]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
Merge tag 'driver-core-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52
53 static void do_deferred_remove(struct work_struct *w);
54
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56
57 /*
58 * For bio-based dm.
59 * One of these is allocated per bio.
60 */
61 struct dm_io {
62 struct mapped_device *md;
63 int error;
64 atomic_t io_count;
65 struct bio *bio;
66 unsigned long start_time;
67 spinlock_t endio_lock;
68 struct dm_stats_aux stats_aux;
69 };
70
71 /*
72 * For request-based dm.
73 * One of these is allocated per request.
74 */
75 struct dm_rq_target_io {
76 struct mapped_device *md;
77 struct dm_target *ti;
78 struct request *orig, clone;
79 int error;
80 union map_info info;
81 };
82
83 /*
84 * For request-based dm - the bio clones we allocate are embedded in these
85 * structs.
86 *
87 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
88 * the bioset is created - this means the bio has to come at the end of the
89 * struct.
90 */
91 struct dm_rq_clone_bio_info {
92 struct bio *orig;
93 struct dm_rq_target_io *tio;
94 struct bio clone;
95 };
96
97 union map_info *dm_get_rq_mapinfo(struct request *rq)
98 {
99 if (rq && rq->end_io_data)
100 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
101 return NULL;
102 }
103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
104
105 #define MINOR_ALLOCED ((void *)-1)
106
107 /*
108 * Bits for the md->flags field.
109 */
110 #define DMF_BLOCK_IO_FOR_SUSPEND 0
111 #define DMF_SUSPENDED 1
112 #define DMF_FROZEN 2
113 #define DMF_FREEING 3
114 #define DMF_DELETING 4
115 #define DMF_NOFLUSH_SUSPENDING 5
116 #define DMF_MERGE_IS_OPTIONAL 6
117 #define DMF_DEFERRED_REMOVE 7
118
119 /*
120 * A dummy definition to make RCU happy.
121 * struct dm_table should never be dereferenced in this file.
122 */
123 struct dm_table {
124 int undefined__;
125 };
126
127 /*
128 * Work processed by per-device workqueue.
129 */
130 struct mapped_device {
131 struct srcu_struct io_barrier;
132 struct mutex suspend_lock;
133 atomic_t holders;
134 atomic_t open_count;
135
136 /*
137 * The current mapping.
138 * Use dm_get_live_table{_fast} or take suspend_lock for
139 * dereference.
140 */
141 struct dm_table *map;
142
143 unsigned long flags;
144
145 struct request_queue *queue;
146 unsigned type;
147 /* Protect queue and type against concurrent access. */
148 struct mutex type_lock;
149
150 struct target_type *immutable_target_type;
151
152 struct gendisk *disk;
153 char name[16];
154
155 void *interface_ptr;
156
157 /*
158 * A list of ios that arrived while we were suspended.
159 */
160 atomic_t pending[2];
161 wait_queue_head_t wait;
162 struct work_struct work;
163 struct bio_list deferred;
164 spinlock_t deferred_lock;
165
166 /*
167 * Processing queue (flush)
168 */
169 struct workqueue_struct *wq;
170
171 /*
172 * io objects are allocated from here.
173 */
174 mempool_t *io_pool;
175
176 struct bio_set *bs;
177
178 /*
179 * Event handling.
180 */
181 atomic_t event_nr;
182 wait_queue_head_t eventq;
183 atomic_t uevent_seq;
184 struct list_head uevent_list;
185 spinlock_t uevent_lock; /* Protect access to uevent_list */
186
187 /*
188 * freeze/thaw support require holding onto a super block
189 */
190 struct super_block *frozen_sb;
191 struct block_device *bdev;
192
193 /* forced geometry settings */
194 struct hd_geometry geometry;
195
196 /* kobject and completion */
197 struct dm_kobject_holder kobj_holder;
198
199 /* zero-length flush that will be cloned and submitted to targets */
200 struct bio flush_bio;
201
202 struct dm_stats stats;
203 };
204
205 /*
206 * For mempools pre-allocation at the table loading time.
207 */
208 struct dm_md_mempools {
209 mempool_t *io_pool;
210 struct bio_set *bs;
211 };
212
213 #define RESERVED_BIO_BASED_IOS 16
214 #define RESERVED_REQUEST_BASED_IOS 256
215 #define RESERVED_MAX_IOS 1024
216 static struct kmem_cache *_io_cache;
217 static struct kmem_cache *_rq_tio_cache;
218
219 /*
220 * Bio-based DM's mempools' reserved IOs set by the user.
221 */
222 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
223
224 /*
225 * Request-based DM's mempools' reserved IOs set by the user.
226 */
227 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
228
229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
230 unsigned def, unsigned max)
231 {
232 unsigned ios = ACCESS_ONCE(*reserved_ios);
233 unsigned modified_ios = 0;
234
235 if (!ios)
236 modified_ios = def;
237 else if (ios > max)
238 modified_ios = max;
239
240 if (modified_ios) {
241 (void)cmpxchg(reserved_ios, ios, modified_ios);
242 ios = modified_ios;
243 }
244
245 return ios;
246 }
247
248 unsigned dm_get_reserved_bio_based_ios(void)
249 {
250 return __dm_get_reserved_ios(&reserved_bio_based_ios,
251 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
252 }
253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
254
255 unsigned dm_get_reserved_rq_based_ios(void)
256 {
257 return __dm_get_reserved_ios(&reserved_rq_based_ios,
258 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
259 }
260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
261
262 static int __init local_init(void)
263 {
264 int r = -ENOMEM;
265
266 /* allocate a slab for the dm_ios */
267 _io_cache = KMEM_CACHE(dm_io, 0);
268 if (!_io_cache)
269 return r;
270
271 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
272 if (!_rq_tio_cache)
273 goto out_free_io_cache;
274
275 r = dm_uevent_init();
276 if (r)
277 goto out_free_rq_tio_cache;
278
279 _major = major;
280 r = register_blkdev(_major, _name);
281 if (r < 0)
282 goto out_uevent_exit;
283
284 if (!_major)
285 _major = r;
286
287 return 0;
288
289 out_uevent_exit:
290 dm_uevent_exit();
291 out_free_rq_tio_cache:
292 kmem_cache_destroy(_rq_tio_cache);
293 out_free_io_cache:
294 kmem_cache_destroy(_io_cache);
295
296 return r;
297 }
298
299 static void local_exit(void)
300 {
301 flush_scheduled_work();
302
303 kmem_cache_destroy(_rq_tio_cache);
304 kmem_cache_destroy(_io_cache);
305 unregister_blkdev(_major, _name);
306 dm_uevent_exit();
307
308 _major = 0;
309
310 DMINFO("cleaned up");
311 }
312
313 static int (*_inits[])(void) __initdata = {
314 local_init,
315 dm_target_init,
316 dm_linear_init,
317 dm_stripe_init,
318 dm_io_init,
319 dm_kcopyd_init,
320 dm_interface_init,
321 dm_statistics_init,
322 };
323
324 static void (*_exits[])(void) = {
325 local_exit,
326 dm_target_exit,
327 dm_linear_exit,
328 dm_stripe_exit,
329 dm_io_exit,
330 dm_kcopyd_exit,
331 dm_interface_exit,
332 dm_statistics_exit,
333 };
334
335 static int __init dm_init(void)
336 {
337 const int count = ARRAY_SIZE(_inits);
338
339 int r, i;
340
341 for (i = 0; i < count; i++) {
342 r = _inits[i]();
343 if (r)
344 goto bad;
345 }
346
347 return 0;
348
349 bad:
350 while (i--)
351 _exits[i]();
352
353 return r;
354 }
355
356 static void __exit dm_exit(void)
357 {
358 int i = ARRAY_SIZE(_exits);
359
360 while (i--)
361 _exits[i]();
362
363 /*
364 * Should be empty by this point.
365 */
366 idr_destroy(&_minor_idr);
367 }
368
369 /*
370 * Block device functions
371 */
372 int dm_deleting_md(struct mapped_device *md)
373 {
374 return test_bit(DMF_DELETING, &md->flags);
375 }
376
377 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
378 {
379 struct mapped_device *md;
380
381 spin_lock(&_minor_lock);
382
383 md = bdev->bd_disk->private_data;
384 if (!md)
385 goto out;
386
387 if (test_bit(DMF_FREEING, &md->flags) ||
388 dm_deleting_md(md)) {
389 md = NULL;
390 goto out;
391 }
392
393 dm_get(md);
394 atomic_inc(&md->open_count);
395
396 out:
397 spin_unlock(&_minor_lock);
398
399 return md ? 0 : -ENXIO;
400 }
401
402 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
403 {
404 struct mapped_device *md = disk->private_data;
405
406 spin_lock(&_minor_lock);
407
408 if (atomic_dec_and_test(&md->open_count) &&
409 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
410 schedule_work(&deferred_remove_work);
411
412 dm_put(md);
413
414 spin_unlock(&_minor_lock);
415 }
416
417 int dm_open_count(struct mapped_device *md)
418 {
419 return atomic_read(&md->open_count);
420 }
421
422 /*
423 * Guarantees nothing is using the device before it's deleted.
