]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
Merge tag 'platform-drivers-x86-v4.4-2' of git://git.infradead.org/users/dvhart/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28
29 #include <trace/events/block.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 #ifdef CONFIG_PRINTK
34 /*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42
43 /*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69 struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83 struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93 };
94
95 /*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103 struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107 };
108
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 if (rq && rq->end_io_data)
112 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116
117 #define MINOR_ALLOCED ((void *)-1)
118
119 /*
120 * Bits for the md->flags field.
121 */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 struct dm_target **tgt, struct block_device **bdev,
561 fmode_t *mode, int *srcu_idx)
562 {
563 struct dm_table *map;
564 int r;
565
566 retry:
567 r = -ENOTTY;
568 map = dm_get_live_table(md, srcu_idx);
569 if (!map || !dm_table_get_size(map))
570 goto out;
571
572 /* We only support devices that have a single target */
573 if (dm_table_get_num_targets(map) != 1)
574 goto out;
575
576 *tgt = dm_table_get_target(map, 0);
577
578 if (!(*tgt)->type->prepare_ioctl)
579 goto out;
580
581 if (dm_suspended_md(md)) {
582 r = -EAGAIN;
583 goto out;
584 }
585
586 r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 if (r < 0)
588 goto out;
589
590 return r;
591
592 out:
593 dm_put_live_table(md, *srcu_idx);
594 if (r == -ENOTCONN) {
595 msleep(10);
596 goto retry;
597 }
598 return r;
599 }
600
601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 unsigned int cmd, unsigned long arg)
603 {
604 struct mapped_device *md = bdev->bd_disk->private_data;
605 struct dm_target *tgt;
606 int srcu_idx, r;
607
608 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
609 if (r < 0)
610 return r;
611
612 if (r > 0) {
613 /*
614 * Target determined this ioctl is being issued against
615 * a logical partition of the parent bdev; so extra
616 * validation is needed.
617 */
618 r = scsi_verify_blk_ioctl(NULL, cmd);
619 if (r)
620 goto out;
621 }
622
623 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
624 out:
625 dm_put_live_table(md, srcu_idx);
626 return r;
627 }
628
629 static struct dm_io *alloc_io(struct mapped_device *md)
630 {
631 return mempool_alloc(md->io_pool, GFP_NOIO);
632 }
633
634 static void free_io(struct mapped_device *md, struct dm_io *io)
635 {
636 mempool_free(io, md->io_pool);
637 }
638
639 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
640 {
641 bio_put(&tio->clone);
642 }
643
644 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
645 gfp_t gfp_mask)
646 {
647 return mempool_alloc(md->io_pool, gfp_mask);
648 }
649
650 static void free_rq_tio(struct dm_rq_target_io *tio)
651 {
652 mempool_free(tio, tio->md->io_pool);
653 }
654
655 static struct request *alloc_clone_request(struct mapped_device *md,
656 gfp_t gfp_mask)
657 {
658 return mempool_alloc(md->rq_pool, gfp_mask);
659 }
660
661 static void free_clone_request(struct mapped_device *md, struct request *rq)
662 {
663 mempool_free(rq, md->rq_pool);
664 }
665
666 static int md_in_flight(struct mapped_device *md)
667 {
668 return atomic_read(&md->pending[READ]) +
669 atomic_read(&md->pending[WRITE]);
670 }
671
672 static void start_io_acct(struct dm_io *io)
673 {
674 struct mapped_device *md = io->md;
675 struct bio *bio = io->bio;
676 int cpu;
677 int rw = bio_data_dir(bio);
678
679 io->start_time = jiffies;
680
681 cpu = part_stat_lock();
682 part_round_stats(cpu, &dm_disk(md)->part0);
683 part_stat_unlock();
684 atomic_set(&dm_disk(md)->part0.in_flight[rw],
685 atomic_inc_return(&md->pending[rw]));
686
687 if (unlikely(dm_stats_used(&md->stats)))
688 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
689 bio_sectors(bio), false, 0, &io->stats_aux);
690 }
691
692 static void end_io_acct(struct dm_io *io)
693 {
694 struct mapped_device *md = io->md;
695 struct bio *bio = io->bio;
696 unsigned long duration = jiffies - io->start_time;
697 int pending;
698 int rw = bio_data_dir(bio);
699
700 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
701
702 if (unlikely(dm_stats_used(&md->stats)))
703 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
704 bio_sectors(bio), true, duration, &io->stats_aux);
705
706 /*
707 * After this is decremented the bio must not be touched if it is
708 * a flush.
709 */
710 pending = atomic_dec_return(&md->pending[rw]);
711 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
712 pending += atomic_read(&md->pending[rw^0x1]);
713
714 /* nudge anyone waiting on suspend queue */
715 if (!pending)
716 wake_up(&md->wait);
717 }
718
719 /*
720 * Add the bio to the list of deferred io.
721 */
722 static void queue_io(struct mapped_device *md, struct bio *bio)
723 {
724 unsigned long flags;
725
726 spin_lock_irqsave(&md->deferred_lock, flags);
727 bio_list_add(&md->deferred, bio);
728 spin_unlock_irqrestore(&md->deferred_lock, flags);
729 queue_work(md->wq, &md->work);
730 }
731
732 /*
733 * Everyone (including functions in this file), should use this
734 * function to access the md->map field, and make sure they call
735 * dm_put_live_table() when finished.
736 */
737 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
738 {
739 *srcu_idx = srcu_read_lock(&md->io_barrier);
740
741 return srcu_dereference(md->map, &md->io_barrier);
742 }
743
744 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
745 {
746 srcu_read_unlock(&md->io_barrier, srcu_idx);
747 }
748
749 void dm_sync_table(struct mapped_device *md)
750 {
751 synchronize_srcu(&md->io_barrier);
752 synchronize_rcu_expedited();
753 }
754
755 /*
756 * A fast alternative to dm_get_live_table/dm_put_live_table.
757 * The caller must not block between these two functions.
758 */
759 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
760 {
761 rcu_read_lock();
762 return rcu_dereference(md->map);
763 }
764
765 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
766 {
767 rcu_read_unlock();
768 }
769
770 /*
771 * Open a table device so we can use it as a map destination.
772 */
773 static int open_table_device(struct table_device *td, dev_t dev,
774 struct mapped_device *md)
775 {
776 static char *_claim_ptr = "I belong to device-mapper";
777 struct block_device *bdev;
778
779 int r;
780
781 BUG_ON(td->dm_dev.bdev);
782
783 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
784 if (IS_ERR(bdev))
785 return PTR_ERR(bdev);
786
787 r = bd_link_disk_holder(bdev, dm_disk(md));
788 if (r) {
789 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
790 return r;
791 }
792
793 td->dm_dev.bdev = bdev;
794 return 0;
795 }
796
797 /*
798 * Close a table device that we've been using.
799 */
800 static void close_table_device(struct table_device *td, struct mapped_device *md)
801 {
802 if (!td->dm_dev.bdev)
803 return;
804
805 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
806 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
807 td->dm_dev.bdev = NULL;
808 }
809
810 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
811 fmode_t mode) {
812 struct table_device *td;
813
814 list_for_each_entry(td, l, list)
815 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
816 return td;
817
818 return NULL;
819 }
820
821 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
822 struct dm_dev **result) {
823 int r;
824 struct table_device *td;
825
826 mutex_lock(&md->table_devices_lock);
827 td = find_table_device(&md->table_devices, dev, mode);
828 if (!td) {
829 td = kmalloc(sizeof(*td), GFP_KERNEL);
830 if (!td) {
831 mutex_unlock(&md->table_devices_lock);
832 return -ENOMEM;
833 }
834
835 td->dm_dev.mode = mode;
836 td->dm_dev.bdev = NULL;
837
838 if ((r = open_table_device(td, dev, md))) {
839 mutex_unlock(&md->table_devices_lock);
840 kfree(td);
841 return r;
842 }
843
844 format_dev_t(td->dm_dev.name, dev);
845
846 atomic_set(&td->count, 0);
847 list_add(&td->list, &md->table_devices);
848 }
849 atomic_inc(&td->count);
850 mutex_unlock(&md->table_devices_lock);
851
852 *result = &td->dm_dev;
853 return 0;
854 }
855 EXPORT_SYMBOL_GPL(dm_get_table_device);
856
857 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
858 {
859 struct table_device *td = container_of(d, struct table_device, dm_dev);
860
861 mutex_lock(&md->table_devices_lock);
862 if (atomic_dec_and_test(&td->count)) {
863 close_table_device(td, md);
864 list_del(&td->list);
865 kfree(td);
866 }
867 mutex_unlock(&md->table_devices_lock);
868 }
869 EXPORT_SYMBOL(dm_put_table_device);
870
871 static void free_table_devices(struct list_head *devices)
872 {
873 struct list_head *tmp, *next;
874
875 list_for_each_safe(tmp, next, devices) {
876 struct table_device *td = list_entry(tmp, struct table_device, list);
877
878 DMWARN("dm_destroy: %s still exists with %d references",
879 td->dm_dev.name, atomic_read(&td->count));
880 kfree(td);
881 }
882 }
883
884 /*
885 * Get the geometry associated with a dm device
886 */
887 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
888 {
889 *geo = md->geometry;
890
891 return 0;
892 }
893
894 /*
895 * Set the geometry of a device.
896 */
897 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
898 {
899 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
900
901 if (geo->start > sz) {
902 DMWARN("Start sector is beyond the geometry limits.");
903 return -EINVAL;
904 }
905
906 md->geometry = *geo;
907
908 return 0;
909 }
910
911 /*-----------------------------------------------------------------
912 * CRUD START:
913 * A more elegant soln is in the works that uses the queue
914 * merge fn, unfortunately there are a couple of changes to
915 * the block layer that I want to make for this. So in the
916 * interests of getting something for people to use I give
917 * you this clearly demarcated crap.
918 *---------------------------------------------------------------*/
919
920 static int __noflush_suspending(struct mapped_device *md)
921 {
922 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
923 }
924
925 /*
926 * Decrements the number of outstanding ios that a bio has been
927 * cloned into, completing the original io if necc.
928 */
929 static void dec_pending(struct dm_io *io, int error)
930 {
931 unsigned long flags;
932 int io_error;
933 struct bio *bio;
934 struct mapped_device *md = io->md;
935
936 /* Push-back supersedes any I/O errors */
937 if (unlikely(error)) {
938 spin_lock_irqsave(&io->endio_lock, flags);
939 if (!(io->error > 0 && __noflush_suspending(md)))
940 io->error = error;
941 spin_unlock_irqrestore(&io->endio_lock, flags);
942 }
943
944 if (atomic_dec_and_test(&io->io_count)) {
945 if (io->error == DM_ENDIO_REQUEUE) {
946 /*
947 * Target requested pushing back the I/O.
948 */
949 spin_lock_irqsave(&md->deferred_lock, flags);
950 if (__noflush_suspending(md))
951 bio_list_add_head(&md->deferred, io->bio);
952 else
953 /* noflush suspend was interrupted. */
954 io->error = -EIO;
955 spin_unlock_irqrestore(&md->deferred_lock, flags);
956 }
957
958 io_error = io->error;
959 bio = io->bio;
960 end_io_acct(io);
961 free_io(md, io);
962
963 if (io_error == DM_ENDIO_REQUEUE)
964 return;
965
966 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
967 /*
968 * Preflush done for flush with data, reissue
969 * without REQ_FLUSH.
