]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
drm/amdgpu/cz/dpm: properly report UVD and VCE clock levels
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 struct dm_stats_aux stats_aux;
90 unsigned long duration_jiffies;
91 unsigned n_sectors;
92 };
93
94 /*
95 * For request-based dm - the bio clones we allocate are embedded in these
96 * structs.
97 *
98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99 * the bioset is created - this means the bio has to come at the end of the
100 * struct.
101 */
102 struct dm_rq_clone_bio_info {
103 struct bio *orig;
104 struct dm_rq_target_io *tio;
105 struct bio clone;
106 };
107
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 if (rq && rq->end_io_data)
111 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115
116 #define MINOR_ALLOCED ((void *)-1)
117
118 /*
119 * Bits for the md->flags field.
120 */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_MERGE_IS_OPTIONAL 6
128 #define DMF_DEFERRED_REMOVE 7
129 #define DMF_SUSPENDED_INTERNALLY 8
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
561 {
562 struct mapped_device *md = bdev->bd_disk->private_data;
563 int srcu_idx;
564 struct dm_table *map;
565 struct dm_target *tgt;
566 int r = -ENOTTY;
567
568 retry:
569 map = dm_get_live_table(md, &srcu_idx);
570
571 if (!map || !dm_table_get_size(map))
572 goto out;
573
574 /* We only support devices that have a single target */
575 if (dm_table_get_num_targets(map) != 1)
576 goto out;
577
578 tgt = dm_table_get_target(map, 0);
579 if (!tgt->type->ioctl)
580 goto out;
581
582 if (dm_suspended_md(md)) {
583 r = -EAGAIN;
584 goto out;
585 }
586
587 r = tgt->type->ioctl(tgt, cmd, arg);
588
589 out:
590 dm_put_live_table(md, srcu_idx);
591
592 if (r == -ENOTCONN) {
593 msleep(10);
594 goto retry;
595 }
596
597 return r;
598 }
599
600 static struct dm_io *alloc_io(struct mapped_device *md)
601 {
602 return mempool_alloc(md->io_pool, GFP_NOIO);
603 }
604
605 static void free_io(struct mapped_device *md, struct dm_io *io)
606 {
607 mempool_free(io, md->io_pool);
608 }
609
610 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
611 {
612 bio_put(&tio->clone);
613 }
614
615 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
616 gfp_t gfp_mask)
617 {
618 return mempool_alloc(md->io_pool, gfp_mask);
619 }
620
621 static void free_rq_tio(struct dm_rq_target_io *tio)
622 {
623 mempool_free(tio, tio->md->io_pool);
624 }
625
626 static struct request *alloc_clone_request(struct mapped_device *md,
627 gfp_t gfp_mask)
628 {
629 return mempool_alloc(md->rq_pool, gfp_mask);
630 }
631
632 static void free_clone_request(struct mapped_device *md, struct request *rq)
633 {
634 mempool_free(rq, md->rq_pool);
635 }
636
637 static int md_in_flight(struct mapped_device *md)
638 {
639 return atomic_read(&md->pending[READ]) +
640 atomic_read(&md->pending[WRITE]);
641 }
642
643 static void start_io_acct(struct dm_io *io)
644 {
645 struct mapped_device *md = io->md;
646 struct bio *bio = io->bio;
647 int cpu;
648 int rw = bio_data_dir(bio);
649
650 io->start_time = jiffies;
651
652 cpu = part_stat_lock();
653 part_round_stats(cpu, &dm_disk(md)->part0);
654 part_stat_unlock();
655 atomic_set(&dm_disk(md)->part0.in_flight[rw],
656 atomic_inc_return(&md->pending[rw]));
657
658 if (unlikely(dm_stats_used(&md->stats)))
659 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
660 bio_sectors(bio), false, 0, &io->stats_aux);
661 }
662
663 static void end_io_acct(struct dm_io *io)
664 {
665 struct mapped_device *md = io->md;
666 struct bio *bio = io->bio;
667 unsigned long duration = jiffies - io->start_time;
668 int pending;
669 int rw = bio_data_dir(bio);
670
671 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
672
673 if (unlikely(dm_stats_used(&md->stats)))
674 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
675 bio_sectors(bio), true, duration, &io->stats_aux);
676
677 /*
678 * After this is decremented the bio must not be touched if it is
679 * a flush.
680 */
681 pending = atomic_dec_return(&md->pending[rw]);
682 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
683 pending += atomic_read(&md->pending[rw^0x1]);
684
685 /* nudge anyone waiting on suspend queue */
686 if (!pending)
687 wake_up(&md->wait);
688 }
689
690 /*
691 * Add the bio to the list of deferred io.
692 */
693 static void queue_io(struct mapped_device *md, struct bio *bio)
694 {
695 unsigned long flags;
696
697 spin_lock_irqsave(&md->deferred_lock, flags);
698 bio_list_add(&md->deferred, bio);
699 spin_unlock_irqrestore(&md->deferred_lock, flags);
700 queue_work(md->wq, &md->work);
701 }
702
703 /*
704 * Everyone (including functions in this file), should use this
705 * function to access the md->map field, and make sure they call
706 * dm_put_live_table() when finished.
707 */
708 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
709 {
710 *srcu_idx = srcu_read_lock(&md->io_barrier);
711
712 return srcu_dereference(md->map, &md->io_barrier);
713 }
714
715 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
716 {
717 srcu_read_unlock(&md->io_barrier, srcu_idx);
718 }
719
720 void dm_sync_table(struct mapped_device *md)
721 {
722 synchronize_srcu(&md->io_barrier);
723 synchronize_rcu_expedited();
724 }
725
726 /*
727 * A fast alternative to dm_get_live_table/dm_put_live_table.
728 * The caller must not block between these two functions.
729 */
730 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
731 {
732 rcu_read_lock();
733 return rcu_dereference(md->map);
734 }
735
736 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
737 {
738 rcu_read_unlock();
739 }
740
741 /*
742 * Open a table device so we can use it as a map destination.
743 */
744 static int open_table_device(struct table_device *td, dev_t dev,
745 struct mapped_device *md)
746 {
747 static char *_claim_ptr = "I belong to device-mapper";
748 struct block_device *bdev;
749
750 int r;
751
752 BUG_ON(td->dm_dev.bdev);
753
754 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
755 if (IS_ERR(bdev))
756 return PTR_ERR(bdev);
757
758 r = bd_link_disk_holder(bdev, dm_disk(md));
759 if (r) {
760 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
761 return r;
762 }
763
764 td->dm_dev.bdev = bdev;
765 return 0;
766 }
767
768 /*
769 * Close a table device that we've been using.
770 */
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
772 {
773 if (!td->dm_dev.bdev)
774 return;
775
776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 td->dm_dev.bdev = NULL;
779 }
780
781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 fmode_t mode) {
783 struct table_device *td;
784
785 list_for_each_entry(td, l, list)
786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 return td;
788
789 return NULL;
790 }
791
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 struct dm_dev **result) {
794 int r;
795 struct table_device *td;
796
797 mutex_lock(&md->table_devices_lock);
798 td = find_table_device(&md->table_devices, dev, mode);
799 if (!td) {
800 td = kmalloc(sizeof(*td), GFP_KERNEL);
801 if (!td) {
802 mutex_unlock(&md->table_devices_lock);
803 return -ENOMEM;
804 }
805
806 td->dm_dev.mode = mode;
807 td->dm_dev.bdev = NULL;
808
809 if ((r = open_table_device(td, dev, md))) {
810 mutex_unlock(&md->table_devices_lock);
811 kfree(td);
812 return r;
813 }
814
815 format_dev_t(td->dm_dev.name, dev);
816
817 atomic_set(&td->count, 0);
818 list_add(&td->list, &md->table_devices);
819 }
820 atomic_inc(&td->count);
821 mutex_unlock(&md->table_devices_lock);
822
823 *result = &td->dm_dev;
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(dm_get_table_device);
827
828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (atomic_dec_and_test(&td->count)) {
834 close_table_device(td, md);
835 list_del(&td->list);
836 kfree(td);
837 }
838 mutex_unlock(&md->table_devices_lock);
839 }
840 EXPORT_SYMBOL(dm_put_table_device);
841
842 static void free_table_devices(struct list_head *devices)
843 {
844 struct list_head *tmp, *next;
845
846 list_for_each_safe(tmp, next, devices) {
847 struct table_device *td = list_entry(tmp, struct table_device, list);
848
849 DMWARN("dm_destroy: %s still exists with %d references",
850 td->dm_dev.name, atomic_read(&td->count));
851 kfree(td);
852 }
853 }
854
855 /*
856 * Get the geometry associated with a dm device
857 */
858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
859 {
860 *geo = md->geometry;
861
862 return 0;
863 }
864
865 /*
866 * Set the geometry of a device.
867 */
868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
871
872 if (geo->start > sz) {
873 DMWARN("Start sector is beyond the geometry limits.");
874 return -EINVAL;
875 }
876
877 md->geometry = *geo;
878
879 return 0;
880 }
881
882 /*-----------------------------------------------------------------
883 * CRUD START:
884 * A more elegant soln is in the works that uses the queue
885 * merge fn, unfortunately there are a couple of changes to
886 * the block layer that I want to make for this. So in the
887 * interests of getting something for people to use I give
888 * you this clearly demarcated crap.
889 *---------------------------------------------------------------*/
890
891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895
896 /*
897 * Decrements the number of outstanding ios that a bio has been
898 * cloned into, completing the original io if necc.
899 */
900 static void dec_pending(struct dm_io *io, int error)
901 {
902 unsigned long flags;
903 int io_error;
904 struct bio *bio;
905 struct mapped_device *md = io->md;
906
907 /* Push-back supersedes any I/O errors */
908 if (unlikely(error)) {
909 spin_lock_irqsave(&io->endio_lock, flags);
910 if (!(io->error > 0 && __noflush_suspending(md)))
911 io->error = error;
912 spin_unlock_irqrestore(&io->endio_lock, flags);
913 }
914
915 if (atomic_dec_and_test(&io->io_count)) {
916 if (io->error == DM_ENDIO_REQUEUE) {
917 /*
918 * Target requested pushing back the I/O.
919 */
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if (__noflush_suspending(md))
922 bio_list_add_head(&md->deferred, io->bio);
923 else
924 /* noflush suspend was interrupted. */
925 io->error = -EIO;
926 spin_unlock_irqrestore(&md->deferred_lock, flags);
927 }
928
929 io_error = io->error;
930 bio = io->bio;
931 end_io_acct(io);
932 free_io(md, io);
933
934 if (io_error == DM_ENDIO_REQUEUE)
935 return;
936
937 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
938 /*
939 * Preflush done for flush with data, reissue
940 * without REQ_FLUSH.
941 */
942 bio->bi_rw &= ~REQ_FLUSH;
943 queue_io(md, bio);
944 } else {
945 /* done with normal IO or empty flush */
946 trace_block_bio_complete(md->queue, bio, io_error);
947 bio_endio(bio, io_error);
948 }
949 }
950 }
951
952 static void disable_write_same(struct mapped_device *md)
953 {
954 struct queue_limits *limits = dm_get_queue_limits(md);
955
956 /* device doesn't really support WRITE SAME, disable it */
957 limits->max_write_same_sectors = 0;
958 }
959
960 static void clone_endio(struct bio *bio, int error)
961 {
962 int r = error;
963 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
964 struct dm_io *io = tio->io;
965 struct mapped_device *md = tio->io->md;
966 dm_endio_fn endio = tio->ti->type->end_io;
967
968 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
969 error = -EIO;
970
971 if (endio) {
972 r = endio(tio->ti, bio, error);
973 if (r < 0 || r == DM_ENDIO_REQUEUE)
974 /*
975 * error and requeue request are handled
976 * in dec_pending().
