]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
block: Use pointer to backing_dev_info from request_queue
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pr.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52
53 static void do_deferred_remove(struct work_struct *w);
54
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56
57 static struct workqueue_struct *deferred_remove_workqueue;
58
59 /*
60 * One of these is allocated per bio.
61 */
62 struct dm_io {
63 struct mapped_device *md;
64 int error;
65 atomic_t io_count;
66 struct bio *bio;
67 unsigned long start_time;
68 spinlock_t endio_lock;
69 struct dm_stats_aux stats_aux;
70 };
71
72 #define MINOR_ALLOCED ((void *)-1)
73
74 /*
75 * Bits for the md->flags field.
76 */
77 #define DMF_BLOCK_IO_FOR_SUSPEND 0
78 #define DMF_SUSPENDED 1
79 #define DMF_FROZEN 2
80 #define DMF_FREEING 3
81 #define DMF_DELETING 4
82 #define DMF_NOFLUSH_SUSPENDING 5
83 #define DMF_DEFERRED_REMOVE 6
84 #define DMF_SUSPENDED_INTERNALLY 7
85
86 #define DM_NUMA_NODE NUMA_NO_NODE
87 static int dm_numa_node = DM_NUMA_NODE;
88
89 /*
90 * For mempools pre-allocation at the table loading time.
91 */
92 struct dm_md_mempools {
93 mempool_t *io_pool;
94 struct bio_set *bs;
95 };
96
97 struct table_device {
98 struct list_head list;
99 atomic_t count;
100 struct dm_dev dm_dev;
101 };
102
103 static struct kmem_cache *_io_cache;
104 static struct kmem_cache *_rq_tio_cache;
105 static struct kmem_cache *_rq_cache;
106
107 /*
108 * Bio-based DM's mempools' reserved IOs set by the user.
109 */
110 #define RESERVED_BIO_BASED_IOS 16
111 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
112
113 static int __dm_get_module_param_int(int *module_param, int min, int max)
114 {
115 int param = ACCESS_ONCE(*module_param);
116 int modified_param = 0;
117 bool modified = true;
118
119 if (param < min)
120 modified_param = min;
121 else if (param > max)
122 modified_param = max;
123 else
124 modified = false;
125
126 if (modified) {
127 (void)cmpxchg(module_param, param, modified_param);
128 param = modified_param;
129 }
130
131 return param;
132 }
133
134 unsigned __dm_get_module_param(unsigned *module_param,
135 unsigned def, unsigned max)
136 {
137 unsigned param = ACCESS_ONCE(*module_param);
138 unsigned modified_param = 0;
139
140 if (!param)
141 modified_param = def;
142 else if (param > max)
143 modified_param = max;
144
145 if (modified_param) {
146 (void)cmpxchg(module_param, param, modified_param);
147 param = modified_param;
148 }
149
150 return param;
151 }
152
153 unsigned dm_get_reserved_bio_based_ios(void)
154 {
155 return __dm_get_module_param(&reserved_bio_based_ios,
156 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
157 }
158 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
159
160 static unsigned dm_get_numa_node(void)
161 {
162 return __dm_get_module_param_int(&dm_numa_node,
163 DM_NUMA_NODE, num_online_nodes() - 1);
164 }
165
166 static int __init local_init(void)
167 {
168 int r = -ENOMEM;
169
170 /* allocate a slab for the dm_ios */
171 _io_cache = KMEM_CACHE(dm_io, 0);
172 if (!_io_cache)
173 return r;
174
175 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
176 if (!_rq_tio_cache)
177 goto out_free_io_cache;
178
179 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
180 __alignof__(struct request), 0, NULL);
181 if (!_rq_cache)
182 goto out_free_rq_tio_cache;
183
184 r = dm_uevent_init();
185 if (r)
186 goto out_free_rq_cache;
187
188 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
189 if (!deferred_remove_workqueue) {
190 r = -ENOMEM;
191 goto out_uevent_exit;
192 }
193
194 _major = major;
195 r = register_blkdev(_major, _name);
196 if (r < 0)
197 goto out_free_workqueue;
198
199 if (!_major)
200 _major = r;
201
202 return 0;
203
204 out_free_workqueue:
205 destroy_workqueue(deferred_remove_workqueue);
206 out_uevent_exit:
207 dm_uevent_exit();
208 out_free_rq_cache:
209 kmem_cache_destroy(_rq_cache);
210 out_free_rq_tio_cache:
211 kmem_cache_destroy(_rq_tio_cache);
212 out_free_io_cache:
213 kmem_cache_destroy(_io_cache);
214
215 return r;
216 }
217
218 static void local_exit(void)
219 {
220 flush_scheduled_work();
221 destroy_workqueue(deferred_remove_workqueue);
222
223 kmem_cache_destroy(_rq_cache);
224 kmem_cache_destroy(_rq_tio_cache);
225 kmem_cache_destroy(_io_cache);
226 unregister_blkdev(_major, _name);
227 dm_uevent_exit();
228
229 _major = 0;
230
231 DMINFO("cleaned up");
232 }
233
234 static int (*_inits[])(void) __initdata = {
235 local_init,
236 dm_target_init,
237 dm_linear_init,
238 dm_stripe_init,
239 dm_io_init,
240 dm_kcopyd_init,
241 dm_interface_init,
242 dm_statistics_init,
243 };
244
245 static void (*_exits[])(void) = {
246 local_exit,
247 dm_target_exit,
248 dm_linear_exit,
249 dm_stripe_exit,
250 dm_io_exit,
251 dm_kcopyd_exit,
252 dm_interface_exit,
253 dm_statistics_exit,
254 };
255
256 static int __init dm_init(void)
257 {
258 const int count = ARRAY_SIZE(_inits);
259
260 int r, i;
261
262 for (i = 0; i < count; i++) {
263 r = _inits[i]();
264 if (r)
265 goto bad;
266 }
267
268 return 0;
269
270 bad:
271 while (i--)
272 _exits[i]();
273
274 return r;
275 }
276
277 static void __exit dm_exit(void)
278 {
279 int i = ARRAY_SIZE(_exits);
280
281 while (i--)
282 _exits[i]();
283
284 /*
285 * Should be empty by this point.
286 */
287 idr_destroy(&_minor_idr);
288 }
289
290 /*
291 * Block device functions
292 */
293 int dm_deleting_md(struct mapped_device *md)
294 {
295 return test_bit(DMF_DELETING, &md->flags);
296 }
297
298 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
299 {
300 struct mapped_device *md;
301
302 spin_lock(&_minor_lock);
303
304 md = bdev->bd_disk->private_data;
305 if (!md)
306 goto out;
307
308 if (test_bit(DMF_FREEING, &md->flags) ||
309 dm_deleting_md(md)) {
310 md = NULL;
311 goto out;
312 }
313
314 dm_get(md);
315 atomic_inc(&md->open_count);
316 out:
317 spin_unlock(&_minor_lock);
318
319 return md ? 0 : -ENXIO;
320 }
321
322 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
323 {
324 struct mapped_device *md;
325
326 spin_lock(&_minor_lock);
327
328 md = disk->private_data;
329 if (WARN_ON(!md))
330 goto out;
331
332 if (atomic_dec_and_test(&md->open_count) &&
333 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
334 queue_work(deferred_remove_workqueue, &deferred_remove_work);
335
336 dm_put(md);
337 out:
338 spin_unlock(&_minor_lock);
339 }
340
341 int dm_open_count(struct mapped_device *md)
342 {
343 return atomic_read(&md->open_count);
344 }
345
346 /*
347 * Guarantees nothing is using the device before it's deleted.
348 */
349 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
350 {
351 int r = 0;
352
353 spin_lock(&_minor_lock);
354
355 if (dm_open_count(md)) {
356 r = -EBUSY;
357 if (mark_deferred)
358 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
359 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
360 r = -EEXIST;
361 else
362 set_bit(DMF_DELETING, &md->flags);
363
364 spin_unlock(&_minor_lock);
365
366 return r;
367 }
368
369 int dm_cancel_deferred_remove(struct mapped_device *md)
370 {
371 int r = 0;
372
373 spin_lock(&_minor_lock);
374
375 if (test_bit(DMF_DELETING, &md->flags))
376 r = -EBUSY;
377 else
378 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
379
380 spin_unlock(&_minor_lock);
381
382 return r;
383 }
384
385 static void do_deferred_remove(struct work_struct *w)
386 {
387 dm_deferred_remove();
388 }
389
390 sector_t dm_get_size(struct mapped_device *md)
391 {
392 return get_capacity(md->disk);
393 }
394
395 struct request_queue *dm_get_md_queue(struct mapped_device *md)
396 {
397 return md->queue;
398 }
399
400 struct dm_stats *dm_get_stats(struct mapped_device *md)
401 {
402 return &md->stats;
403 }
404
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 struct mapped_device *md = bdev->bd_disk->private_data;
408
409 return dm_get_geometry(md, geo);
410 }
411
412 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
413 struct block_device **bdev,
414 fmode_t *mode)
415 {
416 struct dm_target *tgt;
417 struct dm_table *map;
418 int srcu_idx, r;
419
420 retry:
421 r = -ENOTTY;
422 map = dm_get_live_table(md, &srcu_idx);
423 if (!map || !dm_table_get_size(map))
424 goto out;
425
426 /* We only support devices that have a single target */
427 if (dm_table_get_num_targets(map) != 1)
428 goto out;
429
430 tgt = dm_table_get_target(map, 0);
431 if (!tgt->type->prepare_ioctl)
432 goto out;
433
434 if (dm_suspended_md(md)) {
435 r = -EAGAIN;
436 goto out;
437 }
438
439 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
440 if (r < 0)
441 goto out;
442
443 bdgrab(*bdev);
444 dm_put_live_table(md, srcu_idx);
445 return r;
446
447 out:
448 dm_put_live_table(md, srcu_idx);
449 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
450 msleep(10);
451 goto retry;
452 }
453 return r;
454 }
455
456 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
457 unsigned int cmd, unsigned long arg)
458 {
459 struct mapped_device *md = bdev->bd_disk->private_data;
460 int r;
461
462 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
463 if (r < 0)
464 return r;
465
466 if (r > 0) {
467 /*
468 * Target determined this ioctl is being issued against
469 * a logical partition of the parent bdev; so extra
470 * validation is needed.
