]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 /*
75 * Work processed by per-device workqueue.
76 */
77 struct dm_wq_req {
78 enum {
79 DM_WQ_FLUSH_DEFERRED,
80 } type;
81 struct work_struct work;
82 struct mapped_device *md;
83 void *context;
84 };
85
86 struct mapped_device {
87 struct rw_semaphore io_lock;
88 struct mutex suspend_lock;
89 spinlock_t pushback_lock;
90 rwlock_t map_lock;
91 atomic_t holders;
92 atomic_t open_count;
93
94 unsigned long flags;
95
96 struct request_queue *queue;
97 struct gendisk *disk;
98 char name[16];
99
100 void *interface_ptr;
101
102 /*
103 * A list of ios that arrived while we were suspended.
104 */
105 atomic_t pending;
106 wait_queue_head_t wait;
107 struct bio_list deferred;
108 struct bio_list pushback;
109
110 /*
111 * Processing queue (flush/barriers)
112 */
113 struct workqueue_struct *wq;
114
115 /*
116 * The current mapping.
117 */
118 struct dm_table *map;
119
120 /*
121 * io objects are allocated from here.
122 */
123 mempool_t *io_pool;
124 mempool_t *tio_pool;
125
126 struct bio_set *bs;
127
128 /*
129 * Event handling.
130 */
131 atomic_t event_nr;
132 wait_queue_head_t eventq;
133 atomic_t uevent_seq;
134 struct list_head uevent_list;
135 spinlock_t uevent_lock; /* Protect access to uevent_list */
136
137 /*
138 * freeze/thaw support require holding onto a super block
139 */
140 struct super_block *frozen_sb;
141 struct block_device *suspended_bdev;
142
143 /* forced geometry settings */
144 struct hd_geometry geometry;
145 };
146
147 #define MIN_IOS 256
148 static struct kmem_cache *_io_cache;
149 static struct kmem_cache *_tio_cache;
150
151 static int __init local_init(void)
152 {
153 int r = -ENOMEM;
154
155 /* allocate a slab for the dm_ios */
156 _io_cache = KMEM_CACHE(dm_io, 0);
157 if (!_io_cache)
158 return r;
159
160 /* allocate a slab for the target ios */
161 _tio_cache = KMEM_CACHE(dm_target_io, 0);
162 if (!_tio_cache)
163 goto out_free_io_cache;
164
165 r = dm_uevent_init();
166 if (r)
167 goto out_free_tio_cache;
168
169 _major = major;
170 r = register_blkdev(_major, _name);
171 if (r < 0)
172 goto out_uevent_exit;
173
174 if (!_major)
175 _major = r;
176
177 return 0;
178
179 out_uevent_exit:
180 dm_uevent_exit();
181 out_free_tio_cache:
182 kmem_cache_destroy(_tio_cache);
183 out_free_io_cache:
184 kmem_cache_destroy(_io_cache);
185
186 return r;
187 }
188
189 static void local_exit(void)
190 {
191 kmem_cache_destroy(_tio_cache);
192 kmem_cache_destroy(_io_cache);
193 unregister_blkdev(_major, _name);
194 dm_uevent_exit();
195
196 _major = 0;
197
198 DMINFO("cleaned up");
199 }
200
201 static int (*_inits[])(void) __initdata = {
202 local_init,
203 dm_target_init,
204 dm_linear_init,
205 dm_stripe_init,
206 dm_kcopyd_init,
207 dm_interface_init,
208 };
209
210 static void (*_exits[])(void) = {
211 local_exit,
212 dm_target_exit,
213 dm_linear_exit,
214 dm_stripe_exit,
215 dm_kcopyd_exit,
216 dm_interface_exit,
217 };
218
219 static int __init dm_init(void)
220 {
221 const int count = ARRAY_SIZE(_inits);
222
223 int r, i;
224
225 for (i = 0; i < count; i++) {
226 r = _inits[i]();
227 if (r)
228 goto bad;
229 }
230
231 return 0;
232
233 bad:
234 while (i--)
235 _exits[i]();
236
237 return r;
238 }
239
240 static void __exit dm_exit(void)
241 {
242 int i = ARRAY_SIZE(_exits);
243
244 while (i--)
245 _exits[i]();
246 }
247
248 /*
249 * Block device functions
250 */
251 static int dm_blk_open(struct inode *inode, struct file *file)
252 {
253 struct mapped_device *md;
254
255 spin_lock(&_minor_lock);
256
257 md = inode->i_bdev->bd_disk->private_data;
258 if (!md)
259 goto out;
260
261 if (test_bit(DMF_FREEING, &md->flags) ||
262 test_bit(DMF_DELETING, &md->flags)) {
263 md = NULL;
264 goto out;
265 }
266
267 dm_get(md);
268 atomic_inc(&md->open_count);
269
270 out:
271 spin_unlock(&_minor_lock);
272
273 return md ? 0 : -ENXIO;
274 }
275
276 static int dm_blk_close(struct inode *inode, struct file *file)
277 {
278 struct mapped_device *md;
279
280 md = inode->i_bdev->bd_disk->private_data;
281 atomic_dec(&md->open_count);
282 dm_put(md);
283 return 0;
284 }
285
286 int dm_open_count(struct mapped_device *md)
287 {
288 return atomic_read(&md->open_count);
289 }
290
291 /*
292 * Guarantees nothing is using the device before it's deleted.