424 */
425 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
426 {
427 int r = 0;
428
429 spin_lock(&_minor_lock);
430
431 if (dm_open_count(md)) {
432 r = -EBUSY;
433 if (mark_deferred)
434 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
435 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
436 r = -EEXIST;
437 else
438 set_bit(DMF_DELETING, &md->flags);
439
440 spin_unlock(&_minor_lock);
441
442 return r;
443 }
444
445 int dm_cancel_deferred_remove(struct mapped_device *md)
446 {
447 int r = 0;
448
449 spin_lock(&_minor_lock);
450
451 if (test_bit(DMF_DELETING, &md->flags))
452 r = -EBUSY;
453 else
454 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
455
456 spin_unlock(&_minor_lock);
457
458 return r;
459 }
460
461 static void do_deferred_remove(struct work_struct *w)
462 {
463 dm_deferred_remove();
464 }
465
466 sector_t dm_get_size(struct mapped_device *md)
467 {
468 return get_capacity(md->disk);
469 }
470
471 struct request_queue *dm_get_md_queue(struct mapped_device *md)
472 {
473 return md->queue;
474 }
475
476 struct dm_stats *dm_get_stats(struct mapped_device *md)
477 {
478 return &md->stats;
479 }
480
481 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
482 {
483 struct mapped_device *md = bdev->bd_disk->private_data;
484
485 return dm_get_geometry(md, geo);
486 }
487
488 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
489 unsigned int cmd, unsigned long arg)
490 {
491 struct mapped_device *md = bdev->bd_disk->private_data;
492 int srcu_idx;
493 struct dm_table *map;
494 struct dm_target *tgt;
495 int r = -ENOTTY;
496
497 retry:
498 map = dm_get_live_table(md, &srcu_idx);
499
500 if (!map || !dm_table_get_size(map))
501 goto out;
502
503 /* We only support devices that have a single target */
504 if (dm_table_get_num_targets(map) != 1)
505 goto out;
506
507 tgt = dm_table_get_target(map, 0);
508
509 if (dm_suspended_md(md)) {
510 r = -EAGAIN;
511 goto out;
512 }
513
514 if (tgt->type->ioctl)
515 r = tgt->type->ioctl(tgt, cmd, arg);
516
517 out:
518 dm_put_live_table(md, srcu_idx);
519
520 if (r == -ENOTCONN) {
521 msleep(10);
522 goto retry;
523 }
524
525 return r;
526 }
527
528 static struct dm_io *alloc_io(struct mapped_device *md)
529 {
530 return mempool_alloc(md->io_pool, GFP_NOIO);
531 }
532
533 static void free_io(struct mapped_device *md, struct dm_io *io)
534 {
535 mempool_free(io, md->io_pool);
536 }
537
538 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
539 {
540 bio_put(&tio->clone);
541 }
542
543 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
544 gfp_t gfp_mask)
545 {
546 return mempool_alloc(md->io_pool, gfp_mask);
547 }
548
549 static void free_rq_tio(struct dm_rq_target_io *tio)
550 {
551 mempool_free(tio, tio->md->io_pool);
552 }
553
554 static int md_in_flight(struct mapped_device *md)
555 {
556 return atomic_read(&md->pending[READ]) +
557 atomic_read(&md->pending[WRITE]);
558 }
559
560 static void start_io_acct(struct dm_io *io)
561 {
562 struct mapped_device *md = io->md;
563 struct bio *bio = io->bio;
564 int cpu;
565 int rw = bio_data_dir(bio);
566
567 io->start_time = jiffies;
568
569 cpu = part_stat_lock();
570 part_round_stats(cpu, &dm_disk(md)->part0);
571 part_stat_unlock();
572 atomic_set(&dm_disk(md)->part0.in_flight[rw],
573 atomic_inc_return(&md->pending[rw]));
574
575 if (unlikely(dm_stats_used(&md->stats)))
576 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
577 bio_sectors(bio), false, 0, &io->stats_aux);
578 }
579
580 static void end_io_acct(struct dm_io *io)
581 {
582 struct mapped_device *md = io->md;
583 struct bio *bio = io->bio;
584 unsigned long duration = jiffies - io->start_time;
585 int pending, cpu;
586 int rw = bio_data_dir(bio);
587
588 cpu = part_stat_lock();
589 part_round_stats(cpu, &dm_disk(md)->part0);
590 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
591 part_stat_unlock();
592
593 if (unlikely(dm_stats_used(&md->stats)))
594 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
595 bio_sectors(bio), true, duration, &io->stats_aux);
596
597 /*
598 * After this is decremented the bio must not be touched if it is
599 * a flush.
600 */
601 pending = atomic_dec_return(&md->pending[rw]);
602 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
603 pending += atomic_read(&md->pending[rw^0x1]);
604
605 /* nudge anyone waiting on suspend queue */
606 if (!pending)
607 wake_up(&md->wait);
608 }
609
610 /*
611 * Add the bio to the list of deferred io.
612 */
613 static void queue_io(struct mapped_device *md, struct bio *bio)
614 {
615 unsigned long flags;
616
617 spin_lock_irqsave(&md->deferred_lock, flags);
618 bio_list_add(&md->deferred, bio);
619 spin_unlock_irqrestore(&md->deferred_lock, flags);
620 queue_work(md->wq, &md->work);
621 }
622
623 /*
624 * Everyone (including functions in this file), should use this
625 * function to access the md->map field, and make sure they call
626 * dm_put_live_table() when finished.
627 */
628 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
629 {
630 *srcu_idx = srcu_read_lock(&md->io_barrier);
631
632 return srcu_dereference(md->map, &md->io_barrier);
633 }
634
635 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
636 {
637 srcu_read_unlock(&md->io_barrier, srcu_idx);
638 }
639
640 void dm_sync_table(struct mapped_device *md)
641 {
642 synchronize_srcu(&md->io_barrier);
643 synchronize_rcu_expedited();
644 }
645
646 /*
647 * A fast alternative to dm_get_live_table/dm_put_live_table.
648 * The caller must not block between these two functions.
649 */
650 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
651 {
652 rcu_read_lock();
653 return rcu_dereference(md->map);
654 }
655
656 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
657 {
658 rcu_read_unlock();
659 }
660
661 /*
662 * Get the geometry associated with a dm device
663 */
664 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
665 {
666 *geo = md->geometry;
667
668 return 0;
669 }
670
671 /*
672 * Set the geometry of a device.
673 */
674 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
675 {
676 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
677
678 if (geo->start > sz) {
679 DMWARN("Start sector is beyond the geometry limits.");
680 return -EINVAL;
681 }
682
683 md->geometry = *geo;
684
685 return 0;
686 }
687
688 /*-----------------------------------------------------------------
689 * CRUD START:
690 * A more elegant soln is in the works that uses the queue
691 * merge fn, unfortunately there are a couple of changes to
692 * the block layer that I want to make for this. So in the
693 * interests of getting something for people to use I give
694 * you this clearly demarcated crap.
695 *---------------------------------------------------------------*/
696
697 static int __noflush_suspending(struct mapped_device *md)
698 {
699 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
700 }
701
702 /*
703 * Decrements the number of outstanding ios that a bio has been
704 * cloned into, completing the original io if necc.
705 */
706 static void dec_pending(struct dm_io *io, int error)
707 {
708 unsigned long flags;
709 int io_error;
710 struct bio *bio;
711 struct mapped_device *md = io->md;
712
713 /* Push-back supersedes any I/O errors */
714 if (unlikely(error)) {
715 spin_lock_irqsave(&io->endio_lock, flags);
716 if (!(io->error > 0 && __noflush_suspending(md)))
717 io->error = error;
718 spin_unlock_irqrestore(&io->endio_lock, flags);
719 }
720
721 if (atomic_dec_and_test(&io->io_count)) {
722 if (io->error == DM_ENDIO_REQUEUE) {
723 /*
724 * Target requested pushing back the I/O.
725 */
726 spin_lock_irqsave(&md->deferred_lock, flags);
727 if (__noflush_suspending(md))
728 bio_list_add_head(&md->deferred, io->bio);
729 else
730 /* noflush suspend was interrupted. */
731 io->error = -EIO;
732 spin_unlock_irqrestore(&md->deferred_lock, flags);
733 }
734
735 io_error = io->error;
736 bio = io->bio;
737 end_io_acct(io);
738 free_io(md, io);
739
740 if (io_error == DM_ENDIO_REQUEUE)
741 return;
742
743 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
744 /*
745 * Preflush done for flush with data, reissue
746 * without REQ_FLUSH.
747 */
748 bio->bi_rw &= ~REQ_FLUSH;
749 queue_io(md, bio);
750 } else {
751 /* done with normal IO or empty flush */
752 trace_block_bio_complete(md->queue, bio, io_error);
753 bio_endio(bio, io_error);
754 }
755 }
756 }
757
758 static void clone_endio(struct bio *bio, int error)
759 {
760 int r = 0;
761 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
762 struct dm_io *io = tio->io;
763 struct mapped_device *md = tio->io->md;
764 dm_endio_fn endio = tio->ti->type->end_io;
765
766 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
767 error = -EIO;
768
769 if (endio) {
770 r = endio(tio->ti, bio, error);
771 if (r < 0 || r == DM_ENDIO_REQUEUE)
772 /*
773 * error and requeue request are handled
774 * in dec_pending().
775 */
776 error = r;
777 else if (r == DM_ENDIO_INCOMPLETE)
778 /* The target will handle the io */
779 return;
780 else if (r) {
781 DMWARN("unimplemented target endio return value: %d", r);
782 BUG();
783 }
784 }
785
786 free_tio(md, tio);
787 dec_pending(io, error);
788 }
789
790 /*
791 * Partial completion handling for request-based dm
792 */
793 static void end_clone_bio(struct bio *clone, int error)
794 {
795 struct dm_rq_clone_bio_info *info =
796 container_of(clone, struct dm_rq_clone_bio_info, clone);
797 struct dm_rq_target_io *tio = info->tio;
798 struct bio *bio = info->orig;
799 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
800
801 bio_put(clone);
802
803 if (tio->error)
804 /*
805 * An error has already been detected on the request.
806 * Once error occurred, just let clone->end_io() handle
807 * the remainder.
808 */
809 return;
810 else if (error) {
811 /*
812 * Don't notice the error to the upper layer yet.
813 * The error handling decision is made by the target driver,
814 * when the request is completed.
815 */
816 tio->error = error;
817 return;
818 }
819
820 /*
821 * I/O for the bio successfully completed.
822 * Notice the data completion to the upper layer.
823 */
824
825 /*
826 * bios are processed from the head of the list.
827 * So the completing bio should always be rq->bio.