471 */
472 r = scsi_verify_blk_ioctl(NULL, cmd);
473 if (r)
474 goto out;
475 }
476
477 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
478 out:
479 bdput(bdev);
480 return r;
481 }
482
483 static struct dm_io *alloc_io(struct mapped_device *md)
484 {
485 return mempool_alloc(md->io_pool, GFP_NOIO);
486 }
487
488 static void free_io(struct mapped_device *md, struct dm_io *io)
489 {
490 mempool_free(io, md->io_pool);
491 }
492
493 static void free_tio(struct dm_target_io *tio)
494 {
495 bio_put(&tio->clone);
496 }
497
498 int md_in_flight(struct mapped_device *md)
499 {
500 return atomic_read(&md->pending[READ]) +
501 atomic_read(&md->pending[WRITE]);
502 }
503
504 static void start_io_acct(struct dm_io *io)
505 {
506 struct mapped_device *md = io->md;
507 struct bio *bio = io->bio;
508 int cpu;
509 int rw = bio_data_dir(bio);
510
511 io->start_time = jiffies;
512
513 cpu = part_stat_lock();
514 part_round_stats(cpu, &dm_disk(md)->part0);
515 part_stat_unlock();
516 atomic_set(&dm_disk(md)->part0.in_flight[rw],
517 atomic_inc_return(&md->pending[rw]));
518
519 if (unlikely(dm_stats_used(&md->stats)))
520 dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 bio->bi_iter.bi_sector, bio_sectors(bio),
522 false, 0, &io->stats_aux);
523 }
524
525 static void end_io_acct(struct dm_io *io)
526 {
527 struct mapped_device *md = io->md;
528 struct bio *bio = io->bio;
529 unsigned long duration = jiffies - io->start_time;
530 int pending;
531 int rw = bio_data_dir(bio);
532
533 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
534
535 if (unlikely(dm_stats_used(&md->stats)))
536 dm_stats_account_io(&md->stats, bio_data_dir(bio),
537 bio->bi_iter.bi_sector, bio_sectors(bio),
538 true, duration, &io->stats_aux);
539
540 /*
541 * After this is decremented the bio must not be touched if it is
542 * a flush.
543 */
544 pending = atomic_dec_return(&md->pending[rw]);
545 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
546 pending += atomic_read(&md->pending[rw^0x1]);
547
548 /* nudge anyone waiting on suspend queue */
549 if (!pending)
550 wake_up(&md->wait);
551 }
552
553 /*
554 * Add the bio to the list of deferred io.
555 */
556 static void queue_io(struct mapped_device *md, struct bio *bio)
557 {
558 unsigned long flags;
559
560 spin_lock_irqsave(&md->deferred_lock, flags);
561 bio_list_add(&md->deferred, bio);
562 spin_unlock_irqrestore(&md->deferred_lock, flags);
563 queue_work(md->wq, &md->work);
564 }
565
566 /*
567 * Everyone (including functions in this file), should use this
568 * function to access the md->map field, and make sure they call
569 * dm_put_live_table() when finished.
570 */
571 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
572 {
573 *srcu_idx = srcu_read_lock(&md->io_barrier);
574
575 return srcu_dereference(md->map, &md->io_barrier);
576 }
577
578 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
579 {
580 srcu_read_unlock(&md->io_barrier, srcu_idx);
581 }
582
583 void dm_sync_table(struct mapped_device *md)
584 {
585 synchronize_srcu(&md->io_barrier);
586 synchronize_rcu_expedited();
587 }
588
589 /*
590 * A fast alternative to dm_get_live_table/dm_put_live_table.
591 * The caller must not block between these two functions.
592 */
593 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
594 {
595 rcu_read_lock();
596 return rcu_dereference(md->map);
597 }
598
599 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
600 {
601 rcu_read_unlock();
602 }
603
604 /*
605 * Open a table device so we can use it as a map destination.
606 */
607 static int open_table_device(struct table_device *td, dev_t dev,
608 struct mapped_device *md)
609 {
610 static char *_claim_ptr = "I belong to device-mapper";
611 struct block_device *bdev;
612
613 int r;
614
615 BUG_ON(td->dm_dev.bdev);
616
617 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
618 if (IS_ERR(bdev))
619 return PTR_ERR(bdev);
620
621 r = bd_link_disk_holder(bdev, dm_disk(md));
622 if (r) {
623 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
624 return r;
625 }
626
627 td->dm_dev.bdev = bdev;
628 return 0;
629 }
630
631 /*
632 * Close a table device that we've been using.
633 */
634 static void close_table_device(struct table_device *td, struct mapped_device *md)
635 {
636 if (!td->dm_dev.bdev)
637 return;
638
639 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
640 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
641 td->dm_dev.bdev = NULL;
642 }
643
644 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
645 fmode_t mode) {
646 struct table_device *td;
647
648 list_for_each_entry(td, l, list)
649 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
650 return td;
651
652 return NULL;
653 }
654
655 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
656 struct dm_dev **result) {
657 int r;
658 struct table_device *td;
659
660 mutex_lock(&md->table_devices_lock);
661 td = find_table_device(&md->table_devices, dev, mode);
662 if (!td) {
663 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
664 if (!td) {
665 mutex_unlock(&md->table_devices_lock);
666 return -ENOMEM;
667 }
668
669 td->dm_dev.mode = mode;
670 td->dm_dev.bdev = NULL;
671
672 if ((r = open_table_device(td, dev, md))) {
673 mutex_unlock(&md->table_devices_lock);
674 kfree(td);
675 return r;
676 }
677
678 format_dev_t(td->dm_dev.name, dev);
679
680 atomic_set(&td->count, 0);
681 list_add(&td->list, &md->table_devices);
682 }
683 atomic_inc(&td->count);
684 mutex_unlock(&md->table_devices_lock);
685
686 *result = &td->dm_dev;
687 return 0;
688 }
689 EXPORT_SYMBOL_GPL(dm_get_table_device);
690
691 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
692 {
693 struct table_device *td = container_of(d, struct table_device, dm_dev);
694
695 mutex_lock(&md->table_devices_lock);
696 if (atomic_dec_and_test(&td->count)) {
697 close_table_device(td, md);
698 list_del(&td->list);
699 kfree(td);
700 }
701 mutex_unlock(&md->table_devices_lock);
702 }
703 EXPORT_SYMBOL(dm_put_table_device);
704
705 static void free_table_devices(struct list_head *devices)
706 {
707 struct list_head *tmp, *next;
708
709 list_for_each_safe(tmp, next, devices) {
710 struct table_device *td = list_entry(tmp, struct table_device, list);
711
712 DMWARN("dm_destroy: %s still exists with %d references",
713 td->dm_dev.name, atomic_read(&td->count));
714 kfree(td);
715 }
716 }
717
718 /*
719 * Get the geometry associated with a dm device
720 */
721 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
722 {
723 *geo = md->geometry;
724
725 return 0;
726 }
727
728 /*
729 * Set the geometry of a device.
730 */
731 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 {
733 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
734
735 if (geo->start > sz) {
736 DMWARN("Start sector is beyond the geometry limits.");
737 return -EINVAL;
738 }
739
740 md->geometry = *geo;
741
742 return 0;
743 }
744
745 /*-----------------------------------------------------------------
746 * CRUD START:
747 * A more elegant soln is in the works that uses the queue
748 * merge fn, unfortunately there are a couple of changes to
749 * the block layer that I want to make for this. So in the
750 * interests of getting something for people to use I give
751 * you this clearly demarcated crap.
752 *---------------------------------------------------------------*/
753
754 static int __noflush_suspending(struct mapped_device *md)
755 {
756 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
757 }
758
759 /*
760 * Decrements the number of outstanding ios that a bio has been
761 * cloned into, completing the original io if necc.
762 */
763 static void dec_pending(struct dm_io *io, int error)
764 {
765 unsigned long flags;
766 int io_error;
767 struct bio *bio;
768 struct mapped_device *md = io->md;
769
770 /* Push-back supersedes any I/O errors */
771 if (unlikely(error)) {
772 spin_lock_irqsave(&io->endio_lock, flags);
773 if (!(io->error > 0 && __noflush_suspending(md)))
774 io->error = error;
775 spin_unlock_irqrestore(&io->endio_lock, flags);
776 }
777
778 if (atomic_dec_and_test(&io->io_count)) {
779 if (io->error == DM_ENDIO_REQUEUE) {
780 /*
781 * Target requested pushing back the I/O.
