]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/dm.c
ASoC: eukrea-tlv320: Remove include line of fsl_ssi.h
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28
29 #define DM_MSG_PREFIX "core"
30
31 /*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37
38 static const char *_name = DM_NAME;
39
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42
43 static DEFINE_IDR(_minor_idr);
44
45 static DEFINE_SPINLOCK(_minor_lock);
46
47 static void do_deferred_remove(struct work_struct *w);
48
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51 static struct workqueue_struct *deferred_remove_workqueue;
52
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
56 void dm_issue_global_event(void)
57 {
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60 }
61
62 /*
63 * One of these is allocated per bio.
64 */
65 struct dm_io {
66 struct mapped_device *md;
67 blk_status_t status;
68 atomic_t io_count;
69 struct bio *bio;
70 unsigned long start_time;
71 spinlock_t endio_lock;
72 struct dm_stats_aux stats_aux;
73 };
74
75 #define MINOR_ALLOCED ((void *)-1)
76
77 /*
78 * Bits for the md->flags field.
79 */
80 #define DMF_BLOCK_IO_FOR_SUSPEND 0
81 #define DMF_SUSPENDED 1
82 #define DMF_FROZEN 2
83 #define DMF_FREEING 3
84 #define DMF_DELETING 4
85 #define DMF_NOFLUSH_SUSPENDING 5
86 #define DMF_DEFERRED_REMOVE 6
87 #define DMF_SUSPENDED_INTERNALLY 7
88
89 #define DM_NUMA_NODE NUMA_NO_NODE
90 static int dm_numa_node = DM_NUMA_NODE;
91
92 /*
93 * For mempools pre-allocation at the table loading time.
94 */
95 struct dm_md_mempools {
96 mempool_t *io_pool;
97 struct bio_set *bs;
98 };
99
100 struct table_device {
101 struct list_head list;
102 refcount_t count;
103 struct dm_dev dm_dev;
104 };
105
106 static struct kmem_cache *_io_cache;
107 static struct kmem_cache *_rq_tio_cache;
108 static struct kmem_cache *_rq_cache;
109
110 /*
111 * Bio-based DM's mempools' reserved IOs set by the user.
112 */
113 #define RESERVED_BIO_BASED_IOS 16
114 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115
116 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 {
118 int param = READ_ONCE(*module_param);
119 int modified_param = 0;
120 bool modified = true;
121
122 if (param < min)
123 modified_param = min;
124 else if (param > max)
125 modified_param = max;
126 else
127 modified = false;
128
129 if (modified) {
130 (void)cmpxchg(module_param, param, modified_param);
131 param = modified_param;
132 }
133
134 return param;
135 }
136
137 unsigned __dm_get_module_param(unsigned *module_param,
138 unsigned def, unsigned max)
139 {
140 unsigned param = READ_ONCE(*module_param);
141 unsigned modified_param = 0;
142
143 if (!param)
144 modified_param = def;
145 else if (param > max)
146 modified_param = max;
147
148 if (modified_param) {
149 (void)cmpxchg(module_param, param, modified_param);
150 param = modified_param;
151 }
152
153 return param;
154 }
155
156 unsigned dm_get_reserved_bio_based_ios(void)
157 {
158 return __dm_get_module_param(&reserved_bio_based_ios,
159 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 }
161 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162
163 static unsigned dm_get_numa_node(void)
164 {
165 return __dm_get_module_param_int(&dm_numa_node,
166 DM_NUMA_NODE, num_online_nodes() - 1);
167 }
168
169 static int __init local_init(void)
170 {
171 int r = -ENOMEM;
172
173 /* allocate a slab for the dm_ios */
174 _io_cache = KMEM_CACHE(dm_io, 0);
175 if (!_io_cache)
176 return r;
177
178 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
179 if (!_rq_tio_cache)
180 goto out_free_io_cache;
181
182 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
183 __alignof__(struct request), 0, NULL);
184 if (!_rq_cache)
185 goto out_free_rq_tio_cache;
186
187 r = dm_uevent_init();
188 if (r)
189 goto out_free_rq_cache;
190
191 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
192 if (!deferred_remove_workqueue) {
193 r = -ENOMEM;
194 goto out_uevent_exit;
195 }
196
197 _major = major;
198 r = register_blkdev(_major, _name);
199 if (r < 0)
200 goto out_free_workqueue;
201
202 if (!_major)
203 _major = r;
204
205 return 0;
206
207 out_free_workqueue:
208 destroy_workqueue(deferred_remove_workqueue);
209 out_uevent_exit:
210 dm_uevent_exit();
211 out_free_rq_cache:
212 kmem_cache_destroy(_rq_cache);
213 out_free_rq_tio_cache:
214 kmem_cache_destroy(_rq_tio_cache);
215 out_free_io_cache:
216 kmem_cache_destroy(_io_cache);
217
218 return r;
219 }
220
221 static void local_exit(void)
222 {
223 flush_scheduled_work();
224 destroy_workqueue(deferred_remove_workqueue);
225
226 kmem_cache_destroy(_rq_cache);
227 kmem_cache_destroy(_rq_tio_cache);
228 kmem_cache_destroy(_io_cache);
229 unregister_blkdev(_major, _name);
230 dm_uevent_exit();
231
232 _major = 0;
233
234 DMINFO("cleaned up");
235 }
236
237 static int (*_inits[])(void) __initdata = {
238 local_init,
239 dm_target_init,
240 dm_linear_init,
241 dm_stripe_init,
242 dm_io_init,
243 dm_kcopyd_init,
244 dm_interface_init,
245 dm_statistics_init,
246 };
247
248 static void (*_exits[])(void) = {
249 local_exit,
250 dm_target_exit,
251 dm_linear_exit,
252 dm_stripe_exit,
253 dm_io_exit,
254 dm_kcopyd_exit,
255 dm_interface_exit,
256 dm_statistics_exit,
257 };
258
259 static int __init dm_init(void)
260 {
261 const int count = ARRAY_SIZE(_inits);
262
263 int r, i;
264
265 for (i = 0; i < count; i++) {
266 r = _inits[i]();
267 if (r)
268 goto bad;
269 }
270
271 return 0;
272
273 bad:
274 while (i--)
275 _exits[i]();
276
277 return r;
278 }
279
280 static void __exit dm_exit(void)
281 {
282 int i = ARRAY_SIZE(_exits);
283
284 while (i--)
285 _exits[i]();
286
287 /*
288 * Should be empty by this point.
289 */
290 idr_destroy(&_minor_idr);
291 }
292
293 /*
294 * Block device functions
295 */
296 int dm_deleting_md(struct mapped_device *md)
297 {
298 return test_bit(DMF_DELETING, &md->flags);
299 }
300
301 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 {
303 struct mapped_device *md;
304
305 spin_lock(&_minor_lock);
306
307 md = bdev->bd_disk->private_data;
308 if (!md)
309 goto out;
310
311 if (test_bit(DMF_FREEING, &md->flags) ||
312 dm_deleting_md(md)) {
313 md = NULL;
314 goto out;
315 }
316
317 dm_get(md);
318 atomic_inc(&md->open_count);
319 out:
320 spin_unlock(&_minor_lock);
321
322 return md ? 0 : -ENXIO;
323 }
324
325 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 {
327 struct mapped_device *md;
328
329 spin_lock(&_minor_lock);
330
331 md = disk->private_data;
332 if (WARN_ON(!md))
333 goto out;
334
335 if (atomic_dec_and_test(&md->open_count) &&
336 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
337 queue_work(deferred_remove_workqueue, &deferred_remove_work);
338
339 dm_put(md);
340 out:
341 spin_unlock(&_minor_lock);
342 }
343
344 int dm_open_count(struct mapped_device *md)
345 {
346 return atomic_read(&md->open_count);
347 }
348
349 /*
350 * Guarantees nothing is using the device before it's deleted.
351 */
352 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 {
354 int r = 0;
355
356 spin_lock(&_minor_lock);
357
358 if (dm_open_count(md)) {
359 r = -EBUSY;
360 if (mark_deferred)
361 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
362 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
363 r = -EEXIST;
364 else
365 set_bit(DMF_DELETING, &md->flags);
366
367 spin_unlock(&_minor_lock);
368
369 return r;
370 }
371
372 int dm_cancel_deferred_remove(struct mapped_device *md)
373 {
374 int r = 0;
375
376 spin_lock(&_minor_lock);
377
378 if (test_bit(DMF_DELETING, &md->flags))
379 r = -EBUSY;
380 else
381 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382
383 spin_unlock(&_minor_lock);
384
385 return r;
386 }
387
388 static void do_deferred_remove(struct work_struct *w)
389 {
390 dm_deferred_remove();
391 }
392
393 sector_t dm_get_size(struct mapped_device *md)
394 {
395 return get_capacity(md->disk);
396 }
397
398 struct request_queue *dm_get_md_queue(struct mapped_device *md)
399 {
400 return md->queue;
401 }
402
403 struct dm_stats *dm_get_stats(struct mapped_device *md)
404 {
405 return &md->stats;
406 }
407
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 struct mapped_device *md = bdev->bd_disk->private_data;
411
412 return dm_get_geometry(md, geo);
413 }
414
415 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
416 struct block_device **bdev,
417 fmode_t *mode)
418 {
419 struct dm_target *tgt;
420 struct dm_table *map;
421 int srcu_idx, r;
422
423 retry:
424 r = -ENOTTY;
425 map = dm_get_live_table(md, &srcu_idx);
426 if (!map || !dm_table_get_size(map))
427 goto out;
428
429 /* We only support devices that have a single target */
430 if (dm_table_get_num_targets(map) != 1)
431 goto out;
432
433 tgt = dm_table_get_target(map, 0);
434 if (!tgt->type->prepare_ioctl)
435 goto out;
436
437 if (dm_suspended_md(md)) {
438 r = -EAGAIN;
439 goto out;
440 }
441
442 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
443 if (r < 0)
444 goto out;
445
446 bdgrab(*bdev);
447 dm_put_live_table(md, srcu_idx);
448 return r;
449
450 out:
451 dm_put_live_table(md, srcu_idx);
452 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
453 msleep(10);
454 goto retry;
455 }
456 return r;
457 }
458
459 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
460 unsigned int cmd, unsigned long arg)
461 {
462 struct mapped_device *md = bdev->bd_disk->private_data;
463 int r;
464
465 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
466 if (r < 0)
467 return r;
468
469 if (r > 0) {
470 /*
471 * Target determined this ioctl is being issued against a
472 * subset of the parent bdev; require extra privileges.
