]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm.c
Merge remote-tracking branch 'agust/next' into next
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
69 */
70 struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
74 struct bio clone;
75 };
76
77 /*
78 * For request-based dm.
79 * One of these is allocated per request.
80 */
81 struct dm_rq_target_io {
82 struct mapped_device *md;
83 struct dm_target *ti;
84 struct request *orig, clone;
85 int error;
86 union map_info info;
87 };
88
89 /*
90 * For request-based dm - the bio clones we allocate are embedded in these
91 * structs.
92 *
93 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
94 * the bioset is created - this means the bio has to come at the end of the
95 * struct.
96 */
97 struct dm_rq_clone_bio_info {
98 struct bio *orig;
99 struct dm_rq_target_io *tio;
100 struct bio clone;
101 };
102
103 union map_info *dm_get_mapinfo(struct bio *bio)
104 {
105 if (bio && bio->bi_private)
106 return &((struct dm_target_io *)bio->bi_private)->info;
107 return NULL;
108 }
109
110 union map_info *dm_get_rq_mapinfo(struct request *rq)
111 {
112 if (rq && rq->end_io_data)
113 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
114 return NULL;
115 }
116 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
117
118 #define MINOR_ALLOCED ((void *)-1)
119
120 /*
121 * Bits for the md->flags field.
122 */
123 #define DMF_BLOCK_IO_FOR_SUSPEND 0
124 #define DMF_SUSPENDED 1
125 #define DMF_FROZEN 2
126 #define DMF_FREEING 3
127 #define DMF_DELETING 4
128 #define DMF_NOFLUSH_SUSPENDING 5
129 #define DMF_MERGE_IS_OPTIONAL 6
130
131 /*
132 * Work processed by per-device workqueue.
133 */
134 struct mapped_device {
135 struct rw_semaphore io_lock;
136 struct mutex suspend_lock;
137 rwlock_t map_lock;
138 atomic_t holders;
139 atomic_t open_count;
140
141 unsigned long flags;
142
143 struct request_queue *queue;
144 unsigned type;
145 /* Protect queue and type against concurrent access. */
146 struct mutex type_lock;
147
148 struct target_type *immutable_target_type;
149
150 struct gendisk *disk;
151 char name[16];
152
153 void *interface_ptr;
154
155 /*
156 * A list of ios that arrived while we were suspended.
157 */
158 atomic_t pending[2];
159 wait_queue_head_t wait;
160 struct work_struct work;
161 struct bio_list deferred;
162 spinlock_t deferred_lock;
163
164 /*
165 * Processing queue (flush)
166 */
167 struct workqueue_struct *wq;
168
169 /*
170 * The current mapping.
171 */
172 struct dm_table *map;
173
174 /*
175 * io objects are allocated from here.
176 */
177 mempool_t *io_pool;
178 mempool_t *tio_pool;
179
180 struct bio_set *bs;
181
182 /*
183 * Event handling.
184 */
185 atomic_t event_nr;
186 wait_queue_head_t eventq;
187 atomic_t uevent_seq;
188 struct list_head uevent_list;
189 spinlock_t uevent_lock; /* Protect access to uevent_list */
190
191 /*
192 * freeze/thaw support require holding onto a super block
193 */
194 struct super_block *frozen_sb;
195 struct block_device *bdev;
196
197 /* forced geometry settings */
198 struct hd_geometry geometry;
199
200 /* sysfs handle */
201 struct kobject kobj;
202
203 /* zero-length flush that will be cloned and submitted to targets */
204 struct bio flush_bio;
205 };
206
207 /*
208 * For mempools pre-allocation at the table loading time.
209 */
210 struct dm_md_mempools {
211 mempool_t *io_pool;
212 mempool_t *tio_pool;
213 struct bio_set *bs;
214 };
215
216 #define MIN_IOS 256
217 static struct kmem_cache *_io_cache;
218 static struct kmem_cache *_rq_tio_cache;
219
220 /*
221 * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
222 * still used for _io_cache, I'm leaving this for a later cleanup
223 */
224 static struct kmem_cache *_rq_bio_info_cache;
225
226 static int __init local_init(void)
227 {
228 int r = -ENOMEM;
229
230 /* allocate a slab for the dm_ios */
231 _io_cache = KMEM_CACHE(dm_io, 0);
232 if (!_io_cache)
233 return r;
234
235 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
236 if (!_rq_tio_cache)
237 goto out_free_io_cache;
238
239 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
240 if (!_rq_bio_info_cache)
241 goto out_free_rq_tio_cache;
242
243 r = dm_uevent_init();
244 if (r)
245 goto out_free_rq_bio_info_cache;
246
247 _major = major;
248 r = register_blkdev(_major, _name);
249 if (r < 0)
250 goto out_uevent_exit;
251
252 if (!_major)
253 _major = r;
254
255 return 0;
256
257 out_uevent_exit:
258 dm_uevent_exit();
259 out_free_rq_bio_info_cache:
260 kmem_cache_destroy(_rq_bio_info_cache);
261 out_free_rq_tio_cache:
262 kmem_cache_destroy(_rq_tio_cache);
263 out_free_io_cache:
264 kmem_cache_destroy(_io_cache);
265
266 return r;
267 }
268
269 static void local_exit(void)
270 {
271 kmem_cache_destroy(_rq_bio_info_cache);
272 kmem_cache_destroy(_rq_tio_cache);
273 kmem_cache_destroy(_io_cache);
274 unregister_blkdev(_major, _name);
275 dm_uevent_exit();
276
277 _major = 0;
278
279 DMINFO("cleaned up");
280 }
281
282 static int (*_inits[])(void) __initdata = {
283 local_init,
284 dm_target_init,
285 dm_linear_init,
286 dm_stripe_init,
287 dm_io_init,
288 dm_kcopyd_init,
289 dm_interface_init,
290 };
291
292 static void (*_exits[])(void) = {
293 local_exit,
294 dm_target_exit,
295 dm_linear_exit,
296 dm_stripe_exit,
297 dm_io_exit,
298 dm_kcopyd_exit,
299 dm_interface_exit,
300 };
301
302 static int __init dm_init(void)
303 {
304 const int count = ARRAY_SIZE(_inits);
305
306 int r, i;
307
308 for (i = 0; i < count; i++) {
309 r = _inits[i]();
310 if (r)
311 goto bad;
312 }
313
314 return 0;
315
316 bad:
317 while (i--)
318 _exits[i]();
319
320 return r;
321 }
322
323 static void __exit dm_exit(void)
324 {
325 int i = ARRAY_SIZE(_exits);
326
327 while (i--)
328 _exits[i]();
329
330 /*
331 * Should be empty by this point.
332 */
333 idr_remove_all(&_minor_idr);
334 idr_destroy(&_minor_idr);
335 }
336
337 /*
338 * Block device functions
339 */
340 int dm_deleting_md(struct mapped_device *md)
341 {
342 return test_bit(DMF_DELETING, &md->flags);
343 }
344
345 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
346 {
347 struct mapped_device *md;
348
349 spin_lock(&_minor_lock);
350
351 md = bdev->bd_disk->private_data;
352 if (!md)
353 goto out;
354
355 if (test_bit(DMF_FREEING, &md->flags) ||
356 dm_deleting_md(md)) {
357 md = NULL;
358 goto out;
359 }
360
361 dm_get(md);
362 atomic_inc(&md->open_count);
363
364 out:
365 spin_unlock(&_minor_lock);
366
367 return md ? 0 : -ENXIO;
368 }
369
370 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
371 {
372 struct mapped_device *md = disk->private_data;
373
374 spin_lock(&_minor_lock);
375
376 atomic_dec(&md->open_count);
377 dm_put(md);
378
379 spin_unlock(&_minor_lock);
380
381 return 0;
382 }
383
384 int dm_open_count(struct mapped_device *md)
385 {
386 return atomic_read(&md->open_count);
387 }
388
389 /*
390 * Guarantees nothing is using the device before it's deleted.
391 */
392 int dm_lock_for_deletion(struct mapped_device *md)
393 {
394 int r = 0;
395
396 spin_lock(&_minor_lock);
397
398 if (dm_open_count(md))
399 r = -EBUSY;
400 else
401 set_bit(DMF_DELETING, &md->flags);
402
403 spin_unlock(&_minor_lock);
404
405 return r;
406 }
407
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 struct mapped_device *md = bdev->bd_disk->private_data;
411
412 return dm_get_geometry(md, geo);
413 }
414
415 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
416 unsigned int cmd, unsigned long arg)
417 {
418 struct mapped_device *md = bdev->bd_disk->private_data;
419 struct dm_table *map = dm_get_live_table(md);
420 struct dm_target *tgt;
421 int r = -ENOTTY;
422
423 if (!map || !dm_table_get_size(map))
424 goto out;
425
426 /* We only support devices that have a single target */
427 if (dm_table_get_num_targets(map) != 1)
428 goto out;
429
430 tgt = dm_table_get_target(map, 0);
431
432 if (dm_suspended_md(md)) {
433 r = -EAGAIN;
434 goto out;
435 }
436
437 if (tgt->type->ioctl)
438 r = tgt->type->ioctl(tgt, cmd, arg);
439
440 out:
441 dm_table_put(map);
442
443 return r;
444 }
445
446 static struct dm_io *alloc_io(struct mapped_device *md)
447 {
448 return mempool_alloc(md->io_pool, GFP_NOIO);
449 }
450
451 static void free_io(struct mapped_device *md, struct dm_io *io)
452 {
453 mempool_free(io, md->io_pool);
454 }
455
456 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
457 {
458 bio_put(&tio->clone);
459 }
460
461 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
462 gfp_t gfp_mask)
463 {
464 return mempool_alloc(md->tio_pool, gfp_mask);
465 }
466
467 static void free_rq_tio(struct dm_rq_target_io *tio)
468 {
469 mempool_free(tio, tio->md->tio_pool);
470 }
471
472 static int md_in_flight(struct mapped_device *md)
473 {
474 return atomic_read(&md->pending[READ]) +
475 atomic_read(&md->pending[WRITE]);
476 }
477
478 static void start_io_acct(struct dm_io *io)
479 {
480 struct mapped_device *md = io->md;
481 int cpu;
482 int rw = bio_data_dir(io->bio);
483
484 io->start_time = jiffies;
485
486 cpu = part_stat_lock();
487 part_round_stats(cpu, &dm_disk(md)->part0);
488 part_stat_unlock();
489 atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 atomic_inc_return(&md->pending[rw]));
491 }
492
493 static void end_io_acct(struct dm_io *io)
494 {
495 struct mapped_device *md = io->md;
496 struct bio *bio = io->bio;
497 unsigned long duration = jiffies - io->start_time;
498 int pending, cpu;
499 int rw = bio_data_dir(bio);
500
501 cpu = part_stat_lock();
502 part_round_stats(cpu, &dm_disk(md)->part0);
503 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 part_stat_unlock();
505
506 /*
507 * After this is decremented the bio must not be touched if it is
508 * a flush.