782 */
783 spin_lock_irqsave(&md->deferred_lock, flags);
784 if (__noflush_suspending(md))
785 bio_list_add_head(&md->deferred, io->bio);
786 else
787 /* noflush suspend was interrupted. */
788 io->error = -EIO;
789 spin_unlock_irqrestore(&md->deferred_lock, flags);
790 }
791
792 io_error = io->error;
793 bio = io->bio;
794 end_io_acct(io);
795 free_io(md, io);
796
797 if (io_error == DM_ENDIO_REQUEUE)
798 return;
799
800 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
801 /*
802 * Preflush done for flush with data, reissue
803 * without REQ_PREFLUSH.
804 */
805 bio->bi_opf &= ~REQ_PREFLUSH;
806 queue_io(md, bio);
807 } else {
808 /* done with normal IO or empty flush */
809 trace_block_bio_complete(md->queue, bio, io_error);
810 bio->bi_error = io_error;
811 bio_endio(bio);
812 }
813 }
814 }
815
816 void disable_write_same(struct mapped_device *md)
817 {
818 struct queue_limits *limits = dm_get_queue_limits(md);
819
820 /* device doesn't really support WRITE SAME, disable it */
821 limits->max_write_same_sectors = 0;
822 }
823
824 static void clone_endio(struct bio *bio)
825 {
826 int error = bio->bi_error;
827 int r = error;
828 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
829 struct dm_io *io = tio->io;
830 struct mapped_device *md = tio->io->md;
831 dm_endio_fn endio = tio->ti->type->end_io;
832
833 if (endio) {
834 r = endio(tio->ti, bio, error);
835 if (r < 0 || r == DM_ENDIO_REQUEUE)
836 /*
837 * error and requeue request are handled
838 * in dec_pending().
839 */
840 error = r;
841 else if (r == DM_ENDIO_INCOMPLETE)
842 /* The target will handle the io */
843 return;
844 else if (r) {
845 DMWARN("unimplemented target endio return value: %d", r);
846 BUG();
847 }
848 }
849
850 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
851 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
852 disable_write_same(md);
853
854 free_tio(tio);
855 dec_pending(io, error);
856 }
857
858 /*
859 * Return maximum size of I/O possible at the supplied sector up to the current
860 * target boundary.
861 */
862 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
863 {
864 sector_t target_offset = dm_target_offset(ti, sector);
865
866 return ti->len - target_offset;
867 }
868
869 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
870 {
871 sector_t len = max_io_len_target_boundary(sector, ti);
872 sector_t offset, max_len;
873
874 /*
875 * Does the target need to split even further?
876 */
877 if (ti->max_io_len) {
878 offset = dm_target_offset(ti, sector);
879 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
880 max_len = sector_div(offset, ti->max_io_len);
881 else
882 max_len = offset & (ti->max_io_len - 1);
883 max_len = ti->max_io_len - max_len;
884
885 if (len > max_len)
886 len = max_len;
887 }
888
889 return len;
890 }
891
892 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
893 {
894 if (len > UINT_MAX) {
895 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
896 (unsigned long long)len, UINT_MAX);
897 ti->error = "Maximum size of target IO is too large";
898 return -EINVAL;
899 }
900
901 ti->max_io_len = (uint32_t) len;
902
903 return 0;
904 }
905 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
906
907 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
908 void **kaddr, pfn_t *pfn, long size)
909 {
910 struct mapped_device *md = bdev->bd_disk->private_data;
911 struct dm_table *map;
912 struct dm_target *ti;
913 int srcu_idx;
914 long len, ret = -EIO;
915
916 map = dm_get_live_table(md, &srcu_idx);
917 if (!map)
918 goto out;
919
920 ti = dm_table_find_target(map, sector);
921 if (!dm_target_is_valid(ti))
922 goto out;
923
924 len = max_io_len(sector, ti) << SECTOR_SHIFT;
925 size = min(len, size);
926
927 if (ti->type->direct_access)
928 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
929 out:
930 dm_put_live_table(md, srcu_idx);
931 return min(ret, size);
932 }
933
934 /*
935 * A target may call dm_accept_partial_bio only from the map routine. It is
936 * allowed for all bio types except REQ_PREFLUSH.
937 *
938 * dm_accept_partial_bio informs the dm that the target only wants to process
939 * additional n_sectors sectors of the bio and the rest of the data should be
940 * sent in a next bio.
941 *
942 * A diagram that explains the arithmetics:
943 * +--------------------+---------------+-------+
944 * | 1 | 2 | 3 |
945 * +--------------------+---------------+-------+
946 *
947 * <-------------- *tio->len_ptr --------------->
948 * <------- bi_size ------->
949 * <-- n_sectors -->
950 *
951 * Region 1 was already iterated over with bio_advance or similar function.
952 * (it may be empty if the target doesn't use bio_advance)
953 * Region 2 is the remaining bio size that the target wants to process.
954 * (it may be empty if region 1 is non-empty, although there is no reason
955 * to make it empty)
956 * The target requires that region 3 is to be sent in the next bio.
957 *
958 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
959 * the partially processed part (the sum of regions 1+2) must be the same for all
960 * copies of the bio.
961 */
962 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
963 {
964 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
965 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
966 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
967 BUG_ON(bi_size > *tio->len_ptr);
968 BUG_ON(n_sectors > bi_size);
969 *tio->len_ptr -= bi_size - n_sectors;
970 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
971 }
972 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
973
974 static void __map_bio(struct dm_target_io *tio)
975 {
976 int r;
977 sector_t sector;
978 struct bio *clone = &tio->clone;
979 struct dm_target *ti = tio->ti;
980
981 clone->bi_end_io = clone_endio;
982
983 /*
984 * Map the clone. If r == 0 we don't need to do
985 * anything, the target has assumed ownership of
986 * this io.
987 */
988 atomic_inc(&tio->io->io_count);
989 sector = clone->bi_iter.bi_sector;
990 r = ti->type->map(ti, clone);
991 if (r == DM_MAPIO_REMAPPED) {
992 /* the bio has been remapped so dispatch it */
993
994 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
995 tio->io->bio->bi_bdev->bd_dev, sector);
996
997 generic_make_request(clone);
998 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
999 /* error the io and bail out, or requeue it if needed */
1000 dec_pending(tio->io, r);
1001 free_tio(tio);
1002 } else if (r != DM_MAPIO_SUBMITTED) {
1003 DMWARN("unimplemented target map return value: %d", r);
1004 BUG();
1005 }
1006 }
1007
1008 struct clone_info {
1009 struct mapped_device *md;
1010 struct dm_table *map;
1011 struct bio *bio;
1012 struct dm_io *io;
1013 sector_t sector;
1014 unsigned sector_count;
1015 };
1016
1017 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1018 {
1019 bio->bi_iter.bi_sector = sector;
1020 bio->bi_iter.bi_size = to_bytes(len);
1021 }
1022
1023 /*
1024 * Creates a bio that consists of range of complete bvecs.
1025 */
1026 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1027 sector_t sector, unsigned len)
1028 {
1029 struct bio *clone = &tio->clone;
1030
1031 __bio_clone_fast(clone, bio);
1032
1033 if (bio_integrity(bio)) {
1034 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1035 if (r < 0)
1036 return r;
1037 }
1038
1039 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1040 clone->bi_iter.bi_size = to_bytes(len);
1041
1042 if (bio_integrity(bio))
1043 bio_integrity_trim(clone, 0, len);
1044
1045 return 0;
1046 }
1047
1048 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1049 struct dm_target *ti,
1050 unsigned target_bio_nr)
1051 {
1052 struct dm_target_io *tio;
1053 struct bio *clone;
1054
1055 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1056 tio = container_of(clone, struct dm_target_io, clone);
1057
1058 tio->io = ci->io;
1059 tio->ti = ti;
1060 tio->target_bio_nr = target_bio_nr;
1061
1062 return tio;
1063 }
1064
1065 static void __clone_and_map_simple_bio(struct clone_info *ci,
1066 struct dm_target *ti,
1067 unsigned target_bio_nr, unsigned *len)
1068 {
1069 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1070 struct bio *clone = &tio->clone;
1071
1072 tio->len_ptr = len;
1073
1074 __bio_clone_fast(clone, ci->bio);
1075 if (len)
1076 bio_setup_sector(clone, ci->sector, *len);
1077
1078 __map_bio(tio);
1079 }
1080
1081 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1082 unsigned num_bios, unsigned *len)
1083 {
1084 unsigned target_bio_nr;
1085
1086 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1087 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1088 }
1089
1090 static int __send_empty_flush(struct clone_info *ci)
1091 {
1092 unsigned target_nr = 0;
1093 struct dm_target *ti;
1094
1095 BUG_ON(bio_has_data(ci->bio));
1096 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1097 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1098
1099 return 0;
1100 }
1101
1102 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1103 sector_t sector, unsigned *len)
1104 {
1105 struct bio *bio = ci->bio;
1106 struct dm_target_io *tio;
1107 unsigned target_bio_nr;
1108 unsigned num_target_bios = 1;
1109 int r = 0;
1110
1111 /*
1112 * Does the target want to receive duplicate copies of the bio?
