]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/dm.c
pinctrl: sh-pfc: r8a77965: Add DRIF pins, groups and functions
[mirror_ubuntu-focal-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28
29 #define DM_MSG_PREFIX "core"
30
31 /*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37
38 static const char *_name = DM_NAME;
39
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42
43 static DEFINE_IDR(_minor_idr);
44
45 static DEFINE_SPINLOCK(_minor_lock);
46
47 static void do_deferred_remove(struct work_struct *w);
48
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51 static struct workqueue_struct *deferred_remove_workqueue;
52
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
56 void dm_issue_global_event(void)
57 {
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60 }
61
62 /*
63 * One of these is allocated (on-stack) per original bio.
64 */
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
71 };
72
73 /*
74 * One of these is allocated per clone bio.
75 */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
85 };
86
87 /*
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
90 */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
103 };
104
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129
130 #define MINOR_ALLOCED ((void *)-1)
131
132 /*
133 * Bits for the md->flags field.
134 */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146
147 /*
148 * For mempools pre-allocation at the table loading time.
149 */
150 struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
153 };
154
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
159 };
160
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163
164 /*
165 * Bio-based DM's mempools' reserved IOs set by the user.
166 */
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
175
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
182
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
186 }
187
188 return param;
189 }
190
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
193 {
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
196
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
201
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
205 }
206
207 return param;
208 }
209
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216
217 static unsigned dm_get_numa_node(void)
218 {
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222
223 static int __init local_init(void)
224 {
225 int r = -ENOMEM;
226
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
230
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
235
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
239
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
244 }
245
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
250
251 if (!_major)
252 _major = r;
253
254 return 0;
255
256 out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 dm_uevent_exit();
260 out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
264
265 return r;
266 }
267
268 static void local_exit(void)
269 {
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
272
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
277
278 _major = 0;
279
280 DMINFO("cleaned up");
281 }
282
283 static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
292 };
293
294 static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
303 };
304
305 static int __init dm_init(void)
306 {
307 const int count = ARRAY_SIZE(_inits);
308
309 int r, i;
310
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
315 }
316
317 return 0;
318
319 bad:
320 while (i--)
321 _exits[i]();
322
323 return r;
324 }
325
326 static void __exit dm_exit(void)
327 {
328 int i = ARRAY_SIZE(_exits);
329
330 while (i--)
331 _exits[i]();
332
333 /*
334 * Should be empty by this point.
335 */
336 idr_destroy(&_minor_idr);
337 }
338
339 /*
340 * Block device functions
341 */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 return test_bit(DMF_DELETING, &md->flags);
345 }
346
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 struct mapped_device *md;
350
351 spin_lock(&_minor_lock);
352
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
356
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
361 }
362
363 dm_get(md);
364 atomic_inc(&md->open_count);
365 out:
366 spin_unlock(&_minor_lock);
367
368 return md ? 0 : -ENXIO;
369 }
370
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 struct mapped_device *md;
374
375 spin_lock(&_minor_lock);
376
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
380
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
384
385 dm_put(md);
386 out:
387 spin_unlock(&_minor_lock);
388 }
389
390 int dm_open_count(struct mapped_device *md)
391 {
392 return atomic_read(&md->open_count);
393 }
394
395 /*
396 * Guarantees nothing is using the device before it's deleted.
397 */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 int r = 0;
401
402 spin_lock(&_minor_lock);
403
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
412
413 spin_unlock(&_minor_lock);
414
415 return r;
416 }
417
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 int r = 0;
421
422 spin_lock(&_minor_lock);
423
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428
429 spin_unlock(&_minor_lock);
430
431 return r;
432 }
433
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 dm_deferred_remove();
437 }
438
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 return get_capacity(md->disk);
442 }
443
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 return md->queue;
447 }
448
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 return &md->stats;
452 }
453
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 struct mapped_device *md = bdev->bd_disk->private_data;
457
458 return dm_get_geometry(md, geo);
459 }
460
461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
462 struct blk_zone *zones, unsigned int *nr_zones,
463 gfp_t gfp_mask)
464 {
465 #ifdef CONFIG_BLK_DEV_ZONED
466 struct mapped_device *md = disk->private_data;
467 struct dm_target *tgt;
468 struct dm_table *map;
469 int srcu_idx, ret;
470
471 if (dm_suspended_md(md))
472 return -EAGAIN;
473
474 map = dm_get_live_table(md, &srcu_idx);
475 if (!map)
476 return -EIO;
477
478 tgt = dm_table_find_target(map, sector);
479 if (!dm_target_is_valid(tgt)) {
480 ret = -EIO;
481 goto out;
482 }
483
484 /*
485 * If we are executing this, we already know that the block device
486 * is a zoned device and so each target should have support for that
487 * type of drive. A missing report_zones method means that the target
488 * driver has a problem.
489 */
490 if (WARN_ON(!tgt->type->report_zones)) {
491 ret = -EIO;
492 goto out;
493 }
494
495 /*
496 * blkdev_report_zones() will loop and call this again to cover all the
497 * zones of the target, eventually moving on to the next target.
498 * So there is no need to loop here trying to fill the entire array
499 * of zones.
500 */
501 ret = tgt->type->report_zones(tgt, sector, zones,
502 nr_zones, gfp_mask);
503
504 out:
505 dm_put_live_table(md, srcu_idx);
506 return ret;
507 #else
508 return -ENOTSUPP;
509 #endif
510 }
511
512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
513 struct block_device **bdev)
514 __acquires(md->io_barrier)
515 {
516 struct dm_target *tgt;
517 struct dm_table *map;
518 int r;
519
520 retry:
521 r = -ENOTTY;
522 map = dm_get_live_table(md, srcu_idx);
523 if (!map || !dm_table_get_size(map))
524 return r;
525
526 /* We only support devices that have a single target */
527 if (dm_table_get_num_targets(map) != 1)
528 return r;
529
530 tgt = dm_table_get_target(map, 0);
531 if (!tgt->type->prepare_ioctl)
532 return r;
533
534 if (dm_suspended_md(md))
535 return -EAGAIN;
536
537 r = tgt->type->prepare_ioctl(tgt, bdev);
538 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
539 dm_put_live_table(md, *srcu_idx);
540 msleep(10);
541 goto retry;
542 }
543
544 return r;
545 }
546
547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
548 __releases(md->io_barrier)
549 {
550 dm_put_live_table(md, srcu_idx);
551 }
552
553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
554 unsigned int cmd, unsigned long arg)
555 {
556 struct mapped_device *md = bdev->bd_disk->private_data;
557 int r, srcu_idx;
558
559 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
560 if (r < 0)
561 goto out;
562
563 if (r > 0) {
564 /*
565 * Target determined this ioctl is being issued against a
566 * subset of the parent bdev; require extra privileges.
567 */
568 if (!capable(CAP_SYS_RAWIO)) {
569 DMWARN_LIMIT(
570 "%s: sending ioctl %x to DM device without required privilege.",
571 current->comm, cmd);
572 r = -ENOIOCTLCMD;
573 goto out;
574 }
575 }
576
577 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
578 out:
579 dm_unprepare_ioctl(md, srcu_idx);
580 return r;
581 }
582
583 static void start_io_acct(struct dm_io *io);
584
585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
586 {
587 struct dm_io *io;
588 struct dm_target_io *tio;
589 struct bio *clone;
590
591 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
592 if (!clone)
593 return NULL;
594
595 tio = container_of(clone, struct dm_target_io, clone);
596 tio->inside_dm_io = true;
597 tio->io = NULL;
598
599 io = container_of(tio, struct dm_io, tio);
600 io->magic = DM_IO_MAGIC;
601 io->status = 0;
602 atomic_set(&io->io_count, 1);
603 io->orig_bio = bio;
604 io->md = md;
605 spin_lock_init(&io->endio_lock);
606
607 start_io_acct(io);
608
609 return io;
610 }
611
612 static void free_io(struct mapped_device *md, struct dm_io *io)
613 {
614 bio_put(&io->tio.clone);
615 }
616
617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 unsigned target_bio_nr, gfp_t gfp_mask)
619 {
620 struct dm_target_io *tio;
621
622 if (!ci->io->tio.io) {
623 /* the dm_target_io embedded in ci->io is available */
624 tio = &ci->io->tio;
625 } else {
626 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
627 if (!clone)
628 return NULL;
629
630 tio = container_of(clone, struct dm_target_io, clone);
631 tio->inside_dm_io = false;
632 }
633
634 tio->magic = DM_TIO_MAGIC;
635 tio->io = ci->io;
636 tio->ti = ti;
637 tio->target_bio_nr = target_bio_nr;
638
639 return tio;
640 }
641
642 static void free_tio(struct dm_target_io *tio)
643 {
644 if (tio->inside_dm_io)
645 return;
646 bio_put(&tio->clone);
647 }
648
649 static bool md_in_flight_bios(struct mapped_device *md)
650 {
651 int cpu;
652 struct hd_struct *part = &dm_disk(md)->part0;
653 long sum = 0;
654
655 for_each_possible_cpu(cpu) {
656 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
657 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
658 }
659
660 return sum != 0;
661 }
662
663 static bool md_in_flight(struct mapped_device *md)
664 {
665 if (queue_is_mq(md->queue))
666 return blk_mq_queue_inflight(md->queue);
667 else
668 return md_in_flight_bios(md);
669 }
670
671 static void start_io_acct(struct dm_io *io)
672 {
673 struct mapped_device *md = io->md;
674 struct bio *bio = io->orig_bio;
675
676 io->start_time = jiffies;
677
678 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
679 &dm_disk(md)->part0);
680
681 if (unlikely(dm_stats_used(&md->stats)))
682 dm_stats_account_io(&md->stats, bio_data_dir(bio),
683 bio->bi_iter.bi_sector, bio_sectors(bio),
684 false, 0, &io->stats_aux);
685 }
686
687 static void end_io_acct(struct dm_io *io)
688 {
689 struct mapped_device *md = io->md;
690 struct bio *bio = io->orig_bio;
691 unsigned long duration = jiffies - io->start_time;
692
693 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
694 io->start_time);
695
696 if (unlikely(dm_stats_used(&md->stats)))
697 dm_stats_account_io(&md->stats, bio_data_dir(bio),
698 bio->bi_iter.bi_sector, bio_sectors(bio),
699 true, duration, &io->stats_aux);
700
701 /* nudge anyone waiting on suspend queue */
702 if (unlikely(waitqueue_active(&md->wait)))
703 wake_up(&md->wait);
704 }
705
706 /*
707 * Add the bio to the list of deferred io.
