]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 /*
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
30 */
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
33
34 static const char *_name = DM_NAME;
35
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
38
39 static DEFINE_SPINLOCK(_minor_lock);
40 /*
41 * For bio-based dm.
42 * One of these is allocated per bio.
43 */
44 struct dm_io {
45 struct mapped_device *md;
46 int error;
47 atomic_t io_count;
48 struct bio *bio;
49 unsigned long start_time;
50 };
51
52 /*
53 * For bio-based dm.
54 * One of these is allocated per target within a bio. Hopefully
55 * this will be simplified out one day.
56 */
57 struct dm_target_io {
58 struct dm_io *io;
59 struct dm_target *ti;
60 union map_info info;
61 };
62
63 /*
64 * For request-based dm.
65 * One of these is allocated per request.
66 */
67 struct dm_rq_target_io {
68 struct mapped_device *md;
69 struct dm_target *ti;
70 struct request *orig, clone;
71 int error;
72 union map_info info;
73 };
74
75 /*
76 * For request-based dm.
77 * One of these is allocated per bio.
78 */
79 struct dm_rq_clone_bio_info {
80 struct bio *orig;
81 struct dm_rq_target_io *tio;
82 };
83
84 union map_info *dm_get_mapinfo(struct bio *bio)
85 {
86 if (bio && bio->bi_private)
87 return &((struct dm_target_io *)bio->bi_private)->info;
88 return NULL;
89 }
90
91 union map_info *dm_get_rq_mapinfo(struct request *rq)
92 {
93 if (rq && rq->end_io_data)
94 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
95 return NULL;
96 }
97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
98
99 #define MINOR_ALLOCED ((void *)-1)
100
101 /*
102 * Bits for the md->flags field.
103 */
104 #define DMF_BLOCK_IO_FOR_SUSPEND 0
105 #define DMF_SUSPENDED 1
106 #define DMF_FROZEN 2
107 #define DMF_FREEING 3
108 #define DMF_DELETING 4
109 #define DMF_NOFLUSH_SUSPENDING 5
110 #define DMF_QUEUE_IO_TO_THREAD 6
111
112 /*
113 * Work processed by per-device workqueue.
114 */
115 struct mapped_device {
116 struct rw_semaphore io_lock;
117 struct mutex suspend_lock;
118 rwlock_t map_lock;
119 atomic_t holders;
120 atomic_t open_count;
121
122 unsigned long flags;
123
124 struct request_queue *queue;
125 struct gendisk *disk;
126 char name[16];
127
128 void *interface_ptr;
129
130 /*
131 * A list of ios that arrived while we were suspended.
132 */
133 atomic_t pending;
134 wait_queue_head_t wait;
135 struct work_struct work;
136 struct bio_list deferred;
137 spinlock_t deferred_lock;
138
139 /*
140 * An error from the barrier request currently being processed.
141 */
142 int barrier_error;
143
144 /*
145 * Processing queue (flush/barriers)
146 */
147 struct workqueue_struct *wq;
148
149 /*
150 * The current mapping.
151 */
152 struct dm_table *map;
153
154 /*
155 * io objects are allocated from here.
156 */
157 mempool_t *io_pool;
158 mempool_t *tio_pool;
159
160 struct bio_set *bs;
161
162 /*
163 * Event handling.
164 */
165 atomic_t event_nr;
166 wait_queue_head_t eventq;
167 atomic_t uevent_seq;
168 struct list_head uevent_list;
169 spinlock_t uevent_lock; /* Protect access to uevent_list */
170
171 /*
172 * freeze/thaw support require holding onto a super block
173 */
174 struct super_block *frozen_sb;
175 struct block_device *bdev;
176
177 /* forced geometry settings */
178 struct hd_geometry geometry;
179
180 /* marker of flush suspend for request-based dm */
181 struct request suspend_rq;
182
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
185
186 /* sysfs handle */
187 struct kobject kobj;
188
189 /* zero-length barrier that will be cloned and submitted to targets */
190 struct bio barrier_bio;
191 };
192
193 /*
194 * For mempools pre-allocation at the table loading time.
195 */
196 struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
200 };
201
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_tio_cache;
205 static struct kmem_cache *_rq_tio_cache;
206 static struct kmem_cache *_rq_bio_info_cache;
207
208 static int __init local_init(void)
209 {
210 int r = -ENOMEM;
211
212 /* allocate a slab for the dm_ios */
213 _io_cache = KMEM_CACHE(dm_io, 0);
214 if (!_io_cache)
215 return r;
216
217 /* allocate a slab for the target ios */
218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
219 if (!_tio_cache)
220 goto out_free_io_cache;
221
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
225
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
229
230 r = dm_uevent_init();
231 if (r)
232 goto out_free_rq_bio_info_cache;
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_uevent_exit;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244 out_uevent_exit:
245 dm_uevent_exit();
246 out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248 out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
250 out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252 out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
254
255 return r;
256 }
257
258 static void local_exit(void)
259 {
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
264 unregister_blkdev(_major, _name);
265 dm_uevent_exit();
266
267 _major = 0;
268
269 DMINFO("cleaned up");
270 }
271
272 static int (*_inits[])(void) __initdata = {
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
277 dm_kcopyd_init,
278 dm_interface_init,
279 };
280
281 static void (*_exits[])(void) = {
282 local_exit,
283 dm_target_exit,
284 dm_linear_exit,
285 dm_stripe_exit,
286 dm_kcopyd_exit,
287 dm_interface_exit,
288 };
289
290 static int __init dm_init(void)
291 {
292 const int count = ARRAY_SIZE(_inits);
293
294 int r, i;
295
296 for (i = 0; i < count; i++) {
297 r = _inits[i]();
298 if (r)
299 goto bad;
300 }
301
302 return 0;
303
304 bad:
305 while (i--)
306 _exits[i]();
307
308 return r;
309 }
310
311 static void __exit dm_exit(void)
312 {
313 int i = ARRAY_SIZE(_exits);
314
315 while (i--)
316 _exits[i]();
317 }
318
319 /*
320 * Block device functions
321 */
322 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
323 {
324 struct mapped_device *md;
325
326 spin_lock(&_minor_lock);
327
328 md = bdev->bd_disk->private_data;
329 if (!md)
330 goto out;
331
332 if (test_bit(DMF_FREEING, &md->flags) ||
333 test_bit(DMF_DELETING, &md->flags)) {
334 md = NULL;
335 goto out;
336 }
337
338 dm_get(md);
339 atomic_inc(&md->open_count);
340
341 out:
342 spin_unlock(&_minor_lock);
343
344 return md ? 0 : -ENXIO;
345 }
346
347 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
348 {
349 struct mapped_device *md = disk->private_data;
350 atomic_dec(&md->open_count);
351 dm_put(md);
352 return 0;
353 }
354
355 int dm_open_count(struct mapped_device *md)
356 {
357 return atomic_read(&md->open_count);
358 }
359
360 /*
361 * Guarantees nothing is using the device before it's deleted.
362 */
363 int dm_lock_for_deletion(struct mapped_device *md)
364 {
365 int r = 0;
366
367 spin_lock(&_minor_lock);
368
369 if (dm_open_count(md))
370 r = -EBUSY;
371 else
372 set_bit(DMF_DELETING, &md->flags);
373
374 spin_unlock(&_minor_lock);
375
376 return r;
377 }
378
379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
380 {
381 struct mapped_device *md = bdev->bd_disk->private_data;
382
383 return dm_get_geometry(md, geo);
384 }
385
386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
387 unsigned int cmd, unsigned long arg)
388 {
389 struct mapped_device *md = bdev->bd_disk->private_data;
390 struct dm_table *map = dm_get_table(md);
391 struct dm_target *tgt;
392 int r = -ENOTTY;
393
394 if (!map || !dm_table_get_size(map))
395 goto out;
396
397 /* We only support devices that have a single target */
398 if (dm_table_get_num_targets(map) != 1)
399 goto out;
400
401 tgt = dm_table_get_target(map, 0);
402
403 if (dm_suspended(md)) {
404 r = -EAGAIN;
405 goto out;
406 }
407
408 if (tgt->type->ioctl)
409 r = tgt->type->ioctl(tgt, cmd, arg);
410
411 out:
412 dm_table_put(map);
413
414 return r;
415 }
416
417 static struct dm_io *alloc_io(struct mapped_device *md)
418 {
419 return mempool_alloc(md->io_pool, GFP_NOIO);
420 }
421
422 static void free_io(struct mapped_device *md, struct dm_io *io)
423 {
424 mempool_free(io, md->io_pool);
425 }
426
427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
428 {
429 mempool_free(tio, md->tio_pool);
430 }
431
432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
433 {
434 return mempool_alloc(md->tio_pool, GFP_ATOMIC);
435 }
436
437 static void free_rq_tio(struct dm_rq_target_io *tio)
438 {
439 mempool_free(tio, tio->md->tio_pool);
440 }
441
442 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
443 {
444 return mempool_alloc(md->io_pool, GFP_ATOMIC);
445 }
446
447 static void free_bio_info(struct dm_rq_clone_bio_info *info)
448 {
449 mempool_free(info, info->tio->md->io_pool);
450 }
451
452 static void start_io_acct(struct dm_io *io)
453 {
454 struct mapped_device *md = io->md;
455 int cpu;
456
457 io->start_time = jiffies;
458
459 cpu = part_stat_lock();
460 part_round_stats(cpu, &dm_disk(md)->part0);
461 part_stat_unlock();
462 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
463 }
464
465 static void end_io_acct(struct dm_io *io)
466 {
467 struct mapped_device *md = io->md;
468 struct bio *bio = io->bio;
469 unsigned long duration = jiffies - io->start_time;
470 int pending, cpu;
471 int rw = bio_data_dir(bio);
472
473 cpu = part_stat_lock();
474 part_round_stats(cpu, &dm_disk(md)->part0);
475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 part_stat_unlock();
477
478 /*
479 * After this is decremented the bio must not be touched if it is
480 * a barrier.
