]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 /*
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
31 */
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
34
35 static const char *_name = DM_NAME;
36
37 static unsigned int major = 0;
38 static unsigned int _major = 0;
39
40 static DEFINE_SPINLOCK(_minor_lock);
41 /*
42 * For bio-based dm.
43 * One of these is allocated per bio.
44 */
45 struct dm_io {
46 struct mapped_device *md;
47 int error;
48 atomic_t io_count;
49 struct bio *bio;
50 unsigned long start_time;
51 spinlock_t endio_lock;
52 };
53
54 /*
55 * For bio-based dm.
56 * One of these is allocated per target within a bio. Hopefully
57 * this will be simplified out one day.
58 */
59 struct dm_target_io {
60 struct dm_io *io;
61 struct dm_target *ti;
62 union map_info info;
63 };
64
65 /*
66 * For request-based dm.
67 * One of these is allocated per request.
68 */
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
75 };
76
77 /*
78 * For request-based dm.
79 * One of these is allocated per bio.
80 */
81 struct dm_rq_clone_bio_info {
82 struct bio *orig;
83 struct dm_rq_target_io *tio;
84 };
85
86 union map_info *dm_get_mapinfo(struct bio *bio)
87 {
88 if (bio && bio->bi_private)
89 return &((struct dm_target_io *)bio->bi_private)->info;
90 return NULL;
91 }
92
93 union map_info *dm_get_rq_mapinfo(struct request *rq)
94 {
95 if (rq && rq->end_io_data)
96 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
97 return NULL;
98 }
99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
100
101 #define MINOR_ALLOCED ((void *)-1)
102
103 /*
104 * Bits for the md->flags field.
105 */
106 #define DMF_BLOCK_IO_FOR_SUSPEND 0
107 #define DMF_SUSPENDED 1
108 #define DMF_FROZEN 2
109 #define DMF_FREEING 3
110 #define DMF_DELETING 4
111 #define DMF_NOFLUSH_SUSPENDING 5
112
113 /*
114 * Work processed by per-device workqueue.
115 */
116 struct mapped_device {
117 struct rw_semaphore io_lock;
118 struct mutex suspend_lock;
119 rwlock_t map_lock;
120 atomic_t holders;
121 atomic_t open_count;
122
123 unsigned long flags;
124
125 struct request_queue *queue;
126 unsigned type;
127 /* Protect queue and type against concurrent access. */
128 struct mutex type_lock;
129
130 struct gendisk *disk;
131 char name[16];
132
133 void *interface_ptr;
134
135 /*
136 * A list of ios that arrived while we were suspended.
137 */
138 atomic_t pending[2];
139 wait_queue_head_t wait;
140 struct work_struct work;
141 struct bio_list deferred;
142 spinlock_t deferred_lock;
143
144 /*
145 * Processing queue (flush)
146 */
147 struct workqueue_struct *wq;
148
149 /*
150 * The current mapping.
151 */
152 struct dm_table *map;
153
154 /*
155 * io objects are allocated from here.
156 */
157 mempool_t *io_pool;
158 mempool_t *tio_pool;
159
160 struct bio_set *bs;
161
162 /*
163 * Event handling.
164 */
165 atomic_t event_nr;
166 wait_queue_head_t eventq;
167 atomic_t uevent_seq;
168 struct list_head uevent_list;
169 spinlock_t uevent_lock; /* Protect access to uevent_list */
170
171 /*
172 * freeze/thaw support require holding onto a super block
173 */
174 struct super_block *frozen_sb;
175 struct block_device *bdev;
176
177 /* forced geometry settings */
178 struct hd_geometry geometry;
179
180 /* For saving the address of __make_request for request based dm */
181 make_request_fn *saved_make_request_fn;
182
183 /* sysfs handle */
184 struct kobject kobj;
185
186 /* zero-length flush that will be cloned and submitted to targets */
187 struct bio flush_bio;
188 };
189
190 /*
191 * For mempools pre-allocation at the table loading time.
192 */
193 struct dm_md_mempools {
194 mempool_t *io_pool;
195 mempool_t *tio_pool;
196 struct bio_set *bs;
197 };
198
199 #define MIN_IOS 256
200 static struct kmem_cache *_io_cache;
201 static struct kmem_cache *_tio_cache;
202 static struct kmem_cache *_rq_tio_cache;
203 static struct kmem_cache *_rq_bio_info_cache;
204
205 static int __init local_init(void)
206 {
207 int r = -ENOMEM;
208
209 /* allocate a slab for the dm_ios */
210 _io_cache = KMEM_CACHE(dm_io, 0);
211 if (!_io_cache)
212 return r;
213
214 /* allocate a slab for the target ios */
215 _tio_cache = KMEM_CACHE(dm_target_io, 0);
216 if (!_tio_cache)
217 goto out_free_io_cache;
218
219 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
220 if (!_rq_tio_cache)
221 goto out_free_tio_cache;
222
223 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
224 if (!_rq_bio_info_cache)
225 goto out_free_rq_tio_cache;
226
227 r = dm_uevent_init();
228 if (r)
229 goto out_free_rq_bio_info_cache;
230
231 _major = major;
232 r = register_blkdev(_major, _name);
233 if (r < 0)
234 goto out_uevent_exit;
235
236 if (!_major)
237 _major = r;
238
239 return 0;
240
241 out_uevent_exit:
242 dm_uevent_exit();
243 out_free_rq_bio_info_cache:
244 kmem_cache_destroy(_rq_bio_info_cache);
245 out_free_rq_tio_cache:
246 kmem_cache_destroy(_rq_tio_cache);
247 out_free_tio_cache:
248 kmem_cache_destroy(_tio_cache);
249 out_free_io_cache:
250 kmem_cache_destroy(_io_cache);
251
252 return r;
253 }
254
255 static void local_exit(void)
256 {
257 kmem_cache_destroy(_rq_bio_info_cache);
258 kmem_cache_destroy(_rq_tio_cache);
259 kmem_cache_destroy(_tio_cache);
260 kmem_cache_destroy(_io_cache);
261 unregister_blkdev(_major, _name);
262 dm_uevent_exit();
263
264 _major = 0;
265
266 DMINFO("cleaned up");
267 }
268
269 static int (*_inits[])(void) __initdata = {
270 local_init,
271 dm_target_init,
272 dm_linear_init,
273 dm_stripe_init,
274 dm_io_init,
275 dm_kcopyd_init,
276 dm_interface_init,
277 };
278
279 static void (*_exits[])(void) = {
280 local_exit,
281 dm_target_exit,
282 dm_linear_exit,
283 dm_stripe_exit,
284 dm_io_exit,
285 dm_kcopyd_exit,
286 dm_interface_exit,
287 };
288
289 static int __init dm_init(void)
290 {
291 const int count = ARRAY_SIZE(_inits);
292
293 int r, i;
294
295 for (i = 0; i < count; i++) {
296 r = _inits[i]();
297 if (r)
298 goto bad;
299 }
300
301 return 0;
302
303 bad:
304 while (i--)
305 _exits[i]();
306
307 return r;
308 }
309
310 static void __exit dm_exit(void)
311 {
312 int i = ARRAY_SIZE(_exits);
313
314 while (i--)
315 _exits[i]();
316 }
317
318 /*
319 * Block device functions
320 */
321 int dm_deleting_md(struct mapped_device *md)
322 {
323 return test_bit(DMF_DELETING, &md->flags);
324 }
325
326 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
327 {
328 struct mapped_device *md;
329
330 spin_lock(&_minor_lock);
331
332 md = bdev->bd_disk->private_data;
333 if (!md)
334 goto out;
335
336 if (test_bit(DMF_FREEING, &md->flags) ||
337 dm_deleting_md(md)) {
338 md = NULL;
339 goto out;
340 }
341
342 dm_get(md);
343 atomic_inc(&md->open_count);
344
345 out:
346 spin_unlock(&_minor_lock);
347
348 return md ? 0 : -ENXIO;
349 }
350
351 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
352 {
353 struct mapped_device *md = disk->private_data;
354
355 spin_lock(&_minor_lock);
356
357 atomic_dec(&md->open_count);
358 dm_put(md);
359
360 spin_unlock(&_minor_lock);
361
362 return 0;
363 }
364
365 int dm_open_count(struct mapped_device *md)
366 {
367 return atomic_read(&md->open_count);
368 }
369
370 /*
371 * Guarantees nothing is using the device before it's deleted.