708 */
709 static void queue_io(struct mapped_device *md, struct bio *bio)
710 {
711 unsigned long flags;
712
713 spin_lock_irqsave(&md->deferred_lock, flags);
714 bio_list_add(&md->deferred, bio);
715 spin_unlock_irqrestore(&md->deferred_lock, flags);
716 queue_work(md->wq, &md->work);
717 }
718
719 /*
720 * Everyone (including functions in this file), should use this
721 * function to access the md->map field, and make sure they call
722 * dm_put_live_table() when finished.
723 */
724 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
725 {
726 *srcu_idx = srcu_read_lock(&md->io_barrier);
727
728 return srcu_dereference(md->map, &md->io_barrier);
729 }
730
731 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
732 {
733 srcu_read_unlock(&md->io_barrier, srcu_idx);
734 }
735
736 void dm_sync_table(struct mapped_device *md)
737 {
738 synchronize_srcu(&md->io_barrier);
739 synchronize_rcu_expedited();
740 }
741
742 /*
743 * A fast alternative to dm_get_live_table/dm_put_live_table.
744 * The caller must not block between these two functions.
745 */
746 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
747 {
748 rcu_read_lock();
749 return rcu_dereference(md->map);
750 }
751
752 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
753 {
754 rcu_read_unlock();
755 }
756
757 static char *_dm_claim_ptr = "I belong to device-mapper";
758
759 /*
760 * Open a table device so we can use it as a map destination.
761 */
762 static int open_table_device(struct table_device *td, dev_t dev,
763 struct mapped_device *md)
764 {
765 struct block_device *bdev;
766
767 int r;
768
769 BUG_ON(td->dm_dev.bdev);
770
771 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
772 if (IS_ERR(bdev))
773 return PTR_ERR(bdev);
774
775 r = bd_link_disk_holder(bdev, dm_disk(md));
776 if (r) {
777 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
778 return r;
779 }
780
781 td->dm_dev.bdev = bdev;
782 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
783 return 0;
784 }
785
786 /*
787 * Close a table device that we've been using.
788 */
789 static void close_table_device(struct table_device *td, struct mapped_device *md)
790 {
791 if (!td->dm_dev.bdev)
792 return;
793
794 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
795 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
796 put_dax(td->dm_dev.dax_dev);
797 td->dm_dev.bdev = NULL;
798 td->dm_dev.dax_dev = NULL;
799 }
800
801 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
802 fmode_t mode) {
803 struct table_device *td;
804
805 list_for_each_entry(td, l, list)
806 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
807 return td;
808
809 return NULL;
810 }
811
812 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
813 struct dm_dev **result) {
814 int r;
815 struct table_device *td;
816
817 mutex_lock(&md->table_devices_lock);
818 td = find_table_device(&md->table_devices, dev, mode);
819 if (!td) {
820 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
821 if (!td) {
822 mutex_unlock(&md->table_devices_lock);
823 return -ENOMEM;
824 }
825
826 td->dm_dev.mode = mode;
827 td->dm_dev.bdev = NULL;
828
829 if ((r = open_table_device(td, dev, md))) {
830 mutex_unlock(&md->table_devices_lock);
831 kfree(td);
832 return r;
833 }
834
835 format_dev_t(td->dm_dev.name, dev);
836
837 refcount_set(&td->count, 1);
838 list_add(&td->list, &md->table_devices);
839 } else {
840 refcount_inc(&td->count);
841 }
842 mutex_unlock(&md->table_devices_lock);
843
844 *result = &td->dm_dev;
845 return 0;
846 }
847 EXPORT_SYMBOL_GPL(dm_get_table_device);
848
849 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
850 {
851 struct table_device *td = container_of(d, struct table_device, dm_dev);
852
853 mutex_lock(&md->table_devices_lock);
854 if (refcount_dec_and_test(&td->count)) {
855 close_table_device(td, md);
856 list_del(&td->list);
857 kfree(td);
858 }
859 mutex_unlock(&md->table_devices_lock);
860 }
861 EXPORT_SYMBOL(dm_put_table_device);
862
863 static void free_table_devices(struct list_head *devices)
864 {
865 struct list_head *tmp, *next;
866
867 list_for_each_safe(tmp, next, devices) {
868 struct table_device *td = list_entry(tmp, struct table_device, list);
869
870 DMWARN("dm_destroy: %s still exists with %d references",
871 td->dm_dev.name, refcount_read(&td->count));
872 kfree(td);
873 }
874 }
875
876 /*
877 * Get the geometry associated with a dm device
878 */
879 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
880 {
881 *geo = md->geometry;
882
883 return 0;
884 }
885
886 /*
887 * Set the geometry of a device.
888 */
889 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
890 {
891 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
892
893 if (geo->start > sz) {
894 DMWARN("Start sector is beyond the geometry limits.");
895 return -EINVAL;
896 }
897
898 md->geometry = *geo;
899
900 return 0;
901 }
902
903 static int __noflush_suspending(struct mapped_device *md)
904 {
905 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
906 }
907
908 /*
909 * Decrements the number of outstanding ios that a bio has been
910 * cloned into, completing the original io if necc.
911 */
912 static void dec_pending(struct dm_io *io, blk_status_t error)
913 {
914 unsigned long flags;
915 blk_status_t io_error;
916 struct bio *bio;
917 struct mapped_device *md = io->md;
918
919 /* Push-back supersedes any I/O errors */
920 if (unlikely(error)) {
921 spin_lock_irqsave(&io->endio_lock, flags);
922 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
923 io->status = error;
924 spin_unlock_irqrestore(&io->endio_lock, flags);
925 }
926
927 if (atomic_dec_and_test(&io->io_count)) {
928 if (io->status == BLK_STS_DM_REQUEUE) {
929 /*
930 * Target requested pushing back the I/O.
931 */
932 spin_lock_irqsave(&md->deferred_lock, flags);
933 if (__noflush_suspending(md))
934 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
935 bio_list_add_head(&md->deferred, io->orig_bio);
936 else
937 /* noflush suspend was interrupted. */
938 io->status = BLK_STS_IOERR;
939 spin_unlock_irqrestore(&md->deferred_lock, flags);
940 }
941
942 io_error = io->status;
943 bio = io->orig_bio;
944 end_io_acct(io);
945 free_io(md, io);
946
947 if (io_error == BLK_STS_DM_REQUEUE)
948 return;
949
950 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
951 /*
952 * Preflush done for flush with data, reissue
953 * without REQ_PREFLUSH.
954 */
955 bio->bi_opf &= ~REQ_PREFLUSH;
956 queue_io(md, bio);
957 } else {
958 /* done with normal IO or empty flush */
959 if (io_error)
960 bio->bi_status = io_error;
961 bio_endio(bio);
962 }
963 }
964 }
965
966 void disable_write_same(struct mapped_device *md)
967 {
968 struct queue_limits *limits = dm_get_queue_limits(md);
969
970 /* device doesn't really support WRITE SAME, disable it */
971 limits->max_write_same_sectors = 0;
972 }
973
974 void disable_write_zeroes(struct mapped_device *md)
975 {
976 struct queue_limits *limits = dm_get_queue_limits(md);
977
978 /* device doesn't really support WRITE ZEROES, disable it */
979 limits->max_write_zeroes_sectors = 0;
980 }
981
982 static void clone_endio(struct bio *bio)
983 {
984 blk_status_t error = bio->bi_status;
985 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
986 struct dm_io *io = tio->io;
987 struct mapped_device *md = tio->io->md;
988 dm_endio_fn endio = tio->ti->type->end_io;
989
990 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
991 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
992 !bio->bi_disk->queue->limits.max_write_same_sectors)
993 disable_write_same(md);
994 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
995 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
996 disable_write_zeroes(md);
997 }
998
999 if (endio) {
1000 int r = endio(tio->ti, bio, &error);
1001 switch (r) {
1002 case DM_ENDIO_REQUEUE:
1003 error = BLK_STS_DM_REQUEUE;
1004 /*FALLTHRU*/
1005 case DM_ENDIO_DONE:
1006 break;
1007 case DM_ENDIO_INCOMPLETE:
1008 /* The target will handle the io */
1009 return;
1010 default:
1011 DMWARN("unimplemented target endio return value: %d", r);
1012 BUG();
1013 }
1014 }
1015
1016 free_tio(tio);
1017 dec_pending(io, error);
1018 }
1019
1020 /*
1021 * Return maximum size of I/O possible at the supplied sector up to the current
1022 * target boundary.
1023 */
1024 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1025 {
1026 sector_t target_offset = dm_target_offset(ti, sector);
1027
1028 return ti->len - target_offset;
1029 }
1030
1031 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1032 {
1033 sector_t len = max_io_len_target_boundary(sector, ti);
1034 sector_t offset, max_len;
1035
1036 /*
1037 * Does the target need to split even further?
1038 */
1039 if (ti->max_io_len) {
1040 offset = dm_target_offset(ti, sector);
1041 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1042 max_len = sector_div(offset, ti->max_io_len);
1043 else
1044 max_len = offset & (ti->max_io_len - 1);
1045 max_len = ti->max_io_len - max_len;
1046
1047 if (len > max_len)
1048 len = max_len;
1049 }
1050
1051 return len;
1052 }
1053
1054 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1055 {
1056 if (len > UINT_MAX) {
1057 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1058 (unsigned long long)len, UINT_MAX);
1059 ti->error = "Maximum size of target IO is too large";
1060 return -EINVAL;
1061 }
1062
1063 /*
1064 * BIO based queue uses its own splitting. When multipage bvecs
1065 * is switched on, size of the incoming bio may be too big to
1066 * be handled in some targets, such as crypt.