481 */
482 dm_disk(md)->part0.in_flight = pending =
483 atomic_dec_return(&md->pending);
484
485 /* nudge anyone waiting on suspend queue */
486 if (!pending)
487 wake_up(&md->wait);
488 }
489
490 /*
491 * Add the bio to the list of deferred io.
492 */
493 static void queue_io(struct mapped_device *md, struct bio *bio)
494 {
495 down_write(&md->io_lock);
496
497 spin_lock_irq(&md->deferred_lock);
498 bio_list_add(&md->deferred, bio);
499 spin_unlock_irq(&md->deferred_lock);
500
501 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
502 queue_work(md->wq, &md->work);
503
504 up_write(&md->io_lock);
505 }
506
507 /*
508 * Everyone (including functions in this file), should use this
509 * function to access the md->map field, and make sure they call
510 * dm_table_put() when finished.
511 */
512 struct dm_table *dm_get_table(struct mapped_device *md)
513 {
514 struct dm_table *t;
515 unsigned long flags;
516
517 read_lock_irqsave(&md->map_lock, flags);
518 t = md->map;
519 if (t)
520 dm_table_get(t);
521 read_unlock_irqrestore(&md->map_lock, flags);
522
523 return t;
524 }
525
526 /*
527 * Get the geometry associated with a dm device
528 */
529 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
530 {
531 *geo = md->geometry;
532
533 return 0;
534 }
535
536 /*
537 * Set the geometry of a device.
538 */
539 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
540 {
541 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
542
543 if (geo->start > sz) {
544 DMWARN("Start sector is beyond the geometry limits.");
545 return -EINVAL;
546 }
547
548 md->geometry = *geo;
549
550 return 0;
551 }
552
553 /*-----------------------------------------------------------------
554 * CRUD START:
555 * A more elegant soln is in the works that uses the queue
556 * merge fn, unfortunately there are a couple of changes to
557 * the block layer that I want to make for this. So in the
558 * interests of getting something for people to use I give
559 * you this clearly demarcated crap.
560 *---------------------------------------------------------------*/
561
562 static int __noflush_suspending(struct mapped_device *md)
563 {
564 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
565 }
566
567 /*
568 * Decrements the number of outstanding ios that a bio has been
569 * cloned into, completing the original io if necc.
570 */
571 static void dec_pending(struct dm_io *io, int error)
572 {
573 unsigned long flags;
574 int io_error;
575 struct bio *bio;
576 struct mapped_device *md = io->md;
577
578 /* Push-back supersedes any I/O errors */
579 if (error && !(io->error > 0 && __noflush_suspending(md)))
580 io->error = error;
581
582 if (atomic_dec_and_test(&io->io_count)) {
583 if (io->error == DM_ENDIO_REQUEUE) {
584 /*
585 * Target requested pushing back the I/O.
586 */
587 spin_lock_irqsave(&md->deferred_lock, flags);
588 if (__noflush_suspending(md)) {
589 if (!bio_barrier(io->bio))
590 bio_list_add_head(&md->deferred,
591 io->bio);
592 } else
593 /* noflush suspend was interrupted. */
594 io->error = -EIO;
595 spin_unlock_irqrestore(&md->deferred_lock, flags);
596 }
597
598 io_error = io->error;
599 bio = io->bio;
600
601 if (bio_barrier(bio)) {
602 /*
603 * There can be just one barrier request so we use
604 * a per-device variable for error reporting.
605 * Note that you can't touch the bio after end_io_acct
606 */
607 if (!md->barrier_error && io_error != -EOPNOTSUPP)
608 md->barrier_error = io_error;
609 end_io_acct(io);
610 } else {
611 end_io_acct(io);
612
613 if (io_error != DM_ENDIO_REQUEUE) {
614 trace_block_bio_complete(md->queue, bio);
615
616 bio_endio(bio, io_error);
617 }
618 }
619
620 free_io(md, io);
621 }
622 }
623
624 static void clone_endio(struct bio *bio, int error)
625 {
626 int r = 0;
627 struct dm_target_io *tio = bio->bi_private;
628 struct dm_io *io = tio->io;
629 struct mapped_device *md = tio->io->md;
630 dm_endio_fn endio = tio->ti->type->end_io;
631
632 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
633 error = -EIO;
634
635 if (endio) {
636 r = endio(tio->ti, bio, error, &tio->info);
637 if (r < 0 || r == DM_ENDIO_REQUEUE)
638 /*
639 * error and requeue request are handled
640 * in dec_pending().
641 */
642 error = r;
643 else if (r == DM_ENDIO_INCOMPLETE)
644 /* The target will handle the io */
645 return;
646 else if (r) {
647 DMWARN("unimplemented target endio return value: %d", r);
648 BUG();
649 }
650 }
651
652 /*
653 * Store md for cleanup instead of tio which is about to get freed.
654 */
655 bio->bi_private = md->bs;
656
657 free_tio(md, tio);
658 bio_put(bio);
659 dec_pending(io, error);
660 }
661
662 /*
663 * Partial completion handling for request-based dm
664 */
665 static void end_clone_bio(struct bio *clone, int error)
666 {
667 struct dm_rq_clone_bio_info *info = clone->bi_private;
668 struct dm_rq_target_io *tio = info->tio;
669 struct bio *bio = info->orig;
670 unsigned int nr_bytes = info->orig->bi_size;
671
672 bio_put(clone);
673
674 if (tio->error)
675 /*
676 * An error has already been detected on the request.
677 * Once error occurred, just let clone->end_io() handle
678 * the remainder.
679 */
680 return;
681 else if (error) {
682 /*
683 * Don't notice the error to the upper layer yet.
684 * The error handling decision is made by the target driver,
685 * when the request is completed.
686 */
687 tio->error = error;
688 return;
689 }
690
691 /*
692 * I/O for the bio successfully completed.
693 * Notice the data completion to the upper layer.
694 */
695
696 /*
697 * bios are processed from the head of the list.
698 * So the completing bio should always be rq->bio.
699 * If it's not, something wrong is happening.
700 */
701 if (tio->orig->bio != bio)
702 DMERR("bio completion is going in the middle of the request");
703
704 /*
705 * Update the original request.
706 * Do not use blk_end_request() here, because it may complete
707 * the original request before the clone, and break the ordering.
708 */
709 blk_update_request(tio->orig, 0, nr_bytes);
710 }
711
712 /*
713 * Don't touch any member of the md after calling this function because
714 * the md may be freed in dm_put() at the end of this function.
715 * Or do dm_get() before calling this function and dm_put() later.
716 */
717 static void rq_completed(struct mapped_device *md, int run_queue)
718 {
719 int wakeup_waiters = 0;
720 struct request_queue *q = md->queue;
721 unsigned long flags;
722
723 spin_lock_irqsave(q->queue_lock, flags);
724 if (!queue_in_flight(q))
725 wakeup_waiters = 1;
726 spin_unlock_irqrestore(q->queue_lock, flags);
727
728 /* nudge anyone waiting on suspend queue */
729 if (wakeup_waiters)
730 wake_up(&md->wait);
731
732 if (run_queue)
733 blk_run_queue(q);
734
735 /*
736 * dm_put() must be at the end of this function. See the comment above
737 */
738 dm_put(md);
739 }
740
741 static void free_rq_clone(struct request *clone)
742 {
743 struct dm_rq_target_io *tio = clone->end_io_data;
744
745 blk_rq_unprep_clone(clone);
746 free_rq_tio(tio);
747 }
748
749 static void dm_unprep_request(struct request *rq)
750 {
751 struct request *clone = rq->special;
752
753 rq->special = NULL;
754 rq->cmd_flags &= ~REQ_DONTPREP;
755
756 free_rq_clone(clone);
757 }
758
759 /*
760 * Requeue the original request of a clone.
