]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
Merge branches 'acpi-scan', 'acpi-utils' and 'acpi-pm'
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23
24 #include <trace/events/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 #ifdef CONFIG_PRINTK
29 /*
30 * ratelimit state to be used in DMXXX_LIMIT().
31 */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 DEFAULT_RATELIMIT_INTERVAL,
34 DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 static const char *_name = DM_NAME;
46
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49
50 static DEFINE_IDR(_minor_idr);
51
52 static DEFINE_SPINLOCK(_minor_lock);
53
54 static void do_deferred_remove(struct work_struct *w);
55
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57
58 static struct workqueue_struct *deferred_remove_workqueue;
59
60 /*
61 * For bio-based dm.
62 * One of these is allocated per bio.
63 */
64 struct dm_io {
65 struct mapped_device *md;
66 int error;
67 atomic_t io_count;
68 struct bio *bio;
69 unsigned long start_time;
70 spinlock_t endio_lock;
71 struct dm_stats_aux stats_aux;
72 };
73
74 /*
75 * For request-based dm.
76 * One of these is allocated per request.
77 */
78 struct dm_rq_target_io {
79 struct mapped_device *md;
80 struct dm_target *ti;
81 struct request *orig, clone;
82 int error;
83 union map_info info;
84 };
85
86 /*
87 * For request-based dm - the bio clones we allocate are embedded in these
88 * structs.
89 *
90 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
91 * the bioset is created - this means the bio has to come at the end of the
92 * struct.
93 */
94 struct dm_rq_clone_bio_info {
95 struct bio *orig;
96 struct dm_rq_target_io *tio;
97 struct bio clone;
98 };
99
100 union map_info *dm_get_rq_mapinfo(struct request *rq)
101 {
102 if (rq && rq->end_io_data)
103 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
104 return NULL;
105 }
106 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
107
108 #define MINOR_ALLOCED ((void *)-1)
109
110 /*
111 * Bits for the md->flags field.
112 */
113 #define DMF_BLOCK_IO_FOR_SUSPEND 0
114 #define DMF_SUSPENDED 1
115 #define DMF_FROZEN 2
116 #define DMF_FREEING 3
117 #define DMF_DELETING 4
118 #define DMF_NOFLUSH_SUSPENDING 5
119 #define DMF_MERGE_IS_OPTIONAL 6
120 #define DMF_DEFERRED_REMOVE 7
121 #define DMF_SUSPENDED_INTERNALLY 8
122
123 /*
124 * A dummy definition to make RCU happy.
125 * struct dm_table should never be dereferenced in this file.
126 */
127 struct dm_table {
128 int undefined__;
129 };
130
131 /*
132 * Work processed by per-device workqueue.
133 */
134 struct mapped_device {
135 struct srcu_struct io_barrier;
136 struct mutex suspend_lock;
137 atomic_t holders;
138 atomic_t open_count;
139
140 /*
141 * The current mapping.
142 * Use dm_get_live_table{_fast} or take suspend_lock for
143 * dereference.
144 */
145 struct dm_table __rcu *map;
146
147 struct list_head table_devices;
148 struct mutex table_devices_lock;
149
150 unsigned long flags;
151
152 struct request_queue *queue;
153 unsigned type;
154 /* Protect queue and type against concurrent access. */
155 struct mutex type_lock;
156
157 struct target_type *immutable_target_type;
158
159 struct gendisk *disk;
160 char name[16];
161
162 void *interface_ptr;
163
164 /*
165 * A list of ios that arrived while we were suspended.
166 */
167 atomic_t pending[2];
168 wait_queue_head_t wait;
169 struct work_struct work;
170 struct bio_list deferred;
171 spinlock_t deferred_lock;
172
173 /*
174 * Processing queue (flush)
175 */
176 struct workqueue_struct *wq;
177
178 /*
179 * io objects are allocated from here.
180 */
181 mempool_t *io_pool;
182
183 struct bio_set *bs;
184
185 /*
186 * Event handling.
187 */
188 atomic_t event_nr;
189 wait_queue_head_t eventq;
190 atomic_t uevent_seq;
191 struct list_head uevent_list;
192 spinlock_t uevent_lock; /* Protect access to uevent_list */
193
194 /*
195 * freeze/thaw support require holding onto a super block
196 */
197 struct super_block *frozen_sb;
198 struct block_device *bdev;
199
200 /* forced geometry settings */
201 struct hd_geometry geometry;
202
203 /* kobject and completion */
204 struct dm_kobject_holder kobj_holder;
205
206 /* zero-length flush that will be cloned and submitted to targets */
207 struct bio flush_bio;
208
209 struct dm_stats stats;
210 };
211
212 /*
213 * For mempools pre-allocation at the table loading time.
214 */
215 struct dm_md_mempools {
216 mempool_t *io_pool;
217 struct bio_set *bs;
218 };
219
220 struct table_device {
221 struct list_head list;
222 atomic_t count;
223 struct dm_dev dm_dev;
224 };
225
226 #define RESERVED_BIO_BASED_IOS 16
227 #define RESERVED_REQUEST_BASED_IOS 256
228 #define RESERVED_MAX_IOS 1024
229 static struct kmem_cache *_io_cache;
230 static struct kmem_cache *_rq_tio_cache;
231
232 /*
233 * Bio-based DM's mempools' reserved IOs set by the user.
234 */
235 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
236
237 /*
238 * Request-based DM's mempools' reserved IOs set by the user.
239 */
240 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
241
242 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
243 unsigned def, unsigned max)
244 {
245 unsigned ios = ACCESS_ONCE(*reserved_ios);
246 unsigned modified_ios = 0;
247
248 if (!ios)
249 modified_ios = def;
250 else if (ios > max)
251 modified_ios = max;
252
253 if (modified_ios) {
254 (void)cmpxchg(reserved_ios, ios, modified_ios);
255 ios = modified_ios;
256 }
257
258 return ios;
259 }
260
261 unsigned dm_get_reserved_bio_based_ios(void)
262 {
263 return __dm_get_reserved_ios(&reserved_bio_based_ios,
264 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
265 }
266 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
267
268 unsigned dm_get_reserved_rq_based_ios(void)
269 {
270 return __dm_get_reserved_ios(&reserved_rq_based_ios,
271 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
272 }
273 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
274
275 static int __init local_init(void)
276 {
277 int r = -ENOMEM;
278
279 /* allocate a slab for the dm_ios */
280 _io_cache = KMEM_CACHE(dm_io, 0);
281 if (!_io_cache)
282 return r;
283
284 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
285 if (!_rq_tio_cache)
286 goto out_free_io_cache;
287
288 r = dm_uevent_init();
289 if (r)
290 goto out_free_rq_tio_cache;
291
292 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
293 if (!deferred_remove_workqueue) {
294 r = -ENOMEM;
295 goto out_uevent_exit;
296 }
297
298 _major = major;
299 r = register_blkdev(_major, _name);
300 if (r < 0)
301 goto out_free_workqueue;
302
303 if (!_major)
304 _major = r;
305
306 return 0;
307
308 out_free_workqueue:
309 destroy_workqueue(deferred_remove_workqueue);
310 out_uevent_exit:
311 dm_uevent_exit();
312 out_free_rq_tio_cache:
313 kmem_cache_destroy(_rq_tio_cache);
314 out_free_io_cache:
315 kmem_cache_destroy(_io_cache);
316
317 return r;
318 }
319
320 static void local_exit(void)
321 {
322 flush_scheduled_work();
323 destroy_workqueue(deferred_remove_workqueue);
324
325 kmem_cache_destroy(_rq_tio_cache);
326 kmem_cache_destroy(_io_cache);
327 unregister_blkdev(_major, _name);
328 dm_uevent_exit();
329
330 _major = 0;
331
332 DMINFO("cleaned up");
333 }
334
335 static int (*_inits[])(void) __initdata = {
336 local_init,
337 dm_target_init,
338 dm_linear_init,
339 dm_stripe_init,
340 dm_io_init,
341 dm_kcopyd_init,
342 dm_interface_init,
343 dm_statistics_init,
344 };
345
346 static void (*_exits[])(void) = {
347 local_exit,
348 dm_target_exit,
349 dm_linear_exit,
350 dm_stripe_exit,
351 dm_io_exit,
352 dm_kcopyd_exit,
353 dm_interface_exit,
354 dm_statistics_exit,
355 };
356
357 static int __init dm_init(void)
358 {
359 const int count = ARRAY_SIZE(_inits);
360
361 int r, i;
362
363 for (i = 0; i < count; i++) {
364 r = _inits[i]();
365 if (r)
366 goto bad;
367 }
368
369 return 0;
370
371 bad:
372 while (i--)
373 _exits[i]();
374
375 return r;
376 }
377
378 static void __exit dm_exit(void)
379 {
380 int i = ARRAY_SIZE(_exits);
381
382 while (i--)
383 _exits[i]();
384
385 /*
386 * Should be empty by this point.
387 */
388 idr_destroy(&_minor_idr);
389 }
390
391 /*
392 * Block device functions
393 */
394 int dm_deleting_md(struct mapped_device *md)
395 {
396 return test_bit(DMF_DELETING, &md->flags);
397 }
398
399 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
400 {
401 struct mapped_device *md;
402
403 spin_lock(&_minor_lock);
404
405 md = bdev->bd_disk->private_data;
406 if (!md)
407 goto out;
408
409 if (test_bit(DMF_FREEING, &md->flags) ||
410 dm_deleting_md(md)) {
411 md = NULL;
412 goto out;
413 }
414
415 dm_get(md);
416 atomic_inc(&md->open_count);
417
418 out:
419 spin_unlock(&_minor_lock);
420
421 return md ? 0 : -ENXIO;
422 }
423
424 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
425 {
426 struct mapped_device *md = disk->private_data;
427
428 spin_lock(&_minor_lock);
429
430 if (atomic_dec_and_test(&md->open_count) &&
431 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
432 queue_work(deferred_remove_workqueue, &deferred_remove_work);
433
434 dm_put(md);
435
436 spin_unlock(&_minor_lock);
437 }
438
439 int dm_open_count(struct mapped_device *md)
440 {
441 return atomic_read(&md->open_count);
442 }
443
444 /*
445 * Guarantees nothing is using the device before it's deleted.