828 * If it's not, something wrong is happening.
829 */
830 if (tio->orig->bio != bio)
831 DMERR("bio completion is going in the middle of the request");
832
833 /*
834 * Update the original request.
835 * Do not use blk_end_request() here, because it may complete
836 * the original request before the clone, and break the ordering.
837 */
838 blk_update_request(tio->orig, 0, nr_bytes);
839 }
840
841 /*
842 * Don't touch any member of the md after calling this function because
843 * the md may be freed in dm_put() at the end of this function.
844 * Or do dm_get() before calling this function and dm_put() later.
845 */
846 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
847 {
848 atomic_dec(&md->pending[rw]);
849
850 /* nudge anyone waiting on suspend queue */
851 if (!md_in_flight(md))
852 wake_up(&md->wait);
853
854 /*
855 * Run this off this callpath, as drivers could invoke end_io while
856 * inside their request_fn (and holding the queue lock). Calling
857 * back into ->request_fn() could deadlock attempting to grab the
858 * queue lock again.
859 */
860 if (run_queue)
861 blk_run_queue_async(md->queue);
862
863 /*
864 * dm_put() must be at the end of this function. See the comment above
865 */
866 dm_put(md);
867 }
868
869 static void free_rq_clone(struct request *clone)
870 {
871 struct dm_rq_target_io *tio = clone->end_io_data;
872
873 blk_rq_unprep_clone(clone);
874 free_rq_tio(tio);
875 }
876
877 /*
878 * Complete the clone and the original request.
879 * Must be called without queue lock.
880 */
881 static void dm_end_request(struct request *clone, int error)
882 {
883 int rw = rq_data_dir(clone);
884 struct dm_rq_target_io *tio = clone->end_io_data;
885 struct mapped_device *md = tio->md;
886 struct request *rq = tio->orig;
887
888 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
889 rq->errors = clone->errors;
890 rq->resid_len = clone->resid_len;
891
892 if (rq->sense)
893 /*
894 * We are using the sense buffer of the original
895 * request.
896 * So setting the length of the sense data is enough.
897 */
898 rq->sense_len = clone->sense_len;
899 }
900
901 free_rq_clone(clone);
902 blk_end_request_all(rq, error);
903 rq_completed(md, rw, true);
904 }
905
906 static void dm_unprep_request(struct request *rq)
907 {
908 struct request *clone = rq->special;
909
910 rq->special = NULL;
911 rq->cmd_flags &= ~REQ_DONTPREP;
912
913 free_rq_clone(clone);
914 }
915
916 /*
917 * Requeue the original request of a clone.
918 */
919 void dm_requeue_unmapped_request(struct request *clone)
920 {
921 int rw = rq_data_dir(clone);
922 struct dm_rq_target_io *tio = clone->end_io_data;
923 struct mapped_device *md = tio->md;
924 struct request *rq = tio->orig;
925 struct request_queue *q = rq->q;
926 unsigned long flags;
927
928 dm_unprep_request(rq);
929
930 spin_lock_irqsave(q->queue_lock, flags);
931 blk_requeue_request(q, rq);
932 spin_unlock_irqrestore(q->queue_lock, flags);
933
934 rq_completed(md, rw, 0);
935 }
936 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
937
938 static void __stop_queue(struct request_queue *q)
939 {
940 blk_stop_queue(q);
941 }
942
943 static void stop_queue(struct request_queue *q)
944 {
945 unsigned long flags;
946
947 spin_lock_irqsave(q->queue_lock, flags);
948 __stop_queue(q);
949 spin_unlock_irqrestore(q->queue_lock, flags);
950 }
951
952 static void __start_queue(struct request_queue *q)
953 {
954 if (blk_queue_stopped(q))
955 blk_start_queue(q);
956 }
957
958 static void start_queue(struct request_queue *q)
959 {
960 unsigned long flags;
961
962 spin_lock_irqsave(q->queue_lock, flags);
963 __start_queue(q);
964 spin_unlock_irqrestore(q->queue_lock, flags);
965 }
966
967 static void dm_done(struct request *clone, int error, bool mapped)
968 {
969 int r = error;
970 struct dm_rq_target_io *tio = clone->end_io_data;
971 dm_request_endio_fn rq_end_io = NULL;
972
973 if (tio->ti) {
974 rq_end_io = tio->ti->type->rq_end_io;
975
976 if (mapped && rq_end_io)
977 r = rq_end_io(tio->ti, clone, error, &tio->info);
978 }
979
980 if (r <= 0)
981 /* The target wants to complete the I/O */
982 dm_end_request(clone, r);
983 else if (r == DM_ENDIO_INCOMPLETE)
984 /* The target will handle the I/O */
985 return;
986 else if (r == DM_ENDIO_REQUEUE)
987 /* The target wants to requeue the I/O */
988 dm_requeue_unmapped_request(clone);
989 else {
990 DMWARN("unimplemented target endio return value: %d", r);
991 BUG();
992 }
993 }
994
995 /*
996 * Request completion handler for request-based dm
997 */
998 static void dm_softirq_done(struct request *rq)
999 {
1000 bool mapped = true;
1001 struct request *clone = rq->completion_data;
1002 struct dm_rq_target_io *tio = clone->end_io_data;
1003
1004 if (rq->cmd_flags & REQ_FAILED)
1005 mapped = false;
1006
1007 dm_done(clone, tio->error, mapped);
1008 }
1009
1010 /*
1011 * Complete the clone and the original request with the error status
1012 * through softirq context.
1013 */
1014 static void dm_complete_request(struct request *clone, int error)
1015 {
1016 struct dm_rq_target_io *tio = clone->end_io_data;
1017 struct request *rq = tio->orig;
1018
1019 tio->error = error;
1020 rq->completion_data = clone;
1021 blk_complete_request(rq);
1022 }
1023
1024 /*
1025 * Complete the not-mapped clone and the original request with the error status
1026 * through softirq context.
1027 * Target's rq_end_io() function isn't called.
1028 * This may be used when the target's map_rq() function fails.
1029 */
1030 void dm_kill_unmapped_request(struct request *clone, int error)
1031 {
1032 struct dm_rq_target_io *tio = clone->end_io_data;
1033 struct request *rq = tio->orig;
1034
1035 rq->cmd_flags |= REQ_FAILED;
1036 dm_complete_request(clone, error);
1037 }
1038 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1039
1040 /*
1041 * Called with the queue lock held
1042 */
1043 static void end_clone_request(struct request *clone, int error)
1044 {
1045 /*
1046 * For just cleaning up the information of the queue in which
1047 * the clone was dispatched.
1048 * The clone is *NOT* freed actually here because it is alloced from
1049 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1050 */
1051 __blk_put_request(clone->q, clone);
1052
1053 /*
1054 * Actual request completion is done in a softirq context which doesn't
1055 * hold the queue lock. Otherwise, deadlock could occur because:
1056 * - another request may be submitted by the upper level driver
1057 * of the stacking during the completion
1058 * - the submission which requires queue lock may be done
1059 * against this queue
1060 */
1061 dm_complete_request(clone, error);
1062 }
1063
1064 /*
1065 * Return maximum size of I/O possible at the supplied sector up to the current
1066 * target boundary.
1067 */
1068 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1069 {
1070 sector_t target_offset = dm_target_offset(ti, sector);
1071
1072 return ti->len - target_offset;
1073 }
1074
1075 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1076 {
1077 sector_t len = max_io_len_target_boundary(sector, ti);
1078 sector_t offset, max_len;
1079
1080 /*
1081 * Does the target need to split even further?
1082 */
1083 if (ti->max_io_len) {
1084 offset = dm_target_offset(ti, sector);
1085 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1086 max_len = sector_div(offset, ti->max_io_len);
1087 else
1088 max_len = offset & (ti->max_io_len - 1);
1089 max_len = ti->max_io_len - max_len;
1090
1091 if (len > max_len)
1092 len = max_len;
1093 }
1094
1095 return len;
1096 }
1097
1098 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1099 {
1100 if (len > UINT_MAX) {
1101 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1102 (unsigned long long)len, UINT_MAX);
1103 ti->error = "Maximum size of target IO is too large";
1104 return -EINVAL;
1105 }
1106
1107 ti->max_io_len = (uint32_t) len;
1108
1109 return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1112
1113 static void __map_bio(struct dm_target_io *tio)
1114 {
1115 int r;
1116 sector_t sector;
1117 struct mapped_device *md;
1118 struct bio *clone = &tio->clone;
1119 struct dm_target *ti = tio->ti;
1120
1121 clone->bi_end_io = clone_endio;
1122
1123 /*
1124 * Map the clone. If r == 0 we don't need to do
1125 * anything, the target has assumed ownership of
1126 * this io.
1127 */
1128 atomic_inc(&tio->io->io_count);
1129 sector = clone->bi_iter.bi_sector;
1130 r = ti->type->map(ti, clone);
1131 if (r == DM_MAPIO_REMAPPED) {
1132 /* the bio has been remapped so dispatch it */
1133
1134 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1135 tio->io->bio->bi_bdev->bd_dev, sector);
1136
1137 generic_make_request(clone);
1138 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1139 /* error the io and bail out, or requeue it if needed */
1140 md = tio->io->md;
1141 dec_pending(tio->io, r);
1142 free_tio(md, tio);
1143 } else if (r) {
1144 DMWARN("unimplemented target map return value: %d", r);
1145 BUG();
1146 }
1147 }
1148
1149 struct clone_info {
1150 struct mapped_device *md;
1151 struct dm_table *map;
1152 struct bio *bio;
1153 struct dm_io *io;
1154 sector_t sector;
1155 sector_t sector_count;
1156 };
1157
1158 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1159 {
1160 bio->bi_iter.bi_sector = sector;
1161 bio->bi_iter.bi_size = to_bytes(len);
1162 }
1163
1164 /*
1165 * Creates a bio that consists of range of complete bvecs.