970 */
971 bio->bi_rw &= ~REQ_FLUSH;
972 queue_io(md, bio);
973 } else {
974 /* done with normal IO or empty flush */
975 trace_block_bio_complete(md->queue, bio, io_error);
976 bio->bi_error = io_error;
977 bio_endio(bio);
978 }
979 }
980 }
981
982 static void disable_write_same(struct mapped_device *md)
983 {
984 struct queue_limits *limits = dm_get_queue_limits(md);
985
986 /* device doesn't really support WRITE SAME, disable it */
987 limits->max_write_same_sectors = 0;
988 }
989
990 static void clone_endio(struct bio *bio)
991 {
992 int error = bio->bi_error;
993 int r = error;
994 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
995 struct dm_io *io = tio->io;
996 struct mapped_device *md = tio->io->md;
997 dm_endio_fn endio = tio->ti->type->end_io;
998
999 if (endio) {
1000 r = endio(tio->ti, bio, error);
1001 if (r < 0 || r == DM_ENDIO_REQUEUE)
1002 /*
1003 * error and requeue request are handled
1004 * in dec_pending().
1005 */
1006 error = r;
1007 else if (r == DM_ENDIO_INCOMPLETE)
1008 /* The target will handle the io */
1009 return;
1010 else if (r) {
1011 DMWARN("unimplemented target endio return value: %d", r);
1012 BUG();
1013 }
1014 }
1015
1016 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1017 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1018 disable_write_same(md);
1019
1020 free_tio(md, tio);
1021 dec_pending(io, error);
1022 }
1023
1024 /*
1025 * Partial completion handling for request-based dm
1026 */
1027 static void end_clone_bio(struct bio *clone)
1028 {
1029 struct dm_rq_clone_bio_info *info =
1030 container_of(clone, struct dm_rq_clone_bio_info, clone);
1031 struct dm_rq_target_io *tio = info->tio;
1032 struct bio *bio = info->orig;
1033 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1034 int error = clone->bi_error;
1035
1036 bio_put(clone);
1037
1038 if (tio->error)
1039 /*
1040 * An error has already been detected on the request.
1041 * Once error occurred, just let clone->end_io() handle
1042 * the remainder.
1043 */
1044 return;
1045 else if (error) {
1046 /*
1047 * Don't notice the error to the upper layer yet.
1048 * The error handling decision is made by the target driver,
1049 * when the request is completed.
1050 */
1051 tio->error = error;
1052 return;
1053 }
1054
1055 /*
1056 * I/O for the bio successfully completed.
1057 * Notice the data completion to the upper layer.
1058 */
1059
1060 /*
1061 * bios are processed from the head of the list.
1062 * So the completing bio should always be rq->bio.
1063 * If it's not, something wrong is happening.
1064 */
1065 if (tio->orig->bio != bio)
1066 DMERR("bio completion is going in the middle of the request");
1067
1068 /*
1069 * Update the original request.
1070 * Do not use blk_end_request() here, because it may complete
1071 * the original request before the clone, and break the ordering.
1072 */
1073 blk_update_request(tio->orig, 0, nr_bytes);
1074 }
1075
1076 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1077 {
1078 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1079 }
1080
1081 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1082 {
1083 if (unlikely(dm_stats_used(&md->stats))) {
1084 struct dm_rq_target_io *tio = tio_from_request(orig);
1085 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1086 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1087 tio->n_sectors, true, tio->duration_jiffies,
1088 &tio->stats_aux);
1089 }
1090 }
1091
1092 /*
1093 * Don't touch any member of the md after calling this function because
1094 * the md may be freed in dm_put() at the end of this function.
1095 * Or do dm_get() before calling this function and dm_put() later.
1096 */
1097 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1098 {
1099 atomic_dec(&md->pending[rw]);
1100
1101 /* nudge anyone waiting on suspend queue */
1102 if (!md_in_flight(md))
1103 wake_up(&md->wait);
1104
1105 /*
1106 * Run this off this callpath, as drivers could invoke end_io while
1107 * inside their request_fn (and holding the queue lock). Calling
1108 * back into ->request_fn() could deadlock attempting to grab the
1109 * queue lock again.
1110 */
1111 if (run_queue) {
1112 if (md->queue->mq_ops)
1113 blk_mq_run_hw_queues(md->queue, true);
1114 else
1115 blk_run_queue_async(md->queue);
1116 }
1117
1118 /*
1119 * dm_put() must be at the end of this function. See the comment above
1120 */
1121 dm_put(md);
1122 }
1123
1124 static void free_rq_clone(struct request *clone)
1125 {
1126 struct dm_rq_target_io *tio = clone->end_io_data;
1127 struct mapped_device *md = tio->md;
1128
1129 blk_rq_unprep_clone(clone);
1130
1131 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1132 /* stacked on blk-mq queue(s) */
1133 tio->ti->type->release_clone_rq(clone);
1134 else if (!md->queue->mq_ops)
1135 /* request_fn queue stacked on request_fn queue(s) */
1136 free_clone_request(md, clone);
1137 /*
1138 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1139 * no need to call free_clone_request() because we leverage blk-mq by
1140 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1141 */
1142
1143 if (!md->queue->mq_ops)
1144 free_rq_tio(tio);
1145 }
1146
1147 /*
1148 * Complete the clone and the original request.
1149 * Must be called without clone's queue lock held,
1150 * see end_clone_request() for more details.
1151 */
1152 static void dm_end_request(struct request *clone, int error)
1153 {
1154 int rw = rq_data_dir(clone);
1155 struct dm_rq_target_io *tio = clone->end_io_data;
1156 struct mapped_device *md = tio->md;
1157 struct request *rq = tio->orig;
1158
1159 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1160 rq->errors = clone->errors;
1161 rq->resid_len = clone->resid_len;
1162
1163 if (rq->sense)
1164 /*
1165 * We are using the sense buffer of the original
1166 * request.
1167 * So setting the length of the sense data is enough.
1168 */
1169 rq->sense_len = clone->sense_len;
1170 }
1171
1172 free_rq_clone(clone);
1173 rq_end_stats(md, rq);
1174 if (!rq->q->mq_ops)
1175 blk_end_request_all(rq, error);
1176 else
1177 blk_mq_end_request(rq, error);
1178 rq_completed(md, rw, true);
1179 }
1180
1181 static void dm_unprep_request(struct request *rq)
1182 {
1183 struct dm_rq_target_io *tio = tio_from_request(rq);
1184 struct request *clone = tio->clone;
1185
1186 if (!rq->q->mq_ops) {
1187 rq->special = NULL;
1188 rq->cmd_flags &= ~REQ_DONTPREP;
1189 }
1190
1191 if (clone)
1192 free_rq_clone(clone);
1193 }
1194
1195 /*
1196 * Requeue the original request of a clone.
1197 */
1198 static void old_requeue_request(struct request *rq)
1199 {
1200 struct request_queue *q = rq->q;
1201 unsigned long flags;
1202
1203 spin_lock_irqsave(q->queue_lock, flags);
1204 blk_requeue_request(q, rq);
1205 blk_run_queue_async(q);
1206 spin_unlock_irqrestore(q->queue_lock, flags);
1207 }
1208
1209 static void dm_requeue_original_request(struct mapped_device *md,
1210 struct request *rq)
1211 {
1212 int rw = rq_data_dir(rq);
1213
1214 dm_unprep_request(rq);
1215
1216 rq_end_stats(md, rq);
1217 if (!rq->q->mq_ops)
1218 old_requeue_request(rq);
1219 else {
1220 blk_mq_requeue_request(rq);
1221 blk_mq_kick_requeue_list(rq->q);
1222 }
1223
1224 rq_completed(md, rw, false);
1225 }
1226
1227 static void old_stop_queue(struct request_queue *q)
1228 {
1229 unsigned long flags;
1230
1231 if (blk_queue_stopped(q))
1232 return;
1233
1234 spin_lock_irqsave(q->queue_lock, flags);
1235 blk_stop_queue(q);
1236 spin_unlock_irqrestore(q->queue_lock, flags);
1237 }
1238
1239 static void stop_queue(struct request_queue *q)
1240 {
1241 if (!q->mq_ops)
1242 old_stop_queue(q);
1243 else
1244 blk_mq_stop_hw_queues(q);
1245 }
1246
1247 static void old_start_queue(struct request_queue *q)
1248 {
1249 unsigned long flags;
1250
1251 spin_lock_irqsave(q->queue_lock, flags);
1252 if (blk_queue_stopped(q))
1253 blk_start_queue(q);
1254 spin_unlock_irqrestore(q->queue_lock, flags);
1255 }
1256
1257 static void start_queue(struct request_queue *q)
1258 {
1259 if (!q->mq_ops)
1260 old_start_queue(q);
1261 else
1262 blk_mq_start_stopped_hw_queues(q, true);
1263 }
1264
1265 static void dm_done(struct request *clone, int error, bool mapped)
1266 {
1267 int r = error;
1268 struct dm_rq_target_io *tio = clone->end_io_data;
1269 dm_request_endio_fn rq_end_io = NULL;
1270
1271 if (tio->ti) {
1272 rq_end_io = tio->ti->type->rq_end_io;
1273
1274 if (mapped && rq_end_io)
1275 r = rq_end_io(tio->ti, clone, error, &tio->info);
1276 }
1277
1278 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1279 !clone->q->limits.max_write_same_sectors))
1280 disable_write_same(tio->md);
1281
1282 if (r <= 0)
1283 /* The target wants to complete the I/O */
1284 dm_end_request(clone, r);
1285 else if (r == DM_ENDIO_INCOMPLETE)
1286 /* The target will handle the I/O */
1287 return;
1288 else if (r == DM_ENDIO_REQUEUE)
1289 /* The target wants to requeue the I/O */
1290 dm_requeue_original_request(tio->md, tio->orig);
1291 else {
1292 DMWARN("unimplemented target endio return value: %d", r);
1293 BUG();
1294 }
1295 }
1296
1297 /*
1298 * Request completion handler for request-based dm
1299 */
1300 static void dm_softirq_done(struct request *rq)
1301 {
1302 bool mapped = true;
1303 struct dm_rq_target_io *tio = tio_from_request(rq);
1304 struct request *clone = tio->clone;
1305 int rw;
1306
1307 if (!clone) {
1308 rq_end_stats(tio->md, rq);
1309 rw = rq_data_dir(rq);
1310 if (!rq->q->mq_ops) {
1311 blk_end_request_all(rq, tio->error);
1312 rq_completed(tio->md, rw, false);
1313 free_rq_tio(tio);
1314 } else {
1315 blk_mq_end_request(rq, tio->error);
1316 rq_completed(tio->md, rw, false);
1317 }
1318 return;
1319 }
1320
1321 if (rq->cmd_flags & REQ_FAILED)
1322 mapped = false;
1323
1324 dm_done(clone, tio->error, mapped);
1325 }
1326
1327 /*
1328 * Complete the clone and the original request with the error status
1329 * through softirq context.
1330 */
1331 static void dm_complete_request(struct request *rq, int error)
1332 {
1333 struct dm_rq_target_io *tio = tio_from_request(rq);
1334
1335 tio->error = error;
1336 blk_complete_request(rq);
1337 }
1338
1339 /*
1340 * Complete the not-mapped clone and the original request with the error status
1341 * through softirq context.
1342 * Target's rq_end_io() function isn't called.