509 */
510 pending = atomic_dec_return(&md->pending[rw]);
511 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 pending += atomic_read(&md->pending[rw^0x1]);
513
514 /* nudge anyone waiting on suspend queue */
515 if (!pending)
516 wake_up(&md->wait);
517 }
518
519 /*
520 * Add the bio to the list of deferred io.
521 */
522 static void queue_io(struct mapped_device *md, struct bio *bio)
523 {
524 unsigned long flags;
525
526 spin_lock_irqsave(&md->deferred_lock, flags);
527 bio_list_add(&md->deferred, bio);
528 spin_unlock_irqrestore(&md->deferred_lock, flags);
529 queue_work(md->wq, &md->work);
530 }
531
532 /*
533 * Everyone (including functions in this file), should use this
534 * function to access the md->map field, and make sure they call
535 * dm_table_put() when finished.
536 */
537 struct dm_table *dm_get_live_table(struct mapped_device *md)
538 {
539 struct dm_table *t;
540 unsigned long flags;
541
542 read_lock_irqsave(&md->map_lock, flags);
543 t = md->map;
544 if (t)
545 dm_table_get(t);
546 read_unlock_irqrestore(&md->map_lock, flags);
547
548 return t;
549 }
550
551 /*
552 * Get the geometry associated with a dm device
553 */
554 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 {
556 *geo = md->geometry;
557
558 return 0;
559 }
560
561 /*
562 * Set the geometry of a device.
563 */
564 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565 {
566 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567
568 if (geo->start > sz) {
569 DMWARN("Start sector is beyond the geometry limits.");
570 return -EINVAL;
571 }
572
573 md->geometry = *geo;
574
575 return 0;
576 }
577
578 /*-----------------------------------------------------------------
579 * CRUD START:
580 * A more elegant soln is in the works that uses the queue
581 * merge fn, unfortunately there are a couple of changes to
582 * the block layer that I want to make for this. So in the
583 * interests of getting something for people to use I give
584 * you this clearly demarcated crap.
585 *---------------------------------------------------------------*/
586
587 static int __noflush_suspending(struct mapped_device *md)
588 {
589 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590 }
591
592 /*
593 * Decrements the number of outstanding ios that a bio has been
594 * cloned into, completing the original io if necc.
595 */
596 static void dec_pending(struct dm_io *io, int error)
597 {
598 unsigned long flags;
599 int io_error;
600 struct bio *bio;
601 struct mapped_device *md = io->md;
602
603 /* Push-back supersedes any I/O errors */
604 if (unlikely(error)) {
605 spin_lock_irqsave(&io->endio_lock, flags);
606 if (!(io->error > 0 && __noflush_suspending(md)))
607 io->error = error;
608 spin_unlock_irqrestore(&io->endio_lock, flags);
609 }
610
611 if (atomic_dec_and_test(&io->io_count)) {
612 if (io->error == DM_ENDIO_REQUEUE) {
613 /*
614 * Target requested pushing back the I/O.
615 */
616 spin_lock_irqsave(&md->deferred_lock, flags);
617 if (__noflush_suspending(md))
618 bio_list_add_head(&md->deferred, io->bio);
619 else
620 /* noflush suspend was interrupted. */
621 io->error = -EIO;
622 spin_unlock_irqrestore(&md->deferred_lock, flags);
623 }
624
625 io_error = io->error;
626 bio = io->bio;
627 end_io_acct(io);
628 free_io(md, io);
629
630 if (io_error == DM_ENDIO_REQUEUE)
631 return;
632
633 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 /*
635 * Preflush done for flush with data, reissue
636 * without REQ_FLUSH.
637 */
638 bio->bi_rw &= ~REQ_FLUSH;
639 queue_io(md, bio);
640 } else {
641 /* done with normal IO or empty flush */
642 trace_block_bio_complete(md->queue, bio, io_error);
643 bio_endio(bio, io_error);
644 }
645 }
646 }
647
648 static void clone_endio(struct bio *bio, int error)
649 {
650 int r = 0;
651 struct dm_target_io *tio = bio->bi_private;
652 struct dm_io *io = tio->io;
653 struct mapped_device *md = tio->io->md;
654 dm_endio_fn endio = tio->ti->type->end_io;
655
656 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 error = -EIO;
658
659 if (endio) {
660 r = endio(tio->ti, bio, error, &tio->info);
661 if (r < 0 || r == DM_ENDIO_REQUEUE)
662 /*
663 * error and requeue request are handled
664 * in dec_pending().
665 */
666 error = r;
667 else if (r == DM_ENDIO_INCOMPLETE)
668 /* The target will handle the io */
669 return;
670 else if (r) {
671 DMWARN("unimplemented target endio return value: %d", r);
672 BUG();
673 }
674 }
675
676 free_tio(md, tio);
677 dec_pending(io, error);
678 }
679
680 /*
681 * Partial completion handling for request-based dm
682 */
683 static void end_clone_bio(struct bio *clone, int error)
684 {
685 struct dm_rq_clone_bio_info *info = clone->bi_private;
686 struct dm_rq_target_io *tio = info->tio;
687 struct bio *bio = info->orig;
688 unsigned int nr_bytes = info->orig->bi_size;
689
690 bio_put(clone);
691
692 if (tio->error)
693 /*
694 * An error has already been detected on the request.
695 * Once error occurred, just let clone->end_io() handle
696 * the remainder.
697 */
698 return;
699 else if (error) {
700 /*
701 * Don't notice the error to the upper layer yet.
702 * The error handling decision is made by the target driver,
703 * when the request is completed.
704 */
705 tio->error = error;
706 return;
707 }
708
709 /*
710 * I/O for the bio successfully completed.
711 * Notice the data completion to the upper layer.
712 */
713
714 /*
715 * bios are processed from the head of the list.
716 * So the completing bio should always be rq->bio.
717 * If it's not, something wrong is happening.
718 */
719 if (tio->orig->bio != bio)
720 DMERR("bio completion is going in the middle of the request");
721
722 /*
723 * Update the original request.
724 * Do not use blk_end_request() here, because it may complete
725 * the original request before the clone, and break the ordering.
726 */
727 blk_update_request(tio->orig, 0, nr_bytes);
728 }
729
730 /*
731 * Don't touch any member of the md after calling this function because
732 * the md may be freed in dm_put() at the end of this function.
733 * Or do dm_get() before calling this function and dm_put() later.
734 */
735 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
736 {
737 atomic_dec(&md->pending[rw]);
738
739 /* nudge anyone waiting on suspend queue */
740 if (!md_in_flight(md))
741 wake_up(&md->wait);
742
743 /*
744 * Run this off this callpath, as drivers could invoke end_io while
745 * inside their request_fn (and holding the queue lock). Calling
746 * back into ->request_fn() could deadlock attempting to grab the
747 * queue lock again.
748 */
749 if (run_queue)
750 blk_run_queue_async(md->queue);
751
752 /*
753 * dm_put() must be at the end of this function. See the comment above
754 */
755 dm_put(md);
756 }
757
758 static void free_rq_clone(struct request *clone)
759 {
760 struct dm_rq_target_io *tio = clone->end_io_data;
761
762 blk_rq_unprep_clone(clone);
763 free_rq_tio(tio);
764 }
765
766 /*
767 * Complete the clone and the original request.
768 * Must be called without queue lock.
769 */
770 static void dm_end_request(struct request *clone, int error)
771 {
772 int rw = rq_data_dir(clone);
773 struct dm_rq_target_io *tio = clone->end_io_data;
774 struct mapped_device *md = tio->md;
775 struct request *rq = tio->orig;
776
777 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 rq->errors = clone->errors;
779 rq->resid_len = clone->resid_len;
780
781 if (rq->sense)
782 /*
783 * We are using the sense buffer of the original
784 * request.
785 * So setting the length of the sense data is enough.
