]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
Merge tag 'powerpc-4.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 #include <linux/wait.h>
24 #include <linux/pr.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 #ifdef CONFIG_PRINTK
29 /*
30 * ratelimit state to be used in DMXXX_LIMIT().
31 */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 DEFAULT_RATELIMIT_INTERVAL,
34 DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 static const char *_name = DM_NAME;
46
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49
50 static DEFINE_IDR(_minor_idr);
51
52 static DEFINE_SPINLOCK(_minor_lock);
53
54 static void do_deferred_remove(struct work_struct *w);
55
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57
58 static struct workqueue_struct *deferred_remove_workqueue;
59
60 /*
61 * One of these is allocated per bio.
62 */
63 struct dm_io {
64 struct mapped_device *md;
65 int error;
66 atomic_t io_count;
67 struct bio *bio;
68 unsigned long start_time;
69 spinlock_t endio_lock;
70 struct dm_stats_aux stats_aux;
71 };
72
73 #define MINOR_ALLOCED ((void *)-1)
74
75 /*
76 * Bits for the md->flags field.
77 */
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
80 #define DMF_FROZEN 2
81 #define DMF_FREEING 3
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
86
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node = DM_NUMA_NODE;
89
90 /*
91 * For mempools pre-allocation at the table loading time.
92 */
93 struct dm_md_mempools {
94 mempool_t *io_pool;
95 struct bio_set *bs;
96 };
97
98 struct table_device {
99 struct list_head list;
100 atomic_t count;
101 struct dm_dev dm_dev;
102 };
103
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107
108 /*
109 * Bio-based DM's mempools' reserved IOs set by the user.
110 */
111 #define RESERVED_BIO_BASED_IOS 16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 int param = ACCESS_ONCE(*module_param);
117 int modified_param = 0;
118 bool modified = true;
119
120 if (param < min)
121 modified_param = min;
122 else if (param > max)
123 modified_param = max;
124 else
125 modified = false;
126
127 if (modified) {
128 (void)cmpxchg(module_param, param, modified_param);
129 param = modified_param;
130 }
131
132 return param;
133 }
134
135 unsigned __dm_get_module_param(unsigned *module_param,
136 unsigned def, unsigned max)
137 {
138 unsigned param = ACCESS_ONCE(*module_param);
139 unsigned modified_param = 0;
140
141 if (!param)
142 modified_param = def;
143 else if (param > max)
144 modified_param = max;
145
146 if (modified_param) {
147 (void)cmpxchg(module_param, param, modified_param);
148 param = modified_param;
149 }
150
151 return param;
152 }
153
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 return __dm_get_module_param(&reserved_bio_based_ios,
157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160
161 static unsigned dm_get_numa_node(void)
162 {
163 return __dm_get_module_param_int(&dm_numa_node,
164 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166
167 static int __init local_init(void)
168 {
169 int r = -ENOMEM;
170
171 /* allocate a slab for the dm_ios */
172 _io_cache = KMEM_CACHE(dm_io, 0);
173 if (!_io_cache)
174 return r;
175
176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 if (!_rq_tio_cache)
178 goto out_free_io_cache;
179
180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 __alignof__(struct request), 0, NULL);
182 if (!_rq_cache)
183 goto out_free_rq_tio_cache;
184
185 r = dm_uevent_init();
186 if (r)
187 goto out_free_rq_cache;
188
189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 if (!deferred_remove_workqueue) {
191 r = -ENOMEM;
192 goto out_uevent_exit;
193 }
194
195 _major = major;
196 r = register_blkdev(_major, _name);
197 if (r < 0)
198 goto out_free_workqueue;
199
200 if (!_major)
201 _major = r;
202
203 return 0;
204
205 out_free_workqueue:
206 destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 dm_uevent_exit();
209 out_free_rq_cache:
210 kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 kmem_cache_destroy(_io_cache);
215
216 return r;
217 }
218
219 static void local_exit(void)
220 {
221 flush_scheduled_work();
222 destroy_workqueue(deferred_remove_workqueue);
223
224 kmem_cache_destroy(_rq_cache);
225 kmem_cache_destroy(_rq_tio_cache);
226 kmem_cache_destroy(_io_cache);
227 unregister_blkdev(_major, _name);
228 dm_uevent_exit();
229
230 _major = 0;
231
232 DMINFO("cleaned up");
233 }
234
235 static int (*_inits[])(void) __initdata = {
236 local_init,
237 dm_target_init,
238 dm_linear_init,
239 dm_stripe_init,
240 dm_io_init,
241 dm_kcopyd_init,
242 dm_interface_init,
243 dm_statistics_init,
244 };
245
246 static void (*_exits[])(void) = {
247 local_exit,
248 dm_target_exit,
249 dm_linear_exit,
250 dm_stripe_exit,
251 dm_io_exit,
252 dm_kcopyd_exit,
253 dm_interface_exit,
254 dm_statistics_exit,
255 };
256
257 static int __init dm_init(void)
258 {
259 const int count = ARRAY_SIZE(_inits);
260
261 int r, i;
262
263 for (i = 0; i < count; i++) {
264 r = _inits[i]();
265 if (r)
266 goto bad;
267 }
268
269 return 0;
270
271 bad:
272 while (i--)
273 _exits[i]();
274
275 return r;
276 }
277
278 static void __exit dm_exit(void)
279 {
280 int i = ARRAY_SIZE(_exits);
281
282 while (i--)
283 _exits[i]();
284
285 /*
286 * Should be empty by this point.
287 */
288 idr_destroy(&_minor_idr);
289 }
290
291 /*
292 * Block device functions
293 */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 return test_bit(DMF_DELETING, &md->flags);
297 }
298
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 struct mapped_device *md;
302
303 spin_lock(&_minor_lock);
304
305 md = bdev->bd_disk->private_data;
306 if (!md)
307 goto out;
308
309 if (test_bit(DMF_FREEING, &md->flags) ||
310 dm_deleting_md(md)) {
311 md = NULL;
312 goto out;
313 }
314
315 dm_get(md);
316 atomic_inc(&md->open_count);
317 out:
318 spin_unlock(&_minor_lock);
319
320 return md ? 0 : -ENXIO;
321 }
322
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 struct mapped_device *md;
326
327 spin_lock(&_minor_lock);
328
329 md = disk->private_data;
330 if (WARN_ON(!md))
331 goto out;
332
333 if (atomic_dec_and_test(&md->open_count) &&
334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 queue_work(deferred_remove_workqueue, &deferred_remove_work);
336
337 dm_put(md);
338 out:
339 spin_unlock(&_minor_lock);
340 }
341
342 int dm_open_count(struct mapped_device *md)
343 {
344 return atomic_read(&md->open_count);
345 }
346
347 /*
348 * Guarantees nothing is using the device before it's deleted.
349 */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 int r = 0;
353
354 spin_lock(&_minor_lock);
355
356 if (dm_open_count(md)) {
357 r = -EBUSY;
358 if (mark_deferred)
359 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 r = -EEXIST;
362 else
363 set_bit(DMF_DELETING, &md->flags);
364
365 spin_unlock(&_minor_lock);
366
367 return r;
368 }
369
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 int r = 0;
373
374 spin_lock(&_minor_lock);
375
376 if (test_bit(DMF_DELETING, &md->flags))
377 r = -EBUSY;
378 else
379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380
381 spin_unlock(&_minor_lock);
382
383 return r;
384 }
385
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 dm_deferred_remove();
389 }
390
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 return get_capacity(md->disk);
394 }
395
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 return md->queue;
399 }
400
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 return &md->stats;
404 }
405
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 struct block_device **bdev,
415 fmode_t *mode)
416 {
417 struct dm_target *tgt;
418 struct dm_table *map;
419 int srcu_idx, r;
420
421 retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, &srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 goto out;
426
427 /* We only support devices that have a single target */
428 if (dm_table_get_num_targets(map) != 1)
429 goto out;
430
431 tgt = dm_table_get_target(map, 0);
432 if (!tgt->type->prepare_ioctl)
433 goto out;
434
435 if (dm_suspended_md(md)) {
436 r = -EAGAIN;
437 goto out;
438 }
439
440 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 if (r < 0)
442 goto out;
443
444 bdgrab(*bdev);
445 dm_put_live_table(md, srcu_idx);
446 return r;
447
448 out:
449 dm_put_live_table(md, srcu_idx);
450 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 msleep(10);
452 goto retry;
453 }
454 return r;
455 }
456
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 unsigned int cmd, unsigned long arg)
459 {
460 struct mapped_device *md = bdev->bd_disk->private_data;
461 int r;
462
463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 if (r < 0)
465 return r;
466
467 if (r > 0) {
468 /*
469 * Target determined this ioctl is being issued against a
470 * subset of the parent bdev; require extra privileges.