1113 */
1114 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1115 num_target_bios = ti->num_write_bios(ti, bio);
1116
1117 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1118 tio = alloc_tio(ci, ti, target_bio_nr);
1119 tio->len_ptr = len;
1120 r = clone_bio(tio, bio, sector, *len);
1121 if (r < 0) {
1122 free_tio(tio);
1123 break;
1124 }
1125 __map_bio(tio);
1126 }
1127
1128 return r;
1129 }
1130
1131 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1132
1133 static unsigned get_num_discard_bios(struct dm_target *ti)
1134 {
1135 return ti->num_discard_bios;
1136 }
1137
1138 static unsigned get_num_write_same_bios(struct dm_target *ti)
1139 {
1140 return ti->num_write_same_bios;
1141 }
1142
1143 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1144
1145 static bool is_split_required_for_discard(struct dm_target *ti)
1146 {
1147 return ti->split_discard_bios;
1148 }
1149
1150 static int __send_changing_extent_only(struct clone_info *ci,
1151 get_num_bios_fn get_num_bios,
1152 is_split_required_fn is_split_required)
1153 {
1154 struct dm_target *ti;
1155 unsigned len;
1156 unsigned num_bios;
1157
1158 do {
1159 ti = dm_table_find_target(ci->map, ci->sector);
1160 if (!dm_target_is_valid(ti))
1161 return -EIO;
1162
1163 /*
1164 * Even though the device advertised support for this type of
1165 * request, that does not mean every target supports it, and
1166 * reconfiguration might also have changed that since the
1167 * check was performed.
1168 */
1169 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1170 if (!num_bios)
1171 return -EOPNOTSUPP;
1172
1173 if (is_split_required && !is_split_required(ti))
1174 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1175 else
1176 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1177
1178 __send_duplicate_bios(ci, ti, num_bios, &len);
1179
1180 ci->sector += len;
1181 } while (ci->sector_count -= len);
1182
1183 return 0;
1184 }
1185
1186 static int __send_discard(struct clone_info *ci)
1187 {
1188 return __send_changing_extent_only(ci, get_num_discard_bios,
1189 is_split_required_for_discard);
1190 }
1191
1192 static int __send_write_same(struct clone_info *ci)
1193 {
1194 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1195 }
1196
1197 /*
1198 * Select the correct strategy for processing a non-flush bio.
1199 */
1200 static int __split_and_process_non_flush(struct clone_info *ci)
1201 {
1202 struct bio *bio = ci->bio;
1203 struct dm_target *ti;
1204 unsigned len;
1205 int r;
1206
1207 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1208 return __send_discard(ci);
1209 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1210 return __send_write_same(ci);
1211
1212 ti = dm_table_find_target(ci->map, ci->sector);
1213 if (!dm_target_is_valid(ti))
1214 return -EIO;
1215
1216 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1217
1218 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1219 if (r < 0)
1220 return r;
1221
1222 ci->sector += len;
1223 ci->sector_count -= len;
1224
1225 return 0;
1226 }
1227
1228 /*
1229 * Entry point to split a bio into clones and submit them to the targets.
1230 */
1231 static void __split_and_process_bio(struct mapped_device *md,
1232 struct dm_table *map, struct bio *bio)
1233 {
1234 struct clone_info ci;
1235 int error = 0;
1236
1237 if (unlikely(!map)) {
1238 bio_io_error(bio);
1239 return;
1240 }
1241
1242 ci.map = map;
1243 ci.md = md;
1244 ci.io = alloc_io(md);
1245 ci.io->error = 0;
1246 atomic_set(&ci.io->io_count, 1);
1247 ci.io->bio = bio;
1248 ci.io->md = md;
1249 spin_lock_init(&ci.io->endio_lock);
1250 ci.sector = bio->bi_iter.bi_sector;
1251
1252 start_io_acct(ci.io);
1253
1254 if (bio->bi_opf & REQ_PREFLUSH) {
1255 ci.bio = &ci.md->flush_bio;
1256 ci.sector_count = 0;
1257 error = __send_empty_flush(&ci);
1258 /* dec_pending submits any data associated with flush */
1259 } else {
1260 ci.bio = bio;
1261 ci.sector_count = bio_sectors(bio);
1262 while (ci.sector_count && !error)
1263 error = __split_and_process_non_flush(&ci);
1264 }
1265
1266 /* drop the extra reference count */
1267 dec_pending(ci.io, error);
1268 }
1269 /*-----------------------------------------------------------------
1270 * CRUD END
1271 *---------------------------------------------------------------*/
1272
1273 /*
1274 * The request function that just remaps the bio built up by
1275 * dm_merge_bvec.
1276 */
1277 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1278 {
1279 int rw = bio_data_dir(bio);
1280 struct mapped_device *md = q->queuedata;
1281 int srcu_idx;
1282 struct dm_table *map;
1283
1284 map = dm_get_live_table(md, &srcu_idx);
1285
1286 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1287
1288 /* if we're suspended, we have to queue this io for later */
1289 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1290 dm_put_live_table(md, srcu_idx);
1291
1292 if (!(bio->bi_opf & REQ_RAHEAD))
1293 queue_io(md, bio);
1294 else
1295 bio_io_error(bio);
1296 return BLK_QC_T_NONE;
1297 }
1298
1299 __split_and_process_bio(md, map, bio);
1300 dm_put_live_table(md, srcu_idx);
1301 return BLK_QC_T_NONE;
1302 }
1303
1304 static int dm_any_congested(void *congested_data, int bdi_bits)
1305 {
1306 int r = bdi_bits;
1307 struct mapped_device *md = congested_data;
1308 struct dm_table *map;
1309
1310 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1311 if (dm_request_based(md)) {
1312 /*
1313 * With request-based DM we only need to check the
1314 * top-level queue for congestion.
1315 */
1316 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1317 } else {
1318 map = dm_get_live_table_fast(md);
1319 if (map)
1320 r = dm_table_any_congested(map, bdi_bits);
1321 dm_put_live_table_fast(md);
1322 }
1323 }
1324
1325 return r;
1326 }
1327
1328 /*-----------------------------------------------------------------
1329 * An IDR is used to keep track of allocated minor numbers.
1330 *---------------------------------------------------------------*/
1331 static void free_minor(int minor)
1332 {
1333 spin_lock(&_minor_lock);
1334 idr_remove(&_minor_idr, minor);
1335 spin_unlock(&_minor_lock);
1336 }
1337
1338 /*
1339 * See if the device with a specific minor # is free.
1340 */
1341 static int specific_minor(int minor)
1342 {
1343 int r;
1344
1345 if (minor >= (1 << MINORBITS))
1346 return -EINVAL;
1347
1348 idr_preload(GFP_KERNEL);
1349 spin_lock(&_minor_lock);
1350
1351 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1352
1353 spin_unlock(&_minor_lock);
1354 idr_preload_end();
1355 if (r < 0)
1356 return r == -ENOSPC ? -EBUSY : r;
1357 return 0;
1358 }
1359
1360 static int next_free_minor(int *minor)
1361 {
1362 int r;
1363
1364 idr_preload(GFP_KERNEL);
1365 spin_lock(&_minor_lock);
1366
1367 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1368
1369 spin_unlock(&_minor_lock);
1370 idr_preload_end();
1371 if (r < 0)
1372 return r;
1373 *minor = r;
1374 return 0;
1375 }
1376
1377 static const struct block_device_operations dm_blk_dops;
1378
1379 static void dm_wq_work(struct work_struct *work);
1380
1381 void dm_init_md_queue(struct mapped_device *md)
1382 {
1383 /*
1384 * Request-based dm devices cannot be stacked on top of bio-based dm
1385 * devices. The type of this dm device may not have been decided yet.
1386 * The type is decided at the first table loading time.
1387 * To prevent problematic device stacking, clear the queue flag
1388 * for request stacking support until then.
1389 *
1390 * This queue is new, so no concurrency on the queue_flags.
1391 */
1392 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1393
1394 /*
1395 * Initialize data that will only be used by a non-blk-mq DM queue
1396 * - must do so here (in alloc_dev callchain) before queue is used
1397 */
1398 md->queue->queuedata = md;
1399 md->queue->backing_dev_info->congested_data = md;
1400 }
1401
1402 void dm_init_normal_md_queue(struct mapped_device *md)
1403 {
1404 md->use_blk_mq = false;
1405 dm_init_md_queue(md);
1406
1407 /*
1408 * Initialize aspects of queue that aren't relevant for blk-mq
1409 */
1410 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1411 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1412 }
1413
1414 static void cleanup_mapped_device(struct mapped_device *md)
1415 {
1416 if (md->wq)
1417 destroy_workqueue(md->wq);
1418 if (md->kworker_task)
1419 kthread_stop(md->kworker_task);
1420 mempool_destroy(md->io_pool);
1421 if (md->bs)
1422 bioset_free(md->bs);
1423
1424 if (md->disk) {
1425 spin_lock(&_minor_lock);
1426 md->disk->private_data = NULL;
1427 spin_unlock(&_minor_lock);
1428 del_gendisk(md->disk);
1429 put_disk(md->disk);
1430 }
1431
1432 if (md->queue)
1433 blk_cleanup_queue(md->queue);
1434
1435 cleanup_srcu_struct(&md->io_barrier);
1436
1437 if (md->bdev) {
1438 bdput(md->bdev);
1439 md->bdev = NULL;
1440 }
1441
1442 dm_mq_cleanup_mapped_device(md);
1443 }
1444
1445 /*
1446 * Allocate and initialise a blank device with a given minor.