293 */
294 int dm_lock_for_deletion(struct mapped_device *md)
295 {
296 int r = 0;
297
298 spin_lock(&_minor_lock);
299
300 if (dm_open_count(md))
301 r = -EBUSY;
302 else
303 set_bit(DMF_DELETING, &md->flags);
304
305 spin_unlock(&_minor_lock);
306
307 return r;
308 }
309
310 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
311 {
312 struct mapped_device *md = bdev->bd_disk->private_data;
313
314 return dm_get_geometry(md, geo);
315 }
316
317 static int dm_blk_ioctl(struct inode *inode, struct file *file,
318 unsigned int cmd, unsigned long arg)
319 {
320 struct mapped_device *md;
321 struct dm_table *map;
322 struct dm_target *tgt;
323 int r = -ENOTTY;
324
325 /* We don't really need this lock, but we do need 'inode'. */
326 unlock_kernel();
327
328 md = inode->i_bdev->bd_disk->private_data;
329
330 map = dm_get_table(md);
331
332 if (!map || !dm_table_get_size(map))
333 goto out;
334
335 /* We only support devices that have a single target */
336 if (dm_table_get_num_targets(map) != 1)
337 goto out;
338
339 tgt = dm_table_get_target(map, 0);
340
341 if (dm_suspended(md)) {
342 r = -EAGAIN;
343 goto out;
344 }
345
346 if (tgt->type->ioctl)
347 r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
348
349 out:
350 dm_table_put(map);
351
352 lock_kernel();
353 return r;
354 }
355
356 static struct dm_io *alloc_io(struct mapped_device *md)
357 {
358 return mempool_alloc(md->io_pool, GFP_NOIO);
359 }
360
361 static void free_io(struct mapped_device *md, struct dm_io *io)
362 {
363 mempool_free(io, md->io_pool);
364 }
365
366 static struct dm_target_io *alloc_tio(struct mapped_device *md)
367 {
368 return mempool_alloc(md->tio_pool, GFP_NOIO);
369 }
370
371 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
372 {
373 mempool_free(tio, md->tio_pool);
374 }
375
376 static void start_io_acct(struct dm_io *io)
377 {
378 struct mapped_device *md = io->md;
379 int cpu;
380
381 io->start_time = jiffies;
382
383 cpu = part_stat_lock();
384 part_round_stats(cpu, &dm_disk(md)->part0);
385 part_stat_unlock();
386 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
387 }
388
389 static int end_io_acct(struct dm_io *io)
390 {
391 struct mapped_device *md = io->md;
392 struct bio *bio = io->bio;
393 unsigned long duration = jiffies - io->start_time;
394 int pending, cpu;
395 int rw = bio_data_dir(bio);
396
397 cpu = part_stat_lock();
398 part_round_stats(cpu, &dm_disk(md)->part0);
399 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
400 part_stat_unlock();
401
402 dm_disk(md)->part0.in_flight = pending =
403 atomic_dec_return(&md->pending);
404
405 return !pending;
406 }
407
408 /*
409 * Add the bio to the list of deferred io.
410 */
411 static int queue_io(struct mapped_device *md, struct bio *bio)
412 {
413 down_write(&md->io_lock);
414
415 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
416 up_write(&md->io_lock);
417 return 1;
418 }
419
420 bio_list_add(&md->deferred, bio);
421
422 up_write(&md->io_lock);
423 return 0; /* deferred successfully */
424 }
425
426 /*
427 * Everyone (including functions in this file), should use this
428 * function to access the md->map field, and make sure they call
429 * dm_table_put() when finished.
430 */
431 struct dm_table *dm_get_table(struct mapped_device *md)
432 {
433 struct dm_table *t;
434
435 read_lock(&md->map_lock);
436 t = md->map;
437 if (t)
438 dm_table_get(t);
439 read_unlock(&md->map_lock);
440
441 return t;
442 }
443
444 /*
445 * Get the geometry associated with a dm device
446 */
447 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
448 {
449 *geo = md->geometry;
450
451 return 0;
452 }
453
454 /*
455 * Set the geometry of a device.
456 */
457 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
458 {
459 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
460
461 if (geo->start > sz) {
462 DMWARN("Start sector is beyond the geometry limits.");
463 return -EINVAL;
464 }
465
466 md->geometry = *geo;
467
468 return 0;
469 }
470
471 /*-----------------------------------------------------------------
472 * CRUD START:
473 * A more elegant soln is in the works that uses the queue
474 * merge fn, unfortunately there are a couple of changes to
475 * the block layer that I want to make for this. So in the
476 * interests of getting something for people to use I give
477 * you this clearly demarcated crap.
478 *---------------------------------------------------------------*/
479
480 static int __noflush_suspending(struct mapped_device *md)
481 {
482 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
483 }
484
485 /*
486 * Decrements the number of outstanding ios that a bio has been
487 * cloned into, completing the original io if necc.
488 */
489 static void dec_pending(struct dm_io *io, int error)
490 {
491 unsigned long flags;
492
493 /* Push-back supersedes any I/O errors */
494 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
495 io->error = error;
496
497 if (atomic_dec_and_test(&io->io_count)) {
498 if (io->error == DM_ENDIO_REQUEUE) {
499 /*
500 * Target requested pushing back the I/O.
501 * This must be handled before the sleeper on
502 * suspend queue merges the pushback list.
