]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm.c
block: Ues bi_pool for bio_integrity_alloc()
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
69 */
70 struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
74 };
75
76 /*
77 * For request-based dm.
78 * One of these is allocated per request.
79 */
80 struct dm_rq_target_io {
81 struct mapped_device *md;
82 struct dm_target *ti;
83 struct request *orig, clone;
84 int error;
85 union map_info info;
86 };
87
88 /*
89 * For request-based dm.
90 * One of these is allocated per bio.
91 */
92 struct dm_rq_clone_bio_info {
93 struct bio *orig;
94 struct dm_rq_target_io *tio;
95 };
96
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 if (bio && bio->bi_private)
100 return &((struct dm_target_io *)bio->bi_private)->info;
101 return NULL;
102 }
103
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 if (rq && rq->end_io_data)
107 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111
112 #define MINOR_ALLOCED ((void *)-1)
113
114 /*
115 * Bits for the md->flags field.
116 */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124
125 /*
126 * Work processed by per-device workqueue.
127 */
128 struct mapped_device {
129 struct rw_semaphore io_lock;
130 struct mutex suspend_lock;
131 rwlock_t map_lock;
132 atomic_t holders;
133 atomic_t open_count;
134
135 unsigned long flags;
136
137 struct request_queue *queue;
138 unsigned type;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock;
141
142 struct target_type *immutable_target_type;
143
144 struct gendisk *disk;
145 char name[16];
146
147 void *interface_ptr;
148
149 /*
150 * A list of ios that arrived while we were suspended.
151 */
152 atomic_t pending[2];
153 wait_queue_head_t wait;
154 struct work_struct work;
155 struct bio_list deferred;
156 spinlock_t deferred_lock;
157
158 /*
159 * Processing queue (flush)
160 */
161 struct workqueue_struct *wq;
162
163 /*
164 * The current mapping.
165 */
166 struct dm_table *map;
167
168 /*
169 * io objects are allocated from here.
170 */
171 mempool_t *io_pool;
172 mempool_t *tio_pool;
173
174 struct bio_set *bs;
175
176 /*
177 * Event handling.
178 */
179 atomic_t event_nr;
180 wait_queue_head_t eventq;
181 atomic_t uevent_seq;
182 struct list_head uevent_list;
183 spinlock_t uevent_lock; /* Protect access to uevent_list */
184
185 /*
186 * freeze/thaw support require holding onto a super block
187 */
188 struct super_block *frozen_sb;
189 struct block_device *bdev;
190
191 /* forced geometry settings */
192 struct hd_geometry geometry;
193
194 /* sysfs handle */
195 struct kobject kobj;
196
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio;
199 };
200
201 /*
202 * For mempools pre-allocation at the table loading time.
203 */
204 struct dm_md_mempools {
205 mempool_t *io_pool;
206 mempool_t *tio_pool;
207 struct bio_set *bs;
208 };
209
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215
216 static int __init local_init(void)
217 {
218 int r = -ENOMEM;
219
220 /* allocate a slab for the dm_ios */
221 _io_cache = KMEM_CACHE(dm_io, 0);
222 if (!_io_cache)
223 return r;
224
225 /* allocate a slab for the target ios */
226 _tio_cache = KMEM_CACHE(dm_target_io, 0);
227 if (!_tio_cache)
228 goto out_free_io_cache;
229
230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 if (!_rq_tio_cache)
232 goto out_free_tio_cache;
233
234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 if (!_rq_bio_info_cache)
236 goto out_free_rq_tio_cache;
237
238 r = dm_uevent_init();
239 if (r)
240 goto out_free_rq_bio_info_cache;
241
242 _major = major;
243 r = register_blkdev(_major, _name);
244 if (r < 0)
245 goto out_uevent_exit;
246
247 if (!_major)
248 _major = r;
249
250 return 0;
251
252 out_uevent_exit:
253 dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 kmem_cache_destroy(_io_cache);
262
263 return r;
264 }
265
266 static void local_exit(void)
267 {
268 kmem_cache_destroy(_rq_bio_info_cache);
269 kmem_cache_destroy(_rq_tio_cache);
270 kmem_cache_destroy(_tio_cache);
271 kmem_cache_destroy(_io_cache);
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
274
275 _major = 0;
276
277 DMINFO("cleaned up");
278 }
279
280 static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
288 };
289
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298 };
299
300 static int __init dm_init(void)
301 {
302 const int count = ARRAY_SIZE(_inits);
303
304 int r, i;
305
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
310 }
311
312 return 0;
313
314 bad:
315 while (i--)
316 _exits[i]();
317
318 return r;
319 }
320
321 static void __exit dm_exit(void)
322 {
323 int i = ARRAY_SIZE(_exits);
324
325 while (i--)
326 _exits[i]();
327
328 /*
329 * Should be empty by this point.
330 */
331 idr_remove_all(&_minor_idr);
332 idr_destroy(&_minor_idr);
333 }
334
335 /*
336 * Block device functions
337 */
338 int dm_deleting_md(struct mapped_device *md)
339 {
340 return test_bit(DMF_DELETING, &md->flags);
341 }
342
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 struct mapped_device *md;
346
347 spin_lock(&_minor_lock);
348
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
352
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
357 }
358
359 dm_get(md);
360 atomic_inc(&md->open_count);
361
362 out:
363 spin_unlock(&_minor_lock);
364
365 return md ? 0 : -ENXIO;
366 }
367
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 struct mapped_device *md = disk->private_data;
371
372 spin_lock(&_minor_lock);
373
374 atomic_dec(&md->open_count);
375 dm_put(md);
376
377 spin_unlock(&_minor_lock);
378
379 return 0;
380 }
381
382 int dm_open_count(struct mapped_device *md)
383 {
384 return atomic_read(&md->open_count);
385 }
386
387 /*
388 * Guarantees nothing is using the device before it's deleted.
389 */
390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 int r = 0;
393
394 spin_lock(&_minor_lock);
395
396 if (dm_open_count(md))
397 r = -EBUSY;
398 else
399 set_bit(DMF_DELETING, &md->flags);
400
401 spin_unlock(&_minor_lock);
402
403 return r;
404 }
405
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 unsigned int cmd, unsigned long arg)
415 {
416 struct mapped_device *md = bdev->bd_disk->private_data;
417 struct dm_table *map = dm_get_live_table(md);
418 struct dm_target *tgt;
419 int r = -ENOTTY;
420
421 if (!map || !dm_table_get_size(map))
422 goto out;
423
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map) != 1)
426 goto out;
427
428 tgt = dm_table_get_target(map, 0);
429
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
433 }
434
435 if (tgt->type->ioctl)
436 r = tgt->type->ioctl(tgt, cmd, arg);
437
438 out:
439 dm_table_put(map);
440
441 return r;
442 }
443
444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448
449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 mempool_free(io, md->io_pool);
452 }
453
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 mempool_free(tio, md->tio_pool);
457 }
458
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 gfp_t gfp_mask)
461 {
462 return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464
465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 mempool_free(tio, tio->md->tio_pool);
468 }
469
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 mempool_free(info, info->tio->md->io_pool);
478 }
479
480 static int md_in_flight(struct mapped_device *md)
481 {
482 return atomic_read(&md->pending[READ]) +
483 atomic_read(&md->pending[WRITE]);
484 }
485
486 static void start_io_acct(struct dm_io *io)
487 {
488 struct mapped_device *md = io->md;
489 int cpu;
490 int rw = bio_data_dir(io->bio);
491
492 io->start_time = jiffies;
493
494 cpu = part_stat_lock();
495 part_round_stats(cpu, &dm_disk(md)->part0);
496 part_stat_unlock();
497 atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 atomic_inc_return(&md->pending[rw]));
499 }
500
501 static void end_io_acct(struct dm_io *io)
502 {
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 /*
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
517 */
518 pending = atomic_dec_return(&md->pending[rw]);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 pending += atomic_read(&md->pending[rw^0x1]);
521
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
525 }
526
527 /*
528 * Add the bio to the list of deferred io.
529 */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irqrestore(&md->deferred_lock, flags);
537 queue_work(md->wq, &md->work);
538 }
539
540 /*
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
544 */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 struct dm_table *t;
548 unsigned long flags;
549
550 read_lock_irqsave(&md->map_lock, flags);
551 t = md->map;
552 if (t)
553 dm_table_get(t);
554 read_unlock_irqrestore(&md->map_lock, flags);
555
556 return t;
557 }
558
559 /*
560 * Get the geometry associated with a dm device
561 */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 *geo = md->geometry;
565
566 return 0;
567 }
568
569 /*
570 * Set the geometry of a device.