977 */
978 error = r;
979 else if (r == DM_ENDIO_INCOMPLETE)
980 /* The target will handle the io */
981 return;
982 else if (r) {
983 DMWARN("unimplemented target endio return value: %d", r);
984 BUG();
985 }
986 }
987
988 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
989 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
990 disable_write_same(md);
991
992 free_tio(md, tio);
993 dec_pending(io, error);
994 }
995
996 /*
997 * Partial completion handling for request-based dm
998 */
999 static void end_clone_bio(struct bio *clone, int error)
1000 {
1001 struct dm_rq_clone_bio_info *info =
1002 container_of(clone, struct dm_rq_clone_bio_info, clone);
1003 struct dm_rq_target_io *tio = info->tio;
1004 struct bio *bio = info->orig;
1005 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1006
1007 bio_put(clone);
1008
1009 if (tio->error)
1010 /*
1011 * An error has already been detected on the request.
1012 * Once error occurred, just let clone->end_io() handle
1013 * the remainder.
1014 */
1015 return;
1016 else if (error) {
1017 /*
1018 * Don't notice the error to the upper layer yet.
1019 * The error handling decision is made by the target driver,
1020 * when the request is completed.
1021 */
1022 tio->error = error;
1023 return;
1024 }
1025
1026 /*
1027 * I/O for the bio successfully completed.
1028 * Notice the data completion to the upper layer.
1029 */
1030
1031 /*
1032 * bios are processed from the head of the list.
1033 * So the completing bio should always be rq->bio.
1034 * If it's not, something wrong is happening.
1035 */
1036 if (tio->orig->bio != bio)
1037 DMERR("bio completion is going in the middle of the request");
1038
1039 /*
1040 * Update the original request.
1041 * Do not use blk_end_request() here, because it may complete
1042 * the original request before the clone, and break the ordering.
1043 */
1044 blk_update_request(tio->orig, 0, nr_bytes);
1045 }
1046
1047 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1048 {
1049 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1050 }
1051
1052 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1053 {
1054 if (unlikely(dm_stats_used(&md->stats))) {
1055 struct dm_rq_target_io *tio = tio_from_request(orig);
1056 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1057 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1058 tio->n_sectors, true, tio->duration_jiffies,
1059 &tio->stats_aux);
1060 }
1061 }
1062
1063 /*
1064 * Don't touch any member of the md after calling this function because
1065 * the md may be freed in dm_put() at the end of this function.
1066 * Or do dm_get() before calling this function and dm_put() later.
1067 */
1068 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1069 {
1070 atomic_dec(&md->pending[rw]);
1071
1072 /* nudge anyone waiting on suspend queue */
1073 if (!md_in_flight(md))
1074 wake_up(&md->wait);
1075
1076 /*
1077 * Run this off this callpath, as drivers could invoke end_io while
1078 * inside their request_fn (and holding the queue lock). Calling
1079 * back into ->request_fn() could deadlock attempting to grab the
1080 * queue lock again.
1081 */
1082 if (run_queue) {
1083 if (md->queue->mq_ops)
1084 blk_mq_run_hw_queues(md->queue, true);
1085 else
1086 blk_run_queue_async(md->queue);
1087 }
1088
1089 /*
1090 * dm_put() must be at the end of this function. See the comment above
1091 */
1092 dm_put(md);
1093 }
1094
1095 static void free_rq_clone(struct request *clone)
1096 {
1097 struct dm_rq_target_io *tio = clone->end_io_data;
1098 struct mapped_device *md = tio->md;
1099
1100 blk_rq_unprep_clone(clone);
1101
1102 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1103 /* stacked on blk-mq queue(s) */
1104 tio->ti->type->release_clone_rq(clone);
1105 else if (!md->queue->mq_ops)
1106 /* request_fn queue stacked on request_fn queue(s) */
1107 free_clone_request(md, clone);
1108 /*
1109 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1110 * no need to call free_clone_request() because we leverage blk-mq by
1111 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1112 */
1113
1114 if (!md->queue->mq_ops)
1115 free_rq_tio(tio);
1116 }
1117
1118 /*
1119 * Complete the clone and the original request.
1120 * Must be called without clone's queue lock held,
1121 * see end_clone_request() for more details.
1122 */
1123 static void dm_end_request(struct request *clone, int error)
1124 {
1125 int rw = rq_data_dir(clone);
1126 struct dm_rq_target_io *tio = clone->end_io_data;
1127 struct mapped_device *md = tio->md;
1128 struct request *rq = tio->orig;
1129
1130 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1131 rq->errors = clone->errors;
1132 rq->resid_len = clone->resid_len;
1133
1134 if (rq->sense)
1135 /*
1136 * We are using the sense buffer of the original
1137 * request.
1138 * So setting the length of the sense data is enough.
1139 */
1140 rq->sense_len = clone->sense_len;
1141 }
1142
1143 free_rq_clone(clone);
1144 rq_end_stats(md, rq);
1145 if (!rq->q->mq_ops)
1146 blk_end_request_all(rq, error);
1147 else
1148 blk_mq_end_request(rq, error);
1149 rq_completed(md, rw, true);
1150 }
1151
1152 static void dm_unprep_request(struct request *rq)
1153 {
1154 struct dm_rq_target_io *tio = tio_from_request(rq);
1155 struct request *clone = tio->clone;
1156
1157 if (!rq->q->mq_ops) {
1158 rq->special = NULL;
1159 rq->cmd_flags &= ~REQ_DONTPREP;
1160 }
1161
1162 if (clone)
1163 free_rq_clone(clone);
1164 }
1165
1166 /*
1167 * Requeue the original request of a clone.
1168 */
1169 static void old_requeue_request(struct request *rq)
1170 {
1171 struct request_queue *q = rq->q;
1172 unsigned long flags;
1173
1174 spin_lock_irqsave(q->queue_lock, flags);
1175 blk_requeue_request(q, rq);
1176 blk_run_queue_async(q);
1177 spin_unlock_irqrestore(q->queue_lock, flags);
1178 }
1179
1180 static void dm_requeue_original_request(struct mapped_device *md,
1181 struct request *rq)
1182 {
1183 int rw = rq_data_dir(rq);
1184
1185 dm_unprep_request(rq);
1186
1187 rq_end_stats(md, rq);
1188 if (!rq->q->mq_ops)
1189 old_requeue_request(rq);
1190 else {
1191 blk_mq_requeue_request(rq);
1192 blk_mq_kick_requeue_list(rq->q);
1193 }
1194
1195 rq_completed(md, rw, false);
1196 }
1197
1198 static void old_stop_queue(struct request_queue *q)
1199 {
1200 unsigned long flags;
1201
1202 if (blk_queue_stopped(q))
1203 return;
1204
1205 spin_lock_irqsave(q->queue_lock, flags);
1206 blk_stop_queue(q);
1207 spin_unlock_irqrestore(q->queue_lock, flags);
1208 }
1209
1210 static void stop_queue(struct request_queue *q)
1211 {
1212 if (!q->mq_ops)
1213 old_stop_queue(q);
1214 else
1215 blk_mq_stop_hw_queues(q);
1216 }
1217
1218 static void old_start_queue(struct request_queue *q)
1219 {
1220 unsigned long flags;
1221
1222 spin_lock_irqsave(q->queue_lock, flags);
1223 if (blk_queue_stopped(q))
1224 blk_start_queue(q);
1225 spin_unlock_irqrestore(q->queue_lock, flags);
1226 }
1227
1228 static void start_queue(struct request_queue *q)
1229 {
1230 if (!q->mq_ops)
1231 old_start_queue(q);
1232 else
1233 blk_mq_start_stopped_hw_queues(q, true);
1234 }
1235
1236 static void dm_done(struct request *clone, int error, bool mapped)
1237 {
1238 int r = error;
1239 struct dm_rq_target_io *tio = clone->end_io_data;
1240 dm_request_endio_fn rq_end_io = NULL;
1241
1242 if (tio->ti) {
1243 rq_end_io = tio->ti->type->rq_end_io;
1244
1245 if (mapped && rq_end_io)
1246 r = rq_end_io(tio->ti, clone, error, &tio->info);
1247 }
1248
1249 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1250 !clone->q->limits.max_write_same_sectors))
1251 disable_write_same(tio->md);
1252
1253 if (r <= 0)
1254 /* The target wants to complete the I/O */
1255 dm_end_request(clone, r);
1256 else if (r == DM_ENDIO_INCOMPLETE)
1257 /* The target will handle the I/O */
1258 return;
1259 else if (r == DM_ENDIO_REQUEUE)
1260 /* The target wants to requeue the I/O */
1261 dm_requeue_original_request(tio->md, tio->orig);
1262 else {
1263 DMWARN("unimplemented target endio return value: %d", r);
1264 BUG();
1265 }
1266 }
1267
1268 /*
1269 * Request completion handler for request-based dm
1270 */
1271 static void dm_softirq_done(struct request *rq)
1272 {
1273 bool mapped = true;
1274 struct dm_rq_target_io *tio = tio_from_request(rq);
1275 struct request *clone = tio->clone;
1276 int rw;
1277
1278 if (!clone) {
1279 rq_end_stats(tio->md, rq);
1280 rw = rq_data_dir(rq);
1281 if (!rq->q->mq_ops) {
1282 blk_end_request_all(rq, tio->error);
1283 rq_completed(tio->md, rw, false);
1284 free_rq_tio(tio);
1285 } else {
1286 blk_mq_end_request(rq, tio->error);
1287 rq_completed(tio->md, rw, false);
1288 }
1289 return;
1290 }
1291
1292 if (rq->cmd_flags & REQ_FAILED)
1293 mapped = false;
1294
1295 dm_done(clone, tio->error, mapped);
1296 }
1297
1298 /*
1299 * Complete the clone and the original request with the error status
1300 * through softirq context.
1301 */
1302 static void dm_complete_request(struct request *rq, int error)
1303 {
1304 struct dm_rq_target_io *tio = tio_from_request(rq);
1305
1306 tio->error = error;
1307 blk_complete_request(rq);
1308 }
1309
1310 /*
1311 * Complete the not-mapped clone and the original request with the error status
1312 * through softirq context.
1313 * Target's rq_end_io() function isn't called.
1314 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1315 */
1316 static void dm_kill_unmapped_request(struct request *rq, int error)
1317 {
1318 rq->cmd_flags |= REQ_FAILED;
1319 dm_complete_request(rq, error);
1320 }
1321
1322 /*
1323 * Called with the clone's queue lock held (for non-blk-mq)
1324 */
1325 static void end_clone_request(struct request *clone, int error)
1326 {
1327 struct dm_rq_target_io *tio = clone->end_io_data;
1328
1329 if (!clone->q->mq_ops) {
1330 /*
1331 * For just cleaning up the information of the queue in which
1332 * the clone was dispatched.