503 */
504 spin_lock_irqsave(&io->md->pushback_lock, flags);
505 if (__noflush_suspending(io->md))
506 bio_list_add(&io->md->pushback, io->bio);
507 else
508 /* noflush suspend was interrupted. */
509 io->error = -EIO;
510 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
511 }
512
513 if (end_io_acct(io))
514 /* nudge anyone waiting on suspend queue */
515 wake_up(&io->md->wait);
516
517 if (io->error != DM_ENDIO_REQUEUE) {
518 blk_add_trace_bio(io->md->queue, io->bio,
519 BLK_TA_COMPLETE);
520
521 bio_endio(io->bio, io->error);
522 }
523
524 free_io(io->md, io);
525 }
526 }
527
528 static void clone_endio(struct bio *bio, int error)
529 {
530 int r = 0;
531 struct dm_target_io *tio = bio->bi_private;
532 struct mapped_device *md = tio->io->md;
533 dm_endio_fn endio = tio->ti->type->end_io;
534
535 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
536 error = -EIO;
537
538 if (endio) {
539 r = endio(tio->ti, bio, error, &tio->info);
540 if (r < 0 || r == DM_ENDIO_REQUEUE)
541 /*
542 * error and requeue request are handled
543 * in dec_pending().
544 */
545 error = r;
546 else if (r == DM_ENDIO_INCOMPLETE)
547 /* The target will handle the io */
548 return;
549 else if (r) {
550 DMWARN("unimplemented target endio return value: %d", r);
551 BUG();
552 }
553 }
554
555 dec_pending(tio->io, error);
556
557 /*
558 * Store md for cleanup instead of tio which is about to get freed.
559 */
560 bio->bi_private = md->bs;
561
562 bio_put(bio);
563 free_tio(md, tio);
564 }
565
566 static sector_t max_io_len(struct mapped_device *md,
567 sector_t sector, struct dm_target *ti)
568 {
569 sector_t offset = sector - ti->begin;
570 sector_t len = ti->len - offset;
571
572 /*
573 * Does the target need to split even further ?
574 */
575 if (ti->split_io) {
576 sector_t boundary;
577 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
578 - offset;
579 if (len > boundary)
580 len = boundary;
581 }
582
583 return len;
584 }
585
586 static void __map_bio(struct dm_target *ti, struct bio *clone,
587 struct dm_target_io *tio)
588 {
589 int r;
590 sector_t sector;
591 struct mapped_device *md;
592
593 /*
594 * Sanity checks.
595 */
596 BUG_ON(!clone->bi_size);
597
598 clone->bi_end_io = clone_endio;
599 clone->bi_private = tio;
600
601 /*
602 * Map the clone. If r == 0 we don't need to do
603 * anything, the target has assumed ownership of
604 * this io.
605 */
606 atomic_inc(&tio->io->io_count);
607 sector = clone->bi_sector;
608 r = ti->type->map(ti, clone, &tio->info);
609 if (r == DM_MAPIO_REMAPPED) {
610 /* the bio has been remapped so dispatch it */
611
612 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
613 tio->io->bio->bi_bdev->bd_dev,
614 clone->bi_sector, sector);
615
616 generic_make_request(clone);
617 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
618 /* error the io and bail out, or requeue it if needed */
619 md = tio->io->md;
620 dec_pending(tio->io, r);
621 /*
622 * Store bio_set for cleanup.
623 */
624 clone->bi_private = md->bs;
625 bio_put(clone);
626 free_tio(md, tio);
627 } else if (r) {
628 DMWARN("unimplemented target map return value: %d", r);
629 BUG();
630 }
631 }
632
633 struct clone_info {
634 struct mapped_device *md;
635 struct dm_table *map;
636 struct bio *bio;
637 struct dm_io *io;
638 sector_t sector;
639 sector_t sector_count;
640 unsigned short idx;
641 };
642
643 static void dm_bio_destructor(struct bio *bio)
644 {
645 struct bio_set *bs = bio->bi_private;
646
647 bio_free(bio, bs);
648 }
649
650 /*
651 * Creates a little bio that is just does part of a bvec.
652 */
653 static struct bio *split_bvec(struct bio *bio, sector_t sector,
654 unsigned short idx, unsigned int offset,
655 unsigned int len, struct bio_set *bs)
656 {
657 struct bio *clone;
658 struct bio_vec *bv = bio->bi_io_vec + idx;
659
660 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
661 clone->bi_destructor = dm_bio_destructor;
662 *clone->bi_io_vec = *bv;
663
664 clone->bi_sector = sector;
665 clone->bi_bdev = bio->bi_bdev;
666 clone->bi_rw = bio->bi_rw;
667 clone->bi_vcnt = 1;
668 clone->bi_size = to_bytes(len);
669 clone->bi_io_vec->bv_offset = offset;
670 clone->bi_io_vec->bv_len = clone->bi_size;
671 clone->bi_flags |= 1 << BIO_CLONED;
672
673 return clone;
674 }
675
676 /*
677 * Creates a bio that consists of range of complete bvecs.
678 */
679 static struct bio *clone_bio(struct bio *bio, sector_t sector,
680 unsigned short idx, unsigned short bv_count,
681 unsigned int len, struct bio_set *bs)
682 {
683 struct bio *clone;
684
685 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
686 __bio_clone(clone, bio);
687 clone->bi_destructor = dm_bio_destructor;
688 clone->bi_sector = sector;
689 clone->bi_idx = idx;
690 clone->bi_vcnt = idx + bv_count;
691 clone->bi_size = to_bytes(len);
692 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
693
694 return clone;
695 }
696
697 static int __clone_and_map(struct clone_info *ci)
698 {
699 struct bio *clone, *bio = ci->bio;
700 struct dm_target *ti;
701 sector_t len = 0, max;
702 struct dm_target_io *tio;
703
704 ti = dm_table_find_target(ci->map, ci->sector);
705 if (!dm_target_is_valid(ti))
706 return -EIO;
707
708 max = max_io_len(ci->md, ci->sector, ti);
709
710 /*
711 * Allocate a target io object.