471 */
472 if (!capable(CAP_SYS_RAWIO)) {
473 DMWARN_LIMIT(
474 "%s: sending ioctl %x to DM device without required privilege.",
475 current->comm, cmd);
476 r = -ENOIOCTLCMD;
477 goto out;
478 }
479 }
480
481 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
482 out:
483 bdput(bdev);
484 return r;
485 }
486
487 static struct dm_io *alloc_io(struct mapped_device *md)
488 {
489 return mempool_alloc(md->io_pool, GFP_NOIO);
490 }
491
492 static void free_io(struct mapped_device *md, struct dm_io *io)
493 {
494 mempool_free(io, md->io_pool);
495 }
496
497 static void free_tio(struct dm_target_io *tio)
498 {
499 bio_put(&tio->clone);
500 }
501
502 int md_in_flight(struct mapped_device *md)
503 {
504 return atomic_read(&md->pending[READ]) +
505 atomic_read(&md->pending[WRITE]);
506 }
507
508 static void start_io_acct(struct dm_io *io)
509 {
510 struct mapped_device *md = io->md;
511 struct bio *bio = io->bio;
512 int cpu;
513 int rw = bio_data_dir(bio);
514
515 io->start_time = jiffies;
516
517 cpu = part_stat_lock();
518 part_round_stats(cpu, &dm_disk(md)->part0);
519 part_stat_unlock();
520 atomic_set(&dm_disk(md)->part0.in_flight[rw],
521 atomic_inc_return(&md->pending[rw]));
522
523 if (unlikely(dm_stats_used(&md->stats)))
524 dm_stats_account_io(&md->stats, bio_data_dir(bio),
525 bio->bi_iter.bi_sector, bio_sectors(bio),
526 false, 0, &io->stats_aux);
527 }
528
529 static void end_io_acct(struct dm_io *io)
530 {
531 struct mapped_device *md = io->md;
532 struct bio *bio = io->bio;
533 unsigned long duration = jiffies - io->start_time;
534 int pending;
535 int rw = bio_data_dir(bio);
536
537 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
538
539 if (unlikely(dm_stats_used(&md->stats)))
540 dm_stats_account_io(&md->stats, bio_data_dir(bio),
541 bio->bi_iter.bi_sector, bio_sectors(bio),
542 true, duration, &io->stats_aux);
543
544 /*
545 * After this is decremented the bio must not be touched if it is
546 * a flush.
547 */
548 pending = atomic_dec_return(&md->pending[rw]);
549 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
550 pending += atomic_read(&md->pending[rw^0x1]);
551
552 /* nudge anyone waiting on suspend queue */
553 if (!pending)
554 wake_up(&md->wait);
555 }
556
557 /*
558 * Add the bio to the list of deferred io.
559 */
560 static void queue_io(struct mapped_device *md, struct bio *bio)
561 {
562 unsigned long flags;
563
564 spin_lock_irqsave(&md->deferred_lock, flags);
565 bio_list_add(&md->deferred, bio);
566 spin_unlock_irqrestore(&md->deferred_lock, flags);
567 queue_work(md->wq, &md->work);
568 }
569
570 /*
571 * Everyone (including functions in this file), should use this
572 * function to access the md->map field, and make sure they call
573 * dm_put_live_table() when finished.
574 */
575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
576 {
577 *srcu_idx = srcu_read_lock(&md->io_barrier);
578
579 return srcu_dereference(md->map, &md->io_barrier);
580 }
581
582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
583 {
584 srcu_read_unlock(&md->io_barrier, srcu_idx);
585 }
586
587 void dm_sync_table(struct mapped_device *md)
588 {
589 synchronize_srcu(&md->io_barrier);
590 synchronize_rcu_expedited();
591 }
592
593 /*
594 * A fast alternative to dm_get_live_table/dm_put_live_table.
595 * The caller must not block between these two functions.
596 */
597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
598 {
599 rcu_read_lock();
600 return rcu_dereference(md->map);
601 }
602
603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
604 {
605 rcu_read_unlock();
606 }
607
608 /*
609 * Open a table device so we can use it as a map destination.
610 */
611 static int open_table_device(struct table_device *td, dev_t dev,
612 struct mapped_device *md)
613 {
614 static char *_claim_ptr = "I belong to device-mapper";
615 struct block_device *bdev;
616
617 int r;
618
619 BUG_ON(td->dm_dev.bdev);
620
621 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
622 if (IS_ERR(bdev))
623 return PTR_ERR(bdev);
624
625 r = bd_link_disk_holder(bdev, dm_disk(md));
626 if (r) {
627 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
628 return r;
629 }
630
631 td->dm_dev.bdev = bdev;
632 return 0;
633 }
634
635 /*
636 * Close a table device that we've been using.
637 */
638 static void close_table_device(struct table_device *td, struct mapped_device *md)
639 {
640 if (!td->dm_dev.bdev)
641 return;
642
643 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
644 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
645 td->dm_dev.bdev = NULL;
646 }
647
648 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
649 fmode_t mode) {
650 struct table_device *td;
651
652 list_for_each_entry(td, l, list)
653 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
654 return td;
655
656 return NULL;
657 }
658
659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
660 struct dm_dev **result) {
661 int r;
662 struct table_device *td;
663
664 mutex_lock(&md->table_devices_lock);
665 td = find_table_device(&md->table_devices, dev, mode);
666 if (!td) {
667 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
668 if (!td) {
669 mutex_unlock(&md->table_devices_lock);
670 return -ENOMEM;
671 }
672
673 td->dm_dev.mode = mode;
674 td->dm_dev.bdev = NULL;
675
676 if ((r = open_table_device(td, dev, md))) {
677 mutex_unlock(&md->table_devices_lock);
678 kfree(td);
679 return r;
680 }
681
682 format_dev_t(td->dm_dev.name, dev);
683
684 atomic_set(&td->count, 0);
685 list_add(&td->list, &md->table_devices);
686 }
687 atomic_inc(&td->count);
688 mutex_unlock(&md->table_devices_lock);
689
690 *result = &td->dm_dev;
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(dm_get_table_device);
694
695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
696 {
697 struct table_device *td = container_of(d, struct table_device, dm_dev);
698
699 mutex_lock(&md->table_devices_lock);
700 if (atomic_dec_and_test(&td->count)) {
701 close_table_device(td, md);
702 list_del(&td->list);
703 kfree(td);
704 }
705 mutex_unlock(&md->table_devices_lock);
706 }
707 EXPORT_SYMBOL(dm_put_table_device);
708
709 static void free_table_devices(struct list_head *devices)
710 {
711 struct list_head *tmp, *next;
712
713 list_for_each_safe(tmp, next, devices) {
714 struct table_device *td = list_entry(tmp, struct table_device, list);
715
716 DMWARN("dm_destroy: %s still exists with %d references",
717 td->dm_dev.name, atomic_read(&td->count));
718 kfree(td);
719 }
720 }
721
722 /*
723 * Get the geometry associated with a dm device
724 */
725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
726 {
727 *geo = md->geometry;
728
729 return 0;
730 }
731
732 /*
733 * Set the geometry of a device.
734 */
735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
736 {
737 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
738
739 if (geo->start > sz) {
740 DMWARN("Start sector is beyond the geometry limits.");
741 return -EINVAL;
742 }
743
744 md->geometry = *geo;
745
746 return 0;
747 }
748
749 /*-----------------------------------------------------------------
750 * CRUD START:
751 * A more elegant soln is in the works that uses the queue
752 * merge fn, unfortunately there are a couple of changes to
753 * the block layer that I want to make for this. So in the
754 * interests of getting something for people to use I give
755 * you this clearly demarcated crap.
756 *---------------------------------------------------------------*/
757
758 static int __noflush_suspending(struct mapped_device *md)
759 {
760 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
761 }
762
763 /*
764 * Decrements the number of outstanding ios that a bio has been
765 * cloned into, completing the original io if necc.
766 */
767 static void dec_pending(struct dm_io *io, int error)
768 {
769 unsigned long flags;
770 int io_error;
771 struct bio *bio;
772 struct mapped_device *md = io->md;
773
774 /* Push-back supersedes any I/O errors */
775 if (unlikely(error)) {
776 spin_lock_irqsave(&io->endio_lock, flags);
777 if (!(io->error > 0 && __noflush_suspending(md)))
778 io->error = error;
779 spin_unlock_irqrestore(&io->endio_lock, flags);
780 }
781
782 if (atomic_dec_and_test(&io->io_count)) {
783 if (io->error == DM_ENDIO_REQUEUE) {
784 /*
785 * Target requested pushing back the I/O.
786 */
787 spin_lock_irqsave(&md->deferred_lock, flags);
788 if (__noflush_suspending(md))
789 bio_list_add_head(&md->deferred, io->bio);
790 else
791 /* noflush suspend was interrupted. */
792 io->error = -EIO;
793 spin_unlock_irqrestore(&md->deferred_lock, flags);
794 }
795
796 io_error = io->error;
797 bio = io->bio;
798 end_io_acct(io);
799 free_io(md, io);
800
801 if (io_error == DM_ENDIO_REQUEUE)
802 return;
803
804 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 /*
806 * Preflush done for flush with data, reissue
807 * without REQ_PREFLUSH.
808 */
809 bio->bi_opf &= ~REQ_PREFLUSH;
810 queue_io(md, bio);
811 } else {
812 /* done with normal IO or empty flush */
813 trace_block_bio_complete(md->queue, bio, io_error);
814 bio->bi_error = io_error;
815 bio_endio(bio);
816 }
817 }
818 }
819
820 void disable_write_same(struct mapped_device *md)
821 {
822 struct queue_limits *limits = dm_get_queue_limits(md);
823
824 /* device doesn't really support WRITE SAME, disable it */
825 limits->max_write_same_sectors = 0;
826 }
827
828 static void clone_endio(struct bio *bio)
829 {
830 int error = bio->bi_error;
831 int r = error;
832 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
833 struct dm_io *io = tio->io;
834 struct mapped_device *md = tio->io->md;
835 dm_endio_fn endio = tio->ti->type->end_io;
836
837 if (endio) {
838 r = endio(tio->ti, bio, error);
839 if (r < 0 || r == DM_ENDIO_REQUEUE)
840 /*
841 * error and requeue request are handled
842 * in dec_pending().