473 */
474 if (!capable(CAP_SYS_RAWIO)) {
475 DMWARN_LIMIT(
476 "%s: sending ioctl %x to DM device without required privilege.",
477 current->comm, cmd);
478 r = -ENOIOCTLCMD;
479 goto out;
480 }
481 }
482
483 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
484 out:
485 bdput(bdev);
486 return r;
487 }
488
489 static struct dm_io *alloc_io(struct mapped_device *md)
490 {
491 return mempool_alloc(md->io_pool, GFP_NOIO);
492 }
493
494 static void free_io(struct mapped_device *md, struct dm_io *io)
495 {
496 mempool_free(io, md->io_pool);
497 }
498
499 static void free_tio(struct dm_target_io *tio)
500 {
501 bio_put(&tio->clone);
502 }
503
504 int md_in_flight(struct mapped_device *md)
505 {
506 return atomic_read(&md->pending[READ]) +
507 atomic_read(&md->pending[WRITE]);
508 }
509
510 static void start_io_acct(struct dm_io *io)
511 {
512 struct mapped_device *md = io->md;
513 struct bio *bio = io->bio;
514 int cpu;
515 int rw = bio_data_dir(bio);
516
517 io->start_time = jiffies;
518
519 cpu = part_stat_lock();
520 part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
521 part_stat_unlock();
522 atomic_set(&dm_disk(md)->part0.in_flight[rw],
523 atomic_inc_return(&md->pending[rw]));
524
525 if (unlikely(dm_stats_used(&md->stats)))
526 dm_stats_account_io(&md->stats, bio_data_dir(bio),
527 bio->bi_iter.bi_sector, bio_sectors(bio),
528 false, 0, &io->stats_aux);
529 }
530
531 static void end_io_acct(struct dm_io *io)
532 {
533 struct mapped_device *md = io->md;
534 struct bio *bio = io->bio;
535 unsigned long duration = jiffies - io->start_time;
536 int pending;
537 int rw = bio_data_dir(bio);
538
539 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
540
541 if (unlikely(dm_stats_used(&md->stats)))
542 dm_stats_account_io(&md->stats, bio_data_dir(bio),
543 bio->bi_iter.bi_sector, bio_sectors(bio),
544 true, duration, &io->stats_aux);
545
546 /*
547 * After this is decremented the bio must not be touched if it is
548 * a flush.
549 */
550 pending = atomic_dec_return(&md->pending[rw]);
551 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
552 pending += atomic_read(&md->pending[rw^0x1]);
553
554 /* nudge anyone waiting on suspend queue */
555 if (!pending)
556 wake_up(&md->wait);
557 }
558
559 /*
560 * Add the bio to the list of deferred io.
561 */
562 static void queue_io(struct mapped_device *md, struct bio *bio)
563 {
564 unsigned long flags;
565
566 spin_lock_irqsave(&md->deferred_lock, flags);
567 bio_list_add(&md->deferred, bio);
568 spin_unlock_irqrestore(&md->deferred_lock, flags);
569 queue_work(md->wq, &md->work);
570 }
571
572 /*
573 * Everyone (including functions in this file), should use this
574 * function to access the md->map field, and make sure they call
575 * dm_put_live_table() when finished.
576 */
577 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
578 {
579 *srcu_idx = srcu_read_lock(&md->io_barrier);
580
581 return srcu_dereference(md->map, &md->io_barrier);
582 }
583
584 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
585 {
586 srcu_read_unlock(&md->io_barrier, srcu_idx);
587 }
588
589 void dm_sync_table(struct mapped_device *md)
590 {
591 synchronize_srcu(&md->io_barrier);
592 synchronize_rcu_expedited();
593 }
594
595 /*
596 * A fast alternative to dm_get_live_table/dm_put_live_table.
597 * The caller must not block between these two functions.
598 */
599 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
600 {
601 rcu_read_lock();
602 return rcu_dereference(md->map);
603 }
604
605 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
606 {
607 rcu_read_unlock();
608 }
609
610 /*
611 * Open a table device so we can use it as a map destination.
612 */
613 static int open_table_device(struct table_device *td, dev_t dev,
614 struct mapped_device *md)
615 {
616 static char *_claim_ptr = "I belong to device-mapper";
617 struct block_device *bdev;
618
619 int r;
620
621 BUG_ON(td->dm_dev.bdev);
622
623 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
624 if (IS_ERR(bdev))
625 return PTR_ERR(bdev);
626
627 r = bd_link_disk_holder(bdev, dm_disk(md));
628 if (r) {
629 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
630 return r;
631 }
632
633 td->dm_dev.bdev = bdev;
634 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
635 return 0;
636 }
637
638 /*
639 * Close a table device that we've been using.
640 */
641 static void close_table_device(struct table_device *td, struct mapped_device *md)
642 {
643 if (!td->dm_dev.bdev)
644 return;
645
646 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
647 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
648 put_dax(td->dm_dev.dax_dev);
649 td->dm_dev.bdev = NULL;
650 td->dm_dev.dax_dev = NULL;
651 }
652
653 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
654 fmode_t mode) {
655 struct table_device *td;
656
657 list_for_each_entry(td, l, list)
658 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
659 return td;
660
661 return NULL;
662 }
663
664 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
665 struct dm_dev **result) {
666 int r;
667 struct table_device *td;
668
669 mutex_lock(&md->table_devices_lock);
670 td = find_table_device(&md->table_devices, dev, mode);
671 if (!td) {
672 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
673 if (!td) {
674 mutex_unlock(&md->table_devices_lock);
675 return -ENOMEM;
676 }
677
678 td->dm_dev.mode = mode;
679 td->dm_dev.bdev = NULL;
680
681 if ((r = open_table_device(td, dev, md))) {
682 mutex_unlock(&md->table_devices_lock);
683 kfree(td);
684 return r;
685 }
686
687 format_dev_t(td->dm_dev.name, dev);
688
689 refcount_set(&td->count, 1);
690 list_add(&td->list, &md->table_devices);
691 } else {
692 refcount_inc(&td->count);
693 }
694 mutex_unlock(&md->table_devices_lock);
695
696 *result = &td->dm_dev;
697 return 0;
698 }
699 EXPORT_SYMBOL_GPL(dm_get_table_device);
700
701 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
702 {
703 struct table_device *td = container_of(d, struct table_device, dm_dev);
704
705 mutex_lock(&md->table_devices_lock);
706 if (refcount_dec_and_test(&td->count)) {
707 close_table_device(td, md);
708 list_del(&td->list);
709 kfree(td);
710 }
711 mutex_unlock(&md->table_devices_lock);
712 }
713 EXPORT_SYMBOL(dm_put_table_device);
714
715 static void free_table_devices(struct list_head *devices)
716 {
717 struct list_head *tmp, *next;
718
719 list_for_each_safe(tmp, next, devices) {
720 struct table_device *td = list_entry(tmp, struct table_device, list);
721
722 DMWARN("dm_destroy: %s still exists with %d references",
723 td->dm_dev.name, refcount_read(&td->count));
724 kfree(td);
725 }
726 }
727
728 /*
729 * Get the geometry associated with a dm device
730 */
731 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 {
733 *geo = md->geometry;
734
735 return 0;
736 }
737
738 /*
739 * Set the geometry of a device.
740 */
741 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
742 {
743 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
744
745 if (geo->start > sz) {
746 DMWARN("Start sector is beyond the geometry limits.");
747 return -EINVAL;
748 }
749
750 md->geometry = *geo;
751
752 return 0;
753 }
754
755 /*-----------------------------------------------------------------
756 * CRUD START:
757 * A more elegant soln is in the works that uses the queue
758 * merge fn, unfortunately there are a couple of changes to
759 * the block layer that I want to make for this. So in the
760 * interests of getting something for people to use I give
761 * you this clearly demarcated crap.
762 *---------------------------------------------------------------*/
763
764 static int __noflush_suspending(struct mapped_device *md)
765 {
766 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
767 }
768
769 /*
770 * Decrements the number of outstanding ios that a bio has been
771 * cloned into, completing the original io if necc.
772 */
773 static void dec_pending(struct dm_io *io, blk_status_t error)
774 {
775 unsigned long flags;
776 blk_status_t io_error;
777 struct bio *bio;
778 struct mapped_device *md = io->md;
779
780 /* Push-back supersedes any I/O errors */
781 if (unlikely(error)) {
782 spin_lock_irqsave(&io->endio_lock, flags);
783 if (!(io->status == BLK_STS_DM_REQUEUE &&
784 __noflush_suspending(md)))
785 io->status = error;
786 spin_unlock_irqrestore(&io->endio_lock, flags);
787 }
788
789 if (atomic_dec_and_test(&io->io_count)) {
790 if (io->status == BLK_STS_DM_REQUEUE) {
791 /*
792 * Target requested pushing back the I/O.
793 */
794 spin_lock_irqsave(&md->deferred_lock, flags);
795 if (__noflush_suspending(md))
796 bio_list_add_head(&md->deferred, io->bio);
797 else
798 /* noflush suspend was interrupted. */
799 io->status = BLK_STS_IOERR;
800 spin_unlock_irqrestore(&md->deferred_lock, flags);
801 }
802
803 io_error = io->status;
804 bio = io->bio;
805 end_io_acct(io);
806 free_io(md, io);
807
808 if (io_error == BLK_STS_DM_REQUEUE)
809 return;
810
811 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
812 /*
813 * Preflush done for flush with data, reissue
814 * without REQ_PREFLUSH.