1166 */
1167 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1168 sector_t sector, unsigned len)
1169 {
1170 struct bio *clone = &tio->clone;
1171
1172 __bio_clone_fast(clone, bio);
1173
1174 if (bio_integrity(bio))
1175 bio_integrity_clone(clone, bio, GFP_NOIO);
1176
1177 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1178 clone->bi_iter.bi_size = to_bytes(len);
1179
1180 if (bio_integrity(bio))
1181 bio_integrity_trim(clone, 0, len);
1182 }
1183
1184 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1185 struct dm_target *ti, int nr_iovecs,
1186 unsigned target_bio_nr)
1187 {
1188 struct dm_target_io *tio;
1189 struct bio *clone;
1190
1191 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1192 tio = container_of(clone, struct dm_target_io, clone);
1193
1194 tio->io = ci->io;
1195 tio->ti = ti;
1196 tio->target_bio_nr = target_bio_nr;
1197
1198 return tio;
1199 }
1200
1201 static void __clone_and_map_simple_bio(struct clone_info *ci,
1202 struct dm_target *ti,
1203 unsigned target_bio_nr, sector_t len)
1204 {
1205 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1206 struct bio *clone = &tio->clone;
1207
1208 /*
1209 * Discard requests require the bio's inline iovecs be initialized.
1210 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1211 * and discard, so no need for concern about wasted bvec allocations.
1212 */
1213 __bio_clone_fast(clone, ci->bio);
1214 if (len)
1215 bio_setup_sector(clone, ci->sector, len);
1216
1217 __map_bio(tio);
1218 }
1219
1220 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1221 unsigned num_bios, sector_t len)
1222 {
1223 unsigned target_bio_nr;
1224
1225 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1226 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1227 }
1228
1229 static int __send_empty_flush(struct clone_info *ci)
1230 {
1231 unsigned target_nr = 0;
1232 struct dm_target *ti;
1233
1234 BUG_ON(bio_has_data(ci->bio));
1235 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1236 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1237
1238 return 0;
1239 }
1240
1241 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1242 sector_t sector, unsigned len)
1243 {
1244 struct bio *bio = ci->bio;
1245 struct dm_target_io *tio;
1246 unsigned target_bio_nr;
1247 unsigned num_target_bios = 1;
1248
1249 /*
1250 * Does the target want to receive duplicate copies of the bio?
1251 */
1252 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1253 num_target_bios = ti->num_write_bios(ti, bio);
1254
1255 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1256 tio = alloc_tio(ci, ti, 0, target_bio_nr);
1257 clone_bio(tio, bio, sector, len);
1258 __map_bio(tio);
1259 }
1260 }
1261
1262 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1263
1264 static unsigned get_num_discard_bios(struct dm_target *ti)
1265 {
1266 return ti->num_discard_bios;
1267 }
1268
1269 static unsigned get_num_write_same_bios(struct dm_target *ti)
1270 {
1271 return ti->num_write_same_bios;
1272 }
1273
1274 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1275
1276 static bool is_split_required_for_discard(struct dm_target *ti)
1277 {
1278 return ti->split_discard_bios;
1279 }
1280
1281 static int __send_changing_extent_only(struct clone_info *ci,
1282 get_num_bios_fn get_num_bios,
1283 is_split_required_fn is_split_required)
1284 {
1285 struct dm_target *ti;
1286 sector_t len;
1287 unsigned num_bios;
1288
1289 do {
1290 ti = dm_table_find_target(ci->map, ci->sector);
1291 if (!dm_target_is_valid(ti))
1292 return -EIO;
1293
1294 /*
1295 * Even though the device advertised support for this type of
1296 * request, that does not mean every target supports it, and
1297 * reconfiguration might also have changed that since the
1298 * check was performed.
1299 */
1300 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1301 if (!num_bios)
1302 return -EOPNOTSUPP;
1303
1304 if (is_split_required && !is_split_required(ti))
1305 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1306 else
1307 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1308
1309 __send_duplicate_bios(ci, ti, num_bios, len);
1310
1311 ci->sector += len;
1312 } while (ci->sector_count -= len);
1313
1314 return 0;
1315 }
1316
1317 static int __send_discard(struct clone_info *ci)
1318 {
1319 return __send_changing_extent_only(ci, get_num_discard_bios,
1320 is_split_required_for_discard);
1321 }
1322
1323 static int __send_write_same(struct clone_info *ci)
1324 {
1325 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1326 }
1327
1328 /*
1329 * Select the correct strategy for processing a non-flush bio.
1330 */
1331 static int __split_and_process_non_flush(struct clone_info *ci)
1332 {
1333 struct bio *bio = ci->bio;
1334 struct dm_target *ti;
1335 unsigned len;
1336
1337 if (unlikely(bio->bi_rw & REQ_DISCARD))
1338 return __send_discard(ci);
1339 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1340 return __send_write_same(ci);
1341
1342 ti = dm_table_find_target(ci->map, ci->sector);
1343 if (!dm_target_is_valid(ti))
1344 return -EIO;
1345
1346 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1347
1348 __clone_and_map_data_bio(ci, ti, ci->sector, len);
1349
1350 ci->sector += len;
1351 ci->sector_count -= len;
1352
1353 return 0;
1354 }
1355
1356 /*
1357 * Entry point to split a bio into clones and submit them to the targets.
1358 */
1359 static void __split_and_process_bio(struct mapped_device *md,
1360 struct dm_table *map, struct bio *bio)
1361 {
1362 struct clone_info ci;
1363 int error = 0;
1364
1365 if (unlikely(!map)) {
1366 bio_io_error(bio);
1367 return;
1368 }
1369
1370 ci.map = map;
1371 ci.md = md;
1372 ci.io = alloc_io(md);
1373 ci.io->error = 0;
1374 atomic_set(&ci.io->io_count, 1);
1375 ci.io->bio = bio;
1376 ci.io->md = md;
1377 spin_lock_init(&ci.io->endio_lock);
1378 ci.sector = bio->bi_iter.bi_sector;
1379
1380 start_io_acct(ci.io);
1381
1382 if (bio->bi_rw & REQ_FLUSH) {
1383 ci.bio = &ci.md->flush_bio;
1384 ci.sector_count = 0;
1385 error = __send_empty_flush(&ci);
1386 /* dec_pending submits any data associated with flush */
1387 } else {
1388 ci.bio = bio;
1389 ci.sector_count = bio_sectors(bio);
1390 while (ci.sector_count && !error)
1391 error = __split_and_process_non_flush(&ci);
1392 }
1393
1394 /* drop the extra reference count */
1395 dec_pending(ci.io, error);
1396 }
1397 /*-----------------------------------------------------------------
1398 * CRUD END
1399 *---------------------------------------------------------------*/
1400
1401 static int dm_merge_bvec(struct request_queue *q,
1402 struct bvec_merge_data *bvm,
1403 struct bio_vec *biovec)
1404 {
1405 struct mapped_device *md = q->queuedata;
1406 struct dm_table *map = dm_get_live_table_fast(md);
1407 struct dm_target *ti;
1408 sector_t max_sectors;
1409 int max_size = 0;
1410
1411 if (unlikely(!map))
1412 goto out;
1413
1414 ti = dm_table_find_target(map, bvm->bi_sector);
1415 if (!dm_target_is_valid(ti))
1416 goto out;
1417
1418 /*
1419 * Find maximum amount of I/O that won't need splitting
1420 */
1421 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1422 (sector_t) BIO_MAX_SECTORS);
1423 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1424 if (max_size < 0)
1425 max_size = 0;
1426
1427 /*
1428 * merge_bvec_fn() returns number of bytes
1429 * it can accept at this offset
1430 * max is precomputed maximal io size
1431 */
1432 if (max_size && ti->type->merge)
1433 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1434 /*
1435 * If the target doesn't support merge method and some of the devices
1436 * provided their merge_bvec method (we know this by looking at
1437 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1438 * entries. So always set max_size to 0, and the code below allows
1439 * just one page.
1440 */
1441 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1442
1443 max_size = 0;
1444
1445 out:
1446 dm_put_live_table_fast(md);
1447 /*
1448 * Always allow an entire first page
1449 */
1450 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1451 max_size = biovec->bv_len;
1452
1453 return max_size;
1454 }
1455
1456 /*
1457 * The request function that just remaps the bio built up by
1458 * dm_merge_bvec.