1343 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1344 */
1345 static void dm_kill_unmapped_request(struct request *rq, int error)
1346 {
1347 rq->cmd_flags |= REQ_FAILED;
1348 dm_complete_request(rq, error);
1349 }
1350
1351 /*
1352 * Called with the clone's queue lock held (for non-blk-mq)
1353 */
1354 static void end_clone_request(struct request *clone, int error)
1355 {
1356 struct dm_rq_target_io *tio = clone->end_io_data;
1357
1358 if (!clone->q->mq_ops) {
1359 /*
1360 * For just cleaning up the information of the queue in which
1361 * the clone was dispatched.
1362 * The clone is *NOT* freed actually here because it is alloced
1363 * from dm own mempool (REQ_ALLOCED isn't set).
1364 */
1365 __blk_put_request(clone->q, clone);
1366 }
1367
1368 /*
1369 * Actual request completion is done in a softirq context which doesn't
1370 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1371 * - another request may be submitted by the upper level driver
1372 * of the stacking during the completion
1373 * - the submission which requires queue lock may be done
1374 * against this clone's queue
1375 */
1376 dm_complete_request(tio->orig, error);
1377 }
1378
1379 /*
1380 * Return maximum size of I/O possible at the supplied sector up to the current
1381 * target boundary.
1382 */
1383 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1384 {
1385 sector_t target_offset = dm_target_offset(ti, sector);
1386
1387 return ti->len - target_offset;
1388 }
1389
1390 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1391 {
1392 sector_t len = max_io_len_target_boundary(sector, ti);
1393 sector_t offset, max_len;
1394
1395 /*
1396 * Does the target need to split even further?
1397 */
1398 if (ti->max_io_len) {
1399 offset = dm_target_offset(ti, sector);
1400 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1401 max_len = sector_div(offset, ti->max_io_len);
1402 else
1403 max_len = offset & (ti->max_io_len - 1);
1404 max_len = ti->max_io_len - max_len;
1405
1406 if (len > max_len)
1407 len = max_len;
1408 }
1409
1410 return len;
1411 }
1412
1413 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1414 {
1415 if (len > UINT_MAX) {
1416 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1417 (unsigned long long)len, UINT_MAX);
1418 ti->error = "Maximum size of target IO is too large";
1419 return -EINVAL;
1420 }
1421
1422 ti->max_io_len = (uint32_t) len;
1423
1424 return 0;
1425 }
1426 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1427
1428 /*
1429 * A target may call dm_accept_partial_bio only from the map routine. It is
1430 * allowed for all bio types except REQ_FLUSH.
1431 *
1432 * dm_accept_partial_bio informs the dm that the target only wants to process
1433 * additional n_sectors sectors of the bio and the rest of the data should be
1434 * sent in a next bio.
1435 *
1436 * A diagram that explains the arithmetics:
1437 * +--------------------+---------------+-------+
1438 * | 1 | 2 | 3 |
1439 * +--------------------+---------------+-------+
1440 *
1441 * <-------------- *tio->len_ptr --------------->
1442 * <------- bi_size ------->
1443 * <-- n_sectors -->
1444 *
1445 * Region 1 was already iterated over with bio_advance or similar function.
1446 * (it may be empty if the target doesn't use bio_advance)
1447 * Region 2 is the remaining bio size that the target wants to process.
1448 * (it may be empty if region 1 is non-empty, although there is no reason
1449 * to make it empty)
1450 * The target requires that region 3 is to be sent in the next bio.
1451 *
1452 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1453 * the partially processed part (the sum of regions 1+2) must be the same for all
1454 * copies of the bio.
1455 */
1456 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1457 {
1458 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1459 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1460 BUG_ON(bio->bi_rw & REQ_FLUSH);
1461 BUG_ON(bi_size > *tio->len_ptr);
1462 BUG_ON(n_sectors > bi_size);
1463 *tio->len_ptr -= bi_size - n_sectors;
1464 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1465 }
1466 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1467
1468 static void __map_bio(struct dm_target_io *tio)
1469 {
1470 int r;
1471 sector_t sector;
1472 struct mapped_device *md;
1473 struct bio *clone = &tio->clone;
1474 struct dm_target *ti = tio->ti;
1475
1476 clone->bi_end_io = clone_endio;
1477
1478 /*
1479 * Map the clone. If r == 0 we don't need to do
1480 * anything, the target has assumed ownership of
1481 * this io.
1482 */
1483 atomic_inc(&tio->io->io_count);
1484 sector = clone->bi_iter.bi_sector;
1485 r = ti->type->map(ti, clone);
1486 if (r == DM_MAPIO_REMAPPED) {
1487 /* the bio has been remapped so dispatch it */
1488
1489 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1490 tio->io->bio->bi_bdev->bd_dev, sector);
1491
1492 generic_make_request(clone);
1493 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1494 /* error the io and bail out, or requeue it if needed */
1495 md = tio->io->md;
1496 dec_pending(tio->io, r);
1497 free_tio(md, tio);
1498 } else if (r != DM_MAPIO_SUBMITTED) {
1499 DMWARN("unimplemented target map return value: %d", r);
1500 BUG();
1501 }
1502 }
1503
1504 struct clone_info {
1505 struct mapped_device *md;
1506 struct dm_table *map;
1507 struct bio *bio;
1508 struct dm_io *io;
1509 sector_t sector;
1510 unsigned sector_count;
1511 };
1512
1513 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1514 {
1515 bio->bi_iter.bi_sector = sector;
1516 bio->bi_iter.bi_size = to_bytes(len);
1517 }
1518
1519 /*
1520 * Creates a bio that consists of range of complete bvecs.
1521 */
1522 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1523 sector_t sector, unsigned len)
1524 {
1525 struct bio *clone = &tio->clone;
1526
1527 __bio_clone_fast(clone, bio);
1528
1529 if (bio_integrity(bio))
1530 bio_integrity_clone(clone, bio, GFP_NOIO);
1531
1532 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1533 clone->bi_iter.bi_size = to_bytes(len);
1534
1535 if (bio_integrity(bio))
1536 bio_integrity_trim(clone, 0, len);
1537 }
1538
1539 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1540 struct dm_target *ti,
1541 unsigned target_bio_nr)
1542 {
1543 struct dm_target_io *tio;
1544 struct bio *clone;
1545
1546 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1547 tio = container_of(clone, struct dm_target_io, clone);
1548
1549 tio->io = ci->io;
1550 tio->ti = ti;
1551 tio->target_bio_nr = target_bio_nr;
1552
1553 return tio;
1554 }
1555
1556 static void __clone_and_map_simple_bio(struct clone_info *ci,
1557 struct dm_target *ti,
1558 unsigned target_bio_nr, unsigned *len)
1559 {
1560 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1561 struct bio *clone = &tio->clone;
1562
1563 tio->len_ptr = len;
1564
1565 __bio_clone_fast(clone, ci->bio);
1566 if (len)
1567 bio_setup_sector(clone, ci->sector, *len);
1568
1569 __map_bio(tio);
1570 }
1571
1572 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1573 unsigned num_bios, unsigned *len)
1574 {
1575 unsigned target_bio_nr;
1576
1577 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1578 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1579 }
1580
1581 static int __send_empty_flush(struct clone_info *ci)
1582 {
1583 unsigned target_nr = 0;
1584 struct dm_target *ti;
1585
1586 BUG_ON(bio_has_data(ci->bio));
1587 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1588 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1589
1590 return 0;
1591 }
1592
1593 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1594 sector_t sector, unsigned *len)
1595 {
1596 struct bio *bio = ci->bio;
1597 struct dm_target_io *tio;
1598 unsigned target_bio_nr;
1599 unsigned num_target_bios = 1;
1600
1601 /*
1602 * Does the target want to receive duplicate copies of the bio?
1603 */
1604 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1605 num_target_bios = ti->num_write_bios(ti, bio);
1606
1607 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1608 tio = alloc_tio(ci, ti, target_bio_nr);
1609 tio->len_ptr = len;
1610 clone_bio(tio, bio, sector, *len);
1611 __map_bio(tio);
1612 }
1613 }
1614
1615 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1616
1617 static unsigned get_num_discard_bios(struct dm_target *ti)
1618 {
1619 return ti->num_discard_bios;
1620 }
1621
1622 static unsigned get_num_write_same_bios(struct dm_target *ti)
1623 {
1624 return ti->num_write_same_bios;
1625 }
1626
1627 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1628
1629 static bool is_split_required_for_discard(struct dm_target *ti)
1630 {
1631 return ti->split_discard_bios;
1632 }
1633
1634 static int __send_changing_extent_only(struct clone_info *ci,
1635 get_num_bios_fn get_num_bios,
1636 is_split_required_fn is_split_required)
1637 {
1638 struct dm_target *ti;
1639 unsigned len;
1640 unsigned num_bios;
1641
1642 do {
1643 ti = dm_table_find_target(ci->map, ci->sector);
1644 if (!dm_target_is_valid(ti))
1645 return -EIO;
1646
1647 /*
1648 * Even though the device advertised support for this type of
1649 * request, that does not mean every target supports it, and
1650 * reconfiguration might also have changed that since the
1651 * check was performed.
1652 */
1653 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1654 if (!num_bios)
1655 return -EOPNOTSUPP;
1656
1657 if (is_split_required && !is_split_required(ti))
1658 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1659 else
1660 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1661
1662 __send_duplicate_bios(ci, ti, num_bios, &len);
1663
1664 ci->sector += len;
1665 } while (ci->sector_count -= len);
1666
1667 return 0;
1668 }
1669
1670 static int __send_discard(struct clone_info *ci)
1671 {
1672 return __send_changing_extent_only(ci, get_num_discard_bios,
1673 is_split_required_for_discard);
1674 }
1675
1676 static int __send_write_same(struct clone_info *ci)
1677 {
1678 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1679 }
1680
1681 /*
1682 * Select the correct strategy for processing a non-flush bio.
1683 */
1684 static int __split_and_process_non_flush(struct clone_info *ci)
1685 {
1686 struct bio *bio = ci->bio;
1687 struct dm_target *ti;
1688 unsigned len;
1689
1690 if (unlikely(bio->bi_rw & REQ_DISCARD))
1691 return __send_discard(ci);
1692 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1693 return __send_write_same(ci);
1694
1695 ti = dm_table_find_target(ci->map, ci->sector);
1696 if (!dm_target_is_valid(ti))
1697 return -EIO;
1698
1699 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1700
1701 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1702
1703 ci->sector += len;
1704 ci->sector_count -= len;
1705
1706 return 0;
1707 }
1708
1709 /*
1710 * Entry point to split a bio into clones and submit them to the targets.