1067 *
1068 * When these targets are ready for the big bio, we can remove
1069 * the limit.
1070 */
1071 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1072
1073 return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1076
1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1078 sector_t sector, int *srcu_idx)
1079 __acquires(md->io_barrier)
1080 {
1081 struct dm_table *map;
1082 struct dm_target *ti;
1083
1084 map = dm_get_live_table(md, srcu_idx);
1085 if (!map)
1086 return NULL;
1087
1088 ti = dm_table_find_target(map, sector);
1089 if (!dm_target_is_valid(ti))
1090 return NULL;
1091
1092 return ti;
1093 }
1094
1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1096 long nr_pages, void **kaddr, pfn_t *pfn)
1097 {
1098 struct mapped_device *md = dax_get_private(dax_dev);
1099 sector_t sector = pgoff * PAGE_SECTORS;
1100 struct dm_target *ti;
1101 long len, ret = -EIO;
1102 int srcu_idx;
1103
1104 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1105
1106 if (!ti)
1107 goto out;
1108 if (!ti->type->direct_access)
1109 goto out;
1110 len = max_io_len(sector, ti) / PAGE_SECTORS;
1111 if (len < 1)
1112 goto out;
1113 nr_pages = min(len, nr_pages);
1114 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1115
1116 out:
1117 dm_put_live_table(md, srcu_idx);
1118
1119 return ret;
1120 }
1121
1122 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1123 void *addr, size_t bytes, struct iov_iter *i)
1124 {
1125 struct mapped_device *md = dax_get_private(dax_dev);
1126 sector_t sector = pgoff * PAGE_SECTORS;
1127 struct dm_target *ti;
1128 long ret = 0;
1129 int srcu_idx;
1130
1131 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1132
1133 if (!ti)
1134 goto out;
1135 if (!ti->type->dax_copy_from_iter) {
1136 ret = copy_from_iter(addr, bytes, i);
1137 goto out;
1138 }
1139 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1140 out:
1141 dm_put_live_table(md, srcu_idx);
1142
1143 return ret;
1144 }
1145
1146 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1147 void *addr, size_t bytes, struct iov_iter *i)
1148 {
1149 struct mapped_device *md = dax_get_private(dax_dev);
1150 sector_t sector = pgoff * PAGE_SECTORS;
1151 struct dm_target *ti;
1152 long ret = 0;
1153 int srcu_idx;
1154
1155 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1156
1157 if (!ti)
1158 goto out;
1159 if (!ti->type->dax_copy_to_iter) {
1160 ret = copy_to_iter(addr, bytes, i);
1161 goto out;
1162 }
1163 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1164 out:
1165 dm_put_live_table(md, srcu_idx);
1166
1167 return ret;
1168 }
1169
1170 /*
1171 * A target may call dm_accept_partial_bio only from the map routine. It is
1172 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1173 *
1174 * dm_accept_partial_bio informs the dm that the target only wants to process
1175 * additional n_sectors sectors of the bio and the rest of the data should be
1176 * sent in a next bio.
1177 *
1178 * A diagram that explains the arithmetics:
1179 * +--------------------+---------------+-------+
1180 * | 1 | 2 | 3 |
1181 * +--------------------+---------------+-------+
1182 *
1183 * <-------------- *tio->len_ptr --------------->
1184 * <------- bi_size ------->
1185 * <-- n_sectors -->
1186 *
1187 * Region 1 was already iterated over with bio_advance or similar function.
1188 * (it may be empty if the target doesn't use bio_advance)
1189 * Region 2 is the remaining bio size that the target wants to process.
1190 * (it may be empty if region 1 is non-empty, although there is no reason
1191 * to make it empty)
1192 * The target requires that region 3 is to be sent in the next bio.
1193 *
1194 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1195 * the partially processed part (the sum of regions 1+2) must be the same for all
1196 * copies of the bio.
1197 */
1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1199 {
1200 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1201 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1202 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1203 BUG_ON(bi_size > *tio->len_ptr);
1204 BUG_ON(n_sectors > bi_size);
1205 *tio->len_ptr -= bi_size - n_sectors;
1206 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1207 }
1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1209
1210 /*
1211 * The zone descriptors obtained with a zone report indicate
1212 * zone positions within the underlying device of the target. The zone
1213 * descriptors must be remapped to match their position within the dm device.
1214 * The caller target should obtain the zones information using
1215 * blkdev_report_zones() to ensure that remapping for partition offset is
1216 * already handled.
1217 */
1218 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1219 struct blk_zone *zones, unsigned int *nr_zones)
1220 {
1221 #ifdef CONFIG_BLK_DEV_ZONED
1222 struct blk_zone *zone;
1223 unsigned int nrz = *nr_zones;
1224 int i;
1225
1226 /*
1227 * Remap the start sector and write pointer position of the zones in
1228 * the array. Since we may have obtained from the target underlying
1229 * device more zones that the target size, also adjust the number
1230 * of zones.
1231 */
1232 for (i = 0; i < nrz; i++) {
1233 zone = zones + i;
1234 if (zone->start >= start + ti->len) {
1235 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1236 break;
1237 }
1238
1239 zone->start = zone->start + ti->begin - start;
1240 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1241 continue;
1242
1243 if (zone->cond == BLK_ZONE_COND_FULL)
1244 zone->wp = zone->start + zone->len;
1245 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1246 zone->wp = zone->start;
1247 else
1248 zone->wp = zone->wp + ti->begin - start;
1249 }
1250
1251 *nr_zones = i;
1252 #else /* !CONFIG_BLK_DEV_ZONED */
1253 *nr_zones = 0;
1254 #endif
1255 }
1256 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1257
1258 static blk_qc_t __map_bio(struct dm_target_io *tio)
1259 {
1260 int r;
1261 sector_t sector;
1262 struct bio *clone = &tio->clone;
1263 struct dm_io *io = tio->io;
1264 struct mapped_device *md = io->md;
1265 struct dm_target *ti = tio->ti;
1266 blk_qc_t ret = BLK_QC_T_NONE;
1267
1268 clone->bi_end_io = clone_endio;
1269
1270 /*
1271 * Map the clone. If r == 0 we don't need to do
1272 * anything, the target has assumed ownership of
1273 * this io.
1274 */
1275 atomic_inc(&io->io_count);
1276 sector = clone->bi_iter.bi_sector;
1277
1278 r = ti->type->map(ti, clone);
1279 switch (r) {
1280 case DM_MAPIO_SUBMITTED:
1281 break;
1282 case DM_MAPIO_REMAPPED:
1283 /* the bio has been remapped so dispatch it */
1284 trace_block_bio_remap(clone->bi_disk->queue, clone,
1285 bio_dev(io->orig_bio), sector);
1286 if (md->type == DM_TYPE_NVME_BIO_BASED)
1287 ret = direct_make_request(clone);
1288 else
1289 ret = generic_make_request(clone);
1290 break;
1291 case DM_MAPIO_KILL:
1292 free_tio(tio);
1293 dec_pending(io, BLK_STS_IOERR);
1294 break;
1295 case DM_MAPIO_REQUEUE:
1296 free_tio(tio);
1297 dec_pending(io, BLK_STS_DM_REQUEUE);
1298 break;
1299 default:
1300 DMWARN("unimplemented target map return value: %d", r);
1301 BUG();
1302 }
1303
1304 return ret;
1305 }
1306
1307 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1308 {
1309 bio->bi_iter.bi_sector = sector;
1310 bio->bi_iter.bi_size = to_bytes(len);
1311 }
1312
1313 /*
1314 * Creates a bio that consists of range of complete bvecs.
1315 */
1316 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1317 sector_t sector, unsigned len)
1318 {
1319 struct bio *clone = &tio->clone;
1320
1321 __bio_clone_fast(clone, bio);
1322
1323 if (unlikely(bio_integrity(bio) != NULL)) {
1324 int r;
1325
1326 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1327 !dm_target_passes_integrity(tio->ti->type))) {
1328 DMWARN("%s: the target %s doesn't support integrity data.",
1329 dm_device_name(tio->io->md),
1330 tio->ti->type->name);
1331 return -EIO;
1332 }
1333
1334 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1335 if (r < 0)
1336 return r;
1337 }
1338
1339 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1340 clone->bi_iter.bi_size = to_bytes(len);
1341
1342 if (unlikely(bio_integrity(bio) != NULL))
1343 bio_integrity_trim(clone);
1344
1345 return 0;
1346 }
1347
1348 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1349 struct dm_target *ti, unsigned num_bios)
1350 {
1351 struct dm_target_io *tio;
1352 int try;
1353
1354 if (!num_bios)
1355 return;
1356
1357 if (num_bios == 1) {
1358 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1359 bio_list_add(blist, &tio->clone);
1360 return;
1361 }
1362
1363 for (try = 0; try < 2; try++) {
1364 int bio_nr;
1365 struct bio *bio;
1366
1367 if (try)
1368 mutex_lock(&ci->io->md->table_devices_lock);
1369 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1370 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1371 if (!tio)
1372 break;
1373
1374 bio_list_add(blist, &tio->clone);
1375 }
1376 if (try)
1377 mutex_unlock(&ci->io->md->table_devices_lock);
1378 if (bio_nr == num_bios)
1379 return;
1380
1381 while ((bio = bio_list_pop(blist))) {
1382 tio = container_of(bio, struct dm_target_io, clone);
1383 free_tio(tio);
1384 }
1385 }
1386 }
1387
1388 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1389 struct dm_target_io *tio, unsigned *len)
1390 {
1391 struct bio *clone = &tio->clone;
1392
1393 tio->len_ptr = len;
1394
1395 __bio_clone_fast(clone, ci->bio);
1396 if (len)
1397 bio_setup_sector(clone, ci->sector, *len);
1398
1399 return __map_bio(tio);
1400 }
1401
1402 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1403 unsigned num_bios, unsigned *len)
1404 {
1405 struct bio_list blist = BIO_EMPTY_LIST;
1406 struct bio *bio;
1407 struct dm_target_io *tio;
1408
1409 alloc_multiple_bios(&blist, ci, ti, num_bios);
1410
1411 while ((bio = bio_list_pop(&blist))) {
1412 tio = container_of(bio, struct dm_target_io, clone);
1413 (void) __clone_and_map_simple_bio(ci, tio, len);
1414 }
1415 }
1416
1417 static int __send_empty_flush(struct clone_info *ci)
1418 {
1419 unsigned target_nr = 0;
1420 struct dm_target *ti;
1421
1422 /*
1423 * Empty flush uses a statically initialized bio, as the base for
1424 * cloning. However, blkg association requires that a bdev is
1425 * associated with a gendisk, which doesn't happen until the bdev is
1426 * opened. So, blkg association is done at issue time of the flush
1427 * rather than when the device is created in alloc_dev().
