]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28
29 #include <trace/events/block.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 #ifdef CONFIG_PRINTK
34 /*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42
43 /*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69 struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83 struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93 };
94
95 /*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103 struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107 };
108
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 if (rq && rq->end_io_data)
112 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116
117 #define MINOR_ALLOCED ((void *)-1)
118
119 /*
120 * Bits for the md->flags field.
121 */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 struct dm_target **tgt, struct block_device **bdev,
561 fmode_t *mode, int *srcu_idx)
562 {
563 struct dm_table *map;
564 int r;
565
566 retry:
567 r = -ENOTTY;
568 map = dm_get_live_table(md, srcu_idx);
569 if (!map || !dm_table_get_size(map))
570 goto out;
571
572 /* We only support devices that have a single target */
573 if (dm_table_get_num_targets(map) != 1)
574 goto out;
575
576 *tgt = dm_table_get_target(map, 0);
577
578 if (!(*tgt)->type->prepare_ioctl)
579 goto out;
580
581 if (dm_suspended_md(md)) {
582 r = -EAGAIN;
583 goto out;
584 }
585
586 r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 if (r < 0)
588 goto out;
589
590 return r;
591
592 out:
593 dm_put_live_table(md, *srcu_idx);
594 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
595 msleep(10);
596 goto retry;
597 }
598 return r;
599 }
600
601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 unsigned int cmd, unsigned long arg)
603 {
604 struct mapped_device *md = bdev->bd_disk->private_data;
605 struct dm_target *tgt;
606 struct block_device *tgt_bdev = NULL;
607 int srcu_idx, r;
608
609 r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx);
610 if (r < 0)
611 return r;
612
613 if (r > 0) {
614 /*
615 * Target determined this ioctl is being issued against
616 * a logical partition of the parent bdev; so extra
617 * validation is needed.
618 */
619 r = scsi_verify_blk_ioctl(NULL, cmd);
620 if (r)
621 goto out;
622 }
623
624 r = __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg);
625 out:
626 dm_put_live_table(md, srcu_idx);
627 return r;
628 }
629
630 static struct dm_io *alloc_io(struct mapped_device *md)
631 {
632 return mempool_alloc(md->io_pool, GFP_NOIO);
633 }
634
635 static void free_io(struct mapped_device *md, struct dm_io *io)
636 {
637 mempool_free(io, md->io_pool);
638 }
639
640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
641 {
642 bio_put(&tio->clone);
643 }
644
645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
646 gfp_t gfp_mask)
647 {
648 return mempool_alloc(md->io_pool, gfp_mask);
649 }
650
651 static void free_rq_tio(struct dm_rq_target_io *tio)
652 {
653 mempool_free(tio, tio->md->io_pool);
654 }
655
656 static struct request *alloc_clone_request(struct mapped_device *md,
657 gfp_t gfp_mask)
658 {
659 return mempool_alloc(md->rq_pool, gfp_mask);
660 }
661
662 static void free_clone_request(struct mapped_device *md, struct request *rq)
663 {
664 mempool_free(rq, md->rq_pool);
665 }
666
667 static int md_in_flight(struct mapped_device *md)
668 {
669 return atomic_read(&md->pending[READ]) +
670 atomic_read(&md->pending[WRITE]);
671 }
672
673 static void start_io_acct(struct dm_io *io)
674 {
675 struct mapped_device *md = io->md;
676 struct bio *bio = io->bio;
677 int cpu;
678 int rw = bio_data_dir(bio);
679
680 io->start_time = jiffies;
681
682 cpu = part_stat_lock();
683 part_round_stats(cpu, &dm_disk(md)->part0);
684 part_stat_unlock();
685 atomic_set(&dm_disk(md)->part0.in_flight[rw],
686 atomic_inc_return(&md->pending[rw]));
687
688 if (unlikely(dm_stats_used(&md->stats)))
689 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
690 bio_sectors(bio), false, 0, &io->stats_aux);
691 }
692
693 static void end_io_acct(struct dm_io *io)
694 {
695 struct mapped_device *md = io->md;
696 struct bio *bio = io->bio;
697 unsigned long duration = jiffies - io->start_time;
698 int pending;
699 int rw = bio_data_dir(bio);
700
701 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
702
703 if (unlikely(dm_stats_used(&md->stats)))
704 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
705 bio_sectors(bio), true, duration, &io->stats_aux);
706
707 /*
708 * After this is decremented the bio must not be touched if it is
709 * a flush.
710 */
711 pending = atomic_dec_return(&md->pending[rw]);
712 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
713 pending += atomic_read(&md->pending[rw^0x1]);
714
715 /* nudge anyone waiting on suspend queue */
716 if (!pending)
717 wake_up(&md->wait);
718 }
719
720 /*
721 * Add the bio to the list of deferred io.
722 */
723 static void queue_io(struct mapped_device *md, struct bio *bio)
724 {
725 unsigned long flags;
726
727 spin_lock_irqsave(&md->deferred_lock, flags);
728 bio_list_add(&md->deferred, bio);
729 spin_unlock_irqrestore(&md->deferred_lock, flags);
730 queue_work(md->wq, &md->work);
731 }
732
733 /*
734 * Everyone (including functions in this file), should use this
735 * function to access the md->map field, and make sure they call
736 * dm_put_live_table() when finished.
737 */
738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
739 {
740 *srcu_idx = srcu_read_lock(&md->io_barrier);
741
742 return srcu_dereference(md->map, &md->io_barrier);
743 }
744
745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
746 {
747 srcu_read_unlock(&md->io_barrier, srcu_idx);
748 }
749
750 void dm_sync_table(struct mapped_device *md)
751 {
752 synchronize_srcu(&md->io_barrier);
753 synchronize_rcu_expedited();
754 }
755
756 /*
757 * A fast alternative to dm_get_live_table/dm_put_live_table.
758 * The caller must not block between these two functions.
759 */
760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 {
762 rcu_read_lock();
763 return rcu_dereference(md->map);
764 }
765
766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
767 {
768 rcu_read_unlock();
769 }
770
771 /*
772 * Open a table device so we can use it as a map destination.
773 */
774 static int open_table_device(struct table_device *td, dev_t dev,
775 struct mapped_device *md)
776 {
777 static char *_claim_ptr = "I belong to device-mapper";
778 struct block_device *bdev;
779
780 int r;
781
782 BUG_ON(td->dm_dev.bdev);
783
784 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
785 if (IS_ERR(bdev))
786 return PTR_ERR(bdev);
787
788 r = bd_link_disk_holder(bdev, dm_disk(md));
789 if (r) {
790 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
791 return r;
792 }
793
794 td->dm_dev.bdev = bdev;
795 return 0;
796 }
797
798 /*
799 * Close a table device that we've been using.
800 */
801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 if (!td->dm_dev.bdev)
804 return;
805
806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 td->dm_dev.bdev = NULL;
809 }
810
811 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
812 fmode_t mode) {
813 struct table_device *td;
814
815 list_for_each_entry(td, l, list)
816 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
817 return td;
818
819 return NULL;
820 }
821
822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
823 struct dm_dev **result) {
824 int r;
825 struct table_device *td;
826
827 mutex_lock(&md->table_devices_lock);
828 td = find_table_device(&md->table_devices, dev, mode);
829 if (!td) {
830 td = kmalloc(sizeof(*td), GFP_KERNEL);
831 if (!td) {
832 mutex_unlock(&md->table_devices_lock);
833 return -ENOMEM;
834 }
835
836 td->dm_dev.mode = mode;
837 td->dm_dev.bdev = NULL;
838
839 if ((r = open_table_device(td, dev, md))) {
840 mutex_unlock(&md->table_devices_lock);
841 kfree(td);
842 return r;
843 }
844
845 format_dev_t(td->dm_dev.name, dev);
846
847 atomic_set(&td->count, 0);
848 list_add(&td->list, &md->table_devices);
849 }
850 atomic_inc(&td->count);
851 mutex_unlock(&md->table_devices_lock);
852
853 *result = &td->dm_dev;
854 return 0;
855 }
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
857
858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 {
860 struct table_device *td = container_of(d, struct table_device, dm_dev);
861
862 mutex_lock(&md->table_devices_lock);
863 if (atomic_dec_and_test(&td->count)) {
864 close_table_device(td, md);
865 list_del(&td->list);
866 kfree(td);
867 }
868 mutex_unlock(&md->table_devices_lock);
869 }
870 EXPORT_SYMBOL(dm_put_table_device);
871
872 static void free_table_devices(struct list_head *devices)
873 {
874 struct list_head *tmp, *next;
875
876 list_for_each_safe(tmp, next, devices) {
877 struct table_device *td = list_entry(tmp, struct table_device, list);
878
879 DMWARN("dm_destroy: %s still exists with %d references",
880 td->dm_dev.name, atomic_read(&td->count));
881 kfree(td);
882 }
883 }
884
885 /*
886 * Get the geometry associated with a dm device
887 */
888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 {
890 *geo = md->geometry;
891
892 return 0;
893 }
894
895 /*
896 * Set the geometry of a device.
897 */
898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901
902 if (geo->start > sz) {
903 DMWARN("Start sector is beyond the geometry limits.");
904 return -EINVAL;
905 }
906
907 md->geometry = *geo;
908
909 return 0;
910 }
911
912 /*-----------------------------------------------------------------
913 * CRUD START:
914 * A more elegant soln is in the works that uses the queue
915 * merge fn, unfortunately there are a couple of changes to
916 * the block layer that I want to make for this. So in the
917 * interests of getting something for people to use I give
918 * you this clearly demarcated crap.
919 *---------------------------------------------------------------*/
920
921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925
926 /*
927 * Decrements the number of outstanding ios that a bio has been
928 * cloned into, completing the original io if necc.
929 */
930 static void dec_pending(struct dm_io *io, int error)
931 {
932 unsigned long flags;
933 int io_error;
934 struct bio *bio;
935 struct mapped_device *md = io->md;
936
937 /* Push-back supersedes any I/O errors */
938 if (unlikely(error)) {
939 spin_lock_irqsave(&io->endio_lock, flags);
940 if (!(io->error > 0 && __noflush_suspending(md)))
941 io->error = error;
942 spin_unlock_irqrestore(&io->endio_lock, flags);
943 }
944
945 if (atomic_dec_and_test(&io->io_count)) {
946 if (io->error == DM_ENDIO_REQUEUE) {
947 /*
948 * Target requested pushing back the I/O.
949 */
950 spin_lock_irqsave(&md->deferred_lock, flags);
951 if (__noflush_suspending(md))
952 bio_list_add_head(&md->deferred, io->bio);
953 else
954 /* noflush suspend was interrupted. */
955 io->error = -EIO;
956 spin_unlock_irqrestore(&md->deferred_lock, flags);
957 }
958
959 io_error = io->error;
960 bio = io->bio;
961 end_io_acct(io);
962 free_io(md, io);
963
964 if (io_error == DM_ENDIO_REQUEUE)
965 return;
966
967 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
968 /*
969 * Preflush done for flush with data, reissue
970 * without REQ_FLUSH.