843 */
844 error = r;
845 else if (r == DM_ENDIO_INCOMPLETE)
846 /* The target will handle the io */
847 return;
848 else if (r) {
849 DMWARN("unimplemented target endio return value: %d", r);
850 BUG();
851 }
852 }
853
854 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
855 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
856 disable_write_same(md);
857
858 free_tio(tio);
859 dec_pending(io, error);
860 }
861
862 /*
863 * Return maximum size of I/O possible at the supplied sector up to the current
864 * target boundary.
865 */
866 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
867 {
868 sector_t target_offset = dm_target_offset(ti, sector);
869
870 return ti->len - target_offset;
871 }
872
873 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
874 {
875 sector_t len = max_io_len_target_boundary(sector, ti);
876 sector_t offset, max_len;
877
878 /*
879 * Does the target need to split even further?
880 */
881 if (ti->max_io_len) {
882 offset = dm_target_offset(ti, sector);
883 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
884 max_len = sector_div(offset, ti->max_io_len);
885 else
886 max_len = offset & (ti->max_io_len - 1);
887 max_len = ti->max_io_len - max_len;
888
889 if (len > max_len)
890 len = max_len;
891 }
892
893 return len;
894 }
895
896 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
897 {
898 if (len > UINT_MAX) {
899 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
900 (unsigned long long)len, UINT_MAX);
901 ti->error = "Maximum size of target IO is too large";
902 return -EINVAL;
903 }
904
905 ti->max_io_len = (uint32_t) len;
906
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
910
911 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
912 void **kaddr, pfn_t *pfn, long size)
913 {
914 struct mapped_device *md = bdev->bd_disk->private_data;
915 struct dm_table *map;
916 struct dm_target *ti;
917 int srcu_idx;
918 long len, ret = -EIO;
919
920 map = dm_get_live_table(md, &srcu_idx);
921 if (!map)
922 goto out;
923
924 ti = dm_table_find_target(map, sector);
925 if (!dm_target_is_valid(ti))
926 goto out;
927
928 len = max_io_len(sector, ti) << SECTOR_SHIFT;
929 size = min(len, size);
930
931 if (ti->type->direct_access)
932 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
933 out:
934 dm_put_live_table(md, srcu_idx);
935 return min(ret, size);
936 }
937
938 /*
939 * A target may call dm_accept_partial_bio only from the map routine. It is
940 * allowed for all bio types except REQ_PREFLUSH.
941 *
942 * dm_accept_partial_bio informs the dm that the target only wants to process
943 * additional n_sectors sectors of the bio and the rest of the data should be
944 * sent in a next bio.
945 *
946 * A diagram that explains the arithmetics:
947 * +--------------------+---------------+-------+
948 * | 1 | 2 | 3 |
949 * +--------------------+---------------+-------+
950 *
951 * <-------------- *tio->len_ptr --------------->
952 * <------- bi_size ------->
953 * <-- n_sectors -->
954 *
955 * Region 1 was already iterated over with bio_advance or similar function.
956 * (it may be empty if the target doesn't use bio_advance)
957 * Region 2 is the remaining bio size that the target wants to process.
958 * (it may be empty if region 1 is non-empty, although there is no reason
959 * to make it empty)
960 * The target requires that region 3 is to be sent in the next bio.
961 *
962 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
963 * the partially processed part (the sum of regions 1+2) must be the same for all
964 * copies of the bio.
965 */
966 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
967 {
968 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
969 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
970 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
971 BUG_ON(bi_size > *tio->len_ptr);
972 BUG_ON(n_sectors > bi_size);
973 *tio->len_ptr -= bi_size - n_sectors;
974 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
975 }
976 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
977
978 /*
979 * Flush current->bio_list when the target map method blocks.
980 * This fixes deadlocks in snapshot and possibly in other targets.
981 */
982 struct dm_offload {
983 struct blk_plug plug;
984 struct blk_plug_cb cb;
985 };
986
987 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
988 {
989 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
990 struct bio_list list;
991 struct bio *bio;
992
993 INIT_LIST_HEAD(&o->cb.list);
994
995 if (unlikely(!current->bio_list))
996 return;
997
998 list = *current->bio_list;
999 bio_list_init(current->bio_list);
1000
1001 while ((bio = bio_list_pop(&list))) {
1002 struct bio_set *bs = bio->bi_pool;
1003 if (unlikely(!bs) || bs == fs_bio_set) {
1004 bio_list_add(current->bio_list, bio);
1005 continue;
1006 }
1007
1008 spin_lock(&bs->rescue_lock);
1009 bio_list_add(&bs->rescue_list, bio);
1010 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1011 spin_unlock(&bs->rescue_lock);
1012 }
1013 }
1014
1015 static void dm_offload_start(struct dm_offload *o)
1016 {
1017 blk_start_plug(&o->plug);
1018 o->cb.callback = flush_current_bio_list;
1019 list_add(&o->cb.list, &current->plug->cb_list);
1020 }
1021
1022 static void dm_offload_end(struct dm_offload *o)
1023 {
1024 list_del(&o->cb.list);
1025 blk_finish_plug(&o->plug);
1026 }
1027
1028 static void __map_bio(struct dm_target_io *tio)
1029 {
1030 int r;
1031 sector_t sector;
1032 struct dm_offload o;
1033 struct bio *clone = &tio->clone;
1034 struct dm_target *ti = tio->ti;
1035
1036 clone->bi_end_io = clone_endio;
1037
1038 /*
1039 * Map the clone. If r == 0 we don't need to do
1040 * anything, the target has assumed ownership of
1041 * this io.
1042 */
1043 atomic_inc(&tio->io->io_count);
1044 sector = clone->bi_iter.bi_sector;
1045
1046 dm_offload_start(&o);
1047 r = ti->type->map(ti, clone);
1048 dm_offload_end(&o);
1049
1050 if (r == DM_MAPIO_REMAPPED) {
1051 /* the bio has been remapped so dispatch it */
1052
1053 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1054 tio->io->bio->bi_bdev->bd_dev, sector);
1055
1056 generic_make_request(clone);
1057 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1058 /* error the io and bail out, or requeue it if needed */
1059 dec_pending(tio->io, r);
1060 free_tio(tio);
1061 } else if (r != DM_MAPIO_SUBMITTED) {
1062 DMWARN("unimplemented target map return value: %d", r);
1063 BUG();
1064 }
1065 }
1066
1067 struct clone_info {
1068 struct mapped_device *md;
1069 struct dm_table *map;
1070 struct bio *bio;
1071 struct dm_io *io;
1072 sector_t sector;
1073 unsigned sector_count;
1074 };
1075
1076 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077 {
1078 bio->bi_iter.bi_sector = sector;
1079 bio->bi_iter.bi_size = to_bytes(len);
1080 }
1081
1082 /*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1086 sector_t sector, unsigned len)
1087 {
1088 struct bio *clone = &tio->clone;
1089
1090 __bio_clone_fast(clone, bio);
1091
1092 if (bio_integrity(bio)) {
1093 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1094 if (r < 0)
1095 return r;
1096 }
1097
1098 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1099 clone->bi_iter.bi_size = to_bytes(len);
1100
1101 if (bio_integrity(bio))
1102 bio_integrity_trim(clone, 0, len);
1103
1104 return 0;
1105 }
1106
1107 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108 struct dm_target *ti,
1109 unsigned target_bio_nr)
1110 {
1111 struct dm_target_io *tio;
1112 struct bio *clone;
1113
1114 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1115 tio = container_of(clone, struct dm_target_io, clone);
1116
1117 tio->io = ci->io;
1118 tio->ti = ti;
1119 tio->target_bio_nr = target_bio_nr;
1120
1121 return tio;
1122 }
1123
1124 static void __clone_and_map_simple_bio(struct clone_info *ci,
1125 struct dm_target *ti,
1126 unsigned target_bio_nr, unsigned *len)
1127 {
1128 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1129 struct bio *clone = &tio->clone;
1130
1131 tio->len_ptr = len;
1132
1133 __bio_clone_fast(clone, ci->bio);
1134 if (len)
1135 bio_setup_sector(clone, ci->sector, *len);
1136
1137 __map_bio(tio);
1138 }
1139
1140 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1141 unsigned num_bios, unsigned *len)
1142 {
1143 unsigned target_bio_nr;
1144
1145 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1146 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1147 }
1148
1149 static int __send_empty_flush(struct clone_info *ci)
1150 {
1151 unsigned target_nr = 0;
1152 struct dm_target *ti;
1153
1154 BUG_ON(bio_has_data(ci->bio));
1155 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1156 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1157
1158 return 0;
1159 }
1160
1161 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1162 sector_t sector, unsigned *len)
1163 {
1164 struct bio *bio = ci->bio;
1165 struct dm_target_io *tio;
1166 unsigned target_bio_nr;
1167 unsigned num_target_bios = 1;
1168 int r = 0;
1169
1170 /*
1171 * Does the target want to receive duplicate copies of the bio?
