]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 #include <linux/wait.h>
24 #include <linux/pr.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 #ifdef CONFIG_PRINTK
29 /*
30 * ratelimit state to be used in DMXXX_LIMIT().
31 */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 DEFAULT_RATELIMIT_INTERVAL,
34 DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 static const char *_name = DM_NAME;
46
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49
50 static DEFINE_IDR(_minor_idr);
51
52 static DEFINE_SPINLOCK(_minor_lock);
53
54 static void do_deferred_remove(struct work_struct *w);
55
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57
58 static struct workqueue_struct *deferred_remove_workqueue;
59
60 /*
61 * One of these is allocated per bio.
62 */
63 struct dm_io {
64 struct mapped_device *md;
65 int error;
66 atomic_t io_count;
67 struct bio *bio;
68 unsigned long start_time;
69 spinlock_t endio_lock;
70 struct dm_stats_aux stats_aux;
71 };
72
73 #define MINOR_ALLOCED ((void *)-1)
74
75 /*
76 * Bits for the md->flags field.
77 */
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
80 #define DMF_FROZEN 2
81 #define DMF_FREEING 3
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
86
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node = DM_NUMA_NODE;
89
90 /*
91 * For mempools pre-allocation at the table loading time.
92 */
93 struct dm_md_mempools {
94 mempool_t *io_pool;
95 struct bio_set *bs;
96 };
97
98 struct table_device {
99 struct list_head list;
100 atomic_t count;
101 struct dm_dev dm_dev;
102 };
103
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107
108 /*
109 * Bio-based DM's mempools' reserved IOs set by the user.
110 */
111 #define RESERVED_BIO_BASED_IOS 16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 int param = ACCESS_ONCE(*module_param);
117 int modified_param = 0;
118 bool modified = true;
119
120 if (param < min)
121 modified_param = min;
122 else if (param > max)
123 modified_param = max;
124 else
125 modified = false;
126
127 if (modified) {
128 (void)cmpxchg(module_param, param, modified_param);
129 param = modified_param;
130 }
131
132 return param;
133 }
134
135 unsigned __dm_get_module_param(unsigned *module_param,
136 unsigned def, unsigned max)
137 {
138 unsigned param = ACCESS_ONCE(*module_param);
139 unsigned modified_param = 0;
140
141 if (!param)
142 modified_param = def;
143 else if (param > max)
144 modified_param = max;
145
146 if (modified_param) {
147 (void)cmpxchg(module_param, param, modified_param);
148 param = modified_param;
149 }
150
151 return param;
152 }
153
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 return __dm_get_module_param(&reserved_bio_based_ios,
157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160
161 static unsigned dm_get_numa_node(void)
162 {
163 return __dm_get_module_param_int(&dm_numa_node,
164 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166
167 static int __init local_init(void)
168 {
169 int r = -ENOMEM;
170
171 /* allocate a slab for the dm_ios */
172 _io_cache = KMEM_CACHE(dm_io, 0);
173 if (!_io_cache)
174 return r;
175
176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 if (!_rq_tio_cache)
178 goto out_free_io_cache;
179
180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 __alignof__(struct request), 0, NULL);
182 if (!_rq_cache)
183 goto out_free_rq_tio_cache;
184
185 r = dm_uevent_init();
186 if (r)
187 goto out_free_rq_cache;
188
189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 if (!deferred_remove_workqueue) {
191 r = -ENOMEM;
192 goto out_uevent_exit;
193 }
194
195 _major = major;
196 r = register_blkdev(_major, _name);
197 if (r < 0)
198 goto out_free_workqueue;
199
200 if (!_major)
201 _major = r;
202
203 return 0;
204
205 out_free_workqueue:
206 destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 dm_uevent_exit();
209 out_free_rq_cache:
210 kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 kmem_cache_destroy(_io_cache);
215
216 return r;
217 }
218
219 static void local_exit(void)
220 {
221 flush_scheduled_work();
222 destroy_workqueue(deferred_remove_workqueue);
223
224 kmem_cache_destroy(_rq_cache);
225 kmem_cache_destroy(_rq_tio_cache);
226 kmem_cache_destroy(_io_cache);
227 unregister_blkdev(_major, _name);
228 dm_uevent_exit();
229
230 _major = 0;
231
232 DMINFO("cleaned up");
233 }
234
235 static int (*_inits[])(void) __initdata = {
236 local_init,
237 dm_target_init,
238 dm_linear_init,
239 dm_stripe_init,
240 dm_io_init,
241 dm_kcopyd_init,
242 dm_interface_init,
243 dm_statistics_init,
244 };
245
246 static void (*_exits[])(void) = {
247 local_exit,
248 dm_target_exit,
249 dm_linear_exit,
250 dm_stripe_exit,
251 dm_io_exit,
252 dm_kcopyd_exit,
253 dm_interface_exit,
254 dm_statistics_exit,
255 };
256
257 static int __init dm_init(void)
258 {
259 const int count = ARRAY_SIZE(_inits);
260
261 int r, i;
262
263 for (i = 0; i < count; i++) {
264 r = _inits[i]();
265 if (r)
266 goto bad;
267 }
268
269 return 0;
270
271 bad:
272 while (i--)
273 _exits[i]();
274
275 return r;
276 }
277
278 static void __exit dm_exit(void)
279 {
280 int i = ARRAY_SIZE(_exits);
281
282 while (i--)
283 _exits[i]();
284
285 /*
286 * Should be empty by this point.
287 */
288 idr_destroy(&_minor_idr);
289 }
290
291 /*
292 * Block device functions
293 */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 return test_bit(DMF_DELETING, &md->flags);
297 }
298
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 struct mapped_device *md;
302
303 spin_lock(&_minor_lock);
304
305 md = bdev->bd_disk->private_data;
306 if (!md)
307 goto out;
308
309 if (test_bit(DMF_FREEING, &md->flags) ||
310 dm_deleting_md(md)) {
311 md = NULL;
312 goto out;
313 }
314
315 dm_get(md);
316 atomic_inc(&md->open_count);
317 out:
318 spin_unlock(&_minor_lock);
319
320 return md ? 0 : -ENXIO;
321 }
322
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 struct mapped_device *md;
326
327 spin_lock(&_minor_lock);
328
329 md = disk->private_data;
330 if (WARN_ON(!md))
331 goto out;
332
333 if (atomic_dec_and_test(&md->open_count) &&
334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 queue_work(deferred_remove_workqueue, &deferred_remove_work);
336
337 dm_put(md);
338 out:
339 spin_unlock(&_minor_lock);
340 }
341
342 int dm_open_count(struct mapped_device *md)
343 {
344 return atomic_read(&md->open_count);
345 }
346
347 /*
348 * Guarantees nothing is using the device before it's deleted.
349 */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 int r = 0;
353
354 spin_lock(&_minor_lock);
355
356 if (dm_open_count(md)) {
357 r = -EBUSY;
358 if (mark_deferred)
359 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 r = -EEXIST;
362 else
363 set_bit(DMF_DELETING, &md->flags);
364
365 spin_unlock(&_minor_lock);
366
367 return r;
368 }
369
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 int r = 0;
373
374 spin_lock(&_minor_lock);
375
376 if (test_bit(DMF_DELETING, &md->flags))
377 r = -EBUSY;
378 else
379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380
381 spin_unlock(&_minor_lock);
382
383 return r;
384 }
385
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 dm_deferred_remove();
389 }
390
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 return get_capacity(md->disk);
394 }
395
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 return md->queue;
399 }
400
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 return &md->stats;
404 }
405
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 struct block_device **bdev,
415 fmode_t *mode)
416 {
417 struct dm_target *tgt;
418 struct dm_table *map;
419 int srcu_idx, r;
420
421 retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, &srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 goto out;
426
427 /* We only support devices that have a single target */
428 if (dm_table_get_num_targets(map) != 1)
429 goto out;
430
431 tgt = dm_table_get_target(map, 0);
432 if (!tgt->type->prepare_ioctl)
433 goto out;
434
435 if (dm_suspended_md(md)) {
436 r = -EAGAIN;
437 goto out;
438 }
439
440 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 if (r < 0)
442 goto out;
443
444 bdgrab(*bdev);
445 dm_put_live_table(md, srcu_idx);
446 return r;
447
448 out:
449 dm_put_live_table(md, srcu_idx);
450 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 msleep(10);
452 goto retry;
453 }
454 return r;
455 }
456
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 unsigned int cmd, unsigned long arg)
459 {
460 struct mapped_device *md = bdev->bd_disk->private_data;
461 int r;
462
463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 if (r < 0)
465 return r;
466
467 if (r > 0) {
468 /*
469 * Target determined this ioctl is being issued against a
470 * subset of the parent bdev; require extra privileges.