446 */
447 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
448 {
449 int r = 0;
450
451 spin_lock(&_minor_lock);
452
453 if (dm_open_count(md)) {
454 r = -EBUSY;
455 if (mark_deferred)
456 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
457 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
458 r = -EEXIST;
459 else
460 set_bit(DMF_DELETING, &md->flags);
461
462 spin_unlock(&_minor_lock);
463
464 return r;
465 }
466
467 int dm_cancel_deferred_remove(struct mapped_device *md)
468 {
469 int r = 0;
470
471 spin_lock(&_minor_lock);
472
473 if (test_bit(DMF_DELETING, &md->flags))
474 r = -EBUSY;
475 else
476 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
477
478 spin_unlock(&_minor_lock);
479
480 return r;
481 }
482
483 static void do_deferred_remove(struct work_struct *w)
484 {
485 dm_deferred_remove();
486 }
487
488 sector_t dm_get_size(struct mapped_device *md)
489 {
490 return get_capacity(md->disk);
491 }
492
493 struct request_queue *dm_get_md_queue(struct mapped_device *md)
494 {
495 return md->queue;
496 }
497
498 struct dm_stats *dm_get_stats(struct mapped_device *md)
499 {
500 return &md->stats;
501 }
502
503 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
504 {
505 struct mapped_device *md = bdev->bd_disk->private_data;
506
507 return dm_get_geometry(md, geo);
508 }
509
510 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
511 unsigned int cmd, unsigned long arg)
512 {
513 struct mapped_device *md = bdev->bd_disk->private_data;
514 int srcu_idx;
515 struct dm_table *map;
516 struct dm_target *tgt;
517 int r = -ENOTTY;
518
519 retry:
520 map = dm_get_live_table(md, &srcu_idx);
521
522 if (!map || !dm_table_get_size(map))
523 goto out;
524
525 /* We only support devices that have a single target */
526 if (dm_table_get_num_targets(map) != 1)
527 goto out;
528
529 tgt = dm_table_get_target(map, 0);
530 if (!tgt->type->ioctl)
531 goto out;
532
533 if (dm_suspended_md(md)) {
534 r = -EAGAIN;
535 goto out;
536 }
537
538 r = tgt->type->ioctl(tgt, cmd, arg);
539
540 out:
541 dm_put_live_table(md, srcu_idx);
542
543 if (r == -ENOTCONN) {
544 msleep(10);
545 goto retry;
546 }
547
548 return r;
549 }
550
551 static struct dm_io *alloc_io(struct mapped_device *md)
552 {
553 return mempool_alloc(md->io_pool, GFP_NOIO);
554 }
555
556 static void free_io(struct mapped_device *md, struct dm_io *io)
557 {
558 mempool_free(io, md->io_pool);
559 }
560
561 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
562 {
563 bio_put(&tio->clone);
564 }
565
566 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
567 gfp_t gfp_mask)
568 {
569 return mempool_alloc(md->io_pool, gfp_mask);
570 }
571
572 static void free_rq_tio(struct dm_rq_target_io *tio)
573 {
574 mempool_free(tio, tio->md->io_pool);
575 }
576
577 static int md_in_flight(struct mapped_device *md)
578 {
579 return atomic_read(&md->pending[READ]) +
580 atomic_read(&md->pending[WRITE]);
581 }
582
583 static void start_io_acct(struct dm_io *io)
584 {
585 struct mapped_device *md = io->md;
586 struct bio *bio = io->bio;
587 int cpu;
588 int rw = bio_data_dir(bio);
589
590 io->start_time = jiffies;
591
592 cpu = part_stat_lock();
593 part_round_stats(cpu, &dm_disk(md)->part0);
594 part_stat_unlock();
595 atomic_set(&dm_disk(md)->part0.in_flight[rw],
596 atomic_inc_return(&md->pending[rw]));
597
598 if (unlikely(dm_stats_used(&md->stats)))
599 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
600 bio_sectors(bio), false, 0, &io->stats_aux);
601 }
602
603 static void end_io_acct(struct dm_io *io)
604 {
605 struct mapped_device *md = io->md;
606 struct bio *bio = io->bio;
607 unsigned long duration = jiffies - io->start_time;
608 int pending, cpu;
609 int rw = bio_data_dir(bio);
610
611 cpu = part_stat_lock();
612 part_round_stats(cpu, &dm_disk(md)->part0);
613 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
614 part_stat_unlock();
615
616 if (unlikely(dm_stats_used(&md->stats)))
617 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
618 bio_sectors(bio), true, duration, &io->stats_aux);
619
620 /*
621 * After this is decremented the bio must not be touched if it is
622 * a flush.
623 */
624 pending = atomic_dec_return(&md->pending[rw]);
625 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
626 pending += atomic_read(&md->pending[rw^0x1]);
627
628 /* nudge anyone waiting on suspend queue */
629 if (!pending)
630 wake_up(&md->wait);
631 }
632
633 /*
634 * Add the bio to the list of deferred io.
635 */
636 static void queue_io(struct mapped_device *md, struct bio *bio)
637 {
638 unsigned long flags;
639
640 spin_lock_irqsave(&md->deferred_lock, flags);
641 bio_list_add(&md->deferred, bio);
642 spin_unlock_irqrestore(&md->deferred_lock, flags);
643 queue_work(md->wq, &md->work);
644 }
645
646 /*
647 * Everyone (including functions in this file), should use this
648 * function to access the md->map field, and make sure they call
649 * dm_put_live_table() when finished.
650 */
651 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
652 {
653 *srcu_idx = srcu_read_lock(&md->io_barrier);
654
655 return srcu_dereference(md->map, &md->io_barrier);
656 }
657
658 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
659 {
660 srcu_read_unlock(&md->io_barrier, srcu_idx);
661 }
662
663 void dm_sync_table(struct mapped_device *md)
664 {
665 synchronize_srcu(&md->io_barrier);
666 synchronize_rcu_expedited();
667 }
668
669 /*
670 * A fast alternative to dm_get_live_table/dm_put_live_table.
671 * The caller must not block between these two functions.
672 */
673 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
674 {
675 rcu_read_lock();
676 return rcu_dereference(md->map);
677 }
678
679 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
680 {
681 rcu_read_unlock();
682 }
683
684 /*
685 * Open a table device so we can use it as a map destination.
686 */
687 static int open_table_device(struct table_device *td, dev_t dev,
688 struct mapped_device *md)
689 {
690 static char *_claim_ptr = "I belong to device-mapper";
691 struct block_device *bdev;
692
693 int r;
694
695 BUG_ON(td->dm_dev.bdev);
696
697 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
698 if (IS_ERR(bdev))
699 return PTR_ERR(bdev);
700
701 r = bd_link_disk_holder(bdev, dm_disk(md));
702 if (r) {
703 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
704 return r;
705 }
706
707 td->dm_dev.bdev = bdev;
708 return 0;
709 }
710
711 /*
712 * Close a table device that we've been using.
713 */
714 static void close_table_device(struct table_device *td, struct mapped_device *md)
715 {
716 if (!td->dm_dev.bdev)
717 return;
718
719 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
720 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
721 td->dm_dev.bdev = NULL;
722 }
723
724 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
725 fmode_t mode) {
726 struct table_device *td;
727
728 list_for_each_entry(td, l, list)
729 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
730 return td;
731
732 return NULL;
733 }
734
735 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
736 struct dm_dev **result) {
737 int r;
738 struct table_device *td;
739
740 mutex_lock(&md->table_devices_lock);
741 td = find_table_device(&md->table_devices, dev, mode);
742 if (!td) {
743 td = kmalloc(sizeof(*td), GFP_KERNEL);
744 if (!td) {
745 mutex_unlock(&md->table_devices_lock);
746 return -ENOMEM;
747 }
748
749 td->dm_dev.mode = mode;
750 td->dm_dev.bdev = NULL;
751
752 if ((r = open_table_device(td, dev, md))) {
753 mutex_unlock(&md->table_devices_lock);
754 kfree(td);
755 return r;
756 }
757
758 format_dev_t(td->dm_dev.name, dev);
759
760 atomic_set(&td->count, 0);
761 list_add(&td->list, &md->table_devices);
762 }
763 atomic_inc(&td->count);
764 mutex_unlock(&md->table_devices_lock);
765
766 *result = &td->dm_dev;
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(dm_get_table_device);
770
771 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
772 {
773 struct table_device *td = container_of(d, struct table_device, dm_dev);
774
775 mutex_lock(&md->table_devices_lock);
776 if (atomic_dec_and_test(&td->count)) {
777 close_table_device(td, md);
778 list_del(&td->list);
779 kfree(td);
780 }
781 mutex_unlock(&md->table_devices_lock);
782 }
783 EXPORT_SYMBOL(dm_put_table_device);
784
785 static void free_table_devices(struct list_head *devices)
786 {
787 struct list_head *tmp, *next;
788
789 list_for_each_safe(tmp, next, devices) {
790 struct table_device *td = list_entry(tmp, struct table_device, list);
791
792 DMWARN("dm_destroy: %s still exists with %d references",
793 td->dm_dev.name, atomic_read(&td->count));
794 kfree(td);
795 }
796 }
797
798 /*
799 * Get the geometry associated with a dm device
800 */
801 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
802 {
803 *geo = md->geometry;
804
805 return 0;
806 }
807
808 /*
809 * Set the geometry of a device.
810 */
811 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
812 {
813 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
814
815 if (geo->start > sz) {
816 DMWARN("Start sector is beyond the geometry limits.");
817 return -EINVAL;
818 }
819
820 md->geometry = *geo;
821
822 return 0;
823 }
824
825 /*-----------------------------------------------------------------
826 * CRUD START:
827 * A more elegant soln is in the works that uses the queue
828 * merge fn, unfortunately there are a couple of changes to
829 * the block layer that I want to make for this. So in the
830 * interests of getting something for people to use I give
831 * you this clearly demarcated crap.
832 *---------------------------------------------------------------*/
833
834 static int __noflush_suspending(struct mapped_device *md)
835 {
836 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
837 }
838
839 /*
840 * Decrements the number of outstanding ios that a bio has been
841 * cloned into, completing the original io if necc.
842 */
843 static void dec_pending(struct dm_io *io, int error)
844 {
845 unsigned long flags;
846 int io_error;
847 struct bio *bio;
848 struct mapped_device *md = io->md;
849
850 /* Push-back supersedes any I/O errors */
851 if (unlikely(error)) {
852 spin_lock_irqsave(&io->endio_lock, flags);
853 if (!(io->error > 0 && __noflush_suspending(md)))
854 io->error = error;
855 spin_unlock_irqrestore(&io->endio_lock, flags);
856 }
857
858 if (atomic_dec_and_test(&io->io_count)) {
859 if (io->error == DM_ENDIO_REQUEUE) {
860 /*
861 * Target requested pushing back the I/O.
862 */
863 spin_lock_irqsave(&md->deferred_lock, flags);
864 if (__noflush_suspending(md))
865 bio_list_add_head(&md->deferred, io->bio);
866 else
867 /* noflush suspend was interrupted. */
868 io->error = -EIO;
869 spin_unlock_irqrestore(&md->deferred_lock, flags);
870 }
871
872 io_error = io->error;
873 bio = io->bio;
874 end_io_acct(io);
875 free_io(md, io);
876
877 if (io_error == DM_ENDIO_REQUEUE)
878 return;
879
880 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
881 /*
882 * Preflush done for flush with data, reissue
883 * without REQ_FLUSH.