571 */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575
576 if (geo->start > sz) {
577 DMWARN("Start sector is beyond the geometry limits.");
578 return -EINVAL;
579 }
580
581 md->geometry = *geo;
582
583 return 0;
584 }
585
586 /*-----------------------------------------------------------------
587 * CRUD START:
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
594
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599
600 /*
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
603 */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 unsigned long flags;
607 int io_error;
608 struct bio *bio;
609 struct mapped_device *md = io->md;
610
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error)) {
613 spin_lock_irqsave(&io->endio_lock, flags);
614 if (!(io->error > 0 && __noflush_suspending(md)))
615 io->error = error;
616 spin_unlock_irqrestore(&io->endio_lock, flags);
617 }
618
619 if (atomic_dec_and_test(&io->io_count)) {
620 if (io->error == DM_ENDIO_REQUEUE) {
621 /*
622 * Target requested pushing back the I/O.
623 */
624 spin_lock_irqsave(&md->deferred_lock, flags);
625 if (__noflush_suspending(md))
626 bio_list_add_head(&md->deferred, io->bio);
627 else
628 /* noflush suspend was interrupted. */
629 io->error = -EIO;
630 spin_unlock_irqrestore(&md->deferred_lock, flags);
631 }
632
633 io_error = io->error;
634 bio = io->bio;
635 end_io_acct(io);
636 free_io(md, io);
637
638 if (io_error == DM_ENDIO_REQUEUE)
639 return;
640
641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 /*
643 * Preflush done for flush with data, reissue
644 * without REQ_FLUSH.
645 */
646 bio->bi_rw &= ~REQ_FLUSH;
647 queue_io(md, bio);
648 } else {
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md->queue, bio, io_error);
651 bio_endio(bio, io_error);
652 }
653 }
654 }
655
656 static void clone_endio(struct bio *bio, int error)
657 {
658 int r = 0;
659 struct dm_target_io *tio = bio->bi_private;
660 struct dm_io *io = tio->io;
661 struct mapped_device *md = tio->io->md;
662 dm_endio_fn endio = tio->ti->type->end_io;
663
664 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 error = -EIO;
666
667 if (endio) {
668 r = endio(tio->ti, bio, error, &tio->info);
669 if (r < 0 || r == DM_ENDIO_REQUEUE)
670 /*
671 * error and requeue request are handled
672 * in dec_pending().
673 */
674 error = r;
675 else if (r == DM_ENDIO_INCOMPLETE)
676 /* The target will handle the io */
677 return;
678 else if (r) {
679 DMWARN("unimplemented target endio return value: %d", r);
680 BUG();
681 }
682 }
683
684 free_tio(md, tio);
685 bio_put(bio);
686 dec_pending(io, error);
687 }
688
689 /*
690 * Partial completion handling for request-based dm
691 */
692 static void end_clone_bio(struct bio *clone, int error)
693 {
694 struct dm_rq_clone_bio_info *info = clone->bi_private;
695 struct dm_rq_target_io *tio = info->tio;
696 struct bio *bio = info->orig;
697 unsigned int nr_bytes = info->orig->bi_size;
698
699 bio_put(clone);
700
701 if (tio->error)
702 /*
703 * An error has already been detected on the request.
704 * Once error occurred, just let clone->end_io() handle
705 * the remainder.
706 */
707 return;
708 else if (error) {
709 /*
710 * Don't notice the error to the upper layer yet.
711 * The error handling decision is made by the target driver,
712 * when the request is completed.
713 */
714 tio->error = error;
715 return;
716 }
717
718 /*
719 * I/O for the bio successfully completed.
720 * Notice the data completion to the upper layer.
721 */
722
723 /*
724 * bios are processed from the head of the list.
725 * So the completing bio should always be rq->bio.
726 * If it's not, something wrong is happening.
727 */
728 if (tio->orig->bio != bio)
729 DMERR("bio completion is going in the middle of the request");
730
731 /*
732 * Update the original request.
733 * Do not use blk_end_request() here, because it may complete
734 * the original request before the clone, and break the ordering.
735 */
736 blk_update_request(tio->orig, 0, nr_bytes);
737 }
738
739 /*
740 * Don't touch any member of the md after calling this function because
741 * the md may be freed in dm_put() at the end of this function.
742 * Or do dm_get() before calling this function and dm_put() later.
743 */
744 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
745 {
746 atomic_dec(&md->pending[rw]);
747
748 /* nudge anyone waiting on suspend queue */
749 if (!md_in_flight(md))
750 wake_up(&md->wait);
751
752 if (run_queue)
753 blk_run_queue(md->queue);
754
755 /*
756 * dm_put() must be at the end of this function. See the comment above
757 */
758 dm_put(md);
759 }
760
761 static void free_rq_clone(struct request *clone)
762 {
763 struct dm_rq_target_io *tio = clone->end_io_data;
764
765 blk_rq_unprep_clone(clone);
766 free_rq_tio(tio);
767 }
768
769 /*
770 * Complete the clone and the original request.
771 * Must be called without queue lock.
772 */
773 static void dm_end_request(struct request *clone, int error)
774 {
775 int rw = rq_data_dir(clone);
776 struct dm_rq_target_io *tio = clone->end_io_data;
777 struct mapped_device *md = tio->md;
778 struct request *rq = tio->orig;
779
780 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
781 rq->errors = clone->errors;
782 rq->resid_len = clone->resid_len;
783
784 if (rq->sense)
785 /*
786 * We are using the sense buffer of the original
787 * request.
788 * So setting the length of the sense data is enough.
789 */
790 rq->sense_len = clone->sense_len;
791 }
792
793 free_rq_clone(clone);
794 blk_end_request_all(rq, error);
795 rq_completed(md, rw, true);
796 }
797
798 static void dm_unprep_request(struct request *rq)
799 {
800 struct request *clone = rq->special;
801
802 rq->special = NULL;
803 rq->cmd_flags &= ~REQ_DONTPREP;
804
805 free_rq_clone(clone);
806 }
807
808 /*
809 * Requeue the original request of a clone.
810 */
811 void dm_requeue_unmapped_request(struct request *clone)
812 {
813 int rw = rq_data_dir(clone);
814 struct dm_rq_target_io *tio = clone->end_io_data;
815 struct mapped_device *md = tio->md;
816 struct request *rq = tio->orig;
817 struct request_queue *q = rq->q;
818 unsigned long flags;
819
820 dm_unprep_request(rq);
821
822 spin_lock_irqsave(q->queue_lock, flags);
823 blk_requeue_request(q, rq);
824 spin_unlock_irqrestore(q->queue_lock, flags);
825
826 rq_completed(md, rw, 0);
827 }
828 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
829
830 static void __stop_queue(struct request_queue *q)
831 {
832 blk_stop_queue(q);
833 }
834
835 static void stop_queue(struct request_queue *q)
836 {
837 unsigned long flags;
838
839 spin_lock_irqsave(q->queue_lock, flags);
840 __stop_queue(q);
841 spin_unlock_irqrestore(q->queue_lock, flags);
842 }
843
844 static void __start_queue(struct request_queue *q)
845 {
846 if (blk_queue_stopped(q))
847 blk_start_queue(q);
848 }
849
850 static void start_queue(struct request_queue *q)
851 {
852 unsigned long flags;
853
854 spin_lock_irqsave(q->queue_lock, flags);
855 __start_queue(q);
856 spin_unlock_irqrestore(q->queue_lock, flags);
857 }
858
859 static void dm_done(struct request *clone, int error, bool mapped)
860 {
861 int r = error;
862 struct dm_rq_target_io *tio = clone->end_io_data;
863 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
864
865 if (mapped && rq_end_io)
866 r = rq_end_io(tio->ti, clone, error, &tio->info);
867
868 if (r <= 0)
869 /* The target wants to complete the I/O */
870 dm_end_request(clone, r);
871 else if (r == DM_ENDIO_INCOMPLETE)
872 /* The target will handle the I/O */
873 return;
874 else if (r == DM_ENDIO_REQUEUE)
875 /* The target wants to requeue the I/O */
876 dm_requeue_unmapped_request(clone);
877 else {
878 DMWARN("unimplemented target endio return value: %d", r);
879 BUG();
880 }
881 }
882
883 /*
884 * Request completion handler for request-based dm
885 */
886 static void dm_softirq_done(struct request *rq)
887 {
888 bool mapped = true;
889 struct request *clone = rq->completion_data;
890 struct dm_rq_target_io *tio = clone->end_io_data;
891
892 if (rq->cmd_flags & REQ_FAILED)
893 mapped = false;
894
895 dm_done(clone, tio->error, mapped);
896 }
897
898 /*
899 * Complete the clone and the original request with the error status
900 * through softirq context.
901 */
902 static void dm_complete_request(struct request *clone, int error)
903 {
904 struct dm_rq_target_io *tio = clone->end_io_data;
905 struct request *rq = tio->orig;
906
907 tio->error = error;
908 rq->completion_data = clone;
909 blk_complete_request(rq);
910 }
911
912 /*
913 * Complete the not-mapped clone and the original request with the error status
914 * through softirq context.
915 * Target's rq_end_io() function isn't called.