786 */
787 rq->sense_len = clone->sense_len;
788 }
789
790 free_rq_clone(clone);
791 blk_end_request_all(rq, error);
792 rq_completed(md, rw, true);
793 }
794
795 static void dm_unprep_request(struct request *rq)
796 {
797 struct request *clone = rq->special;
798
799 rq->special = NULL;
800 rq->cmd_flags &= ~REQ_DONTPREP;
801
802 free_rq_clone(clone);
803 }
804
805 /*
806 * Requeue the original request of a clone.
807 */
808 void dm_requeue_unmapped_request(struct request *clone)
809 {
810 int rw = rq_data_dir(clone);
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
814 struct request_queue *q = rq->q;
815 unsigned long flags;
816
817 dm_unprep_request(rq);
818
819 spin_lock_irqsave(q->queue_lock, flags);
820 blk_requeue_request(q, rq);
821 spin_unlock_irqrestore(q->queue_lock, flags);
822
823 rq_completed(md, rw, 0);
824 }
825 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826
827 static void __stop_queue(struct request_queue *q)
828 {
829 blk_stop_queue(q);
830 }
831
832 static void stop_queue(struct request_queue *q)
833 {
834 unsigned long flags;
835
836 spin_lock_irqsave(q->queue_lock, flags);
837 __stop_queue(q);
838 spin_unlock_irqrestore(q->queue_lock, flags);
839 }
840
841 static void __start_queue(struct request_queue *q)
842 {
843 if (blk_queue_stopped(q))
844 blk_start_queue(q);
845 }
846
847 static void start_queue(struct request_queue *q)
848 {
849 unsigned long flags;
850
851 spin_lock_irqsave(q->queue_lock, flags);
852 __start_queue(q);
853 spin_unlock_irqrestore(q->queue_lock, flags);
854 }
855
856 static void dm_done(struct request *clone, int error, bool mapped)
857 {
858 int r = error;
859 struct dm_rq_target_io *tio = clone->end_io_data;
860 dm_request_endio_fn rq_end_io = NULL;
861
862 if (tio->ti) {
863 rq_end_io = tio->ti->type->rq_end_io;
864
865 if (mapped && rq_end_io)
866 r = rq_end_io(tio->ti, clone, error, &tio->info);
867 }
868
869 if (r <= 0)
870 /* The target wants to complete the I/O */
871 dm_end_request(clone, r);
872 else if (r == DM_ENDIO_INCOMPLETE)
873 /* The target will handle the I/O */
874 return;
875 else if (r == DM_ENDIO_REQUEUE)
876 /* The target wants to requeue the I/O */
877 dm_requeue_unmapped_request(clone);
878 else {
879 DMWARN("unimplemented target endio return value: %d", r);
880 BUG();
881 }
882 }
883
884 /*
885 * Request completion handler for request-based dm
886 */
887 static void dm_softirq_done(struct request *rq)
888 {
889 bool mapped = true;
890 struct request *clone = rq->completion_data;
891 struct dm_rq_target_io *tio = clone->end_io_data;
892
893 if (rq->cmd_flags & REQ_FAILED)
894 mapped = false;
895
896 dm_done(clone, tio->error, mapped);
897 }
898
899 /*
900 * Complete the clone and the original request with the error status
901 * through softirq context.
902 */
903 static void dm_complete_request(struct request *clone, int error)
904 {
905 struct dm_rq_target_io *tio = clone->end_io_data;
906 struct request *rq = tio->orig;
907
908 tio->error = error;
909 rq->completion_data = clone;
910 blk_complete_request(rq);
911 }
912
913 /*
914 * Complete the not-mapped clone and the original request with the error status
915 * through softirq context.
916 * Target's rq_end_io() function isn't called.
917 * This may be used when the target's map_rq() function fails.
918 */
919 void dm_kill_unmapped_request(struct request *clone, int error)
920 {
921 struct dm_rq_target_io *tio = clone->end_io_data;
922 struct request *rq = tio->orig;
923
924 rq->cmd_flags |= REQ_FAILED;
925 dm_complete_request(clone, error);
926 }
927 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
928
929 /*
930 * Called with the queue lock held
931 */
932 static void end_clone_request(struct request *clone, int error)
933 {
934 /*
935 * For just cleaning up the information of the queue in which
936 * the clone was dispatched.
937 * The clone is *NOT* freed actually here because it is alloced from
938 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
939 */
940 __blk_put_request(clone->q, clone);
941
942 /*
943 * Actual request completion is done in a softirq context which doesn't
944 * hold the queue lock. Otherwise, deadlock could occur because:
945 * - another request may be submitted by the upper level driver
946 * of the stacking during the completion
947 * - the submission which requires queue lock may be done
948 * against this queue
949 */
950 dm_complete_request(clone, error);
951 }
952
953 /*
954 * Return maximum size of I/O possible at the supplied sector up to the current
955 * target boundary.
956 */
957 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
958 {
959 sector_t target_offset = dm_target_offset(ti, sector);
960
961 return ti->len - target_offset;
962 }
963
964 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
965 {
966 sector_t len = max_io_len_target_boundary(sector, ti);
967 sector_t offset, max_len;
968
969 /*
970 * Does the target need to split even further?
971 */
972 if (ti->max_io_len) {
973 offset = dm_target_offset(ti, sector);
974 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
975 max_len = sector_div(offset, ti->max_io_len);
976 else
977 max_len = offset & (ti->max_io_len - 1);
978 max_len = ti->max_io_len - max_len;
979
980 if (len > max_len)
981 len = max_len;
982 }
983
984 return len;
985 }
986
987 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
988 {
989 if (len > UINT_MAX) {
990 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
991 (unsigned long long)len, UINT_MAX);
992 ti->error = "Maximum size of target IO is too large";
993 return -EINVAL;
994 }
995
996 ti->max_io_len = (uint32_t) len;
997
998 return 0;
999 }
1000 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1001
1002 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
1003 {
1004 int r;
1005 sector_t sector;
1006 struct mapped_device *md;
1007 struct bio *clone = &tio->clone;
1008
1009 clone->bi_end_io = clone_endio;
1010 clone->bi_private = tio;
1011
1012 /*
1013 * Map the clone. If r == 0 we don't need to do
1014 * anything, the target has assumed ownership of
1015 * this io.
1016 */
1017 atomic_inc(&tio->io->io_count);
1018 sector = clone->bi_sector;
1019 r = ti->type->map(ti, clone, &tio->info);
1020 if (r == DM_MAPIO_REMAPPED) {
1021 /* the bio has been remapped so dispatch it */
1022
1023 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1024 tio->io->bio->bi_bdev->bd_dev, sector);
1025
1026 generic_make_request(clone);
1027 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1028 /* error the io and bail out, or requeue it if needed */
1029 md = tio->io->md;
1030 dec_pending(tio->io, r);
1031 free_tio(md, tio);
1032 } else if (r) {
1033 DMWARN("unimplemented target map return value: %d", r);
1034 BUG();
1035 }
1036 }
1037
1038 struct clone_info {
1039 struct mapped_device *md;
1040 struct dm_table *map;
1041 struct bio *bio;
1042 struct dm_io *io;
1043 sector_t sector;
1044 sector_t sector_count;
1045 unsigned short idx;
1046 };
1047
1048 /*
1049 * Creates a little bio that just does part of a bvec.
1050 */
1051 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1052 sector_t sector, unsigned short idx, unsigned int offset,
1053 unsigned int len, struct bio_set *bs)
1054 {
1055 struct bio *clone = &tio->clone;
1056 struct bio_vec *bv = bio->bi_io_vec + idx;
1057
1058 *clone->bi_io_vec = *bv;
1059
1060 clone->bi_sector = sector;
1061 clone->bi_bdev = bio->bi_bdev;
1062 clone->bi_rw = bio->bi_rw;
1063 clone->bi_vcnt = 1;
1064 clone->bi_size = to_bytes(len);
1065 clone->bi_io_vec->bv_offset = offset;
1066 clone->bi_io_vec->bv_len = clone->bi_size;
1067 clone->bi_flags |= 1 << BIO_CLONED;
1068
1069 if (bio_integrity(bio)) {
1070 bio_integrity_clone(clone, bio, GFP_NOIO);
1071 bio_integrity_trim(clone,
1072 bio_sector_offset(bio, idx, offset), len);
1073 }
1074 }
1075
1076 /*
1077 * Creates a bio that consists of range of complete bvecs.
1078 */
1079 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1080 sector_t sector, unsigned short idx,
1081 unsigned short bv_count, unsigned int len,
1082 struct bio_set *bs)
1083 {
1084 struct bio *clone = &tio->clone;
1085
1086 __bio_clone(clone, bio);
1087 clone->bi_sector = sector;
1088 clone->bi_idx = idx;
1089 clone->bi_vcnt = idx + bv_count;
1090 clone->bi_size = to_bytes(len);
1091 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1092
1093 if (bio_integrity(bio)) {
1094 bio_integrity_clone(clone, bio, GFP_NOIO);
1095
1096 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1097 bio_integrity_trim(clone,
1098 bio_sector_offset(bio, idx, 0), len);
1099 }
1100 }
1101
1102 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1103 struct dm_target *ti, int nr_iovecs)
1104 {
1105 struct dm_target_io *tio;
1106 struct bio *clone;
1107
1108 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1109 tio = container_of(clone, struct dm_target_io, clone);
1110
1111 tio->io = ci->io;
1112 tio->ti = ti;
1113 memset(&tio->info, 0, sizeof(tio->info));
1114
1115 return tio;
1116 }
1117
1118 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1119 unsigned request_nr, sector_t len)
1120 {
1121 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
1122 struct bio *clone = &tio->clone;
1123
1124 tio->info.target_request_nr = request_nr;
1125
1126 /*
1127 * Discard requests require the bio's inline iovecs be initialized.