971 */
972 bio->bi_rw &= ~REQ_FLUSH;
973 queue_io(md, bio);
974 } else {
975 /* done with normal IO or empty flush */
976 trace_block_bio_complete(md->queue, bio, io_error);
977 bio->bi_error = io_error;
978 bio_endio(bio);
979 }
980 }
981 }
982
983 static void disable_write_same(struct mapped_device *md)
984 {
985 struct queue_limits *limits = dm_get_queue_limits(md);
986
987 /* device doesn't really support WRITE SAME, disable it */
988 limits->max_write_same_sectors = 0;
989 }
990
991 static void clone_endio(struct bio *bio)
992 {
993 int error = bio->bi_error;
994 int r = error;
995 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 struct dm_io *io = tio->io;
997 struct mapped_device *md = tio->io->md;
998 dm_endio_fn endio = tio->ti->type->end_io;
999
1000 if (endio) {
1001 r = endio(tio->ti, bio, error);
1002 if (r < 0 || r == DM_ENDIO_REQUEUE)
1003 /*
1004 * error and requeue request are handled
1005 * in dec_pending().
1006 */
1007 error = r;
1008 else if (r == DM_ENDIO_INCOMPLETE)
1009 /* The target will handle the io */
1010 return;
1011 else if (r) {
1012 DMWARN("unimplemented target endio return value: %d", r);
1013 BUG();
1014 }
1015 }
1016
1017 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1018 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1019 disable_write_same(md);
1020
1021 free_tio(md, tio);
1022 dec_pending(io, error);
1023 }
1024
1025 /*
1026 * Partial completion handling for request-based dm
1027 */
1028 static void end_clone_bio(struct bio *clone)
1029 {
1030 struct dm_rq_clone_bio_info *info =
1031 container_of(clone, struct dm_rq_clone_bio_info, clone);
1032 struct dm_rq_target_io *tio = info->tio;
1033 struct bio *bio = info->orig;
1034 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1035 int error = clone->bi_error;
1036
1037 bio_put(clone);
1038
1039 if (tio->error)
1040 /*
1041 * An error has already been detected on the request.
1042 * Once error occurred, just let clone->end_io() handle
1043 * the remainder.
1044 */
1045 return;
1046 else if (error) {
1047 /*
1048 * Don't notice the error to the upper layer yet.
1049 * The error handling decision is made by the target driver,
1050 * when the request is completed.
1051 */
1052 tio->error = error;
1053 return;
1054 }
1055
1056 /*
1057 * I/O for the bio successfully completed.
1058 * Notice the data completion to the upper layer.
1059 */
1060
1061 /*
1062 * bios are processed from the head of the list.
1063 * So the completing bio should always be rq->bio.
1064 * If it's not, something wrong is happening.
1065 */
1066 if (tio->orig->bio != bio)
1067 DMERR("bio completion is going in the middle of the request");
1068
1069 /*
1070 * Update the original request.
1071 * Do not use blk_end_request() here, because it may complete
1072 * the original request before the clone, and break the ordering.
1073 */
1074 blk_update_request(tio->orig, 0, nr_bytes);
1075 }
1076
1077 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1078 {
1079 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1080 }
1081
1082 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1083 {
1084 if (unlikely(dm_stats_used(&md->stats))) {
1085 struct dm_rq_target_io *tio = tio_from_request(orig);
1086 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1087 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1088 tio->n_sectors, true, tio->duration_jiffies,
1089 &tio->stats_aux);
1090 }
1091 }
1092
1093 /*
1094 * Don't touch any member of the md after calling this function because
1095 * the md may be freed in dm_put() at the end of this function.
1096 * Or do dm_get() before calling this function and dm_put() later.
1097 */
1098 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1099 {
1100 atomic_dec(&md->pending[rw]);
1101
1102 /* nudge anyone waiting on suspend queue */
1103 if (!md_in_flight(md))
1104 wake_up(&md->wait);
1105
1106 /*
1107 * Run this off this callpath, as drivers could invoke end_io while
1108 * inside their request_fn (and holding the queue lock). Calling
1109 * back into ->request_fn() could deadlock attempting to grab the
1110 * queue lock again.
1111 */
1112 if (run_queue) {
1113 if (md->queue->mq_ops)
1114 blk_mq_run_hw_queues(md->queue, true);
1115 else
1116 blk_run_queue_async(md->queue);
1117 }
1118
1119 /*
1120 * dm_put() must be at the end of this function. See the comment above
1121 */
1122 dm_put(md);
1123 }
1124
1125 static void free_rq_clone(struct request *clone)
1126 {
1127 struct dm_rq_target_io *tio = clone->end_io_data;
1128 struct mapped_device *md = tio->md;
1129
1130 blk_rq_unprep_clone(clone);
1131
1132 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1133 /* stacked on blk-mq queue(s) */
1134 tio->ti->type->release_clone_rq(clone);
1135 else if (!md->queue->mq_ops)
1136 /* request_fn queue stacked on request_fn queue(s) */
1137 free_clone_request(md, clone);
1138 /*
1139 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1140 * no need to call free_clone_request() because we leverage blk-mq by
1141 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1142 */
1143
1144 if (!md->queue->mq_ops)
1145 free_rq_tio(tio);
1146 }
1147
1148 /*
1149 * Complete the clone and the original request.
1150 * Must be called without clone's queue lock held,
1151 * see end_clone_request() for more details.
1152 */
1153 static void dm_end_request(struct request *clone, int error)
1154 {
1155 int rw = rq_data_dir(clone);
1156 struct dm_rq_target_io *tio = clone->end_io_data;
1157 struct mapped_device *md = tio->md;
1158 struct request *rq = tio->orig;
1159
1160 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1161 rq->errors = clone->errors;
1162 rq->resid_len = clone->resid_len;
1163
1164 if (rq->sense)
1165 /*
1166 * We are using the sense buffer of the original
1167 * request.
1168 * So setting the length of the sense data is enough.
1169 */
1170 rq->sense_len = clone->sense_len;
1171 }
1172
1173 free_rq_clone(clone);
1174 rq_end_stats(md, rq);
1175 if (!rq->q->mq_ops)
1176 blk_end_request_all(rq, error);
1177 else
1178 blk_mq_end_request(rq, error);
1179 rq_completed(md, rw, true);
1180 }
1181
1182 static void dm_unprep_request(struct request *rq)
1183 {
1184 struct dm_rq_target_io *tio = tio_from_request(rq);
1185 struct request *clone = tio->clone;
1186
1187 if (!rq->q->mq_ops) {
1188 rq->special = NULL;
1189 rq->cmd_flags &= ~REQ_DONTPREP;
1190 }
1191
1192 if (clone)
1193 free_rq_clone(clone);
1194 }
1195
1196 /*
1197 * Requeue the original request of a clone.
1198 */
1199 static void old_requeue_request(struct request *rq)
1200 {
1201 struct request_queue *q = rq->q;
1202 unsigned long flags;
1203
1204 spin_lock_irqsave(q->queue_lock, flags);
1205 blk_requeue_request(q, rq);
1206 blk_run_queue_async(q);
1207 spin_unlock_irqrestore(q->queue_lock, flags);
1208 }
1209
1210 static void dm_requeue_original_request(struct mapped_device *md,
1211 struct request *rq)
1212 {
1213 int rw = rq_data_dir(rq);
1214
1215 dm_unprep_request(rq);
1216
1217 rq_end_stats(md, rq);
1218 if (!rq->q->mq_ops)
1219 old_requeue_request(rq);
1220 else {
1221 blk_mq_requeue_request(rq);
1222 blk_mq_kick_requeue_list(rq->q);
1223 }
1224
1225 rq_completed(md, rw, false);
1226 }
1227
1228 static void old_stop_queue(struct request_queue *q)
1229 {
1230 unsigned long flags;
1231
1232 if (blk_queue_stopped(q))
1233 return;
1234
1235 spin_lock_irqsave(q->queue_lock, flags);
1236 blk_stop_queue(q);
1237 spin_unlock_irqrestore(q->queue_lock, flags);
1238 }
1239
1240 static void stop_queue(struct request_queue *q)
1241 {
1242 if (!q->mq_ops)
1243 old_stop_queue(q);
1244 else
1245 blk_mq_stop_hw_queues(q);
1246 }
1247
1248 static void old_start_queue(struct request_queue *q)
1249 {
1250 unsigned long flags;
1251
1252 spin_lock_irqsave(q->queue_lock, flags);
1253 if (blk_queue_stopped(q))
1254 blk_start_queue(q);
1255 spin_unlock_irqrestore(q->queue_lock, flags);
1256 }
1257
1258 static void start_queue(struct request_queue *q)
1259 {
1260 if (!q->mq_ops)
1261 old_start_queue(q);
1262 else
1263 blk_mq_start_stopped_hw_queues(q, true);
1264 }
1265
1266 static void dm_done(struct request *clone, int error, bool mapped)
1267 {
1268 int r = error;
1269 struct dm_rq_target_io *tio = clone->end_io_data;
1270 dm_request_endio_fn rq_end_io = NULL;
1271
1272 if (tio->ti) {
1273 rq_end_io = tio->ti->type->rq_end_io;
1274
1275 if (mapped && rq_end_io)
1276 r = rq_end_io(tio->ti, clone, error, &tio->info);
1277 }
1278
1279 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1280 !clone->q->limits.max_write_same_sectors))
1281 disable_write_same(tio->md);
1282
1283 if (r <= 0)
1284 /* The target wants to complete the I/O */
1285 dm_end_request(clone, r);
1286 else if (r == DM_ENDIO_INCOMPLETE)
1287 /* The target will handle the I/O */
1288 return;
1289 else if (r == DM_ENDIO_REQUEUE)
1290 /* The target wants to requeue the I/O */
1291 dm_requeue_original_request(tio->md, tio->orig);
1292 else {
1293 DMWARN("unimplemented target endio return value: %d", r);
1294 BUG();
1295 }
1296 }
1297
1298 /*
1299 * Request completion handler for request-based dm
1300 */
1301 static void dm_softirq_done(struct request *rq)
1302 {
1303 bool mapped = true;
1304 struct dm_rq_target_io *tio = tio_from_request(rq);
1305 struct request *clone = tio->clone;
1306 int rw;
1307
1308 if (!clone) {
1309 rq_end_stats(tio->md, rq);
1310 rw = rq_data_dir(rq);
1311 if (!rq->q->mq_ops) {
1312 blk_end_request_all(rq, tio->error);
1313 rq_completed(tio->md, rw, false);
1314 free_rq_tio(tio);
1315 } else {
1316 blk_mq_end_request(rq, tio->error);
1317 rq_completed(tio->md, rw, false);
1318 }
1319 return;
1320 }
1321
1322 if (rq->cmd_flags & REQ_FAILED)
1323 mapped = false;
1324
1325 dm_done(clone, tio->error, mapped);
1326 }
1327
1328 /*
1329 * Complete the clone and the original request with the error status
1330 * through softirq context.
1331 */
1332 static void dm_complete_request(struct request *rq, int error)
1333 {
1334 struct dm_rq_target_io *tio = tio_from_request(rq);
1335
1336 tio->error = error;
1337 blk_complete_request(rq);
1338 }
1339
1340 /*
1341 * Complete the not-mapped clone and the original request with the error status
1342 * through softirq context.
1343 * Target's rq_end_io() function isn't called.