372 */
373 int dm_lock_for_deletion(struct mapped_device *md)
374 {
375 int r = 0;
376
377 spin_lock(&_minor_lock);
378
379 if (dm_open_count(md))
380 r = -EBUSY;
381 else
382 set_bit(DMF_DELETING, &md->flags);
383
384 spin_unlock(&_minor_lock);
385
386 return r;
387 }
388
389 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
390 {
391 struct mapped_device *md = bdev->bd_disk->private_data;
392
393 return dm_get_geometry(md, geo);
394 }
395
396 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
397 unsigned int cmd, unsigned long arg)
398 {
399 struct mapped_device *md = bdev->bd_disk->private_data;
400 struct dm_table *map = dm_get_live_table(md);
401 struct dm_target *tgt;
402 int r = -ENOTTY;
403
404 if (!map || !dm_table_get_size(map))
405 goto out;
406
407 /* We only support devices that have a single target */
408 if (dm_table_get_num_targets(map) != 1)
409 goto out;
410
411 tgt = dm_table_get_target(map, 0);
412
413 if (dm_suspended_md(md)) {
414 r = -EAGAIN;
415 goto out;
416 }
417
418 if (tgt->type->ioctl)
419 r = tgt->type->ioctl(tgt, cmd, arg);
420
421 out:
422 dm_table_put(map);
423
424 return r;
425 }
426
427 static struct dm_io *alloc_io(struct mapped_device *md)
428 {
429 return mempool_alloc(md->io_pool, GFP_NOIO);
430 }
431
432 static void free_io(struct mapped_device *md, struct dm_io *io)
433 {
434 mempool_free(io, md->io_pool);
435 }
436
437 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
438 {
439 mempool_free(tio, md->tio_pool);
440 }
441
442 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
443 gfp_t gfp_mask)
444 {
445 return mempool_alloc(md->tio_pool, gfp_mask);
446 }
447
448 static void free_rq_tio(struct dm_rq_target_io *tio)
449 {
450 mempool_free(tio, tio->md->tio_pool);
451 }
452
453 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
454 {
455 return mempool_alloc(md->io_pool, GFP_ATOMIC);
456 }
457
458 static void free_bio_info(struct dm_rq_clone_bio_info *info)
459 {
460 mempool_free(info, info->tio->md->io_pool);
461 }
462
463 static int md_in_flight(struct mapped_device *md)
464 {
465 return atomic_read(&md->pending[READ]) +
466 atomic_read(&md->pending[WRITE]);
467 }
468
469 static void start_io_acct(struct dm_io *io)
470 {
471 struct mapped_device *md = io->md;
472 int cpu;
473 int rw = bio_data_dir(io->bio);
474
475 io->start_time = jiffies;
476
477 cpu = part_stat_lock();
478 part_round_stats(cpu, &dm_disk(md)->part0);
479 part_stat_unlock();
480 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
481 }
482
483 static void end_io_acct(struct dm_io *io)
484 {
485 struct mapped_device *md = io->md;
486 struct bio *bio = io->bio;
487 unsigned long duration = jiffies - io->start_time;
488 int pending, cpu;
489 int rw = bio_data_dir(bio);
490
491 cpu = part_stat_lock();
492 part_round_stats(cpu, &dm_disk(md)->part0);
493 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
494 part_stat_unlock();
495
496 /*
497 * After this is decremented the bio must not be touched if it is
498 * a flush.
499 */
500 dm_disk(md)->part0.in_flight[rw] = pending =
501 atomic_dec_return(&md->pending[rw]);
502 pending += atomic_read(&md->pending[rw^0x1]);
503
504 /* nudge anyone waiting on suspend queue */
505 if (!pending)
506 wake_up(&md->wait);
507 }
508
509 /*
510 * Add the bio to the list of deferred io.
511 */
512 static void queue_io(struct mapped_device *md, struct bio *bio)
513 {
514 unsigned long flags;
515
516 spin_lock_irqsave(&md->deferred_lock, flags);
517 bio_list_add(&md->deferred, bio);
518 spin_unlock_irqrestore(&md->deferred_lock, flags);
519 queue_work(md->wq, &md->work);
520 }
521
522 /*
523 * Everyone (including functions in this file), should use this
524 * function to access the md->map field, and make sure they call
525 * dm_table_put() when finished.
526 */
527 struct dm_table *dm_get_live_table(struct mapped_device *md)
528 {
529 struct dm_table *t;
530 unsigned long flags;
531
532 read_lock_irqsave(&md->map_lock, flags);
533 t = md->map;
534 if (t)
535 dm_table_get(t);
536 read_unlock_irqrestore(&md->map_lock, flags);
537
538 return t;
539 }
540
541 /*
542 * Get the geometry associated with a dm device
543 */
544 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
545 {
546 *geo = md->geometry;
547
548 return 0;
549 }
550
551 /*
552 * Set the geometry of a device.
553 */
554 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 {
556 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
557
558 if (geo->start > sz) {
559 DMWARN("Start sector is beyond the geometry limits.");
560 return -EINVAL;
561 }
562
563 md->geometry = *geo;
564
565 return 0;
566 }
567
568 /*-----------------------------------------------------------------
569 * CRUD START:
570 * A more elegant soln is in the works that uses the queue
571 * merge fn, unfortunately there are a couple of changes to
572 * the block layer that I want to make for this. So in the
573 * interests of getting something for people to use I give
574 * you this clearly demarcated crap.
575 *---------------------------------------------------------------*/
576
577 static int __noflush_suspending(struct mapped_device *md)
578 {
579 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
580 }
581
582 /*
583 * Decrements the number of outstanding ios that a bio has been
584 * cloned into, completing the original io if necc.
585 */
586 static void dec_pending(struct dm_io *io, int error)
587 {
588 unsigned long flags;
589 int io_error;
590 struct bio *bio;
591 struct mapped_device *md = io->md;
592
593 /* Push-back supersedes any I/O errors */
594 if (unlikely(error)) {
595 spin_lock_irqsave(&io->endio_lock, flags);
596 if (!(io->error > 0 && __noflush_suspending(md)))
597 io->error = error;
598 spin_unlock_irqrestore(&io->endio_lock, flags);
599 }
600
601 if (atomic_dec_and_test(&io->io_count)) {
602 if (io->error == DM_ENDIO_REQUEUE) {
603 /*
604 * Target requested pushing back the I/O.
605 */
606 spin_lock_irqsave(&md->deferred_lock, flags);
607 if (__noflush_suspending(md))
608 bio_list_add_head(&md->deferred, io->bio);
609 else
610 /* noflush suspend was interrupted. */
611 io->error = -EIO;
612 spin_unlock_irqrestore(&md->deferred_lock, flags);
613 }
614
615 io_error = io->error;
616 bio = io->bio;
617 end_io_acct(io);
618 free_io(md, io);
619
620 if (io_error == DM_ENDIO_REQUEUE)
621 return;
622
623 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
624 /*
625 * Preflush done for flush with data, reissue
626 * without REQ_FLUSH.
627 */
628 bio->bi_rw &= ~REQ_FLUSH;
629 queue_io(md, bio);
630 } else {
631 /* done with normal IO or empty flush */
632 trace_block_bio_complete(md->queue, bio, io_error);
633 bio_endio(bio, io_error);
634 }
635 }
636 }
637
638 static void clone_endio(struct bio *bio, int error)
639 {
640 int r = 0;
641 struct dm_target_io *tio = bio->bi_private;
642 struct dm_io *io = tio->io;
643 struct mapped_device *md = tio->io->md;
644 dm_endio_fn endio = tio->ti->type->end_io;
645
646 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
647 error = -EIO;
648
649 if (endio) {
650 r = endio(tio->ti, bio, error, &tio->info);
651 if (r < 0 || r == DM_ENDIO_REQUEUE)
652 /*
653 * error and requeue request are handled
654 * in dec_pending().
655 */
656 error = r;
657 else if (r == DM_ENDIO_INCOMPLETE)
658 /* The target will handle the io */
659 return;
660 else if (r) {
661 DMWARN("unimplemented target endio return value: %d", r);
662 BUG();
663 }
664 }
665
666 /*
667 * Store md for cleanup instead of tio which is about to get freed.
668 */
669 bio->bi_private = md->bs;
670
671 free_tio(md, tio);
672 bio_put(bio);
673 dec_pending(io, error);
674 }
675
676 /*
677 * Partial completion handling for request-based dm
678 */
679 static void end_clone_bio(struct bio *clone, int error)
680 {
681 struct dm_rq_clone_bio_info *info = clone->bi_private;
682 struct dm_rq_target_io *tio = info->tio;
683 struct bio *bio = info->orig;
684 unsigned int nr_bytes = info->orig->bi_size;
685
686 bio_put(clone);
687
688 if (tio->error)
689 /*
690 * An error has already been detected on the request.
691 * Once error occurred, just let clone->end_io() handle
692 * the remainder.
693 */
694 return;
695 else if (error) {
696 /*
697 * Don't notice the error to the upper layer yet.
698 * The error handling decision is made by the target driver,
699 * when the request is completed.
700 */
701 tio->error = error;
702 return;
703 }
704
705 /*
706 * I/O for the bio successfully completed.
707 * Notice the data completion to the upper layer.
708 */
709
710 /*
711 * bios are processed from the head of the list.
712 * So the completing bio should always be rq->bio.
713 * If it's not, something wrong is happening.
714 */
715 if (tio->orig->bio != bio)
716 DMERR("bio completion is going in the middle of the request");
717
718 /*
719 * Update the original request.
720 * Do not use blk_end_request() here, because it may complete
721 * the original request before the clone, and break the ordering.
722 */
723 blk_update_request(tio->orig, 0, nr_bytes);
724 }
725
726 /*
727 * Don't touch any member of the md after calling this function because
728 * the md may be freed in dm_put() at the end of this function.
729 * Or do dm_get() before calling this function and dm_put() later.
730 */
731 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
732 {
733 atomic_dec(&md->pending[rw]);
734
735 /* nudge anyone waiting on suspend queue */
736 if (!md_in_flight(md))
737 wake_up(&md->wait);
738
739 if (run_queue)
740 blk_run_queue(md->queue);
741
742 /*
743 * dm_put() must be at the end of this function. See the comment above
744 */
745 dm_put(md);
746 }
747
748 static void free_rq_clone(struct request *clone)
749 {
750 struct dm_rq_target_io *tio = clone->end_io_data;
751
752 blk_rq_unprep_clone(clone);
753 free_rq_tio(tio);
754 }
755
756 /*
757 * Complete the clone and the original request.