712 */
713 tio = alloc_tio(ci->md);
714 tio->io = ci->io;
715 tio->ti = ti;
716 memset(&tio->info, 0, sizeof(tio->info));
717
718 if (ci->sector_count <= max) {
719 /*
720 * Optimise for the simple case where we can do all of
721 * the remaining io with a single clone.
722 */
723 clone = clone_bio(bio, ci->sector, ci->idx,
724 bio->bi_vcnt - ci->idx, ci->sector_count,
725 ci->md->bs);
726 __map_bio(ti, clone, tio);
727 ci->sector_count = 0;
728
729 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
730 /*
731 * There are some bvecs that don't span targets.
732 * Do as many of these as possible.
733 */
734 int i;
735 sector_t remaining = max;
736 sector_t bv_len;
737
738 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
739 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
740
741 if (bv_len > remaining)
742 break;
743
744 remaining -= bv_len;
745 len += bv_len;
746 }
747
748 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
749 ci->md->bs);
750 __map_bio(ti, clone, tio);
751
752 ci->sector += len;
753 ci->sector_count -= len;
754 ci->idx = i;
755
756 } else {
757 /*
758 * Handle a bvec that must be split between two or more targets.
759 */
760 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
761 sector_t remaining = to_sector(bv->bv_len);
762 unsigned int offset = 0;
763
764 do {
765 if (offset) {
766 ti = dm_table_find_target(ci->map, ci->sector);
767 if (!dm_target_is_valid(ti))
768 return -EIO;
769
770 max = max_io_len(ci->md, ci->sector, ti);
771
772 tio = alloc_tio(ci->md);
773 tio->io = ci->io;
774 tio->ti = ti;
775 memset(&tio->info, 0, sizeof(tio->info));
776 }
777
778 len = min(remaining, max);
779
780 clone = split_bvec(bio, ci->sector, ci->idx,
781 bv->bv_offset + offset, len,
782 ci->md->bs);
783
784 __map_bio(ti, clone, tio);
785
786 ci->sector += len;
787 ci->sector_count -= len;
788 offset += to_bytes(len);
789 } while (remaining -= len);
790
791 ci->idx++;
792 }
793
794 return 0;
795 }
796
797 /*
798 * Split the bio into several clones.
799 */
800 static int __split_bio(struct mapped_device *md, struct bio *bio)
801 {
802 struct clone_info ci;
803 int error = 0;
804
805 ci.map = dm_get_table(md);
806 if (unlikely(!ci.map))
807 return -EIO;
808
809 ci.md = md;
810 ci.bio = bio;
811 ci.io = alloc_io(md);
812 ci.io->error = 0;
813 atomic_set(&ci.io->io_count, 1);
814 ci.io->bio = bio;
815 ci.io->md = md;
816 ci.sector = bio->bi_sector;
817 ci.sector_count = bio_sectors(bio);
818 ci.idx = bio->bi_idx;
819
820 start_io_acct(ci.io);
821 while (ci.sector_count && !error)
822 error = __clone_and_map(&ci);
823
824 /* drop the extra reference count */
825 dec_pending(ci.io, error);
826 dm_table_put(ci.map);
827
828 return 0;
829 }
830 /*-----------------------------------------------------------------
831 * CRUD END
832 *---------------------------------------------------------------*/
833
834 static int dm_merge_bvec(struct request_queue *q,
835 struct bvec_merge_data *bvm,
836 struct bio_vec *biovec)
837 {
838 struct mapped_device *md = q->queuedata;
839 struct dm_table *map = dm_get_table(md);
840 struct dm_target *ti;
841 sector_t max_sectors;
842 int max_size = 0;
843
844 if (unlikely(!map))
845 goto out;
846
847 ti = dm_table_find_target(map, bvm->bi_sector);
848 if (!dm_target_is_valid(ti))
849 goto out_table;
850
851 /*
852 * Find maximum amount of I/O that won't need splitting
853 */
854 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
855 (sector_t) BIO_MAX_SECTORS);
856 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
857 if (max_size < 0)
858 max_size = 0;
859
860 /*
861 * merge_bvec_fn() returns number of bytes
862 * it can accept at this offset
863 * max is precomputed maximal io size
864 */
865 if (max_size && ti->type->merge)
866 max_size = ti->type->merge(ti, bvm, biovec, max_size);
867
868 out_table:
869 dm_table_put(map);
870
871 out:
872 /*
873 * Always allow an entire first page
874 */
875 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
876 max_size = biovec->bv_len;
877
878 return max_size;
879 }
880
881 /*
882 * The request function that just remaps the bio built up by
883 * dm_merge_bvec.
884 */
885 static int dm_request(struct request_queue *q, struct bio *bio)
886 {
887 int r = -EIO;
888 int rw = bio_data_dir(bio);
889 struct mapped_device *md = q->queuedata;
890 int cpu;
891
892 /*
893 * There is no use in forwarding any barrier request since we can't
894 * guarantee it is (or can be) handled by the targets correctly.
895 */
896 if (unlikely(bio_barrier(bio))) {
897 bio_endio(bio, -EOPNOTSUPP);
898 return 0;
899 }
900
901 down_read(&md->io_lock);
902
903 cpu = part_stat_lock();
904 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
905 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
906 part_stat_unlock();
907
908 /*
909 * If we're suspended we have to queue
910 * this io for later.
911 */
912 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
913 up_read(&md->io_lock);
914
915 if (bio_rw(bio) != READA)
916 r = queue_io(md, bio);
917
918 if (r <= 0)
919 goto out_req;
920
921 /*
922 * We're in a while loop, because someone could suspend
923 * before we get to the following read lock.