1344 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1345 */
1346 static void dm_kill_unmapped_request(struct request *rq, int error)
1347 {
1348 rq->cmd_flags |= REQ_FAILED;
1349 dm_complete_request(rq, error);
1350 }
1351
1352 /*
1353 * Called with the clone's queue lock held (for non-blk-mq)
1354 */
1355 static void end_clone_request(struct request *clone, int error)
1356 {
1357 struct dm_rq_target_io *tio = clone->end_io_data;
1358
1359 if (!clone->q->mq_ops) {
1360 /*
1361 * For just cleaning up the information of the queue in which
1362 * the clone was dispatched.
1363 * The clone is *NOT* freed actually here because it is alloced
1364 * from dm own mempool (REQ_ALLOCED isn't set).
1365 */
1366 __blk_put_request(clone->q, clone);
1367 }
1368
1369 /*
1370 * Actual request completion is done in a softirq context which doesn't
1371 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1372 * - another request may be submitted by the upper level driver
1373 * of the stacking during the completion
1374 * - the submission which requires queue lock may be done
1375 * against this clone's queue
1376 */
1377 dm_complete_request(tio->orig, error);
1378 }
1379
1380 /*
1381 * Return maximum size of I/O possible at the supplied sector up to the current
1382 * target boundary.
1383 */
1384 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1385 {
1386 sector_t target_offset = dm_target_offset(ti, sector);
1387
1388 return ti->len - target_offset;
1389 }
1390
1391 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1392 {
1393 sector_t len = max_io_len_target_boundary(sector, ti);
1394 sector_t offset, max_len;
1395
1396 /*
1397 * Does the target need to split even further?
1398 */
1399 if (ti->max_io_len) {
1400 offset = dm_target_offset(ti, sector);
1401 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1402 max_len = sector_div(offset, ti->max_io_len);
1403 else
1404 max_len = offset & (ti->max_io_len - 1);
1405 max_len = ti->max_io_len - max_len;
1406
1407 if (len > max_len)
1408 len = max_len;
1409 }
1410
1411 return len;
1412 }
1413
1414 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1415 {
1416 if (len > UINT_MAX) {
1417 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1418 (unsigned long long)len, UINT_MAX);
1419 ti->error = "Maximum size of target IO is too large";
1420 return -EINVAL;
1421 }
1422
1423 ti->max_io_len = (uint32_t) len;
1424
1425 return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1428
1429 /*
1430 * A target may call dm_accept_partial_bio only from the map routine. It is
1431 * allowed for all bio types except REQ_FLUSH.
1432 *
1433 * dm_accept_partial_bio informs the dm that the target only wants to process
1434 * additional n_sectors sectors of the bio and the rest of the data should be
1435 * sent in a next bio.
1436 *
1437 * A diagram that explains the arithmetics:
1438 * +--------------------+---------------+-------+
1439 * | 1 | 2 | 3 |
1440 * +--------------------+---------------+-------+
1441 *
1442 * <-------------- *tio->len_ptr --------------->
1443 * <------- bi_size ------->
1444 * <-- n_sectors -->
1445 *
1446 * Region 1 was already iterated over with bio_advance or similar function.
1447 * (it may be empty if the target doesn't use bio_advance)
1448 * Region 2 is the remaining bio size that the target wants to process.
1449 * (it may be empty if region 1 is non-empty, although there is no reason
1450 * to make it empty)
1451 * The target requires that region 3 is to be sent in the next bio.
1452 *
1453 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1454 * the partially processed part (the sum of regions 1+2) must be the same for all
1455 * copies of the bio.
1456 */
1457 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1458 {
1459 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1460 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1461 BUG_ON(bio->bi_rw & REQ_FLUSH);
1462 BUG_ON(bi_size > *tio->len_ptr);
1463 BUG_ON(n_sectors > bi_size);
1464 *tio->len_ptr -= bi_size - n_sectors;
1465 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1466 }
1467 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1468
1469 static void __map_bio(struct dm_target_io *tio)
1470 {
1471 int r;
1472 sector_t sector;
1473 struct mapped_device *md;
1474 struct bio *clone = &tio->clone;
1475 struct dm_target *ti = tio->ti;
1476
1477 clone->bi_end_io = clone_endio;
1478
1479 /*
1480 * Map the clone. If r == 0 we don't need to do
1481 * anything, the target has assumed ownership of
1482 * this io.
1483 */
1484 atomic_inc(&tio->io->io_count);
1485 sector = clone->bi_iter.bi_sector;
1486 r = ti->type->map(ti, clone);
1487 if (r == DM_MAPIO_REMAPPED) {
1488 /* the bio has been remapped so dispatch it */
1489
1490 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1491 tio->io->bio->bi_bdev->bd_dev, sector);
1492
1493 generic_make_request(clone);
1494 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1495 /* error the io and bail out, or requeue it if needed */
1496 md = tio->io->md;
1497 dec_pending(tio->io, r);
1498 free_tio(md, tio);
1499 } else if (r != DM_MAPIO_SUBMITTED) {
1500 DMWARN("unimplemented target map return value: %d", r);
1501 BUG();
1502 }
1503 }
1504
1505 struct clone_info {
1506 struct mapped_device *md;
1507 struct dm_table *map;
1508 struct bio *bio;
1509 struct dm_io *io;
1510 sector_t sector;
1511 unsigned sector_count;
1512 };
1513
1514 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1515 {
1516 bio->bi_iter.bi_sector = sector;
1517 bio->bi_iter.bi_size = to_bytes(len);
1518 }
1519
1520 /*
1521 * Creates a bio that consists of range of complete bvecs.
1522 */
1523 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1524 sector_t sector, unsigned len)
1525 {
1526 struct bio *clone = &tio->clone;
1527
1528 __bio_clone_fast(clone, bio);
1529
1530 if (bio_integrity(bio))
1531 bio_integrity_clone(clone, bio, GFP_NOIO);
1532
1533 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1534 clone->bi_iter.bi_size = to_bytes(len);
1535
1536 if (bio_integrity(bio))
1537 bio_integrity_trim(clone, 0, len);
1538 }
1539
1540 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1541 struct dm_target *ti,
1542 unsigned target_bio_nr)
1543 {
1544 struct dm_target_io *tio;
1545 struct bio *clone;
1546
1547 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1548 tio = container_of(clone, struct dm_target_io, clone);
1549
1550 tio->io = ci->io;
1551 tio->ti = ti;
1552 tio->target_bio_nr = target_bio_nr;
1553
1554 return tio;
1555 }
1556
1557 static void __clone_and_map_simple_bio(struct clone_info *ci,
1558 struct dm_target *ti,
1559 unsigned target_bio_nr, unsigned *len)
1560 {
1561 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1562 struct bio *clone = &tio->clone;
1563
1564 tio->len_ptr = len;
1565
1566 __bio_clone_fast(clone, ci->bio);
1567 if (len)
1568 bio_setup_sector(clone, ci->sector, *len);
1569
1570 __map_bio(tio);
1571 }
1572
1573 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1574 unsigned num_bios, unsigned *len)
1575 {
1576 unsigned target_bio_nr;
1577
1578 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1579 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1580 }
1581
1582 static int __send_empty_flush(struct clone_info *ci)
1583 {
1584 unsigned target_nr = 0;
1585 struct dm_target *ti;
1586
1587 BUG_ON(bio_has_data(ci->bio));
1588 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1589 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1590
1591 return 0;
1592 }
1593
1594 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1595 sector_t sector, unsigned *len)
1596 {
1597 struct bio *bio = ci->bio;
1598 struct dm_target_io *tio;
1599 unsigned target_bio_nr;
1600 unsigned num_target_bios = 1;
1601
1602 /*
1603 * Does the target want to receive duplicate copies of the bio?
1604 */
1605 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1606 num_target_bios = ti->num_write_bios(ti, bio);
1607
1608 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1609 tio = alloc_tio(ci, ti, target_bio_nr);
1610 tio->len_ptr = len;
1611 clone_bio(tio, bio, sector, *len);
1612 __map_bio(tio);
1613 }
1614 }
1615
1616 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1617
1618 static unsigned get_num_discard_bios(struct dm_target *ti)
1619 {
1620 return ti->num_discard_bios;
1621 }
1622
1623 static unsigned get_num_write_same_bios(struct dm_target *ti)
1624 {
1625 return ti->num_write_same_bios;
1626 }
1627
1628 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1629
1630 static bool is_split_required_for_discard(struct dm_target *ti)
1631 {
1632 return ti->split_discard_bios;
1633 }
1634
1635 static int __send_changing_extent_only(struct clone_info *ci,
1636 get_num_bios_fn get_num_bios,
1637 is_split_required_fn is_split_required)
1638 {
1639 struct dm_target *ti;
1640 unsigned len;
1641 unsigned num_bios;
1642
1643 do {
1644 ti = dm_table_find_target(ci->map, ci->sector);
1645 if (!dm_target_is_valid(ti))
1646 return -EIO;
1647
1648 /*
1649 * Even though the device advertised support for this type of
1650 * request, that does not mean every target supports it, and
1651 * reconfiguration might also have changed that since the
1652 * check was performed.
1653 */
1654 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1655 if (!num_bios)
1656 return -EOPNOTSUPP;
1657
1658 if (is_split_required && !is_split_required(ti))
1659 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1660 else
1661 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1662
1663 __send_duplicate_bios(ci, ti, num_bios, &len);
1664
1665 ci->sector += len;
1666 } while (ci->sector_count -= len);
1667
1668 return 0;
1669 }
1670
1671 static int __send_discard(struct clone_info *ci)
1672 {
1673 return __send_changing_extent_only(ci, get_num_discard_bios,
1674 is_split_required_for_discard);
1675 }
1676
1677 static int __send_write_same(struct clone_info *ci)
1678 {
1679 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1680 }
1681
1682 /*
1683 * Select the correct strategy for processing a non-flush bio.
1684 */
1685 static int __split_and_process_non_flush(struct clone_info *ci)
1686 {
1687 struct bio *bio = ci->bio;
1688 struct dm_target *ti;
1689 unsigned len;
1690
1691 if (unlikely(bio->bi_rw & REQ_DISCARD))
1692 return __send_discard(ci);
1693 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1694 return __send_write_same(ci);
1695
1696 ti = dm_table_find_target(ci->map, ci->sector);
1697 if (!dm_target_is_valid(ti))
1698 return -EIO;
1699
1700 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1701
1702 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1703
1704 ci->sector += len;
1705 ci->sector_count -= len;
1706
1707 return 0;
1708 }
1709
1710 /*
1711 * Entry point to split a bio into clones and submit them to the targets.
1712 */
1713 static void __split_and_process_bio(struct mapped_device *md,
1714 struct dm_table *map, struct bio *bio)
1715 {
1716 struct clone_info ci;
1717 int error = 0;
1718
1719 if (unlikely(!map)) {
1720 bio_io_error(bio);
1721 return;
1722 }
1723
1724 ci.map = map;
1725 ci.md = md;
1726 ci.io = alloc_io(md);
1727 ci.io->error = 0;
1728 atomic_set(&ci.io->io_count, 1);
1729 ci.io->bio = bio;
1730 ci.io->md = md;
1731 spin_lock_init(&ci.io->endio_lock);
1732 ci.sector = bio->bi_iter.bi_sector;
1733
1734 start_io_acct(ci.io);
1735
1736 if (bio->bi_rw & REQ_FLUSH) {
1737 ci.bio = &ci.md->flush_bio;
1738 ci.sector_count = 0;
1739 error = __send_empty_flush(&ci);
1740 /* dec_pending submits any data associated with flush */
1741 } else {
1742 ci.bio = bio;
1743 ci.sector_count = bio_sectors(bio);
1744 while (ci.sector_count && !error)
1745 error = __split_and_process_non_flush(&ci);
1746 }
1747
1748 /* drop the extra reference count */
1749 dec_pending(ci.io, error);
1750 }
1751 /*-----------------------------------------------------------------
1752 * CRUD END
1753 *---------------------------------------------------------------*/
1754
1755 /*
1756 * The request function that just remaps the bio built up by
1757 * dm_merge_bvec.