758 * Must be called without queue lock.
759 */
760 static void dm_end_request(struct request *clone, int error)
761 {
762 int rw = rq_data_dir(clone);
763 struct dm_rq_target_io *tio = clone->end_io_data;
764 struct mapped_device *md = tio->md;
765 struct request *rq = tio->orig;
766
767 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
768 rq->errors = clone->errors;
769 rq->resid_len = clone->resid_len;
770
771 if (rq->sense)
772 /*
773 * We are using the sense buffer of the original
774 * request.
775 * So setting the length of the sense data is enough.
776 */
777 rq->sense_len = clone->sense_len;
778 }
779
780 free_rq_clone(clone);
781 blk_end_request_all(rq, error);
782 rq_completed(md, rw, true);
783 }
784
785 static void dm_unprep_request(struct request *rq)
786 {
787 struct request *clone = rq->special;
788
789 rq->special = NULL;
790 rq->cmd_flags &= ~REQ_DONTPREP;
791
792 free_rq_clone(clone);
793 }
794
795 /*
796 * Requeue the original request of a clone.
797 */
798 void dm_requeue_unmapped_request(struct request *clone)
799 {
800 int rw = rq_data_dir(clone);
801 struct dm_rq_target_io *tio = clone->end_io_data;
802 struct mapped_device *md = tio->md;
803 struct request *rq = tio->orig;
804 struct request_queue *q = rq->q;
805 unsigned long flags;
806
807 dm_unprep_request(rq);
808
809 spin_lock_irqsave(q->queue_lock, flags);
810 if (elv_queue_empty(q))
811 blk_plug_device(q);
812 blk_requeue_request(q, rq);
813 spin_unlock_irqrestore(q->queue_lock, flags);
814
815 rq_completed(md, rw, 0);
816 }
817 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
818
819 static void __stop_queue(struct request_queue *q)
820 {
821 blk_stop_queue(q);
822 }
823
824 static void stop_queue(struct request_queue *q)
825 {
826 unsigned long flags;
827
828 spin_lock_irqsave(q->queue_lock, flags);
829 __stop_queue(q);
830 spin_unlock_irqrestore(q->queue_lock, flags);
831 }
832
833 static void __start_queue(struct request_queue *q)
834 {
835 if (blk_queue_stopped(q))
836 blk_start_queue(q);
837 }
838
839 static void start_queue(struct request_queue *q)
840 {
841 unsigned long flags;
842
843 spin_lock_irqsave(q->queue_lock, flags);
844 __start_queue(q);
845 spin_unlock_irqrestore(q->queue_lock, flags);
846 }
847
848 static void dm_done(struct request *clone, int error, bool mapped)
849 {
850 int r = error;
851 struct dm_rq_target_io *tio = clone->end_io_data;
852 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
853
854 if (mapped && rq_end_io)
855 r = rq_end_io(tio->ti, clone, error, &tio->info);
856
857 if (r <= 0)
858 /* The target wants to complete the I/O */
859 dm_end_request(clone, r);
860 else if (r == DM_ENDIO_INCOMPLETE)
861 /* The target will handle the I/O */
862 return;
863 else if (r == DM_ENDIO_REQUEUE)
864 /* The target wants to requeue the I/O */
865 dm_requeue_unmapped_request(clone);
866 else {
867 DMWARN("unimplemented target endio return value: %d", r);
868 BUG();
869 }
870 }
871
872 /*
873 * Request completion handler for request-based dm
874 */
875 static void dm_softirq_done(struct request *rq)
876 {
877 bool mapped = true;
878 struct request *clone = rq->completion_data;
879 struct dm_rq_target_io *tio = clone->end_io_data;
880
881 if (rq->cmd_flags & REQ_FAILED)
882 mapped = false;
883
884 dm_done(clone, tio->error, mapped);
885 }
886
887 /*
888 * Complete the clone and the original request with the error status
889 * through softirq context.
890 */
891 static void dm_complete_request(struct request *clone, int error)
892 {
893 struct dm_rq_target_io *tio = clone->end_io_data;
894 struct request *rq = tio->orig;
895
896 tio->error = error;
897 rq->completion_data = clone;
898 blk_complete_request(rq);
899 }
900
901 /*
902 * Complete the not-mapped clone and the original request with the error status
903 * through softirq context.
904 * Target's rq_end_io() function isn't called.
905 * This may be used when the target's map_rq() function fails.
906 */
907 void dm_kill_unmapped_request(struct request *clone, int error)
908 {
909 struct dm_rq_target_io *tio = clone->end_io_data;
910 struct request *rq = tio->orig;
911
912 rq->cmd_flags |= REQ_FAILED;
913 dm_complete_request(clone, error);
914 }
915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
916
917 /*
918 * Called with the queue lock held
919 */
920 static void end_clone_request(struct request *clone, int error)
921 {
922 /*
923 * For just cleaning up the information of the queue in which
924 * the clone was dispatched.
925 * The clone is *NOT* freed actually here because it is alloced from
926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
927 */
928 __blk_put_request(clone->q, clone);
929
930 /*
931 * Actual request completion is done in a softirq context which doesn't
932 * hold the queue lock. Otherwise, deadlock could occur because:
933 * - another request may be submitted by the upper level driver
934 * of the stacking during the completion
935 * - the submission which requires queue lock may be done
936 * against this queue
937 */
938 dm_complete_request(clone, error);
939 }
940
941 /*
942 * Return maximum size of I/O possible at the supplied sector up to the current
943 * target boundary.
944 */
945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
946 {
947 sector_t target_offset = dm_target_offset(ti, sector);
948
949 return ti->len - target_offset;
950 }
951
952 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
953 {
954 sector_t len = max_io_len_target_boundary(sector, ti);
955
956 /*
957 * Does the target need to split even further ?
958 */
959 if (ti->split_io) {
960 sector_t boundary;
961 sector_t offset = dm_target_offset(ti, sector);
962 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
963 - offset;
964 if (len > boundary)
965 len = boundary;
966 }
967
968 return len;
969 }
970
971 static void __map_bio(struct dm_target *ti, struct bio *clone,
972 struct dm_target_io *tio)
973 {
974 int r;
975 sector_t sector;
976 struct mapped_device *md;
977
978 clone->bi_end_io = clone_endio;
979 clone->bi_private = tio;
980
981 /*
982 * Map the clone. If r == 0 we don't need to do
983 * anything, the target has assumed ownership of
984 * this io.
985 */
986 atomic_inc(&tio->io->io_count);
987 sector = clone->bi_sector;
988 r = ti->type->map(ti, clone, &tio->info);
989 if (r == DM_MAPIO_REMAPPED) {
990 /* the bio has been remapped so dispatch it */
991
992 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
993 tio->io->bio->bi_bdev->bd_dev, sector);
994
995 generic_make_request(clone);
996 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
997 /* error the io and bail out, or requeue it if needed */
998 md = tio->io->md;
999 dec_pending(tio->io, r);
1000 /*
1001 * Store bio_set for cleanup.
1002 */
1003 clone->bi_private = md->bs;
1004 bio_put(clone);
1005 free_tio(md, tio);
1006 } else if (r) {
1007 DMWARN("unimplemented target map return value: %d", r);
1008 BUG();
1009 }
1010 }
1011
1012 struct clone_info {
1013 struct mapped_device *md;
1014 struct dm_table *map;
1015 struct bio *bio;
1016 struct dm_io *io;
1017 sector_t sector;
1018 sector_t sector_count;
1019 unsigned short idx;
1020 };
1021
1022 static void dm_bio_destructor(struct bio *bio)
1023 {
1024 struct bio_set *bs = bio->bi_private;
1025
1026 bio_free(bio, bs);
1027 }
1028
1029 /*
1030 * Creates a little bio that just does part of a bvec.
1031 */
1032 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1033 unsigned short idx, unsigned int offset,
1034 unsigned int len, struct bio_set *bs)
1035 {
1036 struct bio *clone;
1037 struct bio_vec *bv = bio->bi_io_vec + idx;
1038
1039 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1040 clone->bi_destructor = dm_bio_destructor;
1041 *clone->bi_io_vec = *bv;
1042
1043 clone->bi_sector = sector;
1044 clone->bi_bdev = bio->bi_bdev;
1045 clone->bi_rw = bio->bi_rw;
1046 clone->bi_vcnt = 1;
1047 clone->bi_size = to_bytes(len);
1048 clone->bi_io_vec->bv_offset = offset;
1049 clone->bi_io_vec->bv_len = clone->bi_size;
1050 clone->bi_flags |= 1 << BIO_CLONED;
1051
1052 if (bio_integrity(bio)) {
1053 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1054 bio_integrity_trim(clone,
1055 bio_sector_offset(bio, idx, offset), len);
1056 }
1057
1058 return clone;
1059 }
1060
1061 /*
1062 * Creates a bio that consists of range of complete bvecs.