815 */
816 bio->bi_opf &= ~REQ_PREFLUSH;
817 queue_io(md, bio);
818 } else {
819 /* done with normal IO or empty flush */
820 bio->bi_status = io_error;
821 bio_endio(bio);
822 }
823 }
824 }
825
826 void disable_write_same(struct mapped_device *md)
827 {
828 struct queue_limits *limits = dm_get_queue_limits(md);
829
830 /* device doesn't really support WRITE SAME, disable it */
831 limits->max_write_same_sectors = 0;
832 }
833
834 void disable_write_zeroes(struct mapped_device *md)
835 {
836 struct queue_limits *limits = dm_get_queue_limits(md);
837
838 /* device doesn't really support WRITE ZEROES, disable it */
839 limits->max_write_zeroes_sectors = 0;
840 }
841
842 static void clone_endio(struct bio *bio)
843 {
844 blk_status_t error = bio->bi_status;
845 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
846 struct dm_io *io = tio->io;
847 struct mapped_device *md = tio->io->md;
848 dm_endio_fn endio = tio->ti->type->end_io;
849
850 if (unlikely(error == BLK_STS_TARGET)) {
851 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
852 !bio->bi_disk->queue->limits.max_write_same_sectors)
853 disable_write_same(md);
854 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
855 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
856 disable_write_zeroes(md);
857 }
858
859 if (endio) {
860 int r = endio(tio->ti, bio, &error);
861 switch (r) {
862 case DM_ENDIO_REQUEUE:
863 error = BLK_STS_DM_REQUEUE;
864 /*FALLTHRU*/
865 case DM_ENDIO_DONE:
866 break;
867 case DM_ENDIO_INCOMPLETE:
868 /* The target will handle the io */
869 return;
870 default:
871 DMWARN("unimplemented target endio return value: %d", r);
872 BUG();
873 }
874 }
875
876 free_tio(tio);
877 dec_pending(io, error);
878 }
879
880 /*
881 * Return maximum size of I/O possible at the supplied sector up to the current
882 * target boundary.
883 */
884 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
885 {
886 sector_t target_offset = dm_target_offset(ti, sector);
887
888 return ti->len - target_offset;
889 }
890
891 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
892 {
893 sector_t len = max_io_len_target_boundary(sector, ti);
894 sector_t offset, max_len;
895
896 /*
897 * Does the target need to split even further?
898 */
899 if (ti->max_io_len) {
900 offset = dm_target_offset(ti, sector);
901 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
902 max_len = sector_div(offset, ti->max_io_len);
903 else
904 max_len = offset & (ti->max_io_len - 1);
905 max_len = ti->max_io_len - max_len;
906
907 if (len > max_len)
908 len = max_len;
909 }
910
911 return len;
912 }
913
914 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
915 {
916 if (len > UINT_MAX) {
917 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
918 (unsigned long long)len, UINT_MAX);
919 ti->error = "Maximum size of target IO is too large";
920 return -EINVAL;
921 }
922
923 ti->max_io_len = (uint32_t) len;
924
925 return 0;
926 }
927 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
928
929 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
930 sector_t sector, int *srcu_idx)
931 {
932 struct dm_table *map;
933 struct dm_target *ti;
934
935 map = dm_get_live_table(md, srcu_idx);
936 if (!map)
937 return NULL;
938
939 ti = dm_table_find_target(map, sector);
940 if (!dm_target_is_valid(ti))
941 return NULL;
942
943 return ti;
944 }
945
946 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
947 long nr_pages, void **kaddr, pfn_t *pfn)
948 {
949 struct mapped_device *md = dax_get_private(dax_dev);
950 sector_t sector = pgoff * PAGE_SECTORS;
951 struct dm_target *ti;
952 long len, ret = -EIO;
953 int srcu_idx;
954
955 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
956
957 if (!ti)
958 goto out;
959 if (!ti->type->direct_access)
960 goto out;
961 len = max_io_len(sector, ti) / PAGE_SECTORS;
962 if (len < 1)
963 goto out;
964 nr_pages = min(len, nr_pages);
965 if (ti->type->direct_access)
966 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
967
968 out:
969 dm_put_live_table(md, srcu_idx);
970
971 return ret;
972 }
973
974 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
975 void *addr, size_t bytes, struct iov_iter *i)
976 {
977 struct mapped_device *md = dax_get_private(dax_dev);
978 sector_t sector = pgoff * PAGE_SECTORS;
979 struct dm_target *ti;
980 long ret = 0;
981 int srcu_idx;
982
983 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
984
985 if (!ti)
986 goto out;
987 if (!ti->type->dax_copy_from_iter) {
988 ret = copy_from_iter(addr, bytes, i);
989 goto out;
990 }
991 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
992 out:
993 dm_put_live_table(md, srcu_idx);
994
995 return ret;
996 }
997
998 /*
999 * A target may call dm_accept_partial_bio only from the map routine. It is
1000 * allowed for all bio types except REQ_PREFLUSH.
1001 *
1002 * dm_accept_partial_bio informs the dm that the target only wants to process
1003 * additional n_sectors sectors of the bio and the rest of the data should be
1004 * sent in a next bio.
1005 *
1006 * A diagram that explains the arithmetics:
1007 * +--------------------+---------------+-------+
1008 * | 1 | 2 | 3 |
1009 * +--------------------+---------------+-------+
1010 *
1011 * <-------------- *tio->len_ptr --------------->
1012 * <------- bi_size ------->
1013 * <-- n_sectors -->
1014 *
1015 * Region 1 was already iterated over with bio_advance or similar function.
1016 * (it may be empty if the target doesn't use bio_advance)
1017 * Region 2 is the remaining bio size that the target wants to process.
1018 * (it may be empty if region 1 is non-empty, although there is no reason
1019 * to make it empty)
1020 * The target requires that region 3 is to be sent in the next bio.
1021 *
1022 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1023 * the partially processed part (the sum of regions 1+2) must be the same for all
1024 * copies of the bio.
1025 */
1026 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1027 {
1028 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1029 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1030 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1031 BUG_ON(bi_size > *tio->len_ptr);
1032 BUG_ON(n_sectors > bi_size);
1033 *tio->len_ptr -= bi_size - n_sectors;
1034 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1035 }
1036 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1037
1038 /*
1039 * The zone descriptors obtained with a zone report indicate
1040 * zone positions within the target device. The zone descriptors
1041 * must be remapped to match their position within the dm device.
1042 * A target may call dm_remap_zone_report after completion of a
1043 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1044 * from the target device mapping to the dm device.
1045 */
1046 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1047 {
1048 #ifdef CONFIG_BLK_DEV_ZONED
1049 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1050 struct bio *report_bio = tio->io->bio;
1051 struct blk_zone_report_hdr *hdr = NULL;
1052 struct blk_zone *zone;
1053 unsigned int nr_rep = 0;
1054 unsigned int ofst;
1055 struct bio_vec bvec;
1056 struct bvec_iter iter;
1057 void *addr;
1058
1059 if (bio->bi_status)
1060 return;
1061
1062 /*
1063 * Remap the start sector of the reported zones. For sequential zones,
1064 * also remap the write pointer position.
1065 */
1066 bio_for_each_segment(bvec, report_bio, iter) {
1067 addr = kmap_atomic(bvec.bv_page);
1068
1069 /* Remember the report header in the first page */
1070 if (!hdr) {
1071 hdr = addr;
1072 ofst = sizeof(struct blk_zone_report_hdr);
1073 } else
1074 ofst = 0;
1075
1076 /* Set zones start sector */
1077 while (hdr->nr_zones && ofst < bvec.bv_len) {
1078 zone = addr + ofst;
1079 if (zone->start >= start + ti->len) {
1080 hdr->nr_zones = 0;
1081 break;
1082 }
1083 zone->start = zone->start + ti->begin - start;
1084 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1085 if (zone->cond == BLK_ZONE_COND_FULL)
1086 zone->wp = zone->start + zone->len;
1087 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1088 zone->wp = zone->start;
1089 else
1090 zone->wp = zone->wp + ti->begin - start;
1091 }
1092 ofst += sizeof(struct blk_zone);
1093 hdr->nr_zones--;
1094 nr_rep++;
1095 }
1096
1097 if (addr != hdr)
1098 kunmap_atomic(addr);
1099
1100 if (!hdr->nr_zones)
1101 break;
1102 }
1103
1104 if (hdr) {
1105 hdr->nr_zones = nr_rep;
1106 kunmap_atomic(hdr);
1107 }
1108
1109 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1110
1111 #else /* !CONFIG_BLK_DEV_ZONED */
1112 bio->bi_status = BLK_STS_NOTSUPP;
1113 #endif
1114 }
1115 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1116
1117 /*
1118 * Flush current->bio_list when the target map method blocks.
1119 * This fixes deadlocks in snapshot and possibly in other targets.
1120 */
1121 struct dm_offload {
1122 struct blk_plug plug;
1123 struct blk_plug_cb cb;
1124 };
1125
1126 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1127 {
1128 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1129 struct bio_list list;
1130 struct bio *bio;
1131 int i;
1132
1133 INIT_LIST_HEAD(&o->cb.list);
1134
1135 if (unlikely(!current->bio_list))
1136 return;
1137
1138 for (i = 0; i < 2; i++) {
1139 list = current->bio_list[i];
1140 bio_list_init(&current->bio_list[i]);
1141
1142 while ((bio = bio_list_pop(&list))) {
1143 struct bio_set *bs = bio->bi_pool;
1144 if (unlikely(!bs) || bs == fs_bio_set ||
1145 !bs->rescue_workqueue) {
1146 bio_list_add(&current->bio_list[i], bio);
1147 continue;
1148 }
1149
1150 spin_lock(&bs->rescue_lock);
1151 bio_list_add(&bs->rescue_list, bio);
1152 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1153 spin_unlock(&bs->rescue_lock);
1154 }
1155 }
1156 }
1157
1158 static void dm_offload_start(struct dm_offload *o)
1159 {
1160 blk_start_plug(&o->plug);
1161 o->cb.callback = flush_current_bio_list;
1162 list_add(&o->cb.list, &current->plug->cb_list);
1163 }
1164
1165 static void dm_offload_end(struct dm_offload *o)
1166 {
1167 list_del(&o->cb.list);
1168 blk_finish_plug(&o->plug);
1169 }
1170
1171 static void __map_bio(struct dm_target_io *tio)
1172 {
1173 int r;
1174 sector_t sector;
1175 struct dm_offload o;
1176 struct bio *clone = &tio->clone;
1177 struct dm_target *ti = tio->ti;
1178
1179 clone->bi_end_io = clone_endio;
1180
1181 /*
1182 * Map the clone. If r == 0 we don't need to do
1183 * anything, the target has assumed ownership of
1184 * this io.