1333 * The clone is *NOT* freed actually here because it is alloced
1334 * from dm own mempool (REQ_ALLOCED isn't set).
1335 */
1336 __blk_put_request(clone->q, clone);
1337 }
1338
1339 /*
1340 * Actual request completion is done in a softirq context which doesn't
1341 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1342 * - another request may be submitted by the upper level driver
1343 * of the stacking during the completion
1344 * - the submission which requires queue lock may be done
1345 * against this clone's queue
1346 */
1347 dm_complete_request(tio->orig, error);
1348 }
1349
1350 /*
1351 * Return maximum size of I/O possible at the supplied sector up to the current
1352 * target boundary.
1353 */
1354 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1355 {
1356 sector_t target_offset = dm_target_offset(ti, sector);
1357
1358 return ti->len - target_offset;
1359 }
1360
1361 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1362 {
1363 sector_t len = max_io_len_target_boundary(sector, ti);
1364 sector_t offset, max_len;
1365
1366 /*
1367 * Does the target need to split even further?
1368 */
1369 if (ti->max_io_len) {
1370 offset = dm_target_offset(ti, sector);
1371 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1372 max_len = sector_div(offset, ti->max_io_len);
1373 else
1374 max_len = offset & (ti->max_io_len - 1);
1375 max_len = ti->max_io_len - max_len;
1376
1377 if (len > max_len)
1378 len = max_len;
1379 }
1380
1381 return len;
1382 }
1383
1384 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1385 {
1386 if (len > UINT_MAX) {
1387 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1388 (unsigned long long)len, UINT_MAX);
1389 ti->error = "Maximum size of target IO is too large";
1390 return -EINVAL;
1391 }
1392
1393 ti->max_io_len = (uint32_t) len;
1394
1395 return 0;
1396 }
1397 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1398
1399 /*
1400 * A target may call dm_accept_partial_bio only from the map routine. It is
1401 * allowed for all bio types except REQ_FLUSH.
1402 *
1403 * dm_accept_partial_bio informs the dm that the target only wants to process
1404 * additional n_sectors sectors of the bio and the rest of the data should be
1405 * sent in a next bio.
1406 *
1407 * A diagram that explains the arithmetics:
1408 * +--------------------+---------------+-------+
1409 * | 1 | 2 | 3 |
1410 * +--------------------+---------------+-------+
1411 *
1412 * <-------------- *tio->len_ptr --------------->
1413 * <------- bi_size ------->
1414 * <-- n_sectors -->
1415 *
1416 * Region 1 was already iterated over with bio_advance or similar function.
1417 * (it may be empty if the target doesn't use bio_advance)
1418 * Region 2 is the remaining bio size that the target wants to process.
1419 * (it may be empty if region 1 is non-empty, although there is no reason
1420 * to make it empty)
1421 * The target requires that region 3 is to be sent in the next bio.
1422 *
1423 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1424 * the partially processed part (the sum of regions 1+2) must be the same for all
1425 * copies of the bio.
1426 */
1427 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1428 {
1429 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1430 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1431 BUG_ON(bio->bi_rw & REQ_FLUSH);
1432 BUG_ON(bi_size > *tio->len_ptr);
1433 BUG_ON(n_sectors > bi_size);
1434 *tio->len_ptr -= bi_size - n_sectors;
1435 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1436 }
1437 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1438
1439 static void __map_bio(struct dm_target_io *tio)
1440 {
1441 int r;
1442 sector_t sector;
1443 struct mapped_device *md;
1444 struct bio *clone = &tio->clone;
1445 struct dm_target *ti = tio->ti;
1446
1447 clone->bi_end_io = clone_endio;
1448
1449 /*
1450 * Map the clone. If r == 0 we don't need to do
1451 * anything, the target has assumed ownership of
1452 * this io.
1453 */
1454 atomic_inc(&tio->io->io_count);
1455 sector = clone->bi_iter.bi_sector;
1456 r = ti->type->map(ti, clone);
1457 if (r == DM_MAPIO_REMAPPED) {
1458 /* the bio has been remapped so dispatch it */
1459
1460 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1461 tio->io->bio->bi_bdev->bd_dev, sector);
1462
1463 generic_make_request(clone);
1464 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1465 /* error the io and bail out, or requeue it if needed */
1466 md = tio->io->md;
1467 dec_pending(tio->io, r);
1468 free_tio(md, tio);
1469 } else if (r) {
1470 DMWARN("unimplemented target map return value: %d", r);
1471 BUG();
1472 }
1473 }
1474
1475 struct clone_info {
1476 struct mapped_device *md;
1477 struct dm_table *map;
1478 struct bio *bio;
1479 struct dm_io *io;
1480 sector_t sector;
1481 unsigned sector_count;
1482 };
1483
1484 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1485 {
1486 bio->bi_iter.bi_sector = sector;
1487 bio->bi_iter.bi_size = to_bytes(len);
1488 }
1489
1490 /*
1491 * Creates a bio that consists of range of complete bvecs.
1492 */
1493 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1494 sector_t sector, unsigned len)
1495 {
1496 struct bio *clone = &tio->clone;
1497
1498 __bio_clone_fast(clone, bio);
1499
1500 if (bio_integrity(bio))
1501 bio_integrity_clone(clone, bio, GFP_NOIO);
1502
1503 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1504 clone->bi_iter.bi_size = to_bytes(len);
1505
1506 if (bio_integrity(bio))
1507 bio_integrity_trim(clone, 0, len);
1508 }
1509
1510 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1511 struct dm_target *ti,
1512 unsigned target_bio_nr)
1513 {
1514 struct dm_target_io *tio;
1515 struct bio *clone;
1516
1517 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1518 tio = container_of(clone, struct dm_target_io, clone);
1519
1520 tio->io = ci->io;
1521 tio->ti = ti;
1522 tio->target_bio_nr = target_bio_nr;
1523
1524 return tio;
1525 }
1526
1527 static void __clone_and_map_simple_bio(struct clone_info *ci,
1528 struct dm_target *ti,
1529 unsigned target_bio_nr, unsigned *len)
1530 {
1531 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1532 struct bio *clone = &tio->clone;
1533
1534 tio->len_ptr = len;
1535
1536 __bio_clone_fast(clone, ci->bio);
1537 if (len)
1538 bio_setup_sector(clone, ci->sector, *len);
1539
1540 __map_bio(tio);
1541 }
1542
1543 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1544 unsigned num_bios, unsigned *len)
1545 {
1546 unsigned target_bio_nr;
1547
1548 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1549 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1550 }
1551
1552 static int __send_empty_flush(struct clone_info *ci)
1553 {
1554 unsigned target_nr = 0;
1555 struct dm_target *ti;
1556
1557 BUG_ON(bio_has_data(ci->bio));
1558 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1559 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1560
1561 return 0;
1562 }
1563
1564 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1565 sector_t sector, unsigned *len)
1566 {
1567 struct bio *bio = ci->bio;
1568 struct dm_target_io *tio;
1569 unsigned target_bio_nr;
1570 unsigned num_target_bios = 1;
1571
1572 /*
1573 * Does the target want to receive duplicate copies of the bio?
1574 */
1575 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1576 num_target_bios = ti->num_write_bios(ti, bio);
1577
1578 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1579 tio = alloc_tio(ci, ti, target_bio_nr);
1580 tio->len_ptr = len;
1581 clone_bio(tio, bio, sector, *len);
1582 __map_bio(tio);
1583 }
1584 }
1585
1586 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1587
1588 static unsigned get_num_discard_bios(struct dm_target *ti)
1589 {
1590 return ti->num_discard_bios;
1591 }
1592
1593 static unsigned get_num_write_same_bios(struct dm_target *ti)
1594 {
1595 return ti->num_write_same_bios;
1596 }
1597
1598 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1599
1600 static bool is_split_required_for_discard(struct dm_target *ti)
1601 {
1602 return ti->split_discard_bios;
1603 }
1604
1605 static int __send_changing_extent_only(struct clone_info *ci,
1606 get_num_bios_fn get_num_bios,
1607 is_split_required_fn is_split_required)
1608 {
1609 struct dm_target *ti;
1610 unsigned len;
1611 unsigned num_bios;
1612
1613 do {
1614 ti = dm_table_find_target(ci->map, ci->sector);
1615 if (!dm_target_is_valid(ti))
1616 return -EIO;
1617
1618 /*
1619 * Even though the device advertised support for this type of
1620 * request, that does not mean every target supports it, and
1621 * reconfiguration might also have changed that since the
1622 * check was performed.
1623 */
1624 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1625 if (!num_bios)
1626 return -EOPNOTSUPP;
1627
1628 if (is_split_required && !is_split_required(ti))
1629 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1630 else
1631 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1632
1633 __send_duplicate_bios(ci, ti, num_bios, &len);
1634
1635 ci->sector += len;
1636 } while (ci->sector_count -= len);
1637
1638 return 0;
1639 }
1640
1641 static int __send_discard(struct clone_info *ci)
1642 {
1643 return __send_changing_extent_only(ci, get_num_discard_bios,
1644 is_split_required_for_discard);
1645 }
1646
1647 static int __send_write_same(struct clone_info *ci)
1648 {
1649 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1650 }
1651
1652 /*
1653 * Select the correct strategy for processing a non-flush bio.
1654 */
1655 static int __split_and_process_non_flush(struct clone_info *ci)
1656 {
1657 struct bio *bio = ci->bio;
1658 struct dm_target *ti;
1659 unsigned len;
1660
1661 if (unlikely(bio->bi_rw & REQ_DISCARD))
1662 return __send_discard(ci);
1663 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1664 return __send_write_same(ci);
1665
1666 ti = dm_table_find_target(ci->map, ci->sector);
1667 if (!dm_target_is_valid(ti))
1668 return -EIO;
1669
1670 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1671
1672 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1673
1674 ci->sector += len;
1675 ci->sector_count -= len;
1676
1677 return 0;
1678 }
1679
1680 /*
1681 * Entry point to split a bio into clones and submit them to the targets.
1682 */
1683 static void __split_and_process_bio(struct mapped_device *md,
1684 struct dm_table *map, struct bio *bio)
1685 {
1686 struct clone_info ci;
1687 int error = 0;
1688
1689 if (unlikely(!map)) {
1690 bio_io_error(bio);
1691 return;
1692 }
1693
1694 ci.map = map;
1695 ci.md = md;
1696 ci.io = alloc_io(md);
1697 ci.io->error = 0;
1698 atomic_set(&ci.io->io_count, 1);
1699 ci.io->bio = bio;
1700 ci.io->md = md;
1701 spin_lock_init(&ci.io->endio_lock);
1702 ci.sector = bio->bi_iter.bi_sector;
1703
1704 start_io_acct(ci.io);
1705
1706 if (bio->bi_rw & REQ_FLUSH) {
1707 ci.bio = &ci.md->flush_bio;
1708 ci.sector_count = 0;
1709 error = __send_empty_flush(&ci);
1710 /* dec_pending submits any data associated with flush */
1711 } else {
1712 ci.bio = bio;
1713 ci.sector_count = bio_sectors(bio);
1714 while (ci.sector_count && !error)
1715 error = __split_and_process_non_flush(&ci);
1716 }
1717
1718 /* drop the extra reference count */
1719 dec_pending(ci.io, error);
1720 }
1721 /*-----------------------------------------------------------------
1722 * CRUD END
1723 *---------------------------------------------------------------*/
1724
1725 static int dm_merge_bvec(struct request_queue *q,
1726 struct bvec_merge_data *bvm,
1727 struct bio_vec *biovec)
1728 {
1729 struct mapped_device *md = q->queuedata;
1730 struct dm_table *map = dm_get_live_table_fast(md);
1731 struct dm_target *ti;
1732 sector_t max_sectors, max_size = 0;
1733
1734 if (unlikely(!map))
1735 goto out;
1736
1737 ti = dm_table_find_target(map, bvm->bi_sector);
1738 if (!dm_target_is_valid(ti))
1739 goto out;
1740
1741 /*
1742 * Find maximum amount of I/O that won't need splitting
1743 */
1744 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1745 (sector_t) queue_max_sectors(q));
1746 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1747
1748 /*
1749 * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t
1750 * to the targets' merge function since it holds sectors not bytes).