1063 */
1064 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1065 unsigned short idx, unsigned short bv_count,
1066 unsigned int len, struct bio_set *bs)
1067 {
1068 struct bio *clone;
1069
1070 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1071 __bio_clone(clone, bio);
1072 clone->bi_destructor = dm_bio_destructor;
1073 clone->bi_sector = sector;
1074 clone->bi_idx = idx;
1075 clone->bi_vcnt = idx + bv_count;
1076 clone->bi_size = to_bytes(len);
1077 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1078
1079 if (bio_integrity(bio)) {
1080 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1081
1082 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1083 bio_integrity_trim(clone,
1084 bio_sector_offset(bio, idx, 0), len);
1085 }
1086
1087 return clone;
1088 }
1089
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 struct dm_target *ti)
1092 {
1093 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1094
1095 tio->io = ci->io;
1096 tio->ti = ti;
1097 memset(&tio->info, 0, sizeof(tio->info));
1098
1099 return tio;
1100 }
1101
1102 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1103 unsigned request_nr, sector_t len)
1104 {
1105 struct dm_target_io *tio = alloc_tio(ci, ti);
1106 struct bio *clone;
1107
1108 tio->info.target_request_nr = request_nr;
1109
1110 /*
1111 * Discard requests require the bio's inline iovecs be initialized.
1112 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1113 * and discard, so no need for concern about wasted bvec allocations.
1114 */
1115 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1116 __bio_clone(clone, ci->bio);
1117 clone->bi_destructor = dm_bio_destructor;
1118 if (len) {
1119 clone->bi_sector = ci->sector;
1120 clone->bi_size = to_bytes(len);
1121 }
1122
1123 __map_bio(ti, clone, tio);
1124 }
1125
1126 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1127 unsigned num_requests, sector_t len)
1128 {
1129 unsigned request_nr;
1130
1131 for (request_nr = 0; request_nr < num_requests; request_nr++)
1132 __issue_target_request(ci, ti, request_nr, len);
1133 }
1134
1135 static int __clone_and_map_empty_flush(struct clone_info *ci)
1136 {
1137 unsigned target_nr = 0;
1138 struct dm_target *ti;
1139
1140 BUG_ON(bio_has_data(ci->bio));
1141 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1142 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1143
1144 return 0;
1145 }
1146
1147 /*
1148 * Perform all io with a single clone.
1149 */
1150 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1151 {
1152 struct bio *clone, *bio = ci->bio;
1153 struct dm_target_io *tio;
1154
1155 tio = alloc_tio(ci, ti);
1156 clone = clone_bio(bio, ci->sector, ci->idx,
1157 bio->bi_vcnt - ci->idx, ci->sector_count,
1158 ci->md->bs);
1159 __map_bio(ti, clone, tio);
1160 ci->sector_count = 0;
1161 }
1162
1163 static int __clone_and_map_discard(struct clone_info *ci)
1164 {
1165 struct dm_target *ti;
1166 sector_t len;
1167
1168 do {
1169 ti = dm_table_find_target(ci->map, ci->sector);
1170 if (!dm_target_is_valid(ti))
1171 return -EIO;
1172
1173 /*
1174 * Even though the device advertised discard support,
1175 * reconfiguration might have changed that since the
1176 * check was performed.
1177 */
1178 if (!ti->num_discard_requests)
1179 return -EOPNOTSUPP;
1180
1181 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1182
1183 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1184
1185 ci->sector += len;
1186 } while (ci->sector_count -= len);
1187
1188 return 0;
1189 }
1190
1191 static int __clone_and_map(struct clone_info *ci)
1192 {
1193 struct bio *clone, *bio = ci->bio;
1194 struct dm_target *ti;
1195 sector_t len = 0, max;
1196 struct dm_target_io *tio;
1197
1198 if (unlikely(bio->bi_rw & REQ_DISCARD))
1199 return __clone_and_map_discard(ci);
1200
1201 ti = dm_table_find_target(ci->map, ci->sector);
1202 if (!dm_target_is_valid(ti))
1203 return -EIO;
1204
1205 max = max_io_len(ci->sector, ti);
1206
1207 if (ci->sector_count <= max) {
1208 /*
1209 * Optimise for the simple case where we can do all of
1210 * the remaining io with a single clone.
1211 */
1212 __clone_and_map_simple(ci, ti);
1213
1214 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1215 /*
1216 * There are some bvecs that don't span targets.
1217 * Do as many of these as possible.
1218 */
1219 int i;
1220 sector_t remaining = max;
1221 sector_t bv_len;
1222
1223 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1224 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1225
1226 if (bv_len > remaining)
1227 break;
1228
1229 remaining -= bv_len;
1230 len += bv_len;
1231 }
1232
1233 tio = alloc_tio(ci, ti);
1234 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1235 ci->md->bs);
1236 __map_bio(ti, clone, tio);
1237
1238 ci->sector += len;
1239 ci->sector_count -= len;
1240 ci->idx = i;
1241
1242 } else {
1243 /*
1244 * Handle a bvec that must be split between two or more targets.
1245 */
1246 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1247 sector_t remaining = to_sector(bv->bv_len);
1248 unsigned int offset = 0;
1249
1250 do {
1251 if (offset) {
1252 ti = dm_table_find_target(ci->map, ci->sector);
1253 if (!dm_target_is_valid(ti))
1254 return -EIO;
1255
1256 max = max_io_len(ci->sector, ti);
1257 }
1258
1259 len = min(remaining, max);
1260
1261 tio = alloc_tio(ci, ti);
1262 clone = split_bvec(bio, ci->sector, ci->idx,
1263 bv->bv_offset + offset, len,
1264 ci->md->bs);
1265
1266 __map_bio(ti, clone, tio);
1267
1268 ci->sector += len;
1269 ci->sector_count -= len;
1270 offset += to_bytes(len);
1271 } while (remaining -= len);
1272
1273 ci->idx++;
1274 }
1275
1276 return 0;
1277 }
1278
1279 /*
1280 * Split the bio into several clones and submit it to targets.
1281 */
1282 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1283 {
1284 struct clone_info ci;
1285 int error = 0;
1286
1287 ci.map = dm_get_live_table(md);
1288 if (unlikely(!ci.map)) {
1289 bio_io_error(bio);
1290 return;
1291 }
1292
1293 ci.md = md;
1294 ci.io = alloc_io(md);
1295 ci.io->error = 0;
1296 atomic_set(&ci.io->io_count, 1);
1297 ci.io->bio = bio;
1298 ci.io->md = md;
1299 spin_lock_init(&ci.io->endio_lock);
1300 ci.sector = bio->bi_sector;
1301 ci.idx = bio->bi_idx;
1302
1303 start_io_acct(ci.io);
1304 if (bio->bi_rw & REQ_FLUSH) {
1305 ci.bio = &ci.md->flush_bio;
1306 ci.sector_count = 0;
1307 error = __clone_and_map_empty_flush(&ci);
1308 /* dec_pending submits any data associated with flush */
1309 } else {
1310 ci.bio = bio;
1311 ci.sector_count = bio_sectors(bio);
1312 while (ci.sector_count && !error)
1313 error = __clone_and_map(&ci);
1314 }
1315
1316 /* drop the extra reference count */
1317 dec_pending(ci.io, error);
1318 dm_table_put(ci.map);
1319 }
1320 /*-----------------------------------------------------------------
1321 * CRUD END
1322 *---------------------------------------------------------------*/
1323
1324 static int dm_merge_bvec(struct request_queue *q,
1325 struct bvec_merge_data *bvm,
1326 struct bio_vec *biovec)
1327 {
1328 struct mapped_device *md = q->queuedata;
1329 struct dm_table *map = dm_get_live_table(md);
1330 struct dm_target *ti;
1331 sector_t max_sectors;
1332 int max_size = 0;
1333
1334 if (unlikely(!map))
1335 goto out;
1336
1337 ti = dm_table_find_target(map, bvm->bi_sector);
1338 if (!dm_target_is_valid(ti))
1339 goto out_table;
1340
1341 /*
1342 * Find maximum amount of I/O that won't need splitting
1343 */
1344 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1345 (sector_t) BIO_MAX_SECTORS);
1346 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1347 if (max_size < 0)
1348 max_size = 0;
1349
1350 /*
1351 * merge_bvec_fn() returns number of bytes
1352 * it can accept at this offset
1353 * max is precomputed maximal io size
1354 */
1355 if (max_size && ti->type->merge)
1356 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1357 /*
1358 * If the target doesn't support merge method and some of the devices
1359 * provided their merge_bvec method (we know this by looking at
1360 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1361 * entries. So always set max_size to 0, and the code below allows
1362 * just one page.
1363 */
1364 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1365
1366 max_size = 0;
1367
1368 out_table:
1369 dm_table_put(map);
1370
1371 out:
1372 /*
1373 * Always allow an entire first page
1374 */
1375 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1376 max_size = biovec->bv_len;
1377
1378 return max_size;
1379 }
1380
1381 /*
1382 * The request function that just remaps the bio built up by
1383 * dm_merge_bvec.
