]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm.c
e24069aaeb1872d1bb5b29e6dc8fdc0b9f561568
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 };
90
91 /*
92 * For request-based dm - the bio clones we allocate are embedded in these
93 * structs.
94 *
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
97 * struct.
98 */
99 struct dm_rq_clone_bio_info {
100 struct bio *orig;
101 struct dm_rq_target_io *tio;
102 struct bio clone;
103 };
104
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 if (rq && rq->end_io_data)
108 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112
113 #define MINOR_ALLOCED ((void *)-1)
114
115 /*
116 * Bits for the md->flags field.
117 */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127
128 /*
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
131 */
132 struct dm_table {
133 int undefined__;
134 };
135
136 /*
137 * Work processed by per-device workqueue.
138 */
139 struct mapped_device {
140 struct srcu_struct io_barrier;
141 struct mutex suspend_lock;
142 atomic_t holders;
143 atomic_t open_count;
144
145 /*
146 * The current mapping.
147 * Use dm_get_live_table{_fast} or take suspend_lock for
148 * dereference.
149 */
150 struct dm_table __rcu *map;
151
152 struct list_head table_devices;
153 struct mutex table_devices_lock;
154
155 unsigned long flags;
156
157 struct request_queue *queue;
158 unsigned type;
159 /* Protect queue and type against concurrent access. */
160 struct mutex type_lock;
161
162 struct target_type *immutable_target_type;
163
164 struct gendisk *disk;
165 char name[16];
166
167 void *interface_ptr;
168
169 /*
170 * A list of ios that arrived while we were suspended.
171 */
172 atomic_t pending[2];
173 wait_queue_head_t wait;
174 struct work_struct work;
175 struct bio_list deferred;
176 spinlock_t deferred_lock;
177
178 /*
179 * Processing queue (flush)
180 */
181 struct workqueue_struct *wq;
182
183 /*
184 * io objects are allocated from here.
185 */
186 mempool_t *io_pool;
187 mempool_t *rq_pool;
188
189 struct bio_set *bs;
190
191 /*
192 * Event handling.
193 */
194 atomic_t event_nr;
195 wait_queue_head_t eventq;
196 atomic_t uevent_seq;
197 struct list_head uevent_list;
198 spinlock_t uevent_lock; /* Protect access to uevent_list */
199
200 /*
201 * freeze/thaw support require holding onto a super block
202 */
203 struct super_block *frozen_sb;
204 struct block_device *bdev;
205
206 /* forced geometry settings */
207 struct hd_geometry geometry;
208
209 /* kobject and completion */
210 struct dm_kobject_holder kobj_holder;
211
212 /* zero-length flush that will be cloned and submitted to targets */
213 struct bio flush_bio;
214
215 /* the number of internal suspends */
216 unsigned internal_suspend_count;
217
218 struct dm_stats stats;
219
220 struct kthread_worker kworker;
221 struct task_struct *kworker_task;
222
223 /* for request-based merge heuristic in dm_request_fn() */
224 unsigned seq_rq_merge_deadline_usecs;
225 int last_rq_rw;
226 sector_t last_rq_pos;
227 ktime_t last_rq_start_time;
228
229 /* for blk-mq request-based DM support */
230 struct blk_mq_tag_set tag_set;
231 bool use_blk_mq;
232 };
233
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 return md->use_blk_mq;
243 }
244
245 /*
246 * For mempools pre-allocation at the table loading time.
247 */
248 struct dm_md_mempools {
249 mempool_t *io_pool;
250 mempool_t *rq_pool;
251 struct bio_set *bs;
252 };
253
254 struct table_device {
255 struct list_head list;
256 atomic_t count;
257 struct dm_dev dm_dev;
258 };
259
260 #define RESERVED_BIO_BASED_IOS 16
261 #define RESERVED_REQUEST_BASED_IOS 256
262 #define RESERVED_MAX_IOS 1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266
267 /*
268 * Bio-based DM's mempools' reserved IOs set by the user.
269 */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271
272 /*
273 * Request-based DM's mempools' reserved IOs set by the user.
274 */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 unsigned def, unsigned max)
279 {
280 unsigned param = ACCESS_ONCE(*module_param);
281 unsigned modified_param = 0;
282
283 if (!param)
284 modified_param = def;
285 else if (param > max)
286 modified_param = max;
287
288 if (modified_param) {
289 (void)cmpxchg(module_param, param, modified_param);
290 param = modified_param;
291 }
292
293 return param;
294 }
295
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 return __dm_get_module_param(&reserved_bio_based_ios,
299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 return __dm_get_module_param(&reserved_rq_based_ios,
306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309
310 static int __init local_init(void)
311 {
312 int r = -ENOMEM;
313
314 /* allocate a slab for the dm_ios */
315 _io_cache = KMEM_CACHE(dm_io, 0);
316 if (!_io_cache)
317 return r;
318
319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 if (!_rq_tio_cache)
321 goto out_free_io_cache;
322
323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 __alignof__(struct request), 0, NULL);
325 if (!_rq_cache)
326 goto out_free_rq_tio_cache;
327
328 r = dm_uevent_init();
329 if (r)
330 goto out_free_rq_cache;
331
332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 if (!deferred_remove_workqueue) {
334 r = -ENOMEM;
335 goto out_uevent_exit;
336 }
337
338 _major = major;
339 r = register_blkdev(_major, _name);
340 if (r < 0)
341 goto out_free_workqueue;
342
343 if (!_major)
344 _major = r;
345
346 return 0;
347
348 out_free_workqueue:
349 destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 dm_uevent_exit();
352 out_free_rq_cache:
353 kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 kmem_cache_destroy(_io_cache);
358
359 return r;
360 }
361
362 static void local_exit(void)
363 {
364 flush_scheduled_work();
365 destroy_workqueue(deferred_remove_workqueue);
366
367 kmem_cache_destroy(_rq_cache);
368 kmem_cache_destroy(_rq_tio_cache);
369 kmem_cache_destroy(_io_cache);
370 unregister_blkdev(_major, _name);
371 dm_uevent_exit();
372
373 _major = 0;
374
375 DMINFO("cleaned up");
376 }
377
378 static int (*_inits[])(void) __initdata = {
379 local_init,
380 dm_target_init,
381 dm_linear_init,
382 dm_stripe_init,
383 dm_io_init,
384 dm_kcopyd_init,
385 dm_interface_init,
386 dm_statistics_init,
387 };
388
389 static void (*_exits[])(void) = {
390 local_exit,
391 dm_target_exit,
392 dm_linear_exit,
393 dm_stripe_exit,
394 dm_io_exit,
395 dm_kcopyd_exit,
396 dm_interface_exit,
397 dm_statistics_exit,
398 };
399
400 static int __init dm_init(void)
401 {
402 const int count = ARRAY_SIZE(_inits);
403
404 int r, i;
405
406 for (i = 0; i < count; i++) {
407 r = _inits[i]();
408 if (r)
409 goto bad;
410 }
411
412 return 0;
413
414 bad:
415 while (i--)
416 _exits[i]();
417
418 return r;
419 }
420
421 static void __exit dm_exit(void)
422 {
423 int i = ARRAY_SIZE(_exits);
424
425 while (i--)
426 _exits[i]();
427
428 /*
429 * Should be empty by this point.
430 */
431 idr_destroy(&_minor_idr);
432 }
433
434 /*
435 * Block device functions
436 */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 return test_bit(DMF_DELETING, &md->flags);
440 }
441
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 struct mapped_device *md;
445
446 spin_lock(&_minor_lock);
447
448 md = bdev->bd_disk->private_data;
449 if (!md)
450 goto out;
451
452 if (test_bit(DMF_FREEING, &md->flags) ||
453 dm_deleting_md(md)) {
454 md = NULL;
455 goto out;
456 }
457
458 dm_get(md);
459 atomic_inc(&md->open_count);
460 out:
461 spin_unlock(&_minor_lock);
462
463 return md ? 0 : -ENXIO;
464 }
465
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 struct mapped_device *md;
469
470 spin_lock(&_minor_lock);
471
472 md = disk->private_data;
473 if (WARN_ON(!md))
474 goto out;
475
476 if (atomic_dec_and_test(&md->open_count) &&
477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 queue_work(deferred_remove_workqueue, &deferred_remove_work);
479
480 dm_put(md);
481 out:
482 spin_unlock(&_minor_lock);
483 }
484
485 int dm_open_count(struct mapped_device *md)
486 {
487 return atomic_read(&md->open_count);
488 }
489
490 /*
491 * Guarantees nothing is using the device before it's deleted.
492 */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 int r = 0;
496
497 spin_lock(&_minor_lock);
498
499 if (dm_open_count(md)) {
500 r = -EBUSY;
501 if (mark_deferred)
502 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 r = -EEXIST;
505 else
506 set_bit(DMF_DELETING, &md->flags);
507
508 spin_unlock(&_minor_lock);
509
510 return r;
511 }
512
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 int r = 0;
516
517 spin_lock(&_minor_lock);
518
519 if (test_bit(DMF_DELETING, &md->flags))
520 r = -EBUSY;
521 else
522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523
524 spin_unlock(&_minor_lock);
525
526 return r;
527 }
528
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 dm_deferred_remove();
532 }
533
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 return get_capacity(md->disk);
537 }
538
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 return md->queue;
542 }
543
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 return &md->stats;
547 }
548
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 struct mapped_device *md = bdev->bd_disk->private_data;
552
553 return dm_get_geometry(md, geo);
554 }
555
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 unsigned int cmd, unsigned long arg)
558 {
559 struct mapped_device *md = bdev->bd_disk->private_data;
560 int srcu_idx;
561 struct dm_table *map;
562 struct dm_target *tgt;
563 int r = -ENOTTY;
564
565 retry:
566 map = dm_get_live_table(md, &srcu_idx);
567
568 if (!map || !dm_table_get_size(map))
569 goto out;
570
571 /* We only support devices that have a single target */
572 if (dm_table_get_num_targets(map) != 1)
573 goto out;
574
575 tgt = dm_table_get_target(map, 0);
576 if (!tgt->type->ioctl)
577 goto out;
578
579 if (dm_suspended_md(md)) {
580 r = -EAGAIN;
581 goto out;
582 }
583
584 r = tgt->type->ioctl(tgt, cmd, arg);
585
586 out:
587 dm_put_live_table(md, srcu_idx);
588
589 if (r == -ENOTCONN) {
590 msleep(10);
591 goto retry;
592 }
593
594 return r;
595 }
596
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 mempool_free(io, md->io_pool);
605 }
606
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 bio_put(&tio->clone);
610 }
611
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 gfp_t gfp_mask)
614 {
615 return mempool_alloc(md->io_pool, gfp_mask);
616 }
617
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 mempool_free(tio, tio->md->io_pool);
621 }
622
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 gfp_t gfp_mask)
625 {
626 return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 mempool_free(rq, md->rq_pool);
632 }
633
634 static int md_in_flight(struct mapped_device *md)
635 {
636 return atomic_read(&md->pending[READ]) +
637 atomic_read(&md->pending[WRITE]);
638 }
639
640 static void start_io_acct(struct dm_io *io)
641 {
642 struct mapped_device *md = io->md;
643 struct bio *bio = io->bio;
644 int cpu;
645 int rw = bio_data_dir(bio);
646
647 io->start_time = jiffies;
648
649 cpu = part_stat_lock();
650 part_round_stats(cpu, &dm_disk(md)->part0);
651 part_stat_unlock();
652 atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 atomic_inc_return(&md->pending[rw]));
654
655 if (unlikely(dm_stats_used(&md->stats)))
656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659
660 static void end_io_acct(struct dm_io *io)
661 {
662 struct mapped_device *md = io->md;
663 struct bio *bio = io->bio;
664 unsigned long duration = jiffies - io->start_time;
665 int pending;
666 int rw = bio_data_dir(bio);
667
668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669
670 if (unlikely(dm_stats_used(&md->stats)))
671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 bio_sectors(bio), true, duration, &io->stats_aux);
673
674 /*
675 * After this is decremented the bio must not be touched if it is
676 * a flush.
