
1865 return r;
1866 }
1867 break;
1868 case DM_TYPE_MQ_REQUEST_BASED:
1869 r = dm_mq_init_request_queue(md, t);
1870 if (r) {
1871 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1872 return r;
1873 }
1874 break;
1875 case DM_TYPE_BIO_BASED:
1876 case DM_TYPE_DAX_BIO_BASED:
1877 dm_init_normal_md_queue(md);
1878 blk_queue_make_request(md->queue, dm_make_request);
1879 /*
1880 * DM handles splitting bios as needed. Free the bio_split bioset
1881 * since it won't be used (saves 1 process per bio-based DM device).
1882 */
1883 bioset_free(md->queue->bio_split);
1884 md->queue->bio_split = NULL;
1885
1886 if (type == DM_TYPE_DAX_BIO_BASED)
1887 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1888 break;
1889 }
1890
1891 return 0;
1892 }
1893
1894 struct mapped_device *dm_get_md(dev_t dev)
1895 {
1896 struct mapped_device *md;
1897 unsigned minor = MINOR(dev);
1898
1899 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1900 return NULL;
1901
1902 spin_lock(&_minor_lock);
1903
1904 md = idr_find(&_minor_idr, minor);
1905 if (md) {
1906 if ((md == MINOR_ALLOCED ||
1907 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1908 dm_deleting_md(md) ||
1909 test_bit(DMF_FREEING, &md->flags))) {
1910 md = NULL;
1911 goto out;
1912 }
1913 dm_get(md);
1914 }
1915
1916 out:
1917 spin_unlock(&_minor_lock);
1918
1919 return md;
1920 }
1921 EXPORT_SYMBOL_GPL(dm_get_md);
1922
1923 void *dm_get_mdptr(struct mapped_device *md)
1924 {
1925 return md->interface_ptr;
1926 }
1927
1928 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1929 {
1930 md->interface_ptr = ptr;
1931 }
1932
1933 void dm_get(struct mapped_device *md)
1934 {
1935 atomic_inc(&md->holders);
1936 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1937 }
1938
1939 int dm_hold(struct mapped_device *md)
1940 {
1941 spin_lock(&_minor_lock);
1942 if (test_bit(DMF_FREEING, &md->flags)) {
1943 spin_unlock(&_minor_lock);
1944 return -EBUSY;
1945 }
1946 dm_get(md);
1947 spin_unlock(&_minor_lock);
1948 return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(dm_hold);
1951
1952 const char *dm_device_name(struct mapped_device *md)
1953 {
1954 return md->name;
1955 }
1956 EXPORT_SYMBOL_GPL(dm_device_name);
1957
1958 static void __dm_destroy(struct mapped_device *md, bool wait)
1959 {
1960 struct request_queue *q = dm_get_md_queue(md);
1961 struct dm_table *map;
1962 int srcu_idx;
1963
1964 might_sleep();
1965
1966 spin_lock(&_minor_lock);
1967 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1968 set_bit(DMF_FREEING, &md->flags);
1969 spin_unlock(&_minor_lock);
1970
1971 blk_set_queue_dying(q);
1972
1973 if (dm_request_based(md) && md->kworker_task)
1974 kthread_flush_worker(&md->kworker);
1975
1976 /*
1977 * Take suspend_lock so that presuspend and postsuspend methods
1978 * do not race with internal suspend.
1979 */
1980 mutex_lock(&md->suspend_lock);
1981 map = dm_get_live_table(md, &srcu_idx);
1982 if (!dm_suspended_md(md)) {
1983 dm_table_presuspend_targets(map);
1984 dm_table_postsuspend_targets(map);
1985 }
1986 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1987 dm_put_live_table(md, srcu_idx);
1988 mutex_unlock(&md->suspend_lock);
1989
1990 /*
1991 * Rare, but there may be I/O requests still going to complete,
1992 * for example. Wait for all references to disappear.