884 */
885 bio->bi_rw &= ~REQ_FLUSH;
886 queue_io(md, bio);
887 } else {
888 /* done with normal IO or empty flush */
889 trace_block_bio_complete(md->queue, bio, io_error);
890 bio_endio(bio, io_error);
891 }
892 }
893 }
894
895 static void disable_write_same(struct mapped_device *md)
896 {
897 struct queue_limits *limits = dm_get_queue_limits(md);
898
899 /* device doesn't really support WRITE SAME, disable it */
900 limits->max_write_same_sectors = 0;
901 }
902
903 static void clone_endio(struct bio *bio, int error)
904 {
905 int r = 0;
906 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
907 struct dm_io *io = tio->io;
908 struct mapped_device *md = tio->io->md;
909 dm_endio_fn endio = tio->ti->type->end_io;
910
911 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
912 error = -EIO;
913
914 if (endio) {
915 r = endio(tio->ti, bio, error);
916 if (r < 0 || r == DM_ENDIO_REQUEUE)
917 /*
918 * error and requeue request are handled
919 * in dec_pending().
920 */
921 error = r;
922 else if (r == DM_ENDIO_INCOMPLETE)
923 /* The target will handle the io */
924 return;
925 else if (r) {
926 DMWARN("unimplemented target endio return value: %d", r);
927 BUG();
928 }
929 }
930
931 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
932 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
933 disable_write_same(md);
934
935 free_tio(md, tio);
936 dec_pending(io, error);
937 }
938
939 /*
940 * Partial completion handling for request-based dm
941 */
942 static void end_clone_bio(struct bio *clone, int error)
943 {
944 struct dm_rq_clone_bio_info *info =
945 container_of(clone, struct dm_rq_clone_bio_info, clone);
946 struct dm_rq_target_io *tio = info->tio;
947 struct bio *bio = info->orig;
948 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
949
950 bio_put(clone);
951
952 if (tio->error)
953 /*
954 * An error has already been detected on the request.
955 * Once error occurred, just let clone->end_io() handle
956 * the remainder.
957 */
958 return;
959 else if (error) {
960 /*
961 * Don't notice the error to the upper layer yet.
962 * The error handling decision is made by the target driver,
963 * when the request is completed.
964 */
965 tio->error = error;
966 return;
967 }
968
969 /*
970 * I/O for the bio successfully completed.
971 * Notice the data completion to the upper layer.
972 */
973
974 /*
975 * bios are processed from the head of the list.
976 * So the completing bio should always be rq->bio.
977 * If it's not, something wrong is happening.
978 */
979 if (tio->orig->bio != bio)
980 DMERR("bio completion is going in the middle of the request");
981
982 /*
983 * Update the original request.
984 * Do not use blk_end_request() here, because it may complete
985 * the original request before the clone, and break the ordering.
986 */
987 blk_update_request(tio->orig, 0, nr_bytes);
988 }
989
990 /*
991 * Don't touch any member of the md after calling this function because
992 * the md may be freed in dm_put() at the end of this function.
993 * Or do dm_get() before calling this function and dm_put() later.
994 */
995 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
996 {
997 atomic_dec(&md->pending[rw]);
998
999 /* nudge anyone waiting on suspend queue */
1000 if (!md_in_flight(md))
1001 wake_up(&md->wait);
1002
1003 /*
1004 * Run this off this callpath, as drivers could invoke end_io while
1005 * inside their request_fn (and holding the queue lock). Calling
1006 * back into ->request_fn() could deadlock attempting to grab the
1007 * queue lock again.
1008 */
1009 if (run_queue)
1010 blk_run_queue_async(md->queue);
1011
1012 /*
1013 * dm_put() must be at the end of this function. See the comment above
1014 */
1015 dm_put(md);
1016 }
1017
1018 static void free_rq_clone(struct request *clone)
1019 {
1020 struct dm_rq_target_io *tio = clone->end_io_data;
1021
1022 blk_rq_unprep_clone(clone);
1023 free_rq_tio(tio);
1024 }
1025
1026 /*
1027 * Complete the clone and the original request.
1028 * Must be called without queue lock.
1029 */
1030 static void dm_end_request(struct request *clone, int error)
1031 {
1032 int rw = rq_data_dir(clone);
1033 struct dm_rq_target_io *tio = clone->end_io_data;
1034 struct mapped_device *md = tio->md;
1035 struct request *rq = tio->orig;
1036
1037 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1038 rq->errors = clone->errors;
1039 rq->resid_len = clone->resid_len;
1040
1041 if (rq->sense)
1042 /*
1043 * We are using the sense buffer of the original
1044 * request.
1045 * So setting the length of the sense data is enough.
1046 */
1047 rq->sense_len = clone->sense_len;
1048 }
1049
1050 free_rq_clone(clone);
1051 blk_end_request_all(rq, error);
1052 rq_completed(md, rw, true);
1053 }
1054
1055 static void dm_unprep_request(struct request *rq)
1056 {
1057 struct request *clone = rq->special;
1058
1059 rq->special = NULL;
1060 rq->cmd_flags &= ~REQ_DONTPREP;
1061
1062 free_rq_clone(clone);
1063 }
1064
1065 /*
1066 * Requeue the original request of a clone.
1067 */
1068 void dm_requeue_unmapped_request(struct request *clone)
1069 {
1070 int rw = rq_data_dir(clone);
1071 struct dm_rq_target_io *tio = clone->end_io_data;
1072 struct mapped_device *md = tio->md;
1073 struct request *rq = tio->orig;
1074 struct request_queue *q = rq->q;
1075 unsigned long flags;
1076
1077 dm_unprep_request(rq);
1078
1079 spin_lock_irqsave(q->queue_lock, flags);
1080 blk_requeue_request(q, rq);
1081 spin_unlock_irqrestore(q->queue_lock, flags);
1082
1083 rq_completed(md, rw, 0);
1084 }
1085 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
1086
1087 static void __stop_queue(struct request_queue *q)
1088 {
1089 blk_stop_queue(q);
1090 }
1091
1092 static void stop_queue(struct request_queue *q)
1093 {
1094 unsigned long flags;
1095
1096 spin_lock_irqsave(q->queue_lock, flags);
1097 __stop_queue(q);
1098 spin_unlock_irqrestore(q->queue_lock, flags);
1099 }
1100
1101 static void __start_queue(struct request_queue *q)
1102 {
1103 if (blk_queue_stopped(q))
1104 blk_start_queue(q);
1105 }
1106
1107 static void start_queue(struct request_queue *q)
1108 {
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(q->queue_lock, flags);
1112 __start_queue(q);
1113 spin_unlock_irqrestore(q->queue_lock, flags);
1114 }
1115
1116 static void dm_done(struct request *clone, int error, bool mapped)
1117 {
1118 int r = error;
1119 struct dm_rq_target_io *tio = clone->end_io_data;
1120 dm_request_endio_fn rq_end_io = NULL;
1121
1122 if (tio->ti) {
1123 rq_end_io = tio->ti->type->rq_end_io;
1124
1125 if (mapped && rq_end_io)
1126 r = rq_end_io(tio->ti, clone, error, &tio->info);
1127 }
1128
1129 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1130 !clone->q->limits.max_write_same_sectors))
1131 disable_write_same(tio->md);
1132
1133 if (r <= 0)
1134 /* The target wants to complete the I/O */
1135 dm_end_request(clone, r);
1136 else if (r == DM_ENDIO_INCOMPLETE)
1137 /* The target will handle the I/O */
1138 return;
1139 else if (r == DM_ENDIO_REQUEUE)
1140 /* The target wants to requeue the I/O */
1141 dm_requeue_unmapped_request(clone);
1142 else {
1143 DMWARN("unimplemented target endio return value: %d", r);
1144 BUG();
1145 }
1146 }
1147
1148 /*
1149 * Request completion handler for request-based dm
1150 */
1151 static void dm_softirq_done(struct request *rq)
1152 {
1153 bool mapped = true;
1154 struct request *clone = rq->completion_data;
1155 struct dm_rq_target_io *tio = clone->end_io_data;
1156
1157 if (rq->cmd_flags & REQ_FAILED)
1158 mapped = false;
1159
1160 dm_done(clone, tio->error, mapped);
1161 }
1162
1163 /*
1164 * Complete the clone and the original request with the error status
1165 * through softirq context.
1166 */
1167 static void dm_complete_request(struct request *clone, int error)
1168 {
1169 struct dm_rq_target_io *tio = clone->end_io_data;
1170 struct request *rq = tio->orig;
1171
1172 tio->error = error;
1173 rq->completion_data = clone;
1174 blk_complete_request(rq);
1175 }
1176
1177 /*
1178 * Complete the not-mapped clone and the original request with the error status
1179 * through softirq context.
1180 * Target's rq_end_io() function isn't called.
1181 * This may be used when the target's map_rq() function fails.
1182 */
1183 void dm_kill_unmapped_request(struct request *clone, int error)
1184 {
1185 struct dm_rq_target_io *tio = clone->end_io_data;
1186 struct request *rq = tio->orig;
1187
1188 rq->cmd_flags |= REQ_FAILED;
1189 dm_complete_request(clone, error);
1190 }
1191 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1192
1193 /*
1194 * Called with the queue lock held
1195 */
1196 static void end_clone_request(struct request *clone, int error)
1197 {
1198 /*
1199 * For just cleaning up the information of the queue in which
1200 * the clone was dispatched.
1201 * The clone is *NOT* freed actually here because it is alloced from
1202 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1203 */
1204 __blk_put_request(clone->q, clone);
1205
1206 /*
1207 * Actual request completion is done in a softirq context which doesn't
1208 * hold the queue lock. Otherwise, deadlock could occur because:
1209 * - another request may be submitted by the upper level driver
1210 * of the stacking during the completion
1211 * - the submission which requires queue lock may be done
1212 * against this queue
1213 */
1214 dm_complete_request(clone, error);
1215 }
1216
1217 /*
1218 * Return maximum size of I/O possible at the supplied sector up to the current
1219 * target boundary.
1220 */
1221 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1222 {
1223 sector_t target_offset = dm_target_offset(ti, sector);
1224
1225 return ti->len - target_offset;
1226 }
1227
1228 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1229 {
1230 sector_t len = max_io_len_target_boundary(sector, ti);
1231 sector_t offset, max_len;
1232
1233 /*
1234 * Does the target need to split even further?
1235 */
1236 if (ti->max_io_len) {
1237 offset = dm_target_offset(ti, sector);
1238 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1239 max_len = sector_div(offset, ti->max_io_len);
1240 else
1241 max_len = offset & (ti->max_io_len - 1);
1242 max_len = ti->max_io_len - max_len;
1243
1244 if (len > max_len)
1245 len = max_len;
1246 }
1247
1248 return len;
1249 }
1250
1251 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1252 {
1253 if (len > UINT_MAX) {
1254 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1255 (unsigned long long)len, UINT_MAX);
1256 ti->error = "Maximum size of target IO is too large";
1257 return -EINVAL;
1258 }
1259
1260 ti->max_io_len = (uint32_t) len;
1261
1262 return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1265
1266 /*
1267 * A target may call dm_accept_partial_bio only from the map routine. It is
1268 * allowed for all bio types except REQ_FLUSH.
1269 *
1270 * dm_accept_partial_bio informs the dm that the target only wants to process
1271 * additional n_sectors sectors of the bio and the rest of the data should be
1272 * sent in a next bio.