1447 */
1448 static struct mapped_device *alloc_dev(int minor)
1449 {
1450 int r, numa_node_id = dm_get_numa_node();
1451 struct mapped_device *md;
1452 void *old_md;
1453
1454 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1455 if (!md) {
1456 DMWARN("unable to allocate device, out of memory.");
1457 return NULL;
1458 }
1459
1460 if (!try_module_get(THIS_MODULE))
1461 goto bad_module_get;
1462
1463 /* get a minor number for the dev */
1464 if (minor == DM_ANY_MINOR)
1465 r = next_free_minor(&minor);
1466 else
1467 r = specific_minor(minor);
1468 if (r < 0)
1469 goto bad_minor;
1470
1471 r = init_srcu_struct(&md->io_barrier);
1472 if (r < 0)
1473 goto bad_io_barrier;
1474
1475 md->numa_node_id = numa_node_id;
1476 md->use_blk_mq = dm_use_blk_mq_default();
1477 md->init_tio_pdu = false;
1478 md->type = DM_TYPE_NONE;
1479 mutex_init(&md->suspend_lock);
1480 mutex_init(&md->type_lock);
1481 mutex_init(&md->table_devices_lock);
1482 spin_lock_init(&md->deferred_lock);
1483 atomic_set(&md->holders, 1);
1484 atomic_set(&md->open_count, 0);
1485 atomic_set(&md->event_nr, 0);
1486 atomic_set(&md->uevent_seq, 0);
1487 INIT_LIST_HEAD(&md->uevent_list);
1488 INIT_LIST_HEAD(&md->table_devices);
1489 spin_lock_init(&md->uevent_lock);
1490
1491 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1492 if (!md->queue)
1493 goto bad;
1494
1495 dm_init_md_queue(md);
1496
1497 md->disk = alloc_disk_node(1, numa_node_id);
1498 if (!md->disk)
1499 goto bad;
1500
1501 atomic_set(&md->pending[0], 0);
1502 atomic_set(&md->pending[1], 0);
1503 init_waitqueue_head(&md->wait);
1504 INIT_WORK(&md->work, dm_wq_work);
1505 init_waitqueue_head(&md->eventq);
1506 init_completion(&md->kobj_holder.completion);
1507 md->kworker_task = NULL;
1508
1509 md->disk->major = _major;
1510 md->disk->first_minor = minor;
1511 md->disk->fops = &dm_blk_dops;
1512 md->disk->queue = md->queue;
1513 md->disk->private_data = md;
1514 sprintf(md->disk->disk_name, "dm-%d", minor);
1515 add_disk(md->disk);
1516 format_dev_t(md->name, MKDEV(_major, minor));
1517
1518 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1519 if (!md->wq)
1520 goto bad;
1521
1522 md->bdev = bdget_disk(md->disk, 0);
1523 if (!md->bdev)
1524 goto bad;
1525
1526 bio_init(&md->flush_bio, NULL, 0);
1527 md->flush_bio.bi_bdev = md->bdev;
1528 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1529
1530 dm_stats_init(&md->stats);
1531
1532 /* Populate the mapping, nobody knows we exist yet */
1533 spin_lock(&_minor_lock);
1534 old_md = idr_replace(&_minor_idr, md, minor);
1535 spin_unlock(&_minor_lock);
1536
1537 BUG_ON(old_md != MINOR_ALLOCED);
1538
1539 return md;
1540
1541 bad:
1542 cleanup_mapped_device(md);
1543 bad_io_barrier:
1544 free_minor(minor);
1545 bad_minor:
1546 module_put(THIS_MODULE);
1547 bad_module_get:
1548 kfree(md);
1549 return NULL;
1550 }
1551
1552 static void unlock_fs(struct mapped_device *md);
1553
1554 static void free_dev(struct mapped_device *md)
1555 {
1556 int minor = MINOR(disk_devt(md->disk));
1557
1558 unlock_fs(md);
1559
1560 cleanup_mapped_device(md);
1561
1562 free_table_devices(&md->table_devices);
1563 dm_stats_cleanup(&md->stats);
1564 free_minor(minor);
1565
1566 module_put(THIS_MODULE);
1567 kfree(md);
1568 }
1569
1570 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1571 {
1572 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1573
1574 if (md->bs) {
1575 /* The md already has necessary mempools. */
1576 if (dm_table_bio_based(t)) {
1577 /*
1578 * Reload bioset because front_pad may have changed
1579 * because a different table was loaded.
1580 */
1581 bioset_free(md->bs);
1582 md->bs = p->bs;
1583 p->bs = NULL;
1584 }
1585 /*
1586 * There's no need to reload with request-based dm
1587 * because the size of front_pad doesn't change.
1588 * Note for future: If you are to reload bioset,
1589 * prep-ed requests in the queue may refer
1590 * to bio from the old bioset, so you must walk
1591 * through the queue to unprep.
1592 */
1593 goto out;
1594 }
1595
1596 BUG_ON(!p || md->io_pool || md->bs);
1597
1598 md->io_pool = p->io_pool;
1599 p->io_pool = NULL;
1600 md->bs = p->bs;
1601 p->bs = NULL;
1602
1603 out:
1604 /* mempool bind completed, no longer need any mempools in the table */
1605 dm_table_free_md_mempools(t);
1606 }
1607
1608 /*
1609 * Bind a table to the device.
1610 */
1611 static void event_callback(void *context)
1612 {
1613 unsigned long flags;
1614 LIST_HEAD(uevents);
1615 struct mapped_device *md = (struct mapped_device *) context;
1616
1617 spin_lock_irqsave(&md->uevent_lock, flags);
1618 list_splice_init(&md->uevent_list, &uevents);
1619 spin_unlock_irqrestore(&md->uevent_lock, flags);
1620
1621 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1622
1623 atomic_inc(&md->event_nr);
1624 wake_up(&md->eventq);
1625 }
1626
1627 /*
1628 * Protected by md->suspend_lock obtained by dm_swap_table().
1629 */
1630 static void __set_size(struct mapped_device *md, sector_t size)
1631 {
1632 set_capacity(md->disk, size);
1633
1634 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1635 }
1636
1637 /*
1638 * Returns old map, which caller must destroy.
1639 */
1640 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1641 struct queue_limits *limits)
1642 {
1643 struct dm_table *old_map;
1644 struct request_queue *q = md->queue;
1645 sector_t size;
1646
1647 lockdep_assert_held(&md->suspend_lock);
1648
1649 size = dm_table_get_size(t);
1650
1651 /*
1652 * Wipe any geometry if the size of the table changed.
1653 */
1654 if (size != dm_get_size(md))
1655 memset(&md->geometry, 0, sizeof(md->geometry));
1656
1657 __set_size(md, size);
1658
1659 dm_table_event_callback(t, event_callback, md);
1660
1661 /*
1662 * The queue hasn't been stopped yet, if the old table type wasn't
1663 * for request-based during suspension. So stop it to prevent
1664 * I/O mapping before resume.
1665 * This must be done before setting the queue restrictions,
1666 * because request-based dm may be run just after the setting.
1667 */
1668 if (dm_table_request_based(t)) {
1669 dm_stop_queue(q);
1670 /*
1671 * Leverage the fact that request-based DM targets are
1672 * immutable singletons and establish md->immutable_target
1673 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1674 */
1675 md->immutable_target = dm_table_get_immutable_target(t);
1676 }
1677
1678 __bind_mempools(md, t);
1679
1680 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1681 rcu_assign_pointer(md->map, (void *)t);
1682 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1683
1684 dm_table_set_restrictions(t, q, limits);
1685 if (old_map)
1686 dm_sync_table(md);
1687
1688 return old_map;
1689 }
1690
1691 /*
1692 * Returns unbound table for the caller to free.
1693 */
1694 static struct dm_table *__unbind(struct mapped_device *md)
1695 {
1696 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1697
1698 if (!map)
1699 return NULL;
1700
1701 dm_table_event_callback(map, NULL, NULL);
1702 RCU_INIT_POINTER(md->map, NULL);
1703 dm_sync_table(md);
1704
1705 return map;
1706 }
1707
1708 /*
1709 * Constructor for a new device.
1710 */
1711 int dm_create(int minor, struct mapped_device **result)
1712 {
1713 struct mapped_device *md;
1714
1715 md = alloc_dev(minor);
1716 if (!md)
1717 return -ENXIO;
1718
1719 dm_sysfs_init(md);
1720
1721 *result = md;
1722 return 0;
1723 }
1724
1725 /*
1726 * Functions to manage md->type.
1727 * All are required to hold md->type_lock.