471 */
472 if (!capable(CAP_SYS_RAWIO)) {
473 DMWARN_LIMIT(
474 "%s: sending ioctl %x to DM device without required privilege.",
475 current->comm, cmd);
476 r = -ENOIOCTLCMD;
477 goto out;
478 }
479 }
480
481 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
482 out:
483 bdput(bdev);
484 return r;
485 }
486
487 static struct dm_io *alloc_io(struct mapped_device *md)
488 {
489 return mempool_alloc(md->io_pool, GFP_NOIO);
490 }
491
492 static void free_io(struct mapped_device *md, struct dm_io *io)
493 {
494 mempool_free(io, md->io_pool);
495 }
496
497 static void free_tio(struct dm_target_io *tio)
498 {
499 bio_put(&tio->clone);
500 }
501
502 int md_in_flight(struct mapped_device *md)
503 {
504 return atomic_read(&md->pending[READ]) +
505 atomic_read(&md->pending[WRITE]);
506 }
507
508 static void start_io_acct(struct dm_io *io)
509 {
510 struct mapped_device *md = io->md;
511 struct bio *bio = io->bio;
512 int cpu;
513 int rw = bio_data_dir(bio);
514
515 io->start_time = jiffies;
516
517 cpu = part_stat_lock();
518 part_round_stats(cpu, &dm_disk(md)->part0);
519 part_stat_unlock();
520 atomic_set(&dm_disk(md)->part0.in_flight[rw],
521 atomic_inc_return(&md->pending[rw]));
522
523 if (unlikely(dm_stats_used(&md->stats)))
524 dm_stats_account_io(&md->stats, bio_data_dir(bio),
525 bio->bi_iter.bi_sector, bio_sectors(bio),
526 false, 0, &io->stats_aux);
527 }
528
529 static void end_io_acct(struct dm_io *io)
530 {
531 struct mapped_device *md = io->md;
532 struct bio *bio = io->bio;
533 unsigned long duration = jiffies - io->start_time;
534 int pending;
535 int rw = bio_data_dir(bio);
536
537 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
538
539 if (unlikely(dm_stats_used(&md->stats)))
540 dm_stats_account_io(&md->stats, bio_data_dir(bio),
541 bio->bi_iter.bi_sector, bio_sectors(bio),
542 true, duration, &io->stats_aux);
543
544 /*
545 * After this is decremented the bio must not be touched if it is
546 * a flush.
547 */
548 pending = atomic_dec_return(&md->pending[rw]);
549 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
550 pending += atomic_read(&md->pending[rw^0x1]);
551
552 /* nudge anyone waiting on suspend queue */
553 if (!pending)
554 wake_up(&md->wait);
555 }
556
557 /*
558 * Add the bio to the list of deferred io.
559 */
560 static void queue_io(struct mapped_device *md, struct bio *bio)
561 {
562 unsigned long flags;
563
564 spin_lock_irqsave(&md->deferred_lock, flags);
565 bio_list_add(&md->deferred, bio);
566 spin_unlock_irqrestore(&md->deferred_lock, flags);
567 queue_work(md->wq, &md->work);
568 }
569
570 /*
571 * Everyone (including functions in this file), should use this
572 * function to access the md->map field, and make sure they call
573 * dm_put_live_table() when finished.
574 */
575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
576 {
577 *srcu_idx = srcu_read_lock(&md->io_barrier);
578
579 return srcu_dereference(md->map, &md->io_barrier);
580 }
581
582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
583 {
584 srcu_read_unlock(&md->io_barrier, srcu_idx);
585 }
586
587 void dm_sync_table(struct mapped_device *md)
588 {
589 synchronize_srcu(&md->io_barrier);
590 synchronize_rcu_expedited();
591 }
592
593 /*
594 * A fast alternative to dm_get_live_table/dm_put_live_table.
595 * The caller must not block between these two functions.
596 */
597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
598 {
599 rcu_read_lock();
600 return rcu_dereference(md->map);
601 }
602
603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
604 {
605 rcu_read_unlock();
606 }
607
608 /*
609 * Open a table device so we can use it as a map destination.
610 */
611 static int open_table_device(struct table_device *td, dev_t dev,
612 struct mapped_device *md)
613 {
614 static char *_claim_ptr = "I belong to device-mapper";
615 struct block_device *bdev;
616
617 int r;
618
619 BUG_ON(td->dm_dev.bdev);
620
621 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
622 if (IS_ERR(bdev))
623 return PTR_ERR(bdev);
624
625 r = bd_link_disk_holder(bdev, dm_disk(md));
626 if (r) {
627 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
628 return r;
629 }
630
631 td->dm_dev.bdev = bdev;
632 return 0;
633 }
634
635 /*
636 * Close a table device that we've been using.
637 */
638 static void close_table_device(struct table_device *td, struct mapped_device *md)
639 {
640 if (!td->dm_dev.bdev)
641 return;
642
643 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
644 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
645 td->dm_dev.bdev = NULL;
646 }
647
648 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
649 fmode_t mode) {
650 struct table_device *td;
651
652 list_for_each_entry(td, l, list)
653 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
654 return td;
655
656 return NULL;
657 }
658
659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
660 struct dm_dev **result) {
661 int r;
662 struct table_device *td;
663
664 mutex_lock(&md->table_devices_lock);
665 td = find_table_device(&md->table_devices, dev, mode);
666 if (!td) {
667 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
668 if (!td) {
669 mutex_unlock(&md->table_devices_lock);
670 return -ENOMEM;
671 }
672
673 td->dm_dev.mode = mode;
674 td->dm_dev.bdev = NULL;
675
676 if ((r = open_table_device(td, dev, md))) {
677 mutex_unlock(&md->table_devices_lock);
678 kfree(td);
679 return r;
680 }
681
682 format_dev_t(td->dm_dev.name, dev);
683
684 atomic_set(&td->count, 0);
685 list_add(&td->list, &md->table_devices);
686 }
687 atomic_inc(&td->count);
688 mutex_unlock(&md->table_devices_lock);
689
690 *result = &td->dm_dev;
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(dm_get_table_device);
694
695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
696 {
697 struct table_device *td = container_of(d, struct table_device, dm_dev);
698
699 mutex_lock(&md->table_devices_lock);
700 if (atomic_dec_and_test(&td->count)) {
701 close_table_device(td, md);
702 list_del(&td->list);
703 kfree(td);
704 }
705 mutex_unlock(&md->table_devices_lock);
706 }
707 EXPORT_SYMBOL(dm_put_table_device);
708
709 static void free_table_devices(struct list_head *devices)
710 {
711 struct list_head *tmp, *next;
712
713 list_for_each_safe(tmp, next, devices) {
714 struct table_device *td = list_entry(tmp, struct table_device, list);
715
716 DMWARN("dm_destroy: %s still exists with %d references",
717 td->dm_dev.name, atomic_read(&td->count));
718 kfree(td);
719 }
720 }
721
722 /*
723 * Get the geometry associated with a dm device
724 */
725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
726 {
727 *geo = md->geometry;
728
729 return 0;
730 }
731
732 /*
733 * Set the geometry of a device.
734 */
735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
736 {
737 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
738
739 if (geo->start > sz) {
740 DMWARN("Start sector is beyond the geometry limits.");
741 return -EINVAL;
742 }
743
744 md->geometry = *geo;
745
746 return 0;
747 }
748
749 /*-----------------------------------------------------------------
750 * CRUD START:
751 * A more elegant soln is in the works that uses the queue
752 * merge fn, unfortunately there are a couple of changes to
753 * the block layer that I want to make for this. So in the
754 * interests of getting something for people to use I give
755 * you this clearly demarcated crap.
756 *---------------------------------------------------------------*/
757
758 static int __noflush_suspending(struct mapped_device *md)
759 {
760 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
761 }
762
763 /*
764 * Decrements the number of outstanding ios that a bio has been
765 * cloned into, completing the original io if necc.
766 */
767 static void dec_pending(struct dm_io *io, int error)
768 {
769 unsigned long flags;
770 int io_error;
771 struct bio *bio;
772 struct mapped_device *md = io->md;
773
774 /* Push-back supersedes any I/O errors */
775 if (unlikely(error)) {
776 spin_lock_irqsave(&io->endio_lock, flags);
777 if (!(io->error > 0 && __noflush_suspending(md)))
778 io->error = error;
779 spin_unlock_irqrestore(&io->endio_lock, flags);
780 }
781
782 if (atomic_dec_and_test(&io->io_count)) {
783 if (io->error == DM_ENDIO_REQUEUE) {
784 /*
785 * Target requested pushing back the I/O.
786 */
787 spin_lock_irqsave(&md->deferred_lock, flags);
788 if (__noflush_suspending(md))
789 bio_list_add_head(&md->deferred, io->bio);
790 else
791 /* noflush suspend was interrupted. */
792 io->error = -EIO;
793 spin_unlock_irqrestore(&md->deferred_lock, flags);
794 }
795
796 io_error = io->error;
797 bio = io->bio;
798 end_io_acct(io);
799 free_io(md, io);
800
801 if (io_error == DM_ENDIO_REQUEUE)
802 return;
803
804 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 /*
806 * Preflush done for flush with data, reissue
807 * without REQ_PREFLUSH.
808 */
809 bio->bi_opf &= ~REQ_PREFLUSH;
810 queue_io(md, bio);
811 } else {
812 /* done with normal IO or empty flush */
813 trace_block_bio_complete(md->queue, bio, io_error);
814 bio->bi_error = io_error;
815 bio_endio(bio);
816 }
817 }
818 }
819
820 void disable_write_same(struct mapped_device *md)
821 {
822 struct queue_limits *limits = dm_get_queue_limits(md);
823
824 /* device doesn't really support WRITE SAME, disable it */
825 limits->max_write_same_sectors = 0;
826 }
827
828 static void clone_endio(struct bio *bio)
829 {
830 int error = bio->bi_error;
831 int r = error;
832 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
833 struct dm_io *io = tio->io;
834 struct mapped_device *md = tio->io->md;
835 dm_endio_fn endio = tio->ti->type->end_io;
836
837 if (endio) {
838 r = endio(tio->ti, bio, error);
839 if (r < 0 || r == DM_ENDIO_REQUEUE)
840 /*
841 * error and requeue request are handled
842 * in dec_pending().