1993 * No one should increment the reference count of the mapped_device,
1994 * after the mapped_device state becomes DMF_FREEING.
1995 */
1996 if (wait)
1997 while (atomic_read(&md->holders))
1998 msleep(1);
1999 else if (atomic_read(&md->holders))
2000 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2001 dm_device_name(md), atomic_read(&md->holders));
2002
2003 dm_sysfs_exit(md);
2004 dm_table_destroy(__unbind(md));
2005 free_dev(md);
2006 }
2007
2008 void dm_destroy(struct mapped_device *md)
2009 {
2010 __dm_destroy(md, true);
2011 }
2012
2013 void dm_destroy_immediate(struct mapped_device *md)
2014 {
2015 __dm_destroy(md, false);
2016 }
2017
2018 void dm_put(struct mapped_device *md)
2019 {
2020 atomic_dec(&md->holders);
2021 }
2022 EXPORT_SYMBOL_GPL(dm_put);
2023
2024 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2025 {
2026 int r = 0;
2027 DEFINE_WAIT(wait);
2028
2029 while (1) {
2030 prepare_to_wait(&md->wait, &wait, task_state);
2031
2032 if (!md_in_flight(md))
2033 break;
2034
2035 if (signal_pending_state(task_state, current)) {
2036 r = -EINTR;
2037 break;
2038 }
2039
2040 io_schedule();
2041 }
2042 finish_wait(&md->wait, &wait);
2043
2044 return r;
2045 }
2046
2047 /*
2048 * Process the deferred bios
2049 */
2050 static void dm_wq_work(struct work_struct *work)
2051 {
2052 struct mapped_device *md = container_of(work, struct mapped_device,
2053 work);
2054 struct bio *c;
2055 int srcu_idx;
2056 struct dm_table *map;
2057
2058 map = dm_get_live_table(md, &srcu_idx);
2059
2060 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2061 spin_lock_irq(&md->deferred_lock);
2062 c = bio_list_pop(&md->deferred);
2063 spin_unlock_irq(&md->deferred_lock);
2064
2065 if (!c)
2066 break;
2067
2068 if (dm_request_based(md))
2069 generic_make_request(c);
2070 else
2071 __split_and_process_bio(md, map, c);
2072 }
2073
2074 dm_put_live_table(md, srcu_idx);
2075 }
2076
2077 static void dm_queue_flush(struct mapped_device *md)
2078 {
2079 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2080 smp_mb__after_atomic();
2081 queue_work(md->wq, &md->work);
2082 }
2083
2084 /*
2085 * Swap in a new table, returning the old one for the caller to destroy.
2086 */
2087 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2088 {
2089 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2090 struct queue_limits limits;
2091 int r;
2092
2093 mutex_lock(&md->suspend_lock);
2094
2095 /* device must be suspended */
2096 if (!dm_suspended_md(md))
2097 goto out;
2098
2099 /*
2100 * If the new table has no data devices, retain the existing limits.
2101 * This helps multipath with queue_if_no_path if all paths disappear,
2102 * then new I/O is queued based on these limits, and then some paths
2103 * reappear.
2104 */
2105 if (dm_table_has_no_data_devices(table)) {
2106 live_map = dm_get_live_table_fast(md);
2107 if (live_map)
2108 limits = md->queue->limits;
2109 dm_put_live_table_fast(md);
2110 }
2111
2112 if (!live_map) {
2113 r = dm_calculate_queue_limits(table, &limits);
2114 if (r) {
2115 map = ERR_PTR(r);
2116 goto out;
2117 }
2118 }
2119
2120 map = __bind(md, table, &limits);
2121
2122 out:
2123 mutex_unlock(&md->suspend_lock);
2124 return map;
2125 }
2126
2127 /*
2128 * Functions to lock and unlock any filesystem running on the
2129 * device.