1172 */
1173 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1174 num_target_bios = ti->num_write_bios(ti, bio);
1175
1176 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1177 tio = alloc_tio(ci, ti, target_bio_nr);
1178 tio->len_ptr = len;
1179 r = clone_bio(tio, bio, sector, *len);
1180 if (r < 0) {
1181 free_tio(tio);
1182 break;
1183 }
1184 __map_bio(tio);
1185 }
1186
1187 return r;
1188 }
1189
1190 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1191
1192 static unsigned get_num_discard_bios(struct dm_target *ti)
1193 {
1194 return ti->num_discard_bios;
1195 }
1196
1197 static unsigned get_num_write_same_bios(struct dm_target *ti)
1198 {
1199 return ti->num_write_same_bios;
1200 }
1201
1202 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1203
1204 static bool is_split_required_for_discard(struct dm_target *ti)
1205 {
1206 return ti->split_discard_bios;
1207 }
1208
1209 static int __send_changing_extent_only(struct clone_info *ci,
1210 get_num_bios_fn get_num_bios,
1211 is_split_required_fn is_split_required)
1212 {
1213 struct dm_target *ti;
1214 unsigned len;
1215 unsigned num_bios;
1216
1217 do {
1218 ti = dm_table_find_target(ci->map, ci->sector);
1219 if (!dm_target_is_valid(ti))
1220 return -EIO;
1221
1222 /*
1223 * Even though the device advertised support for this type of
1224 * request, that does not mean every target supports it, and
1225 * reconfiguration might also have changed that since the
1226 * check was performed.
1227 */
1228 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1229 if (!num_bios)
1230 return -EOPNOTSUPP;
1231
1232 if (is_split_required && !is_split_required(ti))
1233 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1234 else
1235 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1236
1237 __send_duplicate_bios(ci, ti, num_bios, &len);
1238
1239 ci->sector += len;
1240 } while (ci->sector_count -= len);
1241
1242 return 0;
1243 }
1244
1245 static int __send_discard(struct clone_info *ci)
1246 {
1247 return __send_changing_extent_only(ci, get_num_discard_bios,
1248 is_split_required_for_discard);
1249 }
1250
1251 static int __send_write_same(struct clone_info *ci)
1252 {
1253 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1254 }
1255
1256 /*
1257 * Select the correct strategy for processing a non-flush bio.
1258 */
1259 static int __split_and_process_non_flush(struct clone_info *ci)
1260 {
1261 struct bio *bio = ci->bio;
1262 struct dm_target *ti;
1263 unsigned len;
1264 int r;
1265
1266 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1267 return __send_discard(ci);
1268 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1269 return __send_write_same(ci);
1270
1271 ti = dm_table_find_target(ci->map, ci->sector);
1272 if (!dm_target_is_valid(ti))
1273 return -EIO;
1274
1275 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1276
1277 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1278 if (r < 0)
1279 return r;
1280
1281 ci->sector += len;
1282 ci->sector_count -= len;
1283
1284 return 0;
1285 }
1286
1287 /*
1288 * Entry point to split a bio into clones and submit them to the targets.
1289 */
1290 static void __split_and_process_bio(struct mapped_device *md,
1291 struct dm_table *map, struct bio *bio)
1292 {
1293 struct clone_info ci;
1294 int error = 0;
1295
1296 if (unlikely(!map)) {
1297 bio_io_error(bio);
1298 return;
1299 }
1300
1301 ci.map = map;
1302 ci.md = md;
1303 ci.io = alloc_io(md);
1304 ci.io->error = 0;
1305 atomic_set(&ci.io->io_count, 1);
1306 ci.io->bio = bio;
1307 ci.io->md = md;
1308 spin_lock_init(&ci.io->endio_lock);
1309 ci.sector = bio->bi_iter.bi_sector;
1310
1311 start_io_acct(ci.io);
1312
1313 if (bio->bi_opf & REQ_PREFLUSH) {
1314 ci.bio = &ci.md->flush_bio;
1315 ci.sector_count = 0;
1316 error = __send_empty_flush(&ci);
1317 /* dec_pending submits any data associated with flush */
1318 } else {
1319 ci.bio = bio;
1320 ci.sector_count = bio_sectors(bio);
1321 while (ci.sector_count && !error)
1322 error = __split_and_process_non_flush(&ci);
1323 }
1324
1325 /* drop the extra reference count */
1326 dec_pending(ci.io, error);
1327 }
1328 /*-----------------------------------------------------------------
1329 * CRUD END
1330 *---------------------------------------------------------------*/
1331
1332 /*
1333 * The request function that just remaps the bio built up by
1334 * dm_merge_bvec.
1335 */
1336 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1337 {
1338 int rw = bio_data_dir(bio);
1339 struct mapped_device *md = q->queuedata;
1340 int srcu_idx;
1341 struct dm_table *map;
1342
1343 map = dm_get_live_table(md, &srcu_idx);
1344
1345 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1346
1347 /* if we're suspended, we have to queue this io for later */
1348 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1349 dm_put_live_table(md, srcu_idx);
1350
1351 if (!(bio->bi_opf & REQ_RAHEAD))
1352 queue_io(md, bio);
1353 else
1354 bio_io_error(bio);
1355 return BLK_QC_T_NONE;
1356 }
1357
1358 __split_and_process_bio(md, map, bio);
1359 dm_put_live_table(md, srcu_idx);
1360 return BLK_QC_T_NONE;
1361 }
1362
1363 static int dm_any_congested(void *congested_data, int bdi_bits)
1364 {
1365 int r = bdi_bits;
1366 struct mapped_device *md = congested_data;
1367 struct dm_table *map;
1368
1369 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1370 if (dm_request_based(md)) {
1371 /*
1372 * With request-based DM we only need to check the
1373 * top-level queue for congestion.
1374 */
1375 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1376 } else {
1377 map = dm_get_live_table_fast(md);
1378 if (map)
1379 r = dm_table_any_congested(map, bdi_bits);
1380 dm_put_live_table_fast(md);
1381 }
1382 }
1383
1384 return r;
1385 }
1386
1387 /*-----------------------------------------------------------------
1388 * An IDR is used to keep track of allocated minor numbers.
1389 *---------------------------------------------------------------*/
1390 static void free_minor(int minor)
1391 {
1392 spin_lock(&_minor_lock);
1393 idr_remove(&_minor_idr, minor);
1394 spin_unlock(&_minor_lock);
1395 }
1396
1397 /*
1398 * See if the device with a specific minor # is free.
1399 */
1400 static int specific_minor(int minor)
1401 {
1402 int r;
1403
1404 if (minor >= (1 << MINORBITS))
1405 return -EINVAL;
1406
1407 idr_preload(GFP_KERNEL);
1408 spin_lock(&_minor_lock);
1409
1410 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1411
1412 spin_unlock(&_minor_lock);
1413 idr_preload_end();
1414 if (r < 0)
1415 return r == -ENOSPC ? -EBUSY : r;
1416 return 0;
1417 }
1418
1419 static int next_free_minor(int *minor)
1420 {
1421 int r;
1422
1423 idr_preload(GFP_KERNEL);
1424 spin_lock(&_minor_lock);
1425
1426 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1427
1428 spin_unlock(&_minor_lock);
1429 idr_preload_end();
1430 if (r < 0)
1431 return r;
1432 *minor = r;
1433 return 0;
1434 }
1435
1436 static const struct block_device_operations dm_blk_dops;
1437
1438 static void dm_wq_work(struct work_struct *work);
1439
1440 void dm_init_md_queue(struct mapped_device *md)
1441 {
1442 /*
1443 * Request-based dm devices cannot be stacked on top of bio-based dm
1444 * devices. The type of this dm device may not have been decided yet.
1445 * The type is decided at the first table loading time.
1446 * To prevent problematic device stacking, clear the queue flag
1447 * for request stacking support until then.
1448 *
1449 * This queue is new, so no concurrency on the queue_flags.
1450 */
1451 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1452
1453 /*
1454 * Initialize data that will only be used by a non-blk-mq DM queue
1455 * - must do so here (in alloc_dev callchain) before queue is used
1456 */
1457 md->queue->queuedata = md;
1458 md->queue->backing_dev_info->congested_data = md;
1459 }
1460
1461 void dm_init_normal_md_queue(struct mapped_device *md)
1462 {
1463 md->use_blk_mq = false;
1464 dm_init_md_queue(md);
1465
1466 /*
1467 * Initialize aspects of queue that aren't relevant for blk-mq
1468 */
1469 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1470 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1471 }
1472
1473 static void cleanup_mapped_device(struct mapped_device *md)
1474 {
1475 if (md->wq)
1476 destroy_workqueue(md->wq);
1477 if (md->kworker_task)
1478 kthread_stop(md->kworker_task);
1479 mempool_destroy(md->io_pool);
1480 if (md->bs)
1481 bioset_free(md->bs);
1482
1483 if (md->disk) {
1484 spin_lock(&_minor_lock);
1485 md->disk->private_data = NULL;
1486 spin_unlock(&_minor_lock);
1487 del_gendisk(md->disk);
1488 put_disk(md->disk);
1489 }
1490
1491 if (md->queue)
1492 blk_cleanup_queue(md->queue);
1493
1494 cleanup_srcu_struct(&md->io_barrier);
1495
1496 if (md->bdev) {
1497 bdput(md->bdev);
1498 md->bdev = NULL;
1499 }
1500
1501 dm_mq_cleanup_mapped_device(md);
1502 }
1503
1504 /*
1505 * Allocate and initialise a blank device with a given minor.