761 */
762 void dm_requeue_unmapped_request(struct request *clone)
763 {
764 struct dm_rq_target_io *tio = clone->end_io_data;
765 struct mapped_device *md = tio->md;
766 struct request *rq = tio->orig;
767 struct request_queue *q = rq->q;
768 unsigned long flags;
769
770 dm_unprep_request(rq);
771
772 spin_lock_irqsave(q->queue_lock, flags);
773 if (elv_queue_empty(q))
774 blk_plug_device(q);
775 blk_requeue_request(q, rq);
776 spin_unlock_irqrestore(q->queue_lock, flags);
777
778 rq_completed(md, 0);
779 }
780 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
781
782 static void __stop_queue(struct request_queue *q)
783 {
784 blk_stop_queue(q);
785 }
786
787 static void stop_queue(struct request_queue *q)
788 {
789 unsigned long flags;
790
791 spin_lock_irqsave(q->queue_lock, flags);
792 __stop_queue(q);
793 spin_unlock_irqrestore(q->queue_lock, flags);
794 }
795
796 static void __start_queue(struct request_queue *q)
797 {
798 if (blk_queue_stopped(q))
799 blk_start_queue(q);
800 }
801
802 static void start_queue(struct request_queue *q)
803 {
804 unsigned long flags;
805
806 spin_lock_irqsave(q->queue_lock, flags);
807 __start_queue(q);
808 spin_unlock_irqrestore(q->queue_lock, flags);
809 }
810
811 /*
812 * Complete the clone and the original request.
813 * Must be called without queue lock.
814 */
815 static void dm_end_request(struct request *clone, int error)
816 {
817 struct dm_rq_target_io *tio = clone->end_io_data;
818 struct mapped_device *md = tio->md;
819 struct request *rq = tio->orig;
820
821 if (blk_pc_request(rq)) {
822 rq->errors = clone->errors;
823 rq->resid_len = clone->resid_len;
824
825 if (rq->sense)
826 /*
827 * We are using the sense buffer of the original
828 * request.
829 * So setting the length of the sense data is enough.
830 */
831 rq->sense_len = clone->sense_len;
832 }
833
834 free_rq_clone(clone);
835
836 blk_end_request_all(rq, error);
837
838 rq_completed(md, 1);
839 }
840
841 /*
842 * Request completion handler for request-based dm
843 */
844 static void dm_softirq_done(struct request *rq)
845 {
846 struct request *clone = rq->completion_data;
847 struct dm_rq_target_io *tio = clone->end_io_data;
848 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
849 int error = tio->error;
850
851 if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
852 error = rq_end_io(tio->ti, clone, error, &tio->info);
853
854 if (error <= 0)
855 /* The target wants to complete the I/O */
856 dm_end_request(clone, error);
857 else if (error == DM_ENDIO_INCOMPLETE)
858 /* The target will handle the I/O */
859 return;
860 else if (error == DM_ENDIO_REQUEUE)
861 /* The target wants to requeue the I/O */
862 dm_requeue_unmapped_request(clone);
863 else {
864 DMWARN("unimplemented target endio return value: %d", error);
865 BUG();
866 }
867 }
868
869 /*
870 * Complete the clone and the original request with the error status
871 * through softirq context.
872 */
873 static void dm_complete_request(struct request *clone, int error)
874 {
875 struct dm_rq_target_io *tio = clone->end_io_data;
876 struct request *rq = tio->orig;
877
878 tio->error = error;
879 rq->completion_data = clone;
880 blk_complete_request(rq);
881 }
882
883 /*
884 * Complete the not-mapped clone and the original request with the error status
885 * through softirq context.
886 * Target's rq_end_io() function isn't called.
887 * This may be used when the target's map_rq() function fails.
888 */
889 void dm_kill_unmapped_request(struct request *clone, int error)
890 {
891 struct dm_rq_target_io *tio = clone->end_io_data;
892 struct request *rq = tio->orig;
893
894 rq->cmd_flags |= REQ_FAILED;
895 dm_complete_request(clone, error);
896 }
897 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
898
899 /*
900 * Called with the queue lock held
901 */
902 static void end_clone_request(struct request *clone, int error)
903 {
904 /*
905 * For just cleaning up the information of the queue in which
906 * the clone was dispatched.
907 * The clone is *NOT* freed actually here because it is alloced from
908 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
909 */
910 __blk_put_request(clone->q, clone);
911
912 /*
913 * Actual request completion is done in a softirq context which doesn't
914 * hold the queue lock. Otherwise, deadlock could occur because:
915 * - another request may be submitted by the upper level driver
916 * of the stacking during the completion
917 * - the submission which requires queue lock may be done
918 * against this queue
919 */
920 dm_complete_request(clone, error);
921 }
922
923 static sector_t max_io_len(struct mapped_device *md,
924 sector_t sector, struct dm_target *ti)
925 {
926 sector_t offset = sector - ti->begin;
927 sector_t len = ti->len - offset;
928
929 /*
930 * Does the target need to split even further ?
931 */
932 if (ti->split_io) {
933 sector_t boundary;
934 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
935 - offset;
936 if (len > boundary)
937 len = boundary;
938 }
939
940 return len;
941 }
942
943 static void __map_bio(struct dm_target *ti, struct bio *clone,
944 struct dm_target_io *tio)
945 {
946 int r;
947 sector_t sector;
948 struct mapped_device *md;
949
950 clone->bi_end_io = clone_endio;
951 clone->bi_private = tio;
952
953 /*
954 * Map the clone. If r == 0 we don't need to do
955 * anything, the target has assumed ownership of
956 * this io.
957 */
958 atomic_inc(&tio->io->io_count);
959 sector = clone->bi_sector;
960 r = ti->type->map(ti, clone, &tio->info);
961 if (r == DM_MAPIO_REMAPPED) {
962 /* the bio has been remapped so dispatch it */
963
964 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
965 tio->io->bio->bi_bdev->bd_dev, sector);
966
967 generic_make_request(clone);
968 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
969 /* error the io and bail out, or requeue it if needed */
970 md = tio->io->md;
971 dec_pending(tio->io, r);
972 /*
973 * Store bio_set for cleanup.
974 */
975 clone->bi_private = md->bs;
976 bio_put(clone);
977 free_tio(md, tio);
978 } else if (r) {
979 DMWARN("unimplemented target map return value: %d", r);
980 BUG();
981 }
982 }
983
984 struct clone_info {
985 struct mapped_device *md;
986 struct dm_table *map;
987 struct bio *bio;
988 struct dm_io *io;
989 sector_t sector;
990 sector_t sector_count;
991 unsigned short idx;
992 };
993
994 static void dm_bio_destructor(struct bio *bio)
995 {
996 struct bio_set *bs = bio->bi_private;
997
998 bio_free(bio, bs);
999 }
1000
1001 /*
1002 * Creates a little bio that is just does part of a bvec.
1003 */
1004 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1005 unsigned short idx, unsigned int offset,
1006 unsigned int len, struct bio_set *bs)
1007 {
1008 struct bio *clone;
1009 struct bio_vec *bv = bio->bi_io_vec + idx;
1010
1011 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1012 clone->bi_destructor = dm_bio_destructor;
1013 *clone->bi_io_vec = *bv;
1014
1015 clone->bi_sector = sector;
1016 clone->bi_bdev = bio->bi_bdev;
1017 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1018 clone->bi_vcnt = 1;
1019 clone->bi_size = to_bytes(len);
1020 clone->bi_io_vec->bv_offset = offset;
1021 clone->bi_io_vec->bv_len = clone->bi_size;
1022 clone->bi_flags |= 1 << BIO_CLONED;
1023
1024 if (bio_integrity(bio)) {
1025 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1026 bio_integrity_trim(clone,
1027 bio_sector_offset(bio, idx, offset), len);
1028 }
1029
1030 return clone;
1031 }
1032
1033 /*
1034 * Creates a bio that consists of range of complete bvecs.
1035 */
1036 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1037 unsigned short idx, unsigned short bv_count,
1038 unsigned int len, struct bio_set *bs)
1039 {
1040 struct bio *clone;
1041
1042 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1043 __bio_clone(clone, bio);
1044 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1045 clone->bi_destructor = dm_bio_destructor;
1046 clone->bi_sector = sector;
1047 clone->bi_idx = idx;
1048 clone->bi_vcnt = idx + bv_count;
1049 clone->bi_size = to_bytes(len);
1050 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1051
1052 if (bio_integrity(bio)) {
1053 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1054
1055 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1056 bio_integrity_trim(clone,
1057 bio_sector_offset(bio, idx, 0), len);
1058 }
1059
1060 return clone;
1061 }
1062
1063 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1064 struct dm_target *ti)
1065 {
1066 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1067
1068 tio->io = ci->io;
1069 tio->ti = ti;
1070 memset(&tio->info, 0, sizeof(tio->info));
1071
1072 return tio;
1073 }
1074
1075 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1076 unsigned flush_nr)
1077 {
1078 struct dm_target_io *tio = alloc_tio(ci, ti);
1079 struct bio *clone;
1080
1081 tio->info.flush_request = flush_nr;
1082
1083 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1084 __bio_clone(clone, ci->bio);
1085 clone->bi_destructor = dm_bio_destructor;
1086
1087 __map_bio(ti, clone, tio);
1088 }
1089
1090 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1091 {
1092 unsigned target_nr = 0, flush_nr;
1093 struct dm_target *ti;
1094
1095 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1096 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1097 flush_nr++)
1098 __flush_target(ci, ti, flush_nr);
1099
1100 ci->sector_count = 0;
1101
1102 return 0;
1103 }
1104
1105 static int __clone_and_map(struct clone_info *ci)
1106 {
1107 struct bio *clone, *bio = ci->bio;
1108 struct dm_target *ti;
1109 sector_t len = 0, max;
1110 struct dm_target_io *tio;
1111
1112 if (unlikely(bio_empty_barrier(bio)))
1113 return __clone_and_map_empty_barrier(ci);
1114
1115 ti = dm_table_find_target(ci->map, ci->sector);
1116 if (!dm_target_is_valid(ti))
1117 return -EIO;
1118
1119 max = max_io_len(ci->md, ci->sector, ti);
1120
1121 /*
1122 * Allocate a target io object.