1428 */
1429 bio_set_dev(ci->bio, ci->io->md->bdev);
1430
1431 BUG_ON(bio_has_data(ci->bio));
1432 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1433 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1434
1435 bio_disassociate_blkg(ci->bio);
1436
1437 return 0;
1438 }
1439
1440 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1441 sector_t sector, unsigned *len)
1442 {
1443 struct bio *bio = ci->bio;
1444 struct dm_target_io *tio;
1445 int r;
1446
1447 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1448 tio->len_ptr = len;
1449 r = clone_bio(tio, bio, sector, *len);
1450 if (r < 0) {
1451 free_tio(tio);
1452 return r;
1453 }
1454 (void) __map_bio(tio);
1455
1456 return 0;
1457 }
1458
1459 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1460
1461 static unsigned get_num_discard_bios(struct dm_target *ti)
1462 {
1463 return ti->num_discard_bios;
1464 }
1465
1466 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1467 {
1468 return ti->num_secure_erase_bios;
1469 }
1470
1471 static unsigned get_num_write_same_bios(struct dm_target *ti)
1472 {
1473 return ti->num_write_same_bios;
1474 }
1475
1476 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1477 {
1478 return ti->num_write_zeroes_bios;
1479 }
1480
1481 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1482
1483 static bool is_split_required_for_discard(struct dm_target *ti)
1484 {
1485 return ti->split_discard_bios;
1486 }
1487
1488 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1489 unsigned num_bios, bool is_split_required)
1490 {
1491 unsigned len;
1492
1493 /*
1494 * Even though the device advertised support for this type of
1495 * request, that does not mean every target supports it, and
1496 * reconfiguration might also have changed that since the
1497 * check was performed.
1498 */
1499 if (!num_bios)
1500 return -EOPNOTSUPP;
1501
1502 if (!is_split_required)
1503 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1504 else
1505 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1506
1507 __send_duplicate_bios(ci, ti, num_bios, &len);
1508
1509 ci->sector += len;
1510 ci->sector_count -= len;
1511
1512 return 0;
1513 }
1514
1515 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1516 {
1517 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti),
1518 is_split_required_for_discard(ti));
1519 }
1520
1521 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1522 {
1523 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti), false);
1524 }
1525
1526 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1527 {
1528 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti), false);
1529 }
1530
1531 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1532 {
1533 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti), false);
1534 }
1535
1536 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1537 int *result)
1538 {
1539 struct bio *bio = ci->bio;
1540
1541 if (bio_op(bio) == REQ_OP_DISCARD)
1542 *result = __send_discard(ci, ti);
1543 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1544 *result = __send_secure_erase(ci, ti);
1545 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1546 *result = __send_write_same(ci, ti);
1547 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1548 *result = __send_write_zeroes(ci, ti);
1549 else
1550 return false;
1551
1552 return true;
1553 }
1554
1555 /*
1556 * Select the correct strategy for processing a non-flush bio.
1557 */
1558 static int __split_and_process_non_flush(struct clone_info *ci)
1559 {
1560 struct dm_target *ti;
1561 unsigned len;
1562 int r;
1563
1564 ti = dm_table_find_target(ci->map, ci->sector);
1565 if (!dm_target_is_valid(ti))
1566 return -EIO;
1567
1568 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1569 return r;
1570
1571 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1572
1573 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1574 if (r < 0)
1575 return r;
1576
1577 ci->sector += len;
1578 ci->sector_count -= len;
1579
1580 return 0;
1581 }
1582
1583 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1584 struct dm_table *map, struct bio *bio)
1585 {
1586 ci->map = map;
1587 ci->io = alloc_io(md, bio);
1588 ci->sector = bio->bi_iter.bi_sector;
1589 }
1590
1591 /*
1592 * Entry point to split a bio into clones and submit them to the targets.
1593 */
1594 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1595 struct dm_table *map, struct bio *bio)
1596 {
1597 struct clone_info ci;
1598 blk_qc_t ret = BLK_QC_T_NONE;
1599 int error = 0;
1600
1601 if (unlikely(!map)) {
1602 bio_io_error(bio);
1603 return ret;
1604 }
1605
1606 blk_queue_split(md->queue, &bio);
1607
1608 init_clone_info(&ci, md, map, bio);
1609
1610 if (bio->bi_opf & REQ_PREFLUSH) {
1611 struct bio flush_bio;
1612
1613 /*
1614 * Use an on-stack bio for this, it's safe since we don't
1615 * need to reference it after submit. It's just used as
1616 * the basis for the clone(s).
1617 */
1618 bio_init(&flush_bio, NULL, 0);
1619 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1620 ci.bio = &flush_bio;
1621 ci.sector_count = 0;
1622 error = __send_empty_flush(&ci);
1623 /* dec_pending submits any data associated with flush */
1624 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1625 ci.bio = bio;
1626 ci.sector_count = 0;
1627 error = __split_and_process_non_flush(&ci);
1628 } else {
1629 ci.bio = bio;
1630 ci.sector_count = bio_sectors(bio);
1631 while (ci.sector_count && !error) {
1632 error = __split_and_process_non_flush(&ci);
1633 if (current->bio_list && ci.sector_count && !error) {
1634 /*
1635 * Remainder must be passed to generic_make_request()
1636 * so that it gets handled *after* bios already submitted
1637 * have been completely processed.
1638 * We take a clone of the original to store in
1639 * ci.io->orig_bio to be used by end_io_acct() and
1640 * for dec_pending to use for completion handling.
1641 */
1642 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1643 GFP_NOIO, &md->queue->bio_split);
1644 ci.io->orig_bio = b;
1645 bio_chain(b, bio);
1646 ret = generic_make_request(bio);
1647 break;
1648 }
1649 }
1650 }
1651
1652 /* drop the extra reference count */
1653 dec_pending(ci.io, errno_to_blk_status(error));
1654 return ret;
1655 }
1656
1657 /*
1658 * Optimized variant of __split_and_process_bio that leverages the
1659 * fact that targets that use it do _not_ have a need to split bios.
1660 */
1661 static blk_qc_t __process_bio(struct mapped_device *md,
1662 struct dm_table *map, struct bio *bio)
1663 {
1664 struct clone_info ci;
1665 blk_qc_t ret = BLK_QC_T_NONE;
1666 int error = 0;
1667
1668 if (unlikely(!map)) {
1669 bio_io_error(bio);
1670 return ret;
1671 }
1672
1673 init_clone_info(&ci, md, map, bio);
1674
1675 if (bio->bi_opf & REQ_PREFLUSH) {
1676 struct bio flush_bio;
1677
1678 /*
1679 * Use an on-stack bio for this, it's safe since we don't
1680 * need to reference it after submit. It's just used as
1681 * the basis for the clone(s).
1682 */
1683 bio_init(&flush_bio, NULL, 0);
1684 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1685 ci.bio = &flush_bio;
1686 ci.sector_count = 0;
1687 error = __send_empty_flush(&ci);
1688 /* dec_pending submits any data associated with flush */
1689 } else {
1690 struct dm_target *ti = md->immutable_target;
1691 struct dm_target_io *tio;
1692
1693 /*
1694 * Defend against IO still getting in during teardown
1695 * - as was seen for a time with nvme-fcloop
1696 */
1697 if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) {
1698 error = -EIO;
1699 goto out;
1700 }
1701
1702 ci.bio = bio;
1703 ci.sector_count = bio_sectors(bio);
1704 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1705 goto out;
1706
1707 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1708 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1709 }
1710 out:
1711 /* drop the extra reference count */
1712 dec_pending(ci.io, errno_to_blk_status(error));
1713 return ret;
1714 }
1715
1716 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1717 {
1718 struct mapped_device *md = q->queuedata;
1719 blk_qc_t ret = BLK_QC_T_NONE;
1720 int srcu_idx;
1721 struct dm_table *map;
1722
1723 map = dm_get_live_table(md, &srcu_idx);
1724
1725 /* if we're suspended, we have to queue this io for later */
1726 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1727 dm_put_live_table(md, srcu_idx);
1728
1729 if (!(bio->bi_opf & REQ_RAHEAD))
1730 queue_io(md, bio);
1731 else
1732 bio_io_error(bio);
1733 return ret;
1734 }
1735
1736 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1737 ret = __process_bio(md, map, bio);
1738 else
1739 ret = __split_and_process_bio(md, map, bio);
1740
1741 dm_put_live_table(md, srcu_idx);
1742 return ret;
1743 }
1744
1745 static int dm_any_congested(void *congested_data, int bdi_bits)
1746 {
1747 int r = bdi_bits;
1748 struct mapped_device *md = congested_data;
1749 struct dm_table *map;
1750
1751 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1752 if (dm_request_based(md)) {
1753 /*
1754 * With request-based DM we only need to check the
1755 * top-level queue for congestion.