924 */
925 down_read(&md->io_lock);
926 }
927
928 r = __split_bio(md, bio);
929 up_read(&md->io_lock);
930
931 out_req:
932 if (r < 0)
933 bio_io_error(bio);
934
935 return 0;
936 }
937
938 static void dm_unplug_all(struct request_queue *q)
939 {
940 struct mapped_device *md = q->queuedata;
941 struct dm_table *map = dm_get_table(md);
942
943 if (map) {
944 dm_table_unplug_all(map);
945 dm_table_put(map);
946 }
947 }
948
949 static int dm_any_congested(void *congested_data, int bdi_bits)
950 {
951 int r;
952 struct mapped_device *md = (struct mapped_device *) congested_data;
953 struct dm_table *map = dm_get_table(md);
954
955 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
956 r = bdi_bits;
957 else
958 r = dm_table_any_congested(map, bdi_bits);
959
960 dm_table_put(map);
961 return r;
962 }
963
964 /*-----------------------------------------------------------------
965 * An IDR is used to keep track of allocated minor numbers.
966 *---------------------------------------------------------------*/
967 static DEFINE_IDR(_minor_idr);
968
969 static void free_minor(int minor)
970 {
971 spin_lock(&_minor_lock);
972 idr_remove(&_minor_idr, minor);
973 spin_unlock(&_minor_lock);
974 }
975
976 /*
977 * See if the device with a specific minor # is free.
978 */
979 static int specific_minor(int minor)
980 {
981 int r, m;
982
983 if (minor >= (1 << MINORBITS))
984 return -EINVAL;
985
986 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
987 if (!r)
988 return -ENOMEM;
989
990 spin_lock(&_minor_lock);
991
992 if (idr_find(&_minor_idr, minor)) {
993 r = -EBUSY;
994 goto out;
995 }
996
997 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
998 if (r)
999 goto out;
1000
1001 if (m != minor) {
1002 idr_remove(&_minor_idr, m);
1003 r = -EBUSY;
1004 goto out;
1005 }
1006
1007 out:
1008 spin_unlock(&_minor_lock);
1009 return r;
1010 }
1011
1012 static int next_free_minor(int *minor)
1013 {
1014 int r, m;
1015
1016 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1017 if (!r)
1018 return -ENOMEM;
1019
1020 spin_lock(&_minor_lock);
1021
1022 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1023 if (r)
1024 goto out;
1025
1026 if (m >= (1 << MINORBITS)) {
1027 idr_remove(&_minor_idr, m);
1028 r = -ENOSPC;
1029 goto out;
1030 }
1031
1032 *minor = m;
1033
1034 out:
1035 spin_unlock(&_minor_lock);
1036 return r;
1037 }
1038
1039 static struct block_device_operations dm_blk_dops;
1040
1041 /*
1042 * Allocate and initialise a blank device with a given minor.
1043 */
1044 static struct mapped_device *alloc_dev(int minor)
1045 {
1046 int r;
1047 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1048 void *old_md;
1049
1050 if (!md) {
1051 DMWARN("unable to allocate device, out of memory.");
1052 return NULL;
1053 }
1054
1055 if (!try_module_get(THIS_MODULE))
1056 goto bad_module_get;
1057
1058 /* get a minor number for the dev */
1059 if (minor == DM_ANY_MINOR)
1060 r = next_free_minor(&minor);
1061 else
1062 r = specific_minor(minor);
1063 if (r < 0)
1064 goto bad_minor;
1065
1066 init_rwsem(&md->io_lock);
1067 mutex_init(&md->suspend_lock);
1068 spin_lock_init(&md->pushback_lock);
1069 rwlock_init(&md->map_lock);
1070 atomic_set(&md->holders, 1);
1071 atomic_set(&md->open_count, 0);
1072 atomic_set(&md->event_nr, 0);
1073 atomic_set(&md->uevent_seq, 0);
1074 INIT_LIST_HEAD(&md->uevent_list);
1075 spin_lock_init(&md->uevent_lock);
1076
1077 md->queue = blk_alloc_queue(GFP_KERNEL);
1078 if (!md->queue)
1079 goto bad_queue;
1080
1081 md->queue->queuedata = md;
1082 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1083 md->queue->backing_dev_info.congested_data = md;
1084 blk_queue_make_request(md->queue, dm_request);
1085 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1086 md->queue->unplug_fn = dm_unplug_all;
1087 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1088
1089 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1090 if (!md->io_pool)
1091 goto bad_io_pool;
1092