2130 */
2131 static int lock_fs(struct mapped_device *md)
2132 {
2133 int r;
2134
2135 WARN_ON(md->frozen_sb);
2136
2137 md->frozen_sb = freeze_bdev(md->bdev);
2138 if (IS_ERR(md->frozen_sb)) {
2139 r = PTR_ERR(md->frozen_sb);
2140 md->frozen_sb = NULL;
2141 return r;
2142 }
2143
2144 set_bit(DMF_FROZEN, &md->flags);
2145
2146 return 0;
2147 }
2148
2149 static void unlock_fs(struct mapped_device *md)
2150 {
2151 if (!test_bit(DMF_FROZEN, &md->flags))
2152 return;
2153
2154 thaw_bdev(md->bdev, md->frozen_sb);
2155 md->frozen_sb = NULL;
2156 clear_bit(DMF_FROZEN, &md->flags);
2157 }
2158
2159 /*
2160 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2161 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2162 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2163 *
2164 * If __dm_suspend returns 0, the device is completely quiescent
2165 * now. There is no request-processing activity. All new requests
2166 * are being added to md->deferred list.
2167 *
2168 * Caller must hold md->suspend_lock
2169 */
2170 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2171 unsigned suspend_flags, long task_state,
2172 int dmf_suspended_flag)
2173 {
2174 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2175 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2176 int r;
2177
2178 lockdep_assert_held(&md->suspend_lock);
2179
2180 /*
2181 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2182 * This flag is cleared before dm_suspend returns.
2183 */
2184 if (noflush)
2185 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2186
2187 /*
2188 * This gets reverted if there's an error later and the targets
2189 * provide the .presuspend_undo hook.
2190 */
2191 dm_table_presuspend_targets(map);
2192
2193 /*
2194 * Flush I/O to the device.
2195 * Any I/O submitted after lock_fs() may not be flushed.
2196 * noflush takes precedence over do_lockfs.
2197 * (lock_fs() flushes I/Os and waits for them to complete.)
2198 */
2199 if (!noflush && do_lockfs) {
2200 r = lock_fs(md);
2201 if (r) {
2202 dm_table_presuspend_undo_targets(map);
2203 return r;
2204 }
2205 }
2206
2207 /*
2208 * Here we must make sure that no processes are submitting requests
2209 * to target drivers i.e. no one may be executing
2210 * __split_and_process_bio. This is called from dm_request and
2211 * dm_wq_work.
2212 *
2213 * To get all processes out of __split_and_process_bio in dm_request,
2214 * we take the write lock. To prevent any process from reentering
2215 * __split_and_process_bio from dm_request and quiesce the thread
2216 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2217 * flush_workqueue(md->wq).
2218 */
2219 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2220 if (map)
2221 synchronize_srcu(&md->io_barrier);
2222
2223 /*
2224 * Stop md->queue before flushing md->wq in case request-based
2225 * dm defers requests to md->wq from md->queue.
2226 */
2227 if (dm_request_based(md)) {
2228 dm_stop_queue(md->queue);
2229 if (md->kworker_task)
2230 kthread_flush_worker(&md->kworker);
2231 }
2232
2233 flush_workqueue(md->wq);
2234
2235 /*
2236 * At this point no more requests are entering target request routines.
2237 * We call dm_wait_for_completion to wait for all existing requests
2238 * to finish.
2239 */
2240 r = dm_wait_for_completion(md, task_state);
2241 if (!r)
2242 set_bit(dmf_suspended_flag, &md->flags);
2243
2244 if (noflush)
2245 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2246 if (map)
2247 synchronize_srcu(&md->io_barrier);
2248
2249 /* were we interrupted ? */
2250 if (r < 0) {
2251 dm_queue_flush(md);
2252
2253 if (dm_request_based(md))
2254 dm_start_queue(md->queue);
2255
2256 unlock_fs(md);
2257 dm_table_presuspend_undo_targets(map);
2258 /* pushback list is already flushed, so skip flush */
2259 }
2260
2261 return r;
2262 }
2263
2264 /*
2265 * We need to be able to change a mapping table under a mounted
2266 * filesystem. For example we might want to move some data in
2267 * the background. Before the table can be swapped with
2268 * dm_bind_table, dm_suspend must be called to flush any in
2269 * flight bios and ensure that any further io gets deferred.