1711 */
1712 static void __split_and_process_bio(struct mapped_device *md,
1713 struct dm_table *map, struct bio *bio)
1714 {
1715 struct clone_info ci;
1716 int error = 0;
1717
1718 if (unlikely(!map)) {
1719 bio_io_error(bio);
1720 return;
1721 }
1722
1723 ci.map = map;
1724 ci.md = md;
1725 ci.io = alloc_io(md);
1726 ci.io->error = 0;
1727 atomic_set(&ci.io->io_count, 1);
1728 ci.io->bio = bio;
1729 ci.io->md = md;
1730 spin_lock_init(&ci.io->endio_lock);
1731 ci.sector = bio->bi_iter.bi_sector;
1732
1733 start_io_acct(ci.io);
1734
1735 if (bio->bi_rw & REQ_FLUSH) {
1736 ci.bio = &ci.md->flush_bio;
1737 ci.sector_count = 0;
1738 error = __send_empty_flush(&ci);
1739 /* dec_pending submits any data associated with flush */
1740 } else {
1741 ci.bio = bio;
1742 ci.sector_count = bio_sectors(bio);
1743 while (ci.sector_count && !error)
1744 error = __split_and_process_non_flush(&ci);
1745 }
1746
1747 /* drop the extra reference count */
1748 dec_pending(ci.io, error);
1749 }
1750 /*-----------------------------------------------------------------
1751 * CRUD END
1752 *---------------------------------------------------------------*/
1753
1754 /*
1755 * The request function that just remaps the bio built up by
1756 * dm_merge_bvec.
1757 */
1758 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1759 {
1760 int rw = bio_data_dir(bio);
1761 struct mapped_device *md = q->queuedata;
1762 int srcu_idx;
1763 struct dm_table *map;
1764
1765 map = dm_get_live_table(md, &srcu_idx);
1766
1767 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1768
1769 /* if we're suspended, we have to queue this io for later */
1770 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1771 dm_put_live_table(md, srcu_idx);
1772
1773 if (bio_rw(bio) != READA)
1774 queue_io(md, bio);
1775 else
1776 bio_io_error(bio);
1777 return BLK_QC_T_NONE;
1778 }
1779
1780 __split_and_process_bio(md, map, bio);
1781 dm_put_live_table(md, srcu_idx);
1782 return BLK_QC_T_NONE;
1783 }
1784
1785 int dm_request_based(struct mapped_device *md)
1786 {
1787 return blk_queue_stackable(md->queue);
1788 }
1789
1790 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1791 {
1792 int r;
1793
1794 if (blk_queue_io_stat(clone->q))
1795 clone->cmd_flags |= REQ_IO_STAT;
1796
1797 clone->start_time = jiffies;
1798 r = blk_insert_cloned_request(clone->q, clone);
1799 if (r)
1800 /* must complete clone in terms of original request */
1801 dm_complete_request(rq, r);
1802 }
1803
1804 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1805 void *data)
1806 {
1807 struct dm_rq_target_io *tio = data;
1808 struct dm_rq_clone_bio_info *info =
1809 container_of(bio, struct dm_rq_clone_bio_info, clone);
1810
1811 info->orig = bio_orig;
1812 info->tio = tio;
1813 bio->bi_end_io = end_clone_bio;
1814
1815 return 0;
1816 }
1817
1818 static int setup_clone(struct request *clone, struct request *rq,
1819 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1820 {
1821 int r;
1822
1823 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1824 dm_rq_bio_constructor, tio);
1825 if (r)
1826 return r;
1827
1828 clone->cmd = rq->cmd;
1829 clone->cmd_len = rq->cmd_len;
1830 clone->sense = rq->sense;
1831 clone->end_io = end_clone_request;
1832 clone->end_io_data = tio;
1833
1834 tio->clone = clone;
1835
1836 return 0;
1837 }
1838
1839 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1840 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1841 {
1842 /*
1843 * Do not allocate a clone if tio->clone was already set
1844 * (see: dm_mq_queue_rq).
1845 */
1846 bool alloc_clone = !tio->clone;
1847 struct request *clone;
1848
1849 if (alloc_clone) {
1850 clone = alloc_clone_request(md, gfp_mask);
1851 if (!clone)
1852 return NULL;
1853 } else
1854 clone = tio->clone;
1855
1856 blk_rq_init(NULL, clone);
1857 if (setup_clone(clone, rq, tio, gfp_mask)) {
1858 /* -ENOMEM */
1859 if (alloc_clone)
1860 free_clone_request(md, clone);
1861 return NULL;
1862 }
1863
1864 return clone;
1865 }
1866
1867 static void map_tio_request(struct kthread_work *work);
1868
1869 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1870 struct mapped_device *md)
1871 {
1872 tio->md = md;
1873 tio->ti = NULL;
1874 tio->clone = NULL;
1875 tio->orig = rq;
1876 tio->error = 0;
1877 memset(&tio->info, 0, sizeof(tio->info));
1878 if (md->kworker_task)
1879 init_kthread_work(&tio->work, map_tio_request);
1880 }
1881
1882 static struct dm_rq_target_io *prep_tio(struct request *rq,
1883 struct mapped_device *md, gfp_t gfp_mask)
1884 {
1885 struct dm_rq_target_io *tio;
1886 int srcu_idx;
1887 struct dm_table *table;
1888
1889 tio = alloc_rq_tio(md, gfp_mask);
1890 if (!tio)
1891 return NULL;
1892
1893 init_tio(tio, rq, md);
1894
1895 table = dm_get_live_table(md, &srcu_idx);
1896 if (!dm_table_mq_request_based(table)) {
1897 if (!clone_rq(rq, md, tio, gfp_mask)) {
1898 dm_put_live_table(md, srcu_idx);
1899 free_rq_tio(tio);
1900 return NULL;
1901 }
1902 }
1903 dm_put_live_table(md, srcu_idx);
1904
1905 return tio;
1906 }
1907
1908 /*
1909 * Called with the queue lock held.
1910 */
1911 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1912 {
1913 struct mapped_device *md = q->queuedata;
1914 struct dm_rq_target_io *tio;
1915
1916 if (unlikely(rq->special)) {
1917 DMWARN("Already has something in rq->special.");
1918 return BLKPREP_KILL;
1919 }
1920
1921 tio = prep_tio(rq, md, GFP_ATOMIC);
1922 if (!tio)
1923 return BLKPREP_DEFER;
1924
1925 rq->special = tio;
1926 rq->cmd_flags |= REQ_DONTPREP;
1927
1928 return BLKPREP_OK;
1929 }
1930
1931 /*
1932 * Returns:
1933 * 0 : the request has been processed
1934 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1935 * < 0 : the request was completed due to failure
1936 */
1937 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1938 struct mapped_device *md)
1939 {
1940 int r;
1941 struct dm_target *ti = tio->ti;
1942 struct request *clone = NULL;
1943
1944 if (tio->clone) {
1945 clone = tio->clone;
1946 r = ti->type->map_rq(ti, clone, &tio->info);
1947 } else {
1948 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1949 if (r < 0) {
1950 /* The target wants to complete the I/O */
1951 dm_kill_unmapped_request(rq, r);
1952 return r;
1953 }
1954 if (r != DM_MAPIO_REMAPPED)
1955 return r;
1956 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1957 /* -ENOMEM */
1958 ti->type->release_clone_rq(clone);
1959 return DM_MAPIO_REQUEUE;
1960 }
1961 }
1962
1963 switch (r) {
1964 case DM_MAPIO_SUBMITTED:
1965 /* The target has taken the I/O to submit by itself later */
1966 break;
1967 case DM_MAPIO_REMAPPED:
1968 /* The target has remapped the I/O so dispatch it */
1969 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1970 blk_rq_pos(rq));
1971 dm_dispatch_clone_request(clone, rq);
1972 break;
1973 case DM_MAPIO_REQUEUE:
1974 /* The target wants to requeue the I/O */
1975 dm_requeue_original_request(md, tio->orig);
1976 break;
1977 default:
1978 if (r > 0) {
1979 DMWARN("unimplemented target map return value: %d", r);
1980 BUG();
1981 }
1982
1983 /* The target wants to complete the I/O */
1984 dm_kill_unmapped_request(rq, r);
1985 return r;
1986 }
1987
1988 return 0;
1989 }
1990
1991 static void map_tio_request(struct kthread_work *work)
1992 {
1993 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1994 struct request *rq = tio->orig;
1995 struct mapped_device *md = tio->md;
1996
1997 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1998 dm_requeue_original_request(md, rq);
1999 }
2000
2001 static void dm_start_request(struct mapped_device *md, struct request *orig)
2002 {
2003 if (!orig->q->mq_ops)
2004 blk_start_request(orig);
2005 else
2006 blk_mq_start_request(orig);
2007 atomic_inc(&md->pending[rq_data_dir(orig)]);
2008
2009 if (md->seq_rq_merge_deadline_usecs) {
2010 md->last_rq_pos = rq_end_sector(orig);
2011 md->last_rq_rw = rq_data_dir(orig);
2012 md->last_rq_start_time = ktime_get();
2013 }
2014
2015 if (unlikely(dm_stats_used(&md->stats))) {
2016 struct dm_rq_target_io *tio = tio_from_request(orig);
2017 tio->duration_jiffies = jiffies;
2018 tio->n_sectors = blk_rq_sectors(orig);
2019 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2020 tio->n_sectors, false, 0, &tio->stats_aux);
2021 }
2022
2023 /*
2024 * Hold the md reference here for the in-flight I/O.
2025 * We can't rely on the reference count by device opener,
2026 * because the device may be closed during the request completion
2027 * when all bios are completed.
2028 * See the comment in rq_completed() too.
2029 */
2030 dm_get(md);
2031 }
2032
2033 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2034
2035 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2036 {
2037 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2038 }
2039
2040 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2041 const char *buf, size_t count)
2042 {
2043 unsigned deadline;
2044
2045 if (!dm_request_based(md) || md->use_blk_mq)
2046 return count;
2047
2048 if (kstrtouint(buf, 10, &deadline))
2049 return -EINVAL;
2050
2051 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2052 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2053
2054 md->seq_rq_merge_deadline_usecs = deadline;
2055
2056 return count;
2057 }
2058
2059 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2060 {
2061 ktime_t kt_deadline;
2062
2063 if (!md->seq_rq_merge_deadline_usecs)
2064 return false;
2065
2066 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2067 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2068
2069 return !ktime_after(ktime_get(), kt_deadline);
2070 }
2071
2072 /*
2073 * q->request_fn for request-based dm.
2074 * Called with the queue lock held.
2075 */
2076 static void dm_request_fn(struct request_queue *q)
2077 {
2078 struct mapped_device *md = q->queuedata;
2079 int srcu_idx;
2080 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2081 struct dm_target *ti;
2082 struct request *rq;
2083 struct dm_rq_target_io *tio;
2084 sector_t pos;
2085
2086 /*
2087 * For suspend, check blk_queue_stopped() and increment
2088 * ->pending within a single queue_lock not to increment the
2089 * number of in-flight I/Os after the queue is stopped in
2090 * dm_suspend().