1093 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1094 if (!md->tio_pool)
1095 goto bad_tio_pool;
1096
1097 md->bs = bioset_create(16, 16);
1098 if (!md->bs)
1099 goto bad_no_bioset;
1100
1101 md->disk = alloc_disk(1);
1102 if (!md->disk)
1103 goto bad_disk;
1104
1105 atomic_set(&md->pending, 0);
1106 init_waitqueue_head(&md->wait);
1107 init_waitqueue_head(&md->eventq);
1108
1109 md->disk->major = _major;
1110 md->disk->first_minor = minor;
1111 md->disk->fops = &dm_blk_dops;
1112 md->disk->queue = md->queue;
1113 md->disk->private_data = md;
1114 sprintf(md->disk->disk_name, "dm-%d", minor);
1115 add_disk(md->disk);
1116 format_dev_t(md->name, MKDEV(_major, minor));
1117
1118 md->wq = create_singlethread_workqueue("kdmflush");
1119 if (!md->wq)
1120 goto bad_thread;
1121
1122 /* Populate the mapping, nobody knows we exist yet */
1123 spin_lock(&_minor_lock);
1124 old_md = idr_replace(&_minor_idr, md, minor);
1125 spin_unlock(&_minor_lock);
1126
1127 BUG_ON(old_md != MINOR_ALLOCED);
1128
1129 return md;
1130
1131 bad_thread:
1132 put_disk(md->disk);
1133 bad_disk:
1134 bioset_free(md->bs);
1135 bad_no_bioset:
1136 mempool_destroy(md->tio_pool);
1137 bad_tio_pool:
1138 mempool_destroy(md->io_pool);
1139 bad_io_pool:
1140 blk_cleanup_queue(md->queue);
1141 bad_queue:
1142 free_minor(minor);
1143 bad_minor:
1144 module_put(THIS_MODULE);
1145 bad_module_get:
1146 kfree(md);
1147 return NULL;
1148 }
1149
1150 static void unlock_fs(struct mapped_device *md);
1151
1152 static void free_dev(struct mapped_device *md)
1153 {
1154 int minor = MINOR(disk_devt(md->disk));
1155
1156 if (md->suspended_bdev) {
1157 unlock_fs(md);
1158 bdput(md->suspended_bdev);
1159 }
1160 destroy_workqueue(md->wq);
1161 mempool_destroy(md->tio_pool);
1162 mempool_destroy(md->io_pool);
1163 bioset_free(md->bs);
1164 del_gendisk(md->disk);
1165 free_minor(minor);
1166
1167 spin_lock(&_minor_lock);
1168 md->disk->private_data = NULL;
1169 spin_unlock(&_minor_lock);
1170
1171 put_disk(md->disk);
1172 blk_cleanup_queue(md->queue);
1173 module_put(THIS_MODULE);
1174 kfree(md);
1175 }
1176
1177 /*
1178 * Bind a table to the device.
1179 */
1180 static void event_callback(void *context)
1181 {
1182 unsigned long flags;
1183 LIST_HEAD(uevents);
1184 struct mapped_device *md = (struct mapped_device *) context;
1185
1186 spin_lock_irqsave(&md->uevent_lock, flags);
1187 list_splice_init(&md->uevent_list, &uevents);
1188 spin_unlock_irqrestore(&md->uevent_lock, flags);
1189
1190 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1191
1192 atomic_inc(&md->event_nr);
1193 wake_up(&md->eventq);
1194 }
1195
1196 static void __set_size(struct mapped_device *md, sector_t size)
1197 {
1198 set_capacity(md->disk, size);
1199
1200 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1201 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1202 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1203 }
1204
1205 static int __bind(struct mapped_device *md, struct dm_table *t)
1206 {
1207 struct request_queue *q = md->queue;
1208 sector_t size;
1209
1210 size = dm_table_get_size(t);
1211
1212 /*
1213 * Wipe any geometry if the size of the table changed.
1214 */
1215 if (size != get_capacity(md->disk))
1216 memset(&md->geometry, 0, sizeof(md->geometry));
1217
1218 if (md->suspended_bdev)
1219 __set_size(md, size);
1220 if (size == 0)
1221 return 0;
1222
1223 dm_table_get(t);
1224 dm_table_event_callback(t, event_callback, md);
1225
1226 write_lock(&md->map_lock);
1227 md->map = t;
1228 dm_table_set_restrictions(t, q);
1229 write_unlock(&md->map_lock);
1230
1231 return 0;
1232 }
1233
1234 static void __unbind(struct mapped_device *md)
1235 {
1236 struct dm_table *map = md->map;
1237
1238 if (!map)
1239 return;
1240
1241 dm_table_event_callback(map, NULL, NULL);
1242 write_lock(&md->map_lock);
1243 md->map = NULL;
1244 write_unlock(&md->map_lock);
1245 dm_table_put(map);
1246 }
1247
1248 /*
1249 * Constructor for a new device.