1751 * Just doing this as an interim fix for stable@ because the more
1752 * comprehensive cleanup of switching to sector_t will impact every
1753 * DM target that implements a ->merge hook.
1754 */
1755 if (max_size > INT_MAX)
1756 max_size = INT_MAX;
1757
1758 /*
1759 * merge_bvec_fn() returns number of bytes
1760 * it can accept at this offset
1761 * max is precomputed maximal io size
1762 */
1763 if (max_size && ti->type->merge)
1764 max_size = ti->type->merge(ti, bvm, biovec, (int) max_size);
1765 /*
1766 * If the target doesn't support merge method and some of the devices
1767 * provided their merge_bvec method (we know this by looking for the
1768 * max_hw_sectors that dm_set_device_limits may set), then we can't
1769 * allow bios with multiple vector entries. So always set max_size
1770 * to 0, and the code below allows just one page.
1771 */
1772 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1773 max_size = 0;
1774
1775 out:
1776 dm_put_live_table_fast(md);
1777 /*
1778 * Always allow an entire first page
1779 */
1780 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1781 max_size = biovec->bv_len;
1782
1783 return max_size;
1784 }
1785
1786 /*
1787 * The request function that just remaps the bio built up by
1788 * dm_merge_bvec.
1789 */
1790 static void dm_make_request(struct request_queue *q, struct bio *bio)
1791 {
1792 int rw = bio_data_dir(bio);
1793 struct mapped_device *md = q->queuedata;
1794 int srcu_idx;
1795 struct dm_table *map;
1796
1797 map = dm_get_live_table(md, &srcu_idx);
1798
1799 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1800
1801 /* if we're suspended, we have to queue this io for later */
1802 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1803 dm_put_live_table(md, srcu_idx);
1804
1805 if (bio_rw(bio) != READA)
1806 queue_io(md, bio);
1807 else
1808 bio_io_error(bio);
1809 return;
1810 }
1811
1812 __split_and_process_bio(md, map, bio);
1813 dm_put_live_table(md, srcu_idx);
1814 return;
1815 }
1816
1817 int dm_request_based(struct mapped_device *md)
1818 {
1819 return blk_queue_stackable(md->queue);
1820 }
1821
1822 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1823 {
1824 int r;
1825
1826 if (blk_queue_io_stat(clone->q))
1827 clone->cmd_flags |= REQ_IO_STAT;
1828
1829 clone->start_time = jiffies;
1830 r = blk_insert_cloned_request(clone->q, clone);
1831 if (r)
1832 /* must complete clone in terms of original request */
1833 dm_complete_request(rq, r);
1834 }
1835
1836 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1837 void *data)
1838 {
1839 struct dm_rq_target_io *tio = data;
1840 struct dm_rq_clone_bio_info *info =
1841 container_of(bio, struct dm_rq_clone_bio_info, clone);
1842
1843 info->orig = bio_orig;
1844 info->tio = tio;
1845 bio->bi_end_io = end_clone_bio;
1846
1847 return 0;
1848 }
1849
1850 static int setup_clone(struct request *clone, struct request *rq,
1851 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1852 {
1853 int r;
1854
1855 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1856 dm_rq_bio_constructor, tio);
1857 if (r)
1858 return r;
1859
1860 clone->cmd = rq->cmd;
1861 clone->cmd_len = rq->cmd_len;
1862 clone->sense = rq->sense;
1863 clone->end_io = end_clone_request;
1864 clone->end_io_data = tio;
1865
1866 tio->clone = clone;
1867
1868 return 0;
1869 }
1870
1871 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1872 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1873 {
1874 /*
1875 * Do not allocate a clone if tio->clone was already set
1876 * (see: dm_mq_queue_rq).
1877 */
1878 bool alloc_clone = !tio->clone;
1879 struct request *clone;
1880
1881 if (alloc_clone) {
1882 clone = alloc_clone_request(md, gfp_mask);
1883 if (!clone)
1884 return NULL;
1885 } else
1886 clone = tio->clone;
1887
1888 blk_rq_init(NULL, clone);
1889 if (setup_clone(clone, rq, tio, gfp_mask)) {
1890 /* -ENOMEM */
1891 if (alloc_clone)
1892 free_clone_request(md, clone);
1893 return NULL;
1894 }
1895
1896 return clone;
1897 }
1898
1899 static void map_tio_request(struct kthread_work *work);
1900
1901 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1902 struct mapped_device *md)
1903 {
1904 tio->md = md;
1905 tio->ti = NULL;
1906 tio->clone = NULL;
1907 tio->orig = rq;
1908 tio->error = 0;
1909 memset(&tio->info, 0, sizeof(tio->info));
1910 if (md->kworker_task)
1911 init_kthread_work(&tio->work, map_tio_request);
1912 }
1913
1914 static struct dm_rq_target_io *prep_tio(struct request *rq,
1915 struct mapped_device *md, gfp_t gfp_mask)
1916 {
1917 struct dm_rq_target_io *tio;
1918 int srcu_idx;
1919 struct dm_table *table;
1920
1921 tio = alloc_rq_tio(md, gfp_mask);
1922 if (!tio)
1923 return NULL;
1924
1925 init_tio(tio, rq, md);
1926
1927 table = dm_get_live_table(md, &srcu_idx);
1928 if (!dm_table_mq_request_based(table)) {
1929 if (!clone_rq(rq, md, tio, gfp_mask)) {
1930 dm_put_live_table(md, srcu_idx);
1931 free_rq_tio(tio);
1932 return NULL;
1933 }
1934 }
1935 dm_put_live_table(md, srcu_idx);
1936
1937 return tio;
1938 }
1939
1940 /*
1941 * Called with the queue lock held.
1942 */
1943 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1944 {
1945 struct mapped_device *md = q->queuedata;
1946 struct dm_rq_target_io *tio;
1947
1948 if (unlikely(rq->special)) {
1949 DMWARN("Already has something in rq->special.");
1950 return BLKPREP_KILL;
1951 }
1952
1953 tio = prep_tio(rq, md, GFP_ATOMIC);
1954 if (!tio)
1955 return BLKPREP_DEFER;
1956
1957 rq->special = tio;
1958 rq->cmd_flags |= REQ_DONTPREP;
1959
1960 return BLKPREP_OK;
1961 }
1962
1963 /*
1964 * Returns:
1965 * 0 : the request has been processed
1966 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1967 * < 0 : the request was completed due to failure
1968 */
1969 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1970 struct mapped_device *md)
1971 {
1972 int r;
1973 struct dm_target *ti = tio->ti;
1974 struct request *clone = NULL;
1975
1976 if (tio->clone) {
1977 clone = tio->clone;
1978 r = ti->type->map_rq(ti, clone, &tio->info);
1979 } else {
1980 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1981 if (r < 0) {
1982 /* The target wants to complete the I/O */
1983 dm_kill_unmapped_request(rq, r);
1984 return r;
1985 }
1986 if (r != DM_MAPIO_REMAPPED)
1987 return r;
1988 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1989 /* -ENOMEM */
1990 ti->type->release_clone_rq(clone);
1991 return DM_MAPIO_REQUEUE;
1992 }
1993 }
1994
1995 switch (r) {
1996 case DM_MAPIO_SUBMITTED:
1997 /* The target has taken the I/O to submit by itself later */
1998 break;
1999 case DM_MAPIO_REMAPPED:
2000 /* The target has remapped the I/O so dispatch it */
2001 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2002 blk_rq_pos(rq));
2003 dm_dispatch_clone_request(clone, rq);
2004 break;
2005 case DM_MAPIO_REQUEUE:
2006 /* The target wants to requeue the I/O */
2007 dm_requeue_original_request(md, tio->orig);
2008 break;
2009 default:
2010 if (r > 0) {
2011 DMWARN("unimplemented target map return value: %d", r);
2012 BUG();
2013 }
2014
2015 /* The target wants to complete the I/O */
2016 dm_kill_unmapped_request(rq, r);
2017 return r;
2018 }
2019
2020 return 0;
2021 }
2022
2023 static void map_tio_request(struct kthread_work *work)
2024 {
2025 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2026 struct request *rq = tio->orig;
2027 struct mapped_device *md = tio->md;
2028
2029 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2030 dm_requeue_original_request(md, rq);
2031 }
2032
2033 static void dm_start_request(struct mapped_device *md, struct request *orig)
2034 {
2035 if (!orig->q->mq_ops)
2036 blk_start_request(orig);
2037 else
2038 blk_mq_start_request(orig);
2039 atomic_inc(&md->pending[rq_data_dir(orig)]);
2040
2041 if (md->seq_rq_merge_deadline_usecs) {
2042 md->last_rq_pos = rq_end_sector(orig);
2043 md->last_rq_rw = rq_data_dir(orig);
2044 md->last_rq_start_time = ktime_get();
2045 }
2046
2047 if (unlikely(dm_stats_used(&md->stats))) {
2048 struct dm_rq_target_io *tio = tio_from_request(orig);
2049 tio->duration_jiffies = jiffies;
2050 tio->n_sectors = blk_rq_sectors(orig);
2051 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2052 tio->n_sectors, false, 0, &tio->stats_aux);
2053 }
2054
2055 /*
2056 * Hold the md reference here for the in-flight I/O.
2057 * We can't rely on the reference count by device opener,
2058 * because the device may be closed during the request completion
2059 * when all bios are completed.
2060 * See the comment in rq_completed() too.
2061 */
2062 dm_get(md);
2063 }
2064
2065 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2066
2067 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2068 {
2069 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2070 }
2071
2072 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2073 const char *buf, size_t count)
2074 {
2075 unsigned deadline;
2076
2077 if (!dm_request_based(md) || md->use_blk_mq)
2078 return count;
2079
2080 if (kstrtouint(buf, 10, &deadline))
2081 return -EINVAL;
2082
2083 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2084 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2085
2086 md->seq_rq_merge_deadline_usecs = deadline;
2087
2088 return count;
2089 }
2090
2091 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2092 {
2093 ktime_t kt_deadline;
2094
2095 if (!md->seq_rq_merge_deadline_usecs)
2096 return false;
2097
2098 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2099 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2100
2101 return !ktime_after(ktime_get(), kt_deadline);
2102 }
2103
2104 /*
2105 * q->request_fn for request-based dm.