1758 */
1759 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1760 {
1761 int rw = bio_data_dir(bio);
1762 struct mapped_device *md = q->queuedata;
1763 int srcu_idx;
1764 struct dm_table *map;
1765
1766 map = dm_get_live_table(md, &srcu_idx);
1767
1768 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1769
1770 /* if we're suspended, we have to queue this io for later */
1771 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1772 dm_put_live_table(md, srcu_idx);
1773
1774 if (bio_rw(bio) != READA)
1775 queue_io(md, bio);
1776 else
1777 bio_io_error(bio);
1778 return BLK_QC_T_NONE;
1779 }
1780
1781 __split_and_process_bio(md, map, bio);
1782 dm_put_live_table(md, srcu_idx);
1783 return BLK_QC_T_NONE;
1784 }
1785
1786 int dm_request_based(struct mapped_device *md)
1787 {
1788 return blk_queue_stackable(md->queue);
1789 }
1790
1791 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1792 {
1793 int r;
1794
1795 if (blk_queue_io_stat(clone->q))
1796 clone->cmd_flags |= REQ_IO_STAT;
1797
1798 clone->start_time = jiffies;
1799 r = blk_insert_cloned_request(clone->q, clone);
1800 if (r)
1801 /* must complete clone in terms of original request */
1802 dm_complete_request(rq, r);
1803 }
1804
1805 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1806 void *data)
1807 {
1808 struct dm_rq_target_io *tio = data;
1809 struct dm_rq_clone_bio_info *info =
1810 container_of(bio, struct dm_rq_clone_bio_info, clone);
1811
1812 info->orig = bio_orig;
1813 info->tio = tio;
1814 bio->bi_end_io = end_clone_bio;
1815
1816 return 0;
1817 }
1818
1819 static int setup_clone(struct request *clone, struct request *rq,
1820 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1821 {
1822 int r;
1823
1824 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1825 dm_rq_bio_constructor, tio);
1826 if (r)
1827 return r;
1828
1829 clone->cmd = rq->cmd;
1830 clone->cmd_len = rq->cmd_len;
1831 clone->sense = rq->sense;
1832 clone->end_io = end_clone_request;
1833 clone->end_io_data = tio;
1834
1835 tio->clone = clone;
1836
1837 return 0;
1838 }
1839
1840 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1841 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1842 {
1843 /*
1844 * Do not allocate a clone if tio->clone was already set
1845 * (see: dm_mq_queue_rq).
1846 */
1847 bool alloc_clone = !tio->clone;
1848 struct request *clone;
1849
1850 if (alloc_clone) {
1851 clone = alloc_clone_request(md, gfp_mask);
1852 if (!clone)
1853 return NULL;
1854 } else
1855 clone = tio->clone;
1856
1857 blk_rq_init(NULL, clone);
1858 if (setup_clone(clone, rq, tio, gfp_mask)) {
1859 /* -ENOMEM */
1860 if (alloc_clone)
1861 free_clone_request(md, clone);
1862 return NULL;
1863 }
1864
1865 return clone;
1866 }
1867
1868 static void map_tio_request(struct kthread_work *work);
1869
1870 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1871 struct mapped_device *md)
1872 {
1873 tio->md = md;
1874 tio->ti = NULL;
1875 tio->clone = NULL;
1876 tio->orig = rq;
1877 tio->error = 0;
1878 memset(&tio->info, 0, sizeof(tio->info));
1879 if (md->kworker_task)
1880 init_kthread_work(&tio->work, map_tio_request);
1881 }
1882
1883 static struct dm_rq_target_io *prep_tio(struct request *rq,
1884 struct mapped_device *md, gfp_t gfp_mask)
1885 {
1886 struct dm_rq_target_io *tio;
1887 int srcu_idx;
1888 struct dm_table *table;
1889
1890 tio = alloc_rq_tio(md, gfp_mask);
1891 if (!tio)
1892 return NULL;
1893
1894 init_tio(tio, rq, md);
1895
1896 table = dm_get_live_table(md, &srcu_idx);
1897 if (!dm_table_mq_request_based(table)) {
1898 if (!clone_rq(rq, md, tio, gfp_mask)) {
1899 dm_put_live_table(md, srcu_idx);
1900 free_rq_tio(tio);
1901 return NULL;
1902 }
1903 }
1904 dm_put_live_table(md, srcu_idx);
1905
1906 return tio;
1907 }
1908
1909 /*
1910 * Called with the queue lock held.
1911 */
1912 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1913 {
1914 struct mapped_device *md = q->queuedata;
1915 struct dm_rq_target_io *tio;
1916
1917 if (unlikely(rq->special)) {
1918 DMWARN("Already has something in rq->special.");
1919 return BLKPREP_KILL;
1920 }
1921
1922 tio = prep_tio(rq, md, GFP_ATOMIC);
1923 if (!tio)
1924 return BLKPREP_DEFER;
1925
1926 rq->special = tio;
1927 rq->cmd_flags |= REQ_DONTPREP;
1928
1929 return BLKPREP_OK;
1930 }
1931
1932 /*
1933 * Returns:
1934 * 0 : the request has been processed
1935 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1936 * < 0 : the request was completed due to failure
1937 */
1938 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1939 struct mapped_device *md)
1940 {
1941 int r;
1942 struct dm_target *ti = tio->ti;
1943 struct request *clone = NULL;
1944
1945 if (tio->clone) {
1946 clone = tio->clone;
1947 r = ti->type->map_rq(ti, clone, &tio->info);
1948 } else {
1949 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1950 if (r < 0) {
1951 /* The target wants to complete the I/O */
1952 dm_kill_unmapped_request(rq, r);
1953 return r;
1954 }
1955 if (r != DM_MAPIO_REMAPPED)
1956 return r;
1957 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1958 /* -ENOMEM */
1959 ti->type->release_clone_rq(clone);
1960 return DM_MAPIO_REQUEUE;
1961 }
1962 }
1963
1964 switch (r) {
1965 case DM_MAPIO_SUBMITTED:
1966 /* The target has taken the I/O to submit by itself later */
1967 break;
1968 case DM_MAPIO_REMAPPED:
1969 /* The target has remapped the I/O so dispatch it */
1970 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1971 blk_rq_pos(rq));
1972 dm_dispatch_clone_request(clone, rq);
1973 break;
1974 case DM_MAPIO_REQUEUE:
1975 /* The target wants to requeue the I/O */
1976 dm_requeue_original_request(md, tio->orig);
1977 break;
1978 default:
1979 if (r > 0) {
1980 DMWARN("unimplemented target map return value: %d", r);
1981 BUG();
1982 }
1983
1984 /* The target wants to complete the I/O */
1985 dm_kill_unmapped_request(rq, r);
1986 return r;
1987 }
1988
1989 return 0;
1990 }
1991
1992 static void map_tio_request(struct kthread_work *work)
1993 {
1994 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1995 struct request *rq = tio->orig;
1996 struct mapped_device *md = tio->md;
1997
1998 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1999 dm_requeue_original_request(md, rq);
2000 }
2001
2002 static void dm_start_request(struct mapped_device *md, struct request *orig)
2003 {
2004 if (!orig->q->mq_ops)
2005 blk_start_request(orig);
2006 else
2007 blk_mq_start_request(orig);
2008 atomic_inc(&md->pending[rq_data_dir(orig)]);
2009
2010 if (md->seq_rq_merge_deadline_usecs) {
2011 md->last_rq_pos = rq_end_sector(orig);
2012 md->last_rq_rw = rq_data_dir(orig);
2013 md->last_rq_start_time = ktime_get();
2014 }
2015
2016 if (unlikely(dm_stats_used(&md->stats))) {
2017 struct dm_rq_target_io *tio = tio_from_request(orig);
2018 tio->duration_jiffies = jiffies;
2019 tio->n_sectors = blk_rq_sectors(orig);
2020 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2021 tio->n_sectors, false, 0, &tio->stats_aux);
2022 }
2023
2024 /*
2025 * Hold the md reference here for the in-flight I/O.
2026 * We can't rely on the reference count by device opener,
2027 * because the device may be closed during the request completion
2028 * when all bios are completed.
2029 * See the comment in rq_completed() too.
2030 */
2031 dm_get(md);
2032 }
2033
2034 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2035
2036 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2037 {
2038 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2039 }
2040
2041 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2042 const char *buf, size_t count)
2043 {
2044 unsigned deadline;
2045
2046 if (!dm_request_based(md) || md->use_blk_mq)
2047 return count;
2048
2049 if (kstrtouint(buf, 10, &deadline))
2050 return -EINVAL;
2051
2052 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2053 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2054
2055 md->seq_rq_merge_deadline_usecs = deadline;
2056
2057 return count;
2058 }
2059
2060 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2061 {
2062 ktime_t kt_deadline;
2063
2064 if (!md->seq_rq_merge_deadline_usecs)
2065 return false;
2066
2067 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2068 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2069
2070 return !ktime_after(ktime_get(), kt_deadline);
2071 }
2072
2073 /*
2074 * q->request_fn for request-based dm.
2075 * Called with the queue lock held.
2076 */
2077 static void dm_request_fn(struct request_queue *q)
2078 {
2079 struct mapped_device *md = q->queuedata;
2080 int srcu_idx;
2081 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2082 struct dm_target *ti;
2083 struct request *rq;
2084 struct dm_rq_target_io *tio;
2085 sector_t pos;
2086
2087 /*
2088 * For suspend, check blk_queue_stopped() and increment
2089 * ->pending within a single queue_lock not to increment the
2090 * number of in-flight I/Os after the queue is stopped in
2091 * dm_suspend().
2092 */
2093 while (!blk_queue_stopped(q)) {
2094 rq = blk_peek_request(q);
2095 if (!rq)
2096 goto out;
2097
2098 /* always use block 0 to find the target for flushes for now */
2099 pos = 0;
2100 if (!(rq->cmd_flags & REQ_FLUSH))
2101 pos = blk_rq_pos(rq);
2102
2103 ti = dm_table_find_target(map, pos);
2104 if (!dm_target_is_valid(ti)) {
2105 /*
2106 * Must perform setup, that rq_completed() requires,
2107 * before calling dm_kill_unmapped_request
2108 */
2109 DMERR_LIMIT("request attempted access beyond the end of device");
2110 dm_start_request(md, rq);
2111 dm_kill_unmapped_request(rq, -EIO);
2112 continue;
2113 }
2114
2115 if (dm_request_peeked_before_merge_deadline(md) &&
2116 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2117 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2118 goto delay_and_out;
2119
2120 if (ti->type->busy && ti->type->busy(ti))
2121 goto delay_and_out;
2122
2123 dm_start_request(md, rq);
2124
2125 tio = tio_from_request(rq);
2126 /* Establish tio->ti before queuing work (map_tio_request) */
2127 tio->ti = ti;
2128 queue_kthread_work(&md->kworker, &tio->work);
2129 BUG_ON(!irqs_disabled());
2130 }
2131
2132 goto out;
2133
2134 delay_and_out:
2135 blk_delay_queue(q, HZ / 100);
2136 out:
2137 dm_put_live_table(md, srcu_idx);
2138 }
2139
2140 static int dm_any_congested(void *congested_data, int bdi_bits)
2141 {
2142 int r = bdi_bits;
2143 struct mapped_device *md = congested_data;
2144 struct dm_table *map;
2145
2146 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2147 map = dm_get_live_table_fast(md);
2148 if (map) {
2149 /*
2150 * Request-based dm cares about only own queue for
2151 * the query about congestion status of request_queue
2152 */
2153 if (dm_request_based(md))
2154 r = md->queue->backing_dev_info.wb.state &
2155 bdi_bits;
2156 else
2157 r = dm_table_any_congested(map, bdi_bits);
2158 }
2159 dm_put_live_table_fast(md);
2160 }
2161
2162 return r;
2163 }
2164
2165 /*-----------------------------------------------------------------
2166 * An IDR is used to keep track of allocated minor numbers.