2270 */
2271 /*
2272 * Suspend mechanism in request-based dm.
2273 *
2274 * 1. Flush all I/Os by lock_fs() if needed.
2275 * 2. Stop dispatching any I/O by stopping the request_queue.
2276 * 3. Wait for all in-flight I/Os to be completed or requeued.
2277 *
2278 * To abort suspend, start the request_queue.
2279 */
2280 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2281 {
2282 struct dm_table *map = NULL;
2283 int r = 0;
2284
2285 retry:
2286 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2287
2288 if (dm_suspended_md(md)) {
2289 r = -EINVAL;
2290 goto out_unlock;
2291 }
2292
2293 if (dm_suspended_internally_md(md)) {
2294 /* already internally suspended, wait for internal resume */
2295 mutex_unlock(&md->suspend_lock);
2296 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2297 if (r)
2298 return r;
2299 goto retry;
2300 }
2301
2302 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2303
2304 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2305 if (r)
2306 goto out_unlock;
2307
2308 dm_table_postsuspend_targets(map);
2309
2310 out_unlock:
2311 mutex_unlock(&md->suspend_lock);
2312 return r;
2313 }
2314
2315 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2316 {
2317 if (map) {
2318 int r = dm_table_resume_targets(map);
2319 if (r)
2320 return r;
2321 }
2322
2323 dm_queue_flush(md);
2324
2325 /*
2326 * Flushing deferred I/Os must be done after targets are resumed
2327 * so that mapping of targets can work correctly.
2328 * Request-based dm is queueing the deferred I/Os in its request_queue.
2329 */
2330 if (dm_request_based(md))
2331 dm_start_queue(md->queue);
2332
2333 unlock_fs(md);
2334
2335 return 0;
2336 }
2337
2338 int dm_resume(struct mapped_device *md)
2339 {
2340 int r;
2341 struct dm_table *map = NULL;
2342
2343 retry:
2344 r = -EINVAL;
2345 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2346
2347 if (!dm_suspended_md(md))
2348 goto out;
2349
2350 if (dm_suspended_internally_md(md)) {
2351 /* already internally suspended, wait for internal resume */
2352 mutex_unlock(&md->suspend_lock);
2353 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2354 if (r)
2355 return r;
2356 goto retry;
2357 }
2358
2359 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2360 if (!map || !dm_table_get_size(map))
2361 goto out;
2362
2363 r = __dm_resume(md, map);
2364 if (r)
2365 goto out;
2366
2367 clear_bit(DMF_SUSPENDED, &md->flags);
2368 out:
2369 mutex_unlock(&md->suspend_lock);
2370
2371 return r;
2372 }
2373
2374 /*
2375 * Internal suspend/resume works like userspace-driven suspend. It waits
2376 * until all bios finish and prevents issuing new bios to the target drivers.
2377 * It may be used only from the kernel.
2378 */
2379
2380 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2381 {
2382 struct dm_table *map = NULL;
2383
2384 if (md->internal_suspend_count++)
2385 return; /* nested internal suspend */
2386
2387 if (dm_suspended_md(md)) {
2388 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2389 return; /* nest suspend */
2390 }
2391
2392 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2393
2394 /*
2395 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2396 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2397 * would require changing .presuspend to return an error -- avoid this
2398 * until there is a need for more elaborate variants of internal suspend.