1506 */
1507 static struct mapped_device *alloc_dev(int minor)
1508 {
1509 int r, numa_node_id = dm_get_numa_node();
1510 struct mapped_device *md;
1511 void *old_md;
1512
1513 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1514 if (!md) {
1515 DMWARN("unable to allocate device, out of memory.");
1516 return NULL;
1517 }
1518
1519 if (!try_module_get(THIS_MODULE))
1520 goto bad_module_get;
1521
1522 /* get a minor number for the dev */
1523 if (minor == DM_ANY_MINOR)
1524 r = next_free_minor(&minor);
1525 else
1526 r = specific_minor(minor);
1527 if (r < 0)
1528 goto bad_minor;
1529
1530 r = init_srcu_struct(&md->io_barrier);
1531 if (r < 0)
1532 goto bad_io_barrier;
1533
1534 md->numa_node_id = numa_node_id;
1535 md->use_blk_mq = dm_use_blk_mq_default();
1536 md->init_tio_pdu = false;
1537 md->type = DM_TYPE_NONE;
1538 mutex_init(&md->suspend_lock);
1539 mutex_init(&md->type_lock);
1540 mutex_init(&md->table_devices_lock);
1541 spin_lock_init(&md->deferred_lock);
1542 atomic_set(&md->holders, 1);
1543 atomic_set(&md->open_count, 0);
1544 atomic_set(&md->event_nr, 0);
1545 atomic_set(&md->uevent_seq, 0);
1546 INIT_LIST_HEAD(&md->uevent_list);
1547 INIT_LIST_HEAD(&md->table_devices);
1548 spin_lock_init(&md->uevent_lock);
1549
1550 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1551 if (!md->queue)
1552 goto bad;
1553
1554 dm_init_md_queue(md);
1555
1556 md->disk = alloc_disk_node(1, numa_node_id);
1557 if (!md->disk)
1558 goto bad;
1559
1560 atomic_set(&md->pending[0], 0);
1561 atomic_set(&md->pending[1], 0);
1562 init_waitqueue_head(&md->wait);
1563 INIT_WORK(&md->work, dm_wq_work);
1564 init_waitqueue_head(&md->eventq);
1565 init_completion(&md->kobj_holder.completion);
1566 md->kworker_task = NULL;
1567
1568 md->disk->major = _major;
1569 md->disk->first_minor = minor;
1570 md->disk->fops = &dm_blk_dops;
1571 md->disk->queue = md->queue;
1572 md->disk->private_data = md;
1573 sprintf(md->disk->disk_name, "dm-%d", minor);
1574 add_disk(md->disk);
1575 format_dev_t(md->name, MKDEV(_major, minor));
1576
1577 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1578 if (!md->wq)
1579 goto bad;
1580
1581 md->bdev = bdget_disk(md->disk, 0);
1582 if (!md->bdev)
1583 goto bad;
1584
1585 bio_init(&md->flush_bio, NULL, 0);
1586 md->flush_bio.bi_bdev = md->bdev;
1587 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1588
1589 dm_stats_init(&md->stats);
1590
1591 /* Populate the mapping, nobody knows we exist yet */
1592 spin_lock(&_minor_lock);
1593 old_md = idr_replace(&_minor_idr, md, minor);
1594 spin_unlock(&_minor_lock);
1595
1596 BUG_ON(old_md != MINOR_ALLOCED);
1597
1598 return md;
1599
1600 bad:
1601 cleanup_mapped_device(md);
1602 bad_io_barrier:
1603 free_minor(minor);
1604 bad_minor:
1605 module_put(THIS_MODULE);
1606 bad_module_get:
1607 kfree(md);
1608 return NULL;
1609 }
1610
1611 static void unlock_fs(struct mapped_device *md);
1612
1613 static void free_dev(struct mapped_device *md)
1614 {
1615 int minor = MINOR(disk_devt(md->disk));
1616
1617 unlock_fs(md);
1618
1619 cleanup_mapped_device(md);
1620
1621 free_table_devices(&md->table_devices);
1622 dm_stats_cleanup(&md->stats);
1623 free_minor(minor);
1624
1625 module_put(THIS_MODULE);
1626 kfree(md);
1627 }
1628
1629 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1630 {
1631 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1632
1633 if (md->bs) {
1634 /* The md already has necessary mempools. */
1635 if (dm_table_bio_based(t)) {
1636 /*
1637 * Reload bioset because front_pad may have changed
1638 * because a different table was loaded.
1639 */
1640 bioset_free(md->bs);
1641 md->bs = p->bs;
1642 p->bs = NULL;
1643 }
1644 /*
1645 * There's no need to reload with request-based dm
1646 * because the size of front_pad doesn't change.
1647 * Note for future: If you are to reload bioset,
1648 * prep-ed requests in the queue may refer
1649 * to bio from the old bioset, so you must walk
1650 * through the queue to unprep.
1651 */
1652 goto out;
1653 }
1654
1655 BUG_ON(!p || md->io_pool || md->bs);
1656
1657 md->io_pool = p->io_pool;
1658 p->io_pool = NULL;
1659 md->bs = p->bs;
1660 p->bs = NULL;
1661
1662 out:
1663 /* mempool bind completed, no longer need any mempools in the table */
1664 dm_table_free_md_mempools(t);
1665 }
1666
1667 /*
1668 * Bind a table to the device.
1669 */
1670 static void event_callback(void *context)
1671 {
1672 unsigned long flags;
1673 LIST_HEAD(uevents);
1674 struct mapped_device *md = (struct mapped_device *) context;
1675
1676 spin_lock_irqsave(&md->uevent_lock, flags);
1677 list_splice_init(&md->uevent_list, &uevents);
1678 spin_unlock_irqrestore(&md->uevent_lock, flags);
1679
1680 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1681
1682 atomic_inc(&md->event_nr);
1683 wake_up(&md->eventq);
1684 }
1685
1686 /*
1687 * Protected by md->suspend_lock obtained by dm_swap_table().
1688 */
1689 static void __set_size(struct mapped_device *md, sector_t size)
1690 {
1691 set_capacity(md->disk, size);
1692
1693 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1694 }
1695
1696 /*
1697 * Returns old map, which caller must destroy.
1698 */
1699 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1700 struct queue_limits *limits)
1701 {
1702 struct dm_table *old_map;
1703 struct request_queue *q = md->queue;
1704 sector_t size;
1705
1706 lockdep_assert_held(&md->suspend_lock);
1707
1708 size = dm_table_get_size(t);
1709
1710 /*
1711 * Wipe any geometry if the size of the table changed.
1712 */
1713 if (size != dm_get_size(md))
1714 memset(&md->geometry, 0, sizeof(md->geometry));
1715
1716 __set_size(md, size);
1717
1718 dm_table_event_callback(t, event_callback, md);
1719
1720 /*
1721 * The queue hasn't been stopped yet, if the old table type wasn't
1722 * for request-based during suspension. So stop it to prevent
1723 * I/O mapping before resume.
1724 * This must be done before setting the queue restrictions,
1725 * because request-based dm may be run just after the setting.
1726 */
1727 if (dm_table_request_based(t)) {
1728 dm_stop_queue(q);
1729 /*
1730 * Leverage the fact that request-based DM targets are
1731 * immutable singletons and establish md->immutable_target
1732 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1733 */
1734 md->immutable_target = dm_table_get_immutable_target(t);
1735 }
1736
1737 __bind_mempools(md, t);
1738
1739 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1740 rcu_assign_pointer(md->map, (void *)t);
1741 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1742
1743 dm_table_set_restrictions(t, q, limits);
1744 if (old_map)
1745 dm_sync_table(md);
1746
1747 return old_map;
1748 }
1749
1750 /*
1751 * Returns unbound table for the caller to free.
1752 */
1753 static struct dm_table *__unbind(struct mapped_device *md)
1754 {
1755 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1756
1757 if (!map)
1758 return NULL;
1759
1760 dm_table_event_callback(map, NULL, NULL);
1761 RCU_INIT_POINTER(md->map, NULL);
1762 dm_sync_table(md);
1763
1764 return map;
1765 }
1766
1767 /*
1768 * Constructor for a new device.
1769 */
1770 int dm_create(int minor, struct mapped_device **result)
1771 {
1772 struct mapped_device *md;
1773
1774 md = alloc_dev(minor);
1775 if (!md)
1776 return -ENXIO;
1777
1778 dm_sysfs_init(md);
1779
1780 *result = md;
1781 return 0;
1782 }
1783
1784 /*
1785 * Functions to manage md->type.
1786 * All are required to hold md->type_lock.