1273 *
1274 * A diagram that explains the arithmetics:
1275 * +--------------------+---------------+-------+
1276 * | 1 | 2 | 3 |
1277 * +--------------------+---------------+-------+
1278 *
1279 * <-------------- *tio->len_ptr --------------->
1280 * <------- bi_size ------->
1281 * <-- n_sectors -->
1282 *
1283 * Region 1 was already iterated over with bio_advance or similar function.
1284 * (it may be empty if the target doesn't use bio_advance)
1285 * Region 2 is the remaining bio size that the target wants to process.
1286 * (it may be empty if region 1 is non-empty, although there is no reason
1287 * to make it empty)
1288 * The target requires that region 3 is to be sent in the next bio.
1289 *
1290 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1291 * the partially processed part (the sum of regions 1+2) must be the same for all
1292 * copies of the bio.
1293 */
1294 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1295 {
1296 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1297 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1298 BUG_ON(bio->bi_rw & REQ_FLUSH);
1299 BUG_ON(bi_size > *tio->len_ptr);
1300 BUG_ON(n_sectors > bi_size);
1301 *tio->len_ptr -= bi_size - n_sectors;
1302 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1303 }
1304 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1305
1306 static void __map_bio(struct dm_target_io *tio)
1307 {
1308 int r;
1309 sector_t sector;
1310 struct mapped_device *md;
1311 struct bio *clone = &tio->clone;
1312 struct dm_target *ti = tio->ti;
1313
1314 clone->bi_end_io = clone_endio;
1315
1316 /*
1317 * Map the clone. If r == 0 we don't need to do
1318 * anything, the target has assumed ownership of
1319 * this io.
1320 */
1321 atomic_inc(&tio->io->io_count);
1322 sector = clone->bi_iter.bi_sector;
1323 r = ti->type->map(ti, clone);
1324 if (r == DM_MAPIO_REMAPPED) {
1325 /* the bio has been remapped so dispatch it */
1326
1327 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1328 tio->io->bio->bi_bdev->bd_dev, sector);
1329
1330 generic_make_request(clone);
1331 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1332 /* error the io and bail out, or requeue it if needed */
1333 md = tio->io->md;
1334 dec_pending(tio->io, r);
1335 free_tio(md, tio);
1336 } else if (r) {
1337 DMWARN("unimplemented target map return value: %d", r);
1338 BUG();
1339 }
1340 }
1341
1342 struct clone_info {
1343 struct mapped_device *md;
1344 struct dm_table *map;
1345 struct bio *bio;
1346 struct dm_io *io;
1347 sector_t sector;
1348 unsigned sector_count;
1349 };
1350
1351 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1352 {
1353 bio->bi_iter.bi_sector = sector;
1354 bio->bi_iter.bi_size = to_bytes(len);
1355 }
1356
1357 /*
1358 * Creates a bio that consists of range of complete bvecs.
1359 */
1360 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1361 sector_t sector, unsigned len)
1362 {
1363 struct bio *clone = &tio->clone;
1364
1365 __bio_clone_fast(clone, bio);
1366
1367 if (bio_integrity(bio))
1368 bio_integrity_clone(clone, bio, GFP_NOIO);
1369
1370 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1371 clone->bi_iter.bi_size = to_bytes(len);
1372
1373 if (bio_integrity(bio))
1374 bio_integrity_trim(clone, 0, len);
1375 }
1376
1377 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1378 struct dm_target *ti,
1379 unsigned target_bio_nr)
1380 {
1381 struct dm_target_io *tio;
1382 struct bio *clone;
1383
1384 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1385 tio = container_of(clone, struct dm_target_io, clone);
1386
1387 tio->io = ci->io;
1388 tio->ti = ti;
1389 tio->target_bio_nr = target_bio_nr;
1390
1391 return tio;
1392 }
1393
1394 static void __clone_and_map_simple_bio(struct clone_info *ci,
1395 struct dm_target *ti,
1396 unsigned target_bio_nr, unsigned *len)
1397 {
1398 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1399 struct bio *clone = &tio->clone;
1400
1401 tio->len_ptr = len;
1402
1403 __bio_clone_fast(clone, ci->bio);
1404 if (len)
1405 bio_setup_sector(clone, ci->sector, *len);
1406
1407 __map_bio(tio);
1408 }
1409
1410 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1411 unsigned num_bios, unsigned *len)
1412 {
1413 unsigned target_bio_nr;
1414
1415 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1416 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1417 }
1418
1419 static int __send_empty_flush(struct clone_info *ci)
1420 {
1421 unsigned target_nr = 0;
1422 struct dm_target *ti;
1423
1424 BUG_ON(bio_has_data(ci->bio));
1425 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1426 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1427
1428 return 0;
1429 }
1430
1431 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1432 sector_t sector, unsigned *len)
1433 {
1434 struct bio *bio = ci->bio;
1435 struct dm_target_io *tio;
1436 unsigned target_bio_nr;
1437 unsigned num_target_bios = 1;
1438
1439 /*
1440 * Does the target want to receive duplicate copies of the bio?
1441 */
1442 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1443 num_target_bios = ti->num_write_bios(ti, bio);
1444
1445 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1446 tio = alloc_tio(ci, ti, target_bio_nr);
1447 tio->len_ptr = len;
1448 clone_bio(tio, bio, sector, *len);
1449 __map_bio(tio);
1450 }
1451 }
1452
1453 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1454
1455 static unsigned get_num_discard_bios(struct dm_target *ti)
1456 {
1457 return ti->num_discard_bios;
1458 }
1459
1460 static unsigned get_num_write_same_bios(struct dm_target *ti)
1461 {
1462 return ti->num_write_same_bios;
1463 }
1464
1465 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1466
1467 static bool is_split_required_for_discard(struct dm_target *ti)
1468 {
1469 return ti->split_discard_bios;
1470 }
1471
1472 static int __send_changing_extent_only(struct clone_info *ci,
1473 get_num_bios_fn get_num_bios,
1474 is_split_required_fn is_split_required)
1475 {
1476 struct dm_target *ti;
1477 unsigned len;
1478 unsigned num_bios;
1479
1480 do {
1481 ti = dm_table_find_target(ci->map, ci->sector);
1482 if (!dm_target_is_valid(ti))
1483 return -EIO;
1484
1485 /*
1486 * Even though the device advertised support for this type of
1487 * request, that does not mean every target supports it, and
1488 * reconfiguration might also have changed that since the
1489 * check was performed.
1490 */
1491 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1492 if (!num_bios)
1493 return -EOPNOTSUPP;
1494
1495 if (is_split_required && !is_split_required(ti))
1496 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1497 else
1498 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1499
1500 __send_duplicate_bios(ci, ti, num_bios, &len);
1501
1502 ci->sector += len;
1503 } while (ci->sector_count -= len);
1504
1505 return 0;
1506 }
1507
1508 static int __send_discard(struct clone_info *ci)
1509 {
1510 return __send_changing_extent_only(ci, get_num_discard_bios,
1511 is_split_required_for_discard);
1512 }
1513
1514 static int __send_write_same(struct clone_info *ci)
1515 {
1516 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1517 }
1518
1519 /*
1520 * Select the correct strategy for processing a non-flush bio.
1521 */
1522 static int __split_and_process_non_flush(struct clone_info *ci)
1523 {
1524 struct bio *bio = ci->bio;
1525 struct dm_target *ti;
1526 unsigned len;
1527
1528 if (unlikely(bio->bi_rw & REQ_DISCARD))
1529 return __send_discard(ci);
1530 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1531 return __send_write_same(ci);
1532
1533 ti = dm_table_find_target(ci->map, ci->sector);
1534 if (!dm_target_is_valid(ti))
1535 return -EIO;
1536
1537 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1538
1539 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1540
1541 ci->sector += len;
1542 ci->sector_count -= len;
1543
1544 return 0;
1545 }
1546
1547 /*
1548 * Entry point to split a bio into clones and submit them to the targets.
1549 */
1550 static void __split_and_process_bio(struct mapped_device *md,
1551 struct dm_table *map, struct bio *bio)
1552 {
1553 struct clone_info ci;
1554 int error = 0;
1555
1556 if (unlikely(!map)) {
1557 bio_io_error(bio);
1558 return;
1559 }
1560
1561 ci.map = map;
1562 ci.md = md;
1563 ci.io = alloc_io(md);
1564 ci.io->error = 0;
1565 atomic_set(&ci.io->io_count, 1);
1566 ci.io->bio = bio;
1567 ci.io->md = md;
1568 spin_lock_init(&ci.io->endio_lock);
1569 ci.sector = bio->bi_iter.bi_sector;
1570
1571 start_io_acct(ci.io);
1572
1573 if (bio->bi_rw & REQ_FLUSH) {
1574 ci.bio = &ci.md->flush_bio;
1575 ci.sector_count = 0;
1576 error = __send_empty_flush(&ci);
1577 /* dec_pending submits any data associated with flush */
1578 } else {
1579 ci.bio = bio;
1580 ci.sector_count = bio_sectors(bio);
1581 while (ci.sector_count && !error)
1582 error = __split_and_process_non_flush(&ci);
1583 }
1584
1585 /* drop the extra reference count */
1586 dec_pending(ci.io, error);
1587 }
1588 /*-----------------------------------------------------------------
1589 * CRUD END
1590 *---------------------------------------------------------------*/
1591
1592 static int dm_merge_bvec(struct request_queue *q,
1593 struct bvec_merge_data *bvm,
1594 struct bio_vec *biovec)
1595 {
1596 struct mapped_device *md = q->queuedata;
1597 struct dm_table *map = dm_get_live_table_fast(md);
1598 struct dm_target *ti;
1599 sector_t max_sectors;
1600 int max_size = 0;
1601
1602 if (unlikely(!map))
1603 goto out;
1604
1605 ti = dm_table_find_target(map, bvm->bi_sector);
1606 if (!dm_target_is_valid(ti))
1607 goto out;
1608
1609 /*
1610 * Find maximum amount of I/O that won't need splitting
1611 */
1612 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1613 (sector_t) queue_max_sectors(q));
1614 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1615 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1616 max_size = 0;
1617
1618 /*
1619 * merge_bvec_fn() returns number of bytes
1620 * it can accept at this offset
1621 * max is precomputed maximal io size
1622 */
1623 if (max_size && ti->type->merge)
1624 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1625 /*
1626 * If the target doesn't support merge method and some of the devices
1627 * provided their merge_bvec method (we know this by looking for the
1628 * max_hw_sectors that dm_set_device_limits may set), then we can't
1629 * allow bios with multiple vector entries. So always set max_size
1630 * to 0, and the code below allows just one page.
1631 */
1632 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1633 max_size = 0;
1634
1635 out:
1636 dm_put_live_table_fast(md);
1637 /*
1638 * Always allow an entire first page
1639 */
1640 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1641 max_size = biovec->bv_len;
1642
1643 return max_size;
1644 }
1645
1646 /*
1647 * The request function that just remaps the bio built up by
1648 * dm_merge_bvec.