1756 */
1757 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1758 } else {
1759 map = dm_get_live_table_fast(md);
1760 if (map)
1761 r = dm_table_any_congested(map, bdi_bits);
1762 dm_put_live_table_fast(md);
1763 }
1764 }
1765
1766 return r;
1767 }
1768
1769 /*-----------------------------------------------------------------
1770 * An IDR is used to keep track of allocated minor numbers.
1771 *---------------------------------------------------------------*/
1772 static void free_minor(int minor)
1773 {
1774 spin_lock(&_minor_lock);
1775 idr_remove(&_minor_idr, minor);
1776 spin_unlock(&_minor_lock);
1777 }
1778
1779 /*
1780 * See if the device with a specific minor # is free.
1781 */
1782 static int specific_minor(int minor)
1783 {
1784 int r;
1785
1786 if (minor >= (1 << MINORBITS))
1787 return -EINVAL;
1788
1789 idr_preload(GFP_KERNEL);
1790 spin_lock(&_minor_lock);
1791
1792 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1793
1794 spin_unlock(&_minor_lock);
1795 idr_preload_end();
1796 if (r < 0)
1797 return r == -ENOSPC ? -EBUSY : r;
1798 return 0;
1799 }
1800
1801 static int next_free_minor(int *minor)
1802 {
1803 int r;
1804
1805 idr_preload(GFP_KERNEL);
1806 spin_lock(&_minor_lock);
1807
1808 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1809
1810 spin_unlock(&_minor_lock);
1811 idr_preload_end();
1812 if (r < 0)
1813 return r;
1814 *minor = r;
1815 return 0;
1816 }
1817
1818 static const struct block_device_operations dm_blk_dops;
1819 static const struct dax_operations dm_dax_ops;
1820
1821 static void dm_wq_work(struct work_struct *work);
1822
1823 static void dm_init_normal_md_queue(struct mapped_device *md)
1824 {
1825 /*
1826 * Initialize aspects of queue that aren't relevant for blk-mq
1827 */
1828 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1829 }
1830
1831 static void cleanup_mapped_device(struct mapped_device *md)
1832 {
1833 if (md->wq)
1834 destroy_workqueue(md->wq);
1835 bioset_exit(&md->bs);
1836 bioset_exit(&md->io_bs);
1837
1838 if (md->dax_dev) {
1839 kill_dax(md->dax_dev);
1840 put_dax(md->dax_dev);
1841 md->dax_dev = NULL;
1842 }
1843
1844 if (md->disk) {
1845 spin_lock(&_minor_lock);
1846 md->disk->private_data = NULL;
1847 spin_unlock(&_minor_lock);
1848 del_gendisk(md->disk);
1849 put_disk(md->disk);
1850 }
1851
1852 if (md->queue)
1853 blk_cleanup_queue(md->queue);
1854
1855 cleanup_srcu_struct(&md->io_barrier);
1856
1857 if (md->bdev) {
1858 bdput(md->bdev);
1859 md->bdev = NULL;
1860 }
1861
1862 mutex_destroy(&md->suspend_lock);
1863 mutex_destroy(&md->type_lock);
1864 mutex_destroy(&md->table_devices_lock);
1865
1866 dm_mq_cleanup_mapped_device(md);
1867 }
1868
1869 /*
1870 * Allocate and initialise a blank device with a given minor.
1871 */
1872 static struct mapped_device *alloc_dev(int minor)
1873 {
1874 int r, numa_node_id = dm_get_numa_node();
1875 struct dax_device *dax_dev = NULL;
1876 struct mapped_device *md;
1877 void *old_md;
1878
1879 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1880 if (!md) {
1881 DMWARN("unable to allocate device, out of memory.");
1882 return NULL;
1883 }
1884
1885 if (!try_module_get(THIS_MODULE))
1886 goto bad_module_get;
1887
1888 /* get a minor number for the dev */
1889 if (minor == DM_ANY_MINOR)
1890 r = next_free_minor(&minor);
1891 else
1892 r = specific_minor(minor);
1893 if (r < 0)
1894 goto bad_minor;
1895
1896 r = init_srcu_struct(&md->io_barrier);
1897 if (r < 0)
1898 goto bad_io_barrier;
1899
1900 md->numa_node_id = numa_node_id;
1901 md->init_tio_pdu = false;
1902 md->type = DM_TYPE_NONE;
1903 mutex_init(&md->suspend_lock);
1904 mutex_init(&md->type_lock);
1905 mutex_init(&md->table_devices_lock);
1906 spin_lock_init(&md->deferred_lock);
1907 atomic_set(&md->holders, 1);
1908 atomic_set(&md->open_count, 0);
1909 atomic_set(&md->event_nr, 0);
1910 atomic_set(&md->uevent_seq, 0);
1911 INIT_LIST_HEAD(&md->uevent_list);
1912 INIT_LIST_HEAD(&md->table_devices);
1913 spin_lock_init(&md->uevent_lock);
1914
1915 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1916 if (!md->queue)
1917 goto bad;
1918 md->queue->queuedata = md;
1919 md->queue->backing_dev_info->congested_data = md;
1920
1921 md->disk = alloc_disk_node(1, md->numa_node_id);
1922 if (!md->disk)
1923 goto bad;
1924
1925 init_waitqueue_head(&md->wait);
1926 INIT_WORK(&md->work, dm_wq_work);
1927 init_waitqueue_head(&md->eventq);
1928 init_completion(&md->kobj_holder.completion);
1929
1930 md->disk->major = _major;
1931 md->disk->first_minor = minor;
1932 md->disk->fops = &dm_blk_dops;
1933 md->disk->queue = md->queue;
1934 md->disk->private_data = md;
1935 sprintf(md->disk->disk_name, "dm-%d", minor);
1936
1937 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1938 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1939 if (!dax_dev)
1940 goto bad;
1941 }
1942 md->dax_dev = dax_dev;
1943
1944 add_disk_no_queue_reg(md->disk);
1945 format_dev_t(md->name, MKDEV(_major, minor));
1946
1947 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1948 if (!md->wq)
1949 goto bad;
1950
1951 md->bdev = bdget_disk(md->disk, 0);
1952 if (!md->bdev)
1953 goto bad;
1954
1955 dm_stats_init(&md->stats);
1956
1957 /* Populate the mapping, nobody knows we exist yet */
1958 spin_lock(&_minor_lock);
1959 old_md = idr_replace(&_minor_idr, md, minor);
1960 spin_unlock(&_minor_lock);
1961
1962 BUG_ON(old_md != MINOR_ALLOCED);
1963
1964 return md;
1965
1966 bad:
1967 cleanup_mapped_device(md);
1968 bad_io_barrier:
1969 free_minor(minor);
1970 bad_minor:
1971 module_put(THIS_MODULE);
1972 bad_module_get:
1973 kvfree(md);
1974 return NULL;
1975 }
1976
1977 static void unlock_fs(struct mapped_device *md);
1978
1979 static void free_dev(struct mapped_device *md)
1980 {
1981 int minor = MINOR(disk_devt(md->disk));
1982
1983 unlock_fs(md);
1984
1985 cleanup_mapped_device(md);
1986
1987 free_table_devices(&md->table_devices);
1988 dm_stats_cleanup(&md->stats);
1989 free_minor(minor);
1990
1991 module_put(THIS_MODULE);
1992 kvfree(md);
1993 }
1994
1995 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1996 {
1997 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1998 int ret = 0;
1999
2000 if (dm_table_bio_based(t)) {
2001 /*
2002 * The md may already have mempools that need changing.
2003 * If so, reload bioset because front_pad may have changed
2004 * because a different table was loaded.
2005 */
2006 bioset_exit(&md->bs);
2007 bioset_exit(&md->io_bs);
2008
2009 } else if (bioset_initialized(&md->bs)) {
2010 /*
2011 * There's no need to reload with request-based dm
2012 * because the size of front_pad doesn't change.
2013 * Note for future: If you are to reload bioset,
2014 * prep-ed requests in the queue may refer
2015 * to bio from the old bioset, so you must walk
2016 * through the queue to unprep.
2017 */
2018 goto out;
2019 }
2020
2021 BUG_ON(!p ||
2022 bioset_initialized(&md->bs) ||
2023 bioset_initialized(&md->io_bs));
2024
2025 ret = bioset_init_from_src(&md->bs, &p->bs);
2026 if (ret)
2027 goto out;
2028 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2029 if (ret)
2030 bioset_exit(&md->bs);
2031 out:
2032 /* mempool bind completed, no longer need any mempools in the table */
2033 dm_table_free_md_mempools(t);
2034 return ret;
2035 }
2036
2037 /*
2038 * Bind a table to the device.
2039 */
2040 static void event_callback(void *context)
2041 {
2042 unsigned long flags;
2043 LIST_HEAD(uevents);
2044 struct mapped_device *md = (struct mapped_device *) context;
2045
2046 spin_lock_irqsave(&md->uevent_lock, flags);
2047 list_splice_init(&md->uevent_list, &uevents);
2048 spin_unlock_irqrestore(&md->uevent_lock, flags);
2049
2050 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2051
2052 atomic_inc(&md->event_nr);
2053 wake_up(&md->eventq);
2054 dm_issue_global_event();
2055 }
2056
2057 /*
2058 * Protected by md->suspend_lock obtained by dm_swap_table().
2059 */
2060 static void __set_size(struct mapped_device *md, sector_t size)
2061 {
2062 lockdep_assert_held(&md->suspend_lock);
2063
2064 set_capacity(md->disk, size);
2065
2066 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2067 }
2068
2069 /*
2070 * Returns old map, which caller must destroy.
2071 */
2072 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2073 struct queue_limits *limits)
2074 {
2075 struct dm_table *old_map;
2076 struct request_queue *q = md->queue;
2077 bool request_based = dm_table_request_based(t);
2078 sector_t size;
2079 int ret;
2080
2081 lockdep_assert_held(&md->suspend_lock);
2082
2083 size = dm_table_get_size(t);
2084
2085 /*
2086 * Wipe any geometry if the size of the table changed.