916 * This may be used when the target's map_rq() function fails.
917 */
918 void dm_kill_unmapped_request(struct request *clone, int error)
919 {
920 struct dm_rq_target_io *tio = clone->end_io_data;
921 struct request *rq = tio->orig;
922
923 rq->cmd_flags |= REQ_FAILED;
924 dm_complete_request(clone, error);
925 }
926 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
927
928 /*
929 * Called with the queue lock held
930 */
931 static void end_clone_request(struct request *clone, int error)
932 {
933 /*
934 * For just cleaning up the information of the queue in which
935 * the clone was dispatched.
936 * The clone is *NOT* freed actually here because it is alloced from
937 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
938 */
939 __blk_put_request(clone->q, clone);
940
941 /*
942 * Actual request completion is done in a softirq context which doesn't
943 * hold the queue lock. Otherwise, deadlock could occur because:
944 * - another request may be submitted by the upper level driver
945 * of the stacking during the completion
946 * - the submission which requires queue lock may be done
947 * against this queue
948 */
949 dm_complete_request(clone, error);
950 }
951
952 /*
953 * Return maximum size of I/O possible at the supplied sector up to the current
954 * target boundary.
955 */
956 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
957 {
958 sector_t target_offset = dm_target_offset(ti, sector);
959
960 return ti->len - target_offset;
961 }
962
963 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
964 {
965 sector_t len = max_io_len_target_boundary(sector, ti);
966 sector_t offset, max_len;
967
968 /*
969 * Does the target need to split even further?
970 */
971 if (ti->max_io_len) {
972 offset = dm_target_offset(ti, sector);
973 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
974 max_len = sector_div(offset, ti->max_io_len);
975 else
976 max_len = offset & (ti->max_io_len - 1);
977 max_len = ti->max_io_len - max_len;
978
979 if (len > max_len)
980 len = max_len;
981 }
982
983 return len;
984 }
985
986 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
987 {
988 if (len > UINT_MAX) {
989 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
990 (unsigned long long)len, UINT_MAX);
991 ti->error = "Maximum size of target IO is too large";
992 return -EINVAL;
993 }
994
995 ti->max_io_len = (uint32_t) len;
996
997 return 0;
998 }
999 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1000
1001 static void __map_bio(struct dm_target *ti, struct bio *clone,
1002 struct dm_target_io *tio)
1003 {
1004 int r;
1005 sector_t sector;
1006 struct mapped_device *md;
1007
1008 clone->bi_end_io = clone_endio;
1009 clone->bi_private = tio;
1010
1011 /*
1012 * Map the clone. If r == 0 we don't need to do
1013 * anything, the target has assumed ownership of
1014 * this io.
1015 */
1016 atomic_inc(&tio->io->io_count);
1017 sector = clone->bi_sector;
1018 r = ti->type->map(ti, clone, &tio->info);
1019 if (r == DM_MAPIO_REMAPPED) {
1020 /* the bio has been remapped so dispatch it */
1021
1022 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1023 tio->io->bio->bi_bdev->bd_dev, sector);
1024
1025 generic_make_request(clone);
1026 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1027 /* error the io and bail out, or requeue it if needed */
1028 md = tio->io->md;
1029 dec_pending(tio->io, r);
1030 bio_put(clone);
1031 free_tio(md, tio);
1032 } else if (r) {
1033 DMWARN("unimplemented target map return value: %d", r);
1034 BUG();
1035 }
1036 }
1037
1038 struct clone_info {
1039 struct mapped_device *md;
1040 struct dm_table *map;
1041 struct bio *bio;
1042 struct dm_io *io;
1043 sector_t sector;
1044 sector_t sector_count;
1045 unsigned short idx;
1046 };
1047
1048 /*
1049 * Creates a little bio that just does part of a bvec.
1050 */
1051 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1052 unsigned short idx, unsigned int offset,
1053 unsigned int len, struct bio_set *bs)
1054 {
1055 struct bio *clone;
1056 struct bio_vec *bv = bio->bi_io_vec + idx;
1057
1058 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1059 *clone->bi_io_vec = *bv;
1060
1061 clone->bi_sector = sector;
1062 clone->bi_bdev = bio->bi_bdev;
1063 clone->bi_rw = bio->bi_rw;
1064 clone->bi_vcnt = 1;
1065 clone->bi_size = to_bytes(len);
1066 clone->bi_io_vec->bv_offset = offset;
1067 clone->bi_io_vec->bv_len = clone->bi_size;
1068 clone->bi_flags |= 1 << BIO_CLONED;
1069
1070 if (bio_integrity(bio)) {
1071 bio_integrity_clone(clone, bio, GFP_NOIO);
1072 bio_integrity_trim(clone,
1073 bio_sector_offset(bio, idx, offset), len);
1074 }
1075
1076 return clone;
1077 }
1078
1079 /*
1080 * Creates a bio that consists of range of complete bvecs.
1081 */
1082 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1083 unsigned short idx, unsigned short bv_count,
1084 unsigned int len, struct bio_set *bs)
1085 {
1086 struct bio *clone;
1087
1088 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1089 __bio_clone(clone, bio);
1090 clone->bi_sector = sector;
1091 clone->bi_idx = idx;
1092 clone->bi_vcnt = idx + bv_count;
1093 clone->bi_size = to_bytes(len);
1094 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1095
1096 if (bio_integrity(bio)) {
1097 bio_integrity_clone(clone, bio, GFP_NOIO);
1098
1099 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1100 bio_integrity_trim(clone,
1101 bio_sector_offset(bio, idx, 0), len);
1102 }
1103
1104 return clone;
1105 }
1106
1107 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108 struct dm_target *ti)
1109 {
1110 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1111
1112 tio->io = ci->io;
1113 tio->ti = ti;
1114 memset(&tio->info, 0, sizeof(tio->info));
1115
1116 return tio;
1117 }
1118
1119 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1120 unsigned request_nr, sector_t len)
1121 {
1122 struct dm_target_io *tio = alloc_tio(ci, ti);
1123 struct bio *clone;
1124
1125 tio->info.target_request_nr = request_nr;
1126
1127 /*
1128 * Discard requests require the bio's inline iovecs be initialized.
1129 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1130 * and discard, so no need for concern about wasted bvec allocations.
1131 */
1132 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1133 __bio_clone(clone, ci->bio);
1134 if (len) {
1135 clone->bi_sector = ci->sector;
1136 clone->bi_size = to_bytes(len);
1137 }
1138
1139 __map_bio(ti, clone, tio);
1140 }
1141
1142 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1143 unsigned num_requests, sector_t len)
1144 {
1145 unsigned request_nr;
1146
1147 for (request_nr = 0; request_nr < num_requests; request_nr++)
1148 __issue_target_request(ci, ti, request_nr, len);
1149 }
1150
1151 static int __clone_and_map_empty_flush(struct clone_info *ci)
1152 {
1153 unsigned target_nr = 0;
1154 struct dm_target *ti;
1155
1156 BUG_ON(bio_has_data(ci->bio));
1157 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1158 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1159
1160 return 0;
1161 }
1162
1163 /*
1164 * Perform all io with a single clone.
1165 */
1166 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1167 {
1168 struct bio *clone, *bio = ci->bio;
1169 struct dm_target_io *tio;
1170
1171 tio = alloc_tio(ci, ti);
1172 clone = clone_bio(bio, ci->sector, ci->idx,
1173 bio->bi_vcnt - ci->idx, ci->sector_count,
1174 ci->md->bs);
1175 __map_bio(ti, clone, tio);
1176 ci->sector_count = 0;
1177 }
1178
1179 static int __clone_and_map_discard(struct clone_info *ci)
1180 {
1181 struct dm_target *ti;
1182 sector_t len;
1183
1184 do {
1185 ti = dm_table_find_target(ci->map, ci->sector);
1186 if (!dm_target_is_valid(ti))
1187 return -EIO;
1188
1189 /*
1190 * Even though the device advertised discard support,
1191 * that does not mean every target supports it, and
1192 * reconfiguration might also have changed that since the
1193 * check was performed.
1194 */
1195 if (!ti->num_discard_requests)
1196 return -EOPNOTSUPP;
1197
1198 if (!ti->split_discard_requests)
1199 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1200 else
1201 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1202
1203 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1204
1205 ci->sector += len;
1206 } while (ci->sector_count -= len);
1207
1208 return 0;
1209 }
1210
1211 static int __clone_and_map(struct clone_info *ci)
1212 {
1213 struct bio *clone, *bio = ci->bio;
1214 struct dm_target *ti;
1215 sector_t len = 0, max;
1216 struct dm_target_io *tio;
1217
1218 if (unlikely(bio->bi_rw & REQ_DISCARD))
1219 return __clone_and_map_discard(ci);
1220
1221 ti = dm_table_find_target(ci->map, ci->sector);
1222 if (!dm_target_is_valid(ti))
1223 return -EIO;
1224
1225 max = max_io_len(ci->sector, ti);
1226
1227 if (ci->sector_count <= max) {
1228 /*
1229 * Optimise for the simple case where we can do all of
1230 * the remaining io with a single clone.