1123 */
1124 tio = alloc_tio(ci, ti);
1125
1126 if (ci->sector_count <= max) {
1127 /*
1128 * Optimise for the simple case where we can do all of
1129 * the remaining io with a single clone.
1130 */
1131 clone = clone_bio(bio, ci->sector, ci->idx,
1132 bio->bi_vcnt - ci->idx, ci->sector_count,
1133 ci->md->bs);
1134 __map_bio(ti, clone, tio);
1135 ci->sector_count = 0;
1136
1137 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1138 /*
1139 * There are some bvecs that don't span targets.
1140 * Do as many of these as possible.
1141 */
1142 int i;
1143 sector_t remaining = max;
1144 sector_t bv_len;
1145
1146 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1147 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1148
1149 if (bv_len > remaining)
1150 break;
1151
1152 remaining -= bv_len;
1153 len += bv_len;
1154 }
1155
1156 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1157 ci->md->bs);
1158 __map_bio(ti, clone, tio);
1159
1160 ci->sector += len;
1161 ci->sector_count -= len;
1162 ci->idx = i;
1163
1164 } else {
1165 /*
1166 * Handle a bvec that must be split between two or more targets.
1167 */
1168 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1169 sector_t remaining = to_sector(bv->bv_len);
1170 unsigned int offset = 0;
1171
1172 do {
1173 if (offset) {
1174 ti = dm_table_find_target(ci->map, ci->sector);
1175 if (!dm_target_is_valid(ti))
1176 return -EIO;
1177
1178 max = max_io_len(ci->md, ci->sector, ti);
1179
1180 tio = alloc_tio(ci, ti);
1181 }
1182
1183 len = min(remaining, max);
1184
1185 clone = split_bvec(bio, ci->sector, ci->idx,
1186 bv->bv_offset + offset, len,
1187 ci->md->bs);
1188
1189 __map_bio(ti, clone, tio);
1190
1191 ci->sector += len;
1192 ci->sector_count -= len;
1193 offset += to_bytes(len);
1194 } while (remaining -= len);
1195
1196 ci->idx++;
1197 }
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Split the bio into several clones and submit it to targets.
1204 */
1205 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1206 {
1207 struct clone_info ci;
1208 int error = 0;
1209
1210 ci.map = dm_get_table(md);
1211 if (unlikely(!ci.map)) {
1212 if (!bio_barrier(bio))
1213 bio_io_error(bio);
1214 else
1215 if (!md->barrier_error)
1216 md->barrier_error = -EIO;
1217 return;
1218 }
1219
1220 ci.md = md;
1221 ci.bio = bio;
1222 ci.io = alloc_io(md);
1223 ci.io->error = 0;
1224 atomic_set(&ci.io->io_count, 1);
1225 ci.io->bio = bio;
1226 ci.io->md = md;
1227 ci.sector = bio->bi_sector;
1228 ci.sector_count = bio_sectors(bio);
1229 if (unlikely(bio_empty_barrier(bio)))
1230 ci.sector_count = 1;
1231 ci.idx = bio->bi_idx;
1232
1233 start_io_acct(ci.io);
1234 while (ci.sector_count && !error)
1235 error = __clone_and_map(&ci);
1236
1237 /* drop the extra reference count */
1238 dec_pending(ci.io, error);
1239 dm_table_put(ci.map);
1240 }
1241 /*-----------------------------------------------------------------
1242 * CRUD END
1243 *---------------------------------------------------------------*/
1244
1245 static int dm_merge_bvec(struct request_queue *q,
1246 struct bvec_merge_data *bvm,
1247 struct bio_vec *biovec)
1248 {
1249 struct mapped_device *md = q->queuedata;
1250 struct dm_table *map = dm_get_table(md);
1251 struct dm_target *ti;
1252 sector_t max_sectors;
1253 int max_size = 0;
1254
1255 if (unlikely(!map))
1256 goto out;
1257
1258 ti = dm_table_find_target(map, bvm->bi_sector);
1259 if (!dm_target_is_valid(ti))
1260 goto out_table;
1261
1262 /*
1263 * Find maximum amount of I/O that won't need splitting
1264 */
1265 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1266 (sector_t) BIO_MAX_SECTORS);
1267 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1268 if (max_size < 0)
1269 max_size = 0;
1270
1271 /*
1272 * merge_bvec_fn() returns number of bytes
1273 * it can accept at this offset
1274 * max is precomputed maximal io size
1275 */
1276 if (max_size && ti->type->merge)
1277 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1278 /*
1279 * If the target doesn't support merge method and some of the devices
1280 * provided their merge_bvec method (we know this by looking at
1281 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1282 * entries. So always set max_size to 0, and the code below allows
1283 * just one page.
1284 */
1285 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1286
1287 max_size = 0;
1288
1289 out_table:
1290 dm_table_put(map);
1291
1292 out:
1293 /*
1294 * Always allow an entire first page
1295 */
1296 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1297 max_size = biovec->bv_len;
1298
1299 return max_size;
1300 }
1301
1302 /*
1303 * The request function that just remaps the bio built up by
1304 * dm_merge_bvec.
1305 */
1306 static int _dm_request(struct request_queue *q, struct bio *bio)
1307 {
1308 int rw = bio_data_dir(bio);
1309 struct mapped_device *md = q->queuedata;
1310 int cpu;
1311
1312 down_read(&md->io_lock);
1313
1314 cpu = part_stat_lock();
1315 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1316 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1317 part_stat_unlock();
1318
1319 /*
1320 * If we're suspended or the thread is processing barriers
1321 * we have to queue this io for later.
1322 */
1323 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1324 unlikely(bio_barrier(bio))) {
1325 up_read(&md->io_lock);
1326
1327 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1328 bio_rw(bio) == READA) {
1329 bio_io_error(bio);
1330 return 0;
1331 }
1332
1333 queue_io(md, bio);
1334
1335 return 0;
1336 }
1337
1338 __split_and_process_bio(md, bio);
1339 up_read(&md->io_lock);
1340 return 0;
1341 }
1342
1343 static int dm_make_request(struct request_queue *q, struct bio *bio)
1344 {
1345 struct mapped_device *md = q->queuedata;
1346
1347 if (unlikely(bio_barrier(bio))) {
1348 bio_endio(bio, -EOPNOTSUPP);
1349 return 0;
1350 }
1351
1352 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1353 }
1354
1355 static int dm_request_based(struct mapped_device *md)
1356 {
1357 return blk_queue_stackable(md->queue);
1358 }
1359
1360 static int dm_request(struct request_queue *q, struct bio *bio)
1361 {
1362 struct mapped_device *md = q->queuedata;
1363
1364 if (dm_request_based(md))
1365 return dm_make_request(q, bio);
1366
1367 return _dm_request(q, bio);
1368 }
1369
1370 void dm_dispatch_request(struct request *rq)
1371 {
1372 int r;
1373
1374 if (blk_queue_io_stat(rq->q))
1375 rq->cmd_flags |= REQ_IO_STAT;
1376
1377 rq->start_time = jiffies;
1378 r = blk_insert_cloned_request(rq->q, rq);
1379 if (r)
1380 dm_complete_request(rq, r);
1381 }
1382 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1383
1384 static void dm_rq_bio_destructor(struct bio *bio)
1385 {
1386 struct dm_rq_clone_bio_info *info = bio->bi_private;
1387 struct mapped_device *md = info->tio->md;
1388
1389 free_bio_info(info);
1390 bio_free(bio, md->bs);
1391 }
1392
1393 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1394 void *data)
1395 {
1396 struct dm_rq_target_io *tio = data;
1397 struct mapped_device *md = tio->md;
1398 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1399
1400 if (!info)
1401 return -ENOMEM;
1402
1403 info->orig = bio_orig;
1404 info->tio = tio;
1405 bio->bi_end_io = end_clone_bio;
1406 bio->bi_private = info;
1407 bio->bi_destructor = dm_rq_bio_destructor;
1408
1409 return 0;
1410 }
1411
1412 static int setup_clone(struct request *clone, struct request *rq,
1413 struct dm_rq_target_io *tio)
1414 {
1415 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1416 dm_rq_bio_constructor, tio);
1417
1418 if (r)
1419 return r;
1420
1421 clone->cmd = rq->cmd;
1422 clone->cmd_len = rq->cmd_len;
1423 clone->sense = rq->sense;
1424 clone->buffer = rq->buffer;
1425 clone->end_io = end_clone_request;
1426 clone->end_io_data = tio;
1427
1428 return 0;
1429 }
1430
1431 static int dm_rq_flush_suspending(struct mapped_device *md)
1432 {
1433 return !md->suspend_rq.special;
1434 }
1435
1436 /*
1437 * Called with the queue lock held.