1459 */
1460 static void _dm_request(struct request_queue *q, struct bio *bio)
1461 {
1462 int rw = bio_data_dir(bio);
1463 struct mapped_device *md = q->queuedata;
1464 int cpu;
1465 int srcu_idx;
1466 struct dm_table *map;
1467
1468 map = dm_get_live_table(md, &srcu_idx);
1469
1470 cpu = part_stat_lock();
1471 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1472 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1473 part_stat_unlock();
1474
1475 /* if we're suspended, we have to queue this io for later */
1476 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1477 dm_put_live_table(md, srcu_idx);
1478
1479 if (bio_rw(bio) != READA)
1480 queue_io(md, bio);
1481 else
1482 bio_io_error(bio);
1483 return;
1484 }
1485
1486 __split_and_process_bio(md, map, bio);
1487 dm_put_live_table(md, srcu_idx);
1488 return;
1489 }
1490
1491 int dm_request_based(struct mapped_device *md)
1492 {
1493 return blk_queue_stackable(md->queue);
1494 }
1495
1496 static void dm_request(struct request_queue *q, struct bio *bio)
1497 {
1498 struct mapped_device *md = q->queuedata;
1499
1500 if (dm_request_based(md))
1501 blk_queue_bio(q, bio);
1502 else
1503 _dm_request(q, bio);
1504 }
1505
1506 void dm_dispatch_request(struct request *rq)
1507 {
1508 int r;
1509
1510 if (blk_queue_io_stat(rq->q))
1511 rq->cmd_flags |= REQ_IO_STAT;
1512
1513 rq->start_time = jiffies;
1514 r = blk_insert_cloned_request(rq->q, rq);
1515 if (r)
1516 dm_complete_request(rq, r);
1517 }
1518 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1519
1520 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1521 void *data)
1522 {
1523 struct dm_rq_target_io *tio = data;
1524 struct dm_rq_clone_bio_info *info =
1525 container_of(bio, struct dm_rq_clone_bio_info, clone);
1526
1527 info->orig = bio_orig;
1528 info->tio = tio;
1529 bio->bi_end_io = end_clone_bio;
1530
1531 return 0;
1532 }
1533
1534 static int setup_clone(struct request *clone, struct request *rq,
1535 struct dm_rq_target_io *tio)
1536 {
1537 int r;
1538
1539 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1540 dm_rq_bio_constructor, tio);
1541 if (r)
1542 return r;
1543
1544 clone->cmd = rq->cmd;
1545 clone->cmd_len = rq->cmd_len;
1546 clone->sense = rq->sense;
1547 clone->end_io = end_clone_request;
1548 clone->end_io_data = tio;
1549
1550 return 0;
1551 }
1552
1553 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1554 gfp_t gfp_mask)
1555 {
1556 struct request *clone;
1557 struct dm_rq_target_io *tio;
1558
1559 tio = alloc_rq_tio(md, gfp_mask);
1560 if (!tio)
1561 return NULL;
1562
1563 tio->md = md;
1564 tio->ti = NULL;
1565 tio->orig = rq;
1566 tio->error = 0;
1567 memset(&tio->info, 0, sizeof(tio->info));
1568
1569 clone = &tio->clone;
1570 if (setup_clone(clone, rq, tio)) {
1571 /* -ENOMEM */
1572 free_rq_tio(tio);
1573 return NULL;
1574 }
1575
1576 return clone;
1577 }
1578
1579 /*
1580 * Called with the queue lock held.
1581 */
1582 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1583 {
1584 struct mapped_device *md = q->queuedata;
1585 struct request *clone;
1586
1587 if (unlikely(rq->special)) {
1588 DMWARN("Already has something in rq->special.");
1589 return BLKPREP_KILL;
1590 }
1591
1592 clone = clone_rq(rq, md, GFP_ATOMIC);
1593 if (!clone)
1594 return BLKPREP_DEFER;
1595
1596 rq->special = clone;
1597 rq->cmd_flags |= REQ_DONTPREP;
1598
1599 return BLKPREP_OK;
1600 }
1601
1602 /*
1603 * Returns:
1604 * 0 : the request has been processed (not requeued)
1605 * !0 : the request has been requeued
1606 */
1607 static int map_request(struct dm_target *ti, struct request *clone,
1608 struct mapped_device *md)
1609 {
1610 int r, requeued = 0;
1611 struct dm_rq_target_io *tio = clone->end_io_data;
1612
1613 tio->ti = ti;
1614 r = ti->type->map_rq(ti, clone, &tio->info);
1615 switch (r) {
1616 case DM_MAPIO_SUBMITTED:
1617 /* The target has taken the I/O to submit by itself later */
1618 break;
1619 case DM_MAPIO_REMAPPED:
1620 /* The target has remapped the I/O so dispatch it */
1621 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1622 blk_rq_pos(tio->orig));
1623 dm_dispatch_request(clone);
1624 break;
1625 case DM_MAPIO_REQUEUE:
1626 /* The target wants to requeue the I/O */
1627 dm_requeue_unmapped_request(clone);
1628 requeued = 1;
1629 break;
1630 default:
1631 if (r > 0) {
1632 DMWARN("unimplemented target map return value: %d", r);
1633 BUG();
1634 }
1635
1636 /* The target wants to complete the I/O */
1637 dm_kill_unmapped_request(clone, r);
1638 break;
1639 }
1640
1641 return requeued;
1642 }
1643
1644 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1645 {
1646 struct request *clone;
1647
1648 blk_start_request(orig);
1649 clone = orig->special;
1650 atomic_inc(&md->pending[rq_data_dir(clone)]);
1651
1652 /*
1653 * Hold the md reference here for the in-flight I/O.
1654 * We can't rely on the reference count by device opener,
1655 * because the device may be closed during the request completion
1656 * when all bios are completed.
1657 * See the comment in rq_completed() too.
1658 */
1659 dm_get(md);
1660
1661 return clone;
1662 }
1663
1664 /*
1665 * q->request_fn for request-based dm.
1666 * Called with the queue lock held.
1667 */
1668 static void dm_request_fn(struct request_queue *q)
1669 {
1670 struct mapped_device *md = q->queuedata;
1671 int srcu_idx;
1672 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1673 struct dm_target *ti;
1674 struct request *rq, *clone;
1675 sector_t pos;
1676
1677 /*
1678 * For suspend, check blk_queue_stopped() and increment
1679 * ->pending within a single queue_lock not to increment the
1680 * number of in-flight I/Os after the queue is stopped in
1681 * dm_suspend().
1682 */
1683 while (!blk_queue_stopped(q)) {
1684 rq = blk_peek_request(q);
1685 if (!rq)
1686 goto delay_and_out;
1687
1688 /* always use block 0 to find the target for flushes for now */
1689 pos = 0;
1690 if (!(rq->cmd_flags & REQ_FLUSH))
1691 pos = blk_rq_pos(rq);
1692
1693 ti = dm_table_find_target(map, pos);
1694 if (!dm_target_is_valid(ti)) {
1695 /*
1696 * Must perform setup, that dm_done() requires,
1697 * before calling dm_kill_unmapped_request
1698 */
1699 DMERR_LIMIT("request attempted access beyond the end of device");
1700 clone = dm_start_request(md, rq);
1701 dm_kill_unmapped_request(clone, -EIO);
1702 continue;
1703 }
1704
1705 if (ti->type->busy && ti->type->busy(ti))
1706 goto delay_and_out;
1707
1708 clone = dm_start_request(md, rq);
1709
1710 spin_unlock(q->queue_lock);
1711 if (map_request(ti, clone, md))
1712 goto requeued;
1713
1714 BUG_ON(!irqs_disabled());
1715 spin_lock(q->queue_lock);
1716 }
1717
1718 goto out;
1719
1720 requeued:
1721 BUG_ON(!irqs_disabled());
1722 spin_lock(q->queue_lock);
1723
1724 delay_and_out:
1725 blk_delay_queue(q, HZ / 10);
1726 out:
1727 dm_put_live_table(md, srcu_idx);
1728 }
1729
1730 int dm_underlying_device_busy(struct request_queue *q)
1731 {
1732 return blk_lld_busy(q);
1733 }
1734 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1735
1736 static int dm_lld_busy(struct request_queue *q)
1737 {
1738 int r;
1739 struct mapped_device *md = q->queuedata;
1740 struct dm_table *map = dm_get_live_table_fast(md);
1741
1742 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1743 r = 1;
1744 else
1745 r = dm_table_any_busy_target(map);
1746
1747 dm_put_live_table_fast(md);
1748
1749 return r;
1750 }
1751
1752 static int dm_any_congested(void *congested_data, int bdi_bits)
1753 {
1754 int r = bdi_bits;
1755 struct mapped_device *md = congested_data;
1756 struct dm_table *map;
1757
1758 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1759 map = dm_get_live_table_fast(md);
1760 if (map) {
1761 /*
1762 * Request-based dm cares about only own queue for
1763 * the query about congestion status of request_queue
1764 */
1765 if (dm_request_based(md))
1766 r = md->queue->backing_dev_info.state &
1767 bdi_bits;
1768 else
1769 r = dm_table_any_congested(map, bdi_bits);
1770 }
1771 dm_put_live_table_fast(md);
1772 }
1773
1774 return r;
1775 }
1776
1777 /*-----------------------------------------------------------------
1778 * An IDR is used to keep track of allocated minor numbers.
1779 *---------------------------------------------------------------*/
1780 static void free_minor(int minor)
1781 {
1782 spin_lock(&_minor_lock);
1783 idr_remove(&_minor_idr, minor);
1784 spin_unlock(&_minor_lock);
1785 }
1786
1787 /*
1788 * See if the device with a specific minor # is free.
1789 */
1790 static int specific_minor(int minor)
1791 {
1792 int r;
1793
1794 if (minor >= (1 << MINORBITS))
1795 return -EINVAL;
1796
1797 idr_preload(GFP_KERNEL);
1798 spin_lock(&_minor_lock);
1799
1800 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1801
1802 spin_unlock(&_minor_lock);
1803 idr_preload_end();
1804 if (r < 0)
1805 return r == -ENOSPC ? -EBUSY : r;
1806 return 0;
1807 }
1808
1809 static int next_free_minor(int *minor)
1810 {
1811 int r;
1812
1813 idr_preload(GFP_KERNEL);
1814 spin_lock(&_minor_lock);
1815
1816 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1817
1818 spin_unlock(&_minor_lock);
1819 idr_preload_end();
1820 if (r < 0)
1821 return r;
1822 *minor = r;
1823 return 0;
1824 }
1825
1826 static const struct block_device_operations dm_blk_dops;
1827
1828 static void dm_wq_work(struct work_struct *work);
1829
1830 static void dm_init_md_queue(struct mapped_device *md)
1831 {
1832 /*
1833 * Request-based dm devices cannot be stacked on top of bio-based dm
1834 * devices. The type of this dm device has not been decided yet.
1835 * The type is decided at the first table loading time.
1836 * To prevent problematic device stacking, clear the queue flag
1837 * for request stacking support until then.
1838 *
1839 * This queue is new, so no concurrency on the queue_flags.
1840 */
1841 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1842
1843 md->queue->queuedata = md;
1844 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1845 md->queue->backing_dev_info.congested_data = md;
1846 blk_queue_make_request(md->queue, dm_request);
1847 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1848 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1849 }
1850
1851 /*
1852 * Allocate and initialise a blank device with a given minor.