1649 */
1650 static void _dm_request(struct request_queue *q, struct bio *bio)
1651 {
1652 int rw = bio_data_dir(bio);
1653 struct mapped_device *md = q->queuedata;
1654 int cpu;
1655 int srcu_idx;
1656 struct dm_table *map;
1657
1658 map = dm_get_live_table(md, &srcu_idx);
1659
1660 cpu = part_stat_lock();
1661 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1662 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1663 part_stat_unlock();
1664
1665 /* if we're suspended, we have to queue this io for later */
1666 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1667 dm_put_live_table(md, srcu_idx);
1668
1669 if (bio_rw(bio) != READA)
1670 queue_io(md, bio);
1671 else
1672 bio_io_error(bio);
1673 return;
1674 }
1675
1676 __split_and_process_bio(md, map, bio);
1677 dm_put_live_table(md, srcu_idx);
1678 return;
1679 }
1680
1681 int dm_request_based(struct mapped_device *md)
1682 {
1683 return blk_queue_stackable(md->queue);
1684 }
1685
1686 static void dm_request(struct request_queue *q, struct bio *bio)
1687 {
1688 struct mapped_device *md = q->queuedata;
1689
1690 if (dm_request_based(md))
1691 blk_queue_bio(q, bio);
1692 else
1693 _dm_request(q, bio);
1694 }
1695
1696 void dm_dispatch_request(struct request *rq)
1697 {
1698 int r;
1699
1700 if (blk_queue_io_stat(rq->q))
1701 rq->cmd_flags |= REQ_IO_STAT;
1702
1703 rq->start_time = jiffies;
1704 r = blk_insert_cloned_request(rq->q, rq);
1705 if (r)
1706 dm_complete_request(rq, r);
1707 }
1708 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1709
1710 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1711 void *data)
1712 {
1713 struct dm_rq_target_io *tio = data;
1714 struct dm_rq_clone_bio_info *info =
1715 container_of(bio, struct dm_rq_clone_bio_info, clone);
1716
1717 info->orig = bio_orig;
1718 info->tio = tio;
1719 bio->bi_end_io = end_clone_bio;
1720
1721 return 0;
1722 }
1723
1724 static int setup_clone(struct request *clone, struct request *rq,
1725 struct dm_rq_target_io *tio)
1726 {
1727 int r;
1728
1729 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1730 dm_rq_bio_constructor, tio);
1731 if (r)
1732 return r;
1733
1734 clone->cmd = rq->cmd;
1735 clone->cmd_len = rq->cmd_len;
1736 clone->sense = rq->sense;
1737 clone->end_io = end_clone_request;
1738 clone->end_io_data = tio;
1739
1740 return 0;
1741 }
1742
1743 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1744 gfp_t gfp_mask)
1745 {
1746 struct request *clone;
1747 struct dm_rq_target_io *tio;
1748
1749 tio = alloc_rq_tio(md, gfp_mask);
1750 if (!tio)
1751 return NULL;
1752
1753 tio->md = md;
1754 tio->ti = NULL;
1755 tio->orig = rq;
1756 tio->error = 0;
1757 memset(&tio->info, 0, sizeof(tio->info));
1758
1759 clone = &tio->clone;
1760 if (setup_clone(clone, rq, tio)) {
1761 /* -ENOMEM */
1762 free_rq_tio(tio);
1763 return NULL;
1764 }
1765
1766 return clone;
1767 }
1768
1769 /*
1770 * Called with the queue lock held.
1771 */
1772 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1773 {
1774 struct mapped_device *md = q->queuedata;
1775 struct request *clone;
1776
1777 if (unlikely(rq->special)) {
1778 DMWARN("Already has something in rq->special.");
1779 return BLKPREP_KILL;
1780 }
1781
1782 clone = clone_rq(rq, md, GFP_ATOMIC);
1783 if (!clone)
1784 return BLKPREP_DEFER;
1785
1786 rq->special = clone;
1787 rq->cmd_flags |= REQ_DONTPREP;
1788
1789 return BLKPREP_OK;
1790 }
1791
1792 /*
1793 * Returns:
1794 * 0 : the request has been processed (not requeued)
1795 * !0 : the request has been requeued
1796 */
1797 static int map_request(struct dm_target *ti, struct request *clone,
1798 struct mapped_device *md)
1799 {
1800 int r, requeued = 0;
1801 struct dm_rq_target_io *tio = clone->end_io_data;
1802
1803 tio->ti = ti;
1804 r = ti->type->map_rq(ti, clone, &tio->info);
1805 switch (r) {
1806 case DM_MAPIO_SUBMITTED:
1807 /* The target has taken the I/O to submit by itself later */
1808 break;
1809 case DM_MAPIO_REMAPPED:
1810 /* The target has remapped the I/O so dispatch it */
1811 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1812 blk_rq_pos(tio->orig));
1813 dm_dispatch_request(clone);
1814 break;
1815 case DM_MAPIO_REQUEUE:
1816 /* The target wants to requeue the I/O */
1817 dm_requeue_unmapped_request(clone);
1818 requeued = 1;
1819 break;
1820 default:
1821 if (r > 0) {
1822 DMWARN("unimplemented target map return value: %d", r);
1823 BUG();
1824 }
1825
1826 /* The target wants to complete the I/O */
1827 dm_kill_unmapped_request(clone, r);
1828 break;
1829 }
1830
1831 return requeued;
1832 }
1833
1834 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1835 {
1836 struct request *clone;
1837
1838 blk_start_request(orig);
1839 clone = orig->special;
1840 atomic_inc(&md->pending[rq_data_dir(clone)]);
1841
1842 /*
1843 * Hold the md reference here for the in-flight I/O.
1844 * We can't rely on the reference count by device opener,
1845 * because the device may be closed during the request completion
1846 * when all bios are completed.
1847 * See the comment in rq_completed() too.
1848 */
1849 dm_get(md);
1850
1851 return clone;
1852 }
1853
1854 /*
1855 * q->request_fn for request-based dm.
1856 * Called with the queue lock held.
1857 */
1858 static void dm_request_fn(struct request_queue *q)
1859 {
1860 struct mapped_device *md = q->queuedata;
1861 int srcu_idx;
1862 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1863 struct dm_target *ti;
1864 struct request *rq, *clone;
1865 sector_t pos;
1866
1867 /*
1868 * For suspend, check blk_queue_stopped() and increment
1869 * ->pending within a single queue_lock not to increment the
1870 * number of in-flight I/Os after the queue is stopped in
1871 * dm_suspend().
1872 */
1873 while (!blk_queue_stopped(q)) {
1874 rq = blk_peek_request(q);
1875 if (!rq)
1876 goto delay_and_out;
1877
1878 /* always use block 0 to find the target for flushes for now */
1879 pos = 0;
1880 if (!(rq->cmd_flags & REQ_FLUSH))
1881 pos = blk_rq_pos(rq);
1882
1883 ti = dm_table_find_target(map, pos);
1884 if (!dm_target_is_valid(ti)) {
1885 /*
1886 * Must perform setup, that dm_done() requires,
1887 * before calling dm_kill_unmapped_request
1888 */
1889 DMERR_LIMIT("request attempted access beyond the end of device");
1890 clone = dm_start_request(md, rq);
1891 dm_kill_unmapped_request(clone, -EIO);
1892 continue;
1893 }
1894
1895 if (ti->type->busy && ti->type->busy(ti))
1896 goto delay_and_out;
1897
1898 clone = dm_start_request(md, rq);
1899
1900 spin_unlock(q->queue_lock);
1901 if (map_request(ti, clone, md))
1902 goto requeued;
1903
1904 BUG_ON(!irqs_disabled());
1905 spin_lock(q->queue_lock);
1906 }
1907
1908 goto out;
1909
1910 requeued:
1911 BUG_ON(!irqs_disabled());
1912 spin_lock(q->queue_lock);
1913
1914 delay_and_out:
1915 blk_delay_queue(q, HZ / 10);
1916 out:
1917 dm_put_live_table(md, srcu_idx);
1918 }
1919
1920 int dm_underlying_device_busy(struct request_queue *q)
1921 {
1922 return blk_lld_busy(q);
1923 }
1924 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1925
1926 static int dm_lld_busy(struct request_queue *q)
1927 {
1928 int r;
1929 struct mapped_device *md = q->queuedata;
1930 struct dm_table *map = dm_get_live_table_fast(md);
1931
1932 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1933 r = 1;
1934 else
1935 r = dm_table_any_busy_target(map);
1936
1937 dm_put_live_table_fast(md);
1938
1939 return r;
1940 }
1941
1942 static int dm_any_congested(void *congested_data, int bdi_bits)
1943 {
1944 int r = bdi_bits;
1945 struct mapped_device *md = congested_data;
1946 struct dm_table *map;
1947
1948 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1949 map = dm_get_live_table_fast(md);
1950 if (map) {
1951 /*
1952 * Request-based dm cares about only own queue for
1953 * the query about congestion status of request_queue
1954 */
1955 if (dm_request_based(md))
1956 r = md->queue->backing_dev_info.state &
1957 bdi_bits;
1958 else
1959 r = dm_table_any_congested(map, bdi_bits);
1960 }
1961 dm_put_live_table_fast(md);
1962 }
1963
1964 return r;
1965 }
1966
1967 /*-----------------------------------------------------------------
1968 * An IDR is used to keep track of allocated minor numbers.
1969 *---------------------------------------------------------------*/
1970 static void free_minor(int minor)
1971 {
1972 spin_lock(&_minor_lock);
1973 idr_remove(&_minor_idr, minor);
1974 spin_unlock(&_minor_lock);
1975 }
1976
1977 /*
1978 * See if the device with a specific minor # is free.
1979 */
1980 static int specific_minor(int minor)
1981 {
1982 int r;
1983
1984 if (minor >= (1 << MINORBITS))
1985 return -EINVAL;
1986
1987 idr_preload(GFP_KERNEL);
1988 spin_lock(&_minor_lock);
1989
1990 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1991
1992 spin_unlock(&_minor_lock);
1993 idr_preload_end();
1994 if (r < 0)
1995 return r == -ENOSPC ? -EBUSY : r;
1996 return 0;
1997 }
1998
1999 static int next_free_minor(int *minor)
2000 {
2001 int r;
2002
2003 idr_preload(GFP_KERNEL);
2004 spin_lock(&_minor_lock);
2005
2006 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2007
2008 spin_unlock(&_minor_lock);
2009 idr_preload_end();
2010 if (r < 0)
2011 return r;
2012 *minor = r;
2013 return 0;
2014 }
2015
2016 static const struct block_device_operations dm_blk_dops;
2017
2018 static void dm_wq_work(struct work_struct *work);
2019
2020 static void dm_init_md_queue(struct mapped_device *md)
2021 {
2022 /*
2023 * Request-based dm devices cannot be stacked on top of bio-based dm
2024 * devices. The type of this dm device has not been decided yet.
2025 * The type is decided at the first table loading time.
2026 * To prevent problematic device stacking, clear the queue flag
2027 * for request stacking support until then.