1231 */
1232 __clone_and_map_simple(ci, ti);
1233
1234 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1235 /*
1236 * There are some bvecs that don't span targets.
1237 * Do as many of these as possible.
1238 */
1239 int i;
1240 sector_t remaining = max;
1241 sector_t bv_len;
1242
1243 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1244 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1245
1246 if (bv_len > remaining)
1247 break;
1248
1249 remaining -= bv_len;
1250 len += bv_len;
1251 }
1252
1253 tio = alloc_tio(ci, ti);
1254 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1255 ci->md->bs);
1256 __map_bio(ti, clone, tio);
1257
1258 ci->sector += len;
1259 ci->sector_count -= len;
1260 ci->idx = i;
1261
1262 } else {
1263 /*
1264 * Handle a bvec that must be split between two or more targets.
1265 */
1266 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1267 sector_t remaining = to_sector(bv->bv_len);
1268 unsigned int offset = 0;
1269
1270 do {
1271 if (offset) {
1272 ti = dm_table_find_target(ci->map, ci->sector);
1273 if (!dm_target_is_valid(ti))
1274 return -EIO;
1275
1276 max = max_io_len(ci->sector, ti);
1277 }
1278
1279 len = min(remaining, max);
1280
1281 tio = alloc_tio(ci, ti);
1282 clone = split_bvec(bio, ci->sector, ci->idx,
1283 bv->bv_offset + offset, len,
1284 ci->md->bs);
1285
1286 __map_bio(ti, clone, tio);
1287
1288 ci->sector += len;
1289 ci->sector_count -= len;
1290 offset += to_bytes(len);
1291 } while (remaining -= len);
1292
1293 ci->idx++;
1294 }
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * Split the bio into several clones and submit it to targets.
1301 */
1302 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1303 {
1304 struct clone_info ci;
1305 int error = 0;
1306
1307 ci.map = dm_get_live_table(md);
1308 if (unlikely(!ci.map)) {
1309 bio_io_error(bio);
1310 return;
1311 }
1312
1313 ci.md = md;
1314 ci.io = alloc_io(md);
1315 ci.io->error = 0;
1316 atomic_set(&ci.io->io_count, 1);
1317 ci.io->bio = bio;
1318 ci.io->md = md;
1319 spin_lock_init(&ci.io->endio_lock);
1320 ci.sector = bio->bi_sector;
1321 ci.idx = bio->bi_idx;
1322
1323 start_io_acct(ci.io);
1324 if (bio->bi_rw & REQ_FLUSH) {
1325 ci.bio = &ci.md->flush_bio;
1326 ci.sector_count = 0;
1327 error = __clone_and_map_empty_flush(&ci);
1328 /* dec_pending submits any data associated with flush */
1329 } else {
1330 ci.bio = bio;
1331 ci.sector_count = bio_sectors(bio);
1332 while (ci.sector_count && !error)
1333 error = __clone_and_map(&ci);
1334 }
1335
1336 /* drop the extra reference count */
1337 dec_pending(ci.io, error);
1338 dm_table_put(ci.map);
1339 }
1340 /*-----------------------------------------------------------------
1341 * CRUD END
1342 *---------------------------------------------------------------*/
1343
1344 static int dm_merge_bvec(struct request_queue *q,
1345 struct bvec_merge_data *bvm,
1346 struct bio_vec *biovec)
1347 {
1348 struct mapped_device *md = q->queuedata;
1349 struct dm_table *map = dm_get_live_table(md);
1350 struct dm_target *ti;
1351 sector_t max_sectors;
1352 int max_size = 0;
1353
1354 if (unlikely(!map))
1355 goto out;
1356
1357 ti = dm_table_find_target(map, bvm->bi_sector);
1358 if (!dm_target_is_valid(ti))
1359 goto out_table;
1360
1361 /*
1362 * Find maximum amount of I/O that won't need splitting
1363 */
1364 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1365 (sector_t) BIO_MAX_SECTORS);
1366 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1367 if (max_size < 0)
1368 max_size = 0;
1369
1370 /*
1371 * merge_bvec_fn() returns number of bytes
1372 * it can accept at this offset
1373 * max is precomputed maximal io size
1374 */
1375 if (max_size && ti->type->merge)
1376 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1377 /*
1378 * If the target doesn't support merge method and some of the devices
1379 * provided their merge_bvec method (we know this by looking at
1380 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1381 * entries. So always set max_size to 0, and the code below allows
1382 * just one page.
1383 */
1384 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1385
1386 max_size = 0;
1387
1388 out_table:
1389 dm_table_put(map);
1390
1391 out:
1392 /*
1393 * Always allow an entire first page
1394 */
1395 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1396 max_size = biovec->bv_len;
1397
1398 return max_size;
1399 }
1400
1401 /*
1402 * The request function that just remaps the bio built up by
1403 * dm_merge_bvec.
1404 */
1405 static void _dm_request(struct request_queue *q, struct bio *bio)
1406 {
1407 int rw = bio_data_dir(bio);
1408 struct mapped_device *md = q->queuedata;
1409 int cpu;
1410
1411 down_read(&md->io_lock);
1412
1413 cpu = part_stat_lock();
1414 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1415 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1416 part_stat_unlock();
1417
1418 /* if we're suspended, we have to queue this io for later */
1419 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1420 up_read(&md->io_lock);
1421
1422 if (bio_rw(bio) != READA)
1423 queue_io(md, bio);
1424 else
1425 bio_io_error(bio);
1426 return;
1427 }
1428
1429 __split_and_process_bio(md, bio);
1430 up_read(&md->io_lock);
1431 return;
1432 }
1433
1434 static int dm_request_based(struct mapped_device *md)
1435 {
1436 return blk_queue_stackable(md->queue);
1437 }
1438
1439 static void dm_request(struct request_queue *q, struct bio *bio)
1440 {
1441 struct mapped_device *md = q->queuedata;
1442
1443 if (dm_request_based(md))
1444 blk_queue_bio(q, bio);
1445 else
1446 _dm_request(q, bio);
1447 }
1448
1449 void dm_dispatch_request(struct request *rq)
1450 {
1451 int r;
1452
1453 if (blk_queue_io_stat(rq->q))
1454 rq->cmd_flags |= REQ_IO_STAT;
1455
1456 rq->start_time = jiffies;
1457 r = blk_insert_cloned_request(rq->q, rq);
1458 if (r)
1459 dm_complete_request(rq, r);
1460 }
1461 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1462
1463 static void dm_rq_bio_destructor(struct bio *bio)
1464 {
1465 struct dm_rq_clone_bio_info *info = bio->bi_private;
1466 struct mapped_device *md = info->tio->md;
1467
1468 free_bio_info(info);
1469 bio_free(bio, md->bs);
1470 }
1471
1472 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1473 void *data)
1474 {
1475 struct dm_rq_target_io *tio = data;
1476 struct mapped_device *md = tio->md;
1477 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1478
1479 if (!info)
1480 return -ENOMEM;
1481
1482 info->orig = bio_orig;
1483 info->tio = tio;
1484 bio->bi_end_io = end_clone_bio;
1485 bio->bi_private = info;
1486 bio->bi_destructor = dm_rq_bio_destructor;
1487
1488 return 0;
1489 }
1490
1491 static int setup_clone(struct request *clone, struct request *rq,
1492 struct dm_rq_target_io *tio)
1493 {
1494 int r;
1495
1496 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1497 dm_rq_bio_constructor, tio);
1498 if (r)
1499 return r;
1500
1501 clone->cmd = rq->cmd;
1502 clone->cmd_len = rq->cmd_len;
1503 clone->sense = rq->sense;
1504 clone->buffer = rq->buffer;
1505 clone->end_io = end_clone_request;
1506 clone->end_io_data = tio;
1507
1508 return 0;
1509 }
1510
1511 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1512 gfp_t gfp_mask)
1513 {
1514 struct request *clone;
1515 struct dm_rq_target_io *tio;
1516
1517 tio = alloc_rq_tio(md, gfp_mask);
1518 if (!tio)
1519 return NULL;
1520
1521 tio->md = md;
1522 tio->ti = NULL;
1523 tio->orig = rq;
1524 tio->error = 0;
1525 memset(&tio->info, 0, sizeof(tio->info));
1526
1527 clone = &tio->clone;
1528 if (setup_clone(clone, rq, tio)) {
1529 /* -ENOMEM */
1530 free_rq_tio(tio);
1531 return NULL;
1532 }
1533
1534 return clone;
1535 }
1536
1537 /*
1538 * Called with the queue lock held.