2399 */
2400 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2401 DMF_SUSPENDED_INTERNALLY);
2402
2403 dm_table_postsuspend_targets(map);
2404 }
2405
2406 static void __dm_internal_resume(struct mapped_device *md)
2407 {
2408 BUG_ON(!md->internal_suspend_count);
2409
2410 if (--md->internal_suspend_count)
2411 return; /* resume from nested internal suspend */
2412
2413 if (dm_suspended_md(md))
2414 goto done; /* resume from nested suspend */
2415
2416 /*
2417 * NOTE: existing callers don't need to call dm_table_resume_targets
2418 * (which may fail -- so best to avoid it for now by passing NULL map)
2419 */
2420 (void) __dm_resume(md, NULL);
2421
2422 done:
2423 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2424 smp_mb__after_atomic();
2425 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2426 }
2427
2428 void dm_internal_suspend_noflush(struct mapped_device *md)
2429 {
2430 mutex_lock(&md->suspend_lock);
2431 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2432 mutex_unlock(&md->suspend_lock);
2433 }
2434 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2435
2436 void dm_internal_resume(struct mapped_device *md)
2437 {
2438 mutex_lock(&md->suspend_lock);
2439 __dm_internal_resume(md);
2440 mutex_unlock(&md->suspend_lock);
2441 }
2442 EXPORT_SYMBOL_GPL(dm_internal_resume);
2443
2444 /*
2445 * Fast variants of internal suspend/resume hold md->suspend_lock,
2446 * which prevents interaction with userspace-driven suspend.
2447 */
2448
2449 void dm_internal_suspend_fast(struct mapped_device *md)
2450 {
2451 mutex_lock(&md->suspend_lock);
2452 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2453 return;
2454
2455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2456 synchronize_srcu(&md->io_barrier);
2457 flush_workqueue(md->wq);
2458 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2459 }
2460 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2461
2462 void dm_internal_resume_fast(struct mapped_device *md)
2463 {
2464 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2465 goto done;
2466
2467 dm_queue_flush(md);
2468
2469 done:
2470 mutex_unlock(&md->suspend_lock);
2471 }
2472 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2473
2474 /*-----------------------------------------------------------------
2475 * Event notification.
2476 *---------------------------------------------------------------*/
2477 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2478 unsigned cookie)
2479 {
2480 char udev_cookie[DM_COOKIE_LENGTH];
2481 char *envp[] = { udev_cookie, NULL };
2482
2483 if (!cookie)
2484 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2485 else {
2486 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2487 DM_COOKIE_ENV_VAR_NAME, cookie);
2488 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2489 action, envp);
2490 }
2491 }
2492
2493 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2494 {
2495 return atomic_add_return(1, &md->uevent_seq);
2496 }
2497
2498 uint32_t dm_get_event_nr(struct mapped_device *md)
2499 {
2500 return atomic_read(&md->event_nr);
2501 }
2502
2503 int dm_wait_event(struct mapped_device *md, int event_nr)
2504 {
2505 return wait_event_interruptible(md->eventq,
2506 (event_nr != atomic_read(&md->event_nr)));
2507 }
2508
2509 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2510 {
2511 unsigned long flags;
2512
2513 spin_lock_irqsave(&md->uevent_lock, flags);
2514 list_add(elist, &md->uevent_list);
2515 spin_unlock_irqrestore(&md->uevent_lock, flags);
2516 }
2517
2518 /*
2519 * The gendisk is only valid as long as you have a reference
2520 * count on 'md'.