677 */
678 pending = atomic_dec_return(&md->pending[rw]);
679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 pending += atomic_read(&md->pending[rw^0x1]);
681
682 /* nudge anyone waiting on suspend queue */
683 if (!pending)
684 wake_up(&md->wait);
685 }
686
687 /*
688 * Add the bio to the list of deferred io.
689 */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 unsigned long flags;
693
694 spin_lock_irqsave(&md->deferred_lock, flags);
695 bio_list_add(&md->deferred, bio);
696 spin_unlock_irqrestore(&md->deferred_lock, flags);
697 queue_work(md->wq, &md->work);
698 }
699
700 /*
701 * Everyone (including functions in this file), should use this
702 * function to access the md->map field, and make sure they call
703 * dm_put_live_table() when finished.
704 */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 *srcu_idx = srcu_read_lock(&md->io_barrier);
708
709 return srcu_dereference(md->map, &md->io_barrier);
710 }
711
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716
717 void dm_sync_table(struct mapped_device *md)
718 {
719 synchronize_srcu(&md->io_barrier);
720 synchronize_rcu_expedited();
721 }
722
723 /*
724 * A fast alternative to dm_get_live_table/dm_put_live_table.
725 * The caller must not block between these two functions.
726 */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 rcu_read_lock();
730 return rcu_dereference(md->map);
731 }
732
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 rcu_read_unlock();
736 }
737
738 /*
739 * Open a table device so we can use it as a map destination.
740 */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 struct mapped_device *md)
743 {
744 static char *_claim_ptr = "I belong to device-mapper";
745 struct block_device *bdev;
746
747 int r;
748
749 BUG_ON(td->dm_dev.bdev);
750
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 if (IS_ERR(bdev))
753 return PTR_ERR(bdev);
754
755 r = bd_link_disk_holder(bdev, dm_disk(md));
756 if (r) {
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 return r;
759 }
760
761 td->dm_dev.bdev = bdev;
762 return 0;
763 }
764
765 /*
766 * Close a table device that we've been using.
767 */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 if (!td->dm_dev.bdev)
771 return;
772
773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = NULL;
776 }
777
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 fmode_t mode) {
780 struct table_device *td;
781
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 return td;
785
786 return NULL;
787 }
788
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result) {
791 int r;
792 struct table_device *td;
793
794 mutex_lock(&md->table_devices_lock);
795 td = find_table_device(&md->table_devices, dev, mode);
796 if (!td) {
797 td = kmalloc(sizeof(*td), GFP_KERNEL);
798 if (!td) {
799 mutex_unlock(&md->table_devices_lock);
800 return -ENOMEM;
801 }
802
803 td->dm_dev.mode = mode;
804 td->dm_dev.bdev = NULL;
805
806 if ((r = open_table_device(td, dev, md))) {
807 mutex_unlock(&md->table_devices_lock);
808 kfree(td);
809 return r;
810 }
811
812 format_dev_t(td->dm_dev.name, dev);
813
814 atomic_set(&td->count, 0);
815 list_add(&td->list, &md->table_devices);
816 }
817 atomic_inc(&td->count);
818 mutex_unlock(&md->table_devices_lock);
819
820 *result = &td->dm_dev;
821 return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 struct table_device *td = container_of(d, struct table_device, dm_dev);
828
829 mutex_lock(&md->table_devices_lock);
830 if (atomic_dec_and_test(&td->count)) {
831 close_table_device(td, md);
832 list_del(&td->list);
833 kfree(td);
834 }
835 mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838
839 static void free_table_devices(struct list_head *devices)
840 {
841 struct list_head *tmp, *next;
842
843 list_for_each_safe(tmp, next, devices) {
844 struct table_device *td = list_entry(tmp, struct table_device, list);
845
846 DMWARN("dm_destroy: %s still exists with %d references",
847 td->dm_dev.name, atomic_read(&td->count));
848 kfree(td);
849 }
850 }
851
852 /*
853 * Get the geometry associated with a dm device
854 */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 *geo = md->geometry;
858
859 return 0;
860 }
861
862 /*
863 * Set the geometry of a device.
864 */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868
869 if (geo->start > sz) {
870 DMWARN("Start sector is beyond the geometry limits.");
871 return -EINVAL;
872 }
873
874 md->geometry = *geo;
875
876 return 0;
877 }
878
879 /*-----------------------------------------------------------------
880 * CRUD START:
881 * A more elegant soln is in the works that uses the queue
882 * merge fn, unfortunately there are a couple of changes to
883 * the block layer that I want to make for this. So in the
884 * interests of getting something for people to use I give
885 * you this clearly demarcated crap.
886 *---------------------------------------------------------------*/
887
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892
893 /*
894 * Decrements the number of outstanding ios that a bio has been
895 * cloned into, completing the original io if necc.
896 */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 unsigned long flags;
900 int io_error;
901 struct bio *bio;
902 struct mapped_device *md = io->md;
903
904 /* Push-back supersedes any I/O errors */
905 if (unlikely(error)) {
906 spin_lock_irqsave(&io->endio_lock, flags);
907 if (!(io->error > 0 && __noflush_suspending(md)))
908 io->error = error;
909 spin_unlock_irqrestore(&io->endio_lock, flags);
910 }
911
912 if (atomic_dec_and_test(&io->io_count)) {
913 if (io->error == DM_ENDIO_REQUEUE) {
914 /*
915 * Target requested pushing back the I/O.
916 */
917 spin_lock_irqsave(&md->deferred_lock, flags);
918 if (__noflush_suspending(md))
919 bio_list_add_head(&md->deferred, io->bio);
920 else
921 /* noflush suspend was interrupted. */
922 io->error = -EIO;
923 spin_unlock_irqrestore(&md->deferred_lock, flags);
924 }
925
926 io_error = io->error;
927 bio = io->bio;
928 end_io_acct(io);
929 free_io(md, io);
930
931 if (io_error == DM_ENDIO_REQUEUE)
932 return;
933
934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 /*
936 * Preflush done for flush with data, reissue
937 * without REQ_FLUSH.
938 */
939 bio->bi_rw &= ~REQ_FLUSH;
940 queue_io(md, bio);
941 } else {
942 /* done with normal IO or empty flush */
943 trace_block_bio_complete(md->queue, bio, io_error);
944 bio_endio(bio, io_error);
945 }
946 }
947 }
948
949 static void disable_write_same(struct mapped_device *md)
950 {
951 struct queue_limits *limits = dm_get_queue_limits(md);
952
953 /* device doesn't really support WRITE SAME, disable it */
954 limits->max_write_same_sectors = 0;
955 }
956
957 static void clone_endio(struct bio *bio, int error)
958 {
959 int r = error;
960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 struct dm_io *io = tio->io;
962 struct mapped_device *md = tio->io->md;
963 dm_endio_fn endio = tio->ti->type->end_io;
964
965 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 error = -EIO;
967
968 if (endio) {
969 r = endio(tio->ti, bio, error);
970 if (r < 0 || r == DM_ENDIO_REQUEUE)
971 /*
972 * error and requeue request are handled
973 * in dec_pending().
974 */
975 error = r;
976 else if (r == DM_ENDIO_INCOMPLETE)
977 /* The target will handle the io */
978 return;
979 else if (r) {
980 DMWARN("unimplemented target endio return value: %d", r);
981 BUG();
982 }
983 }
984
985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 disable_write_same(md);
988
989 free_tio(md, tio);
990 dec_pending(io, error);
991 }
992
993 /*
994 * Partial completion handling for request-based dm
995 */
996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 struct dm_rq_clone_bio_info *info =
999 container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 struct dm_rq_target_io *tio = info->tio;
1001 struct bio *bio = info->orig;
1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003
1004 bio_put(clone);
1005
1006 if (tio->error)
1007 /*
1008 * An error has already been detected on the request.
1009 * Once error occurred, just let clone->end_io() handle
1010 * the remainder.
1011 */
1012 return;
1013 else if (error) {
1014 /*
1015 * Don't notice the error to the upper layer yet.
1016 * The error handling decision is made by the target driver,
1017 * when the request is completed.
1018 */
1019 tio->error = error;
1020 return;
1021 }
1022
1023 /*
1024 * I/O for the bio successfully completed.
1025 * Notice the data completion to the upper layer.
1026 */
1027
1028 /*
1029 * bios are processed from the head of the list.
1030 * So the completing bio should always be rq->bio.
1031 * If it's not, something wrong is happening.
1032 */
1033 if (tio->orig->bio != bio)
1034 DMERR("bio completion is going in the middle of the request");
1035
1036 /*
1037 * Update the original request.
1038 * Do not use blk_end_request() here, because it may complete
1039 * the original request before the clone, and break the ordering.
1040 */
1041 blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048
1049 /*
1050 * Don't touch any member of the md after calling this function because
1051 * the md may be freed in dm_put() at the end of this function.
1052 * Or do dm_get() before calling this function and dm_put() later.
1053 */
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 int nr_requests_pending;
1057
1058 atomic_dec(&md->pending[rw]);
1059
1060 /* nudge anyone waiting on suspend queue */
1061 nr_requests_pending = md_in_flight(md);
1062 if (!nr_requests_pending)
1063 wake_up(&md->wait);
1064
1065 /*
1066 * Run this off this callpath, as drivers could invoke end_io while
1067 * inside their request_fn (and holding the queue lock). Calling
1068 * back into ->request_fn() could deadlock attempting to grab the
1069 * queue lock again.
1070 */
1071 if (run_queue) {
1072 if (md->queue->mq_ops)
1073 blk_mq_run_hw_queues(md->queue, true);
1074 else if (!nr_requests_pending ||
1075 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 blk_run_queue_async(md->queue);
1077 }
1078
1079 /*
1080 * dm_put() must be at the end of this function. See the comment above
1081 */
1082 dm_put(md);
1083 }
1084
1085 static void free_rq_clone(struct request *clone)
1086 {
1087 struct dm_rq_target_io *tio = clone->end_io_data;
1088 struct mapped_device *md = tio->md;
1089
1090 blk_rq_unprep_clone(clone);
1091
1092 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1093 /* stacked on blk-mq queue(s) */
1094 tio->ti->type->release_clone_rq(clone);
1095 else if (!md->queue->mq_ops)
1096 /* request_fn queue stacked on request_fn queue(s) */
1097 free_clone_request(md, clone);
1098 /*
1099 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1100 * no need to call free_clone_request() because we leverage blk-mq by
1101 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1102 */
1103
1104 if (!md->queue->mq_ops)
1105 free_rq_tio(tio);
1106 }
1107
1108 /*
1109 * Complete the clone and the original request.
1110 * Must be called without clone's queue lock held,
1111 * see end_clone_request() for more details.
1112 */
1113 static void dm_end_request(struct request *clone, int error)
1114 {
1115 int rw = rq_data_dir(clone);
1116 struct dm_rq_target_io *tio = clone->end_io_data;
1117 struct mapped_device *md = tio->md;
1118 struct request *rq = tio->orig;
1119
1120 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1121 rq->errors = clone->errors;
1122 rq->resid_len = clone->resid_len;
1123
1124 if (rq->sense)
1125 /*
1126 * We are using the sense buffer of the original
1127 * request.
1128 * So setting the length of the sense data is enough.
1129 */
1130 rq->sense_len = clone->sense_len;
1131 }
1132
1133 free_rq_clone(clone);
1134 if (!rq->q->mq_ops)
1135 blk_end_request_all(rq, error);
1136 else
1137 blk_mq_end_request(rq, error);
1138 rq_completed(md, rw, true);
1139 }
1140
1141 static void dm_unprep_request(struct request *rq)
1142 {
1143 struct dm_rq_target_io *tio = tio_from_request(rq);
1144 struct request *clone = tio->clone;
1145
1146 if (!rq->q->mq_ops) {
1147 rq->special = NULL;
1148 rq->cmd_flags &= ~REQ_DONTPREP;
1149 }
1150
1151 if (clone)
1152 free_rq_clone(clone);
1153 }
1154
1155 /*
1156 * Requeue the original request of a clone.