1539 */
1540 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1541 {
1542 struct mapped_device *md = q->queuedata;
1543 struct request *clone;
1544
1545 if (unlikely(rq->special)) {
1546 DMWARN("Already has something in rq->special.");
1547 return BLKPREP_KILL;
1548 }
1549
1550 clone = clone_rq(rq, md, GFP_ATOMIC);
1551 if (!clone)
1552 return BLKPREP_DEFER;
1553
1554 rq->special = clone;
1555 rq->cmd_flags |= REQ_DONTPREP;
1556
1557 return BLKPREP_OK;
1558 }
1559
1560 /*
1561 * Returns:
1562 * 0 : the request has been processed (not requeued)
1563 * !0 : the request has been requeued
1564 */
1565 static int map_request(struct dm_target *ti, struct request *clone,
1566 struct mapped_device *md)
1567 {
1568 int r, requeued = 0;
1569 struct dm_rq_target_io *tio = clone->end_io_data;
1570
1571 /*
1572 * Hold the md reference here for the in-flight I/O.
1573 * We can't rely on the reference count by device opener,
1574 * because the device may be closed during the request completion
1575 * when all bios are completed.
1576 * See the comment in rq_completed() too.
1577 */
1578 dm_get(md);
1579
1580 tio->ti = ti;
1581 r = ti->type->map_rq(ti, clone, &tio->info);
1582 switch (r) {
1583 case DM_MAPIO_SUBMITTED:
1584 /* The target has taken the I/O to submit by itself later */
1585 break;
1586 case DM_MAPIO_REMAPPED:
1587 /* The target has remapped the I/O so dispatch it */
1588 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1589 blk_rq_pos(tio->orig));
1590 dm_dispatch_request(clone);
1591 break;
1592 case DM_MAPIO_REQUEUE:
1593 /* The target wants to requeue the I/O */
1594 dm_requeue_unmapped_request(clone);
1595 requeued = 1;
1596 break;
1597 default:
1598 if (r > 0) {
1599 DMWARN("unimplemented target map return value: %d", r);
1600 BUG();
1601 }
1602
1603 /* The target wants to complete the I/O */
1604 dm_kill_unmapped_request(clone, r);
1605 break;
1606 }
1607
1608 return requeued;
1609 }
1610
1611 /*
1612 * q->request_fn for request-based dm.
1613 * Called with the queue lock held.
1614 */
1615 static void dm_request_fn(struct request_queue *q)
1616 {
1617 struct mapped_device *md = q->queuedata;
1618 struct dm_table *map = dm_get_live_table(md);
1619 struct dm_target *ti;
1620 struct request *rq, *clone;
1621 sector_t pos;
1622
1623 /*
1624 * For suspend, check blk_queue_stopped() and increment
1625 * ->pending within a single queue_lock not to increment the
1626 * number of in-flight I/Os after the queue is stopped in
1627 * dm_suspend().
1628 */
1629 while (!blk_queue_stopped(q)) {
1630 rq = blk_peek_request(q);
1631 if (!rq)
1632 goto delay_and_out;
1633
1634 /* always use block 0 to find the target for flushes for now */
1635 pos = 0;
1636 if (!(rq->cmd_flags & REQ_FLUSH))
1637 pos = blk_rq_pos(rq);
1638
1639 ti = dm_table_find_target(map, pos);
1640 BUG_ON(!dm_target_is_valid(ti));
1641
1642 if (ti->type->busy && ti->type->busy(ti))
1643 goto delay_and_out;
1644
1645 blk_start_request(rq);
1646 clone = rq->special;
1647 atomic_inc(&md->pending[rq_data_dir(clone)]);
1648
1649 spin_unlock(q->queue_lock);
1650 if (map_request(ti, clone, md))
1651 goto requeued;
1652
1653 BUG_ON(!irqs_disabled());
1654 spin_lock(q->queue_lock);
1655 }
1656
1657 goto out;
1658
1659 requeued:
1660 BUG_ON(!irqs_disabled());
1661 spin_lock(q->queue_lock);
1662
1663 delay_and_out:
1664 blk_delay_queue(q, HZ / 10);
1665 out:
1666 dm_table_put(map);
1667
1668 return;
1669 }
1670
1671 int dm_underlying_device_busy(struct request_queue *q)
1672 {
1673 return blk_lld_busy(q);
1674 }
1675 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1676
1677 static int dm_lld_busy(struct request_queue *q)
1678 {
1679 int r;
1680 struct mapped_device *md = q->queuedata;
1681 struct dm_table *map = dm_get_live_table(md);
1682
1683 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1684 r = 1;
1685 else
1686 r = dm_table_any_busy_target(map);
1687
1688 dm_table_put(map);
1689
1690 return r;
1691 }
1692
1693 static int dm_any_congested(void *congested_data, int bdi_bits)
1694 {
1695 int r = bdi_bits;
1696 struct mapped_device *md = congested_data;
1697 struct dm_table *map;
1698
1699 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1700 map = dm_get_live_table(md);
1701 if (map) {
1702 /*
1703 * Request-based dm cares about only own queue for
1704 * the query about congestion status of request_queue
1705 */
1706 if (dm_request_based(md))
1707 r = md->queue->backing_dev_info.state &
1708 bdi_bits;
1709 else
1710 r = dm_table_any_congested(map, bdi_bits);
1711
1712 dm_table_put(map);
1713 }
1714 }
1715
1716 return r;
1717 }
1718
1719 /*-----------------------------------------------------------------
1720 * An IDR is used to keep track of allocated minor numbers.
1721 *---------------------------------------------------------------*/
1722 static void free_minor(int minor)
1723 {
1724 spin_lock(&_minor_lock);
1725 idr_remove(&_minor_idr, minor);
1726 spin_unlock(&_minor_lock);
1727 }
1728
1729 /*
1730 * See if the device with a specific minor # is free.
1731 */
1732 static int specific_minor(int minor)
1733 {
1734 int r, m;
1735
1736 if (minor >= (1 << MINORBITS))
1737 return -EINVAL;
1738
1739 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1740 if (!r)
1741 return -ENOMEM;
1742
1743 spin_lock(&_minor_lock);
1744
1745 if (idr_find(&_minor_idr, minor)) {
1746 r = -EBUSY;
1747 goto out;
1748 }
1749
1750 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1751 if (r)
1752 goto out;
1753
1754 if (m != minor) {
1755 idr_remove(&_minor_idr, m);
1756 r = -EBUSY;
1757 goto out;
1758 }
1759
1760 out:
1761 spin_unlock(&_minor_lock);
1762 return r;
1763 }
1764
1765 static int next_free_minor(int *minor)
1766 {
1767 int r, m;
1768
1769 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1770 if (!r)
1771 return -ENOMEM;
1772
1773 spin_lock(&_minor_lock);
1774
1775 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1776 if (r)
1777 goto out;
1778
1779 if (m >= (1 << MINORBITS)) {
1780 idr_remove(&_minor_idr, m);
1781 r = -ENOSPC;
1782 goto out;
1783 }
1784
1785 *minor = m;
1786
1787 out:
1788 spin_unlock(&_minor_lock);
1789 return r;
1790 }
1791
1792 static const struct block_device_operations dm_blk_dops;
1793
1794 static void dm_wq_work(struct work_struct *work);
1795
1796 static void dm_init_md_queue(struct mapped_device *md)
1797 {
1798 /*
1799 * Request-based dm devices cannot be stacked on top of bio-based dm
1800 * devices. The type of this dm device has not been decided yet.
1801 * The type is decided at the first table loading time.
1802 * To prevent problematic device stacking, clear the queue flag
1803 * for request stacking support until then.
1804 *
1805 * This queue is new, so no concurrency on the queue_flags.
1806 */
1807 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1808
1809 md->queue->queuedata = md;
1810 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1811 md->queue->backing_dev_info.congested_data = md;
1812 blk_queue_make_request(md->queue, dm_request);
1813 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1814 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1815 }
1816
1817 /*
1818 * Allocate and initialise a blank device with a given minor.