1787 */
1788 void dm_lock_md_type(struct mapped_device *md)
1789 {
1790 mutex_lock(&md->type_lock);
1791 }
1792
1793 void dm_unlock_md_type(struct mapped_device *md)
1794 {
1795 mutex_unlock(&md->type_lock);
1796 }
1797
1798 void dm_set_md_type(struct mapped_device *md, unsigned type)
1799 {
1800 BUG_ON(!mutex_is_locked(&md->type_lock));
1801 md->type = type;
1802 }
1803
1804 unsigned dm_get_md_type(struct mapped_device *md)
1805 {
1806 return md->type;
1807 }
1808
1809 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1810 {
1811 return md->immutable_target_type;
1812 }
1813
1814 /*
1815 * The queue_limits are only valid as long as you have a reference
1816 * count on 'md'.
1817 */
1818 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1819 {
1820 BUG_ON(!atomic_read(&md->holders));
1821 return &md->queue->limits;
1822 }
1823 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1824
1825 /*
1826 * Setup the DM device's queue based on md's type
1827 */
1828 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1829 {
1830 int r;
1831 unsigned type = dm_get_md_type(md);
1832
1833 switch (type) {
1834 case DM_TYPE_REQUEST_BASED:
1835 r = dm_old_init_request_queue(md, t);
1836 if (r) {
1837 DMERR("Cannot initialize queue for request-based mapped device");
1838 return r;
1839 }
1840 break;
1841 case DM_TYPE_MQ_REQUEST_BASED:
1842 r = dm_mq_init_request_queue(md, t);
1843 if (r) {
1844 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1845 return r;
1846 }
1847 break;
1848 case DM_TYPE_BIO_BASED:
1849 case DM_TYPE_DAX_BIO_BASED:
1850 dm_init_normal_md_queue(md);
1851 blk_queue_make_request(md->queue, dm_make_request);
1852 /*
1853 * DM handles splitting bios as needed. Free the bio_split bioset
1854 * since it won't be used (saves 1 process per bio-based DM device).
1855 */
1856 bioset_free(md->queue->bio_split);
1857 md->queue->bio_split = NULL;
1858
1859 if (type == DM_TYPE_DAX_BIO_BASED)
1860 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1861 break;
1862 }
1863
1864 return 0;
1865 }
1866
1867 struct mapped_device *dm_get_md(dev_t dev)
1868 {
1869 struct mapped_device *md;
1870 unsigned minor = MINOR(dev);
1871
1872 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1873 return NULL;
1874
1875 spin_lock(&_minor_lock);
1876
1877 md = idr_find(&_minor_idr, minor);
1878 if (md) {
1879 if ((md == MINOR_ALLOCED ||
1880 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1881 dm_deleting_md(md) ||
1882 test_bit(DMF_FREEING, &md->flags))) {
1883 md = NULL;
1884 goto out;
1885 }
1886 dm_get(md);
1887 }
1888
1889 out:
1890 spin_unlock(&_minor_lock);
1891
1892 return md;
1893 }
1894 EXPORT_SYMBOL_GPL(dm_get_md);
1895
1896 void *dm_get_mdptr(struct mapped_device *md)
1897 {
1898 return md->interface_ptr;
1899 }
1900
1901 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1902 {
1903 md->interface_ptr = ptr;
1904 }
1905
1906 void dm_get(struct mapped_device *md)
1907 {
1908 atomic_inc(&md->holders);
1909 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1910 }
1911
1912 int dm_hold(struct mapped_device *md)
1913 {
1914 spin_lock(&_minor_lock);
1915 if (test_bit(DMF_FREEING, &md->flags)) {
1916 spin_unlock(&_minor_lock);
1917 return -EBUSY;
1918 }
1919 dm_get(md);
1920 spin_unlock(&_minor_lock);
1921 return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(dm_hold);
1924
1925 const char *dm_device_name(struct mapped_device *md)
1926 {
1927 return md->name;
1928 }
1929 EXPORT_SYMBOL_GPL(dm_device_name);
1930
1931 static void __dm_destroy(struct mapped_device *md, bool wait)
1932 {
1933 struct request_queue *q = dm_get_md_queue(md);
1934 struct dm_table *map;
1935 int srcu_idx;
1936
1937 might_sleep();
1938
1939 spin_lock(&_minor_lock);
1940 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1941 set_bit(DMF_FREEING, &md->flags);
1942 spin_unlock(&_minor_lock);
1943
1944 blk_set_queue_dying(q);
1945
1946 if (dm_request_based(md) && md->kworker_task)
1947 kthread_flush_worker(&md->kworker);
1948
1949 /*
1950 * Take suspend_lock so that presuspend and postsuspend methods
1951 * do not race with internal suspend.
1952 */
1953 mutex_lock(&md->suspend_lock);
1954 map = dm_get_live_table(md, &srcu_idx);
1955 if (!dm_suspended_md(md)) {
1956 dm_table_presuspend_targets(map);
1957 dm_table_postsuspend_targets(map);
1958 }
1959 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1960 dm_put_live_table(md, srcu_idx);
1961 mutex_unlock(&md->suspend_lock);
1962
1963 /*
1964 * Rare, but there may be I/O requests still going to complete,
1965 * for example. Wait for all references to disappear.
1966 * No one should increment the reference count of the mapped_device,
1967 * after the mapped_device state becomes DMF_FREEING.
1968 */
1969 if (wait)
1970 while (atomic_read(&md->holders))
1971 msleep(1);
1972 else if (atomic_read(&md->holders))
1973 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1974 dm_device_name(md), atomic_read(&md->holders));
1975
1976 dm_sysfs_exit(md);
1977 dm_table_destroy(__unbind(md));
1978 free_dev(md);
1979 }
1980
1981 void dm_destroy(struct mapped_device *md)
1982 {
1983 __dm_destroy(md, true);
1984 }
1985
1986 void dm_destroy_immediate(struct mapped_device *md)
1987 {
1988 __dm_destroy(md, false);
1989 }
1990
1991 void dm_put(struct mapped_device *md)
1992 {
1993 atomic_dec(&md->holders);
1994 }
1995 EXPORT_SYMBOL_GPL(dm_put);
1996
1997 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
1998 {
1999 int r = 0;
2000 DEFINE_WAIT(wait);
2001
2002 while (1) {
2003 prepare_to_wait(&md->wait, &wait, task_state);
2004
2005 if (!md_in_flight(md))
2006 break;
2007
2008 if (signal_pending_state(task_state, current)) {
2009 r = -EINTR;
2010 break;
2011 }
2012
2013 io_schedule();
2014 }
2015 finish_wait(&md->wait, &wait);
2016
2017 return r;
2018 }
2019
2020 /*
2021 * Process the deferred bios
2022 */
2023 static void dm_wq_work(struct work_struct *work)
2024 {
2025 struct mapped_device *md = container_of(work, struct mapped_device,
2026 work);
2027 struct bio *c;
2028 int srcu_idx;
2029 struct dm_table *map;
2030
2031 map = dm_get_live_table(md, &srcu_idx);
2032
2033 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2034 spin_lock_irq(&md->deferred_lock);
2035 c = bio_list_pop(&md->deferred);
2036 spin_unlock_irq(&md->deferred_lock);
2037
2038 if (!c)
2039 break;
2040
2041 if (dm_request_based(md))
2042 generic_make_request(c);
2043 else
2044 __split_and_process_bio(md, map, c);
2045 }
2046
2047 dm_put_live_table(md, srcu_idx);
2048 }
2049
2050 static void dm_queue_flush(struct mapped_device *md)
2051 {
2052 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2053 smp_mb__after_atomic();
2054 queue_work(md->wq, &md->work);
2055 }
2056
2057 /*
2058 * Swap in a new table, returning the old one for the caller to destroy.
2059 */
2060 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2061 {
2062 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2063 struct queue_limits limits;
2064 int r;
2065
2066 mutex_lock(&md->suspend_lock);
2067
2068 /* device must be suspended */
2069 if (!dm_suspended_md(md))
2070 goto out;
2071
2072 /*
2073 * If the new table has no data devices, retain the existing limits.
2074 * This helps multipath with queue_if_no_path if all paths disappear,
2075 * then new I/O is queued based on these limits, and then some paths
2076 * reappear.
2077 */
2078 if (dm_table_has_no_data_devices(table)) {
2079 live_map = dm_get_live_table_fast(md);
2080 if (live_map)
2081 limits = md->queue->limits;
2082 dm_put_live_table_fast(md);
2083 }
2084
2085 if (!live_map) {
2086 r = dm_calculate_queue_limits(table, &limits);
2087 if (r) {
2088 map = ERR_PTR(r);
2089 goto out;
2090 }
2091 }
2092
2093 map = __bind(md, table, &limits);
2094
2095 out:
2096 mutex_unlock(&md->suspend_lock);
2097 return map;
2098 }
2099
2100 /*
2101 * Functions to lock and unlock any filesystem running on the
2102 * device.
2103 */
2104 static int lock_fs(struct mapped_device *md)
2105 {
2106 int r;
2107
2108 WARN_ON(md->frozen_sb);
2109
2110 md->frozen_sb = freeze_bdev(md->bdev);
2111 if (IS_ERR(md->frozen_sb)) {
2112 r = PTR_ERR(md->frozen_sb);
2113 md->frozen_sb = NULL;
2114 return r;
2115 }
2116
2117 set_bit(DMF_FROZEN, &md->flags);
2118
2119 return 0;
2120 }
2121
2122 static void unlock_fs(struct mapped_device *md)
2123 {
2124 if (!test_bit(DMF_FROZEN, &md->flags))
2125 return;
2126
2127 thaw_bdev(md->bdev, md->frozen_sb);
2128 md->frozen_sb = NULL;
2129 clear_bit(DMF_FROZEN, &md->flags);
2130 }
2131
2132 /*
2133 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2134 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2135 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2136 *
2137 * If __dm_suspend returns 0, the device is completely quiescent
2138 * now. There is no request-processing activity. All new requests
2139 * are being added to md->deferred list.