1157 */
1158 static void old_requeue_request(struct request *rq)
1159 {
1160 struct request_queue *q = rq->q;
1161 unsigned long flags;
1162
1163 spin_lock_irqsave(q->queue_lock, flags);
1164 blk_requeue_request(q, rq);
1165 blk_run_queue_async(q);
1166 spin_unlock_irqrestore(q->queue_lock, flags);
1167 }
1168
1169 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1170 struct request *rq)
1171 {
1172 int rw = rq_data_dir(rq);
1173
1174 dm_unprep_request(rq);
1175
1176 if (!rq->q->mq_ops)
1177 old_requeue_request(rq);
1178 else {
1179 blk_mq_requeue_request(rq);
1180 blk_mq_kick_requeue_list(rq->q);
1181 }
1182
1183 rq_completed(md, rw, false);
1184 }
1185
1186 static void dm_requeue_unmapped_request(struct request *clone)
1187 {
1188 struct dm_rq_target_io *tio = clone->end_io_data;
1189
1190 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1191 }
1192
1193 static void old_stop_queue(struct request_queue *q)
1194 {
1195 unsigned long flags;
1196
1197 if (blk_queue_stopped(q))
1198 return;
1199
1200 spin_lock_irqsave(q->queue_lock, flags);
1201 blk_stop_queue(q);
1202 spin_unlock_irqrestore(q->queue_lock, flags);
1203 }
1204
1205 static void stop_queue(struct request_queue *q)
1206 {
1207 if (!q->mq_ops)
1208 old_stop_queue(q);
1209 else
1210 blk_mq_stop_hw_queues(q);
1211 }
1212
1213 static void old_start_queue(struct request_queue *q)
1214 {
1215 unsigned long flags;
1216
1217 spin_lock_irqsave(q->queue_lock, flags);
1218 if (blk_queue_stopped(q))
1219 blk_start_queue(q);
1220 spin_unlock_irqrestore(q->queue_lock, flags);
1221 }
1222
1223 static void start_queue(struct request_queue *q)
1224 {
1225 if (!q->mq_ops)
1226 old_start_queue(q);
1227 else
1228 blk_mq_start_stopped_hw_queues(q, true);
1229 }
1230
1231 static void dm_done(struct request *clone, int error, bool mapped)
1232 {
1233 int r = error;
1234 struct dm_rq_target_io *tio = clone->end_io_data;
1235 dm_request_endio_fn rq_end_io = NULL;
1236
1237 if (tio->ti) {
1238 rq_end_io = tio->ti->type->rq_end_io;
1239
1240 if (mapped && rq_end_io)
1241 r = rq_end_io(tio->ti, clone, error, &tio->info);
1242 }
1243
1244 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1245 !clone->q->limits.max_write_same_sectors))
1246 disable_write_same(tio->md);
1247
1248 if (r <= 0)
1249 /* The target wants to complete the I/O */
1250 dm_end_request(clone, r);
1251 else if (r == DM_ENDIO_INCOMPLETE)
1252 /* The target will handle the I/O */
1253 return;
1254 else if (r == DM_ENDIO_REQUEUE)
1255 /* The target wants to requeue the I/O */
1256 dm_requeue_unmapped_request(clone);
1257 else {
1258 DMWARN("unimplemented target endio return value: %d", r);
1259 BUG();
1260 }
1261 }
1262
1263 /*
1264 * Request completion handler for request-based dm
1265 */
1266 static void dm_softirq_done(struct request *rq)
1267 {
1268 bool mapped = true;
1269 struct dm_rq_target_io *tio = tio_from_request(rq);
1270 struct request *clone = tio->clone;
1271 int rw;
1272
1273 if (!clone) {
1274 rw = rq_data_dir(rq);
1275 if (!rq->q->mq_ops) {
1276 blk_end_request_all(rq, tio->error);
1277 rq_completed(tio->md, rw, false);
1278 free_rq_tio(tio);
1279 } else {
1280 blk_mq_end_request(rq, tio->error);
1281 rq_completed(tio->md, rw, false);
1282 }
1283 return;
1284 }
1285
1286 if (rq->cmd_flags & REQ_FAILED)
1287 mapped = false;
1288
1289 dm_done(clone, tio->error, mapped);
1290 }
1291
1292 /*
1293 * Complete the clone and the original request with the error status
1294 * through softirq context.
1295 */
1296 static void dm_complete_request(struct request *rq, int error)
1297 {
1298 struct dm_rq_target_io *tio = tio_from_request(rq);
1299
1300 tio->error = error;
1301 blk_complete_request(rq);
1302 }
1303
1304 /*
1305 * Complete the not-mapped clone and the original request with the error status
1306 * through softirq context.
1307 * Target's rq_end_io() function isn't called.
1308 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1309 */
1310 static void dm_kill_unmapped_request(struct request *rq, int error)
1311 {
1312 rq->cmd_flags |= REQ_FAILED;
1313 dm_complete_request(rq, error);
1314 }
1315
1316 /*
1317 * Called with the clone's queue lock held (for non-blk-mq)
1318 */
1319 static void end_clone_request(struct request *clone, int error)
1320 {
1321 struct dm_rq_target_io *tio = clone->end_io_data;
1322
1323 if (!clone->q->mq_ops) {
1324 /*
1325 * For just cleaning up the information of the queue in which
1326 * the clone was dispatched.
1327 * The clone is *NOT* freed actually here because it is alloced
1328 * from dm own mempool (REQ_ALLOCED isn't set).
1329 */
1330 __blk_put_request(clone->q, clone);
1331 }
1332
1333 /*
1334 * Actual request completion is done in a softirq context which doesn't
1335 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1336 * - another request may be submitted by the upper level driver
1337 * of the stacking during the completion
1338 * - the submission which requires queue lock may be done
1339 * against this clone's queue
1340 */
1341 dm_complete_request(tio->orig, error);
1342 }
1343
1344 /*
1345 * Return maximum size of I/O possible at the supplied sector up to the current
1346 * target boundary.
1347 */
1348 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1349 {
1350 sector_t target_offset = dm_target_offset(ti, sector);
1351
1352 return ti->len - target_offset;
1353 }
1354
1355 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1356 {
1357 sector_t len = max_io_len_target_boundary(sector, ti);
1358 sector_t offset, max_len;
1359
1360 /*
1361 * Does the target need to split even further?
1362 */
1363 if (ti->max_io_len) {
1364 offset = dm_target_offset(ti, sector);
1365 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1366 max_len = sector_div(offset, ti->max_io_len);
1367 else
1368 max_len = offset & (ti->max_io_len - 1);
1369 max_len = ti->max_io_len - max_len;
1370
1371 if (len > max_len)
1372 len = max_len;
1373 }
1374
1375 return len;
1376 }
1377
1378 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1379 {
1380 if (len > UINT_MAX) {
1381 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1382 (unsigned long long)len, UINT_MAX);
1383 ti->error = "Maximum size of target IO is too large";
1384 return -EINVAL;
1385 }
1386
1387 ti->max_io_len = (uint32_t) len;
1388
1389 return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1392
1393 /*
1394 * A target may call dm_accept_partial_bio only from the map routine. It is
1395 * allowed for all bio types except REQ_FLUSH.
1396 *
1397 * dm_accept_partial_bio informs the dm that the target only wants to process
1398 * additional n_sectors sectors of the bio and the rest of the data should be
1399 * sent in a next bio.
1400 *
1401 * A diagram that explains the arithmetics:
1402 * +--------------------+---------------+-------+
1403 * | 1 | 2 | 3 |
1404 * +--------------------+---------------+-------+
1405 *
1406 * <-------------- *tio->len_ptr --------------->
1407 * <------- bi_size ------->
1408 * <-- n_sectors -->
1409 *
1410 * Region 1 was already iterated over with bio_advance or similar function.
1411 * (it may be empty if the target doesn't use bio_advance)
1412 * Region 2 is the remaining bio size that the target wants to process.
1413 * (it may be empty if region 1 is non-empty, although there is no reason
1414 * to make it empty)
1415 * The target requires that region 3 is to be sent in the next bio.
1416 *
1417 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1418 * the partially processed part (the sum of regions 1+2) must be the same for all
1419 * copies of the bio.
1420 */
1421 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1422 {
1423 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1424 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1425 BUG_ON(bio->bi_rw & REQ_FLUSH);
1426 BUG_ON(bi_size > *tio->len_ptr);
1427 BUG_ON(n_sectors > bi_size);
1428 *tio->len_ptr -= bi_size - n_sectors;
1429 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1430 }
1431 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1432
1433 static void __map_bio(struct dm_target_io *tio)
1434 {
1435 int r;
1436 sector_t sector;
1437 struct mapped_device *md;
1438 struct bio *clone = &tio->clone;
1439 struct dm_target *ti = tio->ti;
1440
1441 clone->bi_end_io = clone_endio;
1442
1443 /*
1444 * Map the clone. If r == 0 we don't need to do
1445 * anything, the target has assumed ownership of
1446 * this io.
1447 */
1448 atomic_inc(&tio->io->io_count);
1449 sector = clone->bi_iter.bi_sector;
1450 r = ti->type->map(ti, clone);
1451 if (r == DM_MAPIO_REMAPPED) {
1452 /* the bio has been remapped so dispatch it */
1453
1454 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1455 tio->io->bio->bi_bdev->bd_dev, sector);
1456
1457 generic_make_request(clone);
1458 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1459 /* error the io and bail out, or requeue it if needed */
1460 md = tio->io->md;
1461 dec_pending(tio->io, r);
1462 free_tio(md, tio);
1463 } else if (r) {
1464 DMWARN("unimplemented target map return value: %d", r);
1465 BUG();
1466 }
1467 }
1468
1469 struct clone_info {
1470 struct mapped_device *md;
1471 struct dm_table *map;
1472 struct bio *bio;
1473 struct dm_io *io;
1474 sector_t sector;
1475 unsigned sector_count;
1476 };
1477
1478 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1479 {
1480 bio->bi_iter.bi_sector = sector;
1481 bio->bi_iter.bi_size = to_bytes(len);
1482 }
1483
1484 /*
1485 * Creates a bio that consists of range of complete bvecs.
1486 */
1487 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1488 sector_t sector, unsigned len)
1489 {
1490 struct bio *clone = &tio->clone;
1491
1492 __bio_clone_fast(clone, bio);
1493
1494 if (bio_integrity(bio))
1495 bio_integrity_clone(clone, bio, GFP_NOIO);
1496
1497 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1498 clone->bi_iter.bi_size = to_bytes(len);
1499
1500 if (bio_integrity(bio))
1501 bio_integrity_trim(clone, 0, len);
1502 }
1503
1504 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1505 struct dm_target *ti,
1506 unsigned target_bio_nr)
1507 {
1508 struct dm_target_io *tio;
1509 struct bio *clone;
1510
1511 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1512 tio = container_of(clone, struct dm_target_io, clone);
1513
1514 tio->io = ci->io;
1515 tio->ti = ti;
1516 tio->target_bio_nr = target_bio_nr;
1517
1518 return tio;
1519 }
1520
1521 static void __clone_and_map_simple_bio(struct clone_info *ci,
1522 struct dm_target *ti,
1523 unsigned target_bio_nr, unsigned *len)
1524 {
1525 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1526 struct bio *clone = &tio->clone;
1527
1528 tio->len_ptr = len;
1529
1530 __bio_clone_fast(clone, ci->bio);
1531 if (len)
1532 bio_setup_sector(clone, ci->sector, *len);
1533
1534 __map_bio(tio);
1535 }
1536
1537 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1538 unsigned num_bios, unsigned *len)
1539 {
1540 unsigned target_bio_nr;
1541
1542 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1543 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1544 }
1545
1546 static int __send_empty_flush(struct clone_info *ci)
1547 {
1548 unsigned target_nr = 0;
1549 struct dm_target *ti;
1550
1551 BUG_ON(bio_has_data(ci->bio));
1552 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1553 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1554
1555 return 0;
1556 }
1557
1558 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1559 sector_t sector, unsigned *len)
1560 {
1561 struct bio *bio = ci->bio;
1562 struct dm_target_io *tio;
1563 unsigned target_bio_nr;
1564 unsigned num_target_bios = 1;
1565
1566 /*
1567 * Does the target want to receive duplicate copies of the bio?