1819 */
1820 static struct mapped_device *alloc_dev(int minor)
1821 {
1822 int r;
1823 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1824 void *old_md;
1825
1826 if (!md) {
1827 DMWARN("unable to allocate device, out of memory.");
1828 return NULL;
1829 }
1830
1831 if (!try_module_get(THIS_MODULE))
1832 goto bad_module_get;
1833
1834 /* get a minor number for the dev */
1835 if (minor == DM_ANY_MINOR)
1836 r = next_free_minor(&minor);
1837 else
1838 r = specific_minor(minor);
1839 if (r < 0)
1840 goto bad_minor;
1841
1842 md->type = DM_TYPE_NONE;
1843 init_rwsem(&md->io_lock);
1844 mutex_init(&md->suspend_lock);
1845 mutex_init(&md->type_lock);
1846 spin_lock_init(&md->deferred_lock);
1847 rwlock_init(&md->map_lock);
1848 atomic_set(&md->holders, 1);
1849 atomic_set(&md->open_count, 0);
1850 atomic_set(&md->event_nr, 0);
1851 atomic_set(&md->uevent_seq, 0);
1852 INIT_LIST_HEAD(&md->uevent_list);
1853 spin_lock_init(&md->uevent_lock);
1854
1855 md->queue = blk_alloc_queue(GFP_KERNEL);
1856 if (!md->queue)
1857 goto bad_queue;
1858
1859 dm_init_md_queue(md);
1860
1861 md->disk = alloc_disk(1);
1862 if (!md->disk)
1863 goto bad_disk;
1864
1865 atomic_set(&md->pending[0], 0);
1866 atomic_set(&md->pending[1], 0);
1867 init_waitqueue_head(&md->wait);
1868 INIT_WORK(&md->work, dm_wq_work);
1869 init_waitqueue_head(&md->eventq);
1870
1871 md->disk->major = _major;
1872 md->disk->first_minor = minor;
1873 md->disk->fops = &dm_blk_dops;
1874 md->disk->queue = md->queue;
1875 md->disk->private_data = md;
1876 sprintf(md->disk->disk_name, "dm-%d", minor);
1877 add_disk(md->disk);
1878 format_dev_t(md->name, MKDEV(_major, minor));
1879
1880 md->wq = alloc_workqueue("kdmflush",
1881 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1882 if (!md->wq)
1883 goto bad_thread;
1884
1885 md->bdev = bdget_disk(md->disk, 0);
1886 if (!md->bdev)
1887 goto bad_bdev;
1888
1889 bio_init(&md->flush_bio);
1890 md->flush_bio.bi_bdev = md->bdev;
1891 md->flush_bio.bi_rw = WRITE_FLUSH;
1892
1893 /* Populate the mapping, nobody knows we exist yet */
1894 spin_lock(&_minor_lock);
1895 old_md = idr_replace(&_minor_idr, md, minor);
1896 spin_unlock(&_minor_lock);
1897
1898 BUG_ON(old_md != MINOR_ALLOCED);
1899
1900 return md;
1901
1902 bad_bdev:
1903 destroy_workqueue(md->wq);
1904 bad_thread:
1905 del_gendisk(md->disk);
1906 put_disk(md->disk);
1907 bad_disk:
1908 blk_cleanup_queue(md->queue);
1909 bad_queue:
1910 free_minor(minor);
1911 bad_minor:
1912 module_put(THIS_MODULE);
1913 bad_module_get:
1914 kfree(md);
1915 return NULL;
1916 }
1917
1918 static void unlock_fs(struct mapped_device *md);
1919
1920 static void free_dev(struct mapped_device *md)
1921 {
1922 int minor = MINOR(disk_devt(md->disk));
1923
1924 unlock_fs(md);
1925 bdput(md->bdev);
1926 destroy_workqueue(md->wq);
1927 if (md->tio_pool)
1928 mempool_destroy(md->tio_pool);
1929 if (md->io_pool)
1930 mempool_destroy(md->io_pool);
1931 if (md->bs)
1932 bioset_free(md->bs);
1933 blk_integrity_unregister(md->disk);
1934 del_gendisk(md->disk);
1935 free_minor(minor);
1936
1937 spin_lock(&_minor_lock);
1938 md->disk->private_data = NULL;
1939 spin_unlock(&_minor_lock);
1940
1941 put_disk(md->disk);
1942 blk_cleanup_queue(md->queue);
1943 module_put(THIS_MODULE);
1944 kfree(md);
1945 }
1946
1947 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1948 {
1949 struct dm_md_mempools *p;
1950
1951 if (md->io_pool && md->tio_pool && md->bs)
1952 /* the md already has necessary mempools */
1953 goto out;
1954
1955 p = dm_table_get_md_mempools(t);
1956 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1957
1958 md->io_pool = p->io_pool;
1959 p->io_pool = NULL;
1960 md->tio_pool = p->tio_pool;
1961 p->tio_pool = NULL;
1962 md->bs = p->bs;
1963 p->bs = NULL;
1964
1965 out:
1966 /* mempool bind completed, now no need any mempools in the table */
1967 dm_table_free_md_mempools(t);
1968 }
1969
1970 /*
1971 * Bind a table to the device.
1972 */
1973 static void event_callback(void *context)
1974 {
1975 unsigned long flags;
1976 LIST_HEAD(uevents);
1977 struct mapped_device *md = (struct mapped_device *) context;
1978
1979 spin_lock_irqsave(&md->uevent_lock, flags);
1980 list_splice_init(&md->uevent_list, &uevents);
1981 spin_unlock_irqrestore(&md->uevent_lock, flags);
1982
1983 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1984
1985 atomic_inc(&md->event_nr);
1986 wake_up(&md->eventq);
1987 }
1988
1989 /*
1990 * Protected by md->suspend_lock obtained by dm_swap_table().
1991 */
1992 static void __set_size(struct mapped_device *md, sector_t size)
1993 {
1994 set_capacity(md->disk, size);
1995
1996 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1997 }
1998
1999 /*
2000 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2001 *
2002 * If this function returns 0, then the device is either a non-dm
2003 * device without a merge_bvec_fn, or it is a dm device that is
2004 * able to split any bios it receives that are too big.
2005 */
2006 int dm_queue_merge_is_compulsory(struct request_queue *q)
2007 {
2008 struct mapped_device *dev_md;
2009
2010 if (!q->merge_bvec_fn)
2011 return 0;
2012
2013 if (q->make_request_fn == dm_request) {
2014 dev_md = q->queuedata;
2015 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2016 return 0;
2017 }
2018
2019 return 1;
2020 }
2021
2022 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2023 struct dm_dev *dev, sector_t start,
2024 sector_t len, void *data)
2025 {
2026 struct block_device *bdev = dev->bdev;
2027 struct request_queue *q = bdev_get_queue(bdev);
2028
2029 return dm_queue_merge_is_compulsory(q);
2030 }
2031
2032 /*
2033 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2034 * on the properties of the underlying devices.
2035 */
2036 static int dm_table_merge_is_optional(struct dm_table *table)
2037 {
2038 unsigned i = 0;
2039 struct dm_target *ti;
2040
2041 while (i < dm_table_get_num_targets(table)) {
2042 ti = dm_table_get_target(table, i++);
2043
2044 if (ti->type->iterate_devices &&
2045 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2046 return 0;
2047 }
2048
2049 return 1;
2050 }
2051
2052 /*
2053 * Returns old map, which caller must destroy.
2054 */
2055 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2056 struct queue_limits *limits)
2057 {
2058 struct dm_table *old_map;
2059 struct request_queue *q = md->queue;
2060 sector_t size;
2061 unsigned long flags;
2062 int merge_is_optional;
2063
2064 size = dm_table_get_size(t);
2065
2066 /*
2067 * Wipe any geometry if the size of the table changed.
2068 */
2069 if (size != get_capacity(md->disk))
2070 memset(&md->geometry, 0, sizeof(md->geometry));
2071
2072 __set_size(md, size);
2073
2074 dm_table_event_callback(t, event_callback, md);
2075
2076 /*
2077 * The queue hasn't been stopped yet, if the old table type wasn't
2078 * for request-based during suspension. So stop it to prevent
2079 * I/O mapping before resume.
2080 * This must be done before setting the queue restrictions,
2081 * because request-based dm may be run just after the setting.
2082 */
2083 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2084 stop_queue(q);
2085
2086 __bind_mempools(md, t);
2087
2088 merge_is_optional = dm_table_merge_is_optional(t);
2089
2090 write_lock_irqsave(&md->map_lock, flags);
2091 old_map = md->map;
2092 md->map = t;
2093 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2094
2095 dm_table_set_restrictions(t, q, limits);
2096 if (merge_is_optional)
2097 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2098 else
2099 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2100 write_unlock_irqrestore(&md->map_lock, flags);
2101
2102 return old_map;
2103 }
2104
2105 /*
2106 * Returns unbound table for the caller to free.
2107 */
2108 static struct dm_table *__unbind(struct mapped_device *md)
2109 {
2110 struct dm_table *map = md->map;
2111 unsigned long flags;
2112
2113 if (!map)
2114 return NULL;
2115
2116 dm_table_event_callback(map, NULL, NULL);
2117 write_lock_irqsave(&md->map_lock, flags);
2118 md->map = NULL;
2119 write_unlock_irqrestore(&md->map_lock, flags);
2120
2121 return map;
2122 }
2123
2124 /*
2125 * Constructor for a new device.
2126 */
2127 int dm_create(int minor, struct mapped_device **result)
2128 {
2129 struct mapped_device *md;
2130
2131 md = alloc_dev(minor);
2132 if (!md)
2133 return -ENXIO;
2134
2135 dm_sysfs_init(md);
2136
2137 *result = md;
2138 return 0;
2139 }
2140
2141 /*
2142 * Functions to manage md->type.
2143 * All are required to hold md->type_lock.