2028 *
2029 * This queue is new, so no concurrency on the queue_flags.
2030 */
2031 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2032
2033 md->queue->queuedata = md;
2034 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2035 md->queue->backing_dev_info.congested_data = md;
2036 blk_queue_make_request(md->queue, dm_request);
2037 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2038 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2039 }
2040
2041 /*
2042 * Allocate and initialise a blank device with a given minor.
2043 */
2044 static struct mapped_device *alloc_dev(int minor)
2045 {
2046 int r;
2047 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2048 void *old_md;
2049
2050 if (!md) {
2051 DMWARN("unable to allocate device, out of memory.");
2052 return NULL;
2053 }
2054
2055 if (!try_module_get(THIS_MODULE))
2056 goto bad_module_get;
2057
2058 /* get a minor number for the dev */
2059 if (minor == DM_ANY_MINOR)
2060 r = next_free_minor(&minor);
2061 else
2062 r = specific_minor(minor);
2063 if (r < 0)
2064 goto bad_minor;
2065
2066 r = init_srcu_struct(&md->io_barrier);
2067 if (r < 0)
2068 goto bad_io_barrier;
2069
2070 md->type = DM_TYPE_NONE;
2071 mutex_init(&md->suspend_lock);
2072 mutex_init(&md->type_lock);
2073 mutex_init(&md->table_devices_lock);
2074 spin_lock_init(&md->deferred_lock);
2075 atomic_set(&md->holders, 1);
2076 atomic_set(&md->open_count, 0);
2077 atomic_set(&md->event_nr, 0);
2078 atomic_set(&md->uevent_seq, 0);
2079 INIT_LIST_HEAD(&md->uevent_list);
2080 INIT_LIST_HEAD(&md->table_devices);
2081 spin_lock_init(&md->uevent_lock);
2082
2083 md->queue = blk_alloc_queue(GFP_KERNEL);
2084 if (!md->queue)
2085 goto bad_queue;
2086
2087 dm_init_md_queue(md);
2088
2089 md->disk = alloc_disk(1);
2090 if (!md->disk)
2091 goto bad_disk;
2092
2093 atomic_set(&md->pending[0], 0);
2094 atomic_set(&md->pending[1], 0);
2095 init_waitqueue_head(&md->wait);
2096 INIT_WORK(&md->work, dm_wq_work);
2097 init_waitqueue_head(&md->eventq);
2098 init_completion(&md->kobj_holder.completion);
2099
2100 md->disk->major = _major;
2101 md->disk->first_minor = minor;
2102 md->disk->fops = &dm_blk_dops;
2103 md->disk->queue = md->queue;
2104 md->disk->private_data = md;
2105 sprintf(md->disk->disk_name, "dm-%d", minor);
2106 add_disk(md->disk);
2107 format_dev_t(md->name, MKDEV(_major, minor));
2108
2109 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2110 if (!md->wq)
2111 goto bad_thread;
2112
2113 md->bdev = bdget_disk(md->disk, 0);
2114 if (!md->bdev)
2115 goto bad_bdev;
2116
2117 bio_init(&md->flush_bio);
2118 md->flush_bio.bi_bdev = md->bdev;
2119 md->flush_bio.bi_rw = WRITE_FLUSH;
2120
2121 dm_stats_init(&md->stats);
2122
2123 /* Populate the mapping, nobody knows we exist yet */
2124 spin_lock(&_minor_lock);
2125 old_md = idr_replace(&_minor_idr, md, minor);
2126 spin_unlock(&_minor_lock);
2127
2128 BUG_ON(old_md != MINOR_ALLOCED);
2129
2130 return md;
2131
2132 bad_bdev:
2133 destroy_workqueue(md->wq);
2134 bad_thread:
2135 del_gendisk(md->disk);
2136 put_disk(md->disk);
2137 bad_disk:
2138 blk_cleanup_queue(md->queue);
2139 bad_queue:
2140 cleanup_srcu_struct(&md->io_barrier);
2141 bad_io_barrier:
2142 free_minor(minor);
2143 bad_minor:
2144 module_put(THIS_MODULE);
2145 bad_module_get:
2146 kfree(md);
2147 return NULL;
2148 }
2149
2150 static void unlock_fs(struct mapped_device *md);
2151
2152 static void free_dev(struct mapped_device *md)
2153 {
2154 int minor = MINOR(disk_devt(md->disk));
2155
2156 unlock_fs(md);
2157 bdput(md->bdev);
2158 destroy_workqueue(md->wq);
2159 if (md->io_pool)
2160 mempool_destroy(md->io_pool);
2161 if (md->bs)
2162 bioset_free(md->bs);
2163 blk_integrity_unregister(md->disk);
2164 del_gendisk(md->disk);
2165 cleanup_srcu_struct(&md->io_barrier);
2166 free_table_devices(&md->table_devices);
2167 free_minor(minor);
2168
2169 spin_lock(&_minor_lock);
2170 md->disk->private_data = NULL;
2171 spin_unlock(&_minor_lock);
2172
2173 put_disk(md->disk);
2174 blk_cleanup_queue(md->queue);
2175 dm_stats_cleanup(&md->stats);
2176 module_put(THIS_MODULE);
2177 kfree(md);
2178 }
2179
2180 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2181 {
2182 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2183
2184 if (md->io_pool && md->bs) {
2185 /* The md already has necessary mempools. */
2186 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2187 /*
2188 * Reload bioset because front_pad may have changed
2189 * because a different table was loaded.
2190 */
2191 bioset_free(md->bs);
2192 md->bs = p->bs;
2193 p->bs = NULL;
2194 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2195 /*
2196 * There's no need to reload with request-based dm
2197 * because the size of front_pad doesn't change.
2198 * Note for future: If you are to reload bioset,
2199 * prep-ed requests in the queue may refer
2200 * to bio from the old bioset, so you must walk
2201 * through the queue to unprep.
2202 */
2203 }
2204 goto out;
2205 }
2206
2207 BUG_ON(!p || md->io_pool || md->bs);
2208
2209 md->io_pool = p->io_pool;
2210 p->io_pool = NULL;
2211 md->bs = p->bs;
2212 p->bs = NULL;
2213
2214 out:
2215 /* mempool bind completed, now no need any mempools in the table */
2216 dm_table_free_md_mempools(t);
2217 }
2218
2219 /*
2220 * Bind a table to the device.
2221 */
2222 static void event_callback(void *context)
2223 {
2224 unsigned long flags;
2225 LIST_HEAD(uevents);
2226 struct mapped_device *md = (struct mapped_device *) context;
2227
2228 spin_lock_irqsave(&md->uevent_lock, flags);
2229 list_splice_init(&md->uevent_list, &uevents);
2230 spin_unlock_irqrestore(&md->uevent_lock, flags);
2231
2232 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2233
2234 atomic_inc(&md->event_nr);
2235 wake_up(&md->eventq);
2236 }
2237
2238 /*
2239 * Protected by md->suspend_lock obtained by dm_swap_table().
2240 */
2241 static void __set_size(struct mapped_device *md, sector_t size)
2242 {
2243 set_capacity(md->disk, size);
2244
2245 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2246 }
2247
2248 /*
2249 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2250 *
2251 * If this function returns 0, then the device is either a non-dm
2252 * device without a merge_bvec_fn, or it is a dm device that is
2253 * able to split any bios it receives that are too big.
2254 */
2255 int dm_queue_merge_is_compulsory(struct request_queue *q)
2256 {
2257 struct mapped_device *dev_md;
2258
2259 if (!q->merge_bvec_fn)
2260 return 0;
2261
2262 if (q->make_request_fn == dm_request) {
2263 dev_md = q->queuedata;
2264 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2265 return 0;
2266 }
2267
2268 return 1;
2269 }
2270
2271 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2272 struct dm_dev *dev, sector_t start,
2273 sector_t len, void *data)
2274 {
2275 struct block_device *bdev = dev->bdev;
2276 struct request_queue *q = bdev_get_queue(bdev);
2277
2278 return dm_queue_merge_is_compulsory(q);
2279 }
2280
2281 /*
2282 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2283 * on the properties of the underlying devices.
2284 */
2285 static int dm_table_merge_is_optional(struct dm_table *table)
2286 {
2287 unsigned i = 0;
2288 struct dm_target *ti;
2289
2290 while (i < dm_table_get_num_targets(table)) {
2291 ti = dm_table_get_target(table, i++);
2292
2293 if (ti->type->iterate_devices &&
2294 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2295 return 0;
2296 }
2297
2298 return 1;
2299 }
2300
2301 /*
2302 * Returns old map, which caller must destroy.
2303 */
2304 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2305 struct queue_limits *limits)
2306 {
2307 struct dm_table *old_map;
2308 struct request_queue *q = md->queue;
2309 sector_t size;
2310 int merge_is_optional;
2311
2312 size = dm_table_get_size(t);
2313
2314 /*
2315 * Wipe any geometry if the size of the table changed.
2316 */
2317 if (size != dm_get_size(md))
2318 memset(&md->geometry, 0, sizeof(md->geometry));
2319
2320 __set_size(md, size);
2321
2322 dm_table_event_callback(t, event_callback, md);
2323
2324 /*
2325 * The queue hasn't been stopped yet, if the old table type wasn't
2326 * for request-based during suspension. So stop it to prevent
2327 * I/O mapping before resume.
2328 * This must be done before setting the queue restrictions,
2329 * because request-based dm may be run just after the setting.
2330 */
2331 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2332 stop_queue(q);
2333
2334 __bind_mempools(md, t);
2335
2336 merge_is_optional = dm_table_merge_is_optional(t);
2337
2338 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2339 rcu_assign_pointer(md->map, t);
2340 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2341
2342 dm_table_set_restrictions(t, q, limits);
2343 if (merge_is_optional)
2344 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2345 else
2346 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2347 if (old_map)
2348 dm_sync_table(md);
2349
2350 return old_map;
2351 }
2352
2353 /*
2354 * Returns unbound table for the caller to free.
2355 */
2356 static struct dm_table *__unbind(struct mapped_device *md)
2357 {
2358 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2359
2360 if (!map)
2361 return NULL;
2362
2363 dm_table_event_callback(map, NULL, NULL);
2364 RCU_INIT_POINTER(md->map, NULL);
2365 dm_sync_table(md);
2366
2367 return map;
2368 }
2369
2370 /*
2371 * Constructor for a new device.
2372 */
2373 int dm_create(int minor, struct mapped_device **result)
2374 {
2375 struct mapped_device *md;
2376
2377 md = alloc_dev(minor);
2378 if (!md)
2379 return -ENXIO;
2380
2381 dm_sysfs_init(md);
2382
2383 *result = md;
2384 return 0;
2385 }
2386
2387 /*
2388 * Functions to manage md->type.
2389 * All are required to hold md->type_lock.