2140 *
2141 * Caller must hold md->suspend_lock
2142 */
2143 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2144 unsigned suspend_flags, long task_state,
2145 int dmf_suspended_flag)
2146 {
2147 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2148 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2149 int r;
2150
2151 lockdep_assert_held(&md->suspend_lock);
2152
2153 /*
2154 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2155 * This flag is cleared before dm_suspend returns.
2156 */
2157 if (noflush)
2158 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2159
2160 /*
2161 * This gets reverted if there's an error later and the targets
2162 * provide the .presuspend_undo hook.
2163 */
2164 dm_table_presuspend_targets(map);
2165
2166 /*
2167 * Flush I/O to the device.
2168 * Any I/O submitted after lock_fs() may not be flushed.
2169 * noflush takes precedence over do_lockfs.
2170 * (lock_fs() flushes I/Os and waits for them to complete.)
2171 */
2172 if (!noflush && do_lockfs) {
2173 r = lock_fs(md);
2174 if (r) {
2175 dm_table_presuspend_undo_targets(map);
2176 return r;
2177 }
2178 }
2179
2180 /*
2181 * Here we must make sure that no processes are submitting requests
2182 * to target drivers i.e. no one may be executing
2183 * __split_and_process_bio. This is called from dm_request and
2184 * dm_wq_work.
2185 *
2186 * To get all processes out of __split_and_process_bio in dm_request,
2187 * we take the write lock. To prevent any process from reentering
2188 * __split_and_process_bio from dm_request and quiesce the thread
2189 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2190 * flush_workqueue(md->wq).
2191 */
2192 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2193 if (map)
2194 synchronize_srcu(&md->io_barrier);
2195
2196 /*
2197 * Stop md->queue before flushing md->wq in case request-based
2198 * dm defers requests to md->wq from md->queue.
2199 */
2200 if (dm_request_based(md)) {
2201 dm_stop_queue(md->queue);
2202 if (md->kworker_task)
2203 kthread_flush_worker(&md->kworker);
2204 }
2205
2206 flush_workqueue(md->wq);
2207
2208 /*
2209 * At this point no more requests are entering target request routines.
2210 * We call dm_wait_for_completion to wait for all existing requests
2211 * to finish.
2212 */
2213 r = dm_wait_for_completion(md, task_state);
2214 if (!r)
2215 set_bit(dmf_suspended_flag, &md->flags);
2216
2217 if (noflush)
2218 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2219 if (map)
2220 synchronize_srcu(&md->io_barrier);
2221
2222 /* were we interrupted ? */
2223 if (r < 0) {
2224 dm_queue_flush(md);
2225
2226 if (dm_request_based(md))
2227 dm_start_queue(md->queue);
2228
2229 unlock_fs(md);
2230 dm_table_presuspend_undo_targets(map);
2231 /* pushback list is already flushed, so skip flush */
2232 }
2233
2234 return r;
2235 }
2236
2237 /*
2238 * We need to be able to change a mapping table under a mounted
2239 * filesystem. For example we might want to move some data in
2240 * the background. Before the table can be swapped with
2241 * dm_bind_table, dm_suspend must be called to flush any in
2242 * flight bios and ensure that any further io gets deferred.
2243 */
2244 /*
2245 * Suspend mechanism in request-based dm.
2246 *
2247 * 1. Flush all I/Os by lock_fs() if needed.
2248 * 2. Stop dispatching any I/O by stopping the request_queue.
2249 * 3. Wait for all in-flight I/Os to be completed or requeued.
2250 *
2251 * To abort suspend, start the request_queue.
2252 */
2253 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2254 {
2255 struct dm_table *map = NULL;
2256 int r = 0;
2257
2258 retry:
2259 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2260
2261 if (dm_suspended_md(md)) {
2262 r = -EINVAL;
2263 goto out_unlock;
2264 }
2265
2266 if (dm_suspended_internally_md(md)) {
2267 /* already internally suspended, wait for internal resume */
2268 mutex_unlock(&md->suspend_lock);
2269 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2270 if (r)
2271 return r;
2272 goto retry;
2273 }
2274
2275 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2276
2277 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2278 if (r)
2279 goto out_unlock;
2280
2281 dm_table_postsuspend_targets(map);
2282
2283 out_unlock:
2284 mutex_unlock(&md->suspend_lock);
2285 return r;
2286 }
2287
2288 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2289 {
2290 if (map) {
2291 int r = dm_table_resume_targets(map);
2292 if (r)
2293 return r;
2294 }
2295
2296 dm_queue_flush(md);
2297
2298 /*
2299 * Flushing deferred I/Os must be done after targets are resumed
2300 * so that mapping of targets can work correctly.
2301 * Request-based dm is queueing the deferred I/Os in its request_queue.
2302 */
2303 if (dm_request_based(md))
2304 dm_start_queue(md->queue);
2305
2306 unlock_fs(md);
2307
2308 return 0;
2309 }
2310
2311 int dm_resume(struct mapped_device *md)
2312 {
2313 int r;
2314 struct dm_table *map = NULL;
2315
2316 retry:
2317 r = -EINVAL;
2318 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2319
2320 if (!dm_suspended_md(md))
2321 goto out;
2322
2323 if (dm_suspended_internally_md(md)) {
2324 /* already internally suspended, wait for internal resume */
2325 mutex_unlock(&md->suspend_lock);
2326 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2327 if (r)
2328 return r;
2329 goto retry;
2330 }
2331
2332 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2333 if (!map || !dm_table_get_size(map))
2334 goto out;
2335
2336 r = __dm_resume(md, map);
2337 if (r)
2338 goto out;
2339
2340 clear_bit(DMF_SUSPENDED, &md->flags);
2341 out:
2342 mutex_unlock(&md->suspend_lock);
2343
2344 return r;
2345 }
2346
2347 /*
2348 * Internal suspend/resume works like userspace-driven suspend. It waits
2349 * until all bios finish and prevents issuing new bios to the target drivers.
2350 * It may be used only from the kernel.
2351 */
2352
2353 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2354 {
2355 struct dm_table *map = NULL;
2356
2357 if (md->internal_suspend_count++)
2358 return; /* nested internal suspend */
2359
2360 if (dm_suspended_md(md)) {
2361 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2362 return; /* nest suspend */
2363 }
2364
2365 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2366
2367 /*
2368 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2369 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2370 * would require changing .presuspend to return an error -- avoid this
2371 * until there is a need for more elaborate variants of internal suspend.
2372 */
2373 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2374 DMF_SUSPENDED_INTERNALLY);
2375
2376 dm_table_postsuspend_targets(map);
2377 }
2378
2379 static void __dm_internal_resume(struct mapped_device *md)
2380 {
2381 BUG_ON(!md->internal_suspend_count);
2382
2383 if (--md->internal_suspend_count)
2384 return; /* resume from nested internal suspend */
2385
2386 if (dm_suspended_md(md))
2387 goto done; /* resume from nested suspend */
2388
2389 /*
2390 * NOTE: existing callers don't need to call dm_table_resume_targets
2391 * (which may fail -- so best to avoid it for now by passing NULL map)
2392 */
2393 (void) __dm_resume(md, NULL);
2394
2395 done:
2396 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2397 smp_mb__after_atomic();
2398 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2399 }
2400
2401 void dm_internal_suspend_noflush(struct mapped_device *md)
2402 {
2403 mutex_lock(&md->suspend_lock);
2404 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2405 mutex_unlock(&md->suspend_lock);
2406 }
2407 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2408
2409 void dm_internal_resume(struct mapped_device *md)
2410 {
2411 mutex_lock(&md->suspend_lock);
2412 __dm_internal_resume(md);
2413 mutex_unlock(&md->suspend_lock);
2414 }
2415 EXPORT_SYMBOL_GPL(dm_internal_resume);
2416
2417 /*
2418 * Fast variants of internal suspend/resume hold md->suspend_lock,
2419 * which prevents interaction with userspace-driven suspend.
2420 */
2421
2422 void dm_internal_suspend_fast(struct mapped_device *md)
2423 {
2424 mutex_lock(&md->suspend_lock);
2425 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2426 return;
2427
2428 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2429 synchronize_srcu(&md->io_barrier);
2430 flush_workqueue(md->wq);
2431 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2432 }
2433 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2434
2435 void dm_internal_resume_fast(struct mapped_device *md)
2436 {
2437 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2438 goto done;
2439
2440 dm_queue_flush(md);
2441
2442 done:
2443 mutex_unlock(&md->suspend_lock);
2444 }
2445 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2446
2447 /*-----------------------------------------------------------------
2448 * Event notification.