1185 */
1186 atomic_inc(&tio->io->io_count);
1187 sector = clone->bi_iter.bi_sector;
1188
1189 dm_offload_start(&o);
1190 r = ti->type->map(ti, clone);
1191 dm_offload_end(&o);
1192
1193 switch (r) {
1194 case DM_MAPIO_SUBMITTED:
1195 break;
1196 case DM_MAPIO_REMAPPED:
1197 /* the bio has been remapped so dispatch it */
1198 trace_block_bio_remap(clone->bi_disk->queue, clone,
1199 bio_dev(tio->io->bio), sector);
1200 generic_make_request(clone);
1201 break;
1202 case DM_MAPIO_KILL:
1203 dec_pending(tio->io, BLK_STS_IOERR);
1204 free_tio(tio);
1205 break;
1206 case DM_MAPIO_REQUEUE:
1207 dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1208 free_tio(tio);
1209 break;
1210 default:
1211 DMWARN("unimplemented target map return value: %d", r);
1212 BUG();
1213 }
1214 }
1215
1216 struct clone_info {
1217 struct mapped_device *md;
1218 struct dm_table *map;
1219 struct bio *bio;
1220 struct dm_io *io;
1221 sector_t sector;
1222 unsigned sector_count;
1223 };
1224
1225 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1226 {
1227 bio->bi_iter.bi_sector = sector;
1228 bio->bi_iter.bi_size = to_bytes(len);
1229 }
1230
1231 /*
1232 * Creates a bio that consists of range of complete bvecs.
1233 */
1234 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1235 sector_t sector, unsigned len)
1236 {
1237 struct bio *clone = &tio->clone;
1238
1239 __bio_clone_fast(clone, bio);
1240
1241 if (unlikely(bio_integrity(bio) != NULL)) {
1242 int r;
1243
1244 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1245 !dm_target_passes_integrity(tio->ti->type))) {
1246 DMWARN("%s: the target %s doesn't support integrity data.",
1247 dm_device_name(tio->io->md),
1248 tio->ti->type->name);
1249 return -EIO;
1250 }
1251
1252 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1253 if (r < 0)
1254 return r;
1255 }
1256
1257 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1258 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1259 clone->bi_iter.bi_size = to_bytes(len);
1260
1261 if (unlikely(bio_integrity(bio) != NULL))
1262 bio_integrity_trim(clone);
1263
1264 return 0;
1265 }
1266
1267 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1268 struct dm_target *ti,
1269 unsigned target_bio_nr)
1270 {
1271 struct dm_target_io *tio;
1272 struct bio *clone;
1273
1274 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1275 tio = container_of(clone, struct dm_target_io, clone);
1276
1277 tio->io = ci->io;
1278 tio->ti = ti;
1279 tio->target_bio_nr = target_bio_nr;
1280
1281 return tio;
1282 }
1283
1284 static void __clone_and_map_simple_bio(struct clone_info *ci,
1285 struct dm_target *ti,
1286 unsigned target_bio_nr, unsigned *len)
1287 {
1288 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1289 struct bio *clone = &tio->clone;
1290
1291 tio->len_ptr = len;
1292
1293 __bio_clone_fast(clone, ci->bio);
1294 if (len)
1295 bio_setup_sector(clone, ci->sector, *len);
1296
1297 __map_bio(tio);
1298 }
1299
1300 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1301 unsigned num_bios, unsigned *len)
1302 {
1303 unsigned target_bio_nr;
1304
1305 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1306 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1307 }
1308
1309 static int __send_empty_flush(struct clone_info *ci)
1310 {
1311 unsigned target_nr = 0;
1312 struct dm_target *ti;
1313
1314 BUG_ON(bio_has_data(ci->bio));
1315 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1316 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1317
1318 return 0;
1319 }
1320
1321 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1322 sector_t sector, unsigned *len)
1323 {
1324 struct bio *bio = ci->bio;
1325 struct dm_target_io *tio;
1326 unsigned target_bio_nr;
1327 unsigned num_target_bios = 1;
1328 int r = 0;
1329
1330 /*
1331 * Does the target want to receive duplicate copies of the bio?
1332 */
1333 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1334 num_target_bios = ti->num_write_bios(ti, bio);
1335
1336 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1337 tio = alloc_tio(ci, ti, target_bio_nr);
1338 tio->len_ptr = len;
1339 r = clone_bio(tio, bio, sector, *len);
1340 if (r < 0) {
1341 free_tio(tio);
1342 break;
1343 }
1344 __map_bio(tio);
1345 }
1346
1347 return r;
1348 }
1349
1350 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1351
1352 static unsigned get_num_discard_bios(struct dm_target *ti)
1353 {
1354 return ti->num_discard_bios;
1355 }
1356
1357 static unsigned get_num_write_same_bios(struct dm_target *ti)
1358 {
1359 return ti->num_write_same_bios;
1360 }
1361
1362 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1363 {
1364 return ti->num_write_zeroes_bios;
1365 }
1366
1367 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1368
1369 static bool is_split_required_for_discard(struct dm_target *ti)
1370 {
1371 return ti->split_discard_bios;
1372 }
1373
1374 static int __send_changing_extent_only(struct clone_info *ci,
1375 get_num_bios_fn get_num_bios,
1376 is_split_required_fn is_split_required)
1377 {
1378 struct dm_target *ti;
1379 unsigned len;
1380 unsigned num_bios;
1381
1382 do {
1383 ti = dm_table_find_target(ci->map, ci->sector);
1384 if (!dm_target_is_valid(ti))
1385 return -EIO;
1386
1387 /*
1388 * Even though the device advertised support for this type of
1389 * request, that does not mean every target supports it, and
1390 * reconfiguration might also have changed that since the
1391 * check was performed.
1392 */
1393 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1394 if (!num_bios)
1395 return -EOPNOTSUPP;
1396
1397 if (is_split_required && !is_split_required(ti))
1398 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1399 else
1400 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1401
1402 __send_duplicate_bios(ci, ti, num_bios, &len);
1403
1404 ci->sector += len;
1405 } while (ci->sector_count -= len);
1406
1407 return 0;
1408 }
1409
1410 static int __send_discard(struct clone_info *ci)
1411 {
1412 return __send_changing_extent_only(ci, get_num_discard_bios,
1413 is_split_required_for_discard);
1414 }
1415
1416 static int __send_write_same(struct clone_info *ci)
1417 {
1418 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1419 }
1420
1421 static int __send_write_zeroes(struct clone_info *ci)
1422 {
1423 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1424 }
1425
1426 /*
1427 * Select the correct strategy for processing a non-flush bio.
1428 */
1429 static int __split_and_process_non_flush(struct clone_info *ci)
1430 {
1431 struct bio *bio = ci->bio;
1432 struct dm_target *ti;
1433 unsigned len;
1434 int r;
1435
1436 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1437 return __send_discard(ci);
1438 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1439 return __send_write_same(ci);
1440 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1441 return __send_write_zeroes(ci);
1442
1443 ti = dm_table_find_target(ci->map, ci->sector);
1444 if (!dm_target_is_valid(ti))
1445 return -EIO;
1446
1447 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1448 len = ci->sector_count;
1449 else
1450 len = min_t(sector_t, max_io_len(ci->sector, ti),
1451 ci->sector_count);
1452
1453 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1454 if (r < 0)
1455 return r;
1456
1457 ci->sector += len;
1458 ci->sector_count -= len;
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * Entry point to split a bio into clones and submit them to the targets.
1465 */
1466 static void __split_and_process_bio(struct mapped_device *md,
1467 struct dm_table *map, struct bio *bio)
1468 {
1469 struct clone_info ci;
1470 int error = 0;
1471
1472 if (unlikely(!map)) {
1473 bio_io_error(bio);
1474 return;
1475 }
1476
1477 ci.map = map;
1478 ci.md = md;
1479 ci.io = alloc_io(md);
1480 ci.io->status = 0;
1481 atomic_set(&ci.io->io_count, 1);
1482 ci.io->bio = bio;
1483 ci.io->md = md;
1484 spin_lock_init(&ci.io->endio_lock);
1485 ci.sector = bio->bi_iter.bi_sector;
1486
1487 start_io_acct(ci.io);
1488
1489 if (bio->bi_opf & REQ_PREFLUSH) {
1490 ci.bio = &ci.md->flush_bio;
1491 ci.sector_count = 0;
1492 error = __send_empty_flush(&ci);
1493 /* dec_pending submits any data associated with flush */
1494 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1495 ci.bio = bio;
1496 ci.sector_count = 0;
1497 error = __split_and_process_non_flush(&ci);
1498 } else {
1499 ci.bio = bio;
1500 ci.sector_count = bio_sectors(bio);
1501 while (ci.sector_count && !error)
1502 error = __split_and_process_non_flush(&ci);
1503 }
1504
1505 /* drop the extra reference count */
1506 dec_pending(ci.io, errno_to_blk_status(error));
1507 }
1508 /*-----------------------------------------------------------------
1509 * CRUD END
1510 *---------------------------------------------------------------*/
1511
1512 /*
1513 * The request function that just remaps the bio built up by
1514 * dm_merge_bvec.
1515 */
1516 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1517 {
1518 int rw = bio_data_dir(bio);
1519 struct mapped_device *md = q->queuedata;
1520 int srcu_idx;
1521 struct dm_table *map;
1522
1523 map = dm_get_live_table(md, &srcu_idx);
1524
1525 generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1526
1527 /* if we're suspended, we have to queue this io for later */
1528 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1529 dm_put_live_table(md, srcu_idx);
1530
1531 if (!(bio->bi_opf & REQ_RAHEAD))
1532 queue_io(md, bio);
1533 else
1534 bio_io_error(bio);
1535 return BLK_QC_T_NONE;
1536 }
1537
1538 __split_and_process_bio(md, map, bio);
1539 dm_put_live_table(md, srcu_idx);
1540 return BLK_QC_T_NONE;
1541 }
1542
1543 static int dm_any_congested(void *congested_data, int bdi_bits)
1544 {
1545 int r = bdi_bits;
1546 struct mapped_device *md = congested_data;
1547 struct dm_table *map;
1548
1549 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1550 if (dm_request_based(md)) {
1551 /*
1552 * With request-based DM we only need to check the
1553 * top-level queue for congestion.