1728 */
1729 void dm_lock_md_type(struct mapped_device *md)
1730 {
1731 mutex_lock(&md->type_lock);
1732 }
1733
1734 void dm_unlock_md_type(struct mapped_device *md)
1735 {
1736 mutex_unlock(&md->type_lock);
1737 }
1738
1739 void dm_set_md_type(struct mapped_device *md, unsigned type)
1740 {
1741 BUG_ON(!mutex_is_locked(&md->type_lock));
1742 md->type = type;
1743 }
1744
1745 unsigned dm_get_md_type(struct mapped_device *md)
1746 {
1747 return md->type;
1748 }
1749
1750 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1751 {
1752 return md->immutable_target_type;
1753 }
1754
1755 /*
1756 * The queue_limits are only valid as long as you have a reference
1757 * count on 'md'.
1758 */
1759 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1760 {
1761 BUG_ON(!atomic_read(&md->holders));
1762 return &md->queue->limits;
1763 }
1764 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1765
1766 /*
1767 * Setup the DM device's queue based on md's type
1768 */
1769 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1770 {
1771 int r;
1772 unsigned type = dm_get_md_type(md);
1773
1774 switch (type) {
1775 case DM_TYPE_REQUEST_BASED:
1776 r = dm_old_init_request_queue(md, t);
1777 if (r) {
1778 DMERR("Cannot initialize queue for request-based mapped device");
1779 return r;
1780 }
1781 break;
1782 case DM_TYPE_MQ_REQUEST_BASED:
1783 r = dm_mq_init_request_queue(md, t);
1784 if (r) {
1785 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1786 return r;
1787 }
1788 break;
1789 case DM_TYPE_BIO_BASED:
1790 case DM_TYPE_DAX_BIO_BASED:
1791 dm_init_normal_md_queue(md);
1792 blk_queue_make_request(md->queue, dm_make_request);
1793 /*
1794 * DM handles splitting bios as needed. Free the bio_split bioset
1795 * since it won't be used (saves 1 process per bio-based DM device).
1796 */
1797 bioset_free(md->queue->bio_split);
1798 md->queue->bio_split = NULL;
1799
1800 if (type == DM_TYPE_DAX_BIO_BASED)
1801 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1802 break;
1803 }
1804
1805 return 0;
1806 }
1807
1808 struct mapped_device *dm_get_md(dev_t dev)
1809 {
1810 struct mapped_device *md;
1811 unsigned minor = MINOR(dev);
1812
1813 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1814 return NULL;
1815
1816 spin_lock(&_minor_lock);
1817
1818 md = idr_find(&_minor_idr, minor);
1819 if (md) {
1820 if ((md == MINOR_ALLOCED ||
1821 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1822 dm_deleting_md(md) ||
1823 test_bit(DMF_FREEING, &md->flags))) {
1824 md = NULL;
1825 goto out;
1826 }
1827 dm_get(md);
1828 }
1829
1830 out:
1831 spin_unlock(&_minor_lock);
1832
1833 return md;
1834 }
1835 EXPORT_SYMBOL_GPL(dm_get_md);
1836
1837 void *dm_get_mdptr(struct mapped_device *md)
1838 {
1839 return md->interface_ptr;
1840 }
1841
1842 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1843 {
1844 md->interface_ptr = ptr;
1845 }
1846
1847 void dm_get(struct mapped_device *md)
1848 {
1849 atomic_inc(&md->holders);
1850 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1851 }
1852
1853 int dm_hold(struct mapped_device *md)
1854 {
1855 spin_lock(&_minor_lock);
1856 if (test_bit(DMF_FREEING, &md->flags)) {
1857 spin_unlock(&_minor_lock);
1858 return -EBUSY;
1859 }
1860 dm_get(md);
1861 spin_unlock(&_minor_lock);
1862 return 0;
1863 }
1864 EXPORT_SYMBOL_GPL(dm_hold);
1865
1866 const char *dm_device_name(struct mapped_device *md)
1867 {
1868 return md->name;
1869 }
1870 EXPORT_SYMBOL_GPL(dm_device_name);
1871
1872 static void __dm_destroy(struct mapped_device *md, bool wait)
1873 {
1874 struct request_queue *q = dm_get_md_queue(md);
1875 struct dm_table *map;
1876 int srcu_idx;
1877
1878 might_sleep();
1879
1880 spin_lock(&_minor_lock);
1881 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1882 set_bit(DMF_FREEING, &md->flags);
1883 spin_unlock(&_minor_lock);
1884
1885 blk_set_queue_dying(q);
1886
1887 if (dm_request_based(md) && md->kworker_task)
1888 kthread_flush_worker(&md->kworker);
1889
1890 /*
1891 * Take suspend_lock so that presuspend and postsuspend methods
1892 * do not race with internal suspend.
1893 */
1894 mutex_lock(&md->suspend_lock);
1895 map = dm_get_live_table(md, &srcu_idx);
1896 if (!dm_suspended_md(md)) {
1897 dm_table_presuspend_targets(map);
1898 dm_table_postsuspend_targets(map);
1899 }
1900 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1901 dm_put_live_table(md, srcu_idx);
1902 mutex_unlock(&md->suspend_lock);
1903
1904 /*
1905 * Rare, but there may be I/O requests still going to complete,
1906 * for example. Wait for all references to disappear.
1907 * No one should increment the reference count of the mapped_device,
1908 * after the mapped_device state becomes DMF_FREEING.
1909 */
1910 if (wait)
1911 while (atomic_read(&md->holders))
1912 msleep(1);
1913 else if (atomic_read(&md->holders))
1914 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1915 dm_device_name(md), atomic_read(&md->holders));
1916
1917 dm_sysfs_exit(md);
1918 dm_table_destroy(__unbind(md));
1919 free_dev(md);
1920 }
1921
1922 void dm_destroy(struct mapped_device *md)
1923 {
1924 __dm_destroy(md, true);
1925 }
1926
1927 void dm_destroy_immediate(struct mapped_device *md)
1928 {
1929 __dm_destroy(md, false);
1930 }
1931
1932 void dm_put(struct mapped_device *md)
1933 {
1934 atomic_dec(&md->holders);
1935 }
1936 EXPORT_SYMBOL_GPL(dm_put);
1937
1938 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
1939 {
1940 int r = 0;
1941 DEFINE_WAIT(wait);
1942
1943 while (1) {
1944 prepare_to_wait(&md->wait, &wait, task_state);
1945
1946 if (!md_in_flight(md))
1947 break;
1948
1949 if (signal_pending_state(task_state, current)) {
1950 r = -EINTR;
1951 break;
1952 }
1953
1954 io_schedule();
1955 }
1956 finish_wait(&md->wait, &wait);
1957
1958 return r;
1959 }
1960
1961 /*
1962 * Process the deferred bios
1963 */
1964 static void dm_wq_work(struct work_struct *work)
1965 {
1966 struct mapped_device *md = container_of(work, struct mapped_device,
1967 work);
1968 struct bio *c;
1969 int srcu_idx;
1970 struct dm_table *map;
1971
1972 map = dm_get_live_table(md, &srcu_idx);
1973
1974 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1975 spin_lock_irq(&md->deferred_lock);
1976 c = bio_list_pop(&md->deferred);
1977 spin_unlock_irq(&md->deferred_lock);
1978
1979 if (!c)
1980 break;
1981
1982 if (dm_request_based(md))
1983 generic_make_request(c);
1984 else
1985 __split_and_process_bio(md, map, c);
1986 }
1987
1988 dm_put_live_table(md, srcu_idx);
1989 }
1990
1991 static void dm_queue_flush(struct mapped_device *md)
1992 {
1993 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1994 smp_mb__after_atomic();
1995 queue_work(md->wq, &md->work);
1996 }
1997
1998 /*
1999 * Swap in a new table, returning the old one for the caller to destroy.
2000 */
2001 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2002 {
2003 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2004 struct queue_limits limits;
2005 int r;
2006
2007 mutex_lock(&md->suspend_lock);
2008
2009 /* device must be suspended */
2010 if (!dm_suspended_md(md))
2011 goto out;
2012
2013 /*
2014 * If the new table has no data devices, retain the existing limits.
2015 * This helps multipath with queue_if_no_path if all paths disappear,
2016 * then new I/O is queued based on these limits, and then some paths
2017 * reappear.
2018 */
2019 if (dm_table_has_no_data_devices(table)) {
2020 live_map = dm_get_live_table_fast(md);
2021 if (live_map)
2022 limits = md->queue->limits;
2023 dm_put_live_table_fast(md);
2024 }
2025
2026 if (!live_map) {
2027 r = dm_calculate_queue_limits(table, &limits);
2028 if (r) {
2029 map = ERR_PTR(r);
2030 goto out;
2031 }
2032 }
2033
2034 map = __bind(md, table, &limits);
2035
2036 out:
2037 mutex_unlock(&md->suspend_lock);
2038 return map;
2039 }
2040
2041 /*
2042 * Functions to lock and unlock any filesystem running on the
2043 * device.
2044 */
2045 static int lock_fs(struct mapped_device *md)
2046 {
2047 int r;
2048
2049 WARN_ON(md->frozen_sb);
2050
2051 md->frozen_sb = freeze_bdev(md->bdev);
2052 if (IS_ERR(md->frozen_sb)) {
2053 r = PTR_ERR(md->frozen_sb);
2054 md->frozen_sb = NULL;
2055 return r;
2056 }
2057
2058 set_bit(DMF_FROZEN, &md->flags);
2059
2060 return 0;
2061 }
2062
2063 static void unlock_fs(struct mapped_device *md)
2064 {
2065 if (!test_bit(DMF_FROZEN, &md->flags))
2066 return;
2067
2068 thaw_bdev(md->bdev, md->frozen_sb);
2069 md->frozen_sb = NULL;
2070 clear_bit(DMF_FROZEN, &md->flags);
2071 }
2072
2073 /*
2074 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2075 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2076 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2077 *
2078 * If __dm_suspend returns 0, the device is completely quiescent
2079 * now. There is no request-processing activity. All new requests
2080 * are being added to md->deferred list.