2087 */
2088 if (size != dm_get_size(md))
2089 memset(&md->geometry, 0, sizeof(md->geometry));
2090
2091 __set_size(md, size);
2092
2093 dm_table_event_callback(t, event_callback, md);
2094
2095 /*
2096 * The queue hasn't been stopped yet, if the old table type wasn't
2097 * for request-based during suspension. So stop it to prevent
2098 * I/O mapping before resume.
2099 * This must be done before setting the queue restrictions,
2100 * because request-based dm may be run just after the setting.
2101 */
2102 if (request_based)
2103 dm_stop_queue(q);
2104
2105 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2106 /*
2107 * Leverage the fact that request-based DM targets and
2108 * NVMe bio based targets are immutable singletons
2109 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2110 * and __process_bio.
2111 */
2112 md->immutable_target = dm_table_get_immutable_target(t);
2113 }
2114
2115 ret = __bind_mempools(md, t);
2116 if (ret) {
2117 old_map = ERR_PTR(ret);
2118 goto out;
2119 }
2120
2121 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2122 rcu_assign_pointer(md->map, (void *)t);
2123 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2124
2125 dm_table_set_restrictions(t, q, limits);
2126 if (old_map)
2127 dm_sync_table(md);
2128
2129 out:
2130 return old_map;
2131 }
2132
2133 /*
2134 * Returns unbound table for the caller to free.
2135 */
2136 static struct dm_table *__unbind(struct mapped_device *md)
2137 {
2138 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2139
2140 if (!map)
2141 return NULL;
2142
2143 dm_table_event_callback(map, NULL, NULL);
2144 RCU_INIT_POINTER(md->map, NULL);
2145 dm_sync_table(md);
2146
2147 return map;
2148 }
2149
2150 /*
2151 * Constructor for a new device.
2152 */
2153 int dm_create(int minor, struct mapped_device **result)
2154 {
2155 int r;
2156 struct mapped_device *md;
2157
2158 md = alloc_dev(minor);
2159 if (!md)
2160 return -ENXIO;
2161
2162 r = dm_sysfs_init(md);
2163 if (r) {
2164 free_dev(md);
2165 return r;
2166 }
2167
2168 *result = md;
2169 return 0;
2170 }
2171
2172 /*
2173 * Functions to manage md->type.
2174 * All are required to hold md->type_lock.
2175 */
2176 void dm_lock_md_type(struct mapped_device *md)
2177 {
2178 mutex_lock(&md->type_lock);
2179 }
2180
2181 void dm_unlock_md_type(struct mapped_device *md)
2182 {
2183 mutex_unlock(&md->type_lock);
2184 }
2185
2186 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2187 {
2188 BUG_ON(!mutex_is_locked(&md->type_lock));
2189 md->type = type;
2190 }
2191
2192 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2193 {
2194 return md->type;
2195 }
2196
2197 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2198 {
2199 return md->immutable_target_type;
2200 }
2201
2202 /*
2203 * The queue_limits are only valid as long as you have a reference
2204 * count on 'md'.
2205 */
2206 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2207 {
2208 BUG_ON(!atomic_read(&md->holders));
2209 return &md->queue->limits;
2210 }
2211 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2212
2213 /*
2214 * Setup the DM device's queue based on md's type
2215 */
2216 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2217 {
2218 int r;
2219 struct queue_limits limits;
2220 enum dm_queue_mode type = dm_get_md_type(md);
2221
2222 switch (type) {
2223 case DM_TYPE_REQUEST_BASED:
2224 r = dm_mq_init_request_queue(md, t);
2225 if (r) {
2226 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2227 return r;
2228 }
2229 break;
2230 case DM_TYPE_BIO_BASED:
2231 case DM_TYPE_DAX_BIO_BASED:
2232 case DM_TYPE_NVME_BIO_BASED:
2233 dm_init_normal_md_queue(md);
2234 blk_queue_make_request(md->queue, dm_make_request);
2235 break;
2236 case DM_TYPE_NONE:
2237 WARN_ON_ONCE(true);
2238 break;
2239 }
2240
2241 r = dm_calculate_queue_limits(t, &limits);
2242 if (r) {
2243 DMERR("Cannot calculate initial queue limits");
2244 return r;
2245 }
2246 dm_table_set_restrictions(t, md->queue, &limits);
2247 blk_register_queue(md->disk);
2248
2249 return 0;
2250 }
2251
2252 struct mapped_device *dm_get_md(dev_t dev)
2253 {
2254 struct mapped_device *md;
2255 unsigned minor = MINOR(dev);
2256
2257 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2258 return NULL;
2259
2260 spin_lock(&_minor_lock);
2261
2262 md = idr_find(&_minor_idr, minor);
2263 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2264 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2265 md = NULL;
2266 goto out;
2267 }
2268 dm_get(md);
2269 out:
2270 spin_unlock(&_minor_lock);
2271
2272 return md;
2273 }
2274 EXPORT_SYMBOL_GPL(dm_get_md);
2275
2276 void *dm_get_mdptr(struct mapped_device *md)
2277 {
2278 return md->interface_ptr;
2279 }
2280
2281 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2282 {
2283 md->interface_ptr = ptr;
2284 }
2285
2286 void dm_get(struct mapped_device *md)
2287 {
2288 atomic_inc(&md->holders);
2289 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2290 }
2291
2292 int dm_hold(struct mapped_device *md)
2293 {
2294 spin_lock(&_minor_lock);
2295 if (test_bit(DMF_FREEING, &md->flags)) {
2296 spin_unlock(&_minor_lock);
2297 return -EBUSY;
2298 }
2299 dm_get(md);
2300 spin_unlock(&_minor_lock);
2301 return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(dm_hold);
2304
2305 const char *dm_device_name(struct mapped_device *md)
2306 {
2307 return md->name;
2308 }
2309 EXPORT_SYMBOL_GPL(dm_device_name);
2310
2311 static void __dm_destroy(struct mapped_device *md, bool wait)
2312 {
2313 struct dm_table *map;
2314 int srcu_idx;
2315
2316 might_sleep();
2317
2318 spin_lock(&_minor_lock);
2319 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2320 set_bit(DMF_FREEING, &md->flags);
2321 spin_unlock(&_minor_lock);
2322
2323 blk_set_queue_dying(md->queue);
2324
2325 /*
2326 * Take suspend_lock so that presuspend and postsuspend methods
2327 * do not race with internal suspend.
2328 */
2329 mutex_lock(&md->suspend_lock);
2330 map = dm_get_live_table(md, &srcu_idx);
2331 if (!dm_suspended_md(md)) {
2332 dm_table_presuspend_targets(map);
2333 dm_table_postsuspend_targets(map);
2334 }
2335 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2336 dm_put_live_table(md, srcu_idx);
2337 mutex_unlock(&md->suspend_lock);
2338
2339 /*
2340 * Rare, but there may be I/O requests still going to complete,
2341 * for example. Wait for all references to disappear.
2342 * No one should increment the reference count of the mapped_device,
2343 * after the mapped_device state becomes DMF_FREEING.
2344 */
2345 if (wait)
2346 while (atomic_read(&md->holders))
2347 msleep(1);
2348 else if (atomic_read(&md->holders))
2349 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2350 dm_device_name(md), atomic_read(&md->holders));
2351
2352 dm_sysfs_exit(md);
2353 dm_table_destroy(__unbind(md));
2354 free_dev(md);
2355 }
2356
2357 void dm_destroy(struct mapped_device *md)
2358 {
2359 __dm_destroy(md, true);
2360 }
2361
2362 void dm_destroy_immediate(struct mapped_device *md)
2363 {
2364 __dm_destroy(md, false);
2365 }
2366
2367 void dm_put(struct mapped_device *md)
2368 {
2369 atomic_dec(&md->holders);
2370 }
2371 EXPORT_SYMBOL_GPL(dm_put);
2372
2373 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2374 {
2375 int r = 0;
2376 DEFINE_WAIT(wait);
2377
2378 while (1) {
2379 prepare_to_wait(&md->wait, &wait, task_state);
2380
2381 if (!md_in_flight(md))
2382 break;
2383
2384 if (signal_pending_state(task_state, current)) {
2385 r = -EINTR;
2386 break;
2387 }
2388
2389 io_schedule();
2390 }
2391 finish_wait(&md->wait, &wait);
2392
2393 return r;
2394 }
2395
2396 /*
2397 * Process the deferred bios
2398 */
2399 static void dm_wq_work(struct work_struct *work)
2400 {
2401 struct mapped_device *md = container_of(work, struct mapped_device,
2402 work);
2403 struct bio *c;
2404 int srcu_idx;
2405 struct dm_table *map;
2406
2407 map = dm_get_live_table(md, &srcu_idx);
2408
2409 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2410 spin_lock_irq(&md->deferred_lock);
2411 c = bio_list_pop(&md->deferred);
2412 spin_unlock_irq(&md->deferred_lock);
2413
2414 if (!c)
2415 break;
2416
2417 if (dm_request_based(md))
2418 generic_make_request(c);
2419 else
2420 __split_and_process_bio(md, map, c);
2421 }
2422
2423 dm_put_live_table(md, srcu_idx);
2424 }
2425
2426 static void dm_queue_flush(struct mapped_device *md)
2427 {
2428 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2429 smp_mb__after_atomic();
2430 queue_work(md->wq, &md->work);
2431 }
2432
2433 /*
2434 * Swap in a new table, returning the old one for the caller to destroy.
2435 */
2436 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2437 {
2438 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2439 struct queue_limits limits;
2440 int r;
2441
2442 mutex_lock(&md->suspend_lock);
2443
2444 /* device must be suspended */
2445 if (!dm_suspended_md(md))
2446 goto out;
2447
2448 /*
2449 * If the new table has no data devices, retain the existing limits.
2450 * This helps multipath with queue_if_no_path if all paths disappear,
2451 * then new I/O is queued based on these limits, and then some paths
2452 * reappear.