1438 */
1439 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1440 {
1441 struct mapped_device *md = q->queuedata;
1442 struct dm_rq_target_io *tio;
1443 struct request *clone;
1444
1445 if (unlikely(rq == &md->suspend_rq)) {
1446 if (dm_rq_flush_suspending(md))
1447 return BLKPREP_OK;
1448 else
1449 /* The flush suspend was interrupted */
1450 return BLKPREP_KILL;
1451 }
1452
1453 if (unlikely(rq->special)) {
1454 DMWARN("Already has something in rq->special.");
1455 return BLKPREP_KILL;
1456 }
1457
1458 tio = alloc_rq_tio(md); /* Only one for each original request */
1459 if (!tio)
1460 /* -ENOMEM */
1461 return BLKPREP_DEFER;
1462
1463 tio->md = md;
1464 tio->ti = NULL;
1465 tio->orig = rq;
1466 tio->error = 0;
1467 memset(&tio->info, 0, sizeof(tio->info));
1468
1469 clone = &tio->clone;
1470 if (setup_clone(clone, rq, tio)) {
1471 /* -ENOMEM */
1472 free_rq_tio(tio);
1473 return BLKPREP_DEFER;
1474 }
1475
1476 rq->special = clone;
1477 rq->cmd_flags |= REQ_DONTPREP;
1478
1479 return BLKPREP_OK;
1480 }
1481
1482 static void map_request(struct dm_target *ti, struct request *rq,
1483 struct mapped_device *md)
1484 {
1485 int r;
1486 struct request *clone = rq->special;
1487 struct dm_rq_target_io *tio = clone->end_io_data;
1488
1489 /*
1490 * Hold the md reference here for the in-flight I/O.
1491 * We can't rely on the reference count by device opener,
1492 * because the device may be closed during the request completion
1493 * when all bios are completed.
1494 * See the comment in rq_completed() too.
1495 */
1496 dm_get(md);
1497
1498 tio->ti = ti;
1499 r = ti->type->map_rq(ti, clone, &tio->info);
1500 switch (r) {
1501 case DM_MAPIO_SUBMITTED:
1502 /* The target has taken the I/O to submit by itself later */
1503 break;
1504 case DM_MAPIO_REMAPPED:
1505 /* The target has remapped the I/O so dispatch it */
1506 dm_dispatch_request(clone);
1507 break;
1508 case DM_MAPIO_REQUEUE:
1509 /* The target wants to requeue the I/O */
1510 dm_requeue_unmapped_request(clone);
1511 break;
1512 default:
1513 if (r > 0) {
1514 DMWARN("unimplemented target map return value: %d", r);
1515 BUG();
1516 }
1517
1518 /* The target wants to complete the I/O */
1519 dm_kill_unmapped_request(clone, r);
1520 break;
1521 }
1522 }
1523
1524 /*
1525 * q->request_fn for request-based dm.
1526 * Called with the queue lock held.
1527 */
1528 static void dm_request_fn(struct request_queue *q)
1529 {
1530 struct mapped_device *md = q->queuedata;
1531 struct dm_table *map = dm_get_table(md);
1532 struct dm_target *ti;
1533 struct request *rq;
1534
1535 /*
1536 * For noflush suspend, check blk_queue_stopped() to immediately
1537 * quit I/O dispatching.
1538 */
1539 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1540 rq = blk_peek_request(q);
1541 if (!rq)
1542 goto plug_and_out;
1543
1544 if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1545 if (queue_in_flight(q))
1546 /* Not quiet yet. Wait more */
1547 goto plug_and_out;
1548
1549 /* This device should be quiet now */
1550 __stop_queue(q);
1551 blk_start_request(rq);
1552 __blk_end_request_all(rq, 0);
1553 wake_up(&md->wait);
1554 goto out;
1555 }
1556
1557 ti = dm_table_find_target(map, blk_rq_pos(rq));
1558 if (ti->type->busy && ti->type->busy(ti))
1559 goto plug_and_out;
1560
1561 blk_start_request(rq);
1562 spin_unlock(q->queue_lock);
1563 map_request(ti, rq, md);
1564 spin_lock_irq(q->queue_lock);
1565 }
1566
1567 goto out;
1568
1569 plug_and_out:
1570 if (!elv_queue_empty(q))
1571 /* Some requests still remain, retry later */
1572 blk_plug_device(q);
1573
1574 out:
1575 dm_table_put(map);
1576
1577 return;
1578 }
1579
1580 int dm_underlying_device_busy(struct request_queue *q)
1581 {
1582 return blk_lld_busy(q);
1583 }
1584 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1585
1586 static int dm_lld_busy(struct request_queue *q)
1587 {
1588 int r;
1589 struct mapped_device *md = q->queuedata;
1590 struct dm_table *map = dm_get_table(md);
1591
1592 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1593 r = 1;
1594 else
1595 r = dm_table_any_busy_target(map);
1596
1597 dm_table_put(map);
1598
1599 return r;
1600 }
1601
1602 static void dm_unplug_all(struct request_queue *q)
1603 {
1604 struct mapped_device *md = q->queuedata;
1605 struct dm_table *map = dm_get_table(md);
1606
1607 if (map) {
1608 if (dm_request_based(md))
1609 generic_unplug_device(q);
1610
1611 dm_table_unplug_all(map);
1612 dm_table_put(map);
1613 }
1614 }
1615
1616 static int dm_any_congested(void *congested_data, int bdi_bits)
1617 {
1618 int r = bdi_bits;
1619 struct mapped_device *md = congested_data;
1620 struct dm_table *map;
1621
1622 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1623 map = dm_get_table(md);
1624 if (map) {
1625 /*
1626 * Request-based dm cares about only own queue for
1627 * the query about congestion status of request_queue
1628 */
1629 if (dm_request_based(md))
1630 r = md->queue->backing_dev_info.state &
1631 bdi_bits;
1632 else
1633 r = dm_table_any_congested(map, bdi_bits);
1634
1635 dm_table_put(map);
1636 }
1637 }
1638
1639 return r;
1640 }
1641
1642 /*-----------------------------------------------------------------
1643 * An IDR is used to keep track of allocated minor numbers.
1644 *---------------------------------------------------------------*/
1645 static DEFINE_IDR(_minor_idr);
1646
1647 static void free_minor(int minor)
1648 {
1649 spin_lock(&_minor_lock);
1650 idr_remove(&_minor_idr, minor);
1651 spin_unlock(&_minor_lock);
1652 }
1653
1654 /*
1655 * See if the device with a specific minor # is free.
1656 */
1657 static int specific_minor(int minor)
1658 {
1659 int r, m;
1660
1661 if (minor >= (1 << MINORBITS))
1662 return -EINVAL;
1663
1664 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1665 if (!r)
1666 return -ENOMEM;
1667
1668 spin_lock(&_minor_lock);
1669
1670 if (idr_find(&_minor_idr, minor)) {
1671 r = -EBUSY;
1672 goto out;
1673 }
1674
1675 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1676 if (r)
1677 goto out;
1678
1679 if (m != minor) {
1680 idr_remove(&_minor_idr, m);
1681 r = -EBUSY;
1682 goto out;
1683 }
1684
1685 out:
1686 spin_unlock(&_minor_lock);
1687 return r;
1688 }
1689
1690 static int next_free_minor(int *minor)
1691 {
1692 int r, m;
1693
1694 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1695 if (!r)
1696 return -ENOMEM;
1697
1698 spin_lock(&_minor_lock);
1699
1700 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1701 if (r)
1702 goto out;
1703
1704 if (m >= (1 << MINORBITS)) {
1705 idr_remove(&_minor_idr, m);
1706 r = -ENOSPC;
1707 goto out;
1708 }
1709
1710 *minor = m;
1711
1712 out:
1713 spin_unlock(&_minor_lock);
1714 return r;
1715 }
1716
1717 static struct block_device_operations dm_blk_dops;
1718
1719 static void dm_wq_work(struct work_struct *work);
1720
1721 /*
1722 * Allocate and initialise a blank device with a given minor.
1723 */
1724 static struct mapped_device *alloc_dev(int minor)
1725 {
1726 int r;
1727 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1728 void *old_md;
1729
1730 if (!md) {
1731 DMWARN("unable to allocate device, out of memory.");
1732 return NULL;
1733 }
1734
1735 if (!try_module_get(THIS_MODULE))
1736 goto bad_module_get;
1737
1738 /* get a minor number for the dev */
1739 if (minor == DM_ANY_MINOR)
1740 r = next_free_minor(&minor);
1741 else
1742 r = specific_minor(minor);
1743 if (r < 0)
1744 goto bad_minor;
1745
1746 init_rwsem(&md->io_lock);
1747 mutex_init(&md->suspend_lock);
1748 spin_lock_init(&md->deferred_lock);
1749 rwlock_init(&md->map_lock);
1750 atomic_set(&md->holders, 1);
1751 atomic_set(&md->open_count, 0);
1752 atomic_set(&md->event_nr, 0);
1753 atomic_set(&md->uevent_seq, 0);
1754 INIT_LIST_HEAD(&md->uevent_list);
1755 spin_lock_init(&md->uevent_lock);
1756
1757 md->queue = blk_init_queue(dm_request_fn, NULL);
1758 if (!md->queue)
1759 goto bad_queue;
1760
1761 /*
1762 * Request-based dm devices cannot be stacked on top of bio-based dm
1763 * devices. The type of this dm device has not been decided yet,
1764 * although we initialized the queue using blk_init_queue().