1554 */
1555 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1556 } else {
1557 map = dm_get_live_table_fast(md);
1558 if (map)
1559 r = dm_table_any_congested(map, bdi_bits);
1560 dm_put_live_table_fast(md);
1561 }
1562 }
1563
1564 return r;
1565 }
1566
1567 /*-----------------------------------------------------------------
1568 * An IDR is used to keep track of allocated minor numbers.
1569 *---------------------------------------------------------------*/
1570 static void free_minor(int minor)
1571 {
1572 spin_lock(&_minor_lock);
1573 idr_remove(&_minor_idr, minor);
1574 spin_unlock(&_minor_lock);
1575 }
1576
1577 /*
1578 * See if the device with a specific minor # is free.
1579 */
1580 static int specific_minor(int minor)
1581 {
1582 int r;
1583
1584 if (minor >= (1 << MINORBITS))
1585 return -EINVAL;
1586
1587 idr_preload(GFP_KERNEL);
1588 spin_lock(&_minor_lock);
1589
1590 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1591
1592 spin_unlock(&_minor_lock);
1593 idr_preload_end();
1594 if (r < 0)
1595 return r == -ENOSPC ? -EBUSY : r;
1596 return 0;
1597 }
1598
1599 static int next_free_minor(int *minor)
1600 {
1601 int r;
1602
1603 idr_preload(GFP_KERNEL);
1604 spin_lock(&_minor_lock);
1605
1606 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1607
1608 spin_unlock(&_minor_lock);
1609 idr_preload_end();
1610 if (r < 0)
1611 return r;
1612 *minor = r;
1613 return 0;
1614 }
1615
1616 static const struct block_device_operations dm_blk_dops;
1617 static const struct dax_operations dm_dax_ops;
1618
1619 static void dm_wq_work(struct work_struct *work);
1620
1621 void dm_init_md_queue(struct mapped_device *md)
1622 {
1623 /*
1624 * Initialize data that will only be used by a non-blk-mq DM queue
1625 * - must do so here (in alloc_dev callchain) before queue is used
1626 */
1627 md->queue->queuedata = md;
1628 md->queue->backing_dev_info->congested_data = md;
1629 }
1630
1631 void dm_init_normal_md_queue(struct mapped_device *md)
1632 {
1633 md->use_blk_mq = false;
1634 dm_init_md_queue(md);
1635
1636 /*
1637 * Initialize aspects of queue that aren't relevant for blk-mq
1638 */
1639 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1640 }
1641
1642 static void cleanup_mapped_device(struct mapped_device *md)
1643 {
1644 if (md->wq)
1645 destroy_workqueue(md->wq);
1646 if (md->kworker_task)
1647 kthread_stop(md->kworker_task);
1648 mempool_destroy(md->io_pool);
1649 if (md->bs)
1650 bioset_free(md->bs);
1651
1652 if (md->dax_dev) {
1653 kill_dax(md->dax_dev);
1654 put_dax(md->dax_dev);
1655 md->dax_dev = NULL;
1656 }
1657
1658 if (md->disk) {
1659 spin_lock(&_minor_lock);
1660 md->disk->private_data = NULL;
1661 spin_unlock(&_minor_lock);
1662 del_gendisk(md->disk);
1663 put_disk(md->disk);
1664 }
1665
1666 if (md->queue)
1667 blk_cleanup_queue(md->queue);
1668
1669 cleanup_srcu_struct(&md->io_barrier);
1670
1671 if (md->bdev) {
1672 bdput(md->bdev);
1673 md->bdev = NULL;
1674 }
1675
1676 dm_mq_cleanup_mapped_device(md);
1677 }
1678
1679 /*
1680 * Allocate and initialise a blank device with a given minor.
1681 */
1682 static struct mapped_device *alloc_dev(int minor)
1683 {
1684 int r, numa_node_id = dm_get_numa_node();
1685 struct dax_device *dax_dev;
1686 struct mapped_device *md;
1687 void *old_md;
1688
1689 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1690 if (!md) {
1691 DMWARN("unable to allocate device, out of memory.");
1692 return NULL;
1693 }
1694
1695 if (!try_module_get(THIS_MODULE))
1696 goto bad_module_get;
1697
1698 /* get a minor number for the dev */
1699 if (minor == DM_ANY_MINOR)
1700 r = next_free_minor(&minor);
1701 else
1702 r = specific_minor(minor);
1703 if (r < 0)
1704 goto bad_minor;
1705
1706 r = init_srcu_struct(&md->io_barrier);
1707 if (r < 0)
1708 goto bad_io_barrier;
1709
1710 md->numa_node_id = numa_node_id;
1711 md->use_blk_mq = dm_use_blk_mq_default();
1712 md->init_tio_pdu = false;
1713 md->type = DM_TYPE_NONE;
1714 mutex_init(&md->suspend_lock);
1715 mutex_init(&md->type_lock);
1716 mutex_init(&md->table_devices_lock);
1717 spin_lock_init(&md->deferred_lock);
1718 atomic_set(&md->holders, 1);
1719 atomic_set(&md->open_count, 0);
1720 atomic_set(&md->event_nr, 0);
1721 atomic_set(&md->uevent_seq, 0);
1722 INIT_LIST_HEAD(&md->uevent_list);
1723 INIT_LIST_HEAD(&md->table_devices);
1724 spin_lock_init(&md->uevent_lock);
1725
1726 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1727 if (!md->queue)
1728 goto bad;
1729
1730 dm_init_md_queue(md);
1731
1732 md->disk = alloc_disk_node(1, numa_node_id);
1733 if (!md->disk)
1734 goto bad;
1735
1736 atomic_set(&md->pending[0], 0);
1737 atomic_set(&md->pending[1], 0);
1738 init_waitqueue_head(&md->wait);
1739 INIT_WORK(&md->work, dm_wq_work);
1740 init_waitqueue_head(&md->eventq);
1741 init_completion(&md->kobj_holder.completion);
1742 md->kworker_task = NULL;
1743
1744 md->disk->major = _major;
1745 md->disk->first_minor = minor;
1746 md->disk->fops = &dm_blk_dops;
1747 md->disk->queue = md->queue;
1748 md->disk->private_data = md;
1749 sprintf(md->disk->disk_name, "dm-%d", minor);
1750
1751 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1752 if (!dax_dev)
1753 goto bad;
1754 md->dax_dev = dax_dev;
1755
1756 add_disk(md->disk);
1757 format_dev_t(md->name, MKDEV(_major, minor));
1758
1759 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1760 if (!md->wq)
1761 goto bad;
1762
1763 md->bdev = bdget_disk(md->disk, 0);
1764 if (!md->bdev)
1765 goto bad;
1766
1767 bio_init(&md->flush_bio, NULL, 0);
1768 bio_set_dev(&md->flush_bio, md->bdev);
1769 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1770
1771 dm_stats_init(&md->stats);
1772
1773 /* Populate the mapping, nobody knows we exist yet */
1774 spin_lock(&_minor_lock);
1775 old_md = idr_replace(&_minor_idr, md, minor);
1776 spin_unlock(&_minor_lock);
1777
1778 BUG_ON(old_md != MINOR_ALLOCED);
1779
1780 return md;
1781
1782 bad:
1783 cleanup_mapped_device(md);
1784 bad_io_barrier:
1785 free_minor(minor);
1786 bad_minor:
1787 module_put(THIS_MODULE);
1788 bad_module_get:
1789 kvfree(md);
1790 return NULL;
1791 }
1792
1793 static void unlock_fs(struct mapped_device *md);
1794
1795 static void free_dev(struct mapped_device *md)
1796 {
1797 int minor = MINOR(disk_devt(md->disk));
1798
1799 unlock_fs(md);
1800
1801 cleanup_mapped_device(md);
1802
1803 free_table_devices(&md->table_devices);
1804 dm_stats_cleanup(&md->stats);
1805 free_minor(minor);
1806
1807 module_put(THIS_MODULE);
1808 kvfree(md);
1809 }
1810
1811 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1812 {
1813 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1814
1815 if (md->bs) {
1816 /* The md already has necessary mempools. */
1817 if (dm_table_bio_based(t)) {
1818 /*
1819 * Reload bioset because front_pad may have changed
1820 * because a different table was loaded.
1821 */
1822 bioset_free(md->bs);
1823 md->bs = p->bs;
1824 p->bs = NULL;
1825 }
1826 /*
1827 * There's no need to reload with request-based dm
1828 * because the size of front_pad doesn't change.
1829 * Note for future: If you are to reload bioset,
1830 * prep-ed requests in the queue may refer
1831 * to bio from the old bioset, so you must walk
1832 * through the queue to unprep.
1833 */
1834 goto out;
1835 }
1836
1837 BUG_ON(!p || md->io_pool || md->bs);
1838
1839 md->io_pool = p->io_pool;
1840 p->io_pool = NULL;
1841 md->bs = p->bs;
1842 p->bs = NULL;
1843
1844 out:
1845 /* mempool bind completed, no longer need any mempools in the table */
1846 dm_table_free_md_mempools(t);
1847 }
1848
1849 /*
1850 * Bind a table to the device.
1851 */
1852 static void event_callback(void *context)
1853 {
1854 unsigned long flags;
1855 LIST_HEAD(uevents);
1856 struct mapped_device *md = (struct mapped_device *) context;
1857
1858 spin_lock_irqsave(&md->uevent_lock, flags);
1859 list_splice_init(&md->uevent_list, &uevents);
1860 spin_unlock_irqrestore(&md->uevent_lock, flags);
1861
1862 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1863
1864 atomic_inc(&md->event_nr);
1865 wake_up(&md->eventq);
1866 dm_issue_global_event();
1867 }
1868
1869 /*
1870 * Protected by md->suspend_lock obtained by dm_swap_table().
1871 */
1872 static void __set_size(struct mapped_device *md, sector_t size)
1873 {
1874 lockdep_assert_held(&md->suspend_lock);
1875
1876 set_capacity(md->disk, size);
1877
1878 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1879 }
1880
1881 /*
1882 * Returns old map, which caller must destroy.