1568 */
1569 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1570 num_target_bios = ti->num_write_bios(ti, bio);
1571
1572 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1573 tio = alloc_tio(ci, ti, target_bio_nr);
1574 tio->len_ptr = len;
1575 clone_bio(tio, bio, sector, *len);
1576 __map_bio(tio);
1577 }
1578 }
1579
1580 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1581
1582 static unsigned get_num_discard_bios(struct dm_target *ti)
1583 {
1584 return ti->num_discard_bios;
1585 }
1586
1587 static unsigned get_num_write_same_bios(struct dm_target *ti)
1588 {
1589 return ti->num_write_same_bios;
1590 }
1591
1592 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1593
1594 static bool is_split_required_for_discard(struct dm_target *ti)
1595 {
1596 return ti->split_discard_bios;
1597 }
1598
1599 static int __send_changing_extent_only(struct clone_info *ci,
1600 get_num_bios_fn get_num_bios,
1601 is_split_required_fn is_split_required)
1602 {
1603 struct dm_target *ti;
1604 unsigned len;
1605 unsigned num_bios;
1606
1607 do {
1608 ti = dm_table_find_target(ci->map, ci->sector);
1609 if (!dm_target_is_valid(ti))
1610 return -EIO;
1611
1612 /*
1613 * Even though the device advertised support for this type of
1614 * request, that does not mean every target supports it, and
1615 * reconfiguration might also have changed that since the
1616 * check was performed.
1617 */
1618 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1619 if (!num_bios)
1620 return -EOPNOTSUPP;
1621
1622 if (is_split_required && !is_split_required(ti))
1623 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1624 else
1625 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1626
1627 __send_duplicate_bios(ci, ti, num_bios, &len);
1628
1629 ci->sector += len;
1630 } while (ci->sector_count -= len);
1631
1632 return 0;
1633 }
1634
1635 static int __send_discard(struct clone_info *ci)
1636 {
1637 return __send_changing_extent_only(ci, get_num_discard_bios,
1638 is_split_required_for_discard);
1639 }
1640
1641 static int __send_write_same(struct clone_info *ci)
1642 {
1643 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1644 }
1645
1646 /*
1647 * Select the correct strategy for processing a non-flush bio.
1648 */
1649 static int __split_and_process_non_flush(struct clone_info *ci)
1650 {
1651 struct bio *bio = ci->bio;
1652 struct dm_target *ti;
1653 unsigned len;
1654
1655 if (unlikely(bio->bi_rw & REQ_DISCARD))
1656 return __send_discard(ci);
1657 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1658 return __send_write_same(ci);
1659
1660 ti = dm_table_find_target(ci->map, ci->sector);
1661 if (!dm_target_is_valid(ti))
1662 return -EIO;
1663
1664 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1665
1666 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1667
1668 ci->sector += len;
1669 ci->sector_count -= len;
1670
1671 return 0;
1672 }
1673
1674 /*
1675 * Entry point to split a bio into clones and submit them to the targets.
1676 */
1677 static void __split_and_process_bio(struct mapped_device *md,
1678 struct dm_table *map, struct bio *bio)
1679 {
1680 struct clone_info ci;
1681 int error = 0;
1682
1683 if (unlikely(!map)) {
1684 bio_io_error(bio);
1685 return;
1686 }
1687
1688 ci.map = map;
1689 ci.md = md;
1690 ci.io = alloc_io(md);
1691 ci.io->error = 0;
1692 atomic_set(&ci.io->io_count, 1);
1693 ci.io->bio = bio;
1694 ci.io->md = md;
1695 spin_lock_init(&ci.io->endio_lock);
1696 ci.sector = bio->bi_iter.bi_sector;
1697
1698 start_io_acct(ci.io);
1699
1700 if (bio->bi_rw & REQ_FLUSH) {
1701 ci.bio = &ci.md->flush_bio;
1702 ci.sector_count = 0;
1703 error = __send_empty_flush(&ci);
1704 /* dec_pending submits any data associated with flush */
1705 } else {
1706 ci.bio = bio;
1707 ci.sector_count = bio_sectors(bio);
1708 while (ci.sector_count && !error)
1709 error = __split_and_process_non_flush(&ci);
1710 }
1711
1712 /* drop the extra reference count */
1713 dec_pending(ci.io, error);
1714 }
1715 /*-----------------------------------------------------------------
1716 * CRUD END
1717 *---------------------------------------------------------------*/
1718
1719 static int dm_merge_bvec(struct request_queue *q,
1720 struct bvec_merge_data *bvm,
1721 struct bio_vec *biovec)
1722 {
1723 struct mapped_device *md = q->queuedata;
1724 struct dm_table *map = dm_get_live_table_fast(md);
1725 struct dm_target *ti;
1726 sector_t max_sectors;
1727 int max_size = 0;
1728
1729 if (unlikely(!map))
1730 goto out;
1731
1732 ti = dm_table_find_target(map, bvm->bi_sector);
1733 if (!dm_target_is_valid(ti))
1734 goto out;
1735
1736 /*
1737 * Find maximum amount of I/O that won't need splitting
1738 */
1739 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1740 (sector_t) queue_max_sectors(q));
1741 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1742 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1743 max_size = 0;
1744
1745 /*
1746 * merge_bvec_fn() returns number of bytes
1747 * it can accept at this offset
1748 * max is precomputed maximal io size
1749 */
1750 if (max_size && ti->type->merge)
1751 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1752 /*
1753 * If the target doesn't support merge method and some of the devices
1754 * provided their merge_bvec method (we know this by looking for the
1755 * max_hw_sectors that dm_set_device_limits may set), then we can't
1756 * allow bios with multiple vector entries. So always set max_size
1757 * to 0, and the code below allows just one page.
1758 */
1759 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1760 max_size = 0;
1761
1762 out:
1763 dm_put_live_table_fast(md);
1764 /*
1765 * Always allow an entire first page
1766 */
1767 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1768 max_size = biovec->bv_len;
1769
1770 return max_size;
1771 }
1772
1773 /*
1774 * The request function that just remaps the bio built up by
1775 * dm_merge_bvec.
1776 */
1777 static void dm_make_request(struct request_queue *q, struct bio *bio)
1778 {
1779 int rw = bio_data_dir(bio);
1780 struct mapped_device *md = q->queuedata;
1781 int srcu_idx;
1782 struct dm_table *map;
1783
1784 map = dm_get_live_table(md, &srcu_idx);
1785
1786 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1787
1788 /* if we're suspended, we have to queue this io for later */
1789 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1790 dm_put_live_table(md, srcu_idx);
1791
1792 if (bio_rw(bio) != READA)
1793 queue_io(md, bio);
1794 else
1795 bio_io_error(bio);
1796 return;
1797 }
1798
1799 __split_and_process_bio(md, map, bio);
1800 dm_put_live_table(md, srcu_idx);
1801 return;
1802 }
1803
1804 int dm_request_based(struct mapped_device *md)
1805 {
1806 return blk_queue_stackable(md->queue);
1807 }
1808
1809 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1810 {
1811 int r;
1812
1813 if (blk_queue_io_stat(clone->q))
1814 clone->cmd_flags |= REQ_IO_STAT;
1815
1816 clone->start_time = jiffies;
1817 r = blk_insert_cloned_request(clone->q, clone);
1818 if (r)
1819 /* must complete clone in terms of original request */
1820 dm_complete_request(rq, r);
1821 }
1822
1823 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1824 void *data)
1825 {
1826 struct dm_rq_target_io *tio = data;
1827 struct dm_rq_clone_bio_info *info =
1828 container_of(bio, struct dm_rq_clone_bio_info, clone);
1829
1830 info->orig = bio_orig;
1831 info->tio = tio;
1832 bio->bi_end_io = end_clone_bio;
1833
1834 return 0;
1835 }
1836
1837 static int setup_clone(struct request *clone, struct request *rq,
1838 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1839 {
1840 int r;
1841
1842 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1843 dm_rq_bio_constructor, tio);
1844 if (r)
1845 return r;
1846
1847 clone->cmd = rq->cmd;
1848 clone->cmd_len = rq->cmd_len;
1849 clone->sense = rq->sense;
1850 clone->end_io = end_clone_request;
1851 clone->end_io_data = tio;
1852
1853 tio->clone = clone;
1854
1855 return 0;
1856 }
1857
1858 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1859 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1860 {
1861 /*
1862 * Do not allocate a clone if tio->clone was already set
1863 * (see: dm_mq_queue_rq).
1864 */
1865 bool alloc_clone = !tio->clone;
1866 struct request *clone;
1867
1868 if (alloc_clone) {
1869 clone = alloc_clone_request(md, gfp_mask);
1870 if (!clone)
1871 return NULL;
1872 } else
1873 clone = tio->clone;
1874
1875 blk_rq_init(NULL, clone);
1876 if (setup_clone(clone, rq, tio, gfp_mask)) {
1877 /* -ENOMEM */
1878 if (alloc_clone)
1879 free_clone_request(md, clone);
1880 return NULL;
1881 }
1882
1883 return clone;
1884 }
1885
1886 static void map_tio_request(struct kthread_work *work);
1887
1888 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1889 struct mapped_device *md)
1890 {
1891 tio->md = md;
1892 tio->ti = NULL;
1893 tio->clone = NULL;
1894 tio->orig = rq;
1895 tio->error = 0;
1896 memset(&tio->info, 0, sizeof(tio->info));
1897 if (md->kworker_task)
1898 init_kthread_work(&tio->work, map_tio_request);
1899 }
1900
1901 static struct dm_rq_target_io *prep_tio(struct request *rq,
1902 struct mapped_device *md, gfp_t gfp_mask)
1903 {
1904 struct dm_rq_target_io *tio;
1905 int srcu_idx;
1906 struct dm_table *table;
1907
1908 tio = alloc_rq_tio(md, gfp_mask);
1909 if (!tio)
1910 return NULL;
1911
1912 init_tio(tio, rq, md);
1913
1914 table = dm_get_live_table(md, &srcu_idx);
1915 if (!dm_table_mq_request_based(table)) {
1916 if (!clone_rq(rq, md, tio, gfp_mask)) {
1917 dm_put_live_table(md, srcu_idx);
1918 free_rq_tio(tio);
1919 return NULL;
1920 }
1921 }
1922 dm_put_live_table(md, srcu_idx);
1923
1924 return tio;
1925 }
1926
1927 /*
1928 * Called with the queue lock held.