2091 */
2092 while (!blk_queue_stopped(q)) {
2093 rq = blk_peek_request(q);
2094 if (!rq)
2095 goto out;
2096
2097 /* always use block 0 to find the target for flushes for now */
2098 pos = 0;
2099 if (!(rq->cmd_flags & REQ_FLUSH))
2100 pos = blk_rq_pos(rq);
2101
2102 ti = dm_table_find_target(map, pos);
2103 if (!dm_target_is_valid(ti)) {
2104 /*
2105 * Must perform setup, that rq_completed() requires,
2106 * before calling dm_kill_unmapped_request
2107 */
2108 DMERR_LIMIT("request attempted access beyond the end of device");
2109 dm_start_request(md, rq);
2110 dm_kill_unmapped_request(rq, -EIO);
2111 continue;
2112 }
2113
2114 if (dm_request_peeked_before_merge_deadline(md) &&
2115 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2116 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2117 goto delay_and_out;
2118
2119 if (ti->type->busy && ti->type->busy(ti))
2120 goto delay_and_out;
2121
2122 dm_start_request(md, rq);
2123
2124 tio = tio_from_request(rq);
2125 /* Establish tio->ti before queuing work (map_tio_request) */
2126 tio->ti = ti;
2127 queue_kthread_work(&md->kworker, &tio->work);
2128 BUG_ON(!irqs_disabled());
2129 }
2130
2131 goto out;
2132
2133 delay_and_out:
2134 blk_delay_queue(q, HZ / 100);
2135 out:
2136 dm_put_live_table(md, srcu_idx);
2137 }
2138
2139 static int dm_any_congested(void *congested_data, int bdi_bits)
2140 {
2141 int r = bdi_bits;
2142 struct mapped_device *md = congested_data;
2143 struct dm_table *map;
2144
2145 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2146 map = dm_get_live_table_fast(md);
2147 if (map) {
2148 /*
2149 * Request-based dm cares about only own queue for
2150 * the query about congestion status of request_queue
2151 */
2152 if (dm_request_based(md))
2153 r = md->queue->backing_dev_info.wb.state &
2154 bdi_bits;
2155 else
2156 r = dm_table_any_congested(map, bdi_bits);
2157 }
2158 dm_put_live_table_fast(md);
2159 }
2160
2161 return r;
2162 }
2163
2164 /*-----------------------------------------------------------------
2165 * An IDR is used to keep track of allocated minor numbers.
2166 *---------------------------------------------------------------*/
2167 static void free_minor(int minor)
2168 {
2169 spin_lock(&_minor_lock);
2170 idr_remove(&_minor_idr, minor);
2171 spin_unlock(&_minor_lock);
2172 }
2173
2174 /*
2175 * See if the device with a specific minor # is free.
2176 */
2177 static int specific_minor(int minor)
2178 {
2179 int r;
2180
2181 if (minor >= (1 << MINORBITS))
2182 return -EINVAL;
2183
2184 idr_preload(GFP_KERNEL);
2185 spin_lock(&_minor_lock);
2186
2187 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2188
2189 spin_unlock(&_minor_lock);
2190 idr_preload_end();
2191 if (r < 0)
2192 return r == -ENOSPC ? -EBUSY : r;
2193 return 0;
2194 }
2195
2196 static int next_free_minor(int *minor)
2197 {
2198 int r;
2199
2200 idr_preload(GFP_KERNEL);
2201 spin_lock(&_minor_lock);
2202
2203 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2204
2205 spin_unlock(&_minor_lock);
2206 idr_preload_end();
2207 if (r < 0)
2208 return r;
2209 *minor = r;
2210 return 0;
2211 }
2212
2213 static const struct block_device_operations dm_blk_dops;
2214
2215 static void dm_wq_work(struct work_struct *work);
2216
2217 static void dm_init_md_queue(struct mapped_device *md)
2218 {
2219 /*
2220 * Request-based dm devices cannot be stacked on top of bio-based dm
2221 * devices. The type of this dm device may not have been decided yet.
2222 * The type is decided at the first table loading time.
2223 * To prevent problematic device stacking, clear the queue flag
2224 * for request stacking support until then.
2225 *
2226 * This queue is new, so no concurrency on the queue_flags.
2227 */
2228 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2229
2230 /*
2231 * Initialize data that will only be used by a non-blk-mq DM queue
2232 * - must do so here (in alloc_dev callchain) before queue is used
2233 */
2234 md->queue->queuedata = md;
2235 md->queue->backing_dev_info.congested_data = md;
2236 }
2237
2238 static void dm_init_old_md_queue(struct mapped_device *md)
2239 {
2240 md->use_blk_mq = false;
2241 dm_init_md_queue(md);
2242
2243 /*
2244 * Initialize aspects of queue that aren't relevant for blk-mq
2245 */
2246 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2247 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2248 }
2249
2250 static void cleanup_mapped_device(struct mapped_device *md)
2251 {
2252 if (md->wq)
2253 destroy_workqueue(md->wq);
2254 if (md->kworker_task)
2255 kthread_stop(md->kworker_task);
2256 mempool_destroy(md->io_pool);
2257 mempool_destroy(md->rq_pool);
2258 if (md->bs)
2259 bioset_free(md->bs);
2260
2261 cleanup_srcu_struct(&md->io_barrier);
2262
2263 if (md->disk) {
2264 spin_lock(&_minor_lock);
2265 md->disk->private_data = NULL;
2266 spin_unlock(&_minor_lock);
2267 del_gendisk(md->disk);
2268 put_disk(md->disk);
2269 }
2270
2271 if (md->queue)
2272 blk_cleanup_queue(md->queue);
2273
2274 if (md->bdev) {
2275 bdput(md->bdev);
2276 md->bdev = NULL;
2277 }
2278 }
2279
2280 /*
2281 * Allocate and initialise a blank device with a given minor.
2282 */
2283 static struct mapped_device *alloc_dev(int minor)
2284 {
2285 int r;
2286 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2287 void *old_md;
2288
2289 if (!md) {
2290 DMWARN("unable to allocate device, out of memory.");
2291 return NULL;
2292 }
2293
2294 if (!try_module_get(THIS_MODULE))
2295 goto bad_module_get;
2296
2297 /* get a minor number for the dev */
2298 if (minor == DM_ANY_MINOR)
2299 r = next_free_minor(&minor);
2300 else
2301 r = specific_minor(minor);
2302 if (r < 0)
2303 goto bad_minor;
2304
2305 r = init_srcu_struct(&md->io_barrier);
2306 if (r < 0)
2307 goto bad_io_barrier;
2308
2309 md->use_blk_mq = use_blk_mq;
2310 md->type = DM_TYPE_NONE;
2311 mutex_init(&md->suspend_lock);
2312 mutex_init(&md->type_lock);
2313 mutex_init(&md->table_devices_lock);
2314 spin_lock_init(&md->deferred_lock);
2315 atomic_set(&md->holders, 1);
2316 atomic_set(&md->open_count, 0);
2317 atomic_set(&md->event_nr, 0);
2318 atomic_set(&md->uevent_seq, 0);
2319 INIT_LIST_HEAD(&md->uevent_list);
2320 INIT_LIST_HEAD(&md->table_devices);
2321 spin_lock_init(&md->uevent_lock);
2322
2323 md->queue = blk_alloc_queue(GFP_KERNEL);
2324 if (!md->queue)
2325 goto bad;
2326
2327 dm_init_md_queue(md);
2328
2329 md->disk = alloc_disk(1);
2330 if (!md->disk)
2331 goto bad;
2332
2333 atomic_set(&md->pending[0], 0);
2334 atomic_set(&md->pending[1], 0);
2335 init_waitqueue_head(&md->wait);
2336 INIT_WORK(&md->work, dm_wq_work);
2337 init_waitqueue_head(&md->eventq);
2338 init_completion(&md->kobj_holder.completion);
2339 md->kworker_task = NULL;
2340
2341 md->disk->major = _major;
2342 md->disk->first_minor = minor;
2343 md->disk->fops = &dm_blk_dops;
2344 md->disk->queue = md->queue;
2345 md->disk->private_data = md;
2346 sprintf(md->disk->disk_name, "dm-%d", minor);
2347 add_disk(md->disk);
2348 format_dev_t(md->name, MKDEV(_major, minor));
2349
2350 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2351 if (!md->wq)
2352 goto bad;
2353
2354 md->bdev = bdget_disk(md->disk, 0);
2355 if (!md->bdev)
2356 goto bad;
2357
2358 bio_init(&md->flush_bio);
2359 md->flush_bio.bi_bdev = md->bdev;
2360 md->flush_bio.bi_rw = WRITE_FLUSH;
2361
2362 dm_stats_init(&md->stats);
2363
2364 /* Populate the mapping, nobody knows we exist yet */
2365 spin_lock(&_minor_lock);
2366 old_md = idr_replace(&_minor_idr, md, minor);
2367 spin_unlock(&_minor_lock);
2368
2369 BUG_ON(old_md != MINOR_ALLOCED);
2370
2371 return md;
2372
2373 bad:
2374 cleanup_mapped_device(md);
2375 bad_io_barrier:
2376 free_minor(minor);
2377 bad_minor:
2378 module_put(THIS_MODULE);
2379 bad_module_get:
2380 kfree(md);
2381 return NULL;
2382 }
2383
2384 static void unlock_fs(struct mapped_device *md);
2385
2386 static void free_dev(struct mapped_device *md)
2387 {
2388 int minor = MINOR(disk_devt(md->disk));
2389
2390 unlock_fs(md);
2391
2392 cleanup_mapped_device(md);
2393 if (md->use_blk_mq)
2394 blk_mq_free_tag_set(&md->tag_set);
2395
2396 free_table_devices(&md->table_devices);
2397 dm_stats_cleanup(&md->stats);
2398 free_minor(minor);
2399
2400 module_put(THIS_MODULE);
2401 kfree(md);
2402 }
2403
2404 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2405 {
2406 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2407
2408 if (md->bs) {
2409 /* The md already has necessary mempools. */
2410 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2411 /*
2412 * Reload bioset because front_pad may have changed
2413 * because a different table was loaded.
2414 */
2415 bioset_free(md->bs);
2416 md->bs = p->bs;
2417 p->bs = NULL;
2418 }
2419 /*
2420 * There's no need to reload with request-based dm
2421 * because the size of front_pad doesn't change.
2422 * Note for future: If you are to reload bioset,
2423 * prep-ed requests in the queue may refer
2424 * to bio from the old bioset, so you must walk
2425 * through the queue to unprep.
2426 */
2427 goto out;
2428 }
2429
2430 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2431
2432 md->io_pool = p->io_pool;
2433 p->io_pool = NULL;
2434 md->rq_pool = p->rq_pool;
2435 p->rq_pool = NULL;
2436 md->bs = p->bs;
2437 p->bs = NULL;
2438
2439 out:
2440 /* mempool bind completed, no longer need any mempools in the table */
2441 dm_table_free_md_mempools(t);
2442 }
2443
2444 /*
2445 * Bind a table to the device.
2446 */
2447 static void event_callback(void *context)
2448 {
2449 unsigned long flags;
2450 LIST_HEAD(uevents);
2451 struct mapped_device *md = (struct mapped_device *) context;
2452
2453 spin_lock_irqsave(&md->uevent_lock, flags);
2454 list_splice_init(&md->uevent_list, &uevents);
2455 spin_unlock_irqrestore(&md->uevent_lock, flags);
2456
2457 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2458
2459 atomic_inc(&md->event_nr);
2460 wake_up(&md->eventq);
2461 }
2462
2463 /*
2464 * Protected by md->suspend_lock obtained by dm_swap_table().
2465 */
2466 static void __set_size(struct mapped_device *md, sector_t size)
2467 {
2468 set_capacity(md->disk, size);
2469
2470 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2471 }
2472
2473 /*
2474 * Returns old map, which caller must destroy.
2475 */
2476 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2477 struct queue_limits *limits)
2478 {
2479 struct dm_table *old_map;
2480 struct request_queue *q = md->queue;
2481 sector_t size;
2482
2483 size = dm_table_get_size(t);
2484
2485 /*
2486 * Wipe any geometry if the size of the table changed.
2487 */
2488 if (size != dm_get_size(md))
2489 memset(&md->geometry, 0, sizeof(md->geometry));
2490
2491 __set_size(md, size);
2492
2493 dm_table_event_callback(t, event_callback, md);
2494
2495 /*
2496 * The queue hasn't been stopped yet, if the old table type wasn't
2497 * for request-based during suspension. So stop it to prevent
2498 * I/O mapping before resume.