2081 *
2082 * Caller must hold md->suspend_lock
2083 */
2084 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2085 unsigned suspend_flags, long task_state,
2086 int dmf_suspended_flag)
2087 {
2088 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2089 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2090 int r;
2091
2092 lockdep_assert_held(&md->suspend_lock);
2093
2094 /*
2095 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2096 * This flag is cleared before dm_suspend returns.
2097 */
2098 if (noflush)
2099 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2100
2101 /*
2102 * This gets reverted if there's an error later and the targets
2103 * provide the .presuspend_undo hook.
2104 */
2105 dm_table_presuspend_targets(map);
2106
2107 /*
2108 * Flush I/O to the device.
2109 * Any I/O submitted after lock_fs() may not be flushed.
2110 * noflush takes precedence over do_lockfs.
2111 * (lock_fs() flushes I/Os and waits for them to complete.)
2112 */
2113 if (!noflush && do_lockfs) {
2114 r = lock_fs(md);
2115 if (r) {
2116 dm_table_presuspend_undo_targets(map);
2117 return r;
2118 }
2119 }
2120
2121 /*
2122 * Here we must make sure that no processes are submitting requests
2123 * to target drivers i.e. no one may be executing
2124 * __split_and_process_bio. This is called from dm_request and
2125 * dm_wq_work.
2126 *
2127 * To get all processes out of __split_and_process_bio in dm_request,
2128 * we take the write lock. To prevent any process from reentering
2129 * __split_and_process_bio from dm_request and quiesce the thread
2130 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2131 * flush_workqueue(md->wq).
2132 */
2133 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2134 if (map)
2135 synchronize_srcu(&md->io_barrier);
2136
2137 /*
2138 * Stop md->queue before flushing md->wq in case request-based
2139 * dm defers requests to md->wq from md->queue.
2140 */
2141 if (dm_request_based(md)) {
2142 dm_stop_queue(md->queue);
2143 if (md->kworker_task)
2144 kthread_flush_worker(&md->kworker);
2145 }
2146
2147 flush_workqueue(md->wq);
2148
2149 /*
2150 * At this point no more requests are entering target request routines.
2151 * We call dm_wait_for_completion to wait for all existing requests
2152 * to finish.
2153 */
2154 r = dm_wait_for_completion(md, task_state);
2155 if (!r)
2156 set_bit(dmf_suspended_flag, &md->flags);
2157
2158 if (noflush)
2159 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2160 if (map)
2161 synchronize_srcu(&md->io_barrier);
2162
2163 /* were we interrupted ? */
2164 if (r < 0) {
2165 dm_queue_flush(md);
2166
2167 if (dm_request_based(md))
2168 dm_start_queue(md->queue);
2169
2170 unlock_fs(md);
2171 dm_table_presuspend_undo_targets(map);
2172 /* pushback list is already flushed, so skip flush */
2173 }
2174
2175 return r;
2176 }
2177
2178 /*
2179 * We need to be able to change a mapping table under a mounted
2180 * filesystem. For example we might want to move some data in
2181 * the background. Before the table can be swapped with
2182 * dm_bind_table, dm_suspend must be called to flush any in
2183 * flight bios and ensure that any further io gets deferred.
2184 */
2185 /*
2186 * Suspend mechanism in request-based dm.
2187 *
2188 * 1. Flush all I/Os by lock_fs() if needed.
2189 * 2. Stop dispatching any I/O by stopping the request_queue.
2190 * 3. Wait for all in-flight I/Os to be completed or requeued.
2191 *
2192 * To abort suspend, start the request_queue.
2193 */
2194 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2195 {
2196 struct dm_table *map = NULL;
2197 int r = 0;
2198
2199 retry:
2200 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2201
2202 if (dm_suspended_md(md)) {
2203 r = -EINVAL;
2204 goto out_unlock;
2205 }
2206
2207 if (dm_suspended_internally_md(md)) {
2208 /* already internally suspended, wait for internal resume */
2209 mutex_unlock(&md->suspend_lock);
2210 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2211 if (r)
2212 return r;
2213 goto retry;
2214 }
2215
2216 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2217
2218 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2219 if (r)
2220 goto out_unlock;
2221
2222 dm_table_postsuspend_targets(map);
2223
2224 out_unlock:
2225 mutex_unlock(&md->suspend_lock);
2226 return r;
2227 }
2228
2229 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2230 {
2231 if (map) {
2232 int r = dm_table_resume_targets(map);
2233 if (r)
2234 return r;
2235 }
2236
2237 dm_queue_flush(md);
2238
2239 /*
2240 * Flushing deferred I/Os must be done after targets are resumed
2241 * so that mapping of targets can work correctly.
2242 * Request-based dm is queueing the deferred I/Os in its request_queue.
2243 */
2244 if (dm_request_based(md))
2245 dm_start_queue(md->queue);
2246
2247 unlock_fs(md);
2248
2249 return 0;
2250 }
2251
2252 int dm_resume(struct mapped_device *md)
2253 {
2254 int r;
2255 struct dm_table *map = NULL;
2256
2257 retry:
2258 r = -EINVAL;
2259 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2260
2261 if (!dm_suspended_md(md))
2262 goto out;
2263
2264 if (dm_suspended_internally_md(md)) {
2265 /* already internally suspended, wait for internal resume */
2266 mutex_unlock(&md->suspend_lock);
2267 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2268 if (r)
2269 return r;
2270 goto retry;
2271 }
2272
2273 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2274 if (!map || !dm_table_get_size(map))
2275 goto out;
2276
2277 r = __dm_resume(md, map);
2278 if (r)
2279 goto out;
2280
2281 clear_bit(DMF_SUSPENDED, &md->flags);
2282 out:
2283 mutex_unlock(&md->suspend_lock);
2284
2285 return r;
2286 }
2287
2288 /*
2289 * Internal suspend/resume works like userspace-driven suspend. It waits
2290 * until all bios finish and prevents issuing new bios to the target drivers.
2291 * It may be used only from the kernel.
2292 */
2293
2294 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2295 {
2296 struct dm_table *map = NULL;
2297
2298 if (md->internal_suspend_count++)
2299 return; /* nested internal suspend */
2300
2301 if (dm_suspended_md(md)) {
2302 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2303 return; /* nest suspend */
2304 }
2305
2306 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2307
2308 /*
2309 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2310 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2311 * would require changing .presuspend to return an error -- avoid this
2312 * until there is a need for more elaborate variants of internal suspend.
2313 */
2314 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2315 DMF_SUSPENDED_INTERNALLY);
2316
2317 dm_table_postsuspend_targets(map);
2318 }
2319
2320 static void __dm_internal_resume(struct mapped_device *md)
2321 {
2322 BUG_ON(!md->internal_suspend_count);
2323
2324 if (--md->internal_suspend_count)
2325 return; /* resume from nested internal suspend */
2326
2327 if (dm_suspended_md(md))
2328 goto done; /* resume from nested suspend */
2329
2330 /*
2331 * NOTE: existing callers don't need to call dm_table_resume_targets
2332 * (which may fail -- so best to avoid it for now by passing NULL map)
2333 */
2334 (void) __dm_resume(md, NULL);
2335
2336 done:
2337 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2338 smp_mb__after_atomic();
2339 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2340 }
2341
2342 void dm_internal_suspend_noflush(struct mapped_device *md)
2343 {
2344 mutex_lock(&md->suspend_lock);
2345 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2346 mutex_unlock(&md->suspend_lock);
2347 }
2348 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2349
2350 void dm_internal_resume(struct mapped_device *md)
2351 {
2352 mutex_lock(&md->suspend_lock);
2353 __dm_internal_resume(md);
2354 mutex_unlock(&md->suspend_lock);
2355 }
2356 EXPORT_SYMBOL_GPL(dm_internal_resume);
2357
2358 /*
2359 * Fast variants of internal suspend/resume hold md->suspend_lock,
2360 * which prevents interaction with userspace-driven suspend.
2361 */
2362
2363 void dm_internal_suspend_fast(struct mapped_device *md)
2364 {
2365 mutex_lock(&md->suspend_lock);
2366 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2367 return;
2368
2369 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2370 synchronize_srcu(&md->io_barrier);
2371 flush_workqueue(md->wq);
2372 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2373 }
2374 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2375
2376 void dm_internal_resume_fast(struct mapped_device *md)
2377 {
2378 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2379 goto done;
2380
2381 dm_queue_flush(md);
2382
2383 done:
2384 mutex_unlock(&md->suspend_lock);
2385 }
2386 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2387
2388 /*-----------------------------------------------------------------
2389 * Event notification.