2390 */
2391 void dm_lock_md_type(struct mapped_device *md)
2392 {
2393 mutex_lock(&md->type_lock);
2394 }
2395
2396 void dm_unlock_md_type(struct mapped_device *md)
2397 {
2398 mutex_unlock(&md->type_lock);
2399 }
2400
2401 void dm_set_md_type(struct mapped_device *md, unsigned type)
2402 {
2403 BUG_ON(!mutex_is_locked(&md->type_lock));
2404 md->type = type;
2405 }
2406
2407 unsigned dm_get_md_type(struct mapped_device *md)
2408 {
2409 BUG_ON(!mutex_is_locked(&md->type_lock));
2410 return md->type;
2411 }
2412
2413 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2414 {
2415 return md->immutable_target_type;
2416 }
2417
2418 /*
2419 * The queue_limits are only valid as long as you have a reference
2420 * count on 'md'.
2421 */
2422 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2423 {
2424 BUG_ON(!atomic_read(&md->holders));
2425 return &md->queue->limits;
2426 }
2427 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2428
2429 /*
2430 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2431 */
2432 static int dm_init_request_based_queue(struct mapped_device *md)
2433 {
2434 struct request_queue *q = NULL;
2435
2436 if (md->queue->elevator)
2437 return 1;
2438
2439 /* Fully initialize the queue */
2440 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2441 if (!q)
2442 return 0;
2443
2444 md->queue = q;
2445 dm_init_md_queue(md);
2446 blk_queue_softirq_done(md->queue, dm_softirq_done);
2447 blk_queue_prep_rq(md->queue, dm_prep_fn);
2448 blk_queue_lld_busy(md->queue, dm_lld_busy);
2449
2450 elv_register_queue(md->queue);
2451
2452 return 1;
2453 }
2454
2455 /*
2456 * Setup the DM device's queue based on md's type
2457 */
2458 int dm_setup_md_queue(struct mapped_device *md)
2459 {
2460 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2461 !dm_init_request_based_queue(md)) {
2462 DMWARN("Cannot initialize queue for request-based mapped device");
2463 return -EINVAL;
2464 }
2465
2466 return 0;
2467 }
2468
2469 static struct mapped_device *dm_find_md(dev_t dev)
2470 {
2471 struct mapped_device *md;
2472 unsigned minor = MINOR(dev);
2473
2474 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2475 return NULL;
2476
2477 spin_lock(&_minor_lock);
2478
2479 md = idr_find(&_minor_idr, minor);
2480 if (md && (md == MINOR_ALLOCED ||
2481 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2482 dm_deleting_md(md) ||
2483 test_bit(DMF_FREEING, &md->flags))) {
2484 md = NULL;
2485 goto out;
2486 }
2487
2488 out:
2489 spin_unlock(&_minor_lock);
2490
2491 return md;
2492 }
2493
2494 struct mapped_device *dm_get_md(dev_t dev)
2495 {
2496 struct mapped_device *md = dm_find_md(dev);
2497
2498 if (md)
2499 dm_get(md);
2500
2501 return md;
2502 }
2503 EXPORT_SYMBOL_GPL(dm_get_md);
2504
2505 void *dm_get_mdptr(struct mapped_device *md)
2506 {
2507 return md->interface_ptr;
2508 }
2509
2510 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2511 {
2512 md->interface_ptr = ptr;
2513 }
2514
2515 void dm_get(struct mapped_device *md)
2516 {
2517 atomic_inc(&md->holders);
2518 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2519 }
2520
2521 const char *dm_device_name(struct mapped_device *md)
2522 {
2523 return md->name;
2524 }
2525 EXPORT_SYMBOL_GPL(dm_device_name);
2526
2527 static void __dm_destroy(struct mapped_device *md, bool wait)
2528 {
2529 struct dm_table *map;
2530 int srcu_idx;
2531
2532 might_sleep();
2533
2534 spin_lock(&_minor_lock);
2535 map = dm_get_live_table(md, &srcu_idx);
2536 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2537 set_bit(DMF_FREEING, &md->flags);
2538 spin_unlock(&_minor_lock);
2539
2540 if (!dm_suspended_md(md)) {
2541 dm_table_presuspend_targets(map);
2542 dm_table_postsuspend_targets(map);
2543 }
2544
2545 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2546 dm_put_live_table(md, srcu_idx);
2547
2548 /*
2549 * Rare, but there may be I/O requests still going to complete,
2550 * for example. Wait for all references to disappear.
2551 * No one should increment the reference count of the mapped_device,
2552 * after the mapped_device state becomes DMF_FREEING.
2553 */
2554 if (wait)
2555 while (atomic_read(&md->holders))
2556 msleep(1);
2557 else if (atomic_read(&md->holders))
2558 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2559 dm_device_name(md), atomic_read(&md->holders));
2560
2561 dm_sysfs_exit(md);
2562 dm_table_destroy(__unbind(md));
2563 free_dev(md);
2564 }
2565
2566 void dm_destroy(struct mapped_device *md)
2567 {
2568 __dm_destroy(md, true);
2569 }
2570
2571 void dm_destroy_immediate(struct mapped_device *md)
2572 {
2573 __dm_destroy(md, false);
2574 }
2575
2576 void dm_put(struct mapped_device *md)
2577 {
2578 atomic_dec(&md->holders);
2579 }
2580 EXPORT_SYMBOL_GPL(dm_put);
2581
2582 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2583 {
2584 int r = 0;
2585 DECLARE_WAITQUEUE(wait, current);
2586
2587 add_wait_queue(&md->wait, &wait);
2588
2589 while (1) {
2590 set_current_state(interruptible);
2591
2592 if (!md_in_flight(md))
2593 break;
2594
2595 if (interruptible == TASK_INTERRUPTIBLE &&
2596 signal_pending(current)) {
2597 r = -EINTR;
2598 break;
2599 }
2600
2601 io_schedule();
2602 }
2603 set_current_state(TASK_RUNNING);
2604
2605 remove_wait_queue(&md->wait, &wait);
2606
2607 return r;
2608 }
2609
2610 /*
2611 * Process the deferred bios
2612 */
2613 static void dm_wq_work(struct work_struct *work)
2614 {
2615 struct mapped_device *md = container_of(work, struct mapped_device,
2616 work);
2617 struct bio *c;
2618 int srcu_idx;
2619 struct dm_table *map;
2620
2621 map = dm_get_live_table(md, &srcu_idx);
2622
2623 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2624 spin_lock_irq(&md->deferred_lock);
2625 c = bio_list_pop(&md->deferred);
2626 spin_unlock_irq(&md->deferred_lock);
2627
2628 if (!c)
2629 break;
2630
2631 if (dm_request_based(md))
2632 generic_make_request(c);
2633 else
2634 __split_and_process_bio(md, map, c);
2635 }
2636
2637 dm_put_live_table(md, srcu_idx);
2638 }
2639
2640 static void dm_queue_flush(struct mapped_device *md)
2641 {
2642 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2643 smp_mb__after_atomic();
2644 queue_work(md->wq, &md->work);
2645 }
2646
2647 /*
2648 * Swap in a new table, returning the old one for the caller to destroy.
2649 */
2650 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2651 {
2652 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2653 struct queue_limits limits;
2654 int r;
2655
2656 mutex_lock(&md->suspend_lock);
2657
2658 /* device must be suspended */
2659 if (!dm_suspended_md(md))
2660 goto out;
2661
2662 /*
2663 * If the new table has no data devices, retain the existing limits.
2664 * This helps multipath with queue_if_no_path if all paths disappear,
2665 * then new I/O is queued based on these limits, and then some paths
2666 * reappear.
2667 */
2668 if (dm_table_has_no_data_devices(table)) {
2669 live_map = dm_get_live_table_fast(md);
2670 if (live_map)
2671 limits = md->queue->limits;
2672 dm_put_live_table_fast(md);
2673 }
2674
2675 if (!live_map) {
2676 r = dm_calculate_queue_limits(table, &limits);
2677 if (r) {
2678 map = ERR_PTR(r);
2679 goto out;
2680 }
2681 }
2682
2683 map = __bind(md, table, &limits);
2684
2685 out:
2686 mutex_unlock(&md->suspend_lock);
2687 return map;
2688 }
2689
2690 /*
2691 * Functions to lock and unlock any filesystem running on the
2692 * device.
2693 */
2694 static int lock_fs(struct mapped_device *md)
2695 {
2696 int r;
2697
2698 WARN_ON(md->frozen_sb);
2699
2700 md->frozen_sb = freeze_bdev(md->bdev);
2701 if (IS_ERR(md->frozen_sb)) {
2702 r = PTR_ERR(md->frozen_sb);
2703 md->frozen_sb = NULL;
2704 return r;
2705 }
2706
2707 set_bit(DMF_FROZEN, &md->flags);
2708
2709 return 0;
2710 }
2711
2712 static void unlock_fs(struct mapped_device *md)
2713 {
2714 if (!test_bit(DMF_FROZEN, &md->flags))
2715 return;
2716
2717 thaw_bdev(md->bdev, md->frozen_sb);
2718 md->frozen_sb = NULL;
2719 clear_bit(DMF_FROZEN, &md->flags);
2720 }
2721
2722 /*
2723 * If __dm_suspend returns 0, the device is completely quiescent
2724 * now. There is no request-processing activity. All new requests
2725 * are being added to md->deferred list.
2726 *
2727 * Caller must hold md->suspend_lock
2728 */
2729 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2730 unsigned suspend_flags, int interruptible)
2731 {
2732 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2733 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2734 int r;
2735
2736 /*
2737 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2738 * This flag is cleared before dm_suspend returns.
2739 */
2740 if (noflush)
2741 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2742
2743 /*
2744 * This gets reverted if there's an error later and the targets
2745 * provide the .presuspend_undo hook.
2746 */
2747 dm_table_presuspend_targets(map);
2748
2749 /*
2750 * Flush I/O to the device.
2751 * Any I/O submitted after lock_fs() may not be flushed.
2752 * noflush takes precedence over do_lockfs.
2753 * (lock_fs() flushes I/Os and waits for them to complete.)
2754 */
2755 if (!noflush && do_lockfs) {
2756 r = lock_fs(md);
2757 if (r) {
2758 dm_table_presuspend_undo_targets(map);
2759 return r;
2760 }
2761 }
2762
2763 /*
2764 * Here we must make sure that no processes are submitting requests
2765 * to target drivers i.e. no one may be executing
2766 * __split_and_process_bio. This is called from dm_request and
2767 * dm_wq_work.
2768 *
2769 * To get all processes out of __split_and_process_bio in dm_request,
2770 * we take the write lock. To prevent any process from reentering
2771 * __split_and_process_bio from dm_request and quiesce the thread
2772 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2773 * flush_workqueue(md->wq).
2774 */
2775 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2776 if (map)
2777 synchronize_srcu(&md->io_barrier);
2778
2779 /*
2780 * Stop md->queue before flushing md->wq in case request-based
2781 * dm defers requests to md->wq from md->queue.
2782 */
2783 if (dm_request_based(md))
2784 stop_queue(md->queue);
2785
2786 flush_workqueue(md->wq);
2787
2788 /*
2789 * At this point no more requests are entering target request routines.