2144 */
2145 void dm_lock_md_type(struct mapped_device *md)
2146 {
2147 mutex_lock(&md->type_lock);
2148 }
2149
2150 void dm_unlock_md_type(struct mapped_device *md)
2151 {
2152 mutex_unlock(&md->type_lock);
2153 }
2154
2155 void dm_set_md_type(struct mapped_device *md, unsigned type)
2156 {
2157 md->type = type;
2158 }
2159
2160 unsigned dm_get_md_type(struct mapped_device *md)
2161 {
2162 return md->type;
2163 }
2164
2165 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2166 {
2167 return md->immutable_target_type;
2168 }
2169
2170 /*
2171 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2172 */
2173 static int dm_init_request_based_queue(struct mapped_device *md)
2174 {
2175 struct request_queue *q = NULL;
2176
2177 if (md->queue->elevator)
2178 return 1;
2179
2180 /* Fully initialize the queue */
2181 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2182 if (!q)
2183 return 0;
2184
2185 md->queue = q;
2186 dm_init_md_queue(md);
2187 blk_queue_softirq_done(md->queue, dm_softirq_done);
2188 blk_queue_prep_rq(md->queue, dm_prep_fn);
2189 blk_queue_lld_busy(md->queue, dm_lld_busy);
2190
2191 elv_register_queue(md->queue);
2192
2193 return 1;
2194 }
2195
2196 /*
2197 * Setup the DM device's queue based on md's type
2198 */
2199 int dm_setup_md_queue(struct mapped_device *md)
2200 {
2201 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2202 !dm_init_request_based_queue(md)) {
2203 DMWARN("Cannot initialize queue for request-based mapped device");
2204 return -EINVAL;
2205 }
2206
2207 return 0;
2208 }
2209
2210 static struct mapped_device *dm_find_md(dev_t dev)
2211 {
2212 struct mapped_device *md;
2213 unsigned minor = MINOR(dev);
2214
2215 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2216 return NULL;
2217
2218 spin_lock(&_minor_lock);
2219
2220 md = idr_find(&_minor_idr, minor);
2221 if (md && (md == MINOR_ALLOCED ||
2222 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2223 dm_deleting_md(md) ||
2224 test_bit(DMF_FREEING, &md->flags))) {
2225 md = NULL;
2226 goto out;
2227 }
2228
2229 out:
2230 spin_unlock(&_minor_lock);
2231
2232 return md;
2233 }
2234
2235 struct mapped_device *dm_get_md(dev_t dev)
2236 {
2237 struct mapped_device *md = dm_find_md(dev);
2238
2239 if (md)
2240 dm_get(md);
2241
2242 return md;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_get_md);
2245
2246 void *dm_get_mdptr(struct mapped_device *md)
2247 {
2248 return md->interface_ptr;
2249 }
2250
2251 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2252 {
2253 md->interface_ptr = ptr;
2254 }
2255
2256 void dm_get(struct mapped_device *md)
2257 {
2258 atomic_inc(&md->holders);
2259 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2260 }
2261
2262 const char *dm_device_name(struct mapped_device *md)
2263 {
2264 return md->name;
2265 }
2266 EXPORT_SYMBOL_GPL(dm_device_name);
2267
2268 static void __dm_destroy(struct mapped_device *md, bool wait)
2269 {
2270 struct dm_table *map;
2271
2272 might_sleep();
2273
2274 spin_lock(&_minor_lock);
2275 map = dm_get_live_table(md);
2276 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2277 set_bit(DMF_FREEING, &md->flags);
2278 spin_unlock(&_minor_lock);
2279
2280 if (!dm_suspended_md(md)) {
2281 dm_table_presuspend_targets(map);
2282 dm_table_postsuspend_targets(map);
2283 }
2284
2285 /*
2286 * Rare, but there may be I/O requests still going to complete,
2287 * for example. Wait for all references to disappear.
2288 * No one should increment the reference count of the mapped_device,
2289 * after the mapped_device state becomes DMF_FREEING.
2290 */
2291 if (wait)
2292 while (atomic_read(&md->holders))
2293 msleep(1);
2294 else if (atomic_read(&md->holders))
2295 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2296 dm_device_name(md), atomic_read(&md->holders));
2297
2298 dm_sysfs_exit(md);
2299 dm_table_put(map);
2300 dm_table_destroy(__unbind(md));
2301 free_dev(md);
2302 }
2303
2304 void dm_destroy(struct mapped_device *md)
2305 {
2306 __dm_destroy(md, true);
2307 }
2308
2309 void dm_destroy_immediate(struct mapped_device *md)
2310 {
2311 __dm_destroy(md, false);
2312 }
2313
2314 void dm_put(struct mapped_device *md)
2315 {
2316 atomic_dec(&md->holders);
2317 }
2318 EXPORT_SYMBOL_GPL(dm_put);
2319
2320 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2321 {
2322 int r = 0;
2323 DECLARE_WAITQUEUE(wait, current);
2324
2325 add_wait_queue(&md->wait, &wait);
2326
2327 while (1) {
2328 set_current_state(interruptible);
2329
2330 if (!md_in_flight(md))
2331 break;
2332
2333 if (interruptible == TASK_INTERRUPTIBLE &&
2334 signal_pending(current)) {
2335 r = -EINTR;
2336 break;
2337 }
2338
2339 io_schedule();
2340 }
2341 set_current_state(TASK_RUNNING);
2342
2343 remove_wait_queue(&md->wait, &wait);
2344
2345 return r;
2346 }
2347
2348 /*
2349 * Process the deferred bios
2350 */
2351 static void dm_wq_work(struct work_struct *work)
2352 {
2353 struct mapped_device *md = container_of(work, struct mapped_device,
2354 work);
2355 struct bio *c;
2356
2357 down_read(&md->io_lock);
2358
2359 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2360 spin_lock_irq(&md->deferred_lock);
2361 c = bio_list_pop(&md->deferred);
2362 spin_unlock_irq(&md->deferred_lock);
2363
2364 if (!c)
2365 break;
2366
2367 up_read(&md->io_lock);
2368
2369 if (dm_request_based(md))
2370 generic_make_request(c);
2371 else
2372 __split_and_process_bio(md, c);
2373
2374 down_read(&md->io_lock);
2375 }
2376
2377 up_read(&md->io_lock);
2378 }
2379
2380 static void dm_queue_flush(struct mapped_device *md)
2381 {
2382 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2383 smp_mb__after_clear_bit();
2384 queue_work(md->wq, &md->work);
2385 }
2386
2387 /*
2388 * Swap in a new table, returning the old one for the caller to destroy.
2389 */
2390 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2391 {
2392 struct dm_table *map = ERR_PTR(-EINVAL);
2393 struct queue_limits limits;
2394 int r;
2395
2396 mutex_lock(&md->suspend_lock);
2397
2398 /* device must be suspended */
2399 if (!dm_suspended_md(md))
2400 goto out;
2401
2402 r = dm_calculate_queue_limits(table, &limits);
2403 if (r) {
2404 map = ERR_PTR(r);
2405 goto out;
2406 }
2407
2408 map = __bind(md, table, &limits);
2409
2410 out:
2411 mutex_unlock(&md->suspend_lock);
2412 return map;
2413 }
2414
2415 /*
2416 * Functions to lock and unlock any filesystem running on the
2417 * device.
2418 */
2419 static int lock_fs(struct mapped_device *md)
2420 {
2421 int r;
2422
2423 WARN_ON(md->frozen_sb);
2424
2425 md->frozen_sb = freeze_bdev(md->bdev);
2426 if (IS_ERR(md->frozen_sb)) {
2427 r = PTR_ERR(md->frozen_sb);
2428 md->frozen_sb = NULL;
2429 return r;
2430 }
2431
2432 set_bit(DMF_FROZEN, &md->flags);
2433
2434 return 0;
2435 }
2436
2437 static void unlock_fs(struct mapped_device *md)
2438 {
2439 if (!test_bit(DMF_FROZEN, &md->flags))
2440 return;
2441
2442 thaw_bdev(md->bdev, md->frozen_sb);
2443 md->frozen_sb = NULL;
2444 clear_bit(DMF_FROZEN, &md->flags);
2445 }
2446
2447 /*
2448 * We need to be able to change a mapping table under a mounted
2449 * filesystem. For example we might want to move some data in
2450 * the background. Before the table can be swapped with
2451 * dm_bind_table, dm_suspend must be called to flush any in
2452 * flight bios and ensure that any further io gets deferred.
2453 */
2454 /*
2455 * Suspend mechanism in request-based dm.
2456 *
2457 * 1. Flush all I/Os by lock_fs() if needed.
2458 * 2. Stop dispatching any I/O by stopping the request_queue.
2459 * 3. Wait for all in-flight I/Os to be completed or requeued.
2460 *
2461 * To abort suspend, start the request_queue.