1929 */
1930 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1931 {
1932 struct mapped_device *md = q->queuedata;
1933 struct dm_rq_target_io *tio;
1934
1935 if (unlikely(rq->special)) {
1936 DMWARN("Already has something in rq->special.");
1937 return BLKPREP_KILL;
1938 }
1939
1940 tio = prep_tio(rq, md, GFP_ATOMIC);
1941 if (!tio)
1942 return BLKPREP_DEFER;
1943
1944 rq->special = tio;
1945 rq->cmd_flags |= REQ_DONTPREP;
1946
1947 return BLKPREP_OK;
1948 }
1949
1950 /*
1951 * Returns:
1952 * 0 : the request has been processed
1953 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1954 * < 0 : the request was completed due to failure
1955 */
1956 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1957 struct mapped_device *md)
1958 {
1959 int r;
1960 struct dm_target *ti = tio->ti;
1961 struct request *clone = NULL;
1962
1963 if (tio->clone) {
1964 clone = tio->clone;
1965 r = ti->type->map_rq(ti, clone, &tio->info);
1966 } else {
1967 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1968 if (r < 0) {
1969 /* The target wants to complete the I/O */
1970 dm_kill_unmapped_request(rq, r);
1971 return r;
1972 }
1973 if (r != DM_MAPIO_REMAPPED)
1974 return r;
1975 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1976 /* -ENOMEM */
1977 ti->type->release_clone_rq(clone);
1978 return DM_MAPIO_REQUEUE;
1979 }
1980 }
1981
1982 switch (r) {
1983 case DM_MAPIO_SUBMITTED:
1984 /* The target has taken the I/O to submit by itself later */
1985 break;
1986 case DM_MAPIO_REMAPPED:
1987 /* The target has remapped the I/O so dispatch it */
1988 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1989 blk_rq_pos(rq));
1990 dm_dispatch_clone_request(clone, rq);
1991 break;
1992 case DM_MAPIO_REQUEUE:
1993 /* The target wants to requeue the I/O */
1994 dm_requeue_unmapped_request(clone);
1995 break;
1996 default:
1997 if (r > 0) {
1998 DMWARN("unimplemented target map return value: %d", r);
1999 BUG();
2000 }
2001
2002 /* The target wants to complete the I/O */
2003 dm_kill_unmapped_request(rq, r);
2004 return r;
2005 }
2006
2007 return 0;
2008 }
2009
2010 static void map_tio_request(struct kthread_work *work)
2011 {
2012 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2013 struct request *rq = tio->orig;
2014 struct mapped_device *md = tio->md;
2015
2016 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2017 dm_requeue_unmapped_original_request(md, rq);
2018 }
2019
2020 static void dm_start_request(struct mapped_device *md, struct request *orig)
2021 {
2022 if (!orig->q->mq_ops)
2023 blk_start_request(orig);
2024 else
2025 blk_mq_start_request(orig);
2026 atomic_inc(&md->pending[rq_data_dir(orig)]);
2027
2028 if (md->seq_rq_merge_deadline_usecs) {
2029 md->last_rq_pos = rq_end_sector(orig);
2030 md->last_rq_rw = rq_data_dir(orig);
2031 md->last_rq_start_time = ktime_get();
2032 }
2033
2034 /*
2035 * Hold the md reference here for the in-flight I/O.
2036 * We can't rely on the reference count by device opener,
2037 * because the device may be closed during the request completion
2038 * when all bios are completed.
2039 * See the comment in rq_completed() too.
2040 */
2041 dm_get(md);
2042 }
2043
2044 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2045
2046 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2047 {
2048 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2049 }
2050
2051 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2052 const char *buf, size_t count)
2053 {
2054 unsigned deadline;
2055
2056 if (!dm_request_based(md) || md->use_blk_mq)
2057 return count;
2058
2059 if (kstrtouint(buf, 10, &deadline))
2060 return -EINVAL;
2061
2062 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2063 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2064
2065 md->seq_rq_merge_deadline_usecs = deadline;
2066
2067 return count;
2068 }
2069
2070 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2071 {
2072 ktime_t kt_deadline;
2073
2074 if (!md->seq_rq_merge_deadline_usecs)
2075 return false;
2076
2077 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2078 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2079
2080 return !ktime_after(ktime_get(), kt_deadline);
2081 }
2082
2083 /*
2084 * q->request_fn for request-based dm.
2085 * Called with the queue lock held.
2086 */
2087 static void dm_request_fn(struct request_queue *q)
2088 {
2089 struct mapped_device *md = q->queuedata;
2090 int srcu_idx;
2091 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2092 struct dm_target *ti;
2093 struct request *rq;
2094 struct dm_rq_target_io *tio;
2095 sector_t pos;
2096
2097 /*
2098 * For suspend, check blk_queue_stopped() and increment
2099 * ->pending within a single queue_lock not to increment the
2100 * number of in-flight I/Os after the queue is stopped in
2101 * dm_suspend().
2102 */
2103 while (!blk_queue_stopped(q)) {
2104 rq = blk_peek_request(q);
2105 if (!rq)
2106 goto out;
2107
2108 /* always use block 0 to find the target for flushes for now */
2109 pos = 0;
2110 if (!(rq->cmd_flags & REQ_FLUSH))
2111 pos = blk_rq_pos(rq);
2112
2113 ti = dm_table_find_target(map, pos);
2114 if (!dm_target_is_valid(ti)) {
2115 /*
2116 * Must perform setup, that rq_completed() requires,
2117 * before calling dm_kill_unmapped_request
2118 */
2119 DMERR_LIMIT("request attempted access beyond the end of device");
2120 dm_start_request(md, rq);
2121 dm_kill_unmapped_request(rq, -EIO);
2122 continue;
2123 }
2124
2125 if (dm_request_peeked_before_merge_deadline(md) &&
2126 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2127 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2128 goto delay_and_out;
2129
2130 if (ti->type->busy && ti->type->busy(ti))
2131 goto delay_and_out;
2132
2133 dm_start_request(md, rq);
2134
2135 tio = tio_from_request(rq);
2136 /* Establish tio->ti before queuing work (map_tio_request) */
2137 tio->ti = ti;
2138 queue_kthread_work(&md->kworker, &tio->work);
2139 BUG_ON(!irqs_disabled());
2140 }
2141
2142 goto out;
2143
2144 delay_and_out:
2145 blk_delay_queue(q, HZ / 100);
2146 out:
2147 dm_put_live_table(md, srcu_idx);
2148 }
2149
2150 static int dm_any_congested(void *congested_data, int bdi_bits)
2151 {
2152 int r = bdi_bits;
2153 struct mapped_device *md = congested_data;
2154 struct dm_table *map;
2155
2156 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2157 map = dm_get_live_table_fast(md);
2158 if (map) {
2159 /*
2160 * Request-based dm cares about only own queue for
2161 * the query about congestion status of request_queue
2162 */
2163 if (dm_request_based(md))
2164 r = md->queue->backing_dev_info.state &
2165 bdi_bits;
2166 else
2167 r = dm_table_any_congested(map, bdi_bits);
2168 }
2169 dm_put_live_table_fast(md);
2170 }
2171
2172 return r;
2173 }
2174
2175 /*-----------------------------------------------------------------
2176 * An IDR is used to keep track of allocated minor numbers.
2177 *---------------------------------------------------------------*/
2178 static void free_minor(int minor)
2179 {
2180 spin_lock(&_minor_lock);
2181 idr_remove(&_minor_idr, minor);
2182 spin_unlock(&_minor_lock);
2183 }
2184
2185 /*
2186 * See if the device with a specific minor # is free.
2187 */
2188 static int specific_minor(int minor)
2189 {
2190 int r;
2191
2192 if (minor >= (1 << MINORBITS))
2193 return -EINVAL;
2194
2195 idr_preload(GFP_KERNEL);
2196 spin_lock(&_minor_lock);
2197
2198 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2199
2200 spin_unlock(&_minor_lock);
2201 idr_preload_end();
2202 if (r < 0)
2203 return r == -ENOSPC ? -EBUSY : r;
2204 return 0;
2205 }
2206
2207 static int next_free_minor(int *minor)
2208 {
2209 int r;
2210
2211 idr_preload(GFP_KERNEL);
2212 spin_lock(&_minor_lock);
2213
2214 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2215
2216 spin_unlock(&_minor_lock);
2217 idr_preload_end();
2218 if (r < 0)
2219 return r;
2220 *minor = r;
2221 return 0;
2222 }
2223
2224 static const struct block_device_operations dm_blk_dops;
2225
2226 static void dm_wq_work(struct work_struct *work);
2227
2228 static void dm_init_md_queue(struct mapped_device *md)
2229 {
2230 /*
2231 * Request-based dm devices cannot be stacked on top of bio-based dm
2232 * devices. The type of this dm device may not have been decided yet.
2233 * The type is decided at the first table loading time.
2234 * To prevent problematic device stacking, clear the queue flag
2235 * for request stacking support until then.
2236 *
2237 * This queue is new, so no concurrency on the queue_flags.
2238 */
2239 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2240 }
2241
2242 static void dm_init_old_md_queue(struct mapped_device *md)
2243 {
2244 md->use_blk_mq = false;
2245 dm_init_md_queue(md);
2246
2247 /*
2248 * Initialize aspects of queue that aren't relevant for blk-mq
2249 */
2250 md->queue->queuedata = md;
2251 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2252 md->queue->backing_dev_info.congested_data = md;
2253
2254 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2255 }
2256
2257 /*
2258 * Allocate and initialise a blank device with a given minor.
2259 */
2260 static struct mapped_device *alloc_dev(int minor)
2261 {
2262 int r;
2263 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2264 void *old_md;
2265
2266 if (!md) {
2267 DMWARN("unable to allocate device, out of memory.");
2268 return NULL;
2269 }
2270
2271 if (!try_module_get(THIS_MODULE))
2272 goto bad_module_get;
2273
2274 /* get a minor number for the dev */
2275 if (minor == DM_ANY_MINOR)
2276 r = next_free_minor(&minor);
2277 else
2278 r = specific_minor(minor);
2279 if (r < 0)
2280 goto bad_minor;
2281
2282 r = init_srcu_struct(&md->io_barrier);
2283 if (r < 0)
2284 goto bad_io_barrier;
2285
2286 md->use_blk_mq = use_blk_mq;
2287 md->type = DM_TYPE_NONE;
2288 mutex_init(&md->suspend_lock);
2289 mutex_init(&md->type_lock);
2290 mutex_init(&md->table_devices_lock);
2291 spin_lock_init(&md->deferred_lock);
2292 atomic_set(&md->holders, 1);
2293 atomic_set(&md->open_count, 0);
2294 atomic_set(&md->event_nr, 0);
2295 atomic_set(&md->uevent_seq, 0);
2296 INIT_LIST_HEAD(&md->uevent_list);
2297 INIT_LIST_HEAD(&md->table_devices);
2298 spin_lock_init(&md->uevent_lock);
2299
2300 md->queue = blk_alloc_queue(GFP_KERNEL);
2301 if (!md->queue)
2302 goto bad_queue;
2303
2304 dm_init_md_queue(md);
2305
2306 md->disk = alloc_disk(1);
2307 if (!md->disk)
2308 goto bad_disk;
2309
2310 atomic_set(&md->pending[0], 0);
2311 atomic_set(&md->pending[1], 0);
2312 init_waitqueue_head(&md->wait);
2313 INIT_WORK(&md->work, dm_wq_work);
2314 init_waitqueue_head(&md->eventq);
2315 init_completion(&md->kobj_holder.completion);
2316 md->kworker_task = NULL;
2317
2318 md->disk->major = _major;
2319 md->disk->first_minor = minor;
2320 md->disk->fops = &dm_blk_dops;
2321 md->disk->queue = md->queue;
2322 md->disk->private_data = md;
2323 sprintf(md->disk->disk_name, "dm-%d", minor);
2324 add_disk(md->disk);
2325 format_dev_t(md->name, MKDEV(_major, minor));
2326
2327 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2328 if (!md->wq)
2329 goto bad_thread;
2330
2331 md->bdev = bdget_disk(md->disk, 0);
2332 if (!md->bdev)
2333 goto bad_bdev;
2334
2335 bio_init(&md->flush_bio);
2336 md->flush_bio.bi_bdev = md->bdev;
2337 md->flush_bio.bi_rw = WRITE_FLUSH;
2338
2339 dm_stats_init(&md->stats);
2340
2341 /* Populate the mapping, nobody knows we exist yet */
2342 spin_lock(&_minor_lock);
2343 old_md = idr_replace(&_minor_idr, md, minor);
2344 spin_unlock(&_minor_lock);
2345
2346 BUG_ON(old_md != MINOR_ALLOCED);
2347
2348 return md;
2349
2350 bad_bdev:
2351 destroy_workqueue(md->wq);
2352 bad_thread:
2353 del_gendisk(md->disk);
2354 put_disk(md->disk);
2355 bad_disk:
2356 blk_cleanup_queue(md->queue);
2357 bad_queue:
2358 cleanup_srcu_struct(&md->io_barrier);
2359 bad_io_barrier:
2360 free_minor(minor);
2361 bad_minor:
2362 module_put(THIS_MODULE);
2363 bad_module_get:
2364 kfree(md);
2365 return NULL;
2366 }
2367
2368 static void unlock_fs(struct mapped_device *md);
2369
2370 static void free_dev(struct mapped_device *md)
2371 {
2372 int minor = MINOR(disk_devt(md->disk));
2373
2374 unlock_fs(md);
2375 destroy_workqueue(md->wq);
2376
2377 if (md->kworker_task)
2378 kthread_stop(md->kworker_task);
2379 if (md->io_pool)
2380 mempool_destroy(md->io_pool);
2381 if (md->rq_pool)
2382 mempool_destroy(md->rq_pool);
2383 if (md->bs)
2384 bioset_free(md->bs);
2385
2386 cleanup_srcu_struct(&md->io_barrier);
2387 free_table_devices(&md->table_devices);
2388 dm_stats_cleanup(&md->stats);
2389
2390 spin_lock(&_minor_lock);
2391 md->disk->private_data = NULL;
2392 spin_unlock(&_minor_lock);
2393 if (blk_get_integrity(md->disk))
2394 blk_integrity_unregister(md->disk);
2395 del_gendisk(md->disk);
2396 put_disk(md->disk);
2397 blk_cleanup_queue(md->queue);
2398 if (md->use_blk_mq)
2399 blk_mq_free_tag_set(&md->tag_set);
2400 bdput(md->bdev);
2401 free_minor(minor);
2402
2403 module_put(THIS_MODULE);
2404 kfree(md);
2405 }
2406
2407 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2408 {
2409 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2410
2411 if (md->bs) {
2412 /* The md already has necessary mempools. */
2413 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2414 /*
2415 * Reload bioset because front_pad may have changed
2416 * because a different table was loaded.