2390 *---------------------------------------------------------------*/
2391 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2392 unsigned cookie)
2393 {
2394 char udev_cookie[DM_COOKIE_LENGTH];
2395 char *envp[] = { udev_cookie, NULL };
2396
2397 if (!cookie)
2398 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2399 else {
2400 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2401 DM_COOKIE_ENV_VAR_NAME, cookie);
2402 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2403 action, envp);
2404 }
2405 }
2406
2407 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2408 {
2409 return atomic_add_return(1, &md->uevent_seq);
2410 }
2411
2412 uint32_t dm_get_event_nr(struct mapped_device *md)
2413 {
2414 return atomic_read(&md->event_nr);
2415 }
2416
2417 int dm_wait_event(struct mapped_device *md, int event_nr)
2418 {
2419 return wait_event_interruptible(md->eventq,
2420 (event_nr != atomic_read(&md->event_nr)));
2421 }
2422
2423 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2424 {
2425 unsigned long flags;
2426
2427 spin_lock_irqsave(&md->uevent_lock, flags);
2428 list_add(elist, &md->uevent_list);
2429 spin_unlock_irqrestore(&md->uevent_lock, flags);
2430 }
2431
2432 /*
2433 * The gendisk is only valid as long as you have a reference
2434 * count on 'md'.
2435 */
2436 struct gendisk *dm_disk(struct mapped_device *md)
2437 {
2438 return md->disk;
2439 }
2440 EXPORT_SYMBOL_GPL(dm_disk);
2441
2442 struct kobject *dm_kobject(struct mapped_device *md)
2443 {
2444 return &md->kobj_holder.kobj;
2445 }
2446
2447 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2448 {
2449 struct mapped_device *md;
2450
2451 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2452
2453 if (test_bit(DMF_FREEING, &md->flags) ||
2454 dm_deleting_md(md))
2455 return NULL;
2456
2457 dm_get(md);
2458 return md;
2459 }
2460
2461 int dm_suspended_md(struct mapped_device *md)
2462 {
2463 return test_bit(DMF_SUSPENDED, &md->flags);
2464 }
2465
2466 int dm_suspended_internally_md(struct mapped_device *md)
2467 {
2468 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2469 }
2470
2471 int dm_test_deferred_remove_flag(struct mapped_device *md)
2472 {
2473 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2474 }
2475
2476 int dm_suspended(struct dm_target *ti)
2477 {
2478 return dm_suspended_md(dm_table_get_md(ti->table));
2479 }
2480 EXPORT_SYMBOL_GPL(dm_suspended);
2481
2482 int dm_noflush_suspending(struct dm_target *ti)
2483 {
2484 return __noflush_suspending(dm_table_get_md(ti->table));
2485 }
2486 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2487
2488 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2489 unsigned integrity, unsigned per_io_data_size)
2490 {
2491 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2492 unsigned int pool_size = 0;
2493 unsigned int front_pad;
2494
2495 if (!pools)
2496 return NULL;
2497
2498 switch (type) {
2499 case DM_TYPE_BIO_BASED:
2500 case DM_TYPE_DAX_BIO_BASED:
2501 pool_size = dm_get_reserved_bio_based_ios();
2502 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2503
2504 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2505 if (!pools->io_pool)
2506 goto out;
2507 break;
2508 case DM_TYPE_REQUEST_BASED:
2509 case DM_TYPE_MQ_REQUEST_BASED:
2510 pool_size = dm_get_reserved_rq_based_ios();
2511 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2512 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2513 break;
2514 default:
2515 BUG();
2516 }
2517
2518 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2519 if (!pools->bs)
2520 goto out;
2521
2522 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2523 goto out;
2524
2525 return pools;
2526
2527 out:
2528 dm_free_md_mempools(pools);
2529
2530 return NULL;
2531 }
2532
2533 void dm_free_md_mempools(struct dm_md_mempools *pools)
2534 {
2535 if (!pools)
2536 return;
2537
2538 mempool_destroy(pools->io_pool);
2539
2540 if (pools->bs)
2541 bioset_free(pools->bs);
2542
2543 kfree(pools);
2544 }
2545
2546 struct dm_pr {
2547 u64 old_key;
2548 u64 new_key;
2549 u32 flags;
2550 bool fail_early;
2551 };
2552
2553 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2554 void *data)
2555 {
2556 struct mapped_device *md = bdev->bd_disk->private_data;
2557 struct dm_table *table;
2558 struct dm_target *ti;
2559 int ret = -ENOTTY, srcu_idx;
2560
2561 table = dm_get_live_table(md, &srcu_idx);
2562 if (!table || !dm_table_get_size(table))
2563 goto out;
2564
2565 /* We only support devices that have a single target */
2566 if (dm_table_get_num_targets(table) != 1)
2567 goto out;
2568 ti = dm_table_get_target(table, 0);
2569
2570 ret = -EINVAL;
2571 if (!ti->type->iterate_devices)
2572 goto out;
2573
2574 ret = ti->type->iterate_devices(ti, fn, data);
2575 out:
2576 dm_put_live_table(md, srcu_idx);
2577 return ret;
2578 }
2579
2580 /*
2581 * For register / unregister we need to manually call out to every path.
2582 */
2583 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2584 sector_t start, sector_t len, void *data)
2585 {
2586 struct dm_pr *pr = data;
2587 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2588
2589 if (!ops || !ops->pr_register)
2590 return -EOPNOTSUPP;
2591 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2592 }
2593
2594 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2595 u32 flags)
2596 {
2597 struct dm_pr pr = {
2598 .old_key = old_key,
2599 .new_key = new_key,
2600 .flags = flags,
2601 .fail_early = true,
2602 };
2603 int ret;
2604
2605 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2606 if (ret && new_key) {
2607 /* unregister all paths if we failed to register any path */
2608 pr.old_key = new_key;
2609 pr.new_key = 0;
2610 pr.flags = 0;
2611 pr.fail_early = false;
2612 dm_call_pr(bdev, __dm_pr_register, &pr);
2613 }
2614
2615 return ret;
2616 }
2617
2618 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2619 u32 flags)
2620 {
2621 struct mapped_device *md = bdev->bd_disk->private_data;
2622 const struct pr_ops *ops;
2623 fmode_t mode;
2624 int r;
2625
2626 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2627 if (r < 0)
2628 return r;
2629
2630 ops = bdev->bd_disk->fops->pr_ops;
2631 if (ops && ops->pr_reserve)
2632 r = ops->pr_reserve(bdev, key, type, flags);
2633 else
2634 r = -EOPNOTSUPP;
2635
2636 bdput(bdev);
2637 return r;
2638 }
2639
2640 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2641 {
2642 struct mapped_device *md = bdev->bd_disk->private_data;
2643 const struct pr_ops *ops;
2644 fmode_t mode;
2645 int r;
2646
2647 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2648 if (r < 0)
2649 return r;
2650
2651 ops = bdev->bd_disk->fops->pr_ops;
2652 if (ops && ops->pr_release)
2653 r = ops->pr_release(bdev, key, type);
2654 else
2655 r = -EOPNOTSUPP;
2656
2657 bdput(bdev);
2658 return r;
2659 }
2660
2661 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2662 enum pr_type type, bool abort)
2663 {
2664 struct mapped_device *md = bdev->bd_disk->private_data;
2665 const struct pr_ops *ops;
2666 fmode_t mode;
2667 int r;
2668
2669 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2670 if (r < 0)
2671 return r;
2672
2673 ops = bdev->bd_disk->fops->pr_ops;
2674 if (ops && ops->pr_preempt)
2675 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2676 else
2677 r = -EOPNOTSUPP;
2678
2679 bdput(bdev);
2680 return r;
2681 }
2682
2683 static int dm_pr_clear(struct block_device *bdev, u64 key)
2684 {
2685 struct mapped_device *md = bdev->bd_disk->private_data;
2686 const struct pr_ops *ops;
2687 fmode_t mode;
2688 int r;
2689
2690 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2691 if (r < 0)
2692 return r;
2693
2694 ops = bdev->bd_disk->fops->pr_ops;
2695 if (ops && ops->pr_clear)
2696 r = ops->pr_clear(bdev, key);
2697 else
2698 r = -EOPNOTSUPP;
2699
2700 bdput(bdev);
2701 return r;
2702 }
2703
2704 static const struct pr_ops dm_pr_ops = {
2705 .pr_register = dm_pr_register,
2706 .pr_reserve = dm_pr_reserve,
2707 .pr_release = dm_pr_release,
2708 .pr_preempt = dm_pr_preempt,
2709 .pr_clear = dm_pr_clear,
2710 };
2711
2712 static const struct block_device_operations dm_blk_dops = {
2713 .open = dm_blk_open,
2714 .release = dm_blk_close,
2715 .ioctl = dm_blk_ioctl,
2716 .direct_access = dm_blk_direct_access,
2717 .getgeo = dm_blk_getgeo,
2718 .pr_ops = &dm_pr_ops,
2719 .owner = THIS_MODULE
2720 };
2721
2722 /*
2723 * module hooks
2724 */
2725 module_init(dm_init);
2726 module_exit(dm_exit);
2727
2728 module_param(major, uint, 0);
2729 MODULE_PARM_DESC(major, "The major number of the device mapper");
2730
2731 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2732 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2733
2734 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2735 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2736
2737 MODULE_DESCRIPTION(DM_NAME " driver");
2738 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2739 MODULE_LICENSE("GPL");