]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
Merge branch 'docs' of git://git.lwn.net/linux-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 /*
75 * Work processed by per-device workqueue.
76 */
77 struct dm_wq_req {
78 enum {
79 DM_WQ_FLUSH_ALL,
80 DM_WQ_FLUSH_DEFERRED,
81 } type;
82 struct work_struct work;
83 struct mapped_device *md;
84 void *context;
85 };
86
87 struct mapped_device {
88 struct rw_semaphore io_lock;
89 struct mutex suspend_lock;
90 spinlock_t pushback_lock;
91 rwlock_t map_lock;
92 atomic_t holders;
93 atomic_t open_count;
94
95 unsigned long flags;
96
97 struct request_queue *queue;
98 struct gendisk *disk;
99 char name[16];
100
101 void *interface_ptr;
102
103 /*
104 * A list of ios that arrived while we were suspended.
105 */
106 atomic_t pending;
107 wait_queue_head_t wait;
108 struct bio_list deferred;
109 struct bio_list pushback;
110
111 /*
112 * Processing queue (flush/barriers)
113 */
114 struct workqueue_struct *wq;
115
116 /*
117 * The current mapping.
118 */
119 struct dm_table *map;
120
121 /*
122 * io objects are allocated from here.
123 */
124 mempool_t *io_pool;
125 mempool_t *tio_pool;
126
127 struct bio_set *bs;
128
129 /*
130 * Event handling.
131 */
132 atomic_t event_nr;
133 wait_queue_head_t eventq;
134 atomic_t uevent_seq;
135 struct list_head uevent_list;
136 spinlock_t uevent_lock; /* Protect access to uevent_list */
137
138 /*
139 * freeze/thaw support require holding onto a super block
140 */
141 struct super_block *frozen_sb;
142 struct block_device *suspended_bdev;
143
144 /* forced geometry settings */
145 struct hd_geometry geometry;
146 };
147
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151
152 static int __init local_init(void)
153 {
154 int r;
155
156 /* allocate a slab for the dm_ios */
157 _io_cache = KMEM_CACHE(dm_io, 0);
158 if (!_io_cache)
159 return -ENOMEM;
160
161 /* allocate a slab for the target ios */
162 _tio_cache = KMEM_CACHE(dm_target_io, 0);
163 if (!_tio_cache) {
164 kmem_cache_destroy(_io_cache);
165 return -ENOMEM;
166 }
167
168 r = dm_uevent_init();
169 if (r) {
170 kmem_cache_destroy(_tio_cache);
171 kmem_cache_destroy(_io_cache);
172 return r;
173 }
174
175 _major = major;
176 r = register_blkdev(_major, _name);
177 if (r < 0) {
178 kmem_cache_destroy(_tio_cache);
179 kmem_cache_destroy(_io_cache);
180 dm_uevent_exit();
181 return r;
182 }
183
184 if (!_major)
185 _major = r;
186
187 return 0;
188 }
189
190 static void local_exit(void)
191 {
192 kmem_cache_destroy(_tio_cache);
193 kmem_cache_destroy(_io_cache);
194 unregister_blkdev(_major, _name);
195 dm_uevent_exit();
196
197 _major = 0;
198
199 DMINFO("cleaned up");
200 }
201
202 static int (*_inits[])(void) __initdata = {
203 local_init,
204 dm_target_init,
205 dm_linear_init,
206 dm_stripe_init,
207 dm_kcopyd_init,
208 dm_interface_init,
209 };
210
211 static void (*_exits[])(void) = {
212 local_exit,
213 dm_target_exit,
214 dm_linear_exit,
215 dm_stripe_exit,
216 dm_kcopyd_exit,
217 dm_interface_exit,
218 };
219
220 static int __init dm_init(void)
221 {
222 const int count = ARRAY_SIZE(_inits);
223
224 int r, i;
225
226 for (i = 0; i < count; i++) {
227 r = _inits[i]();
228 if (r)
229 goto bad;
230 }
231
232 return 0;
233
234 bad:
235 while (i--)
236 _exits[i]();
237
238 return r;
239 }
240
241 static void __exit dm_exit(void)
242 {
243 int i = ARRAY_SIZE(_exits);
244
245 while (i--)
246 _exits[i]();
247 }
248
249 /*
250 * Block device functions
251 */
252 static int dm_blk_open(struct inode *inode, struct file *file)
253 {
254 struct mapped_device *md;
255
256 spin_lock(&_minor_lock);
257
258 md = inode->i_bdev->bd_disk->private_data;
259 if (!md)
260 goto out;
261
262 if (test_bit(DMF_FREEING, &md->flags) ||
263 test_bit(DMF_DELETING, &md->flags)) {
264 md = NULL;
265 goto out;
266 }
267
268 dm_get(md);
269 atomic_inc(&md->open_count);
270
271 out:
272 spin_unlock(&_minor_lock);
273
274 return md ? 0 : -ENXIO;
275 }
276
277 static int dm_blk_close(struct inode *inode, struct file *file)
278 {
279 struct mapped_device *md;
280
281 md = inode->i_bdev->bd_disk->private_data;
282 atomic_dec(&md->open_count);
283 dm_put(md);
284 return 0;
285 }
286
287 int dm_open_count(struct mapped_device *md)
288 {
289 return atomic_read(&md->open_count);
290 }
291
292 /*
293 * Guarantees nothing is using the device before it's deleted.