843 */
844 error = r;
845 else if (r == DM_ENDIO_INCOMPLETE)
846 /* The target will handle the io */
847 return;
848 else if (r) {
849 DMWARN("unimplemented target endio return value: %d", r);
850 BUG();
851 }
852 }
853
854 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
855 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
856 disable_write_same(md);
857
858 free_tio(tio);
859 dec_pending(io, error);
860 }
861
862 /*
863 * Return maximum size of I/O possible at the supplied sector up to the current
864 * target boundary.
865 */
866 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
867 {
868 sector_t target_offset = dm_target_offset(ti, sector);
869
870 return ti->len - target_offset;
871 }
872
873 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
874 {
875 sector_t len = max_io_len_target_boundary(sector, ti);
876 sector_t offset, max_len;
877
878 /*
879 * Does the target need to split even further?
880 */
881 if (ti->max_io_len) {
882 offset = dm_target_offset(ti, sector);
883 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
884 max_len = sector_div(offset, ti->max_io_len);
885 else
886 max_len = offset & (ti->max_io_len - 1);
887 max_len = ti->max_io_len - max_len;
888
889 if (len > max_len)
890 len = max_len;
891 }
892
893 return len;
894 }
895
896 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
897 {
898 if (len > UINT_MAX) {
899 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
900 (unsigned long long)len, UINT_MAX);
901 ti->error = "Maximum size of target IO is too large";
902 return -EINVAL;
903 }
904
905 ti->max_io_len = (uint32_t) len;
906
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
910
911 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
912 void **kaddr, pfn_t *pfn, long size)
913 {
914 struct mapped_device *md = bdev->bd_disk->private_data;
915 struct dm_table *map;
916 struct dm_target *ti;
917 int srcu_idx;
918 long len, ret = -EIO;
919
920 map = dm_get_live_table(md, &srcu_idx);
921 if (!map)
922 goto out;
923
924 ti = dm_table_find_target(map, sector);
925 if (!dm_target_is_valid(ti))
926 goto out;
927
928 len = max_io_len(sector, ti) << SECTOR_SHIFT;
929 size = min(len, size);
930
931 if (ti->type->direct_access)
932 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
933 out:
934 dm_put_live_table(md, srcu_idx);
935 return min(ret, size);
936 }
937
938 /*
939 * A target may call dm_accept_partial_bio only from the map routine. It is
940 * allowed for all bio types except REQ_PREFLUSH.
941 *
942 * dm_accept_partial_bio informs the dm that the target only wants to process
943 * additional n_sectors sectors of the bio and the rest of the data should be
944 * sent in a next bio.
945 *
946 * A diagram that explains the arithmetics:
947 * +--------------------+---------------+-------+
948 * | 1 | 2 | 3 |
949 * +--------------------+---------------+-------+
950 *
951 * <-------------- *tio->len_ptr --------------->
952 * <------- bi_size ------->
953 * <-- n_sectors -->
954 *
955 * Region 1 was already iterated over with bio_advance or similar function.
956 * (it may be empty if the target doesn't use bio_advance)
957 * Region 2 is the remaining bio size that the target wants to process.
958 * (it may be empty if region 1 is non-empty, although there is no reason
959 * to make it empty)
960 * The target requires that region 3 is to be sent in the next bio.
961 *
962 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
963 * the partially processed part (the sum of regions 1+2) must be the same for all
964 * copies of the bio.
965 */
966 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
967 {
968 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
969 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
970 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
971 BUG_ON(bi_size > *tio->len_ptr);
972 BUG_ON(n_sectors > bi_size);
973 *tio->len_ptr -= bi_size - n_sectors;
974 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
975 }
976 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
977
978 /*
979 * Flush current->bio_list when the target map method blocks.
980 * This fixes deadlocks in snapshot and possibly in other targets.
981 */
982 struct dm_offload {
983 struct blk_plug plug;
984 struct blk_plug_cb cb;
985 };
986
987 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
988 {
989 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
990 struct bio_list list;
991 struct bio *bio;
992 int i;
993
994 INIT_LIST_HEAD(&o->cb.list);
995
996 if (unlikely(!current->bio_list))
997 return;
998
999 for (i = 0; i < 2; i++) {
1000 list = current->bio_list[i];
1001 bio_list_init(&current->bio_list[i]);
1002
1003 while ((bio = bio_list_pop(&list))) {
1004 struct bio_set *bs = bio->bi_pool;
1005 if (unlikely(!bs) || bs == fs_bio_set) {
1006 bio_list_add(&current->bio_list[i], bio);
1007 continue;
1008 }
1009
1010 spin_lock(&bs->rescue_lock);
1011 bio_list_add(&bs->rescue_list, bio);
1012 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1013 spin_unlock(&bs->rescue_lock);
1014 }
1015 }
1016 }
1017
1018 static void dm_offload_start(struct dm_offload *o)
1019 {
1020 blk_start_plug(&o->plug);
1021 o->cb.callback = flush_current_bio_list;
1022 list_add(&o->cb.list, &current->plug->cb_list);
1023 }
1024
1025 static void dm_offload_end(struct dm_offload *o)
1026 {
1027 list_del(&o->cb.list);
1028 blk_finish_plug(&o->plug);
1029 }
1030
1031 static void __map_bio(struct dm_target_io *tio)
1032 {
1033 int r;
1034 sector_t sector;
1035 struct dm_offload o;
1036 struct bio *clone = &tio->clone;
1037 struct dm_target *ti = tio->ti;
1038
1039 clone->bi_end_io = clone_endio;
1040
1041 /*
1042 * Map the clone. If r == 0 we don't need to do
1043 * anything, the target has assumed ownership of
1044 * this io.
1045 */
1046 atomic_inc(&tio->io->io_count);
1047 sector = clone->bi_iter.bi_sector;
1048
1049 dm_offload_start(&o);
1050 r = ti->type->map(ti, clone);
1051 dm_offload_end(&o);
1052
1053 if (r == DM_MAPIO_REMAPPED) {
1054 /* the bio has been remapped so dispatch it */
1055
1056 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1057 tio->io->bio->bi_bdev->bd_dev, sector);
1058
1059 generic_make_request(clone);
1060 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1061 /* error the io and bail out, or requeue it if needed */
1062 dec_pending(tio->io, r);
1063 free_tio(tio);
1064 } else if (r != DM_MAPIO_SUBMITTED) {
1065 DMWARN("unimplemented target map return value: %d", r);
1066 BUG();
1067 }
1068 }
1069
1070 struct clone_info {
1071 struct mapped_device *md;
1072 struct dm_table *map;
1073 struct bio *bio;
1074 struct dm_io *io;
1075 sector_t sector;
1076 unsigned sector_count;
1077 };
1078
1079 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1080 {
1081 bio->bi_iter.bi_sector = sector;
1082 bio->bi_iter.bi_size = to_bytes(len);
1083 }
1084
1085 /*
1086 * Creates a bio that consists of range of complete bvecs.
1087 */
1088 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1089 sector_t sector, unsigned len)
1090 {
1091 struct bio *clone = &tio->clone;
1092
1093 __bio_clone_fast(clone, bio);
1094
1095 if (bio_integrity(bio)) {
1096 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1097 if (r < 0)
1098 return r;
1099 }
1100
1101 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1102 clone->bi_iter.bi_size = to_bytes(len);
1103
1104 if (bio_integrity(bio))
1105 bio_integrity_trim(clone, 0, len);
1106
1107 return 0;
1108 }
1109
1110 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1111 struct dm_target *ti,
1112 unsigned target_bio_nr)
1113 {
1114 struct dm_target_io *tio;
1115 struct bio *clone;
1116
1117 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1118 tio = container_of(clone, struct dm_target_io, clone);
1119
1120 tio->io = ci->io;
1121 tio->ti = ti;
1122 tio->target_bio_nr = target_bio_nr;
1123
1124 return tio;
1125 }
1126
1127 static void __clone_and_map_simple_bio(struct clone_info *ci,
1128 struct dm_target *ti,
1129 unsigned target_bio_nr, unsigned *len)
1130 {
1131 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1132 struct bio *clone = &tio->clone;
1133
1134 tio->len_ptr = len;
1135
1136 __bio_clone_fast(clone, ci->bio);
1137 if (len)
1138 bio_setup_sector(clone, ci->sector, *len);
1139
1140 __map_bio(tio);
1141 }
1142
1143 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1144 unsigned num_bios, unsigned *len)
1145 {
1146 unsigned target_bio_nr;
1147
1148 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1149 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1150 }
1151
1152 static int __send_empty_flush(struct clone_info *ci)
1153 {
1154 unsigned target_nr = 0;
1155 struct dm_target *ti;
1156
1157 BUG_ON(bio_has_data(ci->bio));
1158 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1159 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1160
1161 return 0;
1162 }
1163
1164 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1165 sector_t sector, unsigned *len)
1166 {
1167 struct bio *bio = ci->bio;
1168 struct dm_target_io *tio;
1169 unsigned target_bio_nr;
1170 unsigned num_target_bios = 1;
1171 int r = 0;
1172
1173 /*
1174 * Does the target want to receive duplicate copies of the bio?