2462 */
2463 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2464 {
2465 struct dm_table *map = NULL;
2466 int r = 0;
2467 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2468 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2469
2470 mutex_lock(&md->suspend_lock);
2471
2472 if (dm_suspended_md(md)) {
2473 r = -EINVAL;
2474 goto out_unlock;
2475 }
2476
2477 map = dm_get_live_table(md);
2478
2479 /*
2480 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2481 * This flag is cleared before dm_suspend returns.
2482 */
2483 if (noflush)
2484 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2485
2486 /* This does not get reverted if there's an error later. */
2487 dm_table_presuspend_targets(map);
2488
2489 /*
2490 * Flush I/O to the device.
2491 * Any I/O submitted after lock_fs() may not be flushed.
2492 * noflush takes precedence over do_lockfs.
2493 * (lock_fs() flushes I/Os and waits for them to complete.)
2494 */
2495 if (!noflush && do_lockfs) {
2496 r = lock_fs(md);
2497 if (r)
2498 goto out;
2499 }
2500
2501 /*
2502 * Here we must make sure that no processes are submitting requests
2503 * to target drivers i.e. no one may be executing
2504 * __split_and_process_bio. This is called from dm_request and
2505 * dm_wq_work.
2506 *
2507 * To get all processes out of __split_and_process_bio in dm_request,
2508 * we take the write lock. To prevent any process from reentering
2509 * __split_and_process_bio from dm_request and quiesce the thread
2510 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2511 * flush_workqueue(md->wq).
2512 */
2513 down_write(&md->io_lock);
2514 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2515 up_write(&md->io_lock);
2516
2517 /*
2518 * Stop md->queue before flushing md->wq in case request-based
2519 * dm defers requests to md->wq from md->queue.
2520 */
2521 if (dm_request_based(md))
2522 stop_queue(md->queue);
2523
2524 flush_workqueue(md->wq);
2525
2526 /*
2527 * At this point no more requests are entering target request routines.
2528 * We call dm_wait_for_completion to wait for all existing requests
2529 * to finish.
2530 */
2531 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2532
2533 down_write(&md->io_lock);
2534 if (noflush)
2535 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2536 up_write(&md->io_lock);
2537
2538 /* were we interrupted ? */
2539 if (r < 0) {
2540 dm_queue_flush(md);
2541
2542 if (dm_request_based(md))
2543 start_queue(md->queue);
2544
2545 unlock_fs(md);
2546 goto out; /* pushback list is already flushed, so skip flush */
2547 }
2548
2549 /*
2550 * If dm_wait_for_completion returned 0, the device is completely
2551 * quiescent now. There is no request-processing activity. All new
2552 * requests are being added to md->deferred list.
2553 */
2554
2555 set_bit(DMF_SUSPENDED, &md->flags);
2556
2557 dm_table_postsuspend_targets(map);
2558
2559 out:
2560 dm_table_put(map);
2561
2562 out_unlock:
2563 mutex_unlock(&md->suspend_lock);
2564 return r;
2565 }
2566
2567 int dm_resume(struct mapped_device *md)
2568 {
2569 int r = -EINVAL;
2570 struct dm_table *map = NULL;
2571
2572 mutex_lock(&md->suspend_lock);
2573 if (!dm_suspended_md(md))
2574 goto out;
2575
2576 map = dm_get_live_table(md);
2577 if (!map || !dm_table_get_size(map))
2578 goto out;
2579
2580 r = dm_table_resume_targets(map);
2581 if (r)
2582 goto out;
2583
2584 dm_queue_flush(md);
2585
2586 /*
2587 * Flushing deferred I/Os must be done after targets are resumed
2588 * so that mapping of targets can work correctly.
2589 * Request-based dm is queueing the deferred I/Os in its request_queue.
2590 */
2591 if (dm_request_based(md))
2592 start_queue(md->queue);
2593
2594 unlock_fs(md);
2595
2596 clear_bit(DMF_SUSPENDED, &md->flags);
2597
2598 r = 0;
2599 out:
2600 dm_table_put(map);
2601 mutex_unlock(&md->suspend_lock);
2602
2603 return r;
2604 }
2605
2606 /*-----------------------------------------------------------------
2607 * Event notification.
2608 *---------------------------------------------------------------*/
2609 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2610 unsigned cookie)
2611 {
2612 char udev_cookie[DM_COOKIE_LENGTH];
2613 char *envp[] = { udev_cookie, NULL };
2614
2615 if (!cookie)
2616 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2617 else {
2618 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2619 DM_COOKIE_ENV_VAR_NAME, cookie);
2620 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2621 action, envp);
2622 }
2623 }
2624
2625 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2626 {
2627 return atomic_add_return(1, &md->uevent_seq);
2628 }
2629
2630 uint32_t dm_get_event_nr(struct mapped_device *md)
2631 {
2632 return atomic_read(&md->event_nr);
2633 }
2634
2635 int dm_wait_event(struct mapped_device *md, int event_nr)
2636 {
2637 return wait_event_interruptible(md->eventq,
2638 (event_nr != atomic_read(&md->event_nr)));
2639 }
2640
2641 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2642 {
2643 unsigned long flags;
2644
2645 spin_lock_irqsave(&md->uevent_lock, flags);
2646 list_add(elist, &md->uevent_list);
2647 spin_unlock_irqrestore(&md->uevent_lock, flags);
2648 }
2649
2650 /*
2651 * The gendisk is only valid as long as you have a reference
2652 * count on 'md'.
2653 */
2654 struct gendisk *dm_disk(struct mapped_device *md)
2655 {
2656 return md->disk;
2657 }
2658
2659 struct kobject *dm_kobject(struct mapped_device *md)
2660 {
2661 return &md->kobj;
2662 }
2663
2664 /*
2665 * struct mapped_device should not be exported outside of dm.c
2666 * so use this check to verify that kobj is part of md structure
2667 */
2668 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2669 {
2670 struct mapped_device *md;
2671
2672 md = container_of(kobj, struct mapped_device, kobj);
2673 if (&md->kobj != kobj)
2674 return NULL;
2675
2676 if (test_bit(DMF_FREEING, &md->flags) ||
2677 dm_deleting_md(md))
2678 return NULL;
2679
2680 dm_get(md);
2681 return md;
2682 }
2683
2684 int dm_suspended_md(struct mapped_device *md)
2685 {
2686 return test_bit(DMF_SUSPENDED, &md->flags);
2687 }
2688
2689 int dm_suspended(struct dm_target *ti)
2690 {
2691 return dm_suspended_md(dm_table_get_md(ti->table));
2692 }
2693 EXPORT_SYMBOL_GPL(dm_suspended);
2694
2695 int dm_noflush_suspending(struct dm_target *ti)
2696 {
2697 return __noflush_suspending(dm_table_get_md(ti->table));
2698 }
2699 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2700
2701 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2702 {
2703 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2704 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2705
2706 if (!pools)
2707 return NULL;
2708
2709 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2710 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2711 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2712 if (!pools->io_pool)
2713 goto free_pools_and_out;
2714
2715 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2716 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2717 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2718 if (!pools->tio_pool)
2719 goto free_io_pool_and_out;
2720
2721 pools->bs = bioset_create(pool_size, 0);
2722 if (!pools->bs)
2723 goto free_tio_pool_and_out;
2724
2725 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2726 goto free_bioset_and_out;
2727
2728 return pools;
2729
2730 free_bioset_and_out:
2731 bioset_free(pools->bs);
2732
2733 free_tio_pool_and_out:
2734 mempool_destroy(pools->tio_pool);
2735
2736 free_io_pool_and_out:
2737 mempool_destroy(pools->io_pool);
2738
2739 free_pools_and_out:
2740 kfree(pools);
2741
2742 return NULL;
2743 }
2744
2745 void dm_free_md_mempools(struct dm_md_mempools *pools)
2746 {
2747 if (!pools)
2748 return;
2749
2750 if (pools->io_pool)
2751 mempool_destroy(pools->io_pool);
2752
2753 if (pools->tio_pool)
2754 mempool_destroy(pools->tio_pool);
2755
2756 if (pools->bs)
2757 bioset_free(pools->bs);
2758
2759 kfree(pools);
2760 }
2761
2762 static const struct block_device_operations dm_blk_dops = {
2763 .open = dm_blk_open,
2764 .release = dm_blk_close,
2765 .ioctl = dm_blk_ioctl,
2766 .getgeo = dm_blk_getgeo,
2767 .owner = THIS_MODULE
2768 };
2769
2770 EXPORT_SYMBOL(dm_get_mapinfo);
2771
2772 /*
2773 * module hooks
2774 */
2775 module_init(dm_init);
2776 module_exit(dm_exit);
2777
2778 module_param(major, uint, 0);
2779 MODULE_PARM_DESC(major, "The major number of the device mapper");
2780 MODULE_DESCRIPTION(DM_NAME " driver");
2781 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2782 MODULE_LICENSE("GPL");