1384 */
1385 static int _dm_request(struct request_queue *q, struct bio *bio)
1386 {
1387 int rw = bio_data_dir(bio);
1388 struct mapped_device *md = q->queuedata;
1389 int cpu;
1390
1391 down_read(&md->io_lock);
1392
1393 cpu = part_stat_lock();
1394 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1395 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1396 part_stat_unlock();
1397
1398 /* if we're suspended, we have to queue this io for later */
1399 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1400 up_read(&md->io_lock);
1401
1402 if (bio_rw(bio) != READA)
1403 queue_io(md, bio);
1404 else
1405 bio_io_error(bio);
1406 return 0;
1407 }
1408
1409 __split_and_process_bio(md, bio);
1410 up_read(&md->io_lock);
1411 return 0;
1412 }
1413
1414 static int dm_make_request(struct request_queue *q, struct bio *bio)
1415 {
1416 struct mapped_device *md = q->queuedata;
1417
1418 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1419 }
1420
1421 static int dm_request_based(struct mapped_device *md)
1422 {
1423 return blk_queue_stackable(md->queue);
1424 }
1425
1426 static int dm_request(struct request_queue *q, struct bio *bio)
1427 {
1428 struct mapped_device *md = q->queuedata;
1429
1430 if (dm_request_based(md))
1431 return dm_make_request(q, bio);
1432
1433 return _dm_request(q, bio);
1434 }
1435
1436 void dm_dispatch_request(struct request *rq)
1437 {
1438 int r;
1439
1440 if (blk_queue_io_stat(rq->q))
1441 rq->cmd_flags |= REQ_IO_STAT;
1442
1443 rq->start_time = jiffies;
1444 r = blk_insert_cloned_request(rq->q, rq);
1445 if (r)
1446 dm_complete_request(rq, r);
1447 }
1448 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1449
1450 static void dm_rq_bio_destructor(struct bio *bio)
1451 {
1452 struct dm_rq_clone_bio_info *info = bio->bi_private;
1453 struct mapped_device *md = info->tio->md;
1454
1455 free_bio_info(info);
1456 bio_free(bio, md->bs);
1457 }
1458
1459 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1460 void *data)
1461 {
1462 struct dm_rq_target_io *tio = data;
1463 struct mapped_device *md = tio->md;
1464 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1465
1466 if (!info)
1467 return -ENOMEM;
1468
1469 info->orig = bio_orig;
1470 info->tio = tio;
1471 bio->bi_end_io = end_clone_bio;
1472 bio->bi_private = info;
1473 bio->bi_destructor = dm_rq_bio_destructor;
1474
1475 return 0;
1476 }
1477
1478 static int setup_clone(struct request *clone, struct request *rq,
1479 struct dm_rq_target_io *tio)
1480 {
1481 int r;
1482
1483 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1484 dm_rq_bio_constructor, tio);
1485 if (r)
1486 return r;
1487
1488 clone->cmd = rq->cmd;
1489 clone->cmd_len = rq->cmd_len;
1490 clone->sense = rq->sense;
1491 clone->buffer = rq->buffer;
1492 clone->end_io = end_clone_request;
1493 clone->end_io_data = tio;
1494
1495 return 0;
1496 }
1497
1498 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1499 gfp_t gfp_mask)
1500 {
1501 struct request *clone;
1502 struct dm_rq_target_io *tio;
1503
1504 tio = alloc_rq_tio(md, gfp_mask);
1505 if (!tio)
1506 return NULL;
1507
1508 tio->md = md;
1509 tio->ti = NULL;
1510 tio->orig = rq;
1511 tio->error = 0;
1512 memset(&tio->info, 0, sizeof(tio->info));
1513
1514 clone = &tio->clone;
1515 if (setup_clone(clone, rq, tio)) {
1516 /* -ENOMEM */
1517 free_rq_tio(tio);
1518 return NULL;
1519 }
1520
1521 return clone;
1522 }
1523
1524 /*
1525 * Called with the queue lock held.
1526 */
1527 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1528 {
1529 struct mapped_device *md = q->queuedata;
1530 struct request *clone;
1531
1532 if (unlikely(rq->special)) {
1533 DMWARN("Already has something in rq->special.");
1534 return BLKPREP_KILL;
1535 }
1536
1537 clone = clone_rq(rq, md, GFP_ATOMIC);
1538 if (!clone)
1539 return BLKPREP_DEFER;
1540
1541 rq->special = clone;
1542 rq->cmd_flags |= REQ_DONTPREP;
1543
1544 return BLKPREP_OK;
1545 }
1546
1547 /*
1548 * Returns:
1549 * 0 : the request has been processed (not requeued)
1550 * !0 : the request has been requeued
1551 */
1552 static int map_request(struct dm_target *ti, struct request *clone,
1553 struct mapped_device *md)
1554 {
1555 int r, requeued = 0;
1556 struct dm_rq_target_io *tio = clone->end_io_data;
1557
1558 /*
1559 * Hold the md reference here for the in-flight I/O.
1560 * We can't rely on the reference count by device opener,
1561 * because the device may be closed during the request completion
1562 * when all bios are completed.
1563 * See the comment in rq_completed() too.
1564 */
1565 dm_get(md);
1566
1567 tio->ti = ti;
1568 r = ti->type->map_rq(ti, clone, &tio->info);
1569 switch (r) {
1570 case DM_MAPIO_SUBMITTED:
1571 /* The target has taken the I/O to submit by itself later */
1572 break;
1573 case DM_MAPIO_REMAPPED:
1574 /* The target has remapped the I/O so dispatch it */
1575 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1576 blk_rq_pos(tio->orig));
1577 dm_dispatch_request(clone);
1578 break;
1579 case DM_MAPIO_REQUEUE:
1580 /* The target wants to requeue the I/O */
1581 dm_requeue_unmapped_request(clone);
1582 requeued = 1;
1583 break;
1584 default:
1585 if (r > 0) {
1586 DMWARN("unimplemented target map return value: %d", r);
1587 BUG();
1588 }
1589
1590 /* The target wants to complete the I/O */
1591 dm_kill_unmapped_request(clone, r);
1592 break;
1593 }
1594
1595 return requeued;
1596 }
1597
1598 /*
1599 * q->request_fn for request-based dm.
1600 * Called with the queue lock held.
1601 */
1602 static void dm_request_fn(struct request_queue *q)
1603 {
1604 struct mapped_device *md = q->queuedata;
1605 struct dm_table *map = dm_get_live_table(md);
1606 struct dm_target *ti;
1607 struct request *rq, *clone;
1608 sector_t pos;
1609
1610 /*
1611 * For suspend, check blk_queue_stopped() and increment
1612 * ->pending within a single queue_lock not to increment the
1613 * number of in-flight I/Os after the queue is stopped in
1614 * dm_suspend().
1615 */
1616 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1617 rq = blk_peek_request(q);
1618 if (!rq)
1619 goto plug_and_out;
1620
1621 /* always use block 0 to find the target for flushes for now */
1622 pos = 0;
1623 if (!(rq->cmd_flags & REQ_FLUSH))
1624 pos = blk_rq_pos(rq);
1625
1626 ti = dm_table_find_target(map, pos);
1627 BUG_ON(!dm_target_is_valid(ti));
1628
1629 if (ti->type->busy && ti->type->busy(ti))
1630 goto plug_and_out;
1631
1632 blk_start_request(rq);
1633 clone = rq->special;
1634 atomic_inc(&md->pending[rq_data_dir(clone)]);
1635
1636 spin_unlock(q->queue_lock);
1637 if (map_request(ti, clone, md))
1638 goto requeued;
1639
1640 BUG_ON(!irqs_disabled());
1641 spin_lock(q->queue_lock);
1642 }
1643
1644 goto out;
1645
1646 requeued:
1647 BUG_ON(!irqs_disabled());
1648 spin_lock(q->queue_lock);
1649
1650 plug_and_out:
1651 if (!elv_queue_empty(q))
1652 /* Some requests still remain, retry later */
1653 blk_plug_device(q);
1654
1655 out:
1656 dm_table_put(map);
1657
1658 return;
1659 }
1660
1661 int dm_underlying_device_busy(struct request_queue *q)
1662 {
1663 return blk_lld_busy(q);
1664 }
1665 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1666
1667 static int dm_lld_busy(struct request_queue *q)
1668 {
1669 int r;
1670 struct mapped_device *md = q->queuedata;
1671 struct dm_table *map = dm_get_live_table(md);
1672
1673 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1674 r = 1;
1675 else
1676 r = dm_table_any_busy_target(map);
1677
1678 dm_table_put(map);
1679
1680 return r;
1681 }
1682
1683 static void dm_unplug_all(struct request_queue *q)
1684 {
1685 struct mapped_device *md = q->queuedata;
1686 struct dm_table *map = dm_get_live_table(md);
1687
1688 if (map) {
1689 if (dm_request_based(md))
1690 generic_unplug_device(q);
1691
1692 dm_table_unplug_all(map);
1693 dm_table_put(map);
1694 }
1695 }
1696
1697 static int dm_any_congested(void *congested_data, int bdi_bits)
1698 {
1699 int r = bdi_bits;
1700 struct mapped_device *md = congested_data;
1701 struct dm_table *map;
1702
1703 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1704 map = dm_get_live_table(md);
1705 if (map) {
1706 /*
1707 * Request-based dm cares about only own queue for
1708 * the query about congestion status of request_queue
1709 */
1710 if (dm_request_based(md))
1711 r = md->queue->backing_dev_info.state &
1712 bdi_bits;
1713 else
1714 r = dm_table_any_congested(map, bdi_bits);
1715
1716 dm_table_put(map);
1717 }
1718 }
1719
1720 return r;
1721 }
1722
1723 /*-----------------------------------------------------------------
1724 * An IDR is used to keep track of allocated minor numbers.
1725 *---------------------------------------------------------------*/
1726 static DEFINE_IDR(_minor_idr);
1727
1728 static void free_minor(int minor)
1729 {
1730 spin_lock(&_minor_lock);
1731 idr_remove(&_minor_idr, minor);
1732 spin_unlock(&_minor_lock);
1733 }
1734
1735 /*
1736 * See if the device with a specific minor # is free.