1175 */
1176 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1177 num_target_bios = ti->num_write_bios(ti, bio);
1178
1179 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1180 tio = alloc_tio(ci, ti, target_bio_nr);
1181 tio->len_ptr = len;
1182 r = clone_bio(tio, bio, sector, *len);
1183 if (r < 0) {
1184 free_tio(tio);
1185 break;
1186 }
1187 __map_bio(tio);
1188 }
1189
1190 return r;
1191 }
1192
1193 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1194
1195 static unsigned get_num_discard_bios(struct dm_target *ti)
1196 {
1197 return ti->num_discard_bios;
1198 }
1199
1200 static unsigned get_num_write_same_bios(struct dm_target *ti)
1201 {
1202 return ti->num_write_same_bios;
1203 }
1204
1205 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1206
1207 static bool is_split_required_for_discard(struct dm_target *ti)
1208 {
1209 return ti->split_discard_bios;
1210 }
1211
1212 static int __send_changing_extent_only(struct clone_info *ci,
1213 get_num_bios_fn get_num_bios,
1214 is_split_required_fn is_split_required)
1215 {
1216 struct dm_target *ti;
1217 unsigned len;
1218 unsigned num_bios;
1219
1220 do {
1221 ti = dm_table_find_target(ci->map, ci->sector);
1222 if (!dm_target_is_valid(ti))
1223 return -EIO;
1224
1225 /*
1226 * Even though the device advertised support for this type of
1227 * request, that does not mean every target supports it, and
1228 * reconfiguration might also have changed that since the
1229 * check was performed.
1230 */
1231 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1232 if (!num_bios)
1233 return -EOPNOTSUPP;
1234
1235 if (is_split_required && !is_split_required(ti))
1236 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1237 else
1238 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1239
1240 __send_duplicate_bios(ci, ti, num_bios, &len);
1241
1242 ci->sector += len;
1243 } while (ci->sector_count -= len);
1244
1245 return 0;
1246 }
1247
1248 static int __send_discard(struct clone_info *ci)
1249 {
1250 return __send_changing_extent_only(ci, get_num_discard_bios,
1251 is_split_required_for_discard);
1252 }
1253
1254 static int __send_write_same(struct clone_info *ci)
1255 {
1256 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1257 }
1258
1259 /*
1260 * Select the correct strategy for processing a non-flush bio.
1261 */
1262 static int __split_and_process_non_flush(struct clone_info *ci)
1263 {
1264 struct bio *bio = ci->bio;
1265 struct dm_target *ti;
1266 unsigned len;
1267 int r;
1268
1269 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1270 return __send_discard(ci);
1271 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1272 return __send_write_same(ci);
1273
1274 ti = dm_table_find_target(ci->map, ci->sector);
1275 if (!dm_target_is_valid(ti))
1276 return -EIO;
1277
1278 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1279
1280 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1281 if (r < 0)
1282 return r;
1283
1284 ci->sector += len;
1285 ci->sector_count -= len;
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Entry point to split a bio into clones and submit them to the targets.
1292 */
1293 static void __split_and_process_bio(struct mapped_device *md,
1294 struct dm_table *map, struct bio *bio)
1295 {
1296 struct clone_info ci;
1297 int error = 0;
1298
1299 if (unlikely(!map)) {
1300 bio_io_error(bio);
1301 return;
1302 }
1303
1304 ci.map = map;
1305 ci.md = md;
1306 ci.io = alloc_io(md);
1307 ci.io->error = 0;
1308 atomic_set(&ci.io->io_count, 1);
1309 ci.io->bio = bio;
1310 ci.io->md = md;
1311 spin_lock_init(&ci.io->endio_lock);
1312 ci.sector = bio->bi_iter.bi_sector;
1313
1314 start_io_acct(ci.io);
1315
1316 if (bio->bi_opf & REQ_PREFLUSH) {
1317 ci.bio = &ci.md->flush_bio;
1318 ci.sector_count = 0;
1319 error = __send_empty_flush(&ci);
1320 /* dec_pending submits any data associated with flush */
1321 } else {
1322 ci.bio = bio;
1323 ci.sector_count = bio_sectors(bio);
1324 while (ci.sector_count && !error)
1325 error = __split_and_process_non_flush(&ci);
1326 }
1327
1328 /* drop the extra reference count */
1329 dec_pending(ci.io, error);
1330 }
1331 /*-----------------------------------------------------------------
1332 * CRUD END
1333 *---------------------------------------------------------------*/
1334
1335 /*
1336 * The request function that just remaps the bio built up by
1337 * dm_merge_bvec.
1338 */
1339 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 int rw = bio_data_dir(bio);
1342 struct mapped_device *md = q->queuedata;
1343 int srcu_idx;
1344 struct dm_table *map;
1345
1346 map = dm_get_live_table(md, &srcu_idx);
1347
1348 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1349
1350 /* if we're suspended, we have to queue this io for later */
1351 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1352 dm_put_live_table(md, srcu_idx);
1353
1354 if (!(bio->bi_opf & REQ_RAHEAD))
1355 queue_io(md, bio);
1356 else
1357 bio_io_error(bio);
1358 return BLK_QC_T_NONE;
1359 }
1360
1361 __split_and_process_bio(md, map, bio);
1362 dm_put_live_table(md, srcu_idx);
1363 return BLK_QC_T_NONE;
1364 }
1365
1366 static int dm_any_congested(void *congested_data, int bdi_bits)
1367 {
1368 int r = bdi_bits;
1369 struct mapped_device *md = congested_data;
1370 struct dm_table *map;
1371
1372 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1373 if (dm_request_based(md)) {
1374 /*
1375 * With request-based DM we only need to check the
1376 * top-level queue for congestion.
1377 */
1378 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1379 } else {
1380 map = dm_get_live_table_fast(md);
1381 if (map)
1382 r = dm_table_any_congested(map, bdi_bits);
1383 dm_put_live_table_fast(md);
1384 }
1385 }
1386
1387 return r;
1388 }
1389
1390 /*-----------------------------------------------------------------
1391 * An IDR is used to keep track of allocated minor numbers.
1392 *---------------------------------------------------------------*/
1393 static void free_minor(int minor)
1394 {
1395 spin_lock(&_minor_lock);
1396 idr_remove(&_minor_idr, minor);
1397 spin_unlock(&_minor_lock);
1398 }
1399
1400 /*
1401 * See if the device with a specific minor # is free.
1402 */
1403 static int specific_minor(int minor)
1404 {
1405 int r;
1406
1407 if (minor >= (1 << MINORBITS))
1408 return -EINVAL;
1409
1410 idr_preload(GFP_KERNEL);
1411 spin_lock(&_minor_lock);
1412
1413 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1414
1415 spin_unlock(&_minor_lock);
1416 idr_preload_end();
1417 if (r < 0)
1418 return r == -ENOSPC ? -EBUSY : r;
1419 return 0;
1420 }
1421
1422 static int next_free_minor(int *minor)
1423 {
1424 int r;
1425
1426 idr_preload(GFP_KERNEL);
1427 spin_lock(&_minor_lock);
1428
1429 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1430
1431 spin_unlock(&_minor_lock);
1432 idr_preload_end();
1433 if (r < 0)
1434 return r;
1435 *minor = r;
1436 return 0;
1437 }
1438
1439 static const struct block_device_operations dm_blk_dops;
1440
1441 static void dm_wq_work(struct work_struct *work);
1442
1443 void dm_init_md_queue(struct mapped_device *md)
1444 {
1445 /*
1446 * Request-based dm devices cannot be stacked on top of bio-based dm
1447 * devices. The type of this dm device may not have been decided yet.
1448 * The type is decided at the first table loading time.
1449 * To prevent problematic device stacking, clear the queue flag
1450 * for request stacking support until then.
1451 *
1452 * This queue is new, so no concurrency on the queue_flags.
1453 */
1454 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1455
1456 /*
1457 * Initialize data that will only be used by a non-blk-mq DM queue
1458 * - must do so here (in alloc_dev callchain) before queue is used
1459 */
1460 md->queue->queuedata = md;
1461 md->queue->backing_dev_info->congested_data = md;
1462 }
1463
1464 void dm_init_normal_md_queue(struct mapped_device *md)
1465 {
1466 md->use_blk_mq = false;
1467 dm_init_md_queue(md);
1468
1469 /*
1470 * Initialize aspects of queue that aren't relevant for blk-mq
1471 */
1472 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1473 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1474 }
1475
1476 static void cleanup_mapped_device(struct mapped_device *md)
1477 {
1478 if (md->wq)
1479 destroy_workqueue(md->wq);
1480 if (md->kworker_task)
1481 kthread_stop(md->kworker_task);
1482 mempool_destroy(md->io_pool);
1483 if (md->bs)
1484 bioset_free(md->bs);
1485
1486 if (md->disk) {
1487 spin_lock(&_minor_lock);
1488 md->disk->private_data = NULL;
1489 spin_unlock(&_minor_lock);
1490 del_gendisk(md->disk);
1491 put_disk(md->disk);
1492 }
1493
1494 if (md->queue)
1495 blk_cleanup_queue(md->queue);
1496
1497 cleanup_srcu_struct(&md->io_barrier);
1498
1499 if (md->bdev) {
1500 bdput(md->bdev);
1501 md->bdev = NULL;
1502 }
1503
1504 dm_mq_cleanup_mapped_device(md);
1505 }
1506
1507 /*
1508 * Allocate and initialise a blank device with a given minor.