2417 */
2418 bioset_free(md->bs);
2419 md->bs = p->bs;
2420 p->bs = NULL;
2421 }
2422 /*
2423 * There's no need to reload with request-based dm
2424 * because the size of front_pad doesn't change.
2425 * Note for future: If you are to reload bioset,
2426 * prep-ed requests in the queue may refer
2427 * to bio from the old bioset, so you must walk
2428 * through the queue to unprep.
2429 */
2430 goto out;
2431 }
2432
2433 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2434
2435 md->io_pool = p->io_pool;
2436 p->io_pool = NULL;
2437 md->rq_pool = p->rq_pool;
2438 p->rq_pool = NULL;
2439 md->bs = p->bs;
2440 p->bs = NULL;
2441
2442 out:
2443 /* mempool bind completed, no longer need any mempools in the table */
2444 dm_table_free_md_mempools(t);
2445 }
2446
2447 /*
2448 * Bind a table to the device.
2449 */
2450 static void event_callback(void *context)
2451 {
2452 unsigned long flags;
2453 LIST_HEAD(uevents);
2454 struct mapped_device *md = (struct mapped_device *) context;
2455
2456 spin_lock_irqsave(&md->uevent_lock, flags);
2457 list_splice_init(&md->uevent_list, &uevents);
2458 spin_unlock_irqrestore(&md->uevent_lock, flags);
2459
2460 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2461
2462 atomic_inc(&md->event_nr);
2463 wake_up(&md->eventq);
2464 }
2465
2466 /*
2467 * Protected by md->suspend_lock obtained by dm_swap_table().
2468 */
2469 static void __set_size(struct mapped_device *md, sector_t size)
2470 {
2471 set_capacity(md->disk, size);
2472
2473 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2474 }
2475
2476 /*
2477 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2478 *
2479 * If this function returns 0, then the device is either a non-dm
2480 * device without a merge_bvec_fn, or it is a dm device that is
2481 * able to split any bios it receives that are too big.
2482 */
2483 int dm_queue_merge_is_compulsory(struct request_queue *q)
2484 {
2485 struct mapped_device *dev_md;
2486
2487 if (!q->merge_bvec_fn)
2488 return 0;
2489
2490 if (q->make_request_fn == dm_make_request) {
2491 dev_md = q->queuedata;
2492 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2493 return 0;
2494 }
2495
2496 return 1;
2497 }
2498
2499 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2500 struct dm_dev *dev, sector_t start,
2501 sector_t len, void *data)
2502 {
2503 struct block_device *bdev = dev->bdev;
2504 struct request_queue *q = bdev_get_queue(bdev);
2505
2506 return dm_queue_merge_is_compulsory(q);
2507 }
2508
2509 /*
2510 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2511 * on the properties of the underlying devices.
2512 */
2513 static int dm_table_merge_is_optional(struct dm_table *table)
2514 {
2515 unsigned i = 0;
2516 struct dm_target *ti;
2517
2518 while (i < dm_table_get_num_targets(table)) {
2519 ti = dm_table_get_target(table, i++);
2520
2521 if (ti->type->iterate_devices &&
2522 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2523 return 0;
2524 }
2525
2526 return 1;
2527 }
2528
2529 /*
2530 * Returns old map, which caller must destroy.
2531 */
2532 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2533 struct queue_limits *limits)
2534 {
2535 struct dm_table *old_map;
2536 struct request_queue *q = md->queue;
2537 sector_t size;
2538 int merge_is_optional;
2539
2540 size = dm_table_get_size(t);
2541
2542 /*
2543 * Wipe any geometry if the size of the table changed.
2544 */
2545 if (size != dm_get_size(md))
2546 memset(&md->geometry, 0, sizeof(md->geometry));
2547
2548 __set_size(md, size);
2549
2550 dm_table_event_callback(t, event_callback, md);
2551
2552 /*
2553 * The queue hasn't been stopped yet, if the old table type wasn't
2554 * for request-based during suspension. So stop it to prevent
2555 * I/O mapping before resume.
2556 * This must be done before setting the queue restrictions,
2557 * because request-based dm may be run just after the setting.
2558 */
2559 if (dm_table_request_based(t))
2560 stop_queue(q);
2561
2562 __bind_mempools(md, t);
2563
2564 merge_is_optional = dm_table_merge_is_optional(t);
2565
2566 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2567 rcu_assign_pointer(md->map, t);
2568 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2569
2570 dm_table_set_restrictions(t, q, limits);
2571 if (merge_is_optional)
2572 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2573 else
2574 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2575 if (old_map)
2576 dm_sync_table(md);
2577
2578 return old_map;
2579 }
2580
2581 /*
2582 * Returns unbound table for the caller to free.
2583 */
2584 static struct dm_table *__unbind(struct mapped_device *md)
2585 {
2586 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2587
2588 if (!map)
2589 return NULL;
2590
2591 dm_table_event_callback(map, NULL, NULL);
2592 RCU_INIT_POINTER(md->map, NULL);
2593 dm_sync_table(md);
2594
2595 return map;
2596 }
2597
2598 /*
2599 * Constructor for a new device.
2600 */
2601 int dm_create(int minor, struct mapped_device **result)
2602 {
2603 struct mapped_device *md;
2604
2605 md = alloc_dev(minor);
2606 if (!md)
2607 return -ENXIO;
2608
2609 dm_sysfs_init(md);
2610
2611 *result = md;
2612 return 0;
2613 }
2614
2615 /*
2616 * Functions to manage md->type.
2617 * All are required to hold md->type_lock.
2618 */
2619 void dm_lock_md_type(struct mapped_device *md)
2620 {
2621 mutex_lock(&md->type_lock);
2622 }
2623
2624 void dm_unlock_md_type(struct mapped_device *md)
2625 {
2626 mutex_unlock(&md->type_lock);
2627 }
2628
2629 void dm_set_md_type(struct mapped_device *md, unsigned type)
2630 {
2631 BUG_ON(!mutex_is_locked(&md->type_lock));
2632 md->type = type;
2633 }
2634
2635 unsigned dm_get_md_type(struct mapped_device *md)
2636 {
2637 BUG_ON(!mutex_is_locked(&md->type_lock));
2638 return md->type;
2639 }
2640
2641 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2642 {
2643 return md->immutable_target_type;
2644 }
2645
2646 /*
2647 * The queue_limits are only valid as long as you have a reference
2648 * count on 'md'.
2649 */
2650 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2651 {
2652 BUG_ON(!atomic_read(&md->holders));
2653 return &md->queue->limits;
2654 }
2655 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2656
2657 static void init_rq_based_worker_thread(struct mapped_device *md)
2658 {
2659 /* Initialize the request-based DM worker thread */
2660 init_kthread_worker(&md->kworker);
2661 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2662 "kdmwork-%s", dm_device_name(md));
2663 }
2664
2665 /*
2666 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2667 */
2668 static int dm_init_request_based_queue(struct mapped_device *md)
2669 {
2670 struct request_queue *q = NULL;
2671
2672 /* Fully initialize the queue */
2673 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2674 if (!q)
2675 return -EINVAL;
2676
2677 /* disable dm_request_fn's merge heuristic by default */
2678 md->seq_rq_merge_deadline_usecs = 0;
2679
2680 md->queue = q;
2681 dm_init_old_md_queue(md);
2682 blk_queue_softirq_done(md->queue, dm_softirq_done);
2683 blk_queue_prep_rq(md->queue, dm_prep_fn);
2684
2685 init_rq_based_worker_thread(md);
2686
2687 elv_register_queue(md->queue);
2688
2689 return 0;
2690 }
2691
2692 static int dm_mq_init_request(void *data, struct request *rq,
2693 unsigned int hctx_idx, unsigned int request_idx,
2694 unsigned int numa_node)
2695 {
2696 struct mapped_device *md = data;
2697 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2698
2699 /*
2700 * Must initialize md member of tio, otherwise it won't
2701 * be available in dm_mq_queue_rq.
2702 */
2703 tio->md = md;
2704
2705 return 0;
2706 }
2707
2708 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2709 const struct blk_mq_queue_data *bd)
2710 {
2711 struct request *rq = bd->rq;
2712 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2713 struct mapped_device *md = tio->md;
2714 int srcu_idx;
2715 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2716 struct dm_target *ti;
2717 sector_t pos;
2718
2719 /* always use block 0 to find the target for flushes for now */
2720 pos = 0;
2721 if (!(rq->cmd_flags & REQ_FLUSH))
2722 pos = blk_rq_pos(rq);
2723
2724 ti = dm_table_find_target(map, pos);
2725 if (!dm_target_is_valid(ti)) {
2726 dm_put_live_table(md, srcu_idx);
2727 DMERR_LIMIT("request attempted access beyond the end of device");
2728 /*
2729 * Must perform setup, that rq_completed() requires,
2730 * before returning BLK_MQ_RQ_QUEUE_ERROR
2731 */
2732 dm_start_request(md, rq);
2733 return BLK_MQ_RQ_QUEUE_ERROR;
2734 }
2735 dm_put_live_table(md, srcu_idx);
2736
2737 if (ti->type->busy && ti->type->busy(ti))
2738 return BLK_MQ_RQ_QUEUE_BUSY;
2739
2740 dm_start_request(md, rq);
2741
2742 /* Init tio using md established in .init_request */
2743 init_tio(tio, rq, md);
2744
2745 /*
2746 * Establish tio->ti before queuing work (map_tio_request)
2747 * or making direct call to map_request().