1765 * The type is decided at the first table loading time.
1766 * To prevent problematic device stacking, clear the queue flag
1767 * for request stacking support until then.
1768 *
1769 * This queue is new, so no concurrency on the queue_flags.
1770 */
1771 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1772 md->saved_make_request_fn = md->queue->make_request_fn;
1773 md->queue->queuedata = md;
1774 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1775 md->queue->backing_dev_info.congested_data = md;
1776 blk_queue_make_request(md->queue, dm_request);
1777 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1778 md->queue->unplug_fn = dm_unplug_all;
1779 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1780 blk_queue_softirq_done(md->queue, dm_softirq_done);
1781 blk_queue_prep_rq(md->queue, dm_prep_fn);
1782 blk_queue_lld_busy(md->queue, dm_lld_busy);
1783
1784 md->disk = alloc_disk(1);
1785 if (!md->disk)
1786 goto bad_disk;
1787
1788 atomic_set(&md->pending, 0);
1789 init_waitqueue_head(&md->wait);
1790 INIT_WORK(&md->work, dm_wq_work);
1791 init_waitqueue_head(&md->eventq);
1792
1793 md->disk->major = _major;
1794 md->disk->first_minor = minor;
1795 md->disk->fops = &dm_blk_dops;
1796 md->disk->queue = md->queue;
1797 md->disk->private_data = md;
1798 sprintf(md->disk->disk_name, "dm-%d", minor);
1799 add_disk(md->disk);
1800 format_dev_t(md->name, MKDEV(_major, minor));
1801
1802 md->wq = create_singlethread_workqueue("kdmflush");
1803 if (!md->wq)
1804 goto bad_thread;
1805
1806 md->bdev = bdget_disk(md->disk, 0);
1807 if (!md->bdev)
1808 goto bad_bdev;
1809
1810 /* Populate the mapping, nobody knows we exist yet */
1811 spin_lock(&_minor_lock);
1812 old_md = idr_replace(&_minor_idr, md, minor);
1813 spin_unlock(&_minor_lock);
1814
1815 BUG_ON(old_md != MINOR_ALLOCED);
1816
1817 return md;
1818
1819 bad_bdev:
1820 destroy_workqueue(md->wq);
1821 bad_thread:
1822 put_disk(md->disk);
1823 bad_disk:
1824 blk_cleanup_queue(md->queue);
1825 bad_queue:
1826 free_minor(minor);
1827 bad_minor:
1828 module_put(THIS_MODULE);
1829 bad_module_get:
1830 kfree(md);
1831 return NULL;
1832 }
1833
1834 static void unlock_fs(struct mapped_device *md);
1835
1836 static void free_dev(struct mapped_device *md)
1837 {
1838 int minor = MINOR(disk_devt(md->disk));
1839
1840 unlock_fs(md);
1841 bdput(md->bdev);
1842 destroy_workqueue(md->wq);
1843 if (md->tio_pool)
1844 mempool_destroy(md->tio_pool);
1845 if (md->io_pool)
1846 mempool_destroy(md->io_pool);
1847 if (md->bs)
1848 bioset_free(md->bs);
1849 blk_integrity_unregister(md->disk);
1850 del_gendisk(md->disk);
1851 free_minor(minor);
1852
1853 spin_lock(&_minor_lock);
1854 md->disk->private_data = NULL;
1855 spin_unlock(&_minor_lock);
1856
1857 put_disk(md->disk);
1858 blk_cleanup_queue(md->queue);
1859 module_put(THIS_MODULE);
1860 kfree(md);
1861 }
1862
1863 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1864 {
1865 struct dm_md_mempools *p;
1866
1867 if (md->io_pool && md->tio_pool && md->bs)
1868 /* the md already has necessary mempools */
1869 goto out;
1870
1871 p = dm_table_get_md_mempools(t);
1872 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1873
1874 md->io_pool = p->io_pool;
1875 p->io_pool = NULL;
1876 md->tio_pool = p->tio_pool;
1877 p->tio_pool = NULL;
1878 md->bs = p->bs;
1879 p->bs = NULL;
1880
1881 out:
1882 /* mempool bind completed, now no need any mempools in the table */
1883 dm_table_free_md_mempools(t);
1884 }
1885
1886 /*
1887 * Bind a table to the device.
1888 */
1889 static void event_callback(void *context)
1890 {
1891 unsigned long flags;
1892 LIST_HEAD(uevents);
1893 struct mapped_device *md = (struct mapped_device *) context;
1894
1895 spin_lock_irqsave(&md->uevent_lock, flags);
1896 list_splice_init(&md->uevent_list, &uevents);
1897 spin_unlock_irqrestore(&md->uevent_lock, flags);
1898
1899 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1900
1901 atomic_inc(&md->event_nr);
1902 wake_up(&md->eventq);
1903 }
1904
1905 static void __set_size(struct mapped_device *md, sector_t size)
1906 {
1907 set_capacity(md->disk, size);
1908
1909 mutex_lock(&md->bdev->bd_inode->i_mutex);
1910 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1911 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1912 }
1913
1914 static int __bind(struct mapped_device *md, struct dm_table *t,
1915 struct queue_limits *limits)
1916 {
1917 struct request_queue *q = md->queue;
1918 sector_t size;
1919 unsigned long flags;
1920
1921 size = dm_table_get_size(t);
1922
1923 /*
1924 * Wipe any geometry if the size of the table changed.
1925 */
1926 if (size != get_capacity(md->disk))
1927 memset(&md->geometry, 0, sizeof(md->geometry));
1928
1929 __set_size(md, size);
1930
1931 if (!size) {
1932 dm_table_destroy(t);
1933 return 0;
1934 }
1935
1936 dm_table_event_callback(t, event_callback, md);
1937
1938 /*
1939 * The queue hasn't been stopped yet, if the old table type wasn't
1940 * for request-based during suspension. So stop it to prevent
1941 * I/O mapping before resume.
1942 * This must be done before setting the queue restrictions,
1943 * because request-based dm may be run just after the setting.
1944 */
1945 if (dm_table_request_based(t) && !blk_queue_stopped(q))
1946 stop_queue(q);
1947
1948 __bind_mempools(md, t);
1949
1950 write_lock_irqsave(&md->map_lock, flags);
1951 md->map = t;
1952 dm_table_set_restrictions(t, q, limits);
1953 write_unlock_irqrestore(&md->map_lock, flags);
1954
1955 return 0;
1956 }
1957
1958 static void __unbind(struct mapped_device *md)
1959 {
1960 struct dm_table *map = md->map;
1961 unsigned long flags;
1962
1963 if (!map)
1964 return;
1965
1966 dm_table_event_callback(map, NULL, NULL);
1967 write_lock_irqsave(&md->map_lock, flags);
1968 md->map = NULL;
1969 write_unlock_irqrestore(&md->map_lock, flags);
1970 dm_table_destroy(map);
1971 }
1972
1973 /*
1974 * Constructor for a new device.