1509 */
1510 static struct mapped_device *alloc_dev(int minor)
1511 {
1512 int r, numa_node_id = dm_get_numa_node();
1513 struct mapped_device *md;
1514 void *old_md;
1515
1516 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1517 if (!md) {
1518 DMWARN("unable to allocate device, out of memory.");
1519 return NULL;
1520 }
1521
1522 if (!try_module_get(THIS_MODULE))
1523 goto bad_module_get;
1524
1525 /* get a minor number for the dev */
1526 if (minor == DM_ANY_MINOR)
1527 r = next_free_minor(&minor);
1528 else
1529 r = specific_minor(minor);
1530 if (r < 0)
1531 goto bad_minor;
1532
1533 r = init_srcu_struct(&md->io_barrier);
1534 if (r < 0)
1535 goto bad_io_barrier;
1536
1537 md->numa_node_id = numa_node_id;
1538 md->use_blk_mq = dm_use_blk_mq_default();
1539 md->init_tio_pdu = false;
1540 md->type = DM_TYPE_NONE;
1541 mutex_init(&md->suspend_lock);
1542 mutex_init(&md->type_lock);
1543 mutex_init(&md->table_devices_lock);
1544 spin_lock_init(&md->deferred_lock);
1545 atomic_set(&md->holders, 1);
1546 atomic_set(&md->open_count, 0);
1547 atomic_set(&md->event_nr, 0);
1548 atomic_set(&md->uevent_seq, 0);
1549 INIT_LIST_HEAD(&md->uevent_list);
1550 INIT_LIST_HEAD(&md->table_devices);
1551 spin_lock_init(&md->uevent_lock);
1552
1553 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1554 if (!md->queue)
1555 goto bad;
1556
1557 dm_init_md_queue(md);
1558
1559 md->disk = alloc_disk_node(1, numa_node_id);
1560 if (!md->disk)
1561 goto bad;
1562
1563 atomic_set(&md->pending[0], 0);
1564 atomic_set(&md->pending[1], 0);
1565 init_waitqueue_head(&md->wait);
1566 INIT_WORK(&md->work, dm_wq_work);
1567 init_waitqueue_head(&md->eventq);
1568 init_completion(&md->kobj_holder.completion);
1569 md->kworker_task = NULL;
1570
1571 md->disk->major = _major;
1572 md->disk->first_minor = minor;
1573 md->disk->fops = &dm_blk_dops;
1574 md->disk->queue = md->queue;
1575 md->disk->private_data = md;
1576 sprintf(md->disk->disk_name, "dm-%d", minor);
1577 add_disk(md->disk);
1578 format_dev_t(md->name, MKDEV(_major, minor));
1579
1580 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1581 if (!md->wq)
1582 goto bad;
1583
1584 md->bdev = bdget_disk(md->disk, 0);
1585 if (!md->bdev)
1586 goto bad;
1587
1588 bio_init(&md->flush_bio, NULL, 0);
1589 md->flush_bio.bi_bdev = md->bdev;
1590 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1591
1592 dm_stats_init(&md->stats);
1593
1594 /* Populate the mapping, nobody knows we exist yet */
1595 spin_lock(&_minor_lock);
1596 old_md = idr_replace(&_minor_idr, md, minor);
1597 spin_unlock(&_minor_lock);
1598
1599 BUG_ON(old_md != MINOR_ALLOCED);
1600
1601 return md;
1602
1603 bad:
1604 cleanup_mapped_device(md);
1605 bad_io_barrier:
1606 free_minor(minor);
1607 bad_minor:
1608 module_put(THIS_MODULE);
1609 bad_module_get:
1610 kfree(md);
1611 return NULL;
1612 }
1613
1614 static void unlock_fs(struct mapped_device *md);
1615
1616 static void free_dev(struct mapped_device *md)
1617 {
1618 int minor = MINOR(disk_devt(md->disk));
1619
1620 unlock_fs(md);
1621
1622 cleanup_mapped_device(md);
1623
1624 free_table_devices(&md->table_devices);
1625 dm_stats_cleanup(&md->stats);
1626 free_minor(minor);
1627
1628 module_put(THIS_MODULE);
1629 kfree(md);
1630 }
1631
1632 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1633 {
1634 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1635
1636 if (md->bs) {
1637 /* The md already has necessary mempools. */
1638 if (dm_table_bio_based(t)) {
1639 /*
1640 * Reload bioset because front_pad may have changed
1641 * because a different table was loaded.
1642 */
1643 bioset_free(md->bs);
1644 md->bs = p->bs;
1645 p->bs = NULL;
1646 }
1647 /*
1648 * There's no need to reload with request-based dm
1649 * because the size of front_pad doesn't change.
1650 * Note for future: If you are to reload bioset,
1651 * prep-ed requests in the queue may refer
1652 * to bio from the old bioset, so you must walk
1653 * through the queue to unprep.
1654 */
1655 goto out;
1656 }
1657
1658 BUG_ON(!p || md->io_pool || md->bs);
1659
1660 md->io_pool = p->io_pool;
1661 p->io_pool = NULL;
1662 md->bs = p->bs;
1663 p->bs = NULL;
1664
1665 out:
1666 /* mempool bind completed, no longer need any mempools in the table */
1667 dm_table_free_md_mempools(t);
1668 }
1669
1670 /*
1671 * Bind a table to the device.
1672 */
1673 static void event_callback(void *context)
1674 {
1675 unsigned long flags;
1676 LIST_HEAD(uevents);
1677 struct mapped_device *md = (struct mapped_device *) context;
1678
1679 spin_lock_irqsave(&md->uevent_lock, flags);
1680 list_splice_init(&md->uevent_list, &uevents);
1681 spin_unlock_irqrestore(&md->uevent_lock, flags);
1682
1683 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1684
1685 atomic_inc(&md->event_nr);
1686 wake_up(&md->eventq);
1687 }
1688
1689 /*
1690 * Protected by md->suspend_lock obtained by dm_swap_table().
1691 */
1692 static void __set_size(struct mapped_device *md, sector_t size)
1693 {
1694 set_capacity(md->disk, size);
1695
1696 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1697 }
1698
1699 /*
1700 * Returns old map, which caller must destroy.
1701 */
1702 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1703 struct queue_limits *limits)
1704 {
1705 struct dm_table *old_map;
1706 struct request_queue *q = md->queue;
1707 sector_t size;
1708
1709 lockdep_assert_held(&md->suspend_lock);
1710
1711 size = dm_table_get_size(t);
1712
1713 /*
1714 * Wipe any geometry if the size of the table changed.
1715 */
1716 if (size != dm_get_size(md))
1717 memset(&md->geometry, 0, sizeof(md->geometry));
1718
1719 __set_size(md, size);
1720
1721 dm_table_event_callback(t, event_callback, md);
1722
1723 /*
1724 * The queue hasn't been stopped yet, if the old table type wasn't
1725 * for request-based during suspension. So stop it to prevent
1726 * I/O mapping before resume.
1727 * This must be done before setting the queue restrictions,
1728 * because request-based dm may be run just after the setting.
1729 */
1730 if (dm_table_request_based(t)) {
1731 dm_stop_queue(q);
1732 /*
1733 * Leverage the fact that request-based DM targets are
1734 * immutable singletons and establish md->immutable_target
1735 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1736 */
1737 md->immutable_target = dm_table_get_immutable_target(t);
1738 }
1739
1740 __bind_mempools(md, t);
1741
1742 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1743 rcu_assign_pointer(md->map, (void *)t);
1744 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1745
1746 dm_table_set_restrictions(t, q, limits);
1747 if (old_map)
1748 dm_sync_table(md);
1749
1750 return old_map;
1751 }
1752
1753 /*
1754 * Returns unbound table for the caller to free.
1755 */
1756 static struct dm_table *__unbind(struct mapped_device *md)
1757 {
1758 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759
1760 if (!map)
1761 return NULL;
1762
1763 dm_table_event_callback(map, NULL, NULL);
1764 RCU_INIT_POINTER(md->map, NULL);
1765 dm_sync_table(md);
1766
1767 return map;
1768 }
1769
1770 /*
1771 * Constructor for a new device.
1772 */
1773 int dm_create(int minor, struct mapped_device **result)
1774 {
1775 struct mapped_device *md;
1776
1777 md = alloc_dev(minor);
1778 if (!md)
1779 return -ENXIO;
1780
1781 dm_sysfs_init(md);
1782
1783 *result = md;
1784 return 0;
1785 }
1786
1787 /*
1788 * Functions to manage md->type.
1789 * All are required to hold md->type_lock.