2106 * Called with the queue lock held.
2107 */
2108 static void dm_request_fn(struct request_queue *q)
2109 {
2110 struct mapped_device *md = q->queuedata;
2111 int srcu_idx;
2112 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2113 struct dm_target *ti;
2114 struct request *rq;
2115 struct dm_rq_target_io *tio;
2116 sector_t pos;
2117
2118 /*
2119 * For suspend, check blk_queue_stopped() and increment
2120 * ->pending within a single queue_lock not to increment the
2121 * number of in-flight I/Os after the queue is stopped in
2122 * dm_suspend().
2123 */
2124 while (!blk_queue_stopped(q)) {
2125 rq = blk_peek_request(q);
2126 if (!rq)
2127 goto out;
2128
2129 /* always use block 0 to find the target for flushes for now */
2130 pos = 0;
2131 if (!(rq->cmd_flags & REQ_FLUSH))
2132 pos = blk_rq_pos(rq);
2133
2134 ti = dm_table_find_target(map, pos);
2135 if (!dm_target_is_valid(ti)) {
2136 /*
2137 * Must perform setup, that rq_completed() requires,
2138 * before calling dm_kill_unmapped_request
2139 */
2140 DMERR_LIMIT("request attempted access beyond the end of device");
2141 dm_start_request(md, rq);
2142 dm_kill_unmapped_request(rq, -EIO);
2143 continue;
2144 }
2145
2146 if (dm_request_peeked_before_merge_deadline(md) &&
2147 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2148 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2149 goto delay_and_out;
2150
2151 if (ti->type->busy && ti->type->busy(ti))
2152 goto delay_and_out;
2153
2154 dm_start_request(md, rq);
2155
2156 tio = tio_from_request(rq);
2157 /* Establish tio->ti before queuing work (map_tio_request) */
2158 tio->ti = ti;
2159 queue_kthread_work(&md->kworker, &tio->work);
2160 BUG_ON(!irqs_disabled());
2161 }
2162
2163 goto out;
2164
2165 delay_and_out:
2166 blk_delay_queue(q, HZ / 100);
2167 out:
2168 dm_put_live_table(md, srcu_idx);
2169 }
2170
2171 static int dm_any_congested(void *congested_data, int bdi_bits)
2172 {
2173 int r = bdi_bits;
2174 struct mapped_device *md = congested_data;
2175 struct dm_table *map;
2176
2177 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2178 map = dm_get_live_table_fast(md);
2179 if (map) {
2180 /*
2181 * Request-based dm cares about only own queue for
2182 * the query about congestion status of request_queue
2183 */
2184 if (dm_request_based(md))
2185 r = md->queue->backing_dev_info.wb.state &
2186 bdi_bits;
2187 else
2188 r = dm_table_any_congested(map, bdi_bits);
2189 }
2190 dm_put_live_table_fast(md);
2191 }
2192
2193 return r;
2194 }
2195
2196 /*-----------------------------------------------------------------
2197 * An IDR is used to keep track of allocated minor numbers.
2198 *---------------------------------------------------------------*/
2199 static void free_minor(int minor)
2200 {
2201 spin_lock(&_minor_lock);
2202 idr_remove(&_minor_idr, minor);
2203 spin_unlock(&_minor_lock);
2204 }
2205
2206 /*
2207 * See if the device with a specific minor # is free.
2208 */
2209 static int specific_minor(int minor)
2210 {
2211 int r;
2212
2213 if (minor >= (1 << MINORBITS))
2214 return -EINVAL;
2215
2216 idr_preload(GFP_KERNEL);
2217 spin_lock(&_minor_lock);
2218
2219 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2220
2221 spin_unlock(&_minor_lock);
2222 idr_preload_end();
2223 if (r < 0)
2224 return r == -ENOSPC ? -EBUSY : r;
2225 return 0;
2226 }
2227
2228 static int next_free_minor(int *minor)
2229 {
2230 int r;
2231
2232 idr_preload(GFP_KERNEL);
2233 spin_lock(&_minor_lock);
2234
2235 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2236
2237 spin_unlock(&_minor_lock);
2238 idr_preload_end();
2239 if (r < 0)
2240 return r;
2241 *minor = r;
2242 return 0;
2243 }
2244
2245 static const struct block_device_operations dm_blk_dops;
2246
2247 static void dm_wq_work(struct work_struct *work);
2248
2249 static void dm_init_md_queue(struct mapped_device *md)
2250 {
2251 /*
2252 * Request-based dm devices cannot be stacked on top of bio-based dm
2253 * devices. The type of this dm device may not have been decided yet.
2254 * The type is decided at the first table loading time.
2255 * To prevent problematic device stacking, clear the queue flag
2256 * for request stacking support until then.
2257 *
2258 * This queue is new, so no concurrency on the queue_flags.
2259 */
2260 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2261 }
2262
2263 static void dm_init_old_md_queue(struct mapped_device *md)
2264 {
2265 md->use_blk_mq = false;
2266 dm_init_md_queue(md);
2267
2268 /*
2269 * Initialize aspects of queue that aren't relevant for blk-mq
2270 */
2271 md->queue->queuedata = md;
2272 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2273 md->queue->backing_dev_info.congested_data = md;
2274
2275 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2276 }
2277
2278 static void cleanup_mapped_device(struct mapped_device *md)
2279 {
2280 if (md->wq)
2281 destroy_workqueue(md->wq);
2282 if (md->kworker_task)
2283 kthread_stop(md->kworker_task);
2284 if (md->io_pool)
2285 mempool_destroy(md->io_pool);
2286 if (md->rq_pool)
2287 mempool_destroy(md->rq_pool);
2288 if (md->bs)
2289 bioset_free(md->bs);
2290
2291 cleanup_srcu_struct(&md->io_barrier);
2292
2293 if (md->disk) {
2294 spin_lock(&_minor_lock);
2295 md->disk->private_data = NULL;
2296 spin_unlock(&_minor_lock);
2297 if (blk_get_integrity(md->disk))
2298 blk_integrity_unregister(md->disk);
2299 del_gendisk(md->disk);
2300 put_disk(md->disk);
2301 }
2302
2303 if (md->queue)
2304 blk_cleanup_queue(md->queue);
2305
2306 if (md->bdev) {
2307 bdput(md->bdev);
2308 md->bdev = NULL;
2309 }
2310 }
2311
2312 /*
2313 * Allocate and initialise a blank device with a given minor.
2314 */
2315 static struct mapped_device *alloc_dev(int minor)
2316 {
2317 int r;
2318 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2319 void *old_md;
2320
2321 if (!md) {
2322 DMWARN("unable to allocate device, out of memory.");
2323 return NULL;
2324 }
2325
2326 if (!try_module_get(THIS_MODULE))
2327 goto bad_module_get;
2328
2329 /* get a minor number for the dev */
2330 if (minor == DM_ANY_MINOR)
2331 r = next_free_minor(&minor);
2332 else
2333 r = specific_minor(minor);
2334 if (r < 0)
2335 goto bad_minor;
2336
2337 r = init_srcu_struct(&md->io_barrier);
2338 if (r < 0)
2339 goto bad_io_barrier;
2340
2341 md->use_blk_mq = use_blk_mq;
2342 md->type = DM_TYPE_NONE;
2343 mutex_init(&md->suspend_lock);
2344 mutex_init(&md->type_lock);
2345 mutex_init(&md->table_devices_lock);
2346 spin_lock_init(&md->deferred_lock);
2347 atomic_set(&md->holders, 1);
2348 atomic_set(&md->open_count, 0);
2349 atomic_set(&md->event_nr, 0);
2350 atomic_set(&md->uevent_seq, 0);
2351 INIT_LIST_HEAD(&md->uevent_list);
2352 INIT_LIST_HEAD(&md->table_devices);
2353 spin_lock_init(&md->uevent_lock);
2354
2355 md->queue = blk_alloc_queue(GFP_KERNEL);
2356 if (!md->queue)
2357 goto bad;
2358
2359 dm_init_md_queue(md);
2360
2361 md->disk = alloc_disk(1);
2362 if (!md->disk)
2363 goto bad;
2364
2365 atomic_set(&md->pending[0], 0);
2366 atomic_set(&md->pending[1], 0);
2367 init_waitqueue_head(&md->wait);
2368 INIT_WORK(&md->work, dm_wq_work);
2369 init_waitqueue_head(&md->eventq);
2370 init_completion(&md->kobj_holder.completion);
2371 md->kworker_task = NULL;
2372
2373 md->disk->major = _major;
2374 md->disk->first_minor = minor;
2375 md->disk->fops = &dm_blk_dops;
2376 md->disk->queue = md->queue;
2377 md->disk->private_data = md;
2378 sprintf(md->disk->disk_name, "dm-%d", minor);
2379 add_disk(md->disk);
2380 format_dev_t(md->name, MKDEV(_major, minor));
2381
2382 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2383 if (!md->wq)
2384 goto bad;
2385
2386 md->bdev = bdget_disk(md->disk, 0);
2387 if (!md->bdev)
2388 goto bad;
2389
2390 bio_init(&md->flush_bio);
2391 md->flush_bio.bi_bdev = md->bdev;
2392 md->flush_bio.bi_rw = WRITE_FLUSH;
2393
2394 dm_stats_init(&md->stats);
2395
2396 /* Populate the mapping, nobody knows we exist yet */
2397 spin_lock(&_minor_lock);
2398 old_md = idr_replace(&_minor_idr, md, minor);
2399 spin_unlock(&_minor_lock);
2400
2401 BUG_ON(old_md != MINOR_ALLOCED);
2402
2403 return md;
2404
2405 bad:
2406 cleanup_mapped_device(md);
2407 bad_io_barrier:
2408 free_minor(minor);
2409 bad_minor:
2410 module_put(THIS_MODULE);
2411 bad_module_get:
2412 kfree(md);
2413 return NULL;
2414 }
2415
2416 static void unlock_fs(struct mapped_device *md);
2417
2418 static void free_dev(struct mapped_device *md)
2419 {
2420 int minor = MINOR(disk_devt(md->disk));
2421
2422 unlock_fs(md);
2423
2424 cleanup_mapped_device(md);
2425 if (md->use_blk_mq)
2426 blk_mq_free_tag_set(&md->tag_set);
2427
2428 free_table_devices(&md->table_devices);
2429 dm_stats_cleanup(&md->stats);
2430 free_minor(minor);
2431
2432 module_put(THIS_MODULE);
2433 kfree(md);
2434 }
2435
2436 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2437 {
2438 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2439
2440 if (md->bs) {
2441 /* The md already has necessary mempools. */
2442 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2443 /*
2444 * Reload bioset because front_pad may have changed
2445 * because a different table was loaded.
2446 */
2447 bioset_free(md->bs);
2448 md->bs = p->bs;
2449 p->bs = NULL;
2450 }
2451 /*
2452 * There's no need to reload with request-based dm
2453 * because the size of front_pad doesn't change.
2454 * Note for future: If you are to reload bioset,
2455 * prep-ed requests in the queue may refer
2456 * to bio from the old bioset, so you must walk
2457 * through the queue to unprep.