2521 */
2522 struct gendisk *dm_disk(struct mapped_device *md)
2523 {
2524 return md->disk;
2525 }
2526 EXPORT_SYMBOL_GPL(dm_disk);
2527
2528 struct kobject *dm_kobject(struct mapped_device *md)
2529 {
2530 return &md->kobj_holder.kobj;
2531 }
2532
2533 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2534 {
2535 struct mapped_device *md;
2536
2537 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2538
2539 if (test_bit(DMF_FREEING, &md->flags) ||
2540 dm_deleting_md(md))
2541 return NULL;
2542
2543 dm_get(md);
2544 return md;
2545 }
2546
2547 int dm_suspended_md(struct mapped_device *md)
2548 {
2549 return test_bit(DMF_SUSPENDED, &md->flags);
2550 }
2551
2552 int dm_suspended_internally_md(struct mapped_device *md)
2553 {
2554 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2555 }
2556
2557 int dm_test_deferred_remove_flag(struct mapped_device *md)
2558 {
2559 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2560 }
2561
2562 int dm_suspended(struct dm_target *ti)
2563 {
2564 return dm_suspended_md(dm_table_get_md(ti->table));
2565 }
2566 EXPORT_SYMBOL_GPL(dm_suspended);
2567
2568 int dm_noflush_suspending(struct dm_target *ti)
2569 {
2570 return __noflush_suspending(dm_table_get_md(ti->table));
2571 }
2572 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2573
2574 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2575 unsigned integrity, unsigned per_io_data_size)
2576 {
2577 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2578 unsigned int pool_size = 0;
2579 unsigned int front_pad;
2580
2581 if (!pools)
2582 return NULL;
2583
2584 switch (type) {
2585 case DM_TYPE_BIO_BASED:
2586 case DM_TYPE_DAX_BIO_BASED:
2587 pool_size = dm_get_reserved_bio_based_ios();
2588 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2589
2590 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2591 if (!pools->io_pool)
2592 goto out;
2593 break;
2594 case DM_TYPE_REQUEST_BASED:
2595 case DM_TYPE_MQ_REQUEST_BASED:
2596 pool_size = dm_get_reserved_rq_based_ios();
2597 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2598 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2599 break;
2600 default:
2601 BUG();
2602 }
2603
2604 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2605 if (!pools->bs)
2606 goto out;
2607
2608 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2609 goto out;
2610
2611 return pools;
2612
2613 out:
2614 dm_free_md_mempools(pools);
2615
2616 return NULL;
2617 }
2618
2619 void dm_free_md_mempools(struct dm_md_mempools *pools)
2620 {
2621 if (!pools)
2622 return;
2623
2624 mempool_destroy(pools->io_pool);
2625
2626 if (pools->bs)
2627 bioset_free(pools->bs);
2628
2629 kfree(pools);
2630 }
2631
2632 struct dm_pr {
2633 u64 old_key;
2634 u64 new_key;
2635 u32 flags;
2636 bool fail_early;
2637 };
2638
2639 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2640 void *data)
2641 {
2642 struct mapped_device *md = bdev->bd_disk->private_data;
2643 struct dm_table *table;
2644 struct dm_target *ti;
2645 int ret = -ENOTTY, srcu_idx;
2646
2647 table = dm_get_live_table(md, &srcu_idx);
2648 if (!table || !dm_table_get_size(table))
2649 goto out;
2650
2651 /* We only support devices that have a single target */
2652 if (dm_table_get_num_targets(table) != 1)
2653 goto out;
2654 ti = dm_table_get_target(table, 0);
2655
2656 ret = -EINVAL;
2657 if (!ti->type->iterate_devices)
2658 goto out;
2659
2660 ret = ti->type->iterate_devices(ti, fn, data);
2661 out:
2662 dm_put_live_table(md, srcu_idx);
2663 return ret;
2664 }
2665
2666 /*
2667 * For register / unregister we need to manually call out to every path.