1128 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1129 * and discard, so no need for concern about wasted bvec allocations.
1130 */
1131
1132 __bio_clone(clone, ci->bio);
1133 if (len) {
1134 clone->bi_sector = ci->sector;
1135 clone->bi_size = to_bytes(len);
1136 }
1137
1138 __map_bio(ti, tio);
1139 }
1140
1141 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1142 unsigned num_requests, sector_t len)
1143 {
1144 unsigned request_nr;
1145
1146 for (request_nr = 0; request_nr < num_requests; request_nr++)
1147 __issue_target_request(ci, ti, request_nr, len);
1148 }
1149
1150 static int __clone_and_map_empty_flush(struct clone_info *ci)
1151 {
1152 unsigned target_nr = 0;
1153 struct dm_target *ti;
1154
1155 BUG_ON(bio_has_data(ci->bio));
1156 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1157 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * Perform all io with a single clone.
1164 */
1165 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1166 {
1167 struct bio *bio = ci->bio;
1168 struct dm_target_io *tio;
1169
1170 tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1171 clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1172 ci->sector_count, ci->md->bs);
1173 __map_bio(ti, tio);
1174 ci->sector_count = 0;
1175 }
1176
1177 static int __clone_and_map_discard(struct clone_info *ci)
1178 {
1179 struct dm_target *ti;
1180 sector_t len;
1181
1182 do {
1183 ti = dm_table_find_target(ci->map, ci->sector);
1184 if (!dm_target_is_valid(ti))
1185 return -EIO;
1186
1187 /*
1188 * Even though the device advertised discard support,
1189 * that does not mean every target supports it, and
1190 * reconfiguration might also have changed that since the
1191 * check was performed.
1192 */
1193 if (!ti->num_discard_requests)
1194 return -EOPNOTSUPP;
1195
1196 if (!ti->split_discard_requests)
1197 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1198 else
1199 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1200
1201 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1202
1203 ci->sector += len;
1204 } while (ci->sector_count -= len);
1205
1206 return 0;
1207 }
1208
1209 static int __clone_and_map(struct clone_info *ci)
1210 {
1211 struct bio *bio = ci->bio;
1212 struct dm_target *ti;
1213 sector_t len = 0, max;
1214 struct dm_target_io *tio;
1215
1216 if (unlikely(bio->bi_rw & REQ_DISCARD))
1217 return __clone_and_map_discard(ci);
1218
1219 ti = dm_table_find_target(ci->map, ci->sector);
1220 if (!dm_target_is_valid(ti))
1221 return -EIO;
1222
1223 max = max_io_len(ci->sector, ti);
1224
1225 if (ci->sector_count <= max) {
1226 /*
1227 * Optimise for the simple case where we can do all of
1228 * the remaining io with a single clone.
1229 */
1230 __clone_and_map_simple(ci, ti);
1231
1232 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1233 /*
1234 * There are some bvecs that don't span targets.
1235 * Do as many of these as possible.
1236 */
1237 int i;
1238 sector_t remaining = max;
1239 sector_t bv_len;
1240
1241 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1242 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1243
1244 if (bv_len > remaining)
1245 break;
1246
1247 remaining -= bv_len;
1248 len += bv_len;
1249 }
1250
1251 tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1252 clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
1253 ci->md->bs);
1254 __map_bio(ti, tio);
1255
1256 ci->sector += len;
1257 ci->sector_count -= len;
1258 ci->idx = i;
1259
1260 } else {
1261 /*
1262 * Handle a bvec that must be split between two or more targets.
1263 */
1264 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1265 sector_t remaining = to_sector(bv->bv_len);
1266 unsigned int offset = 0;
1267
1268 do {
1269 if (offset) {
1270 ti = dm_table_find_target(ci->map, ci->sector);
1271 if (!dm_target_is_valid(ti))
1272 return -EIO;
1273
1274 max = max_io_len(ci->sector, ti);
1275 }
1276
1277 len = min(remaining, max);
1278
1279 tio = alloc_tio(ci, ti, 1);
1280 split_bvec(tio, bio, ci->sector, ci->idx,
1281 bv->bv_offset + offset, len, ci->md->bs);
1282
1283 __map_bio(ti, tio);
1284
1285 ci->sector += len;
1286 ci->sector_count -= len;
1287 offset += to_bytes(len);
1288 } while (remaining -= len);
1289
1290 ci->idx++;
1291 }
1292
1293 return 0;
1294 }
1295
1296 /*
1297 * Split the bio into several clones and submit it to targets.
1298 */
1299 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1300 {
1301 struct clone_info ci;
1302 int error = 0;
1303
1304 ci.map = dm_get_live_table(md);
1305 if (unlikely(!ci.map)) {
1306 bio_io_error(bio);
1307 return;
1308 }
1309
1310 ci.md = md;
1311 ci.io = alloc_io(md);
1312 ci.io->error = 0;
1313 atomic_set(&ci.io->io_count, 1);
1314 ci.io->bio = bio;
1315 ci.io->md = md;
1316 spin_lock_init(&ci.io->endio_lock);
1317 ci.sector = bio->bi_sector;
1318 ci.idx = bio->bi_idx;
1319
1320 start_io_acct(ci.io);
1321 if (bio->bi_rw & REQ_FLUSH) {
1322 ci.bio = &ci.md->flush_bio;
1323 ci.sector_count = 0;
1324 error = __clone_and_map_empty_flush(&ci);
1325 /* dec_pending submits any data associated with flush */
1326 } else {
1327 ci.bio = bio;
1328 ci.sector_count = bio_sectors(bio);
1329 while (ci.sector_count && !error)
1330 error = __clone_and_map(&ci);
1331 }
1332
1333 /* drop the extra reference count */
1334 dec_pending(ci.io, error);
1335 dm_table_put(ci.map);
1336 }
1337 /*-----------------------------------------------------------------
1338 * CRUD END
1339 *---------------------------------------------------------------*/
1340
1341 static int dm_merge_bvec(struct request_queue *q,
1342 struct bvec_merge_data *bvm,
1343 struct bio_vec *biovec)
1344 {
1345 struct mapped_device *md = q->queuedata;
1346 struct dm_table *map = dm_get_live_table(md);
1347 struct dm_target *ti;
1348 sector_t max_sectors;
1349 int max_size = 0;
1350
1351 if (unlikely(!map))
1352 goto out;
1353
1354 ti = dm_table_find_target(map, bvm->bi_sector);
1355 if (!dm_target_is_valid(ti))
1356 goto out_table;
1357
1358 /*
1359 * Find maximum amount of I/O that won't need splitting
1360 */
1361 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1362 (sector_t) BIO_MAX_SECTORS);
1363 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1364 if (max_size < 0)
1365 max_size = 0;
1366
1367 /*
1368 * merge_bvec_fn() returns number of bytes
1369 * it can accept at this offset
1370 * max is precomputed maximal io size
1371 */
1372 if (max_size && ti->type->merge)
1373 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1374 /*
1375 * If the target doesn't support merge method and some of the devices
1376 * provided their merge_bvec method (we know this by looking at
1377 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1378 * entries. So always set max_size to 0, and the code below allows
1379 * just one page.
1380 */
1381 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1382
1383 max_size = 0;
1384
1385 out_table:
1386 dm_table_put(map);
1387
1388 out:
1389 /*
1390 * Always allow an entire first page
1391 */
1392 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1393 max_size = biovec->bv_len;
1394
1395 return max_size;
1396 }
1397
1398 /*
1399 * The request function that just remaps the bio built up by
1400 * dm_merge_bvec.
1401 */
1402 static void _dm_request(struct request_queue *q, struct bio *bio)
1403 {
1404 int rw = bio_data_dir(bio);
1405 struct mapped_device *md = q->queuedata;
1406 int cpu;
1407
1408 down_read(&md->io_lock);
1409
1410 cpu = part_stat_lock();
1411 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1412 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1413 part_stat_unlock();
1414
1415 /* if we're suspended, we have to queue this io for later */
1416 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1417 up_read(&md->io_lock);
1418
1419 if (bio_rw(bio) != READA)
1420 queue_io(md, bio);
1421 else
1422 bio_io_error(bio);
1423 return;
1424 }
1425
1426 __split_and_process_bio(md, bio);
1427 up_read(&md->io_lock);
1428 return;
1429 }
1430
1431 static int dm_request_based(struct mapped_device *md)
1432 {
1433 return blk_queue_stackable(md->queue);
1434 }
1435
1436 static void dm_request(struct request_queue *q, struct bio *bio)
1437 {
1438 struct mapped_device *md = q->queuedata;
1439
1440 if (dm_request_based(md))
1441 blk_queue_bio(q, bio);
1442 else
1443 _dm_request(q, bio);
1444 }
1445
1446 void dm_dispatch_request(struct request *rq)
1447 {
1448 int r;
1449
1450 if (blk_queue_io_stat(rq->q))
1451 rq->cmd_flags |= REQ_IO_STAT;
1452
1453 rq->start_time = jiffies;
1454 r = blk_insert_cloned_request(rq->q, rq);
1455 if (r)
1456 dm_complete_request(rq, r);
1457 }
1458 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1459
1460 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1461 void *data)
1462 {
1463 struct dm_rq_target_io *tio = data;
1464 struct dm_rq_clone_bio_info *info =
1465 container_of(bio, struct dm_rq_clone_bio_info, clone);
1466
1467 info->orig = bio_orig;
1468 info->tio = tio;
1469 bio->bi_end_io = end_clone_bio;
1470 bio->bi_private = info;
1471
1472 return 0;
1473 }
1474
1475 static int setup_clone(struct request *clone, struct request *rq,
1476 struct dm_rq_target_io *tio)
1477 {
1478 int r;
1479
1480 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1481 dm_rq_bio_constructor, tio);
1482 if (r)
1483 return r;
1484
1485 clone->cmd = rq->cmd;
1486 clone->cmd_len = rq->cmd_len;
1487 clone->sense = rq->sense;
1488 clone->buffer = rq->buffer;
1489 clone->end_io = end_clone_request;
1490 clone->end_io_data = tio;
1491
1492 return 0;
1493 }
1494
1495 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1496 gfp_t gfp_mask)
1497 {
1498 struct request *clone;
1499 struct dm_rq_target_io *tio;
1500
1501 tio = alloc_rq_tio(md, gfp_mask);
1502 if (!tio)
1503 return NULL;
1504
1505 tio->md = md;
1506 tio->ti = NULL;
1507 tio->orig = rq;
1508 tio->error = 0;
1509 memset(&tio->info, 0, sizeof(tio->info));
1510
1511 clone = &tio->clone;
1512 if (setup_clone(clone, rq, tio)) {
1513 /* -ENOMEM */
1514 free_rq_tio(tio);
1515 return NULL;
1516 }
1517
1518 return clone;
1519 }
1520
1521 /*
1522 * Called with the queue lock held.