2458 */
2459 goto out;
2460 }
2461
2462 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2463
2464 md->io_pool = p->io_pool;
2465 p->io_pool = NULL;
2466 md->rq_pool = p->rq_pool;
2467 p->rq_pool = NULL;
2468 md->bs = p->bs;
2469 p->bs = NULL;
2470
2471 out:
2472 /* mempool bind completed, no longer need any mempools in the table */
2473 dm_table_free_md_mempools(t);
2474 }
2475
2476 /*
2477 * Bind a table to the device.
2478 */
2479 static void event_callback(void *context)
2480 {
2481 unsigned long flags;
2482 LIST_HEAD(uevents);
2483 struct mapped_device *md = (struct mapped_device *) context;
2484
2485 spin_lock_irqsave(&md->uevent_lock, flags);
2486 list_splice_init(&md->uevent_list, &uevents);
2487 spin_unlock_irqrestore(&md->uevent_lock, flags);
2488
2489 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2490
2491 atomic_inc(&md->event_nr);
2492 wake_up(&md->eventq);
2493 }
2494
2495 /*
2496 * Protected by md->suspend_lock obtained by dm_swap_table().
2497 */
2498 static void __set_size(struct mapped_device *md, sector_t size)
2499 {
2500 set_capacity(md->disk, size);
2501
2502 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2503 }
2504
2505 /*
2506 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2507 *
2508 * If this function returns 0, then the device is either a non-dm
2509 * device without a merge_bvec_fn, or it is a dm device that is
2510 * able to split any bios it receives that are too big.
2511 */
2512 int dm_queue_merge_is_compulsory(struct request_queue *q)
2513 {
2514 struct mapped_device *dev_md;
2515
2516 if (!q->merge_bvec_fn)
2517 return 0;
2518
2519 if (q->make_request_fn == dm_make_request) {
2520 dev_md = q->queuedata;
2521 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2522 return 0;
2523 }
2524
2525 return 1;
2526 }
2527
2528 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2529 struct dm_dev *dev, sector_t start,
2530 sector_t len, void *data)
2531 {
2532 struct block_device *bdev = dev->bdev;
2533 struct request_queue *q = bdev_get_queue(bdev);
2534
2535 return dm_queue_merge_is_compulsory(q);
2536 }
2537
2538 /*
2539 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2540 * on the properties of the underlying devices.
2541 */
2542 static int dm_table_merge_is_optional(struct dm_table *table)
2543 {
2544 unsigned i = 0;
2545 struct dm_target *ti;
2546
2547 while (i < dm_table_get_num_targets(table)) {
2548 ti = dm_table_get_target(table, i++);
2549
2550 if (ti->type->iterate_devices &&
2551 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2552 return 0;
2553 }
2554
2555 return 1;
2556 }
2557
2558 /*
2559 * Returns old map, which caller must destroy.
2560 */
2561 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2562 struct queue_limits *limits)
2563 {
2564 struct dm_table *old_map;
2565 struct request_queue *q = md->queue;
2566 sector_t size;
2567 int merge_is_optional;
2568
2569 size = dm_table_get_size(t);
2570
2571 /*
2572 * Wipe any geometry if the size of the table changed.
2573 */
2574 if (size != dm_get_size(md))
2575 memset(&md->geometry, 0, sizeof(md->geometry));
2576
2577 __set_size(md, size);
2578
2579 dm_table_event_callback(t, event_callback, md);
2580
2581 /*
2582 * The queue hasn't been stopped yet, if the old table type wasn't
2583 * for request-based during suspension. So stop it to prevent
2584 * I/O mapping before resume.
2585 * This must be done before setting the queue restrictions,
2586 * because request-based dm may be run just after the setting.
2587 */
2588 if (dm_table_request_based(t))
2589 stop_queue(q);
2590
2591 __bind_mempools(md, t);
2592
2593 merge_is_optional = dm_table_merge_is_optional(t);
2594
2595 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2596 rcu_assign_pointer(md->map, t);
2597 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2598
2599 dm_table_set_restrictions(t, q, limits);
2600 if (merge_is_optional)
2601 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2602 else
2603 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2604 if (old_map)
2605 dm_sync_table(md);
2606
2607 return old_map;
2608 }
2609
2610 /*
2611 * Returns unbound table for the caller to free.
2612 */
2613 static struct dm_table *__unbind(struct mapped_device *md)
2614 {
2615 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2616
2617 if (!map)
2618 return NULL;
2619
2620 dm_table_event_callback(map, NULL, NULL);
2621 RCU_INIT_POINTER(md->map, NULL);
2622 dm_sync_table(md);
2623
2624 return map;
2625 }
2626
2627 /*
2628 * Constructor for a new device.
2629 */
2630 int dm_create(int minor, struct mapped_device **result)
2631 {
2632 struct mapped_device *md;
2633
2634 md = alloc_dev(minor);
2635 if (!md)
2636 return -ENXIO;
2637
2638 dm_sysfs_init(md);
2639
2640 *result = md;
2641 return 0;
2642 }
2643
2644 /*
2645 * Functions to manage md->type.
2646 * All are required to hold md->type_lock.
2647 */
2648 void dm_lock_md_type(struct mapped_device *md)
2649 {
2650 mutex_lock(&md->type_lock);
2651 }
2652
2653 void dm_unlock_md_type(struct mapped_device *md)
2654 {
2655 mutex_unlock(&md->type_lock);
2656 }
2657
2658 void dm_set_md_type(struct mapped_device *md, unsigned type)
2659 {
2660 BUG_ON(!mutex_is_locked(&md->type_lock));
2661 md->type = type;
2662 }
2663
2664 unsigned dm_get_md_type(struct mapped_device *md)
2665 {
2666 BUG_ON(!mutex_is_locked(&md->type_lock));
2667 return md->type;
2668 }
2669
2670 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2671 {
2672 return md->immutable_target_type;
2673 }
2674
2675 /*
2676 * The queue_limits are only valid as long as you have a reference
2677 * count on 'md'.
2678 */
2679 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2680 {
2681 BUG_ON(!atomic_read(&md->holders));
2682 return &md->queue->limits;
2683 }
2684 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2685
2686 static void init_rq_based_worker_thread(struct mapped_device *md)
2687 {
2688 /* Initialize the request-based DM worker thread */
2689 init_kthread_worker(&md->kworker);
2690 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2691 "kdmwork-%s", dm_device_name(md));
2692 }
2693
2694 /*
2695 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2696 */
2697 static int dm_init_request_based_queue(struct mapped_device *md)
2698 {
2699 struct request_queue *q = NULL;
2700
2701 /* Fully initialize the queue */
2702 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2703 if (!q)
2704 return -EINVAL;
2705
2706 /* disable dm_request_fn's merge heuristic by default */
2707 md->seq_rq_merge_deadline_usecs = 0;
2708
2709 md->queue = q;
2710 dm_init_old_md_queue(md);
2711 blk_queue_softirq_done(md->queue, dm_softirq_done);
2712 blk_queue_prep_rq(md->queue, dm_prep_fn);
2713
2714 init_rq_based_worker_thread(md);
2715
2716 elv_register_queue(md->queue);
2717
2718 return 0;
2719 }
2720
2721 static int dm_mq_init_request(void *data, struct request *rq,
2722 unsigned int hctx_idx, unsigned int request_idx,
2723 unsigned int numa_node)
2724 {
2725 struct mapped_device *md = data;
2726 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2727
2728 /*
2729 * Must initialize md member of tio, otherwise it won't
2730 * be available in dm_mq_queue_rq.
2731 */
2732 tio->md = md;
2733
2734 return 0;
2735 }
2736
2737 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2738 const struct blk_mq_queue_data *bd)
2739 {
2740 struct request *rq = bd->rq;
2741 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2742 struct mapped_device *md = tio->md;
2743 int srcu_idx;
2744 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2745 struct dm_target *ti;
2746 sector_t pos;
2747
2748 /* always use block 0 to find the target for flushes for now */
2749 pos = 0;
2750 if (!(rq->cmd_flags & REQ_FLUSH))
2751 pos = blk_rq_pos(rq);
2752
2753 ti = dm_table_find_target(map, pos);
2754 if (!dm_target_is_valid(ti)) {
2755 dm_put_live_table(md, srcu_idx);
2756 DMERR_LIMIT("request attempted access beyond the end of device");
2757 /*
2758 * Must perform setup, that rq_completed() requires,
2759 * before returning BLK_MQ_RQ_QUEUE_ERROR
2760 */
2761 dm_start_request(md, rq);
2762 return BLK_MQ_RQ_QUEUE_ERROR;
2763 }
2764 dm_put_live_table(md, srcu_idx);
2765
2766 if (ti->type->busy && ti->type->busy(ti))
2767 return BLK_MQ_RQ_QUEUE_BUSY;
2768
2769 dm_start_request(md, rq);
2770
2771 /* Init tio using md established in .init_request */
2772 init_tio(tio, rq, md);
2773
2774 /*
2775 * Establish tio->ti before queuing work (map_tio_request)
2776 * or making direct call to map_request().