2748 */
2749 tio->ti = ti;
2750
2751 /* Clone the request if underlying devices aren't blk-mq */
2752 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2753 /* clone request is allocated at the end of the pdu */
2754 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2755 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2756 queue_kthread_work(&md->kworker, &tio->work);
2757 } else {
2758 /* Direct call is fine since .queue_rq allows allocations */
2759 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2760 /* Undo dm_start_request() before requeuing */
2761 rq_completed(md, rq_data_dir(rq), false);
2762 return BLK_MQ_RQ_QUEUE_BUSY;
2763 }
2764 }
2765
2766 return BLK_MQ_RQ_QUEUE_OK;
2767 }
2768
2769 static struct blk_mq_ops dm_mq_ops = {
2770 .queue_rq = dm_mq_queue_rq,
2771 .map_queue = blk_mq_map_queue,
2772 .complete = dm_softirq_done,
2773 .init_request = dm_mq_init_request,
2774 };
2775
2776 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2777 {
2778 unsigned md_type = dm_get_md_type(md);
2779 struct request_queue *q;
2780 int err;
2781
2782 memset(&md->tag_set, 0, sizeof(md->tag_set));
2783 md->tag_set.ops = &dm_mq_ops;
2784 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2785 md->tag_set.numa_node = NUMA_NO_NODE;
2786 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2787 md->tag_set.nr_hw_queues = 1;
2788 if (md_type == DM_TYPE_REQUEST_BASED) {
2789 /* make the memory for non-blk-mq clone part of the pdu */
2790 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2791 } else
2792 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2793 md->tag_set.driver_data = md;
2794
2795 err = blk_mq_alloc_tag_set(&md->tag_set);
2796 if (err)
2797 return err;
2798
2799 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2800 if (IS_ERR(q)) {
2801 err = PTR_ERR(q);
2802 goto out_tag_set;
2803 }
2804 md->queue = q;
2805 dm_init_md_queue(md);
2806
2807 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2808 blk_mq_register_disk(md->disk);
2809
2810 if (md_type == DM_TYPE_REQUEST_BASED)
2811 init_rq_based_worker_thread(md);
2812
2813 return 0;
2814
2815 out_tag_set:
2816 blk_mq_free_tag_set(&md->tag_set);
2817 return err;
2818 }
2819
2820 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2821 {
2822 if (type == DM_TYPE_BIO_BASED)
2823 return type;
2824
2825 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2826 }
2827
2828 /*
2829 * Setup the DM device's queue based on md's type
2830 */
2831 int dm_setup_md_queue(struct mapped_device *md)
2832 {
2833 int r;
2834 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2835
2836 switch (md_type) {
2837 case DM_TYPE_REQUEST_BASED:
2838 r = dm_init_request_based_queue(md);
2839 if (r) {
2840 DMWARN("Cannot initialize queue for request-based mapped device");
2841 return r;
2842 }
2843 break;
2844 case DM_TYPE_MQ_REQUEST_BASED:
2845 r = dm_init_request_based_blk_mq_queue(md);
2846 if (r) {
2847 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2848 return r;
2849 }
2850 break;
2851 case DM_TYPE_BIO_BASED:
2852 dm_init_old_md_queue(md);
2853 blk_queue_make_request(md->queue, dm_make_request);
2854 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2855 break;
2856 }
2857
2858 return 0;
2859 }
2860
2861 struct mapped_device *dm_get_md(dev_t dev)
2862 {
2863 struct mapped_device *md;
2864 unsigned minor = MINOR(dev);
2865
2866 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2867 return NULL;
2868
2869 spin_lock(&_minor_lock);
2870
2871 md = idr_find(&_minor_idr, minor);
2872 if (md) {
2873 if ((md == MINOR_ALLOCED ||
2874 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2875 dm_deleting_md(md) ||
2876 test_bit(DMF_FREEING, &md->flags))) {
2877 md = NULL;
2878 goto out;
2879 }
2880 dm_get(md);
2881 }
2882
2883 out:
2884 spin_unlock(&_minor_lock);
2885
2886 return md;
2887 }
2888 EXPORT_SYMBOL_GPL(dm_get_md);
2889
2890 void *dm_get_mdptr(struct mapped_device *md)
2891 {
2892 return md->interface_ptr;
2893 }
2894
2895 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2896 {
2897 md->interface_ptr = ptr;
2898 }
2899
2900 void dm_get(struct mapped_device *md)
2901 {
2902 atomic_inc(&md->holders);
2903 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2904 }
2905
2906 int dm_hold(struct mapped_device *md)
2907 {
2908 spin_lock(&_minor_lock);
2909 if (test_bit(DMF_FREEING, &md->flags)) {
2910 spin_unlock(&_minor_lock);
2911 return -EBUSY;
2912 }
2913 dm_get(md);
2914 spin_unlock(&_minor_lock);
2915 return 0;
2916 }
2917 EXPORT_SYMBOL_GPL(dm_hold);
2918
2919 const char *dm_device_name(struct mapped_device *md)
2920 {
2921 return md->name;
2922 }
2923 EXPORT_SYMBOL_GPL(dm_device_name);
2924
2925 static void __dm_destroy(struct mapped_device *md, bool wait)
2926 {
2927 struct dm_table *map;
2928 int srcu_idx;
2929
2930 might_sleep();
2931
2932 map = dm_get_live_table(md, &srcu_idx);
2933
2934 spin_lock(&_minor_lock);
2935 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2936 set_bit(DMF_FREEING, &md->flags);
2937 spin_unlock(&_minor_lock);
2938
2939 if (dm_request_based(md) && md->kworker_task)
2940 flush_kthread_worker(&md->kworker);
2941
2942 /*
2943 * Take suspend_lock so that presuspend and postsuspend methods
2944 * do not race with internal suspend.
2945 */
2946 mutex_lock(&md->suspend_lock);
2947 if (!dm_suspended_md(md)) {
2948 dm_table_presuspend_targets(map);
2949 dm_table_postsuspend_targets(map);
2950 }
2951 mutex_unlock(&md->suspend_lock);
2952
2953 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2954 dm_put_live_table(md, srcu_idx);
2955
2956 /*
2957 * Rare, but there may be I/O requests still going to complete,
2958 * for example. Wait for all references to disappear.
2959 * No one should increment the reference count of the mapped_device,
2960 * after the mapped_device state becomes DMF_FREEING.
2961 */
2962 if (wait)
2963 while (atomic_read(&md->holders))
2964 msleep(1);
2965 else if (atomic_read(&md->holders))
2966 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2967 dm_device_name(md), atomic_read(&md->holders));
2968
2969 dm_sysfs_exit(md);
2970 dm_table_destroy(__unbind(md));
2971 free_dev(md);
2972 }
2973
2974 void dm_destroy(struct mapped_device *md)
2975 {
2976 __dm_destroy(md, true);
2977 }
2978
2979 void dm_destroy_immediate(struct mapped_device *md)
2980 {
2981 __dm_destroy(md, false);
2982 }
2983
2984 void dm_put(struct mapped_device *md)
2985 {
2986 atomic_dec(&md->holders);
2987 }
2988 EXPORT_SYMBOL_GPL(dm_put);
2989
2990 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2991 {
2992 int r = 0;
2993 DECLARE_WAITQUEUE(wait, current);
2994
2995 add_wait_queue(&md->wait, &wait);
2996
2997 while (1) {
2998 set_current_state(interruptible);
2999
3000 if (!md_in_flight(md))
3001 break;
3002
3003 if (interruptible == TASK_INTERRUPTIBLE &&
3004 signal_pending(current)) {
3005 r = -EINTR;
3006 break;
3007 }
3008
3009 io_schedule();
3010 }
3011 set_current_state(TASK_RUNNING);
3012
3013 remove_wait_queue(&md->wait, &wait);
3014
3015 return r;
3016 }
3017
3018 /*
3019 * Process the deferred bios
3020 */
3021 static void dm_wq_work(struct work_struct *work)
3022 {
3023 struct mapped_device *md = container_of(work, struct mapped_device,
3024 work);
3025 struct bio *c;
3026 int srcu_idx;
3027 struct dm_table *map;
3028
3029 map = dm_get_live_table(md, &srcu_idx);
3030
3031 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3032 spin_lock_irq(&md->deferred_lock);
3033 c = bio_list_pop(&md->deferred);
3034 spin_unlock_irq(&md->deferred_lock);
3035
3036 if (!c)
3037 break;
3038
3039 if (dm_request_based(md))
3040 generic_make_request(c);
3041 else
3042 __split_and_process_bio(md, map, c);
3043 }
3044
3045 dm_put_live_table(md, srcu_idx);
3046 }
3047
3048 static void dm_queue_flush(struct mapped_device *md)
3049 {
3050 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3051 smp_mb__after_atomic();
3052 queue_work(md->wq, &md->work);
3053 }
3054
3055 /*
3056 * Swap in a new table, returning the old one for the caller to destroy.
3057 */
3058 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3059 {
3060 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3061 struct queue_limits limits;
3062 int r;
3063
3064 mutex_lock(&md->suspend_lock);
3065
3066 /* device must be suspended */
3067 if (!dm_suspended_md(md))
3068 goto out;
3069
3070 /*
3071 * If the new table has no data devices, retain the existing limits.
3072 * This helps multipath with queue_if_no_path if all paths disappear,
3073 * then new I/O is queued based on these limits, and then some paths
3074 * reappear.
3075 */
3076 if (dm_table_has_no_data_devices(table)) {
3077 live_map = dm_get_live_table_fast(md);
3078 if (live_map)
3079 limits = md->queue->limits;
3080 dm_put_live_table_fast(md);
3081 }
3082
3083 if (!live_map) {
3084 r = dm_calculate_queue_limits(table, &limits);
3085 if (r) {
3086 map = ERR_PTR(r);
3087 goto out;
3088 }
3089 }
3090
3091 map = __bind(md, table, &limits);
3092
3093 out:
3094 mutex_unlock(&md->suspend_lock);
3095 return map;
3096 }
3097
3098 /*
3099 * Functions to lock and unlock any filesystem running on the
3100 * device.
3101 */
3102 static int lock_fs(struct mapped_device *md)
3103 {
3104 int r;
3105
3106 WARN_ON(md->frozen_sb);
3107
3108 md->frozen_sb = freeze_bdev(md->bdev);
3109 if (IS_ERR(md->frozen_sb)) {
3110 r = PTR_ERR(md->frozen_sb);
3111 md->frozen_sb = NULL;
3112 return r;
3113 }
3114
3115 set_bit(DMF_FROZEN, &md->flags);
3116
3117 return 0;
3118 }
3119
3120 static void unlock_fs(struct mapped_device *md)
3121 {
3122 if (!test_bit(DMF_FROZEN, &md->flags))
3123 return;
3124
3125 thaw_bdev(md->bdev, md->frozen_sb);
3126 md->frozen_sb = NULL;
3127 clear_bit(DMF_FROZEN, &md->flags);
3128 }
3129
3130 /*
3131 * If __dm_suspend returns 0, the device is completely quiescent
3132 * now. There is no request-processing activity. All new requests
3133 * are being added to md->deferred list.
3134 *
3135 * Caller must hold md->suspend_lock
3136 */
3137 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3138 unsigned suspend_flags, int interruptible)
3139 {
3140 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3141 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3142 int r;
3143
3144 /*
3145 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3146 * This flag is cleared before dm_suspend returns.
3147 */
3148 if (noflush)
3149 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3150
3151 /*
3152 * This gets reverted if there's an error later and the targets
3153 * provide the .presuspend_undo hook.
3154 */
3155 dm_table_presuspend_targets(map);
3156
3157 /*
3158 * Flush I/O to the device.
3159 * Any I/O submitted after lock_fs() may not be flushed.
3160 * noflush takes precedence over do_lockfs.
3161 * (lock_fs() flushes I/Os and waits for them to complete.)
3162 */
3163 if (!noflush && do_lockfs) {
3164 r = lock_fs(md);
3165 if (r) {
3166 dm_table_presuspend_undo_targets(map);
3167 return r;
3168 }
3169 }
3170
3171 /*
3172 * Here we must make sure that no processes are submitting requests
3173 * to target drivers i.e. no one may be executing
3174 * __split_and_process_bio. This is called from dm_request and
3175 * dm_wq_work.
3176 *
3177 * To get all processes out of __split_and_process_bio in dm_request,
3178 * we take the write lock. To prevent any process from reentering
3179 * __split_and_process_bio from dm_request and quiesce the thread
3180 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3181 * flush_workqueue(md->wq).
3182 */
3183 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3184 if (map)
3185 synchronize_srcu(&md->io_barrier);
3186
3187 /*
3188 * Stop md->queue before flushing md->wq in case request-based
3189 * dm defers requests to md->wq from md->queue.