1737 */
1738 static int specific_minor(int minor)
1739 {
1740 int r, m;
1741
1742 if (minor >= (1 << MINORBITS))
1743 return -EINVAL;
1744
1745 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1746 if (!r)
1747 return -ENOMEM;
1748
1749 spin_lock(&_minor_lock);
1750
1751 if (idr_find(&_minor_idr, minor)) {
1752 r = -EBUSY;
1753 goto out;
1754 }
1755
1756 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1757 if (r)
1758 goto out;
1759
1760 if (m != minor) {
1761 idr_remove(&_minor_idr, m);
1762 r = -EBUSY;
1763 goto out;
1764 }
1765
1766 out:
1767 spin_unlock(&_minor_lock);
1768 return r;
1769 }
1770
1771 static int next_free_minor(int *minor)
1772 {
1773 int r, m;
1774
1775 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1776 if (!r)
1777 return -ENOMEM;
1778
1779 spin_lock(&_minor_lock);
1780
1781 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1782 if (r)
1783 goto out;
1784
1785 if (m >= (1 << MINORBITS)) {
1786 idr_remove(&_minor_idr, m);
1787 r = -ENOSPC;
1788 goto out;
1789 }
1790
1791 *minor = m;
1792
1793 out:
1794 spin_unlock(&_minor_lock);
1795 return r;
1796 }
1797
1798 static const struct block_device_operations dm_blk_dops;
1799
1800 static void dm_wq_work(struct work_struct *work);
1801
1802 static void dm_init_md_queue(struct mapped_device *md)
1803 {
1804 /*
1805 * Request-based dm devices cannot be stacked on top of bio-based dm
1806 * devices. The type of this dm device has not been decided yet.
1807 * The type is decided at the first table loading time.
1808 * To prevent problematic device stacking, clear the queue flag
1809 * for request stacking support until then.
1810 *
1811 * This queue is new, so no concurrency on the queue_flags.
1812 */
1813 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1814
1815 md->queue->queuedata = md;
1816 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1817 md->queue->backing_dev_info.congested_data = md;
1818 blk_queue_make_request(md->queue, dm_request);
1819 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1820 md->queue->unplug_fn = dm_unplug_all;
1821 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1822 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1823 }
1824
1825 /*
1826 * Allocate and initialise a blank device with a given minor.
1827 */
1828 static struct mapped_device *alloc_dev(int minor)
1829 {
1830 int r;
1831 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1832 void *old_md;
1833
1834 if (!md) {
1835 DMWARN("unable to allocate device, out of memory.");
1836 return NULL;
1837 }
1838
1839 if (!try_module_get(THIS_MODULE))
1840 goto bad_module_get;
1841
1842 /* get a minor number for the dev */
1843 if (minor == DM_ANY_MINOR)
1844 r = next_free_minor(&minor);
1845 else
1846 r = specific_minor(minor);
1847 if (r < 0)
1848 goto bad_minor;
1849
1850 md->type = DM_TYPE_NONE;
1851 init_rwsem(&md->io_lock);
1852 mutex_init(&md->suspend_lock);
1853 mutex_init(&md->type_lock);
1854 spin_lock_init(&md->deferred_lock);
1855 rwlock_init(&md->map_lock);
1856 atomic_set(&md->holders, 1);
1857 atomic_set(&md->open_count, 0);
1858 atomic_set(&md->event_nr, 0);
1859 atomic_set(&md->uevent_seq, 0);
1860 INIT_LIST_HEAD(&md->uevent_list);
1861 spin_lock_init(&md->uevent_lock);
1862
1863 md->queue = blk_alloc_queue(GFP_KERNEL);
1864 if (!md->queue)
1865 goto bad_queue;
1866
1867 dm_init_md_queue(md);
1868
1869 md->disk = alloc_disk(1);
1870 if (!md->disk)
1871 goto bad_disk;
1872
1873 atomic_set(&md->pending[0], 0);
1874 atomic_set(&md->pending[1], 0);
1875 init_waitqueue_head(&md->wait);
1876 INIT_WORK(&md->work, dm_wq_work);
1877 init_waitqueue_head(&md->eventq);
1878
1879 md->disk->major = _major;
1880 md->disk->first_minor = minor;
1881 md->disk->fops = &dm_blk_dops;
1882 md->disk->queue = md->queue;
1883 md->disk->private_data = md;
1884 sprintf(md->disk->disk_name, "dm-%d", minor);
1885 add_disk(md->disk);
1886 format_dev_t(md->name, MKDEV(_major, minor));
1887
1888 md->wq = alloc_workqueue("kdmflush",
1889 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1890 if (!md->wq)
1891 goto bad_thread;
1892
1893 md->bdev = bdget_disk(md->disk, 0);
1894 if (!md->bdev)
1895 goto bad_bdev;
1896
1897 bio_init(&md->flush_bio);
1898 md->flush_bio.bi_bdev = md->bdev;
1899 md->flush_bio.bi_rw = WRITE_FLUSH;
1900
1901 /* Populate the mapping, nobody knows we exist yet */
1902 spin_lock(&_minor_lock);
1903 old_md = idr_replace(&_minor_idr, md, minor);
1904 spin_unlock(&_minor_lock);
1905
1906 BUG_ON(old_md != MINOR_ALLOCED);
1907
1908 return md;
1909
1910 bad_bdev:
1911 destroy_workqueue(md->wq);
1912 bad_thread:
1913 del_gendisk(md->disk);
1914 put_disk(md->disk);
1915 bad_disk:
1916 blk_cleanup_queue(md->queue);
1917 bad_queue:
1918 free_minor(minor);
1919 bad_minor:
1920 module_put(THIS_MODULE);
1921 bad_module_get:
1922 kfree(md);
1923 return NULL;
1924 }
1925
1926 static void unlock_fs(struct mapped_device *md);
1927
1928 static void free_dev(struct mapped_device *md)
1929 {
1930 int minor = MINOR(disk_devt(md->disk));
1931
1932 unlock_fs(md);
1933 bdput(md->bdev);
1934 destroy_workqueue(md->wq);
1935 if (md->tio_pool)
1936 mempool_destroy(md->tio_pool);
1937 if (md->io_pool)
1938 mempool_destroy(md->io_pool);
1939 if (md->bs)
1940 bioset_free(md->bs);
1941 blk_integrity_unregister(md->disk);
1942 del_gendisk(md->disk);
1943 free_minor(minor);
1944
1945 spin_lock(&_minor_lock);
1946 md->disk->private_data = NULL;
1947 spin_unlock(&_minor_lock);
1948
1949 put_disk(md->disk);
1950 blk_cleanup_queue(md->queue);
1951 module_put(THIS_MODULE);
1952 kfree(md);
1953 }
1954
1955 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956 {
1957 struct dm_md_mempools *p;
1958
1959 if (md->io_pool && md->tio_pool && md->bs)
1960 /* the md already has necessary mempools */
1961 goto out;
1962
1963 p = dm_table_get_md_mempools(t);
1964 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1965
1966 md->io_pool = p->io_pool;
1967 p->io_pool = NULL;
1968 md->tio_pool = p->tio_pool;
1969 p->tio_pool = NULL;
1970 md->bs = p->bs;
1971 p->bs = NULL;
1972
1973 out:
1974 /* mempool bind completed, now no need any mempools in the table */
1975 dm_table_free_md_mempools(t);
1976 }
1977
1978 /*
1979 * Bind a table to the device.
1980 */
1981 static void event_callback(void *context)
1982 {
1983 unsigned long flags;
1984 LIST_HEAD(uevents);
1985 struct mapped_device *md = (struct mapped_device *) context;
1986
1987 spin_lock_irqsave(&md->uevent_lock, flags);
1988 list_splice_init(&md->uevent_list, &uevents);
1989 spin_unlock_irqrestore(&md->uevent_lock, flags);
1990
1991 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1992
1993 atomic_inc(&md->event_nr);
1994 wake_up(&md->eventq);
1995 }
1996
1997 /*
1998 * Protected by md->suspend_lock obtained by dm_swap_table().
1999 */
2000 static void __set_size(struct mapped_device *md, sector_t size)
2001 {
2002 set_capacity(md->disk, size);
2003
2004 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2005 }
2006
2007 /*
2008 * Returns old map, which caller must destroy.
2009 */
2010 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2011 struct queue_limits *limits)
2012 {
2013 struct dm_table *old_map;
2014 struct request_queue *q = md->queue;
2015 sector_t size;
2016 unsigned long flags;
2017
2018 size = dm_table_get_size(t);
2019
2020 /*
2021 * Wipe any geometry if the size of the table changed.
2022 */
2023 if (size != get_capacity(md->disk))
2024 memset(&md->geometry, 0, sizeof(md->geometry));
2025
2026 __set_size(md, size);
2027
2028 dm_table_event_callback(t, event_callback, md);
2029
2030 /*
2031 * The queue hasn't been stopped yet, if the old table type wasn't
2032 * for request-based during suspension. So stop it to prevent
2033 * I/O mapping before resume.
2034 * This must be done before setting the queue restrictions,
2035 * because request-based dm may be run just after the setting.
2036 */
2037 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2038 stop_queue(q);
2039
2040 __bind_mempools(md, t);
2041
2042 write_lock_irqsave(&md->map_lock, flags);
2043 old_map = md->map;
2044 md->map = t;
2045 dm_table_set_restrictions(t, q, limits);
2046 write_unlock_irqrestore(&md->map_lock, flags);
2047
2048 return old_map;
2049 }
2050
2051 /*
2052 * Returns unbound table for the caller to free.