2453 */
2454 if (dm_table_has_no_data_devices(table)) {
2455 live_map = dm_get_live_table_fast(md);
2456 if (live_map)
2457 limits = md->queue->limits;
2458 dm_put_live_table_fast(md);
2459 }
2460
2461 if (!live_map) {
2462 r = dm_calculate_queue_limits(table, &limits);
2463 if (r) {
2464 map = ERR_PTR(r);
2465 goto out;
2466 }
2467 }
2468
2469 map = __bind(md, table, &limits);
2470 dm_issue_global_event();
2471
2472 out:
2473 mutex_unlock(&md->suspend_lock);
2474 return map;
2475 }
2476
2477 /*
2478 * Functions to lock and unlock any filesystem running on the
2479 * device.
2480 */
2481 static int lock_fs(struct mapped_device *md)
2482 {
2483 int r;
2484
2485 WARN_ON(md->frozen_sb);
2486
2487 md->frozen_sb = freeze_bdev(md->bdev);
2488 if (IS_ERR(md->frozen_sb)) {
2489 r = PTR_ERR(md->frozen_sb);
2490 md->frozen_sb = NULL;
2491 return r;
2492 }
2493
2494 set_bit(DMF_FROZEN, &md->flags);
2495
2496 return 0;
2497 }
2498
2499 static void unlock_fs(struct mapped_device *md)
2500 {
2501 if (!test_bit(DMF_FROZEN, &md->flags))
2502 return;
2503
2504 thaw_bdev(md->bdev, md->frozen_sb);
2505 md->frozen_sb = NULL;
2506 clear_bit(DMF_FROZEN, &md->flags);
2507 }
2508
2509 /*
2510 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2511 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2512 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2513 *
2514 * If __dm_suspend returns 0, the device is completely quiescent
2515 * now. There is no request-processing activity. All new requests
2516 * are being added to md->deferred list.
2517 */
2518 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2519 unsigned suspend_flags, long task_state,
2520 int dmf_suspended_flag)
2521 {
2522 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2523 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2524 int r;
2525
2526 lockdep_assert_held(&md->suspend_lock);
2527
2528 /*
2529 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2530 * This flag is cleared before dm_suspend returns.
2531 */
2532 if (noflush)
2533 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2534 else
2535 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2536
2537 /*
2538 * This gets reverted if there's an error later and the targets
2539 * provide the .presuspend_undo hook.
2540 */
2541 dm_table_presuspend_targets(map);
2542
2543 /*
2544 * Flush I/O to the device.
2545 * Any I/O submitted after lock_fs() may not be flushed.
2546 * noflush takes precedence over do_lockfs.
2547 * (lock_fs() flushes I/Os and waits for them to complete.)
2548 */
2549 if (!noflush && do_lockfs) {
2550 r = lock_fs(md);
2551 if (r) {
2552 dm_table_presuspend_undo_targets(map);
2553 return r;
2554 }
2555 }
2556
2557 /*
2558 * Here we must make sure that no processes are submitting requests
2559 * to target drivers i.e. no one may be executing
2560 * __split_and_process_bio. This is called from dm_request and
2561 * dm_wq_work.
2562 *
2563 * To get all processes out of __split_and_process_bio in dm_request,
2564 * we take the write lock. To prevent any process from reentering
2565 * __split_and_process_bio from dm_request and quiesce the thread
2566 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2567 * flush_workqueue(md->wq).
2568 */
2569 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2570 if (map)
2571 synchronize_srcu(&md->io_barrier);
2572
2573 /*
2574 * Stop md->queue before flushing md->wq in case request-based
2575 * dm defers requests to md->wq from md->queue.
2576 */
2577 if (dm_request_based(md))
2578 dm_stop_queue(md->queue);
2579
2580 flush_workqueue(md->wq);
2581
2582 /*
2583 * At this point no more requests are entering target request routines.
2584 * We call dm_wait_for_completion to wait for all existing requests
2585 * to finish.
2586 */
2587 r = dm_wait_for_completion(md, task_state);
2588 if (!r)
2589 set_bit(dmf_suspended_flag, &md->flags);
2590
2591 if (noflush)
2592 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2593 if (map)
2594 synchronize_srcu(&md->io_barrier);
2595
2596 /* were we interrupted ? */
2597 if (r < 0) {
2598 dm_queue_flush(md);
2599
2600 if (dm_request_based(md))
2601 dm_start_queue(md->queue);
2602
2603 unlock_fs(md);
2604 dm_table_presuspend_undo_targets(map);
2605 /* pushback list is already flushed, so skip flush */
2606 }
2607
2608 return r;
2609 }
2610
2611 /*
2612 * We need to be able to change a mapping table under a mounted
2613 * filesystem. For example we might want to move some data in
2614 * the background. Before the table can be swapped with
2615 * dm_bind_table, dm_suspend must be called to flush any in
2616 * flight bios and ensure that any further io gets deferred.
2617 */
2618 /*
2619 * Suspend mechanism in request-based dm.
2620 *
2621 * 1. Flush all I/Os by lock_fs() if needed.
2622 * 2. Stop dispatching any I/O by stopping the request_queue.
2623 * 3. Wait for all in-flight I/Os to be completed or requeued.
2624 *
2625 * To abort suspend, start the request_queue.
2626 */
2627 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2628 {
2629 struct dm_table *map = NULL;
2630 int r = 0;
2631
2632 retry:
2633 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2634
2635 if (dm_suspended_md(md)) {
2636 r = -EINVAL;
2637 goto out_unlock;
2638 }
2639
2640 if (dm_suspended_internally_md(md)) {
2641 /* already internally suspended, wait for internal resume */
2642 mutex_unlock(&md->suspend_lock);
2643 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2644 if (r)
2645 return r;
2646 goto retry;
2647 }
2648
2649 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2650
2651 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2652 if (r)
2653 goto out_unlock;
2654
2655 dm_table_postsuspend_targets(map);
2656
2657 out_unlock:
2658 mutex_unlock(&md->suspend_lock);
2659 return r;
2660 }
2661
2662 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2663 {
2664 if (map) {
2665 int r = dm_table_resume_targets(map);
2666 if (r)
2667 return r;
2668 }
2669
2670 dm_queue_flush(md);
2671
2672 /*
2673 * Flushing deferred I/Os must be done after targets are resumed
2674 * so that mapping of targets can work correctly.
2675 * Request-based dm is queueing the deferred I/Os in its request_queue.
2676 */
2677 if (dm_request_based(md))
2678 dm_start_queue(md->queue);
2679
2680 unlock_fs(md);
2681
2682 return 0;
2683 }
2684
2685 int dm_resume(struct mapped_device *md)
2686 {
2687 int r;
2688 struct dm_table *map = NULL;
2689
2690 retry:
2691 r = -EINVAL;
2692 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2693
2694 if (!dm_suspended_md(md))
2695 goto out;
2696
2697 if (dm_suspended_internally_md(md)) {
2698 /* already internally suspended, wait for internal resume */
2699 mutex_unlock(&md->suspend_lock);
2700 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2701 if (r)
2702 return r;
2703 goto retry;
2704 }
2705
2706 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2707 if (!map || !dm_table_get_size(map))
2708 goto out;
2709
2710 r = __dm_resume(md, map);
2711 if (r)
2712 goto out;
2713
2714 clear_bit(DMF_SUSPENDED, &md->flags);
2715 out:
2716 mutex_unlock(&md->suspend_lock);
2717
2718 return r;
2719 }
2720
2721 /*
2722 * Internal suspend/resume works like userspace-driven suspend. It waits
2723 * until all bios finish and prevents issuing new bios to the target drivers.
2724 * It may be used only from the kernel.
2725 */
2726
2727 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2728 {
2729 struct dm_table *map = NULL;
2730
2731 lockdep_assert_held(&md->suspend_lock);
2732
2733 if (md->internal_suspend_count++)
2734 return; /* nested internal suspend */
2735
2736 if (dm_suspended_md(md)) {
2737 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 return; /* nest suspend */
2739 }
2740
2741 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2742
2743 /*
2744 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2745 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2746 * would require changing .presuspend to return an error -- avoid this
2747 * until there is a need for more elaborate variants of internal suspend.
2748 */
2749 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2750 DMF_SUSPENDED_INTERNALLY);
2751
2752 dm_table_postsuspend_targets(map);
2753 }
2754
2755 static void __dm_internal_resume(struct mapped_device *md)
2756 {
2757 BUG_ON(!md->internal_suspend_count);
2758
2759 if (--md->internal_suspend_count)
2760 return; /* resume from nested internal suspend */
2761
2762 if (dm_suspended_md(md))
2763 goto done; /* resume from nested suspend */
2764
2765 /*
2766 * NOTE: existing callers don't need to call dm_table_resume_targets
2767 * (which may fail -- so best to avoid it for now by passing NULL map)
2768 */
2769 (void) __dm_resume(md, NULL);
2770
2771 done:
2772 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2773 smp_mb__after_atomic();
2774 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2775 }
2776
2777 void dm_internal_suspend_noflush(struct mapped_device *md)
2778 {
2779 mutex_lock(&md->suspend_lock);
2780 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2781 mutex_unlock(&md->suspend_lock);
2782 }
2783 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2784
2785 void dm_internal_resume(struct mapped_device *md)
2786 {
2787 mutex_lock(&md->suspend_lock);
2788 __dm_internal_resume(md);
2789 mutex_unlock(&md->suspend_lock);
2790 }
2791 EXPORT_SYMBOL_GPL(dm_internal_resume);
2792
2793 /*
2794 * Fast variants of internal suspend/resume hold md->suspend_lock,
2795 * which prevents interaction with userspace-driven suspend.
2796 */
2797
2798 void dm_internal_suspend_fast(struct mapped_device *md)
2799 {
2800 mutex_lock(&md->suspend_lock);
2801 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2802 return;
2803
2804 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2805 synchronize_srcu(&md->io_barrier);
2806 flush_workqueue(md->wq);
2807 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2808 }
2809 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2810
2811 void dm_internal_resume_fast(struct mapped_device *md)
2812 {
2813 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2814 goto done;
2815
2816 dm_queue_flush(md);
2817
2818 done:
2819 mutex_unlock(&md->suspend_lock);
2820 }
2821 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2822
2823 /*-----------------------------------------------------------------
2824 * Event notification.