1883 */
1884 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1885 struct queue_limits *limits)
1886 {
1887 struct dm_table *old_map;
1888 struct request_queue *q = md->queue;
1889 sector_t size;
1890
1891 lockdep_assert_held(&md->suspend_lock);
1892
1893 size = dm_table_get_size(t);
1894
1895 /*
1896 * Wipe any geometry if the size of the table changed.
1897 */
1898 if (size != dm_get_size(md))
1899 memset(&md->geometry, 0, sizeof(md->geometry));
1900
1901 __set_size(md, size);
1902
1903 dm_table_event_callback(t, event_callback, md);
1904
1905 /*
1906 * The queue hasn't been stopped yet, if the old table type wasn't
1907 * for request-based during suspension. So stop it to prevent
1908 * I/O mapping before resume.
1909 * This must be done before setting the queue restrictions,
1910 * because request-based dm may be run just after the setting.
1911 */
1912 if (dm_table_request_based(t)) {
1913 dm_stop_queue(q);
1914 /*
1915 * Leverage the fact that request-based DM targets are
1916 * immutable singletons and establish md->immutable_target
1917 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1918 */
1919 md->immutable_target = dm_table_get_immutable_target(t);
1920 }
1921
1922 __bind_mempools(md, t);
1923
1924 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1925 rcu_assign_pointer(md->map, (void *)t);
1926 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1927
1928 dm_table_set_restrictions(t, q, limits);
1929 if (old_map)
1930 dm_sync_table(md);
1931
1932 return old_map;
1933 }
1934
1935 /*
1936 * Returns unbound table for the caller to free.
1937 */
1938 static struct dm_table *__unbind(struct mapped_device *md)
1939 {
1940 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1941
1942 if (!map)
1943 return NULL;
1944
1945 dm_table_event_callback(map, NULL, NULL);
1946 RCU_INIT_POINTER(md->map, NULL);
1947 dm_sync_table(md);
1948
1949 return map;
1950 }
1951
1952 /*
1953 * Constructor for a new device.
1954 */
1955 int dm_create(int minor, struct mapped_device **result)
1956 {
1957 struct mapped_device *md;
1958
1959 md = alloc_dev(minor);
1960 if (!md)
1961 return -ENXIO;
1962
1963 dm_sysfs_init(md);
1964
1965 *result = md;
1966 return 0;
1967 }
1968
1969 /*
1970 * Functions to manage md->type.
1971 * All are required to hold md->type_lock.
1972 */
1973 void dm_lock_md_type(struct mapped_device *md)
1974 {
1975 mutex_lock(&md->type_lock);
1976 }
1977
1978 void dm_unlock_md_type(struct mapped_device *md)
1979 {
1980 mutex_unlock(&md->type_lock);
1981 }
1982
1983 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1984 {
1985 BUG_ON(!mutex_is_locked(&md->type_lock));
1986 md->type = type;
1987 }
1988
1989 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1990 {
1991 return md->type;
1992 }
1993
1994 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1995 {
1996 return md->immutable_target_type;
1997 }
1998
1999 /*
2000 * The queue_limits are only valid as long as you have a reference
2001 * count on 'md'.
2002 */
2003 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2004 {
2005 BUG_ON(!atomic_read(&md->holders));
2006 return &md->queue->limits;
2007 }
2008 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2009
2010 /*
2011 * Setup the DM device's queue based on md's type
2012 */
2013 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2014 {
2015 int r;
2016 enum dm_queue_mode type = dm_get_md_type(md);
2017
2018 switch (type) {
2019 case DM_TYPE_REQUEST_BASED:
2020 r = dm_old_init_request_queue(md, t);
2021 if (r) {
2022 DMERR("Cannot initialize queue for request-based mapped device");
2023 return r;
2024 }
2025 break;
2026 case DM_TYPE_MQ_REQUEST_BASED:
2027 r = dm_mq_init_request_queue(md, t);
2028 if (r) {
2029 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2030 return r;
2031 }
2032 break;
2033 case DM_TYPE_BIO_BASED:
2034 case DM_TYPE_DAX_BIO_BASED:
2035 dm_init_normal_md_queue(md);
2036 blk_queue_make_request(md->queue, dm_make_request);
2037 /*
2038 * DM handles splitting bios as needed. Free the bio_split bioset
2039 * since it won't be used (saves 1 process per bio-based DM device).
2040 */
2041 bioset_free(md->queue->bio_split);
2042 md->queue->bio_split = NULL;
2043
2044 if (type == DM_TYPE_DAX_BIO_BASED)
2045 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2046 break;
2047 case DM_TYPE_NONE:
2048 WARN_ON_ONCE(true);
2049 break;
2050 }
2051
2052 return 0;
2053 }
2054
2055 struct mapped_device *dm_get_md(dev_t dev)
2056 {
2057 struct mapped_device *md;
2058 unsigned minor = MINOR(dev);
2059
2060 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2061 return NULL;
2062
2063 spin_lock(&_minor_lock);
2064
2065 md = idr_find(&_minor_idr, minor);
2066 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2067 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2068 md = NULL;
2069 goto out;
2070 }
2071 dm_get(md);
2072 out:
2073 spin_unlock(&_minor_lock);
2074
2075 return md;
2076 }
2077 EXPORT_SYMBOL_GPL(dm_get_md);
2078
2079 void *dm_get_mdptr(struct mapped_device *md)
2080 {
2081 return md->interface_ptr;
2082 }
2083
2084 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2085 {
2086 md->interface_ptr = ptr;
2087 }
2088
2089 void dm_get(struct mapped_device *md)
2090 {
2091 atomic_inc(&md->holders);
2092 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2093 }
2094
2095 int dm_hold(struct mapped_device *md)
2096 {
2097 spin_lock(&_minor_lock);
2098 if (test_bit(DMF_FREEING, &md->flags)) {
2099 spin_unlock(&_minor_lock);
2100 return -EBUSY;
2101 }
2102 dm_get(md);
2103 spin_unlock(&_minor_lock);
2104 return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(dm_hold);
2107
2108 const char *dm_device_name(struct mapped_device *md)
2109 {
2110 return md->name;
2111 }
2112 EXPORT_SYMBOL_GPL(dm_device_name);
2113
2114 static void __dm_destroy(struct mapped_device *md, bool wait)
2115 {
2116 struct request_queue *q = dm_get_md_queue(md);
2117 struct dm_table *map;
2118 int srcu_idx;
2119
2120 might_sleep();
2121
2122 spin_lock(&_minor_lock);
2123 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2124 set_bit(DMF_FREEING, &md->flags);
2125 spin_unlock(&_minor_lock);
2126
2127 blk_set_queue_dying(q);
2128
2129 if (dm_request_based(md) && md->kworker_task)
2130 kthread_flush_worker(&md->kworker);
2131
2132 /*
2133 * Take suspend_lock so that presuspend and postsuspend methods
2134 * do not race with internal suspend.
2135 */
2136 mutex_lock(&md->suspend_lock);
2137 map = dm_get_live_table(md, &srcu_idx);
2138 if (!dm_suspended_md(md)) {
2139 dm_table_presuspend_targets(map);
2140 dm_table_postsuspend_targets(map);
2141 }
2142 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2143 dm_put_live_table(md, srcu_idx);
2144 mutex_unlock(&md->suspend_lock);
2145
2146 /*
2147 * Rare, but there may be I/O requests still going to complete,
2148 * for example. Wait for all references to disappear.
2149 * No one should increment the reference count of the mapped_device,
2150 * after the mapped_device state becomes DMF_FREEING.
2151 */
2152 if (wait)
2153 while (atomic_read(&md->holders))
2154 msleep(1);
2155 else if (atomic_read(&md->holders))
2156 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2157 dm_device_name(md), atomic_read(&md->holders));
2158
2159 dm_sysfs_exit(md);
2160 dm_table_destroy(__unbind(md));
2161 free_dev(md);
2162 }
2163
2164 void dm_destroy(struct mapped_device *md)
2165 {
2166 __dm_destroy(md, true);
2167 }
2168
2169 void dm_destroy_immediate(struct mapped_device *md)
2170 {
2171 __dm_destroy(md, false);
2172 }
2173
2174 void dm_put(struct mapped_device *md)
2175 {
2176 atomic_dec(&md->holders);
2177 }
2178 EXPORT_SYMBOL_GPL(dm_put);
2179
2180 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2181 {
2182 int r = 0;
2183 DEFINE_WAIT(wait);
2184
2185 while (1) {
2186 prepare_to_wait(&md->wait, &wait, task_state);
2187
2188 if (!md_in_flight(md))
2189 break;
2190
2191 if (signal_pending_state(task_state, current)) {
2192 r = -EINTR;
2193 break;
2194 }
2195
2196 io_schedule();
2197 }
2198 finish_wait(&md->wait, &wait);
2199
2200 return r;
2201 }
2202
2203 /*
2204 * Process the deferred bios
2205 */
2206 static void dm_wq_work(struct work_struct *work)
2207 {
2208 struct mapped_device *md = container_of(work, struct mapped_device,
2209 work);
2210 struct bio *c;
2211 int srcu_idx;
2212 struct dm_table *map;
2213
2214 map = dm_get_live_table(md, &srcu_idx);
2215
2216 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2217 spin_lock_irq(&md->deferred_lock);
2218 c = bio_list_pop(&md->deferred);
2219 spin_unlock_irq(&md->deferred_lock);
2220
2221 if (!c)
2222 break;
2223
2224 if (dm_request_based(md))
2225 generic_make_request(c);
2226 else
2227 __split_and_process_bio(md, map, c);
2228 }
2229
2230 dm_put_live_table(md, srcu_idx);
2231 }
2232
2233 static void dm_queue_flush(struct mapped_device *md)
2234 {
2235 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2236 smp_mb__after_atomic();
2237 queue_work(md->wq, &md->work);
2238 }
2239
2240 /*
2241 * Swap in a new table, returning the old one for the caller to destroy.