1975 */
1976 int dm_create(int minor, struct mapped_device **result)
1977 {
1978 struct mapped_device *md;
1979
1980 md = alloc_dev(minor);
1981 if (!md)
1982 return -ENXIO;
1983
1984 dm_sysfs_init(md);
1985
1986 *result = md;
1987 return 0;
1988 }
1989
1990 static struct mapped_device *dm_find_md(dev_t dev)
1991 {
1992 struct mapped_device *md;
1993 unsigned minor = MINOR(dev);
1994
1995 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1996 return NULL;
1997
1998 spin_lock(&_minor_lock);
1999
2000 md = idr_find(&_minor_idr, minor);
2001 if (md && (md == MINOR_ALLOCED ||
2002 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2003 test_bit(DMF_FREEING, &md->flags))) {
2004 md = NULL;
2005 goto out;
2006 }
2007
2008 out:
2009 spin_unlock(&_minor_lock);
2010
2011 return md;
2012 }
2013
2014 struct mapped_device *dm_get_md(dev_t dev)
2015 {
2016 struct mapped_device *md = dm_find_md(dev);
2017
2018 if (md)
2019 dm_get(md);
2020
2021 return md;
2022 }
2023
2024 void *dm_get_mdptr(struct mapped_device *md)
2025 {
2026 return md->interface_ptr;
2027 }
2028
2029 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2030 {
2031 md->interface_ptr = ptr;
2032 }
2033
2034 void dm_get(struct mapped_device *md)
2035 {
2036 atomic_inc(&md->holders);
2037 }
2038
2039 const char *dm_device_name(struct mapped_device *md)
2040 {
2041 return md->name;
2042 }
2043 EXPORT_SYMBOL_GPL(dm_device_name);
2044
2045 void dm_put(struct mapped_device *md)
2046 {
2047 struct dm_table *map;
2048
2049 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2050
2051 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2052 map = dm_get_table(md);
2053 idr_replace(&_minor_idr, MINOR_ALLOCED,
2054 MINOR(disk_devt(dm_disk(md))));
2055 set_bit(DMF_FREEING, &md->flags);
2056 spin_unlock(&_minor_lock);
2057 if (!dm_suspended(md)) {
2058 dm_table_presuspend_targets(map);
2059 dm_table_postsuspend_targets(map);
2060 }
2061 dm_sysfs_exit(md);
2062 dm_table_put(map);
2063 __unbind(md);
2064 free_dev(md);
2065 }
2066 }
2067 EXPORT_SYMBOL_GPL(dm_put);
2068
2069 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2070 {
2071 int r = 0;
2072 DECLARE_WAITQUEUE(wait, current);
2073 struct request_queue *q = md->queue;
2074 unsigned long flags;
2075
2076 dm_unplug_all(md->queue);
2077
2078 add_wait_queue(&md->wait, &wait);
2079
2080 while (1) {
2081 set_current_state(interruptible);
2082
2083 smp_mb();
2084 if (dm_request_based(md)) {
2085 spin_lock_irqsave(q->queue_lock, flags);
2086 if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2087 spin_unlock_irqrestore(q->queue_lock, flags);
2088 break;
2089 }
2090 spin_unlock_irqrestore(q->queue_lock, flags);
2091 } else if (!atomic_read(&md->pending))
2092 break;
2093
2094 if (interruptible == TASK_INTERRUPTIBLE &&
2095 signal_pending(current)) {
2096 r = -EINTR;
2097 break;
2098 }
2099
2100 io_schedule();
2101 }
2102 set_current_state(TASK_RUNNING);
2103
2104 remove_wait_queue(&md->wait, &wait);
2105
2106 return r;
2107 }
2108
2109 static void dm_flush(struct mapped_device *md)
2110 {
2111 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2112
2113 bio_init(&md->barrier_bio);
2114 md->barrier_bio.bi_bdev = md->bdev;
2115 md->barrier_bio.bi_rw = WRITE_BARRIER;
2116 __split_and_process_bio(md, &md->barrier_bio);
2117
2118 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2119 }
2120
2121 static void process_barrier(struct mapped_device *md, struct bio *bio)
2122 {
2123 md->barrier_error = 0;
2124
2125 dm_flush(md);
2126
2127 if (!bio_empty_barrier(bio)) {
2128 __split_and_process_bio(md, bio);
2129 dm_flush(md);
2130 }
2131
2132 if (md->barrier_error != DM_ENDIO_REQUEUE)
2133 bio_endio(bio, md->barrier_error);
2134 else {
2135 spin_lock_irq(&md->deferred_lock);
2136 bio_list_add_head(&md->deferred, bio);
2137 spin_unlock_irq(&md->deferred_lock);
2138 }
2139 }
2140
2141 /*
2142 * Process the deferred bios
2143 */
2144 static void dm_wq_work(struct work_struct *work)
2145 {
2146 struct mapped_device *md = container_of(work, struct mapped_device,
2147 work);
2148 struct bio *c;
2149
2150 down_write(&md->io_lock);
2151
2152 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2153 spin_lock_irq(&md->deferred_lock);
2154 c = bio_list_pop(&md->deferred);
2155 spin_unlock_irq(&md->deferred_lock);
2156
2157 if (!c) {
2158 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2159 break;
2160 }
2161
2162 up_write(&md->io_lock);
2163
2164 if (dm_request_based(md))
2165 generic_make_request(c);
2166 else {
2167 if (bio_barrier(c))
2168 process_barrier(md, c);
2169 else
2170 __split_and_process_bio(md, c);
2171 }
2172
2173 down_write(&md->io_lock);
2174 }
2175
2176 up_write(&md->io_lock);
2177 }
2178
2179 static void dm_queue_flush(struct mapped_device *md)
2180 {
2181 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2182 smp_mb__after_clear_bit();
2183 queue_work(md->wq, &md->work);
2184 }
2185
2186 /*
2187 * Swap in a new table (destroying old one).
2188 */
2189 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2190 {
2191 struct queue_limits limits;
2192 int r = -EINVAL;
2193
2194 mutex_lock(&md->suspend_lock);
2195
2196 /* device must be suspended */
2197 if (!dm_suspended(md))
2198 goto out;
2199
2200 r = dm_calculate_queue_limits(table, &limits);
2201 if (r)
2202 goto out;
2203
2204 /* cannot change the device type, once a table is bound */
2205 if (md->map &&
2206 (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2207 DMWARN("can't change the device type after a table is bound");
2208 goto out;
2209 }
2210
2211 __unbind(md);
2212 r = __bind(md, table, &limits);
2213
2214 out:
2215 mutex_unlock(&md->suspend_lock);
2216 return r;
2217 }
2218
2219 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2220 {
2221 md->suspend_rq.special = (void *)0x1;
2222 }
2223
2224 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2225 {
2226 struct request_queue *q = md->queue;
2227 unsigned long flags;
2228
2229 spin_lock_irqsave(q->queue_lock, flags);
2230 if (!noflush)
2231 dm_rq_invalidate_suspend_marker(md);
2232 __start_queue(q);
2233 spin_unlock_irqrestore(q->queue_lock, flags);
2234 }
2235
2236 static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2237 {
2238 struct request *rq = &md->suspend_rq;
2239 struct request_queue *q = md->queue;
2240
2241 if (noflush)
2242 stop_queue(q);
2243 else {
2244 blk_rq_init(q, rq);
2245 blk_insert_request(q, rq, 0, NULL);
2246 }
2247 }
2248
2249 static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2250 {
2251 int r = 1;
2252 struct request *rq = &md->suspend_rq;
2253 struct request_queue *q = md->queue;
2254 unsigned long flags;
2255
2256 if (noflush)
2257 return r;
2258
2259 /* The marker must be protected by queue lock if it is in use */
2260 spin_lock_irqsave(q->queue_lock, flags);
2261 if (unlikely(rq->ref_count)) {
2262 /*
2263 * This can happen, when the previous flush suspend was
2264 * interrupted, the marker is still in the queue and
2265 * this flush suspend has been invoked, because we don't
2266 * remove the marker at the time of suspend interruption.
2267 * We have only one marker per mapped_device, so we can't
2268 * start another flush suspend while it is in use.
2269 */
2270 BUG_ON(!rq->special); /* The marker should be invalidated */
2271 DMWARN("Invalidating the previous flush suspend is still in"
2272 " progress. Please retry later.");
2273 r = 0;
2274 }
2275 spin_unlock_irqrestore(q->queue_lock, flags);
2276
2277 return r;
2278 }
2279
2280 /*
2281 * Functions to lock and unlock any filesystem running on the
2282 * device.
2283 */
2284 static int lock_fs(struct mapped_device *md)
2285 {
2286 int r;
2287
2288 WARN_ON(md->frozen_sb);
2289
2290 md->frozen_sb = freeze_bdev(md->bdev);
2291 if (IS_ERR(md->frozen_sb)) {
2292 r = PTR_ERR(md->frozen_sb);
2293 md->frozen_sb = NULL;
2294 return r;
2295 }
2296
2297 set_bit(DMF_FROZEN, &md->flags);
2298
2299 return 0;
2300 }
2301
2302 static void unlock_fs(struct mapped_device *md)
2303 {
2304 if (!test_bit(DMF_FROZEN, &md->flags))
2305 return;
2306
2307 thaw_bdev(md->bdev, md->frozen_sb);
2308 md->frozen_sb = NULL;
2309 clear_bit(DMF_FROZEN, &md->flags);
2310 }
2311
2312 /*
2313 * We need to be able to change a mapping table under a mounted
2314 * filesystem. For example we might want to move some data in
2315 * the background. Before the table can be swapped with
2316 * dm_bind_table, dm_suspend must be called to flush any in
2317 * flight bios and ensure that any further io gets deferred.
2318 */
2319 /*
2320 * Suspend mechanism in request-based dm.
2321 *
2322 * After the suspend starts, further incoming requests are kept in
2323 * the request_queue and deferred.
2324 * Remaining requests in the request_queue at the start of suspend are flushed
2325 * if it is flush suspend.
2326 * The suspend completes when the following conditions have been satisfied,
2327 * so wait for it:
2328 * 1. q->in_flight is 0 (which means no in_flight request)
2329 * 2. queue has been stopped (which means no request dispatching)
2330 *
2331 *
2332 * Noflush suspend
2333 * ---------------
2334 * Noflush suspend doesn't need to dispatch remaining requests.
2335 * So stop the queue immediately. Then, wait for all in_flight requests
2336 * to be completed or requeued.
2337 *
2338 * To abort noflush suspend, start the queue.
2339 *
2340 *
2341 * Flush suspend
2342 * -------------
2343 * Flush suspend needs to dispatch remaining requests. So stop the queue
2344 * after the remaining requests are completed. (Requeued request must be also
2345 * re-dispatched and completed. Until then, we can't stop the queue.)
2346 *
2347 * During flushing the remaining requests, further incoming requests are also
2348 * inserted to the same queue. To distinguish which requests are to be
2349 * flushed, we insert a marker request to the queue at the time of starting
2350 * flush suspend, like a barrier.
2351 * The dispatching is blocked when the marker is found on the top of the queue.
2352 * And the queue is stopped when all in_flight requests are completed, since
2353 * that means the remaining requests are completely flushed.
2354 * Then, the marker is removed from the queue.