1523 */
1524 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1525 {
1526 struct mapped_device *md = q->queuedata;
1527 struct request *clone;
1528
1529 if (unlikely(rq->special)) {
1530 DMWARN("Already has something in rq->special.");
1531 return BLKPREP_KILL;
1532 }
1533
1534 clone = clone_rq(rq, md, GFP_ATOMIC);
1535 if (!clone)
1536 return BLKPREP_DEFER;
1537
1538 rq->special = clone;
1539 rq->cmd_flags |= REQ_DONTPREP;
1540
1541 return BLKPREP_OK;
1542 }
1543
1544 /*
1545 * Returns:
1546 * 0 : the request has been processed (not requeued)
1547 * !0 : the request has been requeued
1548 */
1549 static int map_request(struct dm_target *ti, struct request *clone,
1550 struct mapped_device *md)
1551 {
1552 int r, requeued = 0;
1553 struct dm_rq_target_io *tio = clone->end_io_data;
1554
1555 tio->ti = ti;
1556 r = ti->type->map_rq(ti, clone, &tio->info);
1557 switch (r) {
1558 case DM_MAPIO_SUBMITTED:
1559 /* The target has taken the I/O to submit by itself later */
1560 break;
1561 case DM_MAPIO_REMAPPED:
1562 /* The target has remapped the I/O so dispatch it */
1563 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1564 blk_rq_pos(tio->orig));
1565 dm_dispatch_request(clone);
1566 break;
1567 case DM_MAPIO_REQUEUE:
1568 /* The target wants to requeue the I/O */
1569 dm_requeue_unmapped_request(clone);
1570 requeued = 1;
1571 break;
1572 default:
1573 if (r > 0) {
1574 DMWARN("unimplemented target map return value: %d", r);
1575 BUG();
1576 }
1577
1578 /* The target wants to complete the I/O */
1579 dm_kill_unmapped_request(clone, r);
1580 break;
1581 }
1582
1583 return requeued;
1584 }
1585
1586 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1587 {
1588 struct request *clone;
1589
1590 blk_start_request(orig);
1591 clone = orig->special;
1592 atomic_inc(&md->pending[rq_data_dir(clone)]);
1593
1594 /*
1595 * Hold the md reference here for the in-flight I/O.
1596 * We can't rely on the reference count by device opener,
1597 * because the device may be closed during the request completion
1598 * when all bios are completed.
1599 * See the comment in rq_completed() too.
1600 */
1601 dm_get(md);
1602
1603 return clone;
1604 }
1605
1606 /*
1607 * q->request_fn for request-based dm.
1608 * Called with the queue lock held.
1609 */
1610 static void dm_request_fn(struct request_queue *q)
1611 {
1612 struct mapped_device *md = q->queuedata;
1613 struct dm_table *map = dm_get_live_table(md);
1614 struct dm_target *ti;
1615 struct request *rq, *clone;
1616 sector_t pos;
1617
1618 /*
1619 * For suspend, check blk_queue_stopped() and increment
1620 * ->pending within a single queue_lock not to increment the
1621 * number of in-flight I/Os after the queue is stopped in
1622 * dm_suspend().
1623 */
1624 while (!blk_queue_stopped(q)) {
1625 rq = blk_peek_request(q);
1626 if (!rq)
1627 goto delay_and_out;
1628
1629 /* always use block 0 to find the target for flushes for now */
1630 pos = 0;
1631 if (!(rq->cmd_flags & REQ_FLUSH))
1632 pos = blk_rq_pos(rq);
1633
1634 ti = dm_table_find_target(map, pos);
1635 if (!dm_target_is_valid(ti)) {
1636 /*
1637 * Must perform setup, that dm_done() requires,
1638 * before calling dm_kill_unmapped_request
1639 */
1640 DMERR_LIMIT("request attempted access beyond the end of device");
1641 clone = dm_start_request(md, rq);
1642 dm_kill_unmapped_request(clone, -EIO);
1643 continue;
1644 }
1645
1646 if (ti->type->busy && ti->type->busy(ti))
1647 goto delay_and_out;
1648
1649 clone = dm_start_request(md, rq);
1650
1651 spin_unlock(q->queue_lock);
1652 if (map_request(ti, clone, md))
1653 goto requeued;
1654
1655 BUG_ON(!irqs_disabled());
1656 spin_lock(q->queue_lock);
1657 }
1658
1659 goto out;
1660
1661 requeued:
1662 BUG_ON(!irqs_disabled());
1663 spin_lock(q->queue_lock);
1664
1665 delay_and_out:
1666 blk_delay_queue(q, HZ / 10);
1667 out:
1668 dm_table_put(map);
1669 }
1670
1671 int dm_underlying_device_busy(struct request_queue *q)
1672 {
1673 return blk_lld_busy(q);
1674 }
1675 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1676
1677 static int dm_lld_busy(struct request_queue *q)
1678 {
1679 int r;
1680 struct mapped_device *md = q->queuedata;
1681 struct dm_table *map = dm_get_live_table(md);
1682
1683 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1684 r = 1;
1685 else
1686 r = dm_table_any_busy_target(map);
1687
1688 dm_table_put(map);
1689
1690 return r;
1691 }
1692
1693 static int dm_any_congested(void *congested_data, int bdi_bits)
1694 {
1695 int r = bdi_bits;
1696 struct mapped_device *md = congested_data;
1697 struct dm_table *map;
1698
1699 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1700 map = dm_get_live_table(md);
1701 if (map) {
1702 /*
1703 * Request-based dm cares about only own queue for
1704 * the query about congestion status of request_queue
1705 */
1706 if (dm_request_based(md))
1707 r = md->queue->backing_dev_info.state &
1708 bdi_bits;
1709 else
1710 r = dm_table_any_congested(map, bdi_bits);
1711
1712 dm_table_put(map);
1713 }
1714 }
1715
1716 return r;
1717 }
1718
1719 /*-----------------------------------------------------------------
1720 * An IDR is used to keep track of allocated minor numbers.
1721 *---------------------------------------------------------------*/
1722 static void free_minor(int minor)
1723 {
1724 spin_lock(&_minor_lock);
1725 idr_remove(&_minor_idr, minor);
1726 spin_unlock(&_minor_lock);
1727 }
1728
1729 /*
1730 * See if the device with a specific minor # is free.
1731 */
1732 static int specific_minor(int minor)
1733 {
1734 int r, m;
1735
1736 if (minor >= (1 << MINORBITS))
1737 return -EINVAL;
1738
1739 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1740 if (!r)
1741 return -ENOMEM;
1742
1743 spin_lock(&_minor_lock);
1744
1745 if (idr_find(&_minor_idr, minor)) {
1746 r = -EBUSY;
1747 goto out;
1748 }
1749
1750 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1751 if (r)
1752 goto out;
1753
1754 if (m != minor) {
1755 idr_remove(&_minor_idr, m);
1756 r = -EBUSY;
1757 goto out;
1758 }
1759
1760 out:
1761 spin_unlock(&_minor_lock);
1762 return r;
1763 }
1764
1765 static int next_free_minor(int *minor)
1766 {
1767 int r, m;
1768
1769 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1770 if (!r)
1771 return -ENOMEM;
1772
1773 spin_lock(&_minor_lock);
1774
1775 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1776 if (r)
1777 goto out;
1778
1779 if (m >= (1 << MINORBITS)) {
1780 idr_remove(&_minor_idr, m);
1781 r = -ENOSPC;
1782 goto out;
1783 }
1784
1785 *minor = m;
1786
1787 out:
1788 spin_unlock(&_minor_lock);
1789 return r;
1790 }
1791
1792 static const struct block_device_operations dm_blk_dops;
1793
1794 static void dm_wq_work(struct work_struct *work);
1795
1796 static void dm_init_md_queue(struct mapped_device *md)
1797 {
1798 /*
1799 * Request-based dm devices cannot be stacked on top of bio-based dm
1800 * devices. The type of this dm device has not been decided yet.
1801 * The type is decided at the first table loading time.
1802 * To prevent problematic device stacking, clear the queue flag
1803 * for request stacking support until then.
1804 *
1805 * This queue is new, so no concurrency on the queue_flags.