3190 */
3191 if (dm_request_based(md)) {
3192 stop_queue(md->queue);
3193 if (md->kworker_task)
3194 flush_kthread_worker(&md->kworker);
3195 }
3196
3197 flush_workqueue(md->wq);
3198
3199 /*
3200 * At this point no more requests are entering target request routines.
3201 * We call dm_wait_for_completion to wait for all existing requests
3202 * to finish.
3203 */
3204 r = dm_wait_for_completion(md, interruptible);
3205
3206 if (noflush)
3207 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3208 if (map)
3209 synchronize_srcu(&md->io_barrier);
3210
3211 /* were we interrupted ? */
3212 if (r < 0) {
3213 dm_queue_flush(md);
3214
3215 if (dm_request_based(md))
3216 start_queue(md->queue);
3217
3218 unlock_fs(md);
3219 dm_table_presuspend_undo_targets(map);
3220 /* pushback list is already flushed, so skip flush */
3221 }
3222
3223 return r;
3224 }
3225
3226 /*
3227 * We need to be able to change a mapping table under a mounted
3228 * filesystem. For example we might want to move some data in
3229 * the background. Before the table can be swapped with
3230 * dm_bind_table, dm_suspend must be called to flush any in
3231 * flight bios and ensure that any further io gets deferred.
3232 */
3233 /*
3234 * Suspend mechanism in request-based dm.
3235 *
3236 * 1. Flush all I/Os by lock_fs() if needed.
3237 * 2. Stop dispatching any I/O by stopping the request_queue.
3238 * 3. Wait for all in-flight I/Os to be completed or requeued.
3239 *
3240 * To abort suspend, start the request_queue.
3241 */
3242 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3243 {
3244 struct dm_table *map = NULL;
3245 int r = 0;
3246
3247 retry:
3248 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3249
3250 if (dm_suspended_md(md)) {
3251 r = -EINVAL;
3252 goto out_unlock;
3253 }
3254
3255 if (dm_suspended_internally_md(md)) {
3256 /* already internally suspended, wait for internal resume */
3257 mutex_unlock(&md->suspend_lock);
3258 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3259 if (r)
3260 return r;
3261 goto retry;
3262 }
3263
3264 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3265
3266 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3267 if (r)
3268 goto out_unlock;
3269
3270 set_bit(DMF_SUSPENDED, &md->flags);
3271
3272 dm_table_postsuspend_targets(map);
3273
3274 out_unlock:
3275 mutex_unlock(&md->suspend_lock);
3276 return r;
3277 }
3278
3279 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3280 {
3281 if (map) {
3282 int r = dm_table_resume_targets(map);
3283 if (r)
3284 return r;
3285 }
3286
3287 dm_queue_flush(md);
3288
3289 /*
3290 * Flushing deferred I/Os must be done after targets are resumed
3291 * so that mapping of targets can work correctly.
3292 * Request-based dm is queueing the deferred I/Os in its request_queue.
3293 */
3294 if (dm_request_based(md))
3295 start_queue(md->queue);
3296
3297 unlock_fs(md);
3298
3299 return 0;
3300 }
3301
3302 int dm_resume(struct mapped_device *md)
3303 {
3304 int r = -EINVAL;
3305 struct dm_table *map = NULL;
3306
3307 retry:
3308 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3309
3310 if (!dm_suspended_md(md))
3311 goto out;
3312
3313 if (dm_suspended_internally_md(md)) {
3314 /* already internally suspended, wait for internal resume */
3315 mutex_unlock(&md->suspend_lock);
3316 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3317 if (r)
3318 return r;
3319 goto retry;
3320 }
3321
3322 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3323 if (!map || !dm_table_get_size(map))
3324 goto out;
3325
3326 r = __dm_resume(md, map);
3327 if (r)
3328 goto out;
3329
3330 clear_bit(DMF_SUSPENDED, &md->flags);
3331
3332 r = 0;
3333 out:
3334 mutex_unlock(&md->suspend_lock);
3335
3336 return r;
3337 }
3338
3339 /*
3340 * Internal suspend/resume works like userspace-driven suspend. It waits
3341 * until all bios finish and prevents issuing new bios to the target drivers.
3342 * It may be used only from the kernel.
3343 */
3344
3345 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3346 {
3347 struct dm_table *map = NULL;
3348
3349 if (md->internal_suspend_count++)
3350 return; /* nested internal suspend */
3351
3352 if (dm_suspended_md(md)) {
3353 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3354 return; /* nest suspend */
3355 }
3356
3357 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3358
3359 /*
3360 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3361 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3362 * would require changing .presuspend to return an error -- avoid this
3363 * until there is a need for more elaborate variants of internal suspend.
3364 */
3365 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3366
3367 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3368
3369 dm_table_postsuspend_targets(map);
3370 }
3371
3372 static void __dm_internal_resume(struct mapped_device *md)
3373 {
3374 BUG_ON(!md->internal_suspend_count);
3375
3376 if (--md->internal_suspend_count)
3377 return; /* resume from nested internal suspend */
3378
3379 if (dm_suspended_md(md))
3380 goto done; /* resume from nested suspend */
3381
3382 /*
3383 * NOTE: existing callers don't need to call dm_table_resume_targets
3384 * (which may fail -- so best to avoid it for now by passing NULL map)
3385 */
3386 (void) __dm_resume(md, NULL);
3387
3388 done:
3389 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3390 smp_mb__after_atomic();
3391 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3392 }
3393
3394 void dm_internal_suspend_noflush(struct mapped_device *md)
3395 {
3396 mutex_lock(&md->suspend_lock);
3397 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3398 mutex_unlock(&md->suspend_lock);
3399 }
3400 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3401
3402 void dm_internal_resume(struct mapped_device *md)
3403 {
3404 mutex_lock(&md->suspend_lock);
3405 __dm_internal_resume(md);
3406 mutex_unlock(&md->suspend_lock);
3407 }
3408 EXPORT_SYMBOL_GPL(dm_internal_resume);
3409
3410 /*
3411 * Fast variants of internal suspend/resume hold md->suspend_lock,
3412 * which prevents interaction with userspace-driven suspend.
3413 */
3414
3415 void dm_internal_suspend_fast(struct mapped_device *md)
3416 {
3417 mutex_lock(&md->suspend_lock);
3418 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3419 return;
3420
3421 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3422 synchronize_srcu(&md->io_barrier);
3423 flush_workqueue(md->wq);
3424 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3425 }
3426 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3427
3428 void dm_internal_resume_fast(struct mapped_device *md)
3429 {
3430 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3431 goto done;
3432
3433 dm_queue_flush(md);
3434
3435 done:
3436 mutex_unlock(&md->suspend_lock);
3437 }
3438 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3439
3440 /*-----------------------------------------------------------------
3441 * Event notification.
3442 *---------------------------------------------------------------*/
3443 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3444 unsigned cookie)
3445 {
3446 char udev_cookie[DM_COOKIE_LENGTH];
3447 char *envp[] = { udev_cookie, NULL };
3448
3449 if (!cookie)
3450 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3451 else {
3452 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3453 DM_COOKIE_ENV_VAR_NAME, cookie);
3454 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3455 action, envp);
3456 }
3457 }
3458
3459 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3460 {
3461 return atomic_add_return(1, &md->uevent_seq);
3462 }
3463
3464 uint32_t dm_get_event_nr(struct mapped_device *md)
3465 {
3466 return atomic_read(&md->event_nr);
3467 }
3468
3469 int dm_wait_event(struct mapped_device *md, int event_nr)
3470 {
3471 return wait_event_interruptible(md->eventq,
3472 (event_nr != atomic_read(&md->event_nr)));
3473 }
3474
3475 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3476 {
3477 unsigned long flags;
3478
3479 spin_lock_irqsave(&md->uevent_lock, flags);
3480 list_add(elist, &md->uevent_list);
3481 spin_unlock_irqrestore(&md->uevent_lock, flags);
3482 }
3483
3484 /*
3485 * The gendisk is only valid as long as you have a reference
3486 * count on 'md'.
3487 */
3488 struct gendisk *dm_disk(struct mapped_device *md)
3489 {
3490 return md->disk;
3491 }
3492 EXPORT_SYMBOL_GPL(dm_disk);
3493
3494 struct kobject *dm_kobject(struct mapped_device *md)
3495 {
3496 return &md->kobj_holder.kobj;
3497 }
3498
3499 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3500 {
3501 struct mapped_device *md;
3502
3503 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3504
3505 if (test_bit(DMF_FREEING, &md->flags) ||
3506 dm_deleting_md(md))
3507 return NULL;
3508
3509 dm_get(md);
3510 return md;
3511 }
3512
3513 int dm_suspended_md(struct mapped_device *md)
3514 {
3515 return test_bit(DMF_SUSPENDED, &md->flags);
3516 }
3517
3518 int dm_suspended_internally_md(struct mapped_device *md)
3519 {
3520 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3521 }
3522
3523 int dm_test_deferred_remove_flag(struct mapped_device *md)
3524 {
3525 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3526 }
3527
3528 int dm_suspended(struct dm_target *ti)
3529 {
3530 return dm_suspended_md(dm_table_get_md(ti->table));
3531 }
3532 EXPORT_SYMBOL_GPL(dm_suspended);
3533
3534 int dm_noflush_suspending(struct dm_target *ti)
3535 {
3536 return __noflush_suspending(dm_table_get_md(ti->table));
3537 }
3538 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3539
3540 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3541 unsigned integrity, unsigned per_bio_data_size)
3542 {
3543 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3544 struct kmem_cache *cachep = NULL;
3545 unsigned int pool_size = 0;
3546 unsigned int front_pad;
3547
3548 if (!pools)
3549 return NULL;
3550
3551 type = filter_md_type(type, md);
3552
3553 switch (type) {
3554 case DM_TYPE_BIO_BASED:
3555 cachep = _io_cache;
3556 pool_size = dm_get_reserved_bio_based_ios();
3557 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3558 break;
3559 case DM_TYPE_REQUEST_BASED:
3560 cachep = _rq_tio_cache;
3561 pool_size = dm_get_reserved_rq_based_ios();
3562 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3563 if (!pools->rq_pool)
3564 goto out;
3565 /* fall through to setup remaining rq-based pools */
3566 case DM_TYPE_MQ_REQUEST_BASED:
3567 if (!pool_size)
3568 pool_size = dm_get_reserved_rq_based_ios();
3569 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3570 /* per_bio_data_size is not used. See __bind_mempools(). */
3571 WARN_ON(per_bio_data_size != 0);
3572 break;
3573 default:
3574 BUG();
3575 }
3576
3577 if (cachep) {
3578 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3579 if (!pools->io_pool)
3580 goto out;
3581 }
3582
3583 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3584 if (!pools->bs)
3585 goto out;
3586
3587 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3588 goto out;
3589
3590 return pools;
3591
3592 out:
3593 dm_free_md_mempools(pools);
3594
3595 return NULL;
3596 }
3597
3598 void dm_free_md_mempools(struct dm_md_mempools *pools)
3599 {
3600 if (!pools)
3601 return;
3602
3603 if (pools->io_pool)
3604 mempool_destroy(pools->io_pool);
3605
3606 if (pools->rq_pool)
3607 mempool_destroy(pools->rq_pool);
3608
3609 if (pools->bs)
3610 bioset_free(pools->bs);
3611
3612 kfree(pools);
3613 }
3614
3615 static const struct block_device_operations dm_blk_dops = {
3616 .open = dm_blk_open,
3617 .release = dm_blk_close,
3618 .ioctl = dm_blk_ioctl,
3619 .getgeo = dm_blk_getgeo,
3620 .owner = THIS_MODULE
3621 };
3622
3623 /*
3624 * module hooks
3625 */
3626 module_init(dm_init);
3627 module_exit(dm_exit);
3628
3629 module_param(major, uint, 0);
3630 MODULE_PARM_DESC(major, "The major number of the device mapper");
3631
3632 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3633 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3634
3635 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3636 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3637
3638 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3639 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3640
3641 MODULE_DESCRIPTION(DM_NAME " driver");
3642 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3643 MODULE_LICENSE("GPL");