1790 */
1791 void dm_lock_md_type(struct mapped_device *md)
1792 {
1793 mutex_lock(&md->type_lock);
1794 }
1795
1796 void dm_unlock_md_type(struct mapped_device *md)
1797 {
1798 mutex_unlock(&md->type_lock);
1799 }
1800
1801 void dm_set_md_type(struct mapped_device *md, unsigned type)
1802 {
1803 BUG_ON(!mutex_is_locked(&md->type_lock));
1804 md->type = type;
1805 }
1806
1807 unsigned dm_get_md_type(struct mapped_device *md)
1808 {
1809 return md->type;
1810 }
1811
1812 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1813 {
1814 return md->immutable_target_type;
1815 }
1816
1817 /*
1818 * The queue_limits are only valid as long as you have a reference
1819 * count on 'md'.
1820 */
1821 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1822 {
1823 BUG_ON(!atomic_read(&md->holders));
1824 return &md->queue->limits;
1825 }
1826 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1827
1828 /*
1829 * Setup the DM device's queue based on md's type
1830 */
1831 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1832 {
1833 int r;
1834 unsigned type = dm_get_md_type(md);
1835
1836 switch (type) {
1837 case DM_TYPE_REQUEST_BASED:
1838 r = dm_old_init_request_queue(md, t);
1839 if (r) {
1840 DMERR("Cannot initialize queue for request-based mapped device");
1841 return r;
1842 }
1843 break;
1844 case DM_TYPE_MQ_REQUEST_BASED:
1845 r = dm_mq_init_request_queue(md, t);
1846 if (r) {
1847 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1848 return r;
1849 }
1850 break;
1851 case DM_TYPE_BIO_BASED:
1852 case DM_TYPE_DAX_BIO_BASED:
1853 dm_init_normal_md_queue(md);
1854 blk_queue_make_request(md->queue, dm_make_request);
1855 /*
1856 * DM handles splitting bios as needed. Free the bio_split bioset
1857 * since it won't be used (saves 1 process per bio-based DM device).
1858 */
1859 bioset_free(md->queue->bio_split);
1860 md->queue->bio_split = NULL;
1861
1862 if (type == DM_TYPE_DAX_BIO_BASED)
1863 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1864 break;
1865 }
1866
1867 return 0;
1868 }
1869
1870 struct mapped_device *dm_get_md(dev_t dev)
1871 {
1872 struct mapped_device *md;
1873 unsigned minor = MINOR(dev);
1874
1875 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1876 return NULL;
1877
1878 spin_lock(&_minor_lock);
1879
1880 md = idr_find(&_minor_idr, minor);
1881 if (md) {
1882 if ((md == MINOR_ALLOCED ||
1883 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1884 dm_deleting_md(md) ||
1885 test_bit(DMF_FREEING, &md->flags))) {
1886 md = NULL;
1887 goto out;
1888 }
1889 dm_get(md);
1890 }
1891
1892 out:
1893 spin_unlock(&_minor_lock);
1894
1895 return md;
1896 }
1897 EXPORT_SYMBOL_GPL(dm_get_md);
1898
1899 void *dm_get_mdptr(struct mapped_device *md)
1900 {
1901 return md->interface_ptr;
1902 }
1903
1904 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1905 {
1906 md->interface_ptr = ptr;
1907 }
1908
1909 void dm_get(struct mapped_device *md)
1910 {
1911 atomic_inc(&md->holders);
1912 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1913 }
1914
1915 int dm_hold(struct mapped_device *md)
1916 {
1917 spin_lock(&_minor_lock);
1918 if (test_bit(DMF_FREEING, &md->flags)) {
1919 spin_unlock(&_minor_lock);
1920 return -EBUSY;
1921 }
1922 dm_get(md);
1923 spin_unlock(&_minor_lock);
1924 return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(dm_hold);
1927
1928 const char *dm_device_name(struct mapped_device *md)
1929 {
1930 return md->name;
1931 }
1932 EXPORT_SYMBOL_GPL(dm_device_name);
1933
1934 static void __dm_destroy(struct mapped_device *md, bool wait)
1935 {
1936 struct request_queue *q = dm_get_md_queue(md);
1937 struct dm_table *map;
1938 int srcu_idx;
1939
1940 might_sleep();
1941
1942 spin_lock(&_minor_lock);
1943 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1944 set_bit(DMF_FREEING, &md->flags);
1945 spin_unlock(&_minor_lock);
1946
1947 blk_set_queue_dying(q);
1948
1949 if (dm_request_based(md) && md->kworker_task)
1950 kthread_flush_worker(&md->kworker);
1951
1952 /*
1953 * Take suspend_lock so that presuspend and postsuspend methods
1954 * do not race with internal suspend.
1955 */
1956 mutex_lock(&md->suspend_lock);
1957 map = dm_get_live_table(md, &srcu_idx);
1958 if (!dm_suspended_md(md)) {
1959 dm_table_presuspend_targets(map);
1960 dm_table_postsuspend_targets(map);
1961 }
1962 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1963 dm_put_live_table(md, srcu_idx);
1964 mutex_unlock(&md->suspend_lock);
1965
1966 /*
1967 * Rare, but there may be I/O requests still going to complete,
1968 * for example. Wait for all references to disappear.
1969 * No one should increment the reference count of the mapped_device,
1970 * after the mapped_device state becomes DMF_FREEING.
1971 */
1972 if (wait)
1973 while (atomic_read(&md->holders))
1974 msleep(1);
1975 else if (atomic_read(&md->holders))
1976 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1977 dm_device_name(md), atomic_read(&md->holders));
1978
1979 dm_sysfs_exit(md);
1980 dm_table_destroy(__unbind(md));
1981 free_dev(md);
1982 }
1983
1984 void dm_destroy(struct mapped_device *md)
1985 {
1986 __dm_destroy(md, true);
1987 }
1988
1989 void dm_destroy_immediate(struct mapped_device *md)
1990 {
1991 __dm_destroy(md, false);
1992 }
1993
1994 void dm_put(struct mapped_device *md)
1995 {
1996 atomic_dec(&md->holders);
1997 }
1998 EXPORT_SYMBOL_GPL(dm_put);
1999
2000 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2001 {
2002 int r = 0;
2003 DEFINE_WAIT(wait);
2004
2005 while (1) {
2006 prepare_to_wait(&md->wait, &wait, task_state);
2007
2008 if (!md_in_flight(md))
2009 break;
2010
2011 if (signal_pending_state(task_state, current)) {
2012 r = -EINTR;
2013 break;
2014 }
2015
2016 io_schedule();
2017 }
2018 finish_wait(&md->wait, &wait);
2019
2020 return r;
2021 }
2022
2023 /*
2024 * Process the deferred bios
2025 */
2026 static void dm_wq_work(struct work_struct *work)
2027 {
2028 struct mapped_device *md = container_of(work, struct mapped_device,
2029 work);
2030 struct bio *c;
2031 int srcu_idx;
2032 struct dm_table *map;
2033
2034 map = dm_get_live_table(md, &srcu_idx);
2035
2036 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2037 spin_lock_irq(&md->deferred_lock);
2038 c = bio_list_pop(&md->deferred);
2039 spin_unlock_irq(&md->deferred_lock);
2040
2041 if (!c)
2042 break;
2043
2044 if (dm_request_based(md))
2045 generic_make_request(c);
2046 else
2047 __split_and_process_bio(md, map, c);
2048 }
2049
2050 dm_put_live_table(md, srcu_idx);
2051 }
2052
2053 static void dm_queue_flush(struct mapped_device *md)
2054 {
2055 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2056 smp_mb__after_atomic();
2057 queue_work(md->wq, &md->work);
2058 }
2059
2060 /*
2061 * Swap in a new table, returning the old one for the caller to destroy.
2062 */
2063 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2064 {
2065 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2066 struct queue_limits limits;
2067 int r;
2068
2069 mutex_lock(&md->suspend_lock);
2070
2071 /* device must be suspended */
2072 if (!dm_suspended_md(md))
2073 goto out;
2074
2075 /*
2076 * If the new table has no data devices, retain the existing limits.
2077 * This helps multipath with queue_if_no_path if all paths disappear,
2078 * then new I/O is queued based on these limits, and then some paths
2079 * reappear.
2080 */
2081 if (dm_table_has_no_data_devices(table)) {
2082 live_map = dm_get_live_table_fast(md);
2083 if (live_map)
2084 limits = md->queue->limits;
2085 dm_put_live_table_fast(md);
2086 }
2087
2088 if (!live_map) {
2089 r = dm_calculate_queue_limits(table, &limits);
2090 if (r) {
2091 map = ERR_PTR(r);
2092 goto out;
2093 }
2094 }
2095
2096 map = __bind(md, table, &limits);
2097
2098 out:
2099 mutex_unlock(&md->suspend_lock);
2100 return map;
2101 }
2102
2103 /*
2104 * Functions to lock and unlock any filesystem running on the
2105 * device.