2790 * We call dm_wait_for_completion to wait for all existing requests
2791 * to finish.
2792 */
2793 r = dm_wait_for_completion(md, interruptible);
2794
2795 if (noflush)
2796 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2797 if (map)
2798 synchronize_srcu(&md->io_barrier);
2799
2800 /* were we interrupted ? */
2801 if (r < 0) {
2802 dm_queue_flush(md);
2803
2804 if (dm_request_based(md))
2805 start_queue(md->queue);
2806
2807 unlock_fs(md);
2808 dm_table_presuspend_undo_targets(map);
2809 /* pushback list is already flushed, so skip flush */
2810 }
2811
2812 return r;
2813 }
2814
2815 /*
2816 * We need to be able to change a mapping table under a mounted
2817 * filesystem. For example we might want to move some data in
2818 * the background. Before the table can be swapped with
2819 * dm_bind_table, dm_suspend must be called to flush any in
2820 * flight bios and ensure that any further io gets deferred.
2821 */
2822 /*
2823 * Suspend mechanism in request-based dm.
2824 *
2825 * 1. Flush all I/Os by lock_fs() if needed.
2826 * 2. Stop dispatching any I/O by stopping the request_queue.
2827 * 3. Wait for all in-flight I/Os to be completed or requeued.
2828 *
2829 * To abort suspend, start the request_queue.
2830 */
2831 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2832 {
2833 struct dm_table *map = NULL;
2834 int r = 0;
2835
2836 retry:
2837 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2838
2839 if (dm_suspended_md(md)) {
2840 r = -EINVAL;
2841 goto out_unlock;
2842 }
2843
2844 if (dm_suspended_internally_md(md)) {
2845 /* already internally suspended, wait for internal resume */
2846 mutex_unlock(&md->suspend_lock);
2847 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2848 if (r)
2849 return r;
2850 goto retry;
2851 }
2852
2853 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2854
2855 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2856 if (r)
2857 goto out_unlock;
2858
2859 set_bit(DMF_SUSPENDED, &md->flags);
2860
2861 dm_table_postsuspend_targets(map);
2862
2863 out_unlock:
2864 mutex_unlock(&md->suspend_lock);
2865 return r;
2866 }
2867
2868 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2869 {
2870 if (map) {
2871 int r = dm_table_resume_targets(map);
2872 if (r)
2873 return r;
2874 }
2875
2876 dm_queue_flush(md);
2877
2878 /*
2879 * Flushing deferred I/Os must be done after targets are resumed
2880 * so that mapping of targets can work correctly.
2881 * Request-based dm is queueing the deferred I/Os in its request_queue.
2882 */
2883 if (dm_request_based(md))
2884 start_queue(md->queue);
2885
2886 unlock_fs(md);
2887
2888 return 0;
2889 }
2890
2891 int dm_resume(struct mapped_device *md)
2892 {
2893 int r = -EINVAL;
2894 struct dm_table *map = NULL;
2895
2896 retry:
2897 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2898
2899 if (!dm_suspended_md(md))
2900 goto out;
2901
2902 if (dm_suspended_internally_md(md)) {
2903 /* already internally suspended, wait for internal resume */
2904 mutex_unlock(&md->suspend_lock);
2905 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2906 if (r)
2907 return r;
2908 goto retry;
2909 }
2910
2911 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2912 if (!map || !dm_table_get_size(map))
2913 goto out;
2914
2915 r = __dm_resume(md, map);
2916 if (r)
2917 goto out;
2918
2919 clear_bit(DMF_SUSPENDED, &md->flags);
2920
2921 r = 0;
2922 out:
2923 mutex_unlock(&md->suspend_lock);
2924
2925 return r;
2926 }
2927
2928 /*
2929 * Internal suspend/resume works like userspace-driven suspend. It waits
2930 * until all bios finish and prevents issuing new bios to the target drivers.
2931 * It may be used only from the kernel.
2932 */
2933
2934 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2935 {
2936 struct dm_table *map = NULL;
2937
2938 if (dm_suspended_internally_md(md))
2939 return; /* nested internal suspend */
2940
2941 if (dm_suspended_md(md)) {
2942 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2943 return; /* nest suspend */
2944 }
2945
2946 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2947
2948 /*
2949 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2950 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2951 * would require changing .presuspend to return an error -- avoid this
2952 * until there is a need for more elaborate variants of internal suspend.
2953 */
2954 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
2955
2956 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2957
2958 dm_table_postsuspend_targets(map);
2959 }
2960
2961 static void __dm_internal_resume(struct mapped_device *md)
2962 {
2963 if (!dm_suspended_internally_md(md))
2964 return; /* resume from nested internal suspend */
2965
2966 if (dm_suspended_md(md))
2967 goto done; /* resume from nested suspend */
2968
2969 /*
2970 * NOTE: existing callers don't need to call dm_table_resume_targets
2971 * (which may fail -- so best to avoid it for now by passing NULL map)
2972 */
2973 (void) __dm_resume(md, NULL);
2974
2975 done:
2976 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2977 smp_mb__after_atomic();
2978 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2979 }
2980
2981 void dm_internal_suspend_noflush(struct mapped_device *md)
2982 {
2983 mutex_lock(&md->suspend_lock);
2984 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2985 mutex_unlock(&md->suspend_lock);
2986 }
2987 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2988
2989 void dm_internal_resume(struct mapped_device *md)
2990 {
2991 mutex_lock(&md->suspend_lock);
2992 __dm_internal_resume(md);
2993 mutex_unlock(&md->suspend_lock);
2994 }
2995 EXPORT_SYMBOL_GPL(dm_internal_resume);
2996
2997 /*
2998 * Fast variants of internal suspend/resume hold md->suspend_lock,
2999 * which prevents interaction with userspace-driven suspend.
3000 */
3001
3002 void dm_internal_suspend_fast(struct mapped_device *md)
3003 {
3004 mutex_lock(&md->suspend_lock);
3005 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3006 return;
3007
3008 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3009 synchronize_srcu(&md->io_barrier);
3010 flush_workqueue(md->wq);
3011 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3012 }
3013
3014 void dm_internal_resume_fast(struct mapped_device *md)
3015 {
3016 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3017 goto done;
3018
3019 dm_queue_flush(md);
3020
3021 done:
3022 mutex_unlock(&md->suspend_lock);
3023 }
3024
3025 /*-----------------------------------------------------------------
3026 * Event notification.
3027 *---------------------------------------------------------------*/
3028 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3029 unsigned cookie)
3030 {
3031 char udev_cookie[DM_COOKIE_LENGTH];
3032 char *envp[] = { udev_cookie, NULL };
3033
3034 if (!cookie)
3035 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3036 else {
3037 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3038 DM_COOKIE_ENV_VAR_NAME, cookie);
3039 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3040 action, envp);
3041 }
3042 }
3043
3044 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3045 {
3046 return atomic_add_return(1, &md->uevent_seq);
3047 }
3048
3049 uint32_t dm_get_event_nr(struct mapped_device *md)
3050 {
3051 return atomic_read(&md->event_nr);
3052 }
3053
3054 int dm_wait_event(struct mapped_device *md, int event_nr)
3055 {
3056 return wait_event_interruptible(md->eventq,
3057 (event_nr != atomic_read(&md->event_nr)));
3058 }
3059
3060 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3061 {
3062 unsigned long flags;
3063
3064 spin_lock_irqsave(&md->uevent_lock, flags);
3065 list_add(elist, &md->uevent_list);
3066 spin_unlock_irqrestore(&md->uevent_lock, flags);
3067 }
3068
3069 /*
3070 * The gendisk is only valid as long as you have a reference
3071 * count on 'md'.
3072 */
3073 struct gendisk *dm_disk(struct mapped_device *md)
3074 {
3075 return md->disk;
3076 }
3077
3078 struct kobject *dm_kobject(struct mapped_device *md)
3079 {
3080 return &md->kobj_holder.kobj;
3081 }
3082
3083 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3084 {
3085 struct mapped_device *md;
3086
3087 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3088
3089 if (test_bit(DMF_FREEING, &md->flags) ||
3090 dm_deleting_md(md))
3091 return NULL;
3092
3093 dm_get(md);
3094 return md;
3095 }
3096
3097 int dm_suspended_md(struct mapped_device *md)
3098 {
3099 return test_bit(DMF_SUSPENDED, &md->flags);
3100 }
3101
3102 int dm_suspended_internally_md(struct mapped_device *md)
3103 {
3104 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3105 }
3106
3107 int dm_test_deferred_remove_flag(struct mapped_device *md)
3108 {
3109 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3110 }
3111
3112 int dm_suspended(struct dm_target *ti)
3113 {
3114 return dm_suspended_md(dm_table_get_md(ti->table));
3115 }
3116 EXPORT_SYMBOL_GPL(dm_suspended);
3117
3118 int dm_noflush_suspending(struct dm_target *ti)
3119 {
3120 return __noflush_suspending(dm_table_get_md(ti->table));
3121 }
3122 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3123
3124 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3125 {
3126 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3127 struct kmem_cache *cachep;
3128 unsigned int pool_size;
3129 unsigned int front_pad;
3130
3131 if (!pools)
3132 return NULL;
3133
3134 if (type == DM_TYPE_BIO_BASED) {
3135 cachep = _io_cache;
3136 pool_size = dm_get_reserved_bio_based_ios();
3137 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3138 } else if (type == DM_TYPE_REQUEST_BASED) {
3139 cachep = _rq_tio_cache;
3140 pool_size = dm_get_reserved_rq_based_ios();
3141 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3142 /* per_bio_data_size is not used. See __bind_mempools(). */
3143 WARN_ON(per_bio_data_size != 0);
3144 } else
3145 goto out;
3146
3147 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3148 if (!pools->io_pool)
3149 goto out;
3150
3151 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3152 if (!pools->bs)
3153 goto out;
3154
3155 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3156 goto out;
3157
3158 return pools;
3159
3160 out:
3161 dm_free_md_mempools(pools);
3162
3163 return NULL;
3164 }
3165
3166 void dm_free_md_mempools(struct dm_md_mempools *pools)
3167 {
3168 if (!pools)
3169 return;
3170
3171 if (pools->io_pool)
3172 mempool_destroy(pools->io_pool);
3173
3174 if (pools->bs)
3175 bioset_free(pools->bs);
3176
3177 kfree(pools);
3178 }
3179
3180 static const struct block_device_operations dm_blk_dops = {
3181 .open = dm_blk_open,
3182 .release = dm_blk_close,
3183 .ioctl = dm_blk_ioctl,
3184 .getgeo = dm_blk_getgeo,
3185 .owner = THIS_MODULE
3186 };
3187
3188 /*
3189 * module hooks
3190 */
3191 module_init(dm_init);
3192 module_exit(dm_exit);
3193
3194 module_param(major, uint, 0);
3195 MODULE_PARM_DESC(major, "The major number of the device mapper");
3196
3197 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3198 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3199
3200 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3201 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3202
3203 MODULE_DESCRIPTION(DM_NAME " driver");
3204 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3205 MODULE_LICENSE("GPL");