2499 * This must be done before setting the queue restrictions,
2500 * because request-based dm may be run just after the setting.
2501 */
2502 if (dm_table_request_based(t))
2503 stop_queue(q);
2504
2505 __bind_mempools(md, t);
2506
2507 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2508 rcu_assign_pointer(md->map, t);
2509 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2510
2511 dm_table_set_restrictions(t, q, limits);
2512 if (old_map)
2513 dm_sync_table(md);
2514
2515 return old_map;
2516 }
2517
2518 /*
2519 * Returns unbound table for the caller to free.
2520 */
2521 static struct dm_table *__unbind(struct mapped_device *md)
2522 {
2523 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2524
2525 if (!map)
2526 return NULL;
2527
2528 dm_table_event_callback(map, NULL, NULL);
2529 RCU_INIT_POINTER(md->map, NULL);
2530 dm_sync_table(md);
2531
2532 return map;
2533 }
2534
2535 /*
2536 * Constructor for a new device.
2537 */
2538 int dm_create(int minor, struct mapped_device **result)
2539 {
2540 struct mapped_device *md;
2541
2542 md = alloc_dev(minor);
2543 if (!md)
2544 return -ENXIO;
2545
2546 dm_sysfs_init(md);
2547
2548 *result = md;
2549 return 0;
2550 }
2551
2552 /*
2553 * Functions to manage md->type.
2554 * All are required to hold md->type_lock.
2555 */
2556 void dm_lock_md_type(struct mapped_device *md)
2557 {
2558 mutex_lock(&md->type_lock);
2559 }
2560
2561 void dm_unlock_md_type(struct mapped_device *md)
2562 {
2563 mutex_unlock(&md->type_lock);
2564 }
2565
2566 void dm_set_md_type(struct mapped_device *md, unsigned type)
2567 {
2568 BUG_ON(!mutex_is_locked(&md->type_lock));
2569 md->type = type;
2570 }
2571
2572 unsigned dm_get_md_type(struct mapped_device *md)
2573 {
2574 BUG_ON(!mutex_is_locked(&md->type_lock));
2575 return md->type;
2576 }
2577
2578 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2579 {
2580 return md->immutable_target_type;
2581 }
2582
2583 /*
2584 * The queue_limits are only valid as long as you have a reference
2585 * count on 'md'.
2586 */
2587 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2588 {
2589 BUG_ON(!atomic_read(&md->holders));
2590 return &md->queue->limits;
2591 }
2592 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2593
2594 static void init_rq_based_worker_thread(struct mapped_device *md)
2595 {
2596 /* Initialize the request-based DM worker thread */
2597 init_kthread_worker(&md->kworker);
2598 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2599 "kdmwork-%s", dm_device_name(md));
2600 }
2601
2602 /*
2603 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2604 */
2605 static int dm_init_request_based_queue(struct mapped_device *md)
2606 {
2607 struct request_queue *q = NULL;
2608
2609 /* Fully initialize the queue */
2610 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2611 if (!q)
2612 return -EINVAL;
2613
2614 /* disable dm_request_fn's merge heuristic by default */
2615 md->seq_rq_merge_deadline_usecs = 0;
2616
2617 md->queue = q;
2618 dm_init_old_md_queue(md);
2619 blk_queue_softirq_done(md->queue, dm_softirq_done);
2620 blk_queue_prep_rq(md->queue, dm_prep_fn);
2621
2622 init_rq_based_worker_thread(md);
2623
2624 elv_register_queue(md->queue);
2625
2626 return 0;
2627 }
2628
2629 static int dm_mq_init_request(void *data, struct request *rq,
2630 unsigned int hctx_idx, unsigned int request_idx,
2631 unsigned int numa_node)
2632 {
2633 struct mapped_device *md = data;
2634 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2635
2636 /*
2637 * Must initialize md member of tio, otherwise it won't
2638 * be available in dm_mq_queue_rq.
2639 */
2640 tio->md = md;
2641
2642 return 0;
2643 }
2644
2645 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2646 const struct blk_mq_queue_data *bd)
2647 {
2648 struct request *rq = bd->rq;
2649 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2650 struct mapped_device *md = tio->md;
2651 int srcu_idx;
2652 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2653 struct dm_target *ti;
2654 sector_t pos;
2655
2656 /* always use block 0 to find the target for flushes for now */
2657 pos = 0;
2658 if (!(rq->cmd_flags & REQ_FLUSH))
2659 pos = blk_rq_pos(rq);
2660
2661 ti = dm_table_find_target(map, pos);
2662 if (!dm_target_is_valid(ti)) {
2663 dm_put_live_table(md, srcu_idx);
2664 DMERR_LIMIT("request attempted access beyond the end of device");
2665 /*
2666 * Must perform setup, that rq_completed() requires,
2667 * before returning BLK_MQ_RQ_QUEUE_ERROR
2668 */
2669 dm_start_request(md, rq);
2670 return BLK_MQ_RQ_QUEUE_ERROR;
2671 }
2672 dm_put_live_table(md, srcu_idx);
2673
2674 if (ti->type->busy && ti->type->busy(ti))
2675 return BLK_MQ_RQ_QUEUE_BUSY;
2676
2677 dm_start_request(md, rq);
2678
2679 /* Init tio using md established in .init_request */
2680 init_tio(tio, rq, md);
2681
2682 /*
2683 * Establish tio->ti before queuing work (map_tio_request)
2684 * or making direct call to map_request().
2685 */
2686 tio->ti = ti;
2687
2688 /* Clone the request if underlying devices aren't blk-mq */
2689 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2690 /* clone request is allocated at the end of the pdu */
2691 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2692 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2693 queue_kthread_work(&md->kworker, &tio->work);
2694 } else {
2695 /* Direct call is fine since .queue_rq allows allocations */
2696 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2697 /* Undo dm_start_request() before requeuing */
2698 rq_end_stats(md, rq);
2699 rq_completed(md, rq_data_dir(rq), false);
2700 return BLK_MQ_RQ_QUEUE_BUSY;
2701 }
2702 }
2703
2704 return BLK_MQ_RQ_QUEUE_OK;
2705 }
2706
2707 static struct blk_mq_ops dm_mq_ops = {
2708 .queue_rq = dm_mq_queue_rq,
2709 .map_queue = blk_mq_map_queue,
2710 .complete = dm_softirq_done,
2711 .init_request = dm_mq_init_request,
2712 };
2713
2714 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2715 {
2716 unsigned md_type = dm_get_md_type(md);
2717 struct request_queue *q;
2718 int err;
2719
2720 memset(&md->tag_set, 0, sizeof(md->tag_set));
2721 md->tag_set.ops = &dm_mq_ops;
2722 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2723 md->tag_set.numa_node = NUMA_NO_NODE;
2724 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2725 md->tag_set.nr_hw_queues = 1;
2726 if (md_type == DM_TYPE_REQUEST_BASED) {
2727 /* make the memory for non-blk-mq clone part of the pdu */
2728 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2729 } else
2730 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2731 md->tag_set.driver_data = md;
2732
2733 err = blk_mq_alloc_tag_set(&md->tag_set);
2734 if (err)
2735 return err;
2736
2737 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2738 if (IS_ERR(q)) {
2739 err = PTR_ERR(q);
2740 goto out_tag_set;
2741 }
2742 md->queue = q;
2743 dm_init_md_queue(md);
2744
2745 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2746 blk_mq_register_disk(md->disk);
2747
2748 if (md_type == DM_TYPE_REQUEST_BASED)
2749 init_rq_based_worker_thread(md);
2750
2751 return 0;
2752
2753 out_tag_set:
2754 blk_mq_free_tag_set(&md->tag_set);
2755 return err;
2756 }
2757
2758 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2759 {
2760 if (type == DM_TYPE_BIO_BASED)
2761 return type;
2762
2763 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2764 }
2765
2766 /*
2767 * Setup the DM device's queue based on md's type
2768 */
2769 int dm_setup_md_queue(struct mapped_device *md)
2770 {
2771 int r;
2772 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2773
2774 switch (md_type) {
2775 case DM_TYPE_REQUEST_BASED:
2776 r = dm_init_request_based_queue(md);
2777 if (r) {
2778 DMWARN("Cannot initialize queue for request-based mapped device");
2779 return r;
2780 }
2781 break;
2782 case DM_TYPE_MQ_REQUEST_BASED:
2783 r = dm_init_request_based_blk_mq_queue(md);
2784 if (r) {
2785 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2786 return r;
2787 }
2788 break;
2789 case DM_TYPE_BIO_BASED:
2790 dm_init_old_md_queue(md);
2791 blk_queue_make_request(md->queue, dm_make_request);
2792 /*
2793 * DM handles splitting bios as needed. Free the bio_split bioset
2794 * since it won't be used (saves 1 process per bio-based DM device).
2795 */
2796 bioset_free(md->queue->bio_split);
2797 md->queue->bio_split = NULL;
2798 break;
2799 }
2800
2801 return 0;
2802 }
2803
2804 struct mapped_device *dm_get_md(dev_t dev)
2805 {
2806 struct mapped_device *md;
2807 unsigned minor = MINOR(dev);
2808
2809 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2810 return NULL;
2811
2812 spin_lock(&_minor_lock);
2813
2814 md = idr_find(&_minor_idr, minor);
2815 if (md) {
2816 if ((md == MINOR_ALLOCED ||
2817 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2818 dm_deleting_md(md) ||
2819 test_bit(DMF_FREEING, &md->flags))) {
2820 md = NULL;
2821 goto out;
2822 }
2823 dm_get(md);
2824 }
2825
2826 out:
2827 spin_unlock(&_minor_lock);
2828
2829 return md;
2830 }
2831 EXPORT_SYMBOL_GPL(dm_get_md);
2832
2833 void *dm_get_mdptr(struct mapped_device *md)
2834 {
2835 return md->interface_ptr;
2836 }
2837
2838 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2839 {
2840 md->interface_ptr = ptr;
2841 }
2842
2843 void dm_get(struct mapped_device *md)
2844 {
2845 atomic_inc(&md->holders);
2846 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2847 }
2848
2849 int dm_hold(struct mapped_device *md)
2850 {
2851 spin_lock(&_minor_lock);
2852 if (test_bit(DMF_FREEING, &md->flags)) {
2853 spin_unlock(&_minor_lock);
2854 return -EBUSY;
2855 }
2856 dm_get(md);
2857 spin_unlock(&_minor_lock);
2858 return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(dm_hold);
2861
2862 const char *dm_device_name(struct mapped_device *md)
2863 {
2864 return md->name;
2865 }
2866 EXPORT_SYMBOL_GPL(dm_device_name);
2867
2868 static void __dm_destroy(struct mapped_device *md, bool wait)
2869 {
2870 struct dm_table *map;
2871 int srcu_idx;
2872
2873 might_sleep();
2874
2875 spin_lock(&_minor_lock);
2876 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2877 set_bit(DMF_FREEING, &md->flags);
2878 spin_unlock(&_minor_lock);
2879
2880 if (dm_request_based(md) && md->kworker_task)
2881 flush_kthread_worker(&md->kworker);
2882
2883 /*
2884 * Take suspend_lock so that presuspend and postsuspend methods
2885 * do not race with internal suspend.