2242 */
2243 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2244 {
2245 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2246 struct queue_limits limits;
2247 int r;
2248
2249 mutex_lock(&md->suspend_lock);
2250
2251 /* device must be suspended */
2252 if (!dm_suspended_md(md))
2253 goto out;
2254
2255 /*
2256 * If the new table has no data devices, retain the existing limits.
2257 * This helps multipath with queue_if_no_path if all paths disappear,
2258 * then new I/O is queued based on these limits, and then some paths
2259 * reappear.
2260 */
2261 if (dm_table_has_no_data_devices(table)) {
2262 live_map = dm_get_live_table_fast(md);
2263 if (live_map)
2264 limits = md->queue->limits;
2265 dm_put_live_table_fast(md);
2266 }
2267
2268 if (!live_map) {
2269 r = dm_calculate_queue_limits(table, &limits);
2270 if (r) {
2271 map = ERR_PTR(r);
2272 goto out;
2273 }
2274 }
2275
2276 map = __bind(md, table, &limits);
2277 dm_issue_global_event();
2278
2279 out:
2280 mutex_unlock(&md->suspend_lock);
2281 return map;
2282 }
2283
2284 /*
2285 * Functions to lock and unlock any filesystem running on the
2286 * device.
2287 */
2288 static int lock_fs(struct mapped_device *md)
2289 {
2290 int r;
2291
2292 WARN_ON(md->frozen_sb);
2293
2294 md->frozen_sb = freeze_bdev(md->bdev);
2295 if (IS_ERR(md->frozen_sb)) {
2296 r = PTR_ERR(md->frozen_sb);
2297 md->frozen_sb = NULL;
2298 return r;
2299 }
2300
2301 set_bit(DMF_FROZEN, &md->flags);
2302
2303 return 0;
2304 }
2305
2306 static void unlock_fs(struct mapped_device *md)
2307 {
2308 if (!test_bit(DMF_FROZEN, &md->flags))
2309 return;
2310
2311 thaw_bdev(md->bdev, md->frozen_sb);
2312 md->frozen_sb = NULL;
2313 clear_bit(DMF_FROZEN, &md->flags);
2314 }
2315
2316 /*
2317 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2318 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2319 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2320 *
2321 * If __dm_suspend returns 0, the device is completely quiescent
2322 * now. There is no request-processing activity. All new requests
2323 * are being added to md->deferred list.
2324 */
2325 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2326 unsigned suspend_flags, long task_state,
2327 int dmf_suspended_flag)
2328 {
2329 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2330 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2331 int r;
2332
2333 lockdep_assert_held(&md->suspend_lock);
2334
2335 /*
2336 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2337 * This flag is cleared before dm_suspend returns.
2338 */
2339 if (noflush)
2340 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2341 else
2342 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2343
2344 /*
2345 * This gets reverted if there's an error later and the targets
2346 * provide the .presuspend_undo hook.
2347 */
2348 dm_table_presuspend_targets(map);
2349
2350 /*
2351 * Flush I/O to the device.
2352 * Any I/O submitted after lock_fs() may not be flushed.
2353 * noflush takes precedence over do_lockfs.
2354 * (lock_fs() flushes I/Os and waits for them to complete.)
2355 */
2356 if (!noflush && do_lockfs) {
2357 r = lock_fs(md);
2358 if (r) {
2359 dm_table_presuspend_undo_targets(map);
2360 return r;
2361 }
2362 }
2363
2364 /*
2365 * Here we must make sure that no processes are submitting requests
2366 * to target drivers i.e. no one may be executing
2367 * __split_and_process_bio. This is called from dm_request and
2368 * dm_wq_work.
2369 *
2370 * To get all processes out of __split_and_process_bio in dm_request,
2371 * we take the write lock. To prevent any process from reentering
2372 * __split_and_process_bio from dm_request and quiesce the thread
2373 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2374 * flush_workqueue(md->wq).
2375 */
2376 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2377 if (map)
2378 synchronize_srcu(&md->io_barrier);
2379
2380 /*
2381 * Stop md->queue before flushing md->wq in case request-based
2382 * dm defers requests to md->wq from md->queue.
2383 */
2384 if (dm_request_based(md)) {
2385 dm_stop_queue(md->queue);
2386 if (md->kworker_task)
2387 kthread_flush_worker(&md->kworker);
2388 }
2389
2390 flush_workqueue(md->wq);
2391
2392 /*
2393 * At this point no more requests are entering target request routines.
2394 * We call dm_wait_for_completion to wait for all existing requests
2395 * to finish.
2396 */
2397 r = dm_wait_for_completion(md, task_state);
2398 if (!r)
2399 set_bit(dmf_suspended_flag, &md->flags);
2400
2401 if (noflush)
2402 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2403 if (map)
2404 synchronize_srcu(&md->io_barrier);
2405
2406 /* were we interrupted ? */
2407 if (r < 0) {
2408 dm_queue_flush(md);
2409
2410 if (dm_request_based(md))
2411 dm_start_queue(md->queue);
2412
2413 unlock_fs(md);
2414 dm_table_presuspend_undo_targets(map);
2415 /* pushback list is already flushed, so skip flush */
2416 }
2417
2418 return r;
2419 }
2420
2421 /*
2422 * We need to be able to change a mapping table under a mounted
2423 * filesystem. For example we might want to move some data in
2424 * the background. Before the table can be swapped with
2425 * dm_bind_table, dm_suspend must be called to flush any in
2426 * flight bios and ensure that any further io gets deferred.
2427 */
2428 /*
2429 * Suspend mechanism in request-based dm.
2430 *
2431 * 1. Flush all I/Os by lock_fs() if needed.
2432 * 2. Stop dispatching any I/O by stopping the request_queue.
2433 * 3. Wait for all in-flight I/Os to be completed or requeued.
2434 *
2435 * To abort suspend, start the request_queue.
2436 */
2437 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2438 {
2439 struct dm_table *map = NULL;
2440 int r = 0;
2441
2442 retry:
2443 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2444
2445 if (dm_suspended_md(md)) {
2446 r = -EINVAL;
2447 goto out_unlock;
2448 }
2449
2450 if (dm_suspended_internally_md(md)) {
2451 /* already internally suspended, wait for internal resume */
2452 mutex_unlock(&md->suspend_lock);
2453 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2454 if (r)
2455 return r;
2456 goto retry;
2457 }
2458
2459 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2460
2461 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2462 if (r)
2463 goto out_unlock;
2464
2465 dm_table_postsuspend_targets(map);
2466
2467 out_unlock:
2468 mutex_unlock(&md->suspend_lock);
2469 return r;
2470 }
2471
2472 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2473 {
2474 if (map) {
2475 int r = dm_table_resume_targets(map);
2476 if (r)
2477 return r;
2478 }
2479
2480 dm_queue_flush(md);
2481
2482 /*
2483 * Flushing deferred I/Os must be done after targets are resumed
2484 * so that mapping of targets can work correctly.
2485 * Request-based dm is queueing the deferred I/Os in its request_queue.
2486 */
2487 if (dm_request_based(md))
2488 dm_start_queue(md->queue);
2489
2490 unlock_fs(md);
2491
2492 return 0;
2493 }
2494
2495 int dm_resume(struct mapped_device *md)
2496 {
2497 int r;
2498 struct dm_table *map = NULL;
2499
2500 retry:
2501 r = -EINVAL;
2502 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2503
2504 if (!dm_suspended_md(md))
2505 goto out;
2506
2507 if (dm_suspended_internally_md(md)) {
2508 /* already internally suspended, wait for internal resume */
2509 mutex_unlock(&md->suspend_lock);
2510 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2511 if (r)
2512 return r;
2513 goto retry;
2514 }
2515
2516 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2517 if (!map || !dm_table_get_size(map))
2518 goto out;
2519
2520 r = __dm_resume(md, map);
2521 if (r)
2522 goto out;
2523
2524 clear_bit(DMF_SUSPENDED, &md->flags);
2525 out:
2526 mutex_unlock(&md->suspend_lock);
2527
2528 return r;
2529 }
2530
2531 /*
2532 * Internal suspend/resume works like userspace-driven suspend. It waits
2533 * until all bios finish and prevents issuing new bios to the target drivers.
2534 * It may be used only from the kernel.
2535 */
2536
2537 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2538 {
2539 struct dm_table *map = NULL;
2540
2541 lockdep_assert_held(&md->suspend_lock);
2542
2543 if (md->internal_suspend_count++)
2544 return; /* nested internal suspend */
2545
2546 if (dm_suspended_md(md)) {
2547 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2548 return; /* nest suspend */
2549 }
2550
2551 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2552
2553 /*
2554 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2555 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2556 * would require changing .presuspend to return an error -- avoid this
2557 * until there is a need for more elaborate variants of internal suspend.
2558 */
2559 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2560 DMF_SUSPENDED_INTERNALLY);
2561
2562 dm_table_postsuspend_targets(map);
2563 }
2564
2565 static void __dm_internal_resume(struct mapped_device *md)
2566 {
2567 BUG_ON(!md->internal_suspend_count);
2568
2569 if (--md->internal_suspend_count)
2570 return; /* resume from nested internal suspend */
2571
2572 if (dm_suspended_md(md))
2573 goto done; /* resume from nested suspend */
2574
2575 /*
2576 * NOTE: existing callers don't need to call dm_table_resume_targets
2577 * (which may fail -- so best to avoid it for now by passing NULL map)
2578 */
2579 (void) __dm_resume(md, NULL);
2580
2581 done:
2582 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2583 smp_mb__after_atomic();
2584 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2585 }
2586
2587 void dm_internal_suspend_noflush(struct mapped_device *md)
2588 {
2589 mutex_lock(&md->suspend_lock);
2590 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2591 mutex_unlock(&md->suspend_lock);
2592 }
2593 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2594
2595 void dm_internal_resume(struct mapped_device *md)
2596 {
2597 mutex_lock(&md->suspend_lock);
2598 __dm_internal_resume(md);
2599 mutex_unlock(&md->suspend_lock);
2600 }
2601 EXPORT_SYMBOL_GPL(dm_internal_resume);
2602
2603 /*
2604 * Fast variants of internal suspend/resume hold md->suspend_lock,
2605 * which prevents interaction with userspace-driven suspend.