1853 */
1854 static struct mapped_device *alloc_dev(int minor)
1855 {
1856 int r;
1857 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1858 void *old_md;
1859
1860 if (!md) {
1861 DMWARN("unable to allocate device, out of memory.");
1862 return NULL;
1863 }
1864
1865 if (!try_module_get(THIS_MODULE))
1866 goto bad_module_get;
1867
1868 /* get a minor number for the dev */
1869 if (minor == DM_ANY_MINOR)
1870 r = next_free_minor(&minor);
1871 else
1872 r = specific_minor(minor);
1873 if (r < 0)
1874 goto bad_minor;
1875
1876 r = init_srcu_struct(&md->io_barrier);
1877 if (r < 0)
1878 goto bad_io_barrier;
1879
1880 md->type = DM_TYPE_NONE;
1881 mutex_init(&md->suspend_lock);
1882 mutex_init(&md->type_lock);
1883 spin_lock_init(&md->deferred_lock);
1884 atomic_set(&md->holders, 1);
1885 atomic_set(&md->open_count, 0);
1886 atomic_set(&md->event_nr, 0);
1887 atomic_set(&md->uevent_seq, 0);
1888 INIT_LIST_HEAD(&md->uevent_list);
1889 spin_lock_init(&md->uevent_lock);
1890
1891 md->queue = blk_alloc_queue(GFP_KERNEL);
1892 if (!md->queue)
1893 goto bad_queue;
1894
1895 dm_init_md_queue(md);
1896
1897 md->disk = alloc_disk(1);
1898 if (!md->disk)
1899 goto bad_disk;
1900
1901 atomic_set(&md->pending[0], 0);
1902 atomic_set(&md->pending[1], 0);
1903 init_waitqueue_head(&md->wait);
1904 INIT_WORK(&md->work, dm_wq_work);
1905 init_waitqueue_head(&md->eventq);
1906 init_completion(&md->kobj_holder.completion);
1907
1908 md->disk->major = _major;
1909 md->disk->first_minor = minor;
1910 md->disk->fops = &dm_blk_dops;
1911 md->disk->queue = md->queue;
1912 md->disk->private_data = md;
1913 sprintf(md->disk->disk_name, "dm-%d", minor);
1914 add_disk(md->disk);
1915 format_dev_t(md->name, MKDEV(_major, minor));
1916
1917 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1918 if (!md->wq)
1919 goto bad_thread;
1920
1921 md->bdev = bdget_disk(md->disk, 0);
1922 if (!md->bdev)
1923 goto bad_bdev;
1924
1925 bio_init(&md->flush_bio);
1926 md->flush_bio.bi_bdev = md->bdev;
1927 md->flush_bio.bi_rw = WRITE_FLUSH;
1928
1929 dm_stats_init(&md->stats);
1930
1931 /* Populate the mapping, nobody knows we exist yet */
1932 spin_lock(&_minor_lock);
1933 old_md = idr_replace(&_minor_idr, md, minor);
1934 spin_unlock(&_minor_lock);
1935
1936 BUG_ON(old_md != MINOR_ALLOCED);
1937
1938 return md;
1939
1940 bad_bdev:
1941 destroy_workqueue(md->wq);
1942 bad_thread:
1943 del_gendisk(md->disk);
1944 put_disk(md->disk);
1945 bad_disk:
1946 blk_cleanup_queue(md->queue);
1947 bad_queue:
1948 cleanup_srcu_struct(&md->io_barrier);
1949 bad_io_barrier:
1950 free_minor(minor);
1951 bad_minor:
1952 module_put(THIS_MODULE);
1953 bad_module_get:
1954 kfree(md);
1955 return NULL;
1956 }
1957
1958 static void unlock_fs(struct mapped_device *md);
1959
1960 static void free_dev(struct mapped_device *md)
1961 {
1962 int minor = MINOR(disk_devt(md->disk));
1963
1964 unlock_fs(md);
1965 bdput(md->bdev);
1966 destroy_workqueue(md->wq);
1967 if (md->io_pool)
1968 mempool_destroy(md->io_pool);
1969 if (md->bs)
1970 bioset_free(md->bs);
1971 blk_integrity_unregister(md->disk);
1972 del_gendisk(md->disk);
1973 cleanup_srcu_struct(&md->io_barrier);
1974 free_minor(minor);
1975
1976 spin_lock(&_minor_lock);
1977 md->disk->private_data = NULL;
1978 spin_unlock(&_minor_lock);
1979
1980 put_disk(md->disk);
1981 blk_cleanup_queue(md->queue);
1982 dm_stats_cleanup(&md->stats);
1983 module_put(THIS_MODULE);
1984 kfree(md);
1985 }
1986
1987 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1988 {
1989 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1990
1991 if (md->io_pool && md->bs) {
1992 /* The md already has necessary mempools. */
1993 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1994 /*
1995 * Reload bioset because front_pad may have changed
1996 * because a different table was loaded.
1997 */
1998 bioset_free(md->bs);
1999 md->bs = p->bs;
2000 p->bs = NULL;
2001 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2002 /*
2003 * There's no need to reload with request-based dm
2004 * because the size of front_pad doesn't change.
2005 * Note for future: If you are to reload bioset,
2006 * prep-ed requests in the queue may refer
2007 * to bio from the old bioset, so you must walk
2008 * through the queue to unprep.
2009 */
2010 }
2011 goto out;
2012 }
2013
2014 BUG_ON(!p || md->io_pool || md->bs);
2015
2016 md->io_pool = p->io_pool;
2017 p->io_pool = NULL;
2018 md->bs = p->bs;
2019 p->bs = NULL;
2020
2021 out:
2022 /* mempool bind completed, now no need any mempools in the table */
2023 dm_table_free_md_mempools(t);
2024 }
2025
2026 /*
2027 * Bind a table to the device.
2028 */
2029 static void event_callback(void *context)
2030 {
2031 unsigned long flags;
2032 LIST_HEAD(uevents);
2033 struct mapped_device *md = (struct mapped_device *) context;
2034
2035 spin_lock_irqsave(&md->uevent_lock, flags);
2036 list_splice_init(&md->uevent_list, &uevents);
2037 spin_unlock_irqrestore(&md->uevent_lock, flags);
2038
2039 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2040
2041 atomic_inc(&md->event_nr);
2042 wake_up(&md->eventq);
2043 }
2044
2045 /*
2046 * Protected by md->suspend_lock obtained by dm_swap_table().
2047 */
2048 static void __set_size(struct mapped_device *md, sector_t size)
2049 {
2050 set_capacity(md->disk, size);
2051
2052 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2053 }
2054
2055 /*
2056 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2057 *
2058 * If this function returns 0, then the device is either a non-dm
2059 * device without a merge_bvec_fn, or it is a dm device that is
2060 * able to split any bios it receives that are too big.
2061 */
2062 int dm_queue_merge_is_compulsory(struct request_queue *q)
2063 {
2064 struct mapped_device *dev_md;
2065
2066 if (!q->merge_bvec_fn)
2067 return 0;
2068
2069 if (q->make_request_fn == dm_request) {
2070 dev_md = q->queuedata;
2071 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2072 return 0;
2073 }
2074
2075 return 1;
2076 }
2077
2078 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2079 struct dm_dev *dev, sector_t start,
2080 sector_t len, void *data)
2081 {
2082 struct block_device *bdev = dev->bdev;
2083 struct request_queue *q = bdev_get_queue(bdev);
2084
2085 return dm_queue_merge_is_compulsory(q);
2086 }
2087
2088 /*
2089 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2090 * on the properties of the underlying devices.
2091 */
2092 static int dm_table_merge_is_optional(struct dm_table *table)
2093 {
2094 unsigned i = 0;
2095 struct dm_target *ti;
2096
2097 while (i < dm_table_get_num_targets(table)) {
2098 ti = dm_table_get_target(table, i++);
2099
2100 if (ti->type->iterate_devices &&
2101 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2102 return 0;
2103 }
2104
2105 return 1;
2106 }
2107
2108 /*
2109 * Returns old map, which caller must destroy.
2110 */
2111 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2112 struct queue_limits *limits)
2113 {
2114 struct dm_table *old_map;
2115 struct request_queue *q = md->queue;
2116 sector_t size;
2117 int merge_is_optional;
2118
2119 size = dm_table_get_size(t);
2120
2121 /*
2122 * Wipe any geometry if the size of the table changed.
2123 */
2124 if (size != dm_get_size(md))
2125 memset(&md->geometry, 0, sizeof(md->geometry));
2126
2127 __set_size(md, size);
2128
2129 dm_table_event_callback(t, event_callback, md);
2130
2131 /*
2132 * The queue hasn't been stopped yet, if the old table type wasn't
2133 * for request-based during suspension. So stop it to prevent
2134 * I/O mapping before resume.
2135 * This must be done before setting the queue restrictions,
2136 * because request-based dm may be run just after the setting.
2137 */
2138 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2139 stop_queue(q);
2140
2141 __bind_mempools(md, t);
2142
2143 merge_is_optional = dm_table_merge_is_optional(t);
2144
2145 old_map = md->map;
2146 rcu_assign_pointer(md->map, t);
2147 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2148
2149 dm_table_set_restrictions(t, q, limits);
2150 if (merge_is_optional)
2151 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2152 else
2153 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2154 dm_sync_table(md);
2155
2156 return old_map;
2157 }
2158
2159 /*
2160 * Returns unbound table for the caller to free.
2161 */
2162 static struct dm_table *__unbind(struct mapped_device *md)
2163 {
2164 struct dm_table *map = md->map;
2165
2166 if (!map)
2167 return NULL;
2168
2169 dm_table_event_callback(map, NULL, NULL);
2170 RCU_INIT_POINTER(md->map, NULL);
2171 dm_sync_table(md);
2172
2173 return map;
2174 }
2175
2176 /*
2177 * Constructor for a new device.