2167 *---------------------------------------------------------------*/
2168 static void free_minor(int minor)
2169 {
2170 spin_lock(&_minor_lock);
2171 idr_remove(&_minor_idr, minor);
2172 spin_unlock(&_minor_lock);
2173 }
2174
2175 /*
2176 * See if the device with a specific minor # is free.
2177 */
2178 static int specific_minor(int minor)
2179 {
2180 int r;
2181
2182 if (minor >= (1 << MINORBITS))
2183 return -EINVAL;
2184
2185 idr_preload(GFP_KERNEL);
2186 spin_lock(&_minor_lock);
2187
2188 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2189
2190 spin_unlock(&_minor_lock);
2191 idr_preload_end();
2192 if (r < 0)
2193 return r == -ENOSPC ? -EBUSY : r;
2194 return 0;
2195 }
2196
2197 static int next_free_minor(int *minor)
2198 {
2199 int r;
2200
2201 idr_preload(GFP_KERNEL);
2202 spin_lock(&_minor_lock);
2203
2204 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2205
2206 spin_unlock(&_minor_lock);
2207 idr_preload_end();
2208 if (r < 0)
2209 return r;
2210 *minor = r;
2211 return 0;
2212 }
2213
2214 static const struct block_device_operations dm_blk_dops;
2215
2216 static void dm_wq_work(struct work_struct *work);
2217
2218 static void dm_init_md_queue(struct mapped_device *md)
2219 {
2220 /*
2221 * Request-based dm devices cannot be stacked on top of bio-based dm
2222 * devices. The type of this dm device may not have been decided yet.
2223 * The type is decided at the first table loading time.
2224 * To prevent problematic device stacking, clear the queue flag
2225 * for request stacking support until then.
2226 *
2227 * This queue is new, so no concurrency on the queue_flags.
2228 */
2229 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2230
2231 /*
2232 * Initialize data that will only be used by a non-blk-mq DM queue
2233 * - must do so here (in alloc_dev callchain) before queue is used
2234 */
2235 md->queue->queuedata = md;
2236 md->queue->backing_dev_info.congested_data = md;
2237 }
2238
2239 static void dm_init_old_md_queue(struct mapped_device *md)
2240 {
2241 md->use_blk_mq = false;
2242 dm_init_md_queue(md);
2243
2244 /*
2245 * Initialize aspects of queue that aren't relevant for blk-mq
2246 */
2247 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2248 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2249 }
2250
2251 static void cleanup_mapped_device(struct mapped_device *md)
2252 {
2253 if (md->wq)
2254 destroy_workqueue(md->wq);
2255 if (md->kworker_task)
2256 kthread_stop(md->kworker_task);
2257 mempool_destroy(md->io_pool);
2258 mempool_destroy(md->rq_pool);
2259 if (md->bs)
2260 bioset_free(md->bs);
2261
2262 cleanup_srcu_struct(&md->io_barrier);
2263
2264 if (md->disk) {
2265 spin_lock(&_minor_lock);
2266 md->disk->private_data = NULL;
2267 spin_unlock(&_minor_lock);
2268 del_gendisk(md->disk);
2269 put_disk(md->disk);
2270 }
2271
2272 if (md->queue)
2273 blk_cleanup_queue(md->queue);
2274
2275 if (md->bdev) {
2276 bdput(md->bdev);
2277 md->bdev = NULL;
2278 }
2279 }
2280
2281 /*
2282 * Allocate and initialise a blank device with a given minor.
2283 */
2284 static struct mapped_device *alloc_dev(int minor)
2285 {
2286 int r;
2287 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2288 void *old_md;
2289
2290 if (!md) {
2291 DMWARN("unable to allocate device, out of memory.");
2292 return NULL;
2293 }
2294
2295 if (!try_module_get(THIS_MODULE))
2296 goto bad_module_get;
2297
2298 /* get a minor number for the dev */
2299 if (minor == DM_ANY_MINOR)
2300 r = next_free_minor(&minor);
2301 else
2302 r = specific_minor(minor);
2303 if (r < 0)
2304 goto bad_minor;
2305
2306 r = init_srcu_struct(&md->io_barrier);
2307 if (r < 0)
2308 goto bad_io_barrier;
2309
2310 md->use_blk_mq = use_blk_mq;
2311 md->type = DM_TYPE_NONE;
2312 mutex_init(&md->suspend_lock);
2313 mutex_init(&md->type_lock);
2314 mutex_init(&md->table_devices_lock);
2315 spin_lock_init(&md->deferred_lock);
2316 atomic_set(&md->holders, 1);
2317 atomic_set(&md->open_count, 0);
2318 atomic_set(&md->event_nr, 0);
2319 atomic_set(&md->uevent_seq, 0);
2320 INIT_LIST_HEAD(&md->uevent_list);
2321 INIT_LIST_HEAD(&md->table_devices);
2322 spin_lock_init(&md->uevent_lock);
2323
2324 md->queue = blk_alloc_queue(GFP_KERNEL);
2325 if (!md->queue)
2326 goto bad;
2327
2328 dm_init_md_queue(md);
2329
2330 md->disk = alloc_disk(1);
2331 if (!md->disk)
2332 goto bad;
2333
2334 atomic_set(&md->pending[0], 0);
2335 atomic_set(&md->pending[1], 0);
2336 init_waitqueue_head(&md->wait);
2337 INIT_WORK(&md->work, dm_wq_work);
2338 init_waitqueue_head(&md->eventq);
2339 init_completion(&md->kobj_holder.completion);
2340 md->kworker_task = NULL;
2341
2342 md->disk->major = _major;
2343 md->disk->first_minor = minor;
2344 md->disk->fops = &dm_blk_dops;
2345 md->disk->queue = md->queue;
2346 md->disk->private_data = md;
2347 sprintf(md->disk->disk_name, "dm-%d", minor);
2348 add_disk(md->disk);
2349 format_dev_t(md->name, MKDEV(_major, minor));
2350
2351 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2352 if (!md->wq)
2353 goto bad;
2354
2355 md->bdev = bdget_disk(md->disk, 0);
2356 if (!md->bdev)
2357 goto bad;
2358
2359 bio_init(&md->flush_bio);
2360 md->flush_bio.bi_bdev = md->bdev;
2361 md->flush_bio.bi_rw = WRITE_FLUSH;
2362
2363 dm_stats_init(&md->stats);
2364
2365 /* Populate the mapping, nobody knows we exist yet */
2366 spin_lock(&_minor_lock);
2367 old_md = idr_replace(&_minor_idr, md, minor);
2368 spin_unlock(&_minor_lock);
2369
2370 BUG_ON(old_md != MINOR_ALLOCED);
2371
2372 return md;
2373
2374 bad:
2375 cleanup_mapped_device(md);
2376 bad_io_barrier:
2377 free_minor(minor);
2378 bad_minor:
2379 module_put(THIS_MODULE);
2380 bad_module_get:
2381 kfree(md);
2382 return NULL;
2383 }
2384
2385 static void unlock_fs(struct mapped_device *md);
2386
2387 static void free_dev(struct mapped_device *md)
2388 {
2389 int minor = MINOR(disk_devt(md->disk));
2390
2391 unlock_fs(md);
2392
2393 cleanup_mapped_device(md);
2394 if (md->use_blk_mq)
2395 blk_mq_free_tag_set(&md->tag_set);
2396
2397 free_table_devices(&md->table_devices);
2398 dm_stats_cleanup(&md->stats);
2399 free_minor(minor);
2400
2401 module_put(THIS_MODULE);
2402 kfree(md);
2403 }
2404
2405 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2406 {
2407 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2408
2409 if (md->bs) {
2410 /* The md already has necessary mempools. */
2411 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2412 /*
2413 * Reload bioset because front_pad may have changed
2414 * because a different table was loaded.
2415 */
2416 bioset_free(md->bs);
2417 md->bs = p->bs;
2418 p->bs = NULL;
2419 }
2420 /*
2421 * There's no need to reload with request-based dm
2422 * because the size of front_pad doesn't change.
2423 * Note for future: If you are to reload bioset,
2424 * prep-ed requests in the queue may refer
2425 * to bio from the old bioset, so you must walk
2426 * through the queue to unprep.
2427 */
2428 goto out;
2429 }
2430
2431 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2432
2433 md->io_pool = p->io_pool;
2434 p->io_pool = NULL;
2435 md->rq_pool = p->rq_pool;
2436 p->rq_pool = NULL;
2437 md->bs = p->bs;
2438 p->bs = NULL;
2439
2440 out:
2441 /* mempool bind completed, no longer need any mempools in the table */
2442 dm_table_free_md_mempools(t);
2443 }
2444
2445 /*
2446 * Bind a table to the device.
2447 */
2448 static void event_callback(void *context)
2449 {
2450 unsigned long flags;
2451 LIST_HEAD(uevents);
2452 struct mapped_device *md = (struct mapped_device *) context;
2453
2454 spin_lock_irqsave(&md->uevent_lock, flags);
2455 list_splice_init(&md->uevent_list, &uevents);
2456 spin_unlock_irqrestore(&md->uevent_lock, flags);
2457
2458 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2459
2460 atomic_inc(&md->event_nr);
2461 wake_up(&md->eventq);
2462 }
2463
2464 /*
2465 * Protected by md->suspend_lock obtained by dm_swap_table().
2466 */
2467 static void __set_size(struct mapped_device *md, sector_t size)
2468 {
2469 set_capacity(md->disk, size);
2470
2471 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2472 }
2473
2474 /*
2475 * Returns old map, which caller must destroy.
2476 */
2477 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2478 struct queue_limits *limits)
2479 {
2480 struct dm_table *old_map;
2481 struct request_queue *q = md->queue;
2482 sector_t size;
2483
2484 size = dm_table_get_size(t);
2485
2486 /*
2487 * Wipe any geometry if the size of the table changed.
2488 */
2489 if (size != dm_get_size(md))
2490 memset(&md->geometry, 0, sizeof(md->geometry));
2491
2492 __set_size(md, size);
2493
2494 dm_table_event_callback(t, event_callback, md);
2495
2496 /*
2497 * The queue hasn't been stopped yet, if the old table type wasn't
2498 * for request-based during suspension. So stop it to prevent
2499 * I/O mapping before resume.