2355 *
2356 * To abort flush suspend, we also need to take care of the marker, not only
2357 * starting the queue.
2358 * We don't remove the marker forcibly from the queue since it's against
2359 * the block-layer manner. Instead, we put a invalidated mark on the marker.
2360 * When the invalidated marker is found on the top of the queue, it is
2361 * immediately removed from the queue, so it doesn't block dispatching.
2362 * Because we have only one marker per mapped_device, we can't start another
2363 * flush suspend until the invalidated marker is removed from the queue.
2364 * So fail and return with -EBUSY in such a case.
2365 */
2366 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2367 {
2368 struct dm_table *map = NULL;
2369 int r = 0;
2370 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2371 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2372
2373 mutex_lock(&md->suspend_lock);
2374
2375 if (dm_suspended(md)) {
2376 r = -EINVAL;
2377 goto out_unlock;
2378 }
2379
2380 if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2381 r = -EBUSY;
2382 goto out_unlock;
2383 }
2384
2385 map = dm_get_table(md);
2386
2387 /*
2388 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2389 * This flag is cleared before dm_suspend returns.
2390 */
2391 if (noflush)
2392 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2393
2394 /* This does not get reverted if there's an error later. */
2395 dm_table_presuspend_targets(map);
2396
2397 /*
2398 * Flush I/O to the device. noflush supersedes do_lockfs,
2399 * because lock_fs() needs to flush I/Os.
2400 */
2401 if (!noflush && do_lockfs) {
2402 r = lock_fs(md);
2403 if (r)
2404 goto out;
2405 }
2406
2407 /*
2408 * Here we must make sure that no processes are submitting requests
2409 * to target drivers i.e. no one may be executing
2410 * __split_and_process_bio. This is called from dm_request and
2411 * dm_wq_work.
2412 *
2413 * To get all processes out of __split_and_process_bio in dm_request,
2414 * we take the write lock. To prevent any process from reentering
2415 * __split_and_process_bio from dm_request, we set
2416 * DMF_QUEUE_IO_TO_THREAD.
2417 *
2418 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2419 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2420 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2421 * further calls to __split_and_process_bio from dm_wq_work.
2422 */
2423 down_write(&md->io_lock);
2424 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2425 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2426 up_write(&md->io_lock);
2427
2428 flush_workqueue(md->wq);
2429
2430 if (dm_request_based(md))
2431 dm_rq_start_suspend(md, noflush);
2432
2433 /*
2434 * At this point no more requests are entering target request routines.
2435 * We call dm_wait_for_completion to wait for all existing requests
2436 * to finish.
2437 */
2438 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2439
2440 down_write(&md->io_lock);
2441 if (noflush)
2442 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2443 up_write(&md->io_lock);
2444
2445 /* were we interrupted ? */
2446 if (r < 0) {
2447 dm_queue_flush(md);
2448
2449 if (dm_request_based(md))
2450 dm_rq_abort_suspend(md, noflush);
2451
2452 unlock_fs(md);
2453 goto out; /* pushback list is already flushed, so skip flush */
2454 }
2455
2456 /*
2457 * If dm_wait_for_completion returned 0, the device is completely
2458 * quiescent now. There is no request-processing activity. All new
2459 * requests are being added to md->deferred list.
2460 */
2461
2462 dm_table_postsuspend_targets(map);
2463
2464 set_bit(DMF_SUSPENDED, &md->flags);
2465
2466 out:
2467 dm_table_put(map);
2468
2469 out_unlock:
2470 mutex_unlock(&md->suspend_lock);
2471 return r;
2472 }
2473
2474 int dm_resume(struct mapped_device *md)
2475 {
2476 int r = -EINVAL;
2477 struct dm_table *map = NULL;
2478
2479 mutex_lock(&md->suspend_lock);
2480 if (!dm_suspended(md))
2481 goto out;
2482
2483 map = dm_get_table(md);
2484 if (!map || !dm_table_get_size(map))
2485 goto out;
2486
2487 r = dm_table_resume_targets(map);
2488 if (r)
2489 goto out;
2490
2491 dm_queue_flush(md);
2492
2493 /*
2494 * Flushing deferred I/Os must be done after targets are resumed
2495 * so that mapping of targets can work correctly.
2496 * Request-based dm is queueing the deferred I/Os in its request_queue.
2497 */
2498 if (dm_request_based(md))
2499 start_queue(md->queue);
2500
2501 unlock_fs(md);
2502
2503 clear_bit(DMF_SUSPENDED, &md->flags);
2504
2505 dm_table_unplug_all(map);
2506 r = 0;
2507 out:
2508 dm_table_put(map);
2509 mutex_unlock(&md->suspend_lock);
2510
2511 return r;
2512 }
2513
2514 /*-----------------------------------------------------------------
2515 * Event notification.
2516 *---------------------------------------------------------------*/
2517 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2518 unsigned cookie)
2519 {
2520 char udev_cookie[DM_COOKIE_LENGTH];
2521 char *envp[] = { udev_cookie, NULL };
2522
2523 if (!cookie)
2524 kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2525 else {
2526 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2527 DM_COOKIE_ENV_VAR_NAME, cookie);
2528 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2529 }
2530 }
2531
2532 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2533 {
2534 return atomic_add_return(1, &md->uevent_seq);
2535 }
2536
2537 uint32_t dm_get_event_nr(struct mapped_device *md)
2538 {
2539 return atomic_read(&md->event_nr);
2540 }
2541
2542 int dm_wait_event(struct mapped_device *md, int event_nr)
2543 {
2544 return wait_event_interruptible(md->eventq,
2545 (event_nr != atomic_read(&md->event_nr)));
2546 }
2547
2548 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2549 {
2550 unsigned long flags;
2551
2552 spin_lock_irqsave(&md->uevent_lock, flags);
2553 list_add(elist, &md->uevent_list);
2554 spin_unlock_irqrestore(&md->uevent_lock, flags);
2555 }
2556
2557 /*
2558 * The gendisk is only valid as long as you have a reference
2559 * count on 'md'.
2560 */
2561 struct gendisk *dm_disk(struct mapped_device *md)
2562 {
2563 return md->disk;
2564 }
2565
2566 struct kobject *dm_kobject(struct mapped_device *md)
2567 {
2568 return &md->kobj;
2569 }
2570
2571 /*
2572 * struct mapped_device should not be exported outside of dm.c
2573 * so use this check to verify that kobj is part of md structure
2574 */
2575 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2576 {
2577 struct mapped_device *md;
2578
2579 md = container_of(kobj, struct mapped_device, kobj);
2580 if (&md->kobj != kobj)
2581 return NULL;
2582
2583 if (test_bit(DMF_FREEING, &md->flags) ||
2584 test_bit(DMF_DELETING, &md->flags))
2585 return NULL;
2586
2587 dm_get(md);
2588 return md;
2589 }
2590
2591 int dm_suspended(struct mapped_device *md)
2592 {
2593 return test_bit(DMF_SUSPENDED, &md->flags);
2594 }
2595
2596 int dm_noflush_suspending(struct dm_target *ti)
2597 {
2598 struct mapped_device *md = dm_table_get_md(ti->table);
2599 int r = __noflush_suspending(md);
2600
2601 dm_put(md);
2602
2603 return r;
2604 }
2605 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2606
2607 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2608 {
2609 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2610
2611 if (!pools)
2612 return NULL;
2613
2614 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2615 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2616 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2617 if (!pools->io_pool)
2618 goto free_pools_and_out;
2619
2620 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2621 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2622 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2623 if (!pools->tio_pool)
2624 goto free_io_pool_and_out;
2625
2626 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2627 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2628 if (!pools->bs)
2629 goto free_tio_pool_and_out;
2630
2631 return pools;
2632
2633 free_tio_pool_and_out:
2634 mempool_destroy(pools->tio_pool);
2635
2636 free_io_pool_and_out:
2637 mempool_destroy(pools->io_pool);
2638
2639 free_pools_and_out:
2640 kfree(pools);
2641
2642 return NULL;
2643 }
2644
2645 void dm_free_md_mempools(struct dm_md_mempools *pools)
2646 {
2647 if (!pools)
2648 return;
2649
2650 if (pools->io_pool)
2651 mempool_destroy(pools->io_pool);
2652
2653 if (pools->tio_pool)
2654 mempool_destroy(pools->tio_pool);
2655
2656 if (pools->bs)
2657 bioset_free(pools->bs);
2658
2659 kfree(pools);
2660 }
2661
2662 static struct block_device_operations dm_blk_dops = {
2663 .open = dm_blk_open,
2664 .release = dm_blk_close,
2665 .ioctl = dm_blk_ioctl,
2666 .getgeo = dm_blk_getgeo,
2667 .owner = THIS_MODULE
2668 };
2669
2670 EXPORT_SYMBOL(dm_get_mapinfo);
2671
2672 /*
2673 * module hooks
2674 */
2675 module_init(dm_init);
2676 module_exit(dm_exit);
2677
2678 module_param(major, uint, 0);
2679 MODULE_PARM_DESC(major, "The major number of the device mapper");
2680 MODULE_DESCRIPTION(DM_NAME " driver");
2681 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2682 MODULE_LICENSE("GPL");