1806 */
1807 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1808
1809 md->queue->queuedata = md;
1810 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1811 md->queue->backing_dev_info.congested_data = md;
1812 blk_queue_make_request(md->queue, dm_request);
1813 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1814 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1815 }
1816
1817 /*
1818 * Allocate and initialise a blank device with a given minor.
1819 */
1820 static struct mapped_device *alloc_dev(int minor)
1821 {
1822 int r;
1823 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1824 void *old_md;
1825
1826 if (!md) {
1827 DMWARN("unable to allocate device, out of memory.");
1828 return NULL;
1829 }
1830
1831 if (!try_module_get(THIS_MODULE))
1832 goto bad_module_get;
1833
1834 /* get a minor number for the dev */
1835 if (minor == DM_ANY_MINOR)
1836 r = next_free_minor(&minor);
1837 else
1838 r = specific_minor(minor);
1839 if (r < 0)
1840 goto bad_minor;
1841
1842 md->type = DM_TYPE_NONE;
1843 init_rwsem(&md->io_lock);
1844 mutex_init(&md->suspend_lock);
1845 mutex_init(&md->type_lock);
1846 spin_lock_init(&md->deferred_lock);
1847 rwlock_init(&md->map_lock);
1848 atomic_set(&md->holders, 1);
1849 atomic_set(&md->open_count, 0);
1850 atomic_set(&md->event_nr, 0);
1851 atomic_set(&md->uevent_seq, 0);
1852 INIT_LIST_HEAD(&md->uevent_list);
1853 spin_lock_init(&md->uevent_lock);
1854
1855 md->queue = blk_alloc_queue(GFP_KERNEL);
1856 if (!md->queue)
1857 goto bad_queue;
1858
1859 dm_init_md_queue(md);
1860
1861 md->disk = alloc_disk(1);
1862 if (!md->disk)
1863 goto bad_disk;
1864
1865 atomic_set(&md->pending[0], 0);
1866 atomic_set(&md->pending[1], 0);
1867 init_waitqueue_head(&md->wait);
1868 INIT_WORK(&md->work, dm_wq_work);
1869 init_waitqueue_head(&md->eventq);
1870
1871 md->disk->major = _major;
1872 md->disk->first_minor = minor;
1873 md->disk->fops = &dm_blk_dops;
1874 md->disk->queue = md->queue;
1875 md->disk->private_data = md;
1876 sprintf(md->disk->disk_name, "dm-%d", minor);
1877 add_disk(md->disk);
1878 format_dev_t(md->name, MKDEV(_major, minor));
1879
1880 md->wq = alloc_workqueue("kdmflush",
1881 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1882 if (!md->wq)
1883 goto bad_thread;
1884
1885 md->bdev = bdget_disk(md->disk, 0);
1886 if (!md->bdev)
1887 goto bad_bdev;
1888
1889 bio_init(&md->flush_bio);
1890 md->flush_bio.bi_bdev = md->bdev;
1891 md->flush_bio.bi_rw = WRITE_FLUSH;
1892
1893 /* Populate the mapping, nobody knows we exist yet */
1894 spin_lock(&_minor_lock);
1895 old_md = idr_replace(&_minor_idr, md, minor);
1896 spin_unlock(&_minor_lock);
1897
1898 BUG_ON(old_md != MINOR_ALLOCED);
1899
1900 return md;
1901
1902 bad_bdev:
1903 destroy_workqueue(md->wq);
1904 bad_thread:
1905 del_gendisk(md->disk);
1906 put_disk(md->disk);
1907 bad_disk:
1908 blk_cleanup_queue(md->queue);
1909 bad_queue:
1910 free_minor(minor);
1911 bad_minor:
1912 module_put(THIS_MODULE);
1913 bad_module_get:
1914 kfree(md);
1915 return NULL;
1916 }
1917
1918 static void unlock_fs(struct mapped_device *md);
1919
1920 static void free_dev(struct mapped_device *md)
1921 {
1922 int minor = MINOR(disk_devt(md->disk));
1923
1924 unlock_fs(md);
1925 bdput(md->bdev);
1926 destroy_workqueue(md->wq);
1927 if (md->tio_pool)
1928 mempool_destroy(md->tio_pool);
1929 if (md->io_pool)
1930 mempool_destroy(md->io_pool);
1931 if (md->bs)
1932 bioset_free(md->bs);
1933 blk_integrity_unregister(md->disk);
1934 del_gendisk(md->disk);
1935 free_minor(minor);
1936
1937 spin_lock(&_minor_lock);
1938 md->disk->private_data = NULL;
1939 spin_unlock(&_minor_lock);
1940
1941 put_disk(md->disk);
1942 blk_cleanup_queue(md->queue);
1943 module_put(THIS_MODULE);
1944 kfree(md);
1945 }
1946
1947 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1948 {
1949 struct dm_md_mempools *p;
1950
1951 if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs)
1952 /* the md already has necessary mempools */
1953 goto out;
1954
1955 p = dm_table_get_md_mempools(t);
1956 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1957
1958 md->io_pool = p->io_pool;
1959 p->io_pool = NULL;
1960 md->tio_pool = p->tio_pool;
1961 p->tio_pool = NULL;
1962 md->bs = p->bs;
1963 p->bs = NULL;
1964
1965 out:
1966 /* mempool bind completed, now no need any mempools in the table */
1967 dm_table_free_md_mempools(t);
1968 }
1969
1970 /*
1971 * Bind a table to the device.
1972 */
1973 static void event_callback(void *context)
1974 {
1975 unsigned long flags;
1976 LIST_HEAD(uevents);
1977 struct mapped_device *md = (struct mapped_device *) context;
1978
1979 spin_lock_irqsave(&md->uevent_lock, flags);
1980 list_splice_init(&md->uevent_list, &uevents);
1981 spin_unlock_irqrestore(&md->uevent_lock, flags);
1982
1983 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1984
1985 atomic_inc(&md->event_nr);
1986 wake_up(&md->eventq);
1987 }
1988
1989 /*
1990 * Protected by md->suspend_lock obtained by dm_swap_table().
1991 */
1992 static void __set_size(struct mapped_device *md, sector_t size)
1993 {
1994 set_capacity(md->disk, size);
1995
1996 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1997 }
1998
1999 /*
2000 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2001 *
2002 * If this function returns 0, then the device is either a non-dm
2003 * device without a merge_bvec_fn, or it is a dm device that is
2004 * able to split any bios it receives that are too big.
2005 */
2006 int dm_queue_merge_is_compulsory(struct request_queue *q)
2007 {
2008 struct mapped_device *dev_md;
2009
2010 if (!q->merge_bvec_fn)
2011 return 0;
2012
2013 if (q->make_request_fn == dm_request) {
2014 dev_md = q->queuedata;
2015 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2016 return 0;
2017 }
2018
2019 return 1;
2020 }
2021
2022 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2023 struct dm_dev *dev, sector_t start,
2024 sector_t len, void *data)
2025 {
2026 struct block_device *bdev = dev->bdev;
2027 struct request_queue *q = bdev_get_queue(bdev);
2028
2029 return dm_queue_merge_is_compulsory(q);
2030 }
2031
2032 /*
2033 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2034 * on the properties of the underlying devices.
2035 */
2036 static int dm_table_merge_is_optional(struct dm_table *table)
2037 {
2038 unsigned i = 0;
2039 struct dm_target *ti;
2040
2041 while (i < dm_table_get_num_targets(table)) {
2042 ti = dm_table_get_target(table, i++);
2043
2044 if (ti->type->iterate_devices &&
2045 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2046 return 0;
2047 }
2048
2049 return 1;
2050 }
2051
2052 /*
2053 * Returns old map, which caller must destroy.
2054 */
2055 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2056 struct queue_limits *limits)
2057 {
2058 struct dm_table *old_map;
2059 struct request_queue *q = md->queue;
2060 sector_t size;
2061 unsigned long flags;
2062 int merge_is_optional;
2063
2064 size = dm_table_get_size(t);
2065
2066 /*
2067 * Wipe any geometry if the size of the table changed.
2068 */
2069 if (size != get_capacity(md->disk))
2070 memset(&md->geometry, 0, sizeof(md->geometry));
2071
2072 __set_size(md, size);
2073
2074 dm_table_event_callback(t, event_callback, md);
2075
2076 /*
2077 * The queue hasn't been stopped yet, if the old table type wasn't
2078 * for request-based during suspension. So stop it to prevent
2079 * I/O mapping before resume.
2080 * This must be done before setting the queue restrictions,
2081 * because request-based dm may be run just after the setting.
2082 */
2083 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2084 stop_queue(q);
2085
2086 __bind_mempools(md, t);
2087
2088 merge_is_optional = dm_table_merge_is_optional(t);
2089
2090 write_lock_irqsave(&md->map_lock, flags);
2091 old_map = md->map;
2092 md->map = t;
2093 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2094
2095 dm_table_set_restrictions(t, q, limits);
2096 if (merge_is_optional)
2097 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2098 else
2099 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2100 write_unlock_irqrestore(&md->map_lock, flags);
2101
2102 return old_map;
2103 }
2104
2105 /*
2106 * Returns unbound table for the caller to free.
2107 */
2108 static struct dm_table *__unbind(struct mapped_device *md)
2109 {
2110 struct dm_table *map = md->map;
2111 unsigned long flags;
2112
2113 if (!map)
2114 return NULL;
2115
2116 dm_table_event_callback(map, NULL, NULL);
2117 write_lock_irqsave(&md->map_lock, flags);
2118 md->map = NULL;
2119 write_unlock_irqrestore(&md->map_lock, flags);
2120
2121 return map;
2122 }
2123
2124 /*
2125 * Constructor for a new device.