2668 */
2669 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2670 sector_t start, sector_t len, void *data)
2671 {
2672 struct dm_pr *pr = data;
2673 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2674
2675 if (!ops || !ops->pr_register)
2676 return -EOPNOTSUPP;
2677 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2678 }
2679
2680 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2681 u32 flags)
2682 {
2683 struct dm_pr pr = {
2684 .old_key = old_key,
2685 .new_key = new_key,
2686 .flags = flags,
2687 .fail_early = true,
2688 };
2689 int ret;
2690
2691 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2692 if (ret && new_key) {
2693 /* unregister all paths if we failed to register any path */
2694 pr.old_key = new_key;
2695 pr.new_key = 0;
2696 pr.flags = 0;
2697 pr.fail_early = false;
2698 dm_call_pr(bdev, __dm_pr_register, &pr);
2699 }
2700
2701 return ret;
2702 }
2703
2704 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2705 u32 flags)
2706 {
2707 struct mapped_device *md = bdev->bd_disk->private_data;
2708 const struct pr_ops *ops;
2709 fmode_t mode;
2710 int r;
2711
2712 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2713 if (r < 0)
2714 return r;
2715
2716 ops = bdev->bd_disk->fops->pr_ops;
2717 if (ops && ops->pr_reserve)
2718 r = ops->pr_reserve(bdev, key, type, flags);
2719 else
2720 r = -EOPNOTSUPP;
2721
2722 bdput(bdev);
2723 return r;
2724 }
2725
2726 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2727 {
2728 struct mapped_device *md = bdev->bd_disk->private_data;
2729 const struct pr_ops *ops;
2730 fmode_t mode;
2731 int r;
2732
2733 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2734 if (r < 0)
2735 return r;
2736
2737 ops = bdev->bd_disk->fops->pr_ops;
2738 if (ops && ops->pr_release)
2739 r = ops->pr_release(bdev, key, type);
2740 else
2741 r = -EOPNOTSUPP;
2742
2743 bdput(bdev);
2744 return r;
2745 }
2746
2747 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2748 enum pr_type type, bool abort)
2749 {
2750 struct mapped_device *md = bdev->bd_disk->private_data;
2751 const struct pr_ops *ops;
2752 fmode_t mode;
2753 int r;
2754
2755 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2756 if (r < 0)
2757 return r;
2758
2759 ops = bdev->bd_disk->fops->pr_ops;
2760 if (ops && ops->pr_preempt)
2761 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2762 else
2763 r = -EOPNOTSUPP;
2764
2765 bdput(bdev);
2766 return r;
2767 }
2768
2769 static int dm_pr_clear(struct block_device *bdev, u64 key)
2770 {
2771 struct mapped_device *md = bdev->bd_disk->private_data;
2772 const struct pr_ops *ops;
2773 fmode_t mode;
2774 int r;
2775
2776 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2777 if (r < 0)
2778 return r;
2779
2780 ops = bdev->bd_disk->fops->pr_ops;
2781 if (ops && ops->pr_clear)
2782 r = ops->pr_clear(bdev, key);
2783 else
2784 r = -EOPNOTSUPP;
2785
2786 bdput(bdev);
2787 return r;
2788 }
2789
2790 static const struct pr_ops dm_pr_ops = {
2791 .pr_register = dm_pr_register,
2792 .pr_reserve = dm_pr_reserve,
2793 .pr_release = dm_pr_release,
2794 .pr_preempt = dm_pr_preempt,
2795 .pr_clear = dm_pr_clear,
2796 };
2797
2798 static const struct block_device_operations dm_blk_dops = {
2799 .open = dm_blk_open,
2800 .release = dm_blk_close,
2801 .ioctl = dm_blk_ioctl,
2802 .direct_access = dm_blk_direct_access,
2803 .getgeo = dm_blk_getgeo,
2804 .pr_ops = &dm_pr_ops,
2805 .owner = THIS_MODULE
2806 };
2807
2808 /*
2809 * module hooks
2810 */
2811 module_init(dm_init);
2812 module_exit(dm_exit);
2813
2814 module_param(major, uint, 0);
2815 MODULE_PARM_DESC(major, "The major number of the device mapper");
2816
2817 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2818 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2819
2820 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2821 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2822
2823 MODULE_DESCRIPTION(DM_NAME " driver");
2824 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2825 MODULE_LICENSE("GPL");