2886 */
2887 mutex_lock(&md->suspend_lock);
2888 map = dm_get_live_table(md, &srcu_idx);
2889 if (!dm_suspended_md(md)) {
2890 dm_table_presuspend_targets(map);
2891 dm_table_postsuspend_targets(map);
2892 }
2893 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2894 dm_put_live_table(md, srcu_idx);
2895 mutex_unlock(&md->suspend_lock);
2896
2897 /*
2898 * Rare, but there may be I/O requests still going to complete,
2899 * for example. Wait for all references to disappear.
2900 * No one should increment the reference count of the mapped_device,
2901 * after the mapped_device state becomes DMF_FREEING.
2902 */
2903 if (wait)
2904 while (atomic_read(&md->holders))
2905 msleep(1);
2906 else if (atomic_read(&md->holders))
2907 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2908 dm_device_name(md), atomic_read(&md->holders));
2909
2910 dm_sysfs_exit(md);
2911 dm_table_destroy(__unbind(md));
2912 free_dev(md);
2913 }
2914
2915 void dm_destroy(struct mapped_device *md)
2916 {
2917 __dm_destroy(md, true);
2918 }
2919
2920 void dm_destroy_immediate(struct mapped_device *md)
2921 {
2922 __dm_destroy(md, false);
2923 }
2924
2925 void dm_put(struct mapped_device *md)
2926 {
2927 atomic_dec(&md->holders);
2928 }
2929 EXPORT_SYMBOL_GPL(dm_put);
2930
2931 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2932 {
2933 int r = 0;
2934 DECLARE_WAITQUEUE(wait, current);
2935
2936 add_wait_queue(&md->wait, &wait);
2937
2938 while (1) {
2939 set_current_state(interruptible);
2940
2941 if (!md_in_flight(md))
2942 break;
2943
2944 if (interruptible == TASK_INTERRUPTIBLE &&
2945 signal_pending(current)) {
2946 r = -EINTR;
2947 break;
2948 }
2949
2950 io_schedule();
2951 }
2952 set_current_state(TASK_RUNNING);
2953
2954 remove_wait_queue(&md->wait, &wait);
2955
2956 return r;
2957 }
2958
2959 /*
2960 * Process the deferred bios
2961 */
2962 static void dm_wq_work(struct work_struct *work)
2963 {
2964 struct mapped_device *md = container_of(work, struct mapped_device,
2965 work);
2966 struct bio *c;
2967 int srcu_idx;
2968 struct dm_table *map;
2969
2970 map = dm_get_live_table(md, &srcu_idx);
2971
2972 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2973 spin_lock_irq(&md->deferred_lock);
2974 c = bio_list_pop(&md->deferred);
2975 spin_unlock_irq(&md->deferred_lock);
2976
2977 if (!c)
2978 break;
2979
2980 if (dm_request_based(md))
2981 generic_make_request(c);
2982 else
2983 __split_and_process_bio(md, map, c);
2984 }
2985
2986 dm_put_live_table(md, srcu_idx);
2987 }
2988
2989 static void dm_queue_flush(struct mapped_device *md)
2990 {
2991 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2992 smp_mb__after_atomic();
2993 queue_work(md->wq, &md->work);
2994 }
2995
2996 /*
2997 * Swap in a new table, returning the old one for the caller to destroy.
2998 */
2999 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3000 {
3001 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3002 struct queue_limits limits;
3003 int r;
3004
3005 mutex_lock(&md->suspend_lock);
3006
3007 /* device must be suspended */
3008 if (!dm_suspended_md(md))
3009 goto out;
3010
3011 /*
3012 * If the new table has no data devices, retain the existing limits.
3013 * This helps multipath with queue_if_no_path if all paths disappear,
3014 * then new I/O is queued based on these limits, and then some paths
3015 * reappear.
3016 */
3017 if (dm_table_has_no_data_devices(table)) {
3018 live_map = dm_get_live_table_fast(md);
3019 if (live_map)
3020 limits = md->queue->limits;
3021 dm_put_live_table_fast(md);
3022 }
3023
3024 if (!live_map) {
3025 r = dm_calculate_queue_limits(table, &limits);
3026 if (r) {
3027 map = ERR_PTR(r);
3028 goto out;
3029 }
3030 }
3031
3032 map = __bind(md, table, &limits);
3033
3034 out:
3035 mutex_unlock(&md->suspend_lock);
3036 return map;
3037 }
3038
3039 /*
3040 * Functions to lock and unlock any filesystem running on the
3041 * device.
3042 */
3043 static int lock_fs(struct mapped_device *md)
3044 {
3045 int r;
3046
3047 WARN_ON(md->frozen_sb);
3048
3049 md->frozen_sb = freeze_bdev(md->bdev);
3050 if (IS_ERR(md->frozen_sb)) {
3051 r = PTR_ERR(md->frozen_sb);
3052 md->frozen_sb = NULL;
3053 return r;
3054 }
3055
3056 set_bit(DMF_FROZEN, &md->flags);
3057
3058 return 0;
3059 }
3060
3061 static void unlock_fs(struct mapped_device *md)
3062 {
3063 if (!test_bit(DMF_FROZEN, &md->flags))
3064 return;
3065
3066 thaw_bdev(md->bdev, md->frozen_sb);
3067 md->frozen_sb = NULL;
3068 clear_bit(DMF_FROZEN, &md->flags);
3069 }
3070
3071 /*
3072 * If __dm_suspend returns 0, the device is completely quiescent
3073 * now. There is no request-processing activity. All new requests
3074 * are being added to md->deferred list.
3075 *
3076 * Caller must hold md->suspend_lock
3077 */
3078 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3079 unsigned suspend_flags, int interruptible)
3080 {
3081 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3082 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3083 int r;
3084
3085 /*
3086 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3087 * This flag is cleared before dm_suspend returns.
3088 */
3089 if (noflush)
3090 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3091
3092 /*
3093 * This gets reverted if there's an error later and the targets
3094 * provide the .presuspend_undo hook.
3095 */
3096 dm_table_presuspend_targets(map);
3097
3098 /*
3099 * Flush I/O to the device.
3100 * Any I/O submitted after lock_fs() may not be flushed.
3101 * noflush takes precedence over do_lockfs.
3102 * (lock_fs() flushes I/Os and waits for them to complete.)
3103 */
3104 if (!noflush && do_lockfs) {
3105 r = lock_fs(md);
3106 if (r) {
3107 dm_table_presuspend_undo_targets(map);
3108 return r;
3109 }
3110 }
3111
3112 /*
3113 * Here we must make sure that no processes are submitting requests
3114 * to target drivers i.e. no one may be executing
3115 * __split_and_process_bio. This is called from dm_request and
3116 * dm_wq_work.
3117 *
3118 * To get all processes out of __split_and_process_bio in dm_request,
3119 * we take the write lock. To prevent any process from reentering
3120 * __split_and_process_bio from dm_request and quiesce the thread
3121 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3122 * flush_workqueue(md->wq).
3123 */
3124 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3125 if (map)
3126 synchronize_srcu(&md->io_barrier);
3127
3128 /*
3129 * Stop md->queue before flushing md->wq in case request-based
3130 * dm defers requests to md->wq from md->queue.
3131 */
3132 if (dm_request_based(md)) {
3133 stop_queue(md->queue);
3134 if (md->kworker_task)
3135 flush_kthread_worker(&md->kworker);
3136 }
3137
3138 flush_workqueue(md->wq);
3139
3140 /*
3141 * At this point no more requests are entering target request routines.
3142 * We call dm_wait_for_completion to wait for all existing requests
3143 * to finish.
3144 */
3145 r = dm_wait_for_completion(md, interruptible);
3146
3147 if (noflush)
3148 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3149 if (map)
3150 synchronize_srcu(&md->io_barrier);
3151
3152 /* were we interrupted ? */
3153 if (r < 0) {
3154 dm_queue_flush(md);
3155
3156 if (dm_request_based(md))
3157 start_queue(md->queue);
3158
3159 unlock_fs(md);
3160 dm_table_presuspend_undo_targets(map);
3161 /* pushback list is already flushed, so skip flush */
3162 }
3163
3164 return r;
3165 }
3166
3167 /*
3168 * We need to be able to change a mapping table under a mounted
3169 * filesystem. For example we might want to move some data in
3170 * the background. Before the table can be swapped with
3171 * dm_bind_table, dm_suspend must be called to flush any in
3172 * flight bios and ensure that any further io gets deferred.
3173 */
3174 /*
3175 * Suspend mechanism in request-based dm.
3176 *
3177 * 1. Flush all I/Os by lock_fs() if needed.
3178 * 2. Stop dispatching any I/O by stopping the request_queue.
3179 * 3. Wait for all in-flight I/Os to be completed or requeued.
3180 *
3181 * To abort suspend, start the request_queue.
3182 */
3183 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3184 {
3185 struct dm_table *map = NULL;
3186 int r = 0;
3187
3188 retry:
3189 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3190
3191 if (dm_suspended_md(md)) {
3192 r = -EINVAL;
3193 goto out_unlock;
3194 }
3195
3196 if (dm_suspended_internally_md(md)) {
3197 /* already internally suspended, wait for internal resume */
3198 mutex_unlock(&md->suspend_lock);
3199 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3200 if (r)
3201 return r;
3202 goto retry;
3203 }
3204
3205 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3206
3207 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3208 if (r)
3209 goto out_unlock;
3210
3211 set_bit(DMF_SUSPENDED, &md->flags);
3212
3213 dm_table_postsuspend_targets(map);
3214
3215 out_unlock:
3216 mutex_unlock(&md->suspend_lock);
3217 return r;
3218 }
3219
3220 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3221 {
3222 if (map) {
3223 int r = dm_table_resume_targets(map);
3224 if (r)
3225 return r;
3226 }
3227
3228 dm_queue_flush(md);
3229
3230 /*
3231 * Flushing deferred I/Os must be done after targets are resumed
3232 * so that mapping of targets can work correctly.
3233 * Request-based dm is queueing the deferred I/Os in its request_queue.
3234 */
3235 if (dm_request_based(md))
3236 start_queue(md->queue);
3237
3238 unlock_fs(md);
3239
3240 return 0;
3241 }
3242
3243 int dm_resume(struct mapped_device *md)
3244 {
3245 int r = -EINVAL;
3246 struct dm_table *map = NULL;
3247
3248 retry:
3249 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3250
3251 if (!dm_suspended_md(md))
3252 goto out;
3253
3254 if (dm_suspended_internally_md(md)) {
3255 /* already internally suspended, wait for internal resume */
3256 mutex_unlock(&md->suspend_lock);
3257 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3258 if (r)
3259 return r;
3260 goto retry;
3261 }
3262
3263 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3264 if (!map || !dm_table_get_size(map))
3265 goto out;
3266
3267 r = __dm_resume(md, map);
3268 if (r)
3269 goto out;
3270
3271 clear_bit(DMF_SUSPENDED, &md->flags);
3272
3273 r = 0;
3274 out:
3275 mutex_unlock(&md->suspend_lock);
3276
3277 return r;
3278 }
3279
3280 /*
3281 * Internal suspend/resume works like userspace-driven suspend. It waits
3282 * until all bios finish and prevents issuing new bios to the target drivers.
3283 * It may be used only from the kernel.