2449 *---------------------------------------------------------------*/
2450 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2451 unsigned cookie)
2452 {
2453 char udev_cookie[DM_COOKIE_LENGTH];
2454 char *envp[] = { udev_cookie, NULL };
2455
2456 if (!cookie)
2457 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2458 else {
2459 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2460 DM_COOKIE_ENV_VAR_NAME, cookie);
2461 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2462 action, envp);
2463 }
2464 }
2465
2466 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2467 {
2468 return atomic_add_return(1, &md->uevent_seq);
2469 }
2470
2471 uint32_t dm_get_event_nr(struct mapped_device *md)
2472 {
2473 return atomic_read(&md->event_nr);
2474 }
2475
2476 int dm_wait_event(struct mapped_device *md, int event_nr)
2477 {
2478 return wait_event_interruptible(md->eventq,
2479 (event_nr != atomic_read(&md->event_nr)));
2480 }
2481
2482 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2483 {
2484 unsigned long flags;
2485
2486 spin_lock_irqsave(&md->uevent_lock, flags);
2487 list_add(elist, &md->uevent_list);
2488 spin_unlock_irqrestore(&md->uevent_lock, flags);
2489 }
2490
2491 /*
2492 * The gendisk is only valid as long as you have a reference
2493 * count on 'md'.
2494 */
2495 struct gendisk *dm_disk(struct mapped_device *md)
2496 {
2497 return md->disk;
2498 }
2499 EXPORT_SYMBOL_GPL(dm_disk);
2500
2501 struct kobject *dm_kobject(struct mapped_device *md)
2502 {
2503 return &md->kobj_holder.kobj;
2504 }
2505
2506 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2507 {
2508 struct mapped_device *md;
2509
2510 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2511
2512 if (test_bit(DMF_FREEING, &md->flags) ||
2513 dm_deleting_md(md))
2514 return NULL;
2515
2516 dm_get(md);
2517 return md;
2518 }
2519
2520 int dm_suspended_md(struct mapped_device *md)
2521 {
2522 return test_bit(DMF_SUSPENDED, &md->flags);
2523 }
2524
2525 int dm_suspended_internally_md(struct mapped_device *md)
2526 {
2527 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2528 }
2529
2530 int dm_test_deferred_remove_flag(struct mapped_device *md)
2531 {
2532 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2533 }
2534
2535 int dm_suspended(struct dm_target *ti)
2536 {
2537 return dm_suspended_md(dm_table_get_md(ti->table));
2538 }
2539 EXPORT_SYMBOL_GPL(dm_suspended);
2540
2541 int dm_noflush_suspending(struct dm_target *ti)
2542 {
2543 return __noflush_suspending(dm_table_get_md(ti->table));
2544 }
2545 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2546
2547 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2548 unsigned integrity, unsigned per_io_data_size)
2549 {
2550 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2551 unsigned int pool_size = 0;
2552 unsigned int front_pad;
2553
2554 if (!pools)
2555 return NULL;
2556
2557 switch (type) {
2558 case DM_TYPE_BIO_BASED:
2559 case DM_TYPE_DAX_BIO_BASED:
2560 pool_size = dm_get_reserved_bio_based_ios();
2561 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2562
2563 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2564 if (!pools->io_pool)
2565 goto out;
2566 break;
2567 case DM_TYPE_REQUEST_BASED:
2568 case DM_TYPE_MQ_REQUEST_BASED:
2569 pool_size = dm_get_reserved_rq_based_ios();
2570 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2571 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2572 break;
2573 default:
2574 BUG();
2575 }
2576
2577 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2578 if (!pools->bs)
2579 goto out;
2580
2581 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2582 goto out;
2583
2584 return pools;
2585
2586 out:
2587 dm_free_md_mempools(pools);
2588
2589 return NULL;
2590 }
2591
2592 void dm_free_md_mempools(struct dm_md_mempools *pools)
2593 {
2594 if (!pools)
2595 return;
2596
2597 mempool_destroy(pools->io_pool);
2598
2599 if (pools->bs)
2600 bioset_free(pools->bs);
2601
2602 kfree(pools);
2603 }
2604
2605 struct dm_pr {
2606 u64 old_key;
2607 u64 new_key;
2608 u32 flags;
2609 bool fail_early;
2610 };
2611
2612 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2613 void *data)
2614 {
2615 struct mapped_device *md = bdev->bd_disk->private_data;
2616 struct dm_table *table;
2617 struct dm_target *ti;
2618 int ret = -ENOTTY, srcu_idx;
2619
2620 table = dm_get_live_table(md, &srcu_idx);
2621 if (!table || !dm_table_get_size(table))
2622 goto out;
2623
2624 /* We only support devices that have a single target */
2625 if (dm_table_get_num_targets(table) != 1)
2626 goto out;
2627 ti = dm_table_get_target(table, 0);
2628
2629 ret = -EINVAL;
2630 if (!ti->type->iterate_devices)
2631 goto out;
2632
2633 ret = ti->type->iterate_devices(ti, fn, data);
2634 out:
2635 dm_put_live_table(md, srcu_idx);
2636 return ret;
2637 }
2638
2639 /*
2640 * For register / unregister we need to manually call out to every path.
2641 */
2642 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2643 sector_t start, sector_t len, void *data)
2644 {
2645 struct dm_pr *pr = data;
2646 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2647
2648 if (!ops || !ops->pr_register)
2649 return -EOPNOTSUPP;
2650 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2651 }
2652
2653 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2654 u32 flags)
2655 {
2656 struct dm_pr pr = {
2657 .old_key = old_key,
2658 .new_key = new_key,
2659 .flags = flags,
2660 .fail_early = true,
2661 };
2662 int ret;
2663
2664 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2665 if (ret && new_key) {
2666 /* unregister all paths if we failed to register any path */
2667 pr.old_key = new_key;
2668 pr.new_key = 0;
2669 pr.flags = 0;
2670 pr.fail_early = false;
2671 dm_call_pr(bdev, __dm_pr_register, &pr);
2672 }
2673
2674 return ret;
2675 }
2676
2677 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2678 u32 flags)
2679 {
2680 struct mapped_device *md = bdev->bd_disk->private_data;
2681 const struct pr_ops *ops;
2682 fmode_t mode;
2683 int r;
2684
2685 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2686 if (r < 0)
2687 return r;
2688
2689 ops = bdev->bd_disk->fops->pr_ops;
2690 if (ops && ops->pr_reserve)
2691 r = ops->pr_reserve(bdev, key, type, flags);
2692 else
2693 r = -EOPNOTSUPP;
2694
2695 bdput(bdev);
2696 return r;
2697 }
2698
2699 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2700 {
2701 struct mapped_device *md = bdev->bd_disk->private_data;
2702 const struct pr_ops *ops;
2703 fmode_t mode;
2704 int r;
2705
2706 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2707 if (r < 0)
2708 return r;
2709
2710 ops = bdev->bd_disk->fops->pr_ops;
2711 if (ops && ops->pr_release)
2712 r = ops->pr_release(bdev, key, type);
2713 else
2714 r = -EOPNOTSUPP;
2715
2716 bdput(bdev);
2717 return r;
2718 }
2719
2720 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2721 enum pr_type type, bool abort)
2722 {
2723 struct mapped_device *md = bdev->bd_disk->private_data;
2724 const struct pr_ops *ops;
2725 fmode_t mode;
2726 int r;
2727
2728 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2729 if (r < 0)
2730 return r;
2731
2732 ops = bdev->bd_disk->fops->pr_ops;
2733 if (ops && ops->pr_preempt)
2734 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2735 else
2736 r = -EOPNOTSUPP;
2737
2738 bdput(bdev);
2739 return r;
2740 }
2741
2742 static int dm_pr_clear(struct block_device *bdev, u64 key)
2743 {
2744 struct mapped_device *md = bdev->bd_disk->private_data;
2745 const struct pr_ops *ops;
2746 fmode_t mode;
2747 int r;
2748
2749 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2750 if (r < 0)
2751 return r;
2752
2753 ops = bdev->bd_disk->fops->pr_ops;
2754 if (ops && ops->pr_clear)
2755 r = ops->pr_clear(bdev, key);
2756 else
2757 r = -EOPNOTSUPP;
2758
2759 bdput(bdev);
2760 return r;
2761 }
2762
2763 static const struct pr_ops dm_pr_ops = {
2764 .pr_register = dm_pr_register,
2765 .pr_reserve = dm_pr_reserve,
2766 .pr_release = dm_pr_release,
2767 .pr_preempt = dm_pr_preempt,
2768 .pr_clear = dm_pr_clear,
2769 };
2770
2771 static const struct block_device_operations dm_blk_dops = {
2772 .open = dm_blk_open,
2773 .release = dm_blk_close,
2774 .ioctl = dm_blk_ioctl,
2775 .direct_access = dm_blk_direct_access,
2776 .getgeo = dm_blk_getgeo,
2777 .pr_ops = &dm_pr_ops,
2778 .owner = THIS_MODULE
2779 };
2780
2781 /*
2782 * module hooks
2783 */
2784 module_init(dm_init);
2785 module_exit(dm_exit);
2786
2787 module_param(major, uint, 0);
2788 MODULE_PARM_DESC(major, "The major number of the device mapper");
2789
2790 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2791 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2792
2793 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2794 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2795
2796 MODULE_DESCRIPTION(DM_NAME " driver");
2797 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2798 MODULE_LICENSE("GPL");