1250 */
1251 int dm_create(int minor, struct mapped_device **result)
1252 {
1253 struct mapped_device *md;
1254
1255 md = alloc_dev(minor);
1256 if (!md)
1257 return -ENXIO;
1258
1259 *result = md;
1260 return 0;
1261 }
1262
1263 static struct mapped_device *dm_find_md(dev_t dev)
1264 {
1265 struct mapped_device *md;
1266 unsigned minor = MINOR(dev);
1267
1268 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1269 return NULL;
1270
1271 spin_lock(&_minor_lock);
1272
1273 md = idr_find(&_minor_idr, minor);
1274 if (md && (md == MINOR_ALLOCED ||
1275 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1276 test_bit(DMF_FREEING, &md->flags))) {
1277 md = NULL;
1278 goto out;
1279 }
1280
1281 out:
1282 spin_unlock(&_minor_lock);
1283
1284 return md;
1285 }
1286
1287 struct mapped_device *dm_get_md(dev_t dev)
1288 {
1289 struct mapped_device *md = dm_find_md(dev);
1290
1291 if (md)
1292 dm_get(md);
1293
1294 return md;
1295 }
1296
1297 void *dm_get_mdptr(struct mapped_device *md)
1298 {
1299 return md->interface_ptr;
1300 }
1301
1302 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1303 {
1304 md->interface_ptr = ptr;
1305 }
1306
1307 void dm_get(struct mapped_device *md)
1308 {
1309 atomic_inc(&md->holders);
1310 }
1311
1312 const char *dm_device_name(struct mapped_device *md)
1313 {
1314 return md->name;
1315 }
1316 EXPORT_SYMBOL_GPL(dm_device_name);
1317
1318 void dm_put(struct mapped_device *md)
1319 {
1320 struct dm_table *map;
1321
1322 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1323
1324 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1325 map = dm_get_table(md);
1326 idr_replace(&_minor_idr, MINOR_ALLOCED,
1327 MINOR(disk_devt(dm_disk(md))));
1328 set_bit(DMF_FREEING, &md->flags);
1329 spin_unlock(&_minor_lock);
1330 if (!dm_suspended(md)) {
1331 dm_table_presuspend_targets(map);
1332 dm_table_postsuspend_targets(map);
1333 }
1334 __unbind(md);
1335 dm_table_put(map);
1336 free_dev(md);
1337 }
1338 }
1339 EXPORT_SYMBOL_GPL(dm_put);
1340
1341 static int dm_wait_for_completion(struct mapped_device *md)
1342 {
1343 int r = 0;
1344
1345 while (1) {
1346 set_current_state(TASK_INTERRUPTIBLE);
1347
1348 smp_mb();
1349 if (!atomic_read(&md->pending))
1350 break;
1351
1352 if (signal_pending(current)) {
1353 r = -EINTR;
1354 break;
1355 }
1356
1357 io_schedule();
1358 }
1359 set_current_state(TASK_RUNNING);
1360
1361 return r;
1362 }
1363
1364 /*
1365 * Process the deferred bios
1366 */
1367 static void __flush_deferred_io(struct mapped_device *md)
1368 {
1369 struct bio *c;
1370
1371 while ((c = bio_list_pop(&md->deferred))) {
1372 if (__split_bio(md, c))
1373 bio_io_error(c);
1374 }
1375
1376 clear_bit(DMF_BLOCK_IO, &md->flags);
1377 }
1378
1379 static void __merge_pushback_list(struct mapped_device *md)
1380 {
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&md->pushback_lock, flags);
1384 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1385 bio_list_merge_head(&md->deferred, &md->pushback);
1386 bio_list_init(&md->pushback);
1387 spin_unlock_irqrestore(&md->pushback_lock, flags);
1388 }
1389
1390 static void dm_wq_work(struct work_struct *work)
1391 {
1392 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1393 struct mapped_device *md = req->md;
1394
1395 down_write(&md->io_lock);
1396 switch (req->type) {
1397 case DM_WQ_FLUSH_DEFERRED:
1398 __flush_deferred_io(md);
1399 break;
1400 default:
1401 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1402 BUG();
1403 }
1404 up_write(&md->io_lock);
1405 }
1406
1407 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1408 struct dm_wq_req *req)
1409 {
1410 req->type = type;
1411 req->md = md;
1412 req->context = context;
1413 INIT_WORK(&req->work, dm_wq_work);
1414 queue_work(md->wq, &req->work);
1415 }
1416
1417 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1418 {
1419 struct dm_wq_req req;
1420
1421 dm_wq_queue(md, type, context, &req);
1422 flush_workqueue(md->wq);
1423 }
1424
1425 /*
1426 * Swap in a new table (destroying old one).
1427 */
1428 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1429 {
1430 int r = -EINVAL;
1431
1432 mutex_lock(&md->suspend_lock);
1433
1434 /* device must be suspended */
1435 if (!dm_suspended(md))
1436 goto out;
1437
1438 /* without bdev, the device size cannot be changed */
1439 if (!md->suspended_bdev)
1440 if (get_capacity(md->disk) != dm_table_get_size(table))
1441 goto out;
1442
1443 __unbind(md);
1444 r = __bind(md, table);
1445
1446 out:
1447 mutex_unlock(&md->suspend_lock);
1448 return r;
1449 }
1450
1451 /*
1452 * Functions to lock and unlock any filesystem running on the
1453 * device.
1454 */
1455 static int lock_fs(struct mapped_device *md)
1456 {
1457 int r;
1458
1459 WARN_ON(md->frozen_sb);
1460
1461 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1462 if (IS_ERR(md->frozen_sb)) {
1463 r = PTR_ERR(md->frozen_sb);
1464 md->frozen_sb = NULL;
1465 return r;
1466 }
1467
1468 set_bit(DMF_FROZEN, &md->flags);
1469
1470 /* don't bdput right now, we don't want the bdev
1471 * to go away while it is locked.
1472 */
1473 return 0;
1474 }
1475
1476 static void unlock_fs(struct mapped_device *md)
1477 {
1478 if (!test_bit(DMF_FROZEN, &md->flags))
1479 return;
1480
1481 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1482 md->frozen_sb = NULL;
1483 clear_bit(DMF_FROZEN, &md->flags);
1484 }
1485
1486 /*
1487 * We need to be able to change a mapping table under a mounted
1488 * filesystem. For example we might want to move some data in
1489 * the background. Before the table can be swapped with
1490 * dm_bind_table, dm_suspend must be called to flush any in
1491 * flight bios and ensure that any further io gets deferred.
1492 */
1493 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1494 {
1495 struct dm_table *map = NULL;
1496 DECLARE_WAITQUEUE(wait, current);
1497 int r = 0;
1498 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1499 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1500
1501 mutex_lock(&md->suspend_lock);
1502
1503 if (dm_suspended(md)) {
1504 r = -EINVAL;
1505 goto out_unlock;
1506 }
1507
1508 map = dm_get_table(md);
1509
1510 /*
1511 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1512 * This flag is cleared before dm_suspend returns.