2178 */
2179 int dm_create(int minor, struct mapped_device **result)
2180 {
2181 struct mapped_device *md;
2182
2183 md = alloc_dev(minor);
2184 if (!md)
2185 return -ENXIO;
2186
2187 dm_sysfs_init(md);
2188
2189 *result = md;
2190 return 0;
2191 }
2192
2193 /*
2194 * Functions to manage md->type.
2195 * All are required to hold md->type_lock.
2196 */
2197 void dm_lock_md_type(struct mapped_device *md)
2198 {
2199 mutex_lock(&md->type_lock);
2200 }
2201
2202 void dm_unlock_md_type(struct mapped_device *md)
2203 {
2204 mutex_unlock(&md->type_lock);
2205 }
2206
2207 void dm_set_md_type(struct mapped_device *md, unsigned type)
2208 {
2209 BUG_ON(!mutex_is_locked(&md->type_lock));
2210 md->type = type;
2211 }
2212
2213 unsigned dm_get_md_type(struct mapped_device *md)
2214 {
2215 BUG_ON(!mutex_is_locked(&md->type_lock));
2216 return md->type;
2217 }
2218
2219 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2220 {
2221 return md->immutable_target_type;
2222 }
2223
2224 /*
2225 * The queue_limits are only valid as long as you have a reference
2226 * count on 'md'.
2227 */
2228 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2229 {
2230 BUG_ON(!atomic_read(&md->holders));
2231 return &md->queue->limits;
2232 }
2233 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2234
2235 /*
2236 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2237 */
2238 static int dm_init_request_based_queue(struct mapped_device *md)
2239 {
2240 struct request_queue *q = NULL;
2241
2242 if (md->queue->elevator)
2243 return 1;
2244
2245 /* Fully initialize the queue */
2246 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2247 if (!q)
2248 return 0;
2249
2250 md->queue = q;
2251 dm_init_md_queue(md);
2252 blk_queue_softirq_done(md->queue, dm_softirq_done);
2253 blk_queue_prep_rq(md->queue, dm_prep_fn);
2254 blk_queue_lld_busy(md->queue, dm_lld_busy);
2255
2256 elv_register_queue(md->queue);
2257
2258 return 1;
2259 }
2260
2261 /*
2262 * Setup the DM device's queue based on md's type
2263 */
2264 int dm_setup_md_queue(struct mapped_device *md)
2265 {
2266 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2267 !dm_init_request_based_queue(md)) {
2268 DMWARN("Cannot initialize queue for request-based mapped device");
2269 return -EINVAL;
2270 }
2271
2272 return 0;
2273 }
2274
2275 static struct mapped_device *dm_find_md(dev_t dev)
2276 {
2277 struct mapped_device *md;
2278 unsigned minor = MINOR(dev);
2279
2280 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2281 return NULL;
2282
2283 spin_lock(&_minor_lock);
2284
2285 md = idr_find(&_minor_idr, minor);
2286 if (md && (md == MINOR_ALLOCED ||
2287 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2288 dm_deleting_md(md) ||
2289 test_bit(DMF_FREEING, &md->flags))) {
2290 md = NULL;
2291 goto out;
2292 }
2293
2294 out:
2295 spin_unlock(&_minor_lock);
2296
2297 return md;
2298 }
2299
2300 struct mapped_device *dm_get_md(dev_t dev)
2301 {
2302 struct mapped_device *md = dm_find_md(dev);
2303
2304 if (md)
2305 dm_get(md);
2306
2307 return md;
2308 }
2309 EXPORT_SYMBOL_GPL(dm_get_md);
2310
2311 void *dm_get_mdptr(struct mapped_device *md)
2312 {
2313 return md->interface_ptr;
2314 }
2315
2316 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2317 {
2318 md->interface_ptr = ptr;
2319 }
2320
2321 void dm_get(struct mapped_device *md)
2322 {
2323 atomic_inc(&md->holders);
2324 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2325 }
2326
2327 const char *dm_device_name(struct mapped_device *md)
2328 {
2329 return md->name;
2330 }
2331 EXPORT_SYMBOL_GPL(dm_device_name);
2332
2333 static void __dm_destroy(struct mapped_device *md, bool wait)
2334 {
2335 struct dm_table *map;
2336 int srcu_idx;
2337
2338 might_sleep();
2339
2340 spin_lock(&_minor_lock);
2341 map = dm_get_live_table(md, &srcu_idx);
2342 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2343 set_bit(DMF_FREEING, &md->flags);
2344 spin_unlock(&_minor_lock);
2345
2346 if (!dm_suspended_md(md)) {
2347 dm_table_presuspend_targets(map);
2348 dm_table_postsuspend_targets(map);
2349 }
2350
2351 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2352 dm_put_live_table(md, srcu_idx);
2353
2354 /*
2355 * Rare, but there may be I/O requests still going to complete,
2356 * for example. Wait for all references to disappear.
2357 * No one should increment the reference count of the mapped_device,
2358 * after the mapped_device state becomes DMF_FREEING.
2359 */
2360 if (wait)
2361 while (atomic_read(&md->holders))
2362 msleep(1);
2363 else if (atomic_read(&md->holders))
2364 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2365 dm_device_name(md), atomic_read(&md->holders));
2366
2367 dm_sysfs_exit(md);
2368 dm_table_destroy(__unbind(md));
2369 free_dev(md);
2370 }
2371
2372 void dm_destroy(struct mapped_device *md)
2373 {
2374 __dm_destroy(md, true);
2375 }
2376
2377 void dm_destroy_immediate(struct mapped_device *md)
2378 {
2379 __dm_destroy(md, false);
2380 }
2381
2382 void dm_put(struct mapped_device *md)
2383 {
2384 atomic_dec(&md->holders);
2385 }
2386 EXPORT_SYMBOL_GPL(dm_put);
2387
2388 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2389 {
2390 int r = 0;
2391 DECLARE_WAITQUEUE(wait, current);
2392
2393 add_wait_queue(&md->wait, &wait);
2394
2395 while (1) {
2396 set_current_state(interruptible);
2397
2398 if (!md_in_flight(md))
2399 break;
2400
2401 if (interruptible == TASK_INTERRUPTIBLE &&
2402 signal_pending(current)) {
2403 r = -EINTR;
2404 break;
2405 }
2406
2407 io_schedule();
2408 }
2409 set_current_state(TASK_RUNNING);
2410
2411 remove_wait_queue(&md->wait, &wait);
2412
2413 return r;
2414 }
2415
2416 /*
2417 * Process the deferred bios
2418 */
2419 static void dm_wq_work(struct work_struct *work)
2420 {
2421 struct mapped_device *md = container_of(work, struct mapped_device,
2422 work);
2423 struct bio *c;
2424 int srcu_idx;
2425 struct dm_table *map;
2426
2427 map = dm_get_live_table(md, &srcu_idx);
2428
2429 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2430 spin_lock_irq(&md->deferred_lock);
2431 c = bio_list_pop(&md->deferred);
2432 spin_unlock_irq(&md->deferred_lock);
2433
2434 if (!c)
2435 break;
2436
2437 if (dm_request_based(md))
2438 generic_make_request(c);
2439 else
2440 __split_and_process_bio(md, map, c);
2441 }
2442
2443 dm_put_live_table(md, srcu_idx);
2444 }
2445
2446 static void dm_queue_flush(struct mapped_device *md)
2447 {
2448 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2449 smp_mb__after_clear_bit();
2450 queue_work(md->wq, &md->work);
2451 }
2452
2453 /*
2454 * Swap in a new table, returning the old one for the caller to destroy.
2455 */
2456 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2457 {
2458 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2459 struct queue_limits limits;
2460 int r;
2461
2462 mutex_lock(&md->suspend_lock);
2463
2464 /* device must be suspended */
2465 if (!dm_suspended_md(md))
2466 goto out;
2467
2468 /*
2469 * If the new table has no data devices, retain the existing limits.
2470 * This helps multipath with queue_if_no_path if all paths disappear,
2471 * then new I/O is queued based on these limits, and then some paths
2472 * reappear.
2473 */
2474 if (dm_table_has_no_data_devices(table)) {
2475 live_map = dm_get_live_table_fast(md);
2476 if (live_map)
2477 limits = md->queue->limits;
2478 dm_put_live_table_fast(md);
2479 }
2480
2481 if (!live_map) {
2482 r = dm_calculate_queue_limits(table, &limits);
2483 if (r) {
2484 map = ERR_PTR(r);
2485 goto out;
2486 }
2487 }
2488
2489 map = __bind(md, table, &limits);
2490
2491 out:
2492 mutex_unlock(&md->suspend_lock);
2493 return map;
2494 }
2495
2496 /*
2497 * Functions to lock and unlock any filesystem running on the
2498 * device.
2499 */
2500 static int lock_fs(struct mapped_device *md)
2501 {
2502 int r;
2503
2504 WARN_ON(md->frozen_sb);
2505
2506 md->frozen_sb = freeze_bdev(md->bdev);
2507 if (IS_ERR(md->frozen_sb)) {
2508 r = PTR_ERR(md->frozen_sb);
2509 md->frozen_sb = NULL;
2510 return r;
2511 }
2512
2513 set_bit(DMF_FROZEN, &md->flags);
2514
2515 return 0;
2516 }
2517
2518 static void unlock_fs(struct mapped_device *md)
2519 {
2520 if (!test_bit(DMF_FROZEN, &md->flags))
2521 return;
2522
2523 thaw_bdev(md->bdev, md->frozen_sb);
2524 md->frozen_sb = NULL;
2525 clear_bit(DMF_FROZEN, &md->flags);
2526 }
2527
2528 /*
2529 * We need to be able to change a mapping table under a mounted
2530 * filesystem. For example we might want to move some data in
2531 * the background. Before the table can be swapped with
2532 * dm_bind_table, dm_suspend must be called to flush any in
2533 * flight bios and ensure that any further io gets deferred.
2534 */
2535 /*
2536 * Suspend mechanism in request-based dm.