2126 */
2127 int dm_create(int minor, struct mapped_device **result)
2128 {
2129 struct mapped_device *md;
2130
2131 md = alloc_dev(minor);
2132 if (!md)
2133 return -ENXIO;
2134
2135 dm_sysfs_init(md);
2136
2137 *result = md;
2138 return 0;
2139 }
2140
2141 /*
2142 * Functions to manage md->type.
2143 * All are required to hold md->type_lock.
2144 */
2145 void dm_lock_md_type(struct mapped_device *md)
2146 {
2147 mutex_lock(&md->type_lock);
2148 }
2149
2150 void dm_unlock_md_type(struct mapped_device *md)
2151 {
2152 mutex_unlock(&md->type_lock);
2153 }
2154
2155 void dm_set_md_type(struct mapped_device *md, unsigned type)
2156 {
2157 md->type = type;
2158 }
2159
2160 unsigned dm_get_md_type(struct mapped_device *md)
2161 {
2162 return md->type;
2163 }
2164
2165 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2166 {
2167 return md->immutable_target_type;
2168 }
2169
2170 /*
2171 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2172 */
2173 static int dm_init_request_based_queue(struct mapped_device *md)
2174 {
2175 struct request_queue *q = NULL;
2176
2177 if (md->queue->elevator)
2178 return 1;
2179
2180 /* Fully initialize the queue */
2181 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2182 if (!q)
2183 return 0;
2184
2185 md->queue = q;
2186 dm_init_md_queue(md);
2187 blk_queue_softirq_done(md->queue, dm_softirq_done);
2188 blk_queue_prep_rq(md->queue, dm_prep_fn);
2189 blk_queue_lld_busy(md->queue, dm_lld_busy);
2190
2191 elv_register_queue(md->queue);
2192
2193 return 1;
2194 }
2195
2196 /*
2197 * Setup the DM device's queue based on md's type
2198 */
2199 int dm_setup_md_queue(struct mapped_device *md)
2200 {
2201 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2202 !dm_init_request_based_queue(md)) {
2203 DMWARN("Cannot initialize queue for request-based mapped device");
2204 return -EINVAL;
2205 }
2206
2207 return 0;
2208 }
2209
2210 static struct mapped_device *dm_find_md(dev_t dev)
2211 {
2212 struct mapped_device *md;
2213 unsigned minor = MINOR(dev);
2214
2215 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2216 return NULL;
2217
2218 spin_lock(&_minor_lock);
2219
2220 md = idr_find(&_minor_idr, minor);
2221 if (md && (md == MINOR_ALLOCED ||
2222 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2223 dm_deleting_md(md) ||
2224 test_bit(DMF_FREEING, &md->flags))) {
2225 md = NULL;
2226 goto out;
2227 }
2228
2229 out:
2230 spin_unlock(&_minor_lock);
2231
2232 return md;
2233 }
2234
2235 struct mapped_device *dm_get_md(dev_t dev)
2236 {
2237 struct mapped_device *md = dm_find_md(dev);
2238
2239 if (md)
2240 dm_get(md);
2241
2242 return md;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_get_md);
2245
2246 void *dm_get_mdptr(struct mapped_device *md)
2247 {
2248 return md->interface_ptr;
2249 }
2250
2251 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2252 {
2253 md->interface_ptr = ptr;
2254 }
2255
2256 void dm_get(struct mapped_device *md)
2257 {
2258 atomic_inc(&md->holders);
2259 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2260 }
2261
2262 const char *dm_device_name(struct mapped_device *md)
2263 {
2264 return md->name;
2265 }
2266 EXPORT_SYMBOL_GPL(dm_device_name);
2267
2268 static void __dm_destroy(struct mapped_device *md, bool wait)
2269 {
2270 struct dm_table *map;
2271
2272 might_sleep();
2273
2274 spin_lock(&_minor_lock);
2275 map = dm_get_live_table(md);
2276 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2277 set_bit(DMF_FREEING, &md->flags);
2278 spin_unlock(&_minor_lock);
2279
2280 if (!dm_suspended_md(md)) {
2281 dm_table_presuspend_targets(map);
2282 dm_table_postsuspend_targets(map);
2283 }
2284
2285 /*
2286 * Rare, but there may be I/O requests still going to complete,
2287 * for example. Wait for all references to disappear.
2288 * No one should increment the reference count of the mapped_device,
2289 * after the mapped_device state becomes DMF_FREEING.
2290 */
2291 if (wait)
2292 while (atomic_read(&md->holders))
2293 msleep(1);
2294 else if (atomic_read(&md->holders))
2295 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2296 dm_device_name(md), atomic_read(&md->holders));
2297
2298 dm_sysfs_exit(md);
2299 dm_table_put(map);
2300 dm_table_destroy(__unbind(md));
2301 free_dev(md);
2302 }
2303
2304 void dm_destroy(struct mapped_device *md)
2305 {
2306 __dm_destroy(md, true);
2307 }
2308
2309 void dm_destroy_immediate(struct mapped_device *md)
2310 {
2311 __dm_destroy(md, false);
2312 }
2313
2314 void dm_put(struct mapped_device *md)
2315 {
2316 atomic_dec(&md->holders);
2317 }
2318 EXPORT_SYMBOL_GPL(dm_put);
2319
2320 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2321 {
2322 int r = 0;
2323 DECLARE_WAITQUEUE(wait, current);
2324
2325 add_wait_queue(&md->wait, &wait);
2326
2327 while (1) {
2328 set_current_state(interruptible);
2329
2330 if (!md_in_flight(md))
2331 break;
2332
2333 if (interruptible == TASK_INTERRUPTIBLE &&
2334 signal_pending(current)) {
2335 r = -EINTR;
2336 break;
2337 }
2338
2339 io_schedule();
2340 }
2341 set_current_state(TASK_RUNNING);
2342
2343 remove_wait_queue(&md->wait, &wait);
2344
2345 return r;
2346 }
2347
2348 /*
2349 * Process the deferred bios
2350 */
2351 static void dm_wq_work(struct work_struct *work)
2352 {
2353 struct mapped_device *md = container_of(work, struct mapped_device,
2354 work);
2355 struct bio *c;
2356
2357 down_read(&md->io_lock);
2358
2359 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2360 spin_lock_irq(&md->deferred_lock);
2361 c = bio_list_pop(&md->deferred);
2362 spin_unlock_irq(&md->deferred_lock);
2363
2364 if (!c)
2365 break;
2366
2367 up_read(&md->io_lock);
2368
2369 if (dm_request_based(md))
2370 generic_make_request(c);
2371 else
2372 __split_and_process_bio(md, c);
2373
2374 down_read(&md->io_lock);
2375 }
2376
2377 up_read(&md->io_lock);
2378 }
2379
2380 static void dm_queue_flush(struct mapped_device *md)
2381 {
2382 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2383 smp_mb__after_clear_bit();
2384 queue_work(md->wq, &md->work);
2385 }
2386
2387 /*
2388 * Swap in a new table, returning the old one for the caller to destroy.
2389 */
2390 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2391 {
2392 struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2393 struct queue_limits limits;
2394 int r;
2395
2396 mutex_lock(&md->suspend_lock);
2397
2398 /* device must be suspended */
2399 if (!dm_suspended_md(md))
2400 goto out;
2401
2402 /*
2403 * If the new table has no data devices, retain the existing limits.
2404 * This helps multipath with queue_if_no_path if all paths disappear,
2405 * then new I/O is queued based on these limits, and then some paths
2406 * reappear.
2407 */
2408 if (dm_table_has_no_data_devices(table)) {
2409 live_map = dm_get_live_table(md);
2410 if (live_map)
2411 limits = md->queue->limits;
2412 dm_table_put(live_map);
2413 }
2414
2415 r = dm_calculate_queue_limits(table, &limits);
2416 if (r) {
2417 map = ERR_PTR(r);
2418 goto out;
2419 }
2420
2421 map = __bind(md, table, &limits);
2422
2423 out:
2424 mutex_unlock(&md->suspend_lock);
2425 return map;
2426 }
2427
2428 /*
2429 * Functions to lock and unlock any filesystem running on the
2430 * device.
2431 */
2432 static int lock_fs(struct mapped_device *md)
2433 {
2434 int r;
2435
2436 WARN_ON(md->frozen_sb);
2437
2438 md->frozen_sb = freeze_bdev(md->bdev);
2439 if (IS_ERR(md->frozen_sb)) {
2440 r = PTR_ERR(md->frozen_sb);
2441 md->frozen_sb = NULL;
2442 return r;
2443 }
2444
2445 set_bit(DMF_FROZEN, &md->flags);
2446
2447 return 0;
2448 }
2449
2450 static void unlock_fs(struct mapped_device *md)
2451 {
2452 if (!test_bit(DMF_FROZEN, &md->flags))
2453 return;
2454
2455 thaw_bdev(md->bdev, md->frozen_sb);
2456 md->frozen_sb = NULL;
2457 clear_bit(DMF_FROZEN, &md->flags);
2458 }
2459
2460 /*
2461 * We need to be able to change a mapping table under a mounted
2462 * filesystem. For example we might want to move some data in
2463 * the background. Before the table can be swapped with
2464 * dm_bind_table, dm_suspend must be called to flush any in
2465 * flight bios and ensure that any further io gets deferred.