2500 * This must be done before setting the queue restrictions,
2501 * because request-based dm may be run just after the setting.
2502 */
2503 if (dm_table_request_based(t))
2504 stop_queue(q);
2505
2506 __bind_mempools(md, t);
2507
2508 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2509 rcu_assign_pointer(md->map, t);
2510 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2511
2512 dm_table_set_restrictions(t, q, limits);
2513 if (old_map)
2514 dm_sync_table(md);
2515
2516 return old_map;
2517 }
2518
2519 /*
2520 * Returns unbound table for the caller to free.
2521 */
2522 static struct dm_table *__unbind(struct mapped_device *md)
2523 {
2524 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2525
2526 if (!map)
2527 return NULL;
2528
2529 dm_table_event_callback(map, NULL, NULL);
2530 RCU_INIT_POINTER(md->map, NULL);
2531 dm_sync_table(md);
2532
2533 return map;
2534 }
2535
2536 /*
2537 * Constructor for a new device.
2538 */
2539 int dm_create(int minor, struct mapped_device **result)
2540 {
2541 struct mapped_device *md;
2542
2543 md = alloc_dev(minor);
2544 if (!md)
2545 return -ENXIO;
2546
2547 dm_sysfs_init(md);
2548
2549 *result = md;
2550 return 0;
2551 }
2552
2553 /*
2554 * Functions to manage md->type.
2555 * All are required to hold md->type_lock.
2556 */
2557 void dm_lock_md_type(struct mapped_device *md)
2558 {
2559 mutex_lock(&md->type_lock);
2560 }
2561
2562 void dm_unlock_md_type(struct mapped_device *md)
2563 {
2564 mutex_unlock(&md->type_lock);
2565 }
2566
2567 void dm_set_md_type(struct mapped_device *md, unsigned type)
2568 {
2569 BUG_ON(!mutex_is_locked(&md->type_lock));
2570 md->type = type;
2571 }
2572
2573 unsigned dm_get_md_type(struct mapped_device *md)
2574 {
2575 BUG_ON(!mutex_is_locked(&md->type_lock));
2576 return md->type;
2577 }
2578
2579 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2580 {
2581 return md->immutable_target_type;
2582 }
2583
2584 /*
2585 * The queue_limits are only valid as long as you have a reference
2586 * count on 'md'.
2587 */
2588 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2589 {
2590 BUG_ON(!atomic_read(&md->holders));
2591 return &md->queue->limits;
2592 }
2593 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2594
2595 static void init_rq_based_worker_thread(struct mapped_device *md)
2596 {
2597 /* Initialize the request-based DM worker thread */
2598 init_kthread_worker(&md->kworker);
2599 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2600 "kdmwork-%s", dm_device_name(md));
2601 }
2602
2603 /*
2604 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2605 */
2606 static int dm_init_request_based_queue(struct mapped_device *md)
2607 {
2608 struct request_queue *q = NULL;
2609
2610 /* Fully initialize the queue */
2611 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2612 if (!q)
2613 return -EINVAL;
2614
2615 /* disable dm_request_fn's merge heuristic by default */
2616 md->seq_rq_merge_deadline_usecs = 0;
2617
2618 md->queue = q;
2619 dm_init_old_md_queue(md);
2620 blk_queue_softirq_done(md->queue, dm_softirq_done);
2621 blk_queue_prep_rq(md->queue, dm_prep_fn);
2622
2623 init_rq_based_worker_thread(md);
2624
2625 elv_register_queue(md->queue);
2626
2627 return 0;
2628 }
2629
2630 static int dm_mq_init_request(void *data, struct request *rq,
2631 unsigned int hctx_idx, unsigned int request_idx,
2632 unsigned int numa_node)
2633 {
2634 struct mapped_device *md = data;
2635 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2636
2637 /*
2638 * Must initialize md member of tio, otherwise it won't
2639 * be available in dm_mq_queue_rq.
2640 */
2641 tio->md = md;
2642
2643 return 0;
2644 }
2645
2646 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2647 const struct blk_mq_queue_data *bd)
2648 {
2649 struct request *rq = bd->rq;
2650 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2651 struct mapped_device *md = tio->md;
2652 int srcu_idx;
2653 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2654 struct dm_target *ti;
2655 sector_t pos;
2656
2657 /* always use block 0 to find the target for flushes for now */
2658 pos = 0;
2659 if (!(rq->cmd_flags & REQ_FLUSH))
2660 pos = blk_rq_pos(rq);
2661
2662 ti = dm_table_find_target(map, pos);
2663 if (!dm_target_is_valid(ti)) {
2664 dm_put_live_table(md, srcu_idx);
2665 DMERR_LIMIT("request attempted access beyond the end of device");
2666 /*
2667 * Must perform setup, that rq_completed() requires,
2668 * before returning BLK_MQ_RQ_QUEUE_ERROR
2669 */
2670 dm_start_request(md, rq);
2671 return BLK_MQ_RQ_QUEUE_ERROR;
2672 }
2673 dm_put_live_table(md, srcu_idx);
2674
2675 if (ti->type->busy && ti->type->busy(ti))
2676 return BLK_MQ_RQ_QUEUE_BUSY;
2677
2678 dm_start_request(md, rq);
2679
2680 /* Init tio using md established in .init_request */
2681 init_tio(tio, rq, md);
2682
2683 /*
2684 * Establish tio->ti before queuing work (map_tio_request)
2685 * or making direct call to map_request().
2686 */
2687 tio->ti = ti;
2688
2689 /* Clone the request if underlying devices aren't blk-mq */
2690 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2691 /* clone request is allocated at the end of the pdu */
2692 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2693 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2694 queue_kthread_work(&md->kworker, &tio->work);
2695 } else {
2696 /* Direct call is fine since .queue_rq allows allocations */
2697 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2698 /* Undo dm_start_request() before requeuing */
2699 rq_end_stats(md, rq);
2700 rq_completed(md, rq_data_dir(rq), false);
2701 return BLK_MQ_RQ_QUEUE_BUSY;
2702 }
2703 }
2704
2705 return BLK_MQ_RQ_QUEUE_OK;
2706 }
2707
2708 static struct blk_mq_ops dm_mq_ops = {
2709 .queue_rq = dm_mq_queue_rq,
2710 .map_queue = blk_mq_map_queue,
2711 .complete = dm_softirq_done,
2712 .init_request = dm_mq_init_request,
2713 };
2714
2715 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2716 {
2717 unsigned md_type = dm_get_md_type(md);
2718 struct request_queue *q;
2719 int err;
2720
2721 memset(&md->tag_set, 0, sizeof(md->tag_set));
2722 md->tag_set.ops = &dm_mq_ops;
2723 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2724 md->tag_set.numa_node = NUMA_NO_NODE;
2725 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2726 md->tag_set.nr_hw_queues = 1;
2727 if (md_type == DM_TYPE_REQUEST_BASED) {
2728 /* make the memory for non-blk-mq clone part of the pdu */
2729 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2730 } else
2731 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2732 md->tag_set.driver_data = md;
2733
2734 err = blk_mq_alloc_tag_set(&md->tag_set);
2735 if (err)
2736 return err;
2737
2738 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2739 if (IS_ERR(q)) {
2740 err = PTR_ERR(q);
2741 goto out_tag_set;
2742 }
2743 md->queue = q;
2744 dm_init_md_queue(md);
2745
2746 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2747 blk_mq_register_disk(md->disk);
2748
2749 if (md_type == DM_TYPE_REQUEST_BASED)
2750 init_rq_based_worker_thread(md);
2751
2752 return 0;
2753
2754 out_tag_set:
2755 blk_mq_free_tag_set(&md->tag_set);
2756 return err;
2757 }
2758
2759 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2760 {
2761 if (type == DM_TYPE_BIO_BASED)
2762 return type;
2763
2764 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2765 }
2766
2767 /*
2768 * Setup the DM device's queue based on md's type
2769 */
2770 int dm_setup_md_queue(struct mapped_device *md)
2771 {
2772 int r;
2773 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2774
2775 switch (md_type) {
2776 case DM_TYPE_REQUEST_BASED:
2777 r = dm_init_request_based_queue(md);
2778 if (r) {
2779 DMWARN("Cannot initialize queue for request-based mapped device");
2780 return r;
2781 }
2782 break;
2783 case DM_TYPE_MQ_REQUEST_BASED:
2784 r = dm_init_request_based_blk_mq_queue(md);
2785 if (r) {
2786 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2787 return r;
2788 }
2789 break;
2790 case DM_TYPE_BIO_BASED:
2791 dm_init_old_md_queue(md);
2792 blk_queue_make_request(md->queue, dm_make_request);
2793 /*
2794 * DM handles splitting bios as needed. Free the bio_split bioset
2795 * since it won't be used (saves 1 process per bio-based DM device).
2796 */
2797 bioset_free(md->queue->bio_split);
2798 md->queue->bio_split = NULL;
2799 break;
2800 }
2801
2802 return 0;
2803 }
2804
2805 struct mapped_device *dm_get_md(dev_t dev)
2806 {
2807 struct mapped_device *md;
2808 unsigned minor = MINOR(dev);
2809
2810 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2811 return NULL;
2812
2813 spin_lock(&_minor_lock);
2814
2815 md = idr_find(&_minor_idr, minor);
2816 if (md) {
2817 if ((md == MINOR_ALLOCED ||
2818 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2819 dm_deleting_md(md) ||
2820 test_bit(DMF_FREEING, &md->flags))) {
2821 md = NULL;
2822 goto out;
2823 }
2824 dm_get(md);
2825 }
2826
2827 out:
2828 spin_unlock(&_minor_lock);
2829
2830 return md;
2831 }
2832 EXPORT_SYMBOL_GPL(dm_get_md);
2833
2834 void *dm_get_mdptr(struct mapped_device *md)
2835 {
2836 return md->interface_ptr;
2837 }
2838
2839 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2840 {
2841 md->interface_ptr = ptr;
2842 }
2843
2844 void dm_get(struct mapped_device *md)
2845 {
2846 atomic_inc(&md->holders);
2847 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2848 }
2849
2850 int dm_hold(struct mapped_device *md)
2851 {
2852 spin_lock(&_minor_lock);
2853 if (test_bit(DMF_FREEING, &md->flags)) {
2854 spin_unlock(&_minor_lock);
2855 return -EBUSY;
2856 }
2857 dm_get(md);
2858 spin_unlock(&_minor_lock);
2859 return 0;
2860 }
2861 EXPORT_SYMBOL_GPL(dm_hold);
2862
2863 const char *dm_device_name(struct mapped_device *md)
2864 {
2865 return md->name;
2866 }
2867 EXPORT_SYMBOL_GPL(dm_device_name);
2868
2869 static void __dm_destroy(struct mapped_device *md, bool wait)
2870 {
2871 struct dm_table *map;
2872 int srcu_idx;
2873
2874 might_sleep();
2875
2876 spin_lock(&_minor_lock);
2877 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2878 set_bit(DMF_FREEING, &md->flags);
2879 spin_unlock(&_minor_lock);
2880
2881 if (dm_request_based(md) && md->kworker_task)
2882 flush_kthread_worker(&md->kworker);
2883
2884 /*
2885 * Take suspend_lock so that presuspend and postsuspend methods
2886 * do not race with internal suspend.