2053 */
2054 static struct dm_table *__unbind(struct mapped_device *md)
2055 {
2056 struct dm_table *map = md->map;
2057 unsigned long flags;
2058
2059 if (!map)
2060 return NULL;
2061
2062 dm_table_event_callback(map, NULL, NULL);
2063 write_lock_irqsave(&md->map_lock, flags);
2064 md->map = NULL;
2065 write_unlock_irqrestore(&md->map_lock, flags);
2066
2067 return map;
2068 }
2069
2070 /*
2071 * Constructor for a new device.
2072 */
2073 int dm_create(int minor, struct mapped_device **result)
2074 {
2075 struct mapped_device *md;
2076
2077 md = alloc_dev(minor);
2078 if (!md)
2079 return -ENXIO;
2080
2081 dm_sysfs_init(md);
2082
2083 *result = md;
2084 return 0;
2085 }
2086
2087 /*
2088 * Functions to manage md->type.
2089 * All are required to hold md->type_lock.
2090 */
2091 void dm_lock_md_type(struct mapped_device *md)
2092 {
2093 mutex_lock(&md->type_lock);
2094 }
2095
2096 void dm_unlock_md_type(struct mapped_device *md)
2097 {
2098 mutex_unlock(&md->type_lock);
2099 }
2100
2101 void dm_set_md_type(struct mapped_device *md, unsigned type)
2102 {
2103 md->type = type;
2104 }
2105
2106 unsigned dm_get_md_type(struct mapped_device *md)
2107 {
2108 return md->type;
2109 }
2110
2111 /*
2112 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2113 */
2114 static int dm_init_request_based_queue(struct mapped_device *md)
2115 {
2116 struct request_queue *q = NULL;
2117
2118 if (md->queue->elevator)
2119 return 1;
2120
2121 /* Fully initialize the queue */
2122 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2123 if (!q)
2124 return 0;
2125
2126 md->queue = q;
2127 md->saved_make_request_fn = md->queue->make_request_fn;
2128 dm_init_md_queue(md);
2129 blk_queue_softirq_done(md->queue, dm_softirq_done);
2130 blk_queue_prep_rq(md->queue, dm_prep_fn);
2131 blk_queue_lld_busy(md->queue, dm_lld_busy);
2132
2133 elv_register_queue(md->queue);
2134
2135 return 1;
2136 }
2137
2138 /*
2139 * Setup the DM device's queue based on md's type
2140 */
2141 int dm_setup_md_queue(struct mapped_device *md)
2142 {
2143 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2144 !dm_init_request_based_queue(md)) {
2145 DMWARN("Cannot initialize queue for request-based mapped device");
2146 return -EINVAL;
2147 }
2148
2149 return 0;
2150 }
2151
2152 static struct mapped_device *dm_find_md(dev_t dev)
2153 {
2154 struct mapped_device *md;
2155 unsigned minor = MINOR(dev);
2156
2157 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2158 return NULL;
2159
2160 spin_lock(&_minor_lock);
2161
2162 md = idr_find(&_minor_idr, minor);
2163 if (md && (md == MINOR_ALLOCED ||
2164 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2165 dm_deleting_md(md) ||
2166 test_bit(DMF_FREEING, &md->flags))) {
2167 md = NULL;
2168 goto out;
2169 }
2170
2171 out:
2172 spin_unlock(&_minor_lock);
2173
2174 return md;
2175 }
2176
2177 struct mapped_device *dm_get_md(dev_t dev)
2178 {
2179 struct mapped_device *md = dm_find_md(dev);
2180
2181 if (md)
2182 dm_get(md);
2183
2184 return md;
2185 }
2186
2187 void *dm_get_mdptr(struct mapped_device *md)
2188 {
2189 return md->interface_ptr;
2190 }
2191
2192 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2193 {
2194 md->interface_ptr = ptr;
2195 }
2196
2197 void dm_get(struct mapped_device *md)
2198 {
2199 atomic_inc(&md->holders);
2200 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2201 }
2202
2203 const char *dm_device_name(struct mapped_device *md)
2204 {
2205 return md->name;
2206 }
2207 EXPORT_SYMBOL_GPL(dm_device_name);
2208
2209 static void __dm_destroy(struct mapped_device *md, bool wait)
2210 {
2211 struct dm_table *map;
2212
2213 might_sleep();
2214
2215 spin_lock(&_minor_lock);
2216 map = dm_get_live_table(md);
2217 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2218 set_bit(DMF_FREEING, &md->flags);
2219 spin_unlock(&_minor_lock);
2220
2221 if (!dm_suspended_md(md)) {
2222 dm_table_presuspend_targets(map);
2223 dm_table_postsuspend_targets(map);
2224 }
2225
2226 /*
2227 * Rare, but there may be I/O requests still going to complete,
2228 * for example. Wait for all references to disappear.
2229 * No one should increment the reference count of the mapped_device,
2230 * after the mapped_device state becomes DMF_FREEING.
2231 */
2232 if (wait)
2233 while (atomic_read(&md->holders))
2234 msleep(1);
2235 else if (atomic_read(&md->holders))
2236 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2237 dm_device_name(md), atomic_read(&md->holders));
2238
2239 dm_sysfs_exit(md);
2240 dm_table_put(map);
2241 dm_table_destroy(__unbind(md));
2242 free_dev(md);
2243 }
2244
2245 void dm_destroy(struct mapped_device *md)
2246 {
2247 __dm_destroy(md, true);
2248 }
2249
2250 void dm_destroy_immediate(struct mapped_device *md)
2251 {
2252 __dm_destroy(md, false);
2253 }
2254
2255 void dm_put(struct mapped_device *md)
2256 {
2257 atomic_dec(&md->holders);
2258 }
2259 EXPORT_SYMBOL_GPL(dm_put);
2260
2261 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2262 {
2263 int r = 0;
2264 DECLARE_WAITQUEUE(wait, current);
2265
2266 dm_unplug_all(md->queue);
2267
2268 add_wait_queue(&md->wait, &wait);
2269
2270 while (1) {
2271 set_current_state(interruptible);
2272
2273 smp_mb();
2274 if (!md_in_flight(md))
2275 break;
2276
2277 if (interruptible == TASK_INTERRUPTIBLE &&
2278 signal_pending(current)) {
2279 r = -EINTR;
2280 break;
2281 }
2282
2283 io_schedule();
2284 }
2285 set_current_state(TASK_RUNNING);
2286
2287 remove_wait_queue(&md->wait, &wait);
2288
2289 return r;
2290 }
2291
2292 /*
2293 * Process the deferred bios
2294 */
2295 static void dm_wq_work(struct work_struct *work)
2296 {
2297 struct mapped_device *md = container_of(work, struct mapped_device,
2298 work);
2299 struct bio *c;
2300
2301 down_read(&md->io_lock);
2302
2303 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2304 spin_lock_irq(&md->deferred_lock);
2305 c = bio_list_pop(&md->deferred);
2306 spin_unlock_irq(&md->deferred_lock);
2307
2308 if (!c)
2309 break;
2310
2311 up_read(&md->io_lock);
2312
2313 if (dm_request_based(md))
2314 generic_make_request(c);
2315 else
2316 __split_and_process_bio(md, c);
2317
2318 down_read(&md->io_lock);
2319 }
2320
2321 up_read(&md->io_lock);
2322 }
2323
2324 static void dm_queue_flush(struct mapped_device *md)
2325 {
2326 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2327 smp_mb__after_clear_bit();
2328 queue_work(md->wq, &md->work);
2329 }
2330
2331 /*
2332 * Swap in a new table, returning the old one for the caller to destroy.
2333 */
2334 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2335 {
2336 struct dm_table *map = ERR_PTR(-EINVAL);
2337 struct queue_limits limits;
2338 int r;
2339
2340 mutex_lock(&md->suspend_lock);
2341
2342 /* device must be suspended */
2343 if (!dm_suspended_md(md))
2344 goto out;
2345
2346 r = dm_calculate_queue_limits(table, &limits);
2347 if (r) {
2348 map = ERR_PTR(r);
2349 goto out;
2350 }
2351
2352 map = __bind(md, table, &limits);
2353
2354 out:
2355 mutex_unlock(&md->suspend_lock);
2356 return map;
2357 }
2358
2359 /*
2360 * Functions to lock and unlock any filesystem running on the
2361 * device.
2362 */
2363 static int lock_fs(struct mapped_device *md)
2364 {
2365 int r;
2366
2367 WARN_ON(md->frozen_sb);
2368
2369 md->frozen_sb = freeze_bdev(md->bdev);
2370 if (IS_ERR(md->frozen_sb)) {
2371 r = PTR_ERR(md->frozen_sb);
2372 md->frozen_sb = NULL;
2373 return r;
2374 }
2375
2376 set_bit(DMF_FROZEN, &md->flags);
2377
2378 return 0;
2379 }
2380
2381 static void unlock_fs(struct mapped_device *md)
2382 {
2383 if (!test_bit(DMF_FROZEN, &md->flags))
2384 return;
2385
2386 thaw_bdev(md->bdev, md->frozen_sb);
2387 md->frozen_sb = NULL;
2388 clear_bit(DMF_FROZEN, &md->flags);
2389 }
2390
2391 /*
2392 * We need to be able to change a mapping table under a mounted
2393 * filesystem. For example we might want to move some data in
2394 * the background. Before the table can be swapped with
2395 * dm_bind_table, dm_suspend must be called to flush any in
2396 * flight bios and ensure that any further io gets deferred.