3284 */
3285
3286 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3287 {
3288 struct dm_table *map = NULL;
3289
3290 if (md->internal_suspend_count++)
3291 return; /* nested internal suspend */
3292
3293 if (dm_suspended_md(md)) {
3294 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3295 return; /* nest suspend */
3296 }
3297
3298 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3299
3300 /*
3301 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3302 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3303 * would require changing .presuspend to return an error -- avoid this
3304 * until there is a need for more elaborate variants of internal suspend.
3305 */
3306 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3307
3308 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3309
3310 dm_table_postsuspend_targets(map);
3311 }
3312
3313 static void __dm_internal_resume(struct mapped_device *md)
3314 {
3315 BUG_ON(!md->internal_suspend_count);
3316
3317 if (--md->internal_suspend_count)
3318 return; /* resume from nested internal suspend */
3319
3320 if (dm_suspended_md(md))
3321 goto done; /* resume from nested suspend */
3322
3323 /*
3324 * NOTE: existing callers don't need to call dm_table_resume_targets
3325 * (which may fail -- so best to avoid it for now by passing NULL map)
3326 */
3327 (void) __dm_resume(md, NULL);
3328
3329 done:
3330 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3331 smp_mb__after_atomic();
3332 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3333 }
3334
3335 void dm_internal_suspend_noflush(struct mapped_device *md)
3336 {
3337 mutex_lock(&md->suspend_lock);
3338 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3339 mutex_unlock(&md->suspend_lock);
3340 }
3341 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3342
3343 void dm_internal_resume(struct mapped_device *md)
3344 {
3345 mutex_lock(&md->suspend_lock);
3346 __dm_internal_resume(md);
3347 mutex_unlock(&md->suspend_lock);
3348 }
3349 EXPORT_SYMBOL_GPL(dm_internal_resume);
3350
3351 /*
3352 * Fast variants of internal suspend/resume hold md->suspend_lock,
3353 * which prevents interaction with userspace-driven suspend.
3354 */
3355
3356 void dm_internal_suspend_fast(struct mapped_device *md)
3357 {
3358 mutex_lock(&md->suspend_lock);
3359 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3360 return;
3361
3362 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3363 synchronize_srcu(&md->io_barrier);
3364 flush_workqueue(md->wq);
3365 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3366 }
3367 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3368
3369 void dm_internal_resume_fast(struct mapped_device *md)
3370 {
3371 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3372 goto done;
3373
3374 dm_queue_flush(md);
3375
3376 done:
3377 mutex_unlock(&md->suspend_lock);
3378 }
3379 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3380
3381 /*-----------------------------------------------------------------
3382 * Event notification.
3383 *---------------------------------------------------------------*/
3384 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3385 unsigned cookie)
3386 {
3387 char udev_cookie[DM_COOKIE_LENGTH];
3388 char *envp[] = { udev_cookie, NULL };
3389
3390 if (!cookie)
3391 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3392 else {
3393 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3394 DM_COOKIE_ENV_VAR_NAME, cookie);
3395 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3396 action, envp);
3397 }
3398 }
3399
3400 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3401 {
3402 return atomic_add_return(1, &md->uevent_seq);
3403 }
3404
3405 uint32_t dm_get_event_nr(struct mapped_device *md)
3406 {
3407 return atomic_read(&md->event_nr);
3408 }
3409
3410 int dm_wait_event(struct mapped_device *md, int event_nr)
3411 {
3412 return wait_event_interruptible(md->eventq,
3413 (event_nr != atomic_read(&md->event_nr)));
3414 }
3415
3416 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3417 {
3418 unsigned long flags;
3419
3420 spin_lock_irqsave(&md->uevent_lock, flags);
3421 list_add(elist, &md->uevent_list);
3422 spin_unlock_irqrestore(&md->uevent_lock, flags);
3423 }
3424
3425 /*
3426 * The gendisk is only valid as long as you have a reference
3427 * count on 'md'.
3428 */
3429 struct gendisk *dm_disk(struct mapped_device *md)
3430 {
3431 return md->disk;
3432 }
3433 EXPORT_SYMBOL_GPL(dm_disk);
3434
3435 struct kobject *dm_kobject(struct mapped_device *md)
3436 {
3437 return &md->kobj_holder.kobj;
3438 }
3439
3440 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3441 {
3442 struct mapped_device *md;
3443
3444 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3445
3446 if (test_bit(DMF_FREEING, &md->flags) ||
3447 dm_deleting_md(md))
3448 return NULL;
3449
3450 dm_get(md);
3451 return md;
3452 }
3453
3454 int dm_suspended_md(struct mapped_device *md)
3455 {
3456 return test_bit(DMF_SUSPENDED, &md->flags);
3457 }
3458
3459 int dm_suspended_internally_md(struct mapped_device *md)
3460 {
3461 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3462 }
3463
3464 int dm_test_deferred_remove_flag(struct mapped_device *md)
3465 {
3466 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3467 }
3468
3469 int dm_suspended(struct dm_target *ti)
3470 {
3471 return dm_suspended_md(dm_table_get_md(ti->table));
3472 }
3473 EXPORT_SYMBOL_GPL(dm_suspended);
3474
3475 int dm_noflush_suspending(struct dm_target *ti)
3476 {
3477 return __noflush_suspending(dm_table_get_md(ti->table));
3478 }
3479 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3480
3481 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3482 unsigned integrity, unsigned per_bio_data_size)
3483 {
3484 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3485 struct kmem_cache *cachep = NULL;
3486 unsigned int pool_size = 0;
3487 unsigned int front_pad;
3488
3489 if (!pools)
3490 return NULL;
3491
3492 type = filter_md_type(type, md);
3493
3494 switch (type) {
3495 case DM_TYPE_BIO_BASED:
3496 cachep = _io_cache;
3497 pool_size = dm_get_reserved_bio_based_ios();
3498 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3499 break;
3500 case DM_TYPE_REQUEST_BASED:
3501 cachep = _rq_tio_cache;
3502 pool_size = dm_get_reserved_rq_based_ios();
3503 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3504 if (!pools->rq_pool)
3505 goto out;
3506 /* fall through to setup remaining rq-based pools */
3507 case DM_TYPE_MQ_REQUEST_BASED:
3508 if (!pool_size)
3509 pool_size = dm_get_reserved_rq_based_ios();
3510 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3511 /* per_bio_data_size is not used. See __bind_mempools(). */
3512 WARN_ON(per_bio_data_size != 0);
3513 break;
3514 default:
3515 BUG();
3516 }
3517
3518 if (cachep) {
3519 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3520 if (!pools->io_pool)
3521 goto out;
3522 }
3523
3524 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3525 if (!pools->bs)
3526 goto out;
3527
3528 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3529 goto out;
3530
3531 return pools;
3532
3533 out:
3534 dm_free_md_mempools(pools);
3535
3536 return NULL;
3537 }
3538
3539 void dm_free_md_mempools(struct dm_md_mempools *pools)
3540 {
3541 if (!pools)
3542 return;
3543
3544 mempool_destroy(pools->io_pool);
3545 mempool_destroy(pools->rq_pool);
3546
3547 if (pools->bs)
3548 bioset_free(pools->bs);
3549
3550 kfree(pools);
3551 }
3552
3553 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3554 u32 flags)
3555 {
3556 struct mapped_device *md = bdev->bd_disk->private_data;
3557 const struct pr_ops *ops;
3558 struct dm_target *tgt;
3559 fmode_t mode;
3560 int srcu_idx, r;
3561
3562 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3563 if (r < 0)
3564 return r;
3565
3566 ops = bdev->bd_disk->fops->pr_ops;
3567 if (ops && ops->pr_register)
3568 r = ops->pr_register(bdev, old_key, new_key, flags);
3569 else
3570 r = -EOPNOTSUPP;
3571
3572 dm_put_live_table(md, srcu_idx);
3573 return r;
3574 }
3575
3576 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3577 u32 flags)
3578 {
3579 struct mapped_device *md = bdev->bd_disk->private_data;
3580 const struct pr_ops *ops;
3581 struct dm_target *tgt;
3582 fmode_t mode;
3583 int srcu_idx, r;
3584
3585 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3586 if (r < 0)
3587 return r;
3588
3589 ops = bdev->bd_disk->fops->pr_ops;
3590 if (ops && ops->pr_reserve)
3591 r = ops->pr_reserve(bdev, key, type, flags);
3592 else
3593 r = -EOPNOTSUPP;
3594
3595 dm_put_live_table(md, srcu_idx);
3596 return r;
3597 }
3598
3599 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3600 {
3601 struct mapped_device *md = bdev->bd_disk->private_data;
3602 const struct pr_ops *ops;
3603 struct dm_target *tgt;
3604 fmode_t mode;
3605 int srcu_idx, r;
3606
3607 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3608 if (r < 0)
3609 return r;
3610
3611 ops = bdev->bd_disk->fops->pr_ops;
3612 if (ops && ops->pr_release)
3613 r = ops->pr_release(bdev, key, type);
3614 else
3615 r = -EOPNOTSUPP;
3616
3617 dm_put_live_table(md, srcu_idx);
3618 return r;
3619 }
3620
3621 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3622 enum pr_type type, bool abort)
3623 {
3624 struct mapped_device *md = bdev->bd_disk->private_data;
3625 const struct pr_ops *ops;
3626 struct dm_target *tgt;
3627 fmode_t mode;
3628 int srcu_idx, r;
3629
3630 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3631 if (r < 0)
3632 return r;
3633
3634 ops = bdev->bd_disk->fops->pr_ops;
3635 if (ops && ops->pr_preempt)
3636 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3637 else
3638 r = -EOPNOTSUPP;
3639
3640 dm_put_live_table(md, srcu_idx);
3641 return r;
3642 }
3643
3644 static int dm_pr_clear(struct block_device *bdev, u64 key)
3645 {
3646 struct mapped_device *md = bdev->bd_disk->private_data;
3647 const struct pr_ops *ops;
3648 struct dm_target *tgt;
3649 fmode_t mode;
3650 int srcu_idx, r;
3651
3652 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3653 if (r < 0)
3654 return r;
3655
3656 ops = bdev->bd_disk->fops->pr_ops;
3657 if (ops && ops->pr_clear)
3658 r = ops->pr_clear(bdev, key);
3659 else
3660 r = -EOPNOTSUPP;
3661
3662 dm_put_live_table(md, srcu_idx);
3663 return r;
3664 }
3665
3666 static const struct pr_ops dm_pr_ops = {
3667 .pr_register = dm_pr_register,
3668 .pr_reserve = dm_pr_reserve,
3669 .pr_release = dm_pr_release,
3670 .pr_preempt = dm_pr_preempt,
3671 .pr_clear = dm_pr_clear,
3672 };
3673
3674 static const struct block_device_operations dm_blk_dops = {
3675 .open = dm_blk_open,
3676 .release = dm_blk_close,
3677 .ioctl = dm_blk_ioctl,
3678 .getgeo = dm_blk_getgeo,
3679 .pr_ops = &dm_pr_ops,
3680 .owner = THIS_MODULE
3681 };
3682
3683 /*
3684 * module hooks
3685 */
3686 module_init(dm_init);
3687 module_exit(dm_exit);
3688
3689 module_param(major, uint, 0);
3690 MODULE_PARM_DESC(major, "The major number of the device mapper");
3691
3692 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3693 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3694
3695 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3696 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3697
3698 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3699 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3700
3701 MODULE_DESCRIPTION(DM_NAME " driver");
3702 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3703 MODULE_LICENSE("GPL");