2466 */
2467 /*
2468 * Suspend mechanism in request-based dm.
2469 *
2470 * 1. Flush all I/Os by lock_fs() if needed.
2471 * 2. Stop dispatching any I/O by stopping the request_queue.
2472 * 3. Wait for all in-flight I/Os to be completed or requeued.
2473 *
2474 * To abort suspend, start the request_queue.
2475 */
2476 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2477 {
2478 struct dm_table *map = NULL;
2479 int r = 0;
2480 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2481 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2482
2483 mutex_lock(&md->suspend_lock);
2484
2485 if (dm_suspended_md(md)) {
2486 r = -EINVAL;
2487 goto out_unlock;
2488 }
2489
2490 map = dm_get_live_table(md);
2491
2492 /*
2493 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2494 * This flag is cleared before dm_suspend returns.
2495 */
2496 if (noflush)
2497 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2498
2499 /* This does not get reverted if there's an error later. */
2500 dm_table_presuspend_targets(map);
2501
2502 /*
2503 * Flush I/O to the device.
2504 * Any I/O submitted after lock_fs() may not be flushed.
2505 * noflush takes precedence over do_lockfs.
2506 * (lock_fs() flushes I/Os and waits for them to complete.)
2507 */
2508 if (!noflush && do_lockfs) {
2509 r = lock_fs(md);
2510 if (r)
2511 goto out;
2512 }
2513
2514 /*
2515 * Here we must make sure that no processes are submitting requests
2516 * to target drivers i.e. no one may be executing
2517 * __split_and_process_bio. This is called from dm_request and
2518 * dm_wq_work.
2519 *
2520 * To get all processes out of __split_and_process_bio in dm_request,
2521 * we take the write lock. To prevent any process from reentering
2522 * __split_and_process_bio from dm_request and quiesce the thread
2523 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2524 * flush_workqueue(md->wq).
2525 */
2526 down_write(&md->io_lock);
2527 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2528 up_write(&md->io_lock);
2529
2530 /*
2531 * Stop md->queue before flushing md->wq in case request-based
2532 * dm defers requests to md->wq from md->queue.
2533 */
2534 if (dm_request_based(md))
2535 stop_queue(md->queue);
2536
2537 flush_workqueue(md->wq);
2538
2539 /*
2540 * At this point no more requests are entering target request routines.
2541 * We call dm_wait_for_completion to wait for all existing requests
2542 * to finish.
2543 */
2544 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2545
2546 down_write(&md->io_lock);
2547 if (noflush)
2548 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2549 up_write(&md->io_lock);
2550
2551 /* were we interrupted ? */
2552 if (r < 0) {
2553 dm_queue_flush(md);
2554
2555 if (dm_request_based(md))
2556 start_queue(md->queue);
2557
2558 unlock_fs(md);
2559 goto out; /* pushback list is already flushed, so skip flush */
2560 }
2561
2562 /*
2563 * If dm_wait_for_completion returned 0, the device is completely
2564 * quiescent now. There is no request-processing activity. All new
2565 * requests are being added to md->deferred list.
2566 */
2567
2568 set_bit(DMF_SUSPENDED, &md->flags);
2569
2570 dm_table_postsuspend_targets(map);
2571
2572 out:
2573 dm_table_put(map);
2574
2575 out_unlock:
2576 mutex_unlock(&md->suspend_lock);
2577 return r;
2578 }
2579
2580 int dm_resume(struct mapped_device *md)
2581 {
2582 int r = -EINVAL;
2583 struct dm_table *map = NULL;
2584
2585 mutex_lock(&md->suspend_lock);
2586 if (!dm_suspended_md(md))
2587 goto out;
2588
2589 map = dm_get_live_table(md);
2590 if (!map || !dm_table_get_size(map))
2591 goto out;
2592
2593 r = dm_table_resume_targets(map);
2594 if (r)
2595 goto out;
2596
2597 dm_queue_flush(md);
2598
2599 /*
2600 * Flushing deferred I/Os must be done after targets are resumed
2601 * so that mapping of targets can work correctly.
2602 * Request-based dm is queueing the deferred I/Os in its request_queue.
2603 */
2604 if (dm_request_based(md))
2605 start_queue(md->queue);
2606
2607 unlock_fs(md);
2608
2609 clear_bit(DMF_SUSPENDED, &md->flags);
2610
2611 r = 0;
2612 out:
2613 dm_table_put(map);
2614 mutex_unlock(&md->suspend_lock);
2615
2616 return r;
2617 }
2618
2619 /*-----------------------------------------------------------------
2620 * Event notification.
2621 *---------------------------------------------------------------*/
2622 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2623 unsigned cookie)
2624 {
2625 char udev_cookie[DM_COOKIE_LENGTH];
2626 char *envp[] = { udev_cookie, NULL };
2627
2628 if (!cookie)
2629 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2630 else {
2631 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2632 DM_COOKIE_ENV_VAR_NAME, cookie);
2633 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2634 action, envp);
2635 }
2636 }
2637
2638 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2639 {
2640 return atomic_add_return(1, &md->uevent_seq);
2641 }
2642
2643 uint32_t dm_get_event_nr(struct mapped_device *md)
2644 {
2645 return atomic_read(&md->event_nr);
2646 }
2647
2648 int dm_wait_event(struct mapped_device *md, int event_nr)
2649 {
2650 return wait_event_interruptible(md->eventq,
2651 (event_nr != atomic_read(&md->event_nr)));
2652 }
2653
2654 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2655 {
2656 unsigned long flags;
2657
2658 spin_lock_irqsave(&md->uevent_lock, flags);
2659 list_add(elist, &md->uevent_list);
2660 spin_unlock_irqrestore(&md->uevent_lock, flags);
2661 }
2662
2663 /*
2664 * The gendisk is only valid as long as you have a reference
2665 * count on 'md'.
2666 */
2667 struct gendisk *dm_disk(struct mapped_device *md)
2668 {
2669 return md->disk;
2670 }
2671
2672 struct kobject *dm_kobject(struct mapped_device *md)
2673 {
2674 return &md->kobj;
2675 }
2676
2677 /*
2678 * struct mapped_device should not be exported outside of dm.c
2679 * so use this check to verify that kobj is part of md structure
2680 */
2681 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2682 {
2683 struct mapped_device *md;
2684
2685 md = container_of(kobj, struct mapped_device, kobj);
2686 if (&md->kobj != kobj)
2687 return NULL;
2688
2689 if (test_bit(DMF_FREEING, &md->flags) ||
2690 dm_deleting_md(md))
2691 return NULL;
2692
2693 dm_get(md);
2694 return md;
2695 }
2696
2697 int dm_suspended_md(struct mapped_device *md)
2698 {
2699 return test_bit(DMF_SUSPENDED, &md->flags);
2700 }
2701
2702 int dm_suspended(struct dm_target *ti)
2703 {
2704 return dm_suspended_md(dm_table_get_md(ti->table));
2705 }
2706 EXPORT_SYMBOL_GPL(dm_suspended);
2707
2708 int dm_noflush_suspending(struct dm_target *ti)
2709 {
2710 return __noflush_suspending(dm_table_get_md(ti->table));
2711 }
2712 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2713
2714 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2715 {
2716 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2717 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2718
2719 if (!pools)
2720 return NULL;
2721
2722 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2723 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2724 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2725 if (!pools->io_pool)
2726 goto free_pools_and_out;
2727
2728 pools->tio_pool = NULL;
2729 if (type == DM_TYPE_REQUEST_BASED) {
2730 pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2731 if (!pools->tio_pool)
2732 goto free_io_pool_and_out;
2733 }
2734
2735 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2736 bioset_create(pool_size,
2737 offsetof(struct dm_target_io, clone)) :
2738 bioset_create(pool_size,
2739 offsetof(struct dm_rq_clone_bio_info, clone));
2740 if (!pools->bs)
2741 goto free_tio_pool_and_out;
2742
2743 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744 goto free_bioset_and_out;
2745
2746 return pools;
2747
2748 free_bioset_and_out:
2749 bioset_free(pools->bs);
2750
2751 free_tio_pool_and_out:
2752 if (pools->tio_pool)
2753 mempool_destroy(pools->tio_pool);
2754
2755 free_io_pool_and_out:
2756 mempool_destroy(pools->io_pool);
2757
2758 free_pools_and_out:
2759 kfree(pools);
2760
2761 return NULL;
2762 }
2763
2764 void dm_free_md_mempools(struct dm_md_mempools *pools)
2765 {
2766 if (!pools)
2767 return;
2768
2769 if (pools->io_pool)
2770 mempool_destroy(pools->io_pool);
2771
2772 if (pools->tio_pool)
2773 mempool_destroy(pools->tio_pool);
2774
2775 if (pools->bs)
2776 bioset_free(pools->bs);
2777
2778 kfree(pools);
2779 }
2780
2781 static const struct block_device_operations dm_blk_dops = {
2782 .open = dm_blk_open,
2783 .release = dm_blk_close,
2784 .ioctl = dm_blk_ioctl,
2785 .getgeo = dm_blk_getgeo,
2786 .owner = THIS_MODULE
2787 };
2788
2789 EXPORT_SYMBOL(dm_get_mapinfo);
2790
2791 /*
2792 * module hooks
2793 */
2794 module_init(dm_init);
2795 module_exit(dm_exit);
2796
2797 module_param(major, uint, 0);
2798 MODULE_PARM_DESC(major, "The major number of the device mapper");
2799 MODULE_DESCRIPTION(DM_NAME " driver");
2800 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2801 MODULE_LICENSE("GPL");