2397 */
2398 /*
2399 * Suspend mechanism in request-based dm.
2400 *
2401 * 1. Flush all I/Os by lock_fs() if needed.
2402 * 2. Stop dispatching any I/O by stopping the request_queue.
2403 * 3. Wait for all in-flight I/Os to be completed or requeued.
2404 *
2405 * To abort suspend, start the request_queue.
2406 */
2407 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2408 {
2409 struct dm_table *map = NULL;
2410 int r = 0;
2411 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2412 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2413
2414 mutex_lock(&md->suspend_lock);
2415
2416 if (dm_suspended_md(md)) {
2417 r = -EINVAL;
2418 goto out_unlock;
2419 }
2420
2421 map = dm_get_live_table(md);
2422
2423 /*
2424 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2425 * This flag is cleared before dm_suspend returns.
2426 */
2427 if (noflush)
2428 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2429
2430 /* This does not get reverted if there's an error later. */
2431 dm_table_presuspend_targets(map);
2432
2433 /*
2434 * Flush I/O to the device.
2435 * Any I/O submitted after lock_fs() may not be flushed.
2436 * noflush takes precedence over do_lockfs.
2437 * (lock_fs() flushes I/Os and waits for them to complete.)
2438 */
2439 if (!noflush && do_lockfs) {
2440 r = lock_fs(md);
2441 if (r)
2442 goto out;
2443 }
2444
2445 /*
2446 * Here we must make sure that no processes are submitting requests
2447 * to target drivers i.e. no one may be executing
2448 * __split_and_process_bio. This is called from dm_request and
2449 * dm_wq_work.
2450 *
2451 * To get all processes out of __split_and_process_bio in dm_request,
2452 * we take the write lock. To prevent any process from reentering
2453 * __split_and_process_bio from dm_request and quiesce the thread
2454 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2455 * flush_workqueue(md->wq).
2456 */
2457 down_write(&md->io_lock);
2458 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2459 up_write(&md->io_lock);
2460
2461 /*
2462 * Stop md->queue before flushing md->wq in case request-based
2463 * dm defers requests to md->wq from md->queue.
2464 */
2465 if (dm_request_based(md))
2466 stop_queue(md->queue);
2467
2468 flush_workqueue(md->wq);
2469
2470 /*
2471 * At this point no more requests are entering target request routines.
2472 * We call dm_wait_for_completion to wait for all existing requests
2473 * to finish.
2474 */
2475 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2476
2477 down_write(&md->io_lock);
2478 if (noflush)
2479 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2480 up_write(&md->io_lock);
2481
2482 /* were we interrupted ? */
2483 if (r < 0) {
2484 dm_queue_flush(md);
2485
2486 if (dm_request_based(md))
2487 start_queue(md->queue);
2488
2489 unlock_fs(md);
2490 goto out; /* pushback list is already flushed, so skip flush */
2491 }
2492
2493 /*
2494 * If dm_wait_for_completion returned 0, the device is completely
2495 * quiescent now. There is no request-processing activity. All new
2496 * requests are being added to md->deferred list.
2497 */
2498
2499 set_bit(DMF_SUSPENDED, &md->flags);
2500
2501 dm_table_postsuspend_targets(map);
2502
2503 out:
2504 dm_table_put(map);
2505
2506 out_unlock:
2507 mutex_unlock(&md->suspend_lock);
2508 return r;
2509 }
2510
2511 int dm_resume(struct mapped_device *md)
2512 {
2513 int r = -EINVAL;
2514 struct dm_table *map = NULL;
2515
2516 mutex_lock(&md->suspend_lock);
2517 if (!dm_suspended_md(md))
2518 goto out;
2519
2520 map = dm_get_live_table(md);
2521 if (!map || !dm_table_get_size(map))
2522 goto out;
2523
2524 r = dm_table_resume_targets(map);
2525 if (r)
2526 goto out;
2527
2528 dm_queue_flush(md);
2529
2530 /*
2531 * Flushing deferred I/Os must be done after targets are resumed
2532 * so that mapping of targets can work correctly.
2533 * Request-based dm is queueing the deferred I/Os in its request_queue.
2534 */
2535 if (dm_request_based(md))
2536 start_queue(md->queue);
2537
2538 unlock_fs(md);
2539
2540 clear_bit(DMF_SUSPENDED, &md->flags);
2541
2542 dm_table_unplug_all(map);
2543 r = 0;
2544 out:
2545 dm_table_put(map);
2546 mutex_unlock(&md->suspend_lock);
2547
2548 return r;
2549 }
2550
2551 /*-----------------------------------------------------------------
2552 * Event notification.
2553 *---------------------------------------------------------------*/
2554 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2555 unsigned cookie)
2556 {
2557 char udev_cookie[DM_COOKIE_LENGTH];
2558 char *envp[] = { udev_cookie, NULL };
2559
2560 if (!cookie)
2561 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2562 else {
2563 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2564 DM_COOKIE_ENV_VAR_NAME, cookie);
2565 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2566 action, envp);
2567 }
2568 }
2569
2570 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2571 {
2572 return atomic_add_return(1, &md->uevent_seq);
2573 }
2574
2575 uint32_t dm_get_event_nr(struct mapped_device *md)
2576 {
2577 return atomic_read(&md->event_nr);
2578 }
2579
2580 int dm_wait_event(struct mapped_device *md, int event_nr)
2581 {
2582 return wait_event_interruptible(md->eventq,
2583 (event_nr != atomic_read(&md->event_nr)));
2584 }
2585
2586 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2587 {
2588 unsigned long flags;
2589
2590 spin_lock_irqsave(&md->uevent_lock, flags);
2591 list_add(elist, &md->uevent_list);
2592 spin_unlock_irqrestore(&md->uevent_lock, flags);
2593 }
2594
2595 /*
2596 * The gendisk is only valid as long as you have a reference
2597 * count on 'md'.
2598 */
2599 struct gendisk *dm_disk(struct mapped_device *md)
2600 {
2601 return md->disk;
2602 }
2603
2604 struct kobject *dm_kobject(struct mapped_device *md)
2605 {
2606 return &md->kobj;
2607 }
2608
2609 /*
2610 * struct mapped_device should not be exported outside of dm.c
2611 * so use this check to verify that kobj is part of md structure
2612 */
2613 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2614 {
2615 struct mapped_device *md;
2616
2617 md = container_of(kobj, struct mapped_device, kobj);
2618 if (&md->kobj != kobj)
2619 return NULL;
2620
2621 if (test_bit(DMF_FREEING, &md->flags) ||
2622 dm_deleting_md(md))
2623 return NULL;
2624
2625 dm_get(md);
2626 return md;
2627 }
2628
2629 int dm_suspended_md(struct mapped_device *md)
2630 {
2631 return test_bit(DMF_SUSPENDED, &md->flags);
2632 }
2633
2634 int dm_suspended(struct dm_target *ti)
2635 {
2636 return dm_suspended_md(dm_table_get_md(ti->table));
2637 }
2638 EXPORT_SYMBOL_GPL(dm_suspended);
2639
2640 int dm_noflush_suspending(struct dm_target *ti)
2641 {
2642 return __noflush_suspending(dm_table_get_md(ti->table));
2643 }
2644 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2645
2646 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2647 {
2648 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2649
2650 if (!pools)
2651 return NULL;
2652
2653 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2654 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2655 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2656 if (!pools->io_pool)
2657 goto free_pools_and_out;
2658
2659 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2660 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2661 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2662 if (!pools->tio_pool)
2663 goto free_io_pool_and_out;
2664
2665 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2666 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2667 if (!pools->bs)
2668 goto free_tio_pool_and_out;
2669
2670 return pools;
2671
2672 free_tio_pool_and_out:
2673 mempool_destroy(pools->tio_pool);
2674
2675 free_io_pool_and_out:
2676 mempool_destroy(pools->io_pool);
2677
2678 free_pools_and_out:
2679 kfree(pools);
2680
2681 return NULL;
2682 }
2683
2684 void dm_free_md_mempools(struct dm_md_mempools *pools)
2685 {
2686 if (!pools)
2687 return;
2688
2689 if (pools->io_pool)
2690 mempool_destroy(pools->io_pool);
2691
2692 if (pools->tio_pool)
2693 mempool_destroy(pools->tio_pool);
2694
2695 if (pools->bs)
2696 bioset_free(pools->bs);
2697
2698 kfree(pools);
2699 }
2700
2701 static const struct block_device_operations dm_blk_dops = {
2702 .open = dm_blk_open,
2703 .release = dm_blk_close,
2704 .ioctl = dm_blk_ioctl,
2705 .getgeo = dm_blk_getgeo,
2706 .owner = THIS_MODULE
2707 };
2708
2709 EXPORT_SYMBOL(dm_get_mapinfo);
2710
2711 /*
2712 * module hooks
2713 */
2714 module_init(dm_init);
2715 module_exit(dm_exit);
2716
2717 module_param(major, uint, 0);
2718 MODULE_PARM_DESC(major, "The major number of the device mapper");
2719 MODULE_DESCRIPTION(DM_NAME " driver");
2720 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2721 MODULE_LICENSE("GPL");