2537 *
2538 * 1. Flush all I/Os by lock_fs() if needed.
2539 * 2. Stop dispatching any I/O by stopping the request_queue.
2540 * 3. Wait for all in-flight I/Os to be completed or requeued.
2541 *
2542 * To abort suspend, start the request_queue.
2543 */
2544 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2545 {
2546 struct dm_table *map = NULL;
2547 int r = 0;
2548 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2549 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2550
2551 mutex_lock(&md->suspend_lock);
2552
2553 if (dm_suspended_md(md)) {
2554 r = -EINVAL;
2555 goto out_unlock;
2556 }
2557
2558 map = md->map;
2559
2560 /*
2561 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2562 * This flag is cleared before dm_suspend returns.
2563 */
2564 if (noflush)
2565 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2566
2567 /* This does not get reverted if there's an error later. */
2568 dm_table_presuspend_targets(map);
2569
2570 /*
2571 * Flush I/O to the device.
2572 * Any I/O submitted after lock_fs() may not be flushed.
2573 * noflush takes precedence over do_lockfs.
2574 * (lock_fs() flushes I/Os and waits for them to complete.)
2575 */
2576 if (!noflush && do_lockfs) {
2577 r = lock_fs(md);
2578 if (r)
2579 goto out_unlock;
2580 }
2581
2582 /*
2583 * Here we must make sure that no processes are submitting requests
2584 * to target drivers i.e. no one may be executing
2585 * __split_and_process_bio. This is called from dm_request and
2586 * dm_wq_work.
2587 *
2588 * To get all processes out of __split_and_process_bio in dm_request,
2589 * we take the write lock. To prevent any process from reentering
2590 * __split_and_process_bio from dm_request and quiesce the thread
2591 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2592 * flush_workqueue(md->wq).
2593 */
2594 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2595 synchronize_srcu(&md->io_barrier);
2596
2597 /*
2598 * Stop md->queue before flushing md->wq in case request-based
2599 * dm defers requests to md->wq from md->queue.
2600 */
2601 if (dm_request_based(md))
2602 stop_queue(md->queue);
2603
2604 flush_workqueue(md->wq);
2605
2606 /*
2607 * At this point no more requests are entering target request routines.
2608 * We call dm_wait_for_completion to wait for all existing requests
2609 * to finish.
2610 */
2611 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2612
2613 if (noflush)
2614 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2615 synchronize_srcu(&md->io_barrier);
2616
2617 /* were we interrupted ? */
2618 if (r < 0) {
2619 dm_queue_flush(md);
2620
2621 if (dm_request_based(md))
2622 start_queue(md->queue);
2623
2624 unlock_fs(md);
2625 goto out_unlock; /* pushback list is already flushed, so skip flush */
2626 }
2627
2628 /*
2629 * If dm_wait_for_completion returned 0, the device is completely
2630 * quiescent now. There is no request-processing activity. All new
2631 * requests are being added to md->deferred list.
2632 */
2633
2634 set_bit(DMF_SUSPENDED, &md->flags);
2635
2636 dm_table_postsuspend_targets(map);
2637
2638 out_unlock:
2639 mutex_unlock(&md->suspend_lock);
2640 return r;
2641 }
2642
2643 int dm_resume(struct mapped_device *md)
2644 {
2645 int r = -EINVAL;
2646 struct dm_table *map = NULL;
2647
2648 mutex_lock(&md->suspend_lock);
2649 if (!dm_suspended_md(md))
2650 goto out;
2651
2652 map = md->map;
2653 if (!map || !dm_table_get_size(map))
2654 goto out;
2655
2656 r = dm_table_resume_targets(map);
2657 if (r)
2658 goto out;
2659
2660 dm_queue_flush(md);
2661
2662 /*
2663 * Flushing deferred I/Os must be done after targets are resumed
2664 * so that mapping of targets can work correctly.
2665 * Request-based dm is queueing the deferred I/Os in its request_queue.
2666 */
2667 if (dm_request_based(md))
2668 start_queue(md->queue);
2669
2670 unlock_fs(md);
2671
2672 clear_bit(DMF_SUSPENDED, &md->flags);
2673
2674 r = 0;
2675 out:
2676 mutex_unlock(&md->suspend_lock);
2677
2678 return r;
2679 }
2680
2681 /*
2682 * Internal suspend/resume works like userspace-driven suspend. It waits
2683 * until all bios finish and prevents issuing new bios to the target drivers.
2684 * It may be used only from the kernel.
2685 *
2686 * Internal suspend holds md->suspend_lock, which prevents interaction with
2687 * userspace-driven suspend.
2688 */
2689
2690 void dm_internal_suspend(struct mapped_device *md)
2691 {
2692 mutex_lock(&md->suspend_lock);
2693 if (dm_suspended_md(md))
2694 return;
2695
2696 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2697 synchronize_srcu(&md->io_barrier);
2698 flush_workqueue(md->wq);
2699 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2700 }
2701
2702 void dm_internal_resume(struct mapped_device *md)
2703 {
2704 if (dm_suspended_md(md))
2705 goto done;
2706
2707 dm_queue_flush(md);
2708
2709 done:
2710 mutex_unlock(&md->suspend_lock);
2711 }
2712
2713 /*-----------------------------------------------------------------
2714 * Event notification.
2715 *---------------------------------------------------------------*/
2716 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2717 unsigned cookie)
2718 {
2719 char udev_cookie[DM_COOKIE_LENGTH];
2720 char *envp[] = { udev_cookie, NULL };
2721
2722 if (!cookie)
2723 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2724 else {
2725 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2726 DM_COOKIE_ENV_VAR_NAME, cookie);
2727 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2728 action, envp);
2729 }
2730 }
2731
2732 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2733 {
2734 return atomic_add_return(1, &md->uevent_seq);
2735 }
2736
2737 uint32_t dm_get_event_nr(struct mapped_device *md)
2738 {
2739 return atomic_read(&md->event_nr);
2740 }
2741
2742 int dm_wait_event(struct mapped_device *md, int event_nr)
2743 {
2744 return wait_event_interruptible(md->eventq,
2745 (event_nr != atomic_read(&md->event_nr)));
2746 }
2747
2748 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2749 {
2750 unsigned long flags;
2751
2752 spin_lock_irqsave(&md->uevent_lock, flags);
2753 list_add(elist, &md->uevent_list);
2754 spin_unlock_irqrestore(&md->uevent_lock, flags);
2755 }
2756
2757 /*
2758 * The gendisk is only valid as long as you have a reference
2759 * count on 'md'.
2760 */
2761 struct gendisk *dm_disk(struct mapped_device *md)
2762 {
2763 return md->disk;
2764 }
2765
2766 struct kobject *dm_kobject(struct mapped_device *md)
2767 {
2768 return &md->kobj_holder.kobj;
2769 }
2770
2771 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2772 {
2773 struct mapped_device *md;
2774
2775 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2776
2777 if (test_bit(DMF_FREEING, &md->flags) ||
2778 dm_deleting_md(md))
2779 return NULL;
2780
2781 dm_get(md);
2782 return md;
2783 }
2784
2785 int dm_suspended_md(struct mapped_device *md)
2786 {
2787 return test_bit(DMF_SUSPENDED, &md->flags);
2788 }
2789
2790 int dm_test_deferred_remove_flag(struct mapped_device *md)
2791 {
2792 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2793 }
2794
2795 int dm_suspended(struct dm_target *ti)
2796 {
2797 return dm_suspended_md(dm_table_get_md(ti->table));
2798 }
2799 EXPORT_SYMBOL_GPL(dm_suspended);
2800
2801 int dm_noflush_suspending(struct dm_target *ti)
2802 {
2803 return __noflush_suspending(dm_table_get_md(ti->table));
2804 }
2805 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2806
2807 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2808 {
2809 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2810 struct kmem_cache *cachep;
2811 unsigned int pool_size;
2812 unsigned int front_pad;
2813
2814 if (!pools)
2815 return NULL;
2816
2817 if (type == DM_TYPE_BIO_BASED) {
2818 cachep = _io_cache;
2819 pool_size = dm_get_reserved_bio_based_ios();
2820 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2821 } else if (type == DM_TYPE_REQUEST_BASED) {
2822 cachep = _rq_tio_cache;
2823 pool_size = dm_get_reserved_rq_based_ios();
2824 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2825 /* per_bio_data_size is not used. See __bind_mempools(). */
2826 WARN_ON(per_bio_data_size != 0);
2827 } else
2828 goto out;
2829
2830 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2831 if (!pools->io_pool)
2832 goto out;
2833
2834 pools->bs = bioset_create(pool_size, front_pad);
2835 if (!pools->bs)
2836 goto out;
2837
2838 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2839 goto out;
2840
2841 return pools;
2842
2843 out:
2844 dm_free_md_mempools(pools);
2845
2846 return NULL;
2847 }
2848
2849 void dm_free_md_mempools(struct dm_md_mempools *pools)
2850 {
2851 if (!pools)
2852 return;
2853
2854 if (pools->io_pool)
2855 mempool_destroy(pools->io_pool);
2856
2857 if (pools->bs)
2858 bioset_free(pools->bs);
2859
2860 kfree(pools);
2861 }
2862
2863 static const struct block_device_operations dm_blk_dops = {
2864 .open = dm_blk_open,
2865 .release = dm_blk_close,
2866 .ioctl = dm_blk_ioctl,
2867 .getgeo = dm_blk_getgeo,
2868 .owner = THIS_MODULE
2869 };
2870
2871 /*
2872 * module hooks
2873 */
2874 module_init(dm_init);
2875 module_exit(dm_exit);
2876
2877 module_param(major, uint, 0);
2878 MODULE_PARM_DESC(major, "The major number of the device mapper");
2879
2880 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2881 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2882
2883 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
2884 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
2885
2886 MODULE_DESCRIPTION(DM_NAME " driver");
2887 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2888 MODULE_LICENSE("GPL");