2606 */
2607
2608 void dm_internal_suspend_fast(struct mapped_device *md)
2609 {
2610 mutex_lock(&md->suspend_lock);
2611 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2612 return;
2613
2614 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2615 synchronize_srcu(&md->io_barrier);
2616 flush_workqueue(md->wq);
2617 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2618 }
2619 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2620
2621 void dm_internal_resume_fast(struct mapped_device *md)
2622 {
2623 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2624 goto done;
2625
2626 dm_queue_flush(md);
2627
2628 done:
2629 mutex_unlock(&md->suspend_lock);
2630 }
2631 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2632
2633 /*-----------------------------------------------------------------
2634 * Event notification.
2635 *---------------------------------------------------------------*/
2636 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2637 unsigned cookie)
2638 {
2639 char udev_cookie[DM_COOKIE_LENGTH];
2640 char *envp[] = { udev_cookie, NULL };
2641
2642 if (!cookie)
2643 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2644 else {
2645 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2646 DM_COOKIE_ENV_VAR_NAME, cookie);
2647 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2648 action, envp);
2649 }
2650 }
2651
2652 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2653 {
2654 return atomic_add_return(1, &md->uevent_seq);
2655 }
2656
2657 uint32_t dm_get_event_nr(struct mapped_device *md)
2658 {
2659 return atomic_read(&md->event_nr);
2660 }
2661
2662 int dm_wait_event(struct mapped_device *md, int event_nr)
2663 {
2664 return wait_event_interruptible(md->eventq,
2665 (event_nr != atomic_read(&md->event_nr)));
2666 }
2667
2668 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2669 {
2670 unsigned long flags;
2671
2672 spin_lock_irqsave(&md->uevent_lock, flags);
2673 list_add(elist, &md->uevent_list);
2674 spin_unlock_irqrestore(&md->uevent_lock, flags);
2675 }
2676
2677 /*
2678 * The gendisk is only valid as long as you have a reference
2679 * count on 'md'.
2680 */
2681 struct gendisk *dm_disk(struct mapped_device *md)
2682 {
2683 return md->disk;
2684 }
2685 EXPORT_SYMBOL_GPL(dm_disk);
2686
2687 struct kobject *dm_kobject(struct mapped_device *md)
2688 {
2689 return &md->kobj_holder.kobj;
2690 }
2691
2692 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2693 {
2694 struct mapped_device *md;
2695
2696 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2697
2698 spin_lock(&_minor_lock);
2699 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2700 md = NULL;
2701 goto out;
2702 }
2703 dm_get(md);
2704 out:
2705 spin_unlock(&_minor_lock);
2706
2707 return md;
2708 }
2709
2710 int dm_suspended_md(struct mapped_device *md)
2711 {
2712 return test_bit(DMF_SUSPENDED, &md->flags);
2713 }
2714
2715 int dm_suspended_internally_md(struct mapped_device *md)
2716 {
2717 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2718 }
2719
2720 int dm_test_deferred_remove_flag(struct mapped_device *md)
2721 {
2722 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2723 }
2724
2725 int dm_suspended(struct dm_target *ti)
2726 {
2727 return dm_suspended_md(dm_table_get_md(ti->table));
2728 }
2729 EXPORT_SYMBOL_GPL(dm_suspended);
2730
2731 int dm_noflush_suspending(struct dm_target *ti)
2732 {
2733 return __noflush_suspending(dm_table_get_md(ti->table));
2734 }
2735 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2736
2737 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2738 unsigned integrity, unsigned per_io_data_size)
2739 {
2740 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2741 unsigned int pool_size = 0;
2742 unsigned int front_pad;
2743
2744 if (!pools)
2745 return NULL;
2746
2747 switch (type) {
2748 case DM_TYPE_BIO_BASED:
2749 case DM_TYPE_DAX_BIO_BASED:
2750 pool_size = dm_get_reserved_bio_based_ios();
2751 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2752
2753 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2754 if (!pools->io_pool)
2755 goto out;
2756 break;
2757 case DM_TYPE_REQUEST_BASED:
2758 case DM_TYPE_MQ_REQUEST_BASED:
2759 pool_size = dm_get_reserved_rq_based_ios();
2760 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2761 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2762 break;
2763 default:
2764 BUG();
2765 }
2766
2767 pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2768 if (!pools->bs)
2769 goto out;
2770
2771 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2772 goto out;
2773
2774 return pools;
2775
2776 out:
2777 dm_free_md_mempools(pools);
2778
2779 return NULL;
2780 }
2781
2782 void dm_free_md_mempools(struct dm_md_mempools *pools)
2783 {
2784 if (!pools)
2785 return;
2786
2787 mempool_destroy(pools->io_pool);
2788
2789 if (pools->bs)
2790 bioset_free(pools->bs);
2791
2792 kfree(pools);
2793 }
2794
2795 struct dm_pr {
2796 u64 old_key;
2797 u64 new_key;
2798 u32 flags;
2799 bool fail_early;
2800 };
2801
2802 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2803 void *data)
2804 {
2805 struct mapped_device *md = bdev->bd_disk->private_data;
2806 struct dm_table *table;
2807 struct dm_target *ti;
2808 int ret = -ENOTTY, srcu_idx;
2809
2810 table = dm_get_live_table(md, &srcu_idx);
2811 if (!table || !dm_table_get_size(table))
2812 goto out;
2813
2814 /* We only support devices that have a single target */
2815 if (dm_table_get_num_targets(table) != 1)
2816 goto out;
2817 ti = dm_table_get_target(table, 0);
2818
2819 ret = -EINVAL;
2820 if (!ti->type->iterate_devices)
2821 goto out;
2822
2823 ret = ti->type->iterate_devices(ti, fn, data);
2824 out:
2825 dm_put_live_table(md, srcu_idx);
2826 return ret;
2827 }
2828
2829 /*
2830 * For register / unregister we need to manually call out to every path.
2831 */
2832 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2833 sector_t start, sector_t len, void *data)
2834 {
2835 struct dm_pr *pr = data;
2836 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2837
2838 if (!ops || !ops->pr_register)
2839 return -EOPNOTSUPP;
2840 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2841 }
2842
2843 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2844 u32 flags)
2845 {
2846 struct dm_pr pr = {
2847 .old_key = old_key,
2848 .new_key = new_key,
2849 .flags = flags,
2850 .fail_early = true,
2851 };
2852 int ret;
2853
2854 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2855 if (ret && new_key) {
2856 /* unregister all paths if we failed to register any path */
2857 pr.old_key = new_key;
2858 pr.new_key = 0;
2859 pr.flags = 0;
2860 pr.fail_early = false;
2861 dm_call_pr(bdev, __dm_pr_register, &pr);
2862 }
2863
2864 return ret;
2865 }
2866
2867 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2868 u32 flags)
2869 {
2870 struct mapped_device *md = bdev->bd_disk->private_data;
2871 const struct pr_ops *ops;
2872 fmode_t mode;
2873 int r;
2874
2875 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2876 if (r < 0)
2877 return r;
2878
2879 ops = bdev->bd_disk->fops->pr_ops;
2880 if (ops && ops->pr_reserve)
2881 r = ops->pr_reserve(bdev, key, type, flags);
2882 else
2883 r = -EOPNOTSUPP;
2884
2885 bdput(bdev);
2886 return r;
2887 }
2888
2889 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2890 {
2891 struct mapped_device *md = bdev->bd_disk->private_data;
2892 const struct pr_ops *ops;
2893 fmode_t mode;
2894 int r;
2895
2896 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2897 if (r < 0)
2898 return r;
2899
2900 ops = bdev->bd_disk->fops->pr_ops;
2901 if (ops && ops->pr_release)
2902 r = ops->pr_release(bdev, key, type);
2903 else
2904 r = -EOPNOTSUPP;
2905
2906 bdput(bdev);
2907 return r;
2908 }
2909
2910 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2911 enum pr_type type, bool abort)
2912 {
2913 struct mapped_device *md = bdev->bd_disk->private_data;
2914 const struct pr_ops *ops;
2915 fmode_t mode;
2916 int r;
2917
2918 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2919 if (r < 0)
2920 return r;
2921
2922 ops = bdev->bd_disk->fops->pr_ops;
2923 if (ops && ops->pr_preempt)
2924 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2925 else
2926 r = -EOPNOTSUPP;
2927
2928 bdput(bdev);
2929 return r;
2930 }
2931
2932 static int dm_pr_clear(struct block_device *bdev, u64 key)
2933 {
2934 struct mapped_device *md = bdev->bd_disk->private_data;
2935 const struct pr_ops *ops;
2936 fmode_t mode;
2937 int r;
2938
2939 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2940 if (r < 0)
2941 return r;
2942
2943 ops = bdev->bd_disk->fops->pr_ops;
2944 if (ops && ops->pr_clear)
2945 r = ops->pr_clear(bdev, key);
2946 else
2947 r = -EOPNOTSUPP;
2948
2949 bdput(bdev);
2950 return r;
2951 }
2952
2953 static const struct pr_ops dm_pr_ops = {
2954 .pr_register = dm_pr_register,
2955 .pr_reserve = dm_pr_reserve,
2956 .pr_release = dm_pr_release,
2957 .pr_preempt = dm_pr_preempt,
2958 .pr_clear = dm_pr_clear,
2959 };
2960
2961 static const struct block_device_operations dm_blk_dops = {
2962 .open = dm_blk_open,
2963 .release = dm_blk_close,
2964 .ioctl = dm_blk_ioctl,
2965 .getgeo = dm_blk_getgeo,
2966 .pr_ops = &dm_pr_ops,
2967 .owner = THIS_MODULE
2968 };
2969
2970 static const struct dax_operations dm_dax_ops = {
2971 .direct_access = dm_dax_direct_access,
2972 .copy_from_iter = dm_dax_copy_from_iter,
2973 };
2974
2975 /*
2976 * module hooks
2977 */
2978 module_init(dm_init);
2979 module_exit(dm_exit);
2980
2981 module_param(major, uint, 0);
2982 MODULE_PARM_DESC(major, "The major number of the device mapper");
2983
2984 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2985 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2986
2987 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2988 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2989
2990 MODULE_DESCRIPTION(DM_NAME " driver");
2991 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2992 MODULE_LICENSE("GPL");