2887 */
2888 mutex_lock(&md->suspend_lock);
2889 map = dm_get_live_table(md, &srcu_idx);
2890 if (!dm_suspended_md(md)) {
2891 dm_table_presuspend_targets(map);
2892 dm_table_postsuspend_targets(map);
2893 }
2894 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2895 dm_put_live_table(md, srcu_idx);
2896 mutex_unlock(&md->suspend_lock);
2897
2898 /*
2899 * Rare, but there may be I/O requests still going to complete,
2900 * for example. Wait for all references to disappear.
2901 * No one should increment the reference count of the mapped_device,
2902 * after the mapped_device state becomes DMF_FREEING.
2903 */
2904 if (wait)
2905 while (atomic_read(&md->holders))
2906 msleep(1);
2907 else if (atomic_read(&md->holders))
2908 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2909 dm_device_name(md), atomic_read(&md->holders));
2910
2911 dm_sysfs_exit(md);
2912 dm_table_destroy(__unbind(md));
2913 free_dev(md);
2914 }
2915
2916 void dm_destroy(struct mapped_device *md)
2917 {
2918 __dm_destroy(md, true);
2919 }
2920
2921 void dm_destroy_immediate(struct mapped_device *md)
2922 {
2923 __dm_destroy(md, false);
2924 }
2925
2926 void dm_put(struct mapped_device *md)
2927 {
2928 atomic_dec(&md->holders);
2929 }
2930 EXPORT_SYMBOL_GPL(dm_put);
2931
2932 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2933 {
2934 int r = 0;
2935 DECLARE_WAITQUEUE(wait, current);
2936
2937 add_wait_queue(&md->wait, &wait);
2938
2939 while (1) {
2940 set_current_state(interruptible);
2941
2942 if (!md_in_flight(md))
2943 break;
2944
2945 if (interruptible == TASK_INTERRUPTIBLE &&
2946 signal_pending(current)) {
2947 r = -EINTR;
2948 break;
2949 }
2950
2951 io_schedule();
2952 }
2953 set_current_state(TASK_RUNNING);
2954
2955 remove_wait_queue(&md->wait, &wait);
2956
2957 return r;
2958 }
2959
2960 /*
2961 * Process the deferred bios
2962 */
2963 static void dm_wq_work(struct work_struct *work)
2964 {
2965 struct mapped_device *md = container_of(work, struct mapped_device,
2966 work);
2967 struct bio *c;
2968 int srcu_idx;
2969 struct dm_table *map;
2970
2971 map = dm_get_live_table(md, &srcu_idx);
2972
2973 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2974 spin_lock_irq(&md->deferred_lock);
2975 c = bio_list_pop(&md->deferred);
2976 spin_unlock_irq(&md->deferred_lock);
2977
2978 if (!c)
2979 break;
2980
2981 if (dm_request_based(md))
2982 generic_make_request(c);
2983 else
2984 __split_and_process_bio(md, map, c);
2985 }
2986
2987 dm_put_live_table(md, srcu_idx);
2988 }
2989
2990 static void dm_queue_flush(struct mapped_device *md)
2991 {
2992 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2993 smp_mb__after_atomic();
2994 queue_work(md->wq, &md->work);
2995 }
2996
2997 /*
2998 * Swap in a new table, returning the old one for the caller to destroy.
2999 */
3000 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3001 {
3002 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3003 struct queue_limits limits;
3004 int r;
3005
3006 mutex_lock(&md->suspend_lock);
3007
3008 /* device must be suspended */
3009 if (!dm_suspended_md(md))
3010 goto out;
3011
3012 /*
3013 * If the new table has no data devices, retain the existing limits.
3014 * This helps multipath with queue_if_no_path if all paths disappear,
3015 * then new I/O is queued based on these limits, and then some paths
3016 * reappear.
3017 */
3018 if (dm_table_has_no_data_devices(table)) {
3019 live_map = dm_get_live_table_fast(md);
3020 if (live_map)
3021 limits = md->queue->limits;
3022 dm_put_live_table_fast(md);
3023 }
3024
3025 if (!live_map) {
3026 r = dm_calculate_queue_limits(table, &limits);
3027 if (r) {
3028 map = ERR_PTR(r);
3029 goto out;
3030 }
3031 }
3032
3033 map = __bind(md, table, &limits);
3034
3035 out:
3036 mutex_unlock(&md->suspend_lock);
3037 return map;
3038 }
3039
3040 /*
3041 * Functions to lock and unlock any filesystem running on the
3042 * device.
3043 */
3044 static int lock_fs(struct mapped_device *md)
3045 {
3046 int r;
3047
3048 WARN_ON(md->frozen_sb);
3049
3050 md->frozen_sb = freeze_bdev(md->bdev);
3051 if (IS_ERR(md->frozen_sb)) {
3052 r = PTR_ERR(md->frozen_sb);
3053 md->frozen_sb = NULL;
3054 return r;
3055 }
3056
3057 set_bit(DMF_FROZEN, &md->flags);
3058
3059 return 0;
3060 }
3061
3062 static void unlock_fs(struct mapped_device *md)
3063 {
3064 if (!test_bit(DMF_FROZEN, &md->flags))
3065 return;
3066
3067 thaw_bdev(md->bdev, md->frozen_sb);
3068 md->frozen_sb = NULL;
3069 clear_bit(DMF_FROZEN, &md->flags);
3070 }
3071
3072 /*
3073 * If __dm_suspend returns 0, the device is completely quiescent
3074 * now. There is no request-processing activity. All new requests
3075 * are being added to md->deferred list.
3076 *
3077 * Caller must hold md->suspend_lock
3078 */
3079 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3080 unsigned suspend_flags, int interruptible)
3081 {
3082 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3083 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3084 int r;
3085
3086 /*
3087 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3088 * This flag is cleared before dm_suspend returns.
3089 */
3090 if (noflush)
3091 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3092
3093 /*
3094 * This gets reverted if there's an error later and the targets
3095 * provide the .presuspend_undo hook.
3096 */
3097 dm_table_presuspend_targets(map);
3098
3099 /*
3100 * Flush I/O to the device.
3101 * Any I/O submitted after lock_fs() may not be flushed.
3102 * noflush takes precedence over do_lockfs.
3103 * (lock_fs() flushes I/Os and waits for them to complete.)
3104 */
3105 if (!noflush && do_lockfs) {
3106 r = lock_fs(md);
3107 if (r) {
3108 dm_table_presuspend_undo_targets(map);
3109 return r;
3110 }
3111 }
3112
3113 /*
3114 * Here we must make sure that no processes are submitting requests
3115 * to target drivers i.e. no one may be executing
3116 * __split_and_process_bio. This is called from dm_request and
3117 * dm_wq_work.
3118 *
3119 * To get all processes out of __split_and_process_bio in dm_request,
3120 * we take the write lock. To prevent any process from reentering
3121 * __split_and_process_bio from dm_request and quiesce the thread
3122 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3123 * flush_workqueue(md->wq).
3124 */
3125 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3126 if (map)
3127 synchronize_srcu(&md->io_barrier);
3128
3129 /*
3130 * Stop md->queue before flushing md->wq in case request-based
3131 * dm defers requests to md->wq from md->queue.
3132 */
3133 if (dm_request_based(md)) {
3134 stop_queue(md->queue);
3135 if (md->kworker_task)
3136 flush_kthread_worker(&md->kworker);
3137 }
3138
3139 flush_workqueue(md->wq);
3140
3141 /*
3142 * At this point no more requests are entering target request routines.
3143 * We call dm_wait_for_completion to wait for all existing requests
3144 * to finish.
3145 */
3146 r = dm_wait_for_completion(md, interruptible);
3147
3148 if (noflush)
3149 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3150 if (map)
3151 synchronize_srcu(&md->io_barrier);
3152
3153 /* were we interrupted ? */
3154 if (r < 0) {
3155 dm_queue_flush(md);
3156
3157 if (dm_request_based(md))
3158 start_queue(md->queue);
3159
3160 unlock_fs(md);
3161 dm_table_presuspend_undo_targets(map);
3162 /* pushback list is already flushed, so skip flush */
3163 }
3164
3165 return r;
3166 }
3167
3168 /*
3169 * We need to be able to change a mapping table under a mounted
3170 * filesystem. For example we might want to move some data in
3171 * the background. Before the table can be swapped with
3172 * dm_bind_table, dm_suspend must be called to flush any in
3173 * flight bios and ensure that any further io gets deferred.
3174 */
3175 /*
3176 * Suspend mechanism in request-based dm.
3177 *
3178 * 1. Flush all I/Os by lock_fs() if needed.
3179 * 2. Stop dispatching any I/O by stopping the request_queue.
3180 * 3. Wait for all in-flight I/Os to be completed or requeued.
3181 *
3182 * To abort suspend, start the request_queue.
3183 */
3184 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3185 {
3186 struct dm_table *map = NULL;
3187 int r = 0;
3188
3189 retry:
3190 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3191
3192 if (dm_suspended_md(md)) {
3193 r = -EINVAL;
3194 goto out_unlock;
3195 }
3196
3197 if (dm_suspended_internally_md(md)) {
3198 /* already internally suspended, wait for internal resume */
3199 mutex_unlock(&md->suspend_lock);
3200 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3201 if (r)
3202 return r;
3203 goto retry;
3204 }
3205
3206 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3207
3208 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3209 if (r)
3210 goto out_unlock;
3211
3212 set_bit(DMF_SUSPENDED, &md->flags);
3213
3214 dm_table_postsuspend_targets(map);
3215
3216 out_unlock:
3217 mutex_unlock(&md->suspend_lock);
3218 return r;
3219 }
3220
3221 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3222 {
3223 if (map) {
3224 int r = dm_table_resume_targets(map);
3225 if (r)
3226 return r;
3227 }
3228
3229 dm_queue_flush(md);
3230
3231 /*
3232 * Flushing deferred I/Os must be done after targets are resumed
3233 * so that mapping of targets can work correctly.
3234 * Request-based dm is queueing the deferred I/Os in its request_queue.
3235 */
3236 if (dm_request_based(md))
3237 start_queue(md->queue);
3238
3239 unlock_fs(md);
3240
3241 return 0;
3242 }
3243
3244 int dm_resume(struct mapped_device *md)
3245 {
3246 int r = -EINVAL;
3247 struct dm_table *map = NULL;
3248
3249 retry:
3250 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3251
3252 if (!dm_suspended_md(md))
3253 goto out;
3254
3255 if (dm_suspended_internally_md(md)) {
3256 /* already internally suspended, wait for internal resume */
3257 mutex_unlock(&md->suspend_lock);
3258 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3259 if (r)
3260 return r;
3261 goto retry;
3262 }
3263
3264 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3265 if (!map || !dm_table_get_size(map))
3266 goto out;
3267
3268 r = __dm_resume(md, map);
3269 if (r)
3270 goto out;
3271
3272 clear_bit(DMF_SUSPENDED, &md->flags);
3273
3274 r = 0;
3275 out:
3276 mutex_unlock(&md->suspend_lock);
3277
3278 return r;
3279 }
3280
3281 /*
3282 * Internal suspend/resume works like userspace-driven suspend. It waits
3283 * until all bios finish and prevents issuing new bios to the target drivers.
3284 * It may be used only from the kernel.