2106 */
2107 static int lock_fs(struct mapped_device *md)
2108 {
2109 int r;
2110
2111 WARN_ON(md->frozen_sb);
2112
2113 md->frozen_sb = freeze_bdev(md->bdev);
2114 if (IS_ERR(md->frozen_sb)) {
2115 r = PTR_ERR(md->frozen_sb);
2116 md->frozen_sb = NULL;
2117 return r;
2118 }
2119
2120 set_bit(DMF_FROZEN, &md->flags);
2121
2122 return 0;
2123 }
2124
2125 static void unlock_fs(struct mapped_device *md)
2126 {
2127 if (!test_bit(DMF_FROZEN, &md->flags))
2128 return;
2129
2130 thaw_bdev(md->bdev, md->frozen_sb);
2131 md->frozen_sb = NULL;
2132 clear_bit(DMF_FROZEN, &md->flags);
2133 }
2134
2135 /*
2136 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2137 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2138 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2139 *
2140 * If __dm_suspend returns 0, the device is completely quiescent
2141 * now. There is no request-processing activity. All new requests
2142 * are being added to md->deferred list.
2143 *
2144 * Caller must hold md->suspend_lock
2145 */
2146 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2147 unsigned suspend_flags, long task_state,
2148 int dmf_suspended_flag)
2149 {
2150 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2151 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2152 int r;
2153
2154 lockdep_assert_held(&md->suspend_lock);
2155
2156 /*
2157 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2158 * This flag is cleared before dm_suspend returns.
2159 */
2160 if (noflush)
2161 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2162
2163 /*
2164 * This gets reverted if there's an error later and the targets
2165 * provide the .presuspend_undo hook.
2166 */
2167 dm_table_presuspend_targets(map);
2168
2169 /*
2170 * Flush I/O to the device.
2171 * Any I/O submitted after lock_fs() may not be flushed.
2172 * noflush takes precedence over do_lockfs.
2173 * (lock_fs() flushes I/Os and waits for them to complete.)
2174 */
2175 if (!noflush && do_lockfs) {
2176 r = lock_fs(md);
2177 if (r) {
2178 dm_table_presuspend_undo_targets(map);
2179 return r;
2180 }
2181 }
2182
2183 /*
2184 * Here we must make sure that no processes are submitting requests
2185 * to target drivers i.e. no one may be executing
2186 * __split_and_process_bio. This is called from dm_request and
2187 * dm_wq_work.
2188 *
2189 * To get all processes out of __split_and_process_bio in dm_request,
2190 * we take the write lock. To prevent any process from reentering
2191 * __split_and_process_bio from dm_request and quiesce the thread
2192 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2193 * flush_workqueue(md->wq).
2194 */
2195 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2196 if (map)
2197 synchronize_srcu(&md->io_barrier);
2198
2199 /*
2200 * Stop md->queue before flushing md->wq in case request-based
2201 * dm defers requests to md->wq from md->queue.
2202 */
2203 if (dm_request_based(md)) {
2204 dm_stop_queue(md->queue);
2205 if (md->kworker_task)
2206 kthread_flush_worker(&md->kworker);
2207 }
2208
2209 flush_workqueue(md->wq);
2210
2211 /*
2212 * At this point no more requests are entering target request routines.
2213 * We call dm_wait_for_completion to wait for all existing requests
2214 * to finish.
2215 */
2216 r = dm_wait_for_completion(md, task_state);
2217 if (!r)
2218 set_bit(dmf_suspended_flag, &md->flags);
2219
2220 if (noflush)
2221 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2222 if (map)
2223 synchronize_srcu(&md->io_barrier);
2224
2225 /* were we interrupted ? */
2226 if (r < 0) {
2227 dm_queue_flush(md);
2228
2229 if (dm_request_based(md))
2230 dm_start_queue(md->queue);
2231
2232 unlock_fs(md);
2233 dm_table_presuspend_undo_targets(map);
2234 /* pushback list is already flushed, so skip flush */
2235 }
2236
2237 return r;
2238 }
2239
2240 /*
2241 * We need to be able to change a mapping table under a mounted
2242 * filesystem. For example we might want to move some data in
2243 * the background. Before the table can be swapped with
2244 * dm_bind_table, dm_suspend must be called to flush any in
2245 * flight bios and ensure that any further io gets deferred.
2246 */
2247 /*
2248 * Suspend mechanism in request-based dm.
2249 *
2250 * 1. Flush all I/Os by lock_fs() if needed.
2251 * 2. Stop dispatching any I/O by stopping the request_queue.
2252 * 3. Wait for all in-flight I/Os to be completed or requeued.
2253 *
2254 * To abort suspend, start the request_queue.
2255 */
2256 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2257 {
2258 struct dm_table *map = NULL;
2259 int r = 0;
2260
2261 retry:
2262 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2263
2264 if (dm_suspended_md(md)) {
2265 r = -EINVAL;
2266 goto out_unlock;
2267 }
2268
2269 if (dm_suspended_internally_md(md)) {
2270 /* already internally suspended, wait for internal resume */
2271 mutex_unlock(&md->suspend_lock);
2272 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2273 if (r)
2274 return r;
2275 goto retry;
2276 }
2277
2278 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2279
2280 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2281 if (r)
2282 goto out_unlock;
2283
2284 dm_table_postsuspend_targets(map);
2285
2286 out_unlock:
2287 mutex_unlock(&md->suspend_lock);
2288 return r;
2289 }
2290
2291 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2292 {
2293 if (map) {
2294 int r = dm_table_resume_targets(map);
2295 if (r)
2296 return r;
2297 }
2298
2299 dm_queue_flush(md);
2300
2301 /*
2302 * Flushing deferred I/Os must be done after targets are resumed
2303 * so that mapping of targets can work correctly.
2304 * Request-based dm is queueing the deferred I/Os in its request_queue.
2305 */
2306 if (dm_request_based(md))
2307 dm_start_queue(md->queue);
2308
2309 unlock_fs(md);
2310
2311 return 0;
2312 }
2313
2314 int dm_resume(struct mapped_device *md)
2315 {
2316 int r;
2317 struct dm_table *map = NULL;
2318
2319 retry:
2320 r = -EINVAL;
2321 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2322
2323 if (!dm_suspended_md(md))
2324 goto out;
2325
2326 if (dm_suspended_internally_md(md)) {
2327 /* already internally suspended, wait for internal resume */
2328 mutex_unlock(&md->suspend_lock);
2329 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2330 if (r)
2331 return r;
2332 goto retry;
2333 }
2334
2335 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2336 if (!map || !dm_table_get_size(map))
2337 goto out;
2338
2339 r = __dm_resume(md, map);
2340 if (r)
2341 goto out;
2342
2343 clear_bit(DMF_SUSPENDED, &md->flags);
2344 out:
2345 mutex_unlock(&md->suspend_lock);
2346
2347 return r;
2348 }
2349
2350 /*
2351 * Internal suspend/resume works like userspace-driven suspend. It waits
2352 * until all bios finish and prevents issuing new bios to the target drivers.
2353 * It may be used only from the kernel.
2354 */
2355
2356 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2357 {
2358 struct dm_table *map = NULL;
2359
2360 if (md->internal_suspend_count++)
2361 return; /* nested internal suspend */
2362
2363 if (dm_suspended_md(md)) {
2364 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2365 return; /* nest suspend */
2366 }
2367
2368 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2369
2370 /*
2371 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2372 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2373 * would require changing .presuspend to return an error -- avoid this
2374 * until there is a need for more elaborate variants of internal suspend.
2375 */
2376 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2377 DMF_SUSPENDED_INTERNALLY);
2378
2379 dm_table_postsuspend_targets(map);
2380 }
2381
2382 static void __dm_internal_resume(struct mapped_device *md)
2383 {
2384 BUG_ON(!md->internal_suspend_count);
2385
2386 if (--md->internal_suspend_count)
2387 return; /* resume from nested internal suspend */
2388
2389 if (dm_suspended_md(md))
2390 goto done; /* resume from nested suspend */
2391
2392 /*
2393 * NOTE: existing callers don't need to call dm_table_resume_targets
2394 * (which may fail -- so best to avoid it for now by passing NULL map)
2395 */
2396 (void) __dm_resume(md, NULL);
2397
2398 done:
2399 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2400 smp_mb__after_atomic();
2401 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2402 }
2403
2404 void dm_internal_suspend_noflush(struct mapped_device *md)
2405 {
2406 mutex_lock(&md->suspend_lock);
2407 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2408 mutex_unlock(&md->suspend_lock);
2409 }
2410 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2411
2412 void dm_internal_resume(struct mapped_device *md)
2413 {
2414 mutex_lock(&md->suspend_lock);
2415 __dm_internal_resume(md);
2416 mutex_unlock(&md->suspend_lock);
2417 }
2418 EXPORT_SYMBOL_GPL(dm_internal_resume);
2419
2420 /*
2421 * Fast variants of internal suspend/resume hold md->suspend_lock,
2422 * which prevents interaction with userspace-driven suspend.
2423 */
2424
2425 void dm_internal_suspend_fast(struct mapped_device *md)
2426 {
2427 mutex_lock(&md->suspend_lock);
2428 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2429 return;
2430
2431 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432 synchronize_srcu(&md->io_barrier);
2433 flush_workqueue(md->wq);
2434 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2435 }
2436 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2437
2438 void dm_internal_resume_fast(struct mapped_device *md)
2439 {
2440 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441 goto done;
2442
2443 dm_queue_flush(md);
2444
2445 done:
2446 mutex_unlock(&md->suspend_lock);
2447 }
2448 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2449
2450 /*-----------------------------------------------------------------
2451 * Event notification.