2825 *---------------------------------------------------------------*/
2826 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2827 unsigned cookie)
2828 {
2829 char udev_cookie[DM_COOKIE_LENGTH];
2830 char *envp[] = { udev_cookie, NULL };
2831
2832 if (!cookie)
2833 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2834 else {
2835 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2836 DM_COOKIE_ENV_VAR_NAME, cookie);
2837 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2838 action, envp);
2839 }
2840 }
2841
2842 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2843 {
2844 return atomic_add_return(1, &md->uevent_seq);
2845 }
2846
2847 uint32_t dm_get_event_nr(struct mapped_device *md)
2848 {
2849 return atomic_read(&md->event_nr);
2850 }
2851
2852 int dm_wait_event(struct mapped_device *md, int event_nr)
2853 {
2854 return wait_event_interruptible(md->eventq,
2855 (event_nr != atomic_read(&md->event_nr)));
2856 }
2857
2858 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2859 {
2860 unsigned long flags;
2861
2862 spin_lock_irqsave(&md->uevent_lock, flags);
2863 list_add(elist, &md->uevent_list);
2864 spin_unlock_irqrestore(&md->uevent_lock, flags);
2865 }
2866
2867 /*
2868 * The gendisk is only valid as long as you have a reference
2869 * count on 'md'.
2870 */
2871 struct gendisk *dm_disk(struct mapped_device *md)
2872 {
2873 return md->disk;
2874 }
2875 EXPORT_SYMBOL_GPL(dm_disk);
2876
2877 struct kobject *dm_kobject(struct mapped_device *md)
2878 {
2879 return &md->kobj_holder.kobj;
2880 }
2881
2882 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2883 {
2884 struct mapped_device *md;
2885
2886 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2887
2888 spin_lock(&_minor_lock);
2889 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2890 md = NULL;
2891 goto out;
2892 }
2893 dm_get(md);
2894 out:
2895 spin_unlock(&_minor_lock);
2896
2897 return md;
2898 }
2899
2900 int dm_suspended_md(struct mapped_device *md)
2901 {
2902 return test_bit(DMF_SUSPENDED, &md->flags);
2903 }
2904
2905 int dm_suspended_internally_md(struct mapped_device *md)
2906 {
2907 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2908 }
2909
2910 int dm_test_deferred_remove_flag(struct mapped_device *md)
2911 {
2912 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2913 }
2914
2915 int dm_suspended(struct dm_target *ti)
2916 {
2917 return dm_suspended_md(dm_table_get_md(ti->table));
2918 }
2919 EXPORT_SYMBOL_GPL(dm_suspended);
2920
2921 int dm_noflush_suspending(struct dm_target *ti)
2922 {
2923 return __noflush_suspending(dm_table_get_md(ti->table));
2924 }
2925 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2926
2927 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2928 unsigned integrity, unsigned per_io_data_size,
2929 unsigned min_pool_size)
2930 {
2931 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2932 unsigned int pool_size = 0;
2933 unsigned int front_pad, io_front_pad;
2934 int ret;
2935
2936 if (!pools)
2937 return NULL;
2938
2939 switch (type) {
2940 case DM_TYPE_BIO_BASED:
2941 case DM_TYPE_DAX_BIO_BASED:
2942 case DM_TYPE_NVME_BIO_BASED:
2943 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2944 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2945 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2946 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2947 if (ret)
2948 goto out;
2949 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2950 goto out;
2951 break;
2952 case DM_TYPE_REQUEST_BASED:
2953 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2954 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2955 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2956 break;
2957 default:
2958 BUG();
2959 }
2960
2961 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2962 if (ret)
2963 goto out;
2964
2965 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2966 goto out;
2967
2968 return pools;
2969
2970 out:
2971 dm_free_md_mempools(pools);
2972
2973 return NULL;
2974 }
2975
2976 void dm_free_md_mempools(struct dm_md_mempools *pools)
2977 {
2978 if (!pools)
2979 return;
2980
2981 bioset_exit(&pools->bs);
2982 bioset_exit(&pools->io_bs);
2983
2984 kfree(pools);
2985 }
2986
2987 struct dm_pr {
2988 u64 old_key;
2989 u64 new_key;
2990 u32 flags;
2991 bool fail_early;
2992 };
2993
2994 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2995 void *data)
2996 {
2997 struct mapped_device *md = bdev->bd_disk->private_data;
2998 struct dm_table *table;
2999 struct dm_target *ti;
3000 int ret = -ENOTTY, srcu_idx;
3001
3002 table = dm_get_live_table(md, &srcu_idx);
3003 if (!table || !dm_table_get_size(table))
3004 goto out;
3005
3006 /* We only support devices that have a single target */
3007 if (dm_table_get_num_targets(table) != 1)
3008 goto out;
3009 ti = dm_table_get_target(table, 0);
3010
3011 ret = -EINVAL;
3012 if (!ti->type->iterate_devices)
3013 goto out;
3014
3015 ret = ti->type->iterate_devices(ti, fn, data);
3016 out:
3017 dm_put_live_table(md, srcu_idx);
3018 return ret;
3019 }
3020
3021 /*
3022 * For register / unregister we need to manually call out to every path.
3023 */
3024 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3025 sector_t start, sector_t len, void *data)
3026 {
3027 struct dm_pr *pr = data;
3028 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3029
3030 if (!ops || !ops->pr_register)
3031 return -EOPNOTSUPP;
3032 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3033 }
3034
3035 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3036 u32 flags)
3037 {
3038 struct dm_pr pr = {
3039 .old_key = old_key,
3040 .new_key = new_key,
3041 .flags = flags,
3042 .fail_early = true,
3043 };
3044 int ret;
3045
3046 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3047 if (ret && new_key) {
3048 /* unregister all paths if we failed to register any path */
3049 pr.old_key = new_key;
3050 pr.new_key = 0;
3051 pr.flags = 0;
3052 pr.fail_early = false;
3053 dm_call_pr(bdev, __dm_pr_register, &pr);
3054 }
3055
3056 return ret;
3057 }
3058
3059 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3060 u32 flags)
3061 {
3062 struct mapped_device *md = bdev->bd_disk->private_data;
3063 const struct pr_ops *ops;
3064 int r, srcu_idx;
3065
3066 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3067 if (r < 0)
3068 goto out;
3069
3070 ops = bdev->bd_disk->fops->pr_ops;
3071 if (ops && ops->pr_reserve)
3072 r = ops->pr_reserve(bdev, key, type, flags);
3073 else
3074 r = -EOPNOTSUPP;
3075 out:
3076 dm_unprepare_ioctl(md, srcu_idx);
3077 return r;
3078 }
3079
3080 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3081 {
3082 struct mapped_device *md = bdev->bd_disk->private_data;
3083 const struct pr_ops *ops;
3084 int r, srcu_idx;
3085
3086 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3087 if (r < 0)
3088 goto out;
3089
3090 ops = bdev->bd_disk->fops->pr_ops;
3091 if (ops && ops->pr_release)
3092 r = ops->pr_release(bdev, key, type);
3093 else
3094 r = -EOPNOTSUPP;
3095 out:
3096 dm_unprepare_ioctl(md, srcu_idx);
3097 return r;
3098 }
3099
3100 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3101 enum pr_type type, bool abort)
3102 {
3103 struct mapped_device *md = bdev->bd_disk->private_data;
3104 const struct pr_ops *ops;
3105 int r, srcu_idx;
3106
3107 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3108 if (r < 0)
3109 goto out;
3110
3111 ops = bdev->bd_disk->fops->pr_ops;
3112 if (ops && ops->pr_preempt)
3113 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3114 else
3115 r = -EOPNOTSUPP;
3116 out:
3117 dm_unprepare_ioctl(md, srcu_idx);
3118 return r;
3119 }
3120
3121 static int dm_pr_clear(struct block_device *bdev, u64 key)
3122 {
3123 struct mapped_device *md = bdev->bd_disk->private_data;
3124 const struct pr_ops *ops;
3125 int r, srcu_idx;
3126
3127 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3128 if (r < 0)
3129 goto out;
3130
3131 ops = bdev->bd_disk->fops->pr_ops;
3132 if (ops && ops->pr_clear)
3133 r = ops->pr_clear(bdev, key);
3134 else
3135 r = -EOPNOTSUPP;
3136 out:
3137 dm_unprepare_ioctl(md, srcu_idx);
3138 return r;
3139 }
3140
3141 static const struct pr_ops dm_pr_ops = {
3142 .pr_register = dm_pr_register,
3143 .pr_reserve = dm_pr_reserve,
3144 .pr_release = dm_pr_release,
3145 .pr_preempt = dm_pr_preempt,
3146 .pr_clear = dm_pr_clear,
3147 };
3148
3149 static const struct block_device_operations dm_blk_dops = {
3150 .open = dm_blk_open,
3151 .release = dm_blk_close,
3152 .ioctl = dm_blk_ioctl,
3153 .getgeo = dm_blk_getgeo,
3154 .report_zones = dm_blk_report_zones,
3155 .pr_ops = &dm_pr_ops,
3156 .owner = THIS_MODULE
3157 };
3158
3159 static const struct dax_operations dm_dax_ops = {
3160 .direct_access = dm_dax_direct_access,
3161 .copy_from_iter = dm_dax_copy_from_iter,
3162 .copy_to_iter = dm_dax_copy_to_iter,
3163 };
3164
3165 /*
3166 * module hooks
3167 */
3168 module_init(dm_init);
3169 module_exit(dm_exit);
3170
3171 module_param(major, uint, 0);
3172 MODULE_PARM_DESC(major, "The major number of the device mapper");
3173
3174 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3175 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3176
3177 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3178 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3179
3180 MODULE_DESCRIPTION(DM_NAME " driver");
3181 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3182 MODULE_LICENSE("GPL");