3285 */
3286
3287 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3288 {
3289 struct dm_table *map = NULL;
3290
3291 if (md->internal_suspend_count++)
3292 return; /* nested internal suspend */
3293
3294 if (dm_suspended_md(md)) {
3295 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3296 return; /* nest suspend */
3297 }
3298
3299 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3300
3301 /*
3302 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3303 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3304 * would require changing .presuspend to return an error -- avoid this
3305 * until there is a need for more elaborate variants of internal suspend.
3306 */
3307 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3308
3309 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3310
3311 dm_table_postsuspend_targets(map);
3312 }
3313
3314 static void __dm_internal_resume(struct mapped_device *md)
3315 {
3316 BUG_ON(!md->internal_suspend_count);
3317
3318 if (--md->internal_suspend_count)
3319 return; /* resume from nested internal suspend */
3320
3321 if (dm_suspended_md(md))
3322 goto done; /* resume from nested suspend */
3323
3324 /*
3325 * NOTE: existing callers don't need to call dm_table_resume_targets
3326 * (which may fail -- so best to avoid it for now by passing NULL map)
3327 */
3328 (void) __dm_resume(md, NULL);
3329
3330 done:
3331 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3332 smp_mb__after_atomic();
3333 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3334 }
3335
3336 void dm_internal_suspend_noflush(struct mapped_device *md)
3337 {
3338 mutex_lock(&md->suspend_lock);
3339 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3340 mutex_unlock(&md->suspend_lock);
3341 }
3342 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3343
3344 void dm_internal_resume(struct mapped_device *md)
3345 {
3346 mutex_lock(&md->suspend_lock);
3347 __dm_internal_resume(md);
3348 mutex_unlock(&md->suspend_lock);
3349 }
3350 EXPORT_SYMBOL_GPL(dm_internal_resume);
3351
3352 /*
3353 * Fast variants of internal suspend/resume hold md->suspend_lock,
3354 * which prevents interaction with userspace-driven suspend.
3355 */
3356
3357 void dm_internal_suspend_fast(struct mapped_device *md)
3358 {
3359 mutex_lock(&md->suspend_lock);
3360 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3361 return;
3362
3363 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3364 synchronize_srcu(&md->io_barrier);
3365 flush_workqueue(md->wq);
3366 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3367 }
3368 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3369
3370 void dm_internal_resume_fast(struct mapped_device *md)
3371 {
3372 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3373 goto done;
3374
3375 dm_queue_flush(md);
3376
3377 done:
3378 mutex_unlock(&md->suspend_lock);
3379 }
3380 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3381
3382 /*-----------------------------------------------------------------
3383 * Event notification.
3384 *---------------------------------------------------------------*/
3385 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3386 unsigned cookie)
3387 {
3388 char udev_cookie[DM_COOKIE_LENGTH];
3389 char *envp[] = { udev_cookie, NULL };
3390
3391 if (!cookie)
3392 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3393 else {
3394 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3395 DM_COOKIE_ENV_VAR_NAME, cookie);
3396 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3397 action, envp);
3398 }
3399 }
3400
3401 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3402 {
3403 return atomic_add_return(1, &md->uevent_seq);
3404 }
3405
3406 uint32_t dm_get_event_nr(struct mapped_device *md)
3407 {
3408 return atomic_read(&md->event_nr);
3409 }
3410
3411 int dm_wait_event(struct mapped_device *md, int event_nr)
3412 {
3413 return wait_event_interruptible(md->eventq,
3414 (event_nr != atomic_read(&md->event_nr)));
3415 }
3416
3417 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3418 {
3419 unsigned long flags;
3420
3421 spin_lock_irqsave(&md->uevent_lock, flags);
3422 list_add(elist, &md->uevent_list);
3423 spin_unlock_irqrestore(&md->uevent_lock, flags);
3424 }
3425
3426 /*
3427 * The gendisk is only valid as long as you have a reference
3428 * count on 'md'.
3429 */
3430 struct gendisk *dm_disk(struct mapped_device *md)
3431 {
3432 return md->disk;
3433 }
3434 EXPORT_SYMBOL_GPL(dm_disk);
3435
3436 struct kobject *dm_kobject(struct mapped_device *md)
3437 {
3438 return &md->kobj_holder.kobj;
3439 }
3440
3441 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3442 {
3443 struct mapped_device *md;
3444
3445 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3446
3447 if (test_bit(DMF_FREEING, &md->flags) ||
3448 dm_deleting_md(md))
3449 return NULL;
3450
3451 dm_get(md);
3452 return md;
3453 }
3454
3455 int dm_suspended_md(struct mapped_device *md)
3456 {
3457 return test_bit(DMF_SUSPENDED, &md->flags);
3458 }
3459
3460 int dm_suspended_internally_md(struct mapped_device *md)
3461 {
3462 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3463 }
3464
3465 int dm_test_deferred_remove_flag(struct mapped_device *md)
3466 {
3467 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3468 }
3469
3470 int dm_suspended(struct dm_target *ti)
3471 {
3472 return dm_suspended_md(dm_table_get_md(ti->table));
3473 }
3474 EXPORT_SYMBOL_GPL(dm_suspended);
3475
3476 int dm_noflush_suspending(struct dm_target *ti)
3477 {
3478 return __noflush_suspending(dm_table_get_md(ti->table));
3479 }
3480 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3481
3482 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3483 unsigned integrity, unsigned per_bio_data_size)
3484 {
3485 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3486 struct kmem_cache *cachep = NULL;
3487 unsigned int pool_size = 0;
3488 unsigned int front_pad;
3489
3490 if (!pools)
3491 return NULL;
3492
3493 type = filter_md_type(type, md);
3494
3495 switch (type) {
3496 case DM_TYPE_BIO_BASED:
3497 cachep = _io_cache;
3498 pool_size = dm_get_reserved_bio_based_ios();
3499 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3500 break;
3501 case DM_TYPE_REQUEST_BASED:
3502 cachep = _rq_tio_cache;
3503 pool_size = dm_get_reserved_rq_based_ios();
3504 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3505 if (!pools->rq_pool)
3506 goto out;
3507 /* fall through to setup remaining rq-based pools */
3508 case DM_TYPE_MQ_REQUEST_BASED:
3509 if (!pool_size)
3510 pool_size = dm_get_reserved_rq_based_ios();
3511 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3512 /* per_bio_data_size is not used. See __bind_mempools(). */
3513 WARN_ON(per_bio_data_size != 0);
3514 break;
3515 default:
3516 BUG();
3517 }
3518
3519 if (cachep) {
3520 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3521 if (!pools->io_pool)
3522 goto out;
3523 }
3524
3525 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3526 if (!pools->bs)
3527 goto out;
3528
3529 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3530 goto out;
3531
3532 return pools;
3533
3534 out:
3535 dm_free_md_mempools(pools);
3536
3537 return NULL;
3538 }
3539
3540 void dm_free_md_mempools(struct dm_md_mempools *pools)
3541 {
3542 if (!pools)
3543 return;
3544
3545 mempool_destroy(pools->io_pool);
3546 mempool_destroy(pools->rq_pool);
3547
3548 if (pools->bs)
3549 bioset_free(pools->bs);
3550
3551 kfree(pools);
3552 }
3553
3554 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3555 u32 flags)
3556 {
3557 struct mapped_device *md = bdev->bd_disk->private_data;
3558 const struct pr_ops *ops;
3559 struct dm_target *tgt;
3560 fmode_t mode;
3561 int srcu_idx, r;
3562
3563 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3564 if (r < 0)
3565 return r;
3566
3567 ops = bdev->bd_disk->fops->pr_ops;
3568 if (ops && ops->pr_register)
3569 r = ops->pr_register(bdev, old_key, new_key, flags);
3570 else
3571 r = -EOPNOTSUPP;
3572
3573 dm_put_live_table(md, srcu_idx);
3574 return r;
3575 }
3576
3577 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3578 u32 flags)
3579 {
3580 struct mapped_device *md = bdev->bd_disk->private_data;
3581 const struct pr_ops *ops;
3582 struct dm_target *tgt;
3583 fmode_t mode;
3584 int srcu_idx, r;
3585
3586 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3587 if (r < 0)
3588 return r;
3589
3590 ops = bdev->bd_disk->fops->pr_ops;
3591 if (ops && ops->pr_reserve)
3592 r = ops->pr_reserve(bdev, key, type, flags);
3593 else
3594 r = -EOPNOTSUPP;
3595
3596 dm_put_live_table(md, srcu_idx);
3597 return r;
3598 }
3599
3600 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3601 {
3602 struct mapped_device *md = bdev->bd_disk->private_data;
3603 const struct pr_ops *ops;
3604 struct dm_target *tgt;
3605 fmode_t mode;
3606 int srcu_idx, r;
3607
3608 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3609 if (r < 0)
3610 return r;
3611
3612 ops = bdev->bd_disk->fops->pr_ops;
3613 if (ops && ops->pr_release)
3614 r = ops->pr_release(bdev, key, type);
3615 else
3616 r = -EOPNOTSUPP;
3617
3618 dm_put_live_table(md, srcu_idx);
3619 return r;
3620 }
3621
3622 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3623 enum pr_type type, bool abort)
3624 {
3625 struct mapped_device *md = bdev->bd_disk->private_data;
3626 const struct pr_ops *ops;
3627 struct dm_target *tgt;
3628 fmode_t mode;
3629 int srcu_idx, r;
3630
3631 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3632 if (r < 0)
3633 return r;
3634
3635 ops = bdev->bd_disk->fops->pr_ops;
3636 if (ops && ops->pr_preempt)
3637 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3638 else
3639 r = -EOPNOTSUPP;
3640
3641 dm_put_live_table(md, srcu_idx);
3642 return r;
3643 }
3644
3645 static int dm_pr_clear(struct block_device *bdev, u64 key)
3646 {
3647 struct mapped_device *md = bdev->bd_disk->private_data;
3648 const struct pr_ops *ops;
3649 struct dm_target *tgt;
3650 fmode_t mode;
3651 int srcu_idx, r;
3652
3653 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3654 if (r < 0)
3655 return r;
3656
3657 ops = bdev->bd_disk->fops->pr_ops;
3658 if (ops && ops->pr_clear)
3659 r = ops->pr_clear(bdev, key);
3660 else
3661 r = -EOPNOTSUPP;
3662
3663 dm_put_live_table(md, srcu_idx);
3664 return r;
3665 }
3666
3667 static const struct pr_ops dm_pr_ops = {
3668 .pr_register = dm_pr_register,
3669 .pr_reserve = dm_pr_reserve,
3670 .pr_release = dm_pr_release,
3671 .pr_preempt = dm_pr_preempt,
3672 .pr_clear = dm_pr_clear,
3673 };
3674
3675 static const struct block_device_operations dm_blk_dops = {
3676 .open = dm_blk_open,
3677 .release = dm_blk_close,
3678 .ioctl = dm_blk_ioctl,
3679 .getgeo = dm_blk_getgeo,
3680 .pr_ops = &dm_pr_ops,
3681 .owner = THIS_MODULE
3682 };
3683
3684 /*
3685 * module hooks
3686 */
3687 module_init(dm_init);
3688 module_exit(dm_exit);
3689
3690 module_param(major, uint, 0);
3691 MODULE_PARM_DESC(major, "The major number of the device mapper");
3692
3693 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3694 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3695
3696 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3697 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3698
3699 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3700 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3701
3702 MODULE_DESCRIPTION(DM_NAME " driver");
3703 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3704 MODULE_LICENSE("GPL");