1513 */
1514 if (noflush)
1515 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1516
1517 /* This does not get reverted if there's an error later. */
1518 dm_table_presuspend_targets(map);
1519
1520 /* bdget() can stall if the pending I/Os are not flushed */
1521 if (!noflush) {
1522 md->suspended_bdev = bdget_disk(md->disk, 0);
1523 if (!md->suspended_bdev) {
1524 DMWARN("bdget failed in dm_suspend");
1525 r = -ENOMEM;
1526 goto out;
1527 }
1528
1529 /*
1530 * Flush I/O to the device. noflush supersedes do_lockfs,
1531 * because lock_fs() needs to flush I/Os.
1532 */
1533 if (do_lockfs) {
1534 r = lock_fs(md);
1535 if (r)
1536 goto out;
1537 }
1538 }
1539
1540 /*
1541 * First we set the BLOCK_IO flag so no more ios will be mapped.
1542 */
1543 down_write(&md->io_lock);
1544 set_bit(DMF_BLOCK_IO, &md->flags);
1545
1546 add_wait_queue(&md->wait, &wait);
1547 up_write(&md->io_lock);
1548
1549 /* unplug */
1550 if (map)
1551 dm_table_unplug_all(map);
1552
1553 /*
1554 * Wait for the already-mapped ios to complete.
1555 */
1556 r = dm_wait_for_completion(md);
1557
1558 down_write(&md->io_lock);
1559 remove_wait_queue(&md->wait, &wait);
1560
1561 if (noflush)
1562 __merge_pushback_list(md);
1563 up_write(&md->io_lock);
1564
1565 /* were we interrupted ? */
1566 if (r < 0) {
1567 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1568
1569 unlock_fs(md);
1570 goto out; /* pushback list is already flushed, so skip flush */
1571 }
1572
1573 dm_table_postsuspend_targets(map);
1574
1575 set_bit(DMF_SUSPENDED, &md->flags);
1576
1577 out:
1578 if (r && md->suspended_bdev) {
1579 bdput(md->suspended_bdev);
1580 md->suspended_bdev = NULL;
1581 }
1582
1583 dm_table_put(map);
1584
1585 out_unlock:
1586 mutex_unlock(&md->suspend_lock);
1587 return r;
1588 }
1589
1590 int dm_resume(struct mapped_device *md)
1591 {
1592 int r = -EINVAL;
1593 struct dm_table *map = NULL;
1594
1595 mutex_lock(&md->suspend_lock);
1596 if (!dm_suspended(md))
1597 goto out;
1598
1599 map = dm_get_table(md);
1600 if (!map || !dm_table_get_size(map))
1601 goto out;
1602
1603 r = dm_table_resume_targets(map);
1604 if (r)
1605 goto out;
1606
1607 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1608
1609 unlock_fs(md);
1610
1611 if (md->suspended_bdev) {
1612 bdput(md->suspended_bdev);
1613 md->suspended_bdev = NULL;
1614 }
1615
1616 clear_bit(DMF_SUSPENDED, &md->flags);
1617
1618 dm_table_unplug_all(map);
1619
1620 dm_kobject_uevent(md);
1621
1622 r = 0;
1623
1624 out:
1625 dm_table_put(map);
1626 mutex_unlock(&md->suspend_lock);
1627
1628 return r;
1629 }
1630
1631 /*-----------------------------------------------------------------
1632 * Event notification.
1633 *---------------------------------------------------------------*/
1634 void dm_kobject_uevent(struct mapped_device *md)
1635 {
1636 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1637 }
1638
1639 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1640 {
1641 return atomic_add_return(1, &md->uevent_seq);
1642 }
1643
1644 uint32_t dm_get_event_nr(struct mapped_device *md)
1645 {
1646 return atomic_read(&md->event_nr);
1647 }
1648
1649 int dm_wait_event(struct mapped_device *md, int event_nr)
1650 {
1651 return wait_event_interruptible(md->eventq,
1652 (event_nr != atomic_read(&md->event_nr)));
1653 }
1654
1655 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1656 {
1657 unsigned long flags;
1658
1659 spin_lock_irqsave(&md->uevent_lock, flags);
1660 list_add(elist, &md->uevent_list);
1661 spin_unlock_irqrestore(&md->uevent_lock, flags);
1662 }
1663
1664 /*
1665 * The gendisk is only valid as long as you have a reference
1666 * count on 'md'.
1667 */
1668 struct gendisk *dm_disk(struct mapped_device *md)
1669 {
1670 return md->disk;
1671 }
1672
1673 int dm_suspended(struct mapped_device *md)
1674 {
1675 return test_bit(DMF_SUSPENDED, &md->flags);
1676 }
1677
1678 int dm_noflush_suspending(struct dm_target *ti)
1679 {
1680 struct mapped_device *md = dm_table_get_md(ti->table);
1681 int r = __noflush_suspending(md);
1682
1683 dm_put(md);
1684
1685 return r;
1686 }
1687 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1688
1689 static struct block_device_operations dm_blk_dops = {
1690 .open = dm_blk_open,
1691 .release = dm_blk_close,
1692 .ioctl = dm_blk_ioctl,
1693 .getgeo = dm_blk_getgeo,
1694 .owner = THIS_MODULE
1695 };
1696
1697 EXPORT_SYMBOL(dm_get_mapinfo);
1698
1699 /*
1700 * module hooks
1701 */
1702 module_init(dm_init);
1703 module_exit(dm_exit);
1704
1705 module_param(major, uint, 0);
1706 MODULE_PARM_DESC(major, "The major number of the device mapper");
1707 MODULE_DESCRIPTION(DM_NAME " driver");
1708 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1709 MODULE_LICENSE("GPL");