2777 */
2778 tio->ti = ti;
2779
2780 /* Clone the request if underlying devices aren't blk-mq */
2781 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2782 /* clone request is allocated at the end of the pdu */
2783 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2784 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2785 queue_kthread_work(&md->kworker, &tio->work);
2786 } else {
2787 /* Direct call is fine since .queue_rq allows allocations */
2788 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2789 /* Undo dm_start_request() before requeuing */
2790 rq_end_stats(md, rq);
2791 rq_completed(md, rq_data_dir(rq), false);
2792 return BLK_MQ_RQ_QUEUE_BUSY;
2793 }
2794 }
2795
2796 return BLK_MQ_RQ_QUEUE_OK;
2797 }
2798
2799 static struct blk_mq_ops dm_mq_ops = {
2800 .queue_rq = dm_mq_queue_rq,
2801 .map_queue = blk_mq_map_queue,
2802 .complete = dm_softirq_done,
2803 .init_request = dm_mq_init_request,
2804 };
2805
2806 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2807 {
2808 unsigned md_type = dm_get_md_type(md);
2809 struct request_queue *q;
2810 int err;
2811
2812 memset(&md->tag_set, 0, sizeof(md->tag_set));
2813 md->tag_set.ops = &dm_mq_ops;
2814 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2815 md->tag_set.numa_node = NUMA_NO_NODE;
2816 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2817 md->tag_set.nr_hw_queues = 1;
2818 if (md_type == DM_TYPE_REQUEST_BASED) {
2819 /* make the memory for non-blk-mq clone part of the pdu */
2820 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2821 } else
2822 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2823 md->tag_set.driver_data = md;
2824
2825 err = blk_mq_alloc_tag_set(&md->tag_set);
2826 if (err)
2827 return err;
2828
2829 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2830 if (IS_ERR(q)) {
2831 err = PTR_ERR(q);
2832 goto out_tag_set;
2833 }
2834 md->queue = q;
2835 dm_init_md_queue(md);
2836
2837 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2838 blk_mq_register_disk(md->disk);
2839
2840 if (md_type == DM_TYPE_REQUEST_BASED)
2841 init_rq_based_worker_thread(md);
2842
2843 return 0;
2844
2845 out_tag_set:
2846 blk_mq_free_tag_set(&md->tag_set);
2847 return err;
2848 }
2849
2850 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2851 {
2852 if (type == DM_TYPE_BIO_BASED)
2853 return type;
2854
2855 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2856 }
2857
2858 /*
2859 * Setup the DM device's queue based on md's type
2860 */
2861 int dm_setup_md_queue(struct mapped_device *md)
2862 {
2863 int r;
2864 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2865
2866 switch (md_type) {
2867 case DM_TYPE_REQUEST_BASED:
2868 r = dm_init_request_based_queue(md);
2869 if (r) {
2870 DMWARN("Cannot initialize queue for request-based mapped device");
2871 return r;
2872 }
2873 break;
2874 case DM_TYPE_MQ_REQUEST_BASED:
2875 r = dm_init_request_based_blk_mq_queue(md);
2876 if (r) {
2877 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2878 return r;
2879 }
2880 break;
2881 case DM_TYPE_BIO_BASED:
2882 dm_init_old_md_queue(md);
2883 blk_queue_make_request(md->queue, dm_make_request);
2884 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2885 break;
2886 }
2887
2888 return 0;
2889 }
2890
2891 struct mapped_device *dm_get_md(dev_t dev)
2892 {
2893 struct mapped_device *md;
2894 unsigned minor = MINOR(dev);
2895
2896 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2897 return NULL;
2898
2899 spin_lock(&_minor_lock);
2900
2901 md = idr_find(&_minor_idr, minor);
2902 if (md) {
2903 if ((md == MINOR_ALLOCED ||
2904 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2905 dm_deleting_md(md) ||
2906 test_bit(DMF_FREEING, &md->flags))) {
2907 md = NULL;
2908 goto out;
2909 }
2910 dm_get(md);
2911 }
2912
2913 out:
2914 spin_unlock(&_minor_lock);
2915
2916 return md;
2917 }
2918 EXPORT_SYMBOL_GPL(dm_get_md);
2919
2920 void *dm_get_mdptr(struct mapped_device *md)
2921 {
2922 return md->interface_ptr;
2923 }
2924
2925 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2926 {
2927 md->interface_ptr = ptr;
2928 }
2929
2930 void dm_get(struct mapped_device *md)
2931 {
2932 atomic_inc(&md->holders);
2933 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2934 }
2935
2936 int dm_hold(struct mapped_device *md)
2937 {
2938 spin_lock(&_minor_lock);
2939 if (test_bit(DMF_FREEING, &md->flags)) {
2940 spin_unlock(&_minor_lock);
2941 return -EBUSY;
2942 }
2943 dm_get(md);
2944 spin_unlock(&_minor_lock);
2945 return 0;
2946 }
2947 EXPORT_SYMBOL_GPL(dm_hold);
2948
2949 const char *dm_device_name(struct mapped_device *md)
2950 {
2951 return md->name;
2952 }
2953 EXPORT_SYMBOL_GPL(dm_device_name);
2954
2955 static void __dm_destroy(struct mapped_device *md, bool wait)
2956 {
2957 struct dm_table *map;
2958 int srcu_idx;
2959
2960 might_sleep();
2961
2962 map = dm_get_live_table(md, &srcu_idx);
2963
2964 spin_lock(&_minor_lock);
2965 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2966 set_bit(DMF_FREEING, &md->flags);
2967 spin_unlock(&_minor_lock);
2968
2969 if (dm_request_based(md) && md->kworker_task)
2970 flush_kthread_worker(&md->kworker);
2971
2972 /*
2973 * Take suspend_lock so that presuspend and postsuspend methods
2974 * do not race with internal suspend.
2975 */
2976 mutex_lock(&md->suspend_lock);
2977 if (!dm_suspended_md(md)) {
2978 dm_table_presuspend_targets(map);
2979 dm_table_postsuspend_targets(map);
2980 }
2981 mutex_unlock(&md->suspend_lock);
2982
2983 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2984 dm_put_live_table(md, srcu_idx);
2985
2986 /*
2987 * Rare, but there may be I/O requests still going to complete,
2988 * for example. Wait for all references to disappear.
2989 * No one should increment the reference count of the mapped_device,
2990 * after the mapped_device state becomes DMF_FREEING.
2991 */
2992 if (wait)
2993 while (atomic_read(&md->holders))
2994 msleep(1);
2995 else if (atomic_read(&md->holders))
2996 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2997 dm_device_name(md), atomic_read(&md->holders));
2998
2999 dm_sysfs_exit(md);
3000 dm_table_destroy(__unbind(md));
3001 free_dev(md);
3002 }
3003
3004 void dm_destroy(struct mapped_device *md)
3005 {
3006 __dm_destroy(md, true);
3007 }
3008
3009 void dm_destroy_immediate(struct mapped_device *md)
3010 {
3011 __dm_destroy(md, false);
3012 }
3013
3014 void dm_put(struct mapped_device *md)
3015 {
3016 atomic_dec(&md->holders);
3017 }
3018 EXPORT_SYMBOL_GPL(dm_put);
3019
3020 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
3021 {
3022 int r = 0;
3023 DECLARE_WAITQUEUE(wait, current);
3024
3025 add_wait_queue(&md->wait, &wait);
3026
3027 while (1) {
3028 set_current_state(interruptible);
3029
3030 if (!md_in_flight(md))
3031 break;
3032
3033 if (interruptible == TASK_INTERRUPTIBLE &&
3034 signal_pending(current)) {
3035 r = -EINTR;
3036 break;
3037 }
3038
3039 io_schedule();
3040 }
3041 set_current_state(TASK_RUNNING);
3042
3043 remove_wait_queue(&md->wait, &wait);
3044
3045 return r;
3046 }
3047
3048 /*
3049 * Process the deferred bios
3050 */
3051 static void dm_wq_work(struct work_struct *work)
3052 {
3053 struct mapped_device *md = container_of(work, struct mapped_device,
3054 work);
3055 struct bio *c;
3056 int srcu_idx;
3057 struct dm_table *map;
3058
3059 map = dm_get_live_table(md, &srcu_idx);
3060
3061 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3062 spin_lock_irq(&md->deferred_lock);
3063 c = bio_list_pop(&md->deferred);
3064 spin_unlock_irq(&md->deferred_lock);
3065
3066 if (!c)
3067 break;
3068
3069 if (dm_request_based(md))
3070 generic_make_request(c);
3071 else
3072 __split_and_process_bio(md, map, c);
3073 }
3074
3075 dm_put_live_table(md, srcu_idx);
3076 }
3077
3078 static void dm_queue_flush(struct mapped_device *md)
3079 {
3080 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3081 smp_mb__after_atomic();
3082 queue_work(md->wq, &md->work);
3083 }
3084
3085 /*
3086 * Swap in a new table, returning the old one for the caller to destroy.
3087 */
3088 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3089 {
3090 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3091 struct queue_limits limits;
3092 int r;
3093
3094 mutex_lock(&md->suspend_lock);
3095
3096 /* device must be suspended */
3097 if (!dm_suspended_md(md))
3098 goto out;
3099
3100 /*
3101 * If the new table has no data devices, retain the existing limits.
3102 * This helps multipath with queue_if_no_path if all paths disappear,
3103 * then new I/O is queued based on these limits, and then some paths
3104 * reappear.
3105 */
3106 if (dm_table_has_no_data_devices(table)) {
3107 live_map = dm_get_live_table_fast(md);
3108 if (live_map)
3109 limits = md->queue->limits;
3110 dm_put_live_table_fast(md);
3111 }
3112
3113 if (!live_map) {
3114 r = dm_calculate_queue_limits(table, &limits);
3115 if (r) {
3116 map = ERR_PTR(r);
3117 goto out;
3118 }
3119 }
3120
3121 map = __bind(md, table, &limits);
3122
3123 out:
3124 mutex_unlock(&md->suspend_lock);
3125 return map;
3126 }
3127
3128 /*
3129 * Functions to lock and unlock any filesystem running on the
3130 * device.
3131 */
3132 static int lock_fs(struct mapped_device *md)
3133 {
3134 int r;
3135
3136 WARN_ON(md->frozen_sb);
3137
3138 md->frozen_sb = freeze_bdev(md->bdev);
3139 if (IS_ERR(md->frozen_sb)) {
3140 r = PTR_ERR(md->frozen_sb);
3141 md->frozen_sb = NULL;
3142 return r;
3143 }
3144
3145 set_bit(DMF_FROZEN, &md->flags);
3146
3147 return 0;
3148 }
3149
3150 static void unlock_fs(struct mapped_device *md)
3151 {
3152 if (!test_bit(DMF_FROZEN, &md->flags))
3153 return;
3154
3155 thaw_bdev(md->bdev, md->frozen_sb);
3156 md->frozen_sb = NULL;
3157 clear_bit(DMF_FROZEN, &md->flags);
3158 }
3159
3160 /*
3161 * If __dm_suspend returns 0, the device is completely quiescent
3162 * now. There is no request-processing activity. All new requests
3163 * are being added to md->deferred list.
3164 *
3165 * Caller must hold md->suspend_lock
3166 */
3167 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3168 unsigned suspend_flags, int interruptible)
3169 {
3170 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3171 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3172 int r;
3173
3174 /*
3175 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3176 * This flag is cleared before dm_suspend returns.
3177 */
3178 if (noflush)
3179 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3180
3181 /*
3182 * This gets reverted if there's an error later and the targets
3183 * provide the .presuspend_undo hook.
3184 */
3185 dm_table_presuspend_targets(map);
3186
3187 /*
3188 * Flush I/O to the device.
3189 * Any I/O submitted after lock_fs() may not be flushed.
3190 * noflush takes precedence over do_lockfs.
3191 * (lock_fs() flushes I/Os and waits for them to complete.)
3192 */
3193 if (!noflush && do_lockfs) {
3194 r = lock_fs(md);
3195 if (r) {
3196 dm_table_presuspend_undo_targets(map);
3197 return r;
3198 }
3199 }
3200
3201 /*
3202 * Here we must make sure that no processes are submitting requests
3203 * to target drivers i.e. no one may be executing
3204 * __split_and_process_bio. This is called from dm_request and
3205 * dm_wq_work.
3206 *
3207 * To get all processes out of __split_and_process_bio in dm_request,
3208 * we take the write lock. To prevent any process from reentering
3209 * __split_and_process_bio from dm_request and quiesce the thread
3210 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3211 * flush_workqueue(md->wq).
3212 */
3213 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3214 if (map)
3215 synchronize_srcu(&md->io_barrier);
3216
3217 /*
3218 * Stop md->queue before flushing md->wq in case request-based
3219 * dm defers requests to md->wq from md->queue.
3220 */
3221 if (dm_request_based(md)) {
3222 stop_queue(md->queue);
3223 if (md->kworker_task)
3224 flush_kthread_worker(&md->kworker);
3225 }
3226
3227 flush_workqueue(md->wq);
3228
3229 /*
3230 * At this point no more requests are entering target request routines.
3231 * We call dm_wait_for_completion to wait for all existing requests
3232 * to finish.
3233 */
3234 r = dm_wait_for_completion(md, interruptible);
3235
3236 if (noflush)
3237 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3238 if (map)
3239 synchronize_srcu(&md->io_barrier);
3240
3241 /* were we interrupted ? */
3242 if (r < 0) {
3243 dm_queue_flush(md);
3244
3245 if (dm_request_based(md))
3246 start_queue(md->queue);
3247
3248 unlock_fs(md);
3249 dm_table_presuspend_undo_targets(map);
3250 /* pushback list is already flushed, so skip flush */
3251 }
3252
3253 return r;
3254 }
3255
3256 /*
3257 * We need to be able to change a mapping table under a mounted
3258 * filesystem. For example we might want to move some data in
3259 * the background. Before the table can be swapped with
3260 * dm_bind_table, dm_suspend must be called to flush any in
3261 * flight bios and ensure that any further io gets deferred.