2452 *---------------------------------------------------------------*/
2453 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2454 unsigned cookie)
2455 {
2456 char udev_cookie[DM_COOKIE_LENGTH];
2457 char *envp[] = { udev_cookie, NULL };
2458
2459 if (!cookie)
2460 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2461 else {
2462 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2463 DM_COOKIE_ENV_VAR_NAME, cookie);
2464 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465 action, envp);
2466 }
2467 }
2468
2469 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2470 {
2471 return atomic_add_return(1, &md->uevent_seq);
2472 }
2473
2474 uint32_t dm_get_event_nr(struct mapped_device *md)
2475 {
2476 return atomic_read(&md->event_nr);
2477 }
2478
2479 int dm_wait_event(struct mapped_device *md, int event_nr)
2480 {
2481 return wait_event_interruptible(md->eventq,
2482 (event_nr != atomic_read(&md->event_nr)));
2483 }
2484
2485 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2486 {
2487 unsigned long flags;
2488
2489 spin_lock_irqsave(&md->uevent_lock, flags);
2490 list_add(elist, &md->uevent_list);
2491 spin_unlock_irqrestore(&md->uevent_lock, flags);
2492 }
2493
2494 /*
2495 * The gendisk is only valid as long as you have a reference
2496 * count on 'md'.
2497 */
2498 struct gendisk *dm_disk(struct mapped_device *md)
2499 {
2500 return md->disk;
2501 }
2502 EXPORT_SYMBOL_GPL(dm_disk);
2503
2504 struct kobject *dm_kobject(struct mapped_device *md)
2505 {
2506 return &md->kobj_holder.kobj;
2507 }
2508
2509 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2510 {
2511 struct mapped_device *md;
2512
2513 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2514
2515 if (test_bit(DMF_FREEING, &md->flags) ||
2516 dm_deleting_md(md))
2517 return NULL;
2518
2519 dm_get(md);
2520 return md;
2521 }
2522
2523 int dm_suspended_md(struct mapped_device *md)
2524 {
2525 return test_bit(DMF_SUSPENDED, &md->flags);
2526 }
2527
2528 int dm_suspended_internally_md(struct mapped_device *md)
2529 {
2530 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2531 }
2532
2533 int dm_test_deferred_remove_flag(struct mapped_device *md)
2534 {
2535 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2536 }
2537
2538 int dm_suspended(struct dm_target *ti)
2539 {
2540 return dm_suspended_md(dm_table_get_md(ti->table));
2541 }
2542 EXPORT_SYMBOL_GPL(dm_suspended);
2543
2544 int dm_noflush_suspending(struct dm_target *ti)
2545 {
2546 return __noflush_suspending(dm_table_get_md(ti->table));
2547 }
2548 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2549
2550 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2551 unsigned integrity, unsigned per_io_data_size)
2552 {
2553 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2554 unsigned int pool_size = 0;
2555 unsigned int front_pad;
2556
2557 if (!pools)
2558 return NULL;
2559
2560 switch (type) {
2561 case DM_TYPE_BIO_BASED:
2562 case DM_TYPE_DAX_BIO_BASED:
2563 pool_size = dm_get_reserved_bio_based_ios();
2564 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2565
2566 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2567 if (!pools->io_pool)
2568 goto out;
2569 break;
2570 case DM_TYPE_REQUEST_BASED:
2571 case DM_TYPE_MQ_REQUEST_BASED:
2572 pool_size = dm_get_reserved_rq_based_ios();
2573 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2574 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2575 break;
2576 default:
2577 BUG();
2578 }
2579
2580 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2581 if (!pools->bs)
2582 goto out;
2583
2584 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2585 goto out;
2586
2587 return pools;
2588
2589 out:
2590 dm_free_md_mempools(pools);
2591
2592 return NULL;
2593 }
2594
2595 void dm_free_md_mempools(struct dm_md_mempools *pools)
2596 {
2597 if (!pools)
2598 return;
2599
2600 mempool_destroy(pools->io_pool);
2601
2602 if (pools->bs)
2603 bioset_free(pools->bs);
2604
2605 kfree(pools);
2606 }
2607
2608 struct dm_pr {
2609 u64 old_key;
2610 u64 new_key;
2611 u32 flags;
2612 bool fail_early;
2613 };
2614
2615 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2616 void *data)
2617 {
2618 struct mapped_device *md = bdev->bd_disk->private_data;
2619 struct dm_table *table;
2620 struct dm_target *ti;
2621 int ret = -ENOTTY, srcu_idx;
2622
2623 table = dm_get_live_table(md, &srcu_idx);
2624 if (!table || !dm_table_get_size(table))
2625 goto out;
2626
2627 /* We only support devices that have a single target */
2628 if (dm_table_get_num_targets(table) != 1)
2629 goto out;
2630 ti = dm_table_get_target(table, 0);
2631
2632 ret = -EINVAL;
2633 if (!ti->type->iterate_devices)
2634 goto out;
2635
2636 ret = ti->type->iterate_devices(ti, fn, data);
2637 out:
2638 dm_put_live_table(md, srcu_idx);
2639 return ret;
2640 }
2641
2642 /*
2643 * For register / unregister we need to manually call out to every path.
2644 */
2645 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2646 sector_t start, sector_t len, void *data)
2647 {
2648 struct dm_pr *pr = data;
2649 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2650
2651 if (!ops || !ops->pr_register)
2652 return -EOPNOTSUPP;
2653 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2654 }
2655
2656 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2657 u32 flags)
2658 {
2659 struct dm_pr pr = {
2660 .old_key = old_key,
2661 .new_key = new_key,
2662 .flags = flags,
2663 .fail_early = true,
2664 };
2665 int ret;
2666
2667 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2668 if (ret && new_key) {
2669 /* unregister all paths if we failed to register any path */
2670 pr.old_key = new_key;
2671 pr.new_key = 0;
2672 pr.flags = 0;
2673 pr.fail_early = false;
2674 dm_call_pr(bdev, __dm_pr_register, &pr);
2675 }
2676
2677 return ret;
2678 }
2679
2680 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2681 u32 flags)
2682 {
2683 struct mapped_device *md = bdev->bd_disk->private_data;
2684 const struct pr_ops *ops;
2685 fmode_t mode;
2686 int r;
2687
2688 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2689 if (r < 0)
2690 return r;
2691
2692 ops = bdev->bd_disk->fops->pr_ops;
2693 if (ops && ops->pr_reserve)
2694 r = ops->pr_reserve(bdev, key, type, flags);
2695 else
2696 r = -EOPNOTSUPP;
2697
2698 bdput(bdev);
2699 return r;
2700 }
2701
2702 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2703 {
2704 struct mapped_device *md = bdev->bd_disk->private_data;
2705 const struct pr_ops *ops;
2706 fmode_t mode;
2707 int r;
2708
2709 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2710 if (r < 0)
2711 return r;
2712
2713 ops = bdev->bd_disk->fops->pr_ops;
2714 if (ops && ops->pr_release)
2715 r = ops->pr_release(bdev, key, type);
2716 else
2717 r = -EOPNOTSUPP;
2718
2719 bdput(bdev);
2720 return r;
2721 }
2722
2723 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2724 enum pr_type type, bool abort)
2725 {
2726 struct mapped_device *md = bdev->bd_disk->private_data;
2727 const struct pr_ops *ops;
2728 fmode_t mode;
2729 int r;
2730
2731 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2732 if (r < 0)
2733 return r;
2734
2735 ops = bdev->bd_disk->fops->pr_ops;
2736 if (ops && ops->pr_preempt)
2737 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2738 else
2739 r = -EOPNOTSUPP;
2740
2741 bdput(bdev);
2742 return r;
2743 }
2744
2745 static int dm_pr_clear(struct block_device *bdev, u64 key)
2746 {
2747 struct mapped_device *md = bdev->bd_disk->private_data;
2748 const struct pr_ops *ops;
2749 fmode_t mode;
2750 int r;
2751
2752 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2753 if (r < 0)
2754 return r;
2755
2756 ops = bdev->bd_disk->fops->pr_ops;
2757 if (ops && ops->pr_clear)
2758 r = ops->pr_clear(bdev, key);
2759 else
2760 r = -EOPNOTSUPP;
2761
2762 bdput(bdev);
2763 return r;
2764 }
2765
2766 static const struct pr_ops dm_pr_ops = {
2767 .pr_register = dm_pr_register,
2768 .pr_reserve = dm_pr_reserve,
2769 .pr_release = dm_pr_release,
2770 .pr_preempt = dm_pr_preempt,
2771 .pr_clear = dm_pr_clear,
2772 };
2773
2774 static const struct block_device_operations dm_blk_dops = {
2775 .open = dm_blk_open,
2776 .release = dm_blk_close,
2777 .ioctl = dm_blk_ioctl,
2778 .direct_access = dm_blk_direct_access,
2779 .getgeo = dm_blk_getgeo,
2780 .pr_ops = &dm_pr_ops,
2781 .owner = THIS_MODULE
2782 };
2783
2784 /*
2785 * module hooks
2786 */
2787 module_init(dm_init);
2788 module_exit(dm_exit);
2789
2790 module_param(major, uint, 0);
2791 MODULE_PARM_DESC(major, "The major number of the device mapper");
2792
2793 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2794 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2795
2796 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2797 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2798
2799 MODULE_DESCRIPTION(DM_NAME " driver");
2800 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2801 MODULE_LICENSE("GPL");