3262 */
3263 /*
3264 * Suspend mechanism in request-based dm.
3265 *
3266 * 1. Flush all I/Os by lock_fs() if needed.
3267 * 2. Stop dispatching any I/O by stopping the request_queue.
3268 * 3. Wait for all in-flight I/Os to be completed or requeued.
3269 *
3270 * To abort suspend, start the request_queue.
3271 */
3272 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3273 {
3274 struct dm_table *map = NULL;
3275 int r = 0;
3276
3277 retry:
3278 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3279
3280 if (dm_suspended_md(md)) {
3281 r = -EINVAL;
3282 goto out_unlock;
3283 }
3284
3285 if (dm_suspended_internally_md(md)) {
3286 /* already internally suspended, wait for internal resume */
3287 mutex_unlock(&md->suspend_lock);
3288 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3289 if (r)
3290 return r;
3291 goto retry;
3292 }
3293
3294 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3295
3296 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3297 if (r)
3298 goto out_unlock;
3299
3300 set_bit(DMF_SUSPENDED, &md->flags);
3301
3302 dm_table_postsuspend_targets(map);
3303
3304 out_unlock:
3305 mutex_unlock(&md->suspend_lock);
3306 return r;
3307 }
3308
3309 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3310 {
3311 if (map) {
3312 int r = dm_table_resume_targets(map);
3313 if (r)
3314 return r;
3315 }
3316
3317 dm_queue_flush(md);
3318
3319 /*
3320 * Flushing deferred I/Os must be done after targets are resumed
3321 * so that mapping of targets can work correctly.
3322 * Request-based dm is queueing the deferred I/Os in its request_queue.
3323 */
3324 if (dm_request_based(md))
3325 start_queue(md->queue);
3326
3327 unlock_fs(md);
3328
3329 return 0;
3330 }
3331
3332 int dm_resume(struct mapped_device *md)
3333 {
3334 int r = -EINVAL;
3335 struct dm_table *map = NULL;
3336
3337 retry:
3338 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3339
3340 if (!dm_suspended_md(md))
3341 goto out;
3342
3343 if (dm_suspended_internally_md(md)) {
3344 /* already internally suspended, wait for internal resume */
3345 mutex_unlock(&md->suspend_lock);
3346 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3347 if (r)
3348 return r;
3349 goto retry;
3350 }
3351
3352 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353 if (!map || !dm_table_get_size(map))
3354 goto out;
3355
3356 r = __dm_resume(md, map);
3357 if (r)
3358 goto out;
3359
3360 clear_bit(DMF_SUSPENDED, &md->flags);
3361
3362 r = 0;
3363 out:
3364 mutex_unlock(&md->suspend_lock);
3365
3366 return r;
3367 }
3368
3369 /*
3370 * Internal suspend/resume works like userspace-driven suspend. It waits
3371 * until all bios finish and prevents issuing new bios to the target drivers.
3372 * It may be used only from the kernel.
3373 */
3374
3375 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3376 {
3377 struct dm_table *map = NULL;
3378
3379 if (md->internal_suspend_count++)
3380 return; /* nested internal suspend */
3381
3382 if (dm_suspended_md(md)) {
3383 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3384 return; /* nest suspend */
3385 }
3386
3387 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3388
3389 /*
3390 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3391 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3392 * would require changing .presuspend to return an error -- avoid this
3393 * until there is a need for more elaborate variants of internal suspend.
3394 */
3395 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3396
3397 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3398
3399 dm_table_postsuspend_targets(map);
3400 }
3401
3402 static void __dm_internal_resume(struct mapped_device *md)
3403 {
3404 BUG_ON(!md->internal_suspend_count);
3405
3406 if (--md->internal_suspend_count)
3407 return; /* resume from nested internal suspend */
3408
3409 if (dm_suspended_md(md))
3410 goto done; /* resume from nested suspend */
3411
3412 /*
3413 * NOTE: existing callers don't need to call dm_table_resume_targets
3414 * (which may fail -- so best to avoid it for now by passing NULL map)
3415 */
3416 (void) __dm_resume(md, NULL);
3417
3418 done:
3419 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3420 smp_mb__after_atomic();
3421 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3422 }
3423
3424 void dm_internal_suspend_noflush(struct mapped_device *md)
3425 {
3426 mutex_lock(&md->suspend_lock);
3427 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3428 mutex_unlock(&md->suspend_lock);
3429 }
3430 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3431
3432 void dm_internal_resume(struct mapped_device *md)
3433 {
3434 mutex_lock(&md->suspend_lock);
3435 __dm_internal_resume(md);
3436 mutex_unlock(&md->suspend_lock);
3437 }
3438 EXPORT_SYMBOL_GPL(dm_internal_resume);
3439
3440 /*
3441 * Fast variants of internal suspend/resume hold md->suspend_lock,
3442 * which prevents interaction with userspace-driven suspend.
3443 */
3444
3445 void dm_internal_suspend_fast(struct mapped_device *md)
3446 {
3447 mutex_lock(&md->suspend_lock);
3448 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3449 return;
3450
3451 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3452 synchronize_srcu(&md->io_barrier);
3453 flush_workqueue(md->wq);
3454 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3455 }
3456 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3457
3458 void dm_internal_resume_fast(struct mapped_device *md)
3459 {
3460 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3461 goto done;
3462
3463 dm_queue_flush(md);
3464
3465 done:
3466 mutex_unlock(&md->suspend_lock);
3467 }
3468 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3469
3470 /*-----------------------------------------------------------------
3471 * Event notification.
3472 *---------------------------------------------------------------*/
3473 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3474 unsigned cookie)
3475 {
3476 char udev_cookie[DM_COOKIE_LENGTH];
3477 char *envp[] = { udev_cookie, NULL };
3478
3479 if (!cookie)
3480 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3481 else {
3482 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3483 DM_COOKIE_ENV_VAR_NAME, cookie);
3484 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3485 action, envp);
3486 }
3487 }
3488
3489 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3490 {
3491 return atomic_add_return(1, &md->uevent_seq);
3492 }
3493
3494 uint32_t dm_get_event_nr(struct mapped_device *md)
3495 {
3496 return atomic_read(&md->event_nr);
3497 }
3498
3499 int dm_wait_event(struct mapped_device *md, int event_nr)
3500 {
3501 return wait_event_interruptible(md->eventq,
3502 (event_nr != atomic_read(&md->event_nr)));
3503 }
3504
3505 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3506 {
3507 unsigned long flags;
3508
3509 spin_lock_irqsave(&md->uevent_lock, flags);
3510 list_add(elist, &md->uevent_list);
3511 spin_unlock_irqrestore(&md->uevent_lock, flags);
3512 }
3513
3514 /*
3515 * The gendisk is only valid as long as you have a reference
3516 * count on 'md'.
3517 */
3518 struct gendisk *dm_disk(struct mapped_device *md)
3519 {
3520 return md->disk;
3521 }
3522 EXPORT_SYMBOL_GPL(dm_disk);
3523
3524 struct kobject *dm_kobject(struct mapped_device *md)
3525 {
3526 return &md->kobj_holder.kobj;
3527 }
3528
3529 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3530 {
3531 struct mapped_device *md;
3532
3533 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3534
3535 if (test_bit(DMF_FREEING, &md->flags) ||
3536 dm_deleting_md(md))
3537 return NULL;
3538
3539 dm_get(md);
3540 return md;
3541 }
3542
3543 int dm_suspended_md(struct mapped_device *md)
3544 {
3545 return test_bit(DMF_SUSPENDED, &md->flags);
3546 }
3547
3548 int dm_suspended_internally_md(struct mapped_device *md)
3549 {
3550 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3551 }
3552
3553 int dm_test_deferred_remove_flag(struct mapped_device *md)
3554 {
3555 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3556 }
3557
3558 int dm_suspended(struct dm_target *ti)
3559 {
3560 return dm_suspended_md(dm_table_get_md(ti->table));
3561 }
3562 EXPORT_SYMBOL_GPL(dm_suspended);
3563
3564 int dm_noflush_suspending(struct dm_target *ti)
3565 {
3566 return __noflush_suspending(dm_table_get_md(ti->table));
3567 }
3568 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3569
3570 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3571 unsigned integrity, unsigned per_bio_data_size)
3572 {
3573 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3574 struct kmem_cache *cachep = NULL;
3575 unsigned int pool_size = 0;
3576 unsigned int front_pad;
3577
3578 if (!pools)
3579 return NULL;
3580
3581 type = filter_md_type(type, md);
3582
3583 switch (type) {
3584 case DM_TYPE_BIO_BASED:
3585 cachep = _io_cache;
3586 pool_size = dm_get_reserved_bio_based_ios();
3587 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3588 break;
3589 case DM_TYPE_REQUEST_BASED:
3590 cachep = _rq_tio_cache;
3591 pool_size = dm_get_reserved_rq_based_ios();
3592 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3593 if (!pools->rq_pool)
3594 goto out;
3595 /* fall through to setup remaining rq-based pools */
3596 case DM_TYPE_MQ_REQUEST_BASED:
3597 if (!pool_size)
3598 pool_size = dm_get_reserved_rq_based_ios();
3599 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3600 /* per_bio_data_size is not used. See __bind_mempools(). */
3601 WARN_ON(per_bio_data_size != 0);
3602 break;
3603 default:
3604 BUG();
3605 }
3606
3607 if (cachep) {
3608 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3609 if (!pools->io_pool)
3610 goto out;
3611 }
3612
3613 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3614 if (!pools->bs)
3615 goto out;
3616
3617 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3618 goto out;
3619
3620 return pools;
3621
3622 out:
3623 dm_free_md_mempools(pools);
3624
3625 return NULL;
3626 }
3627
3628 void dm_free_md_mempools(struct dm_md_mempools *pools)
3629 {
3630 if (!pools)
3631 return;
3632
3633 if (pools->io_pool)
3634 mempool_destroy(pools->io_pool);
3635
3636 if (pools->rq_pool)
3637 mempool_destroy(pools->rq_pool);
3638
3639 if (pools->bs)
3640 bioset_free(pools->bs);
3641
3642 kfree(pools);
3643 }
3644
3645 static const struct block_device_operations dm_blk_dops = {
3646 .open = dm_blk_open,
3647 .release = dm_blk_close,
3648 .ioctl = dm_blk_ioctl,
3649 .getgeo = dm_blk_getgeo,
3650 .owner = THIS_MODULE
3651 };
3652
3653 /*
3654 * module hooks
3655 */
3656 module_init(dm_init);
3657 module_exit(dm_exit);
3658
3659 module_param(major, uint, 0);
3660 MODULE_PARM_DESC(major, "The major number of the device mapper");
3661
3662 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3663 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3664
3665 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3666 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3667
3668 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3669 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3670
3671 MODULE_DESCRIPTION(DM_NAME " driver");
3672 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3673 MODULE_LICENSE("GPL");