294 */
295 int dm_lock_for_deletion(struct mapped_device *md)
296 {
297 int r = 0;
298
299 spin_lock(&_minor_lock);
300
301 if (dm_open_count(md))
302 r = -EBUSY;
303 else
304 set_bit(DMF_DELETING, &md->flags);
305
306 spin_unlock(&_minor_lock);
307
308 return r;
309 }
310
311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
312 {
313 struct mapped_device *md = bdev->bd_disk->private_data;
314
315 return dm_get_geometry(md, geo);
316 }
317
318 static int dm_blk_ioctl(struct inode *inode, struct file *file,
319 unsigned int cmd, unsigned long arg)
320 {
321 struct mapped_device *md;
322 struct dm_table *map;
323 struct dm_target *tgt;
324 int r = -ENOTTY;
325
326 /* We don't really need this lock, but we do need 'inode'. */
327 unlock_kernel();
328
329 md = inode->i_bdev->bd_disk->private_data;
330
331 map = dm_get_table(md);
332
333 if (!map || !dm_table_get_size(map))
334 goto out;
335
336 /* We only support devices that have a single target */
337 if (dm_table_get_num_targets(map) != 1)
338 goto out;
339
340 tgt = dm_table_get_target(map, 0);
341
342 if (dm_suspended(md)) {
343 r = -EAGAIN;
344 goto out;
345 }
346
347 if (tgt->type->ioctl)
348 r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
349
350 out:
351 dm_table_put(map);
352
353 lock_kernel();
354 return r;
355 }
356
357 static struct dm_io *alloc_io(struct mapped_device *md)
358 {
359 return mempool_alloc(md->io_pool, GFP_NOIO);
360 }
361
362 static void free_io(struct mapped_device *md, struct dm_io *io)
363 {
364 mempool_free(io, md->io_pool);
365 }
366
367 static struct dm_target_io *alloc_tio(struct mapped_device *md)
368 {
369 return mempool_alloc(md->tio_pool, GFP_NOIO);
370 }
371
372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
373 {
374 mempool_free(tio, md->tio_pool);
375 }
376
377 static void start_io_acct(struct dm_io *io)
378 {
379 struct mapped_device *md = io->md;
380 int cpu;
381
382 io->start_time = jiffies;
383
384 cpu = part_stat_lock();
385 part_round_stats(cpu, &dm_disk(md)->part0);
386 part_stat_unlock();
387 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
388 }
389
390 static int end_io_acct(struct dm_io *io)
391 {
392 struct mapped_device *md = io->md;
393 struct bio *bio = io->bio;
394 unsigned long duration = jiffies - io->start_time;
395 int pending, cpu;
396 int rw = bio_data_dir(bio);
397
398 cpu = part_stat_lock();
399 part_round_stats(cpu, &dm_disk(md)->part0);
400 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
401 part_stat_unlock();
402
403 dm_disk(md)->part0.in_flight = pending =
404 atomic_dec_return(&md->pending);
405
406 return !pending;
407 }
408
409 /*
410 * Add the bio to the list of deferred io.
411 */
412 static int queue_io(struct mapped_device *md, struct bio *bio)
413 {
414 down_write(&md->io_lock);
415
416 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
417 up_write(&md->io_lock);
418 return 1;
419 }
420
421 bio_list_add(&md->deferred, bio);
422
423 up_write(&md->io_lock);
424 return 0; /* deferred successfully */
425 }
426
427 /*
428 * Everyone (including functions in this file), should use this
429 * function to access the md->map field, and make sure they call
430 * dm_table_put() when finished.
431 */
432 struct dm_table *dm_get_table(struct mapped_device *md)
433 {
434 struct dm_table *t;
435
436 read_lock(&md->map_lock);
437 t = md->map;
438 if (t)
439 dm_table_get(t);
440 read_unlock(&md->map_lock);
441
442 return t;
443 }
444
445 /*
446 * Get the geometry associated with a dm device
447 */
448 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
449 {
450 *geo = md->geometry;
451
452 return 0;
453 }
454
455 /*
456 * Set the geometry of a device.
457 */
458 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
459 {
460 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
461
462 if (geo->start > sz) {
463 DMWARN("Start sector is beyond the geometry limits.");
464 return -EINVAL;
465 }
466
467 md->geometry = *geo;
468
469 return 0;
470 }
471
472 /*-----------------------------------------------------------------
473 * CRUD START:
474 * A more elegant soln is in the works that uses the queue
475 * merge fn, unfortunately there are a couple of changes to
476 * the block layer that I want to make for this. So in the
477 * interests of getting something for people to use I give
478 * you this clearly demarcated crap.
479 *---------------------------------------------------------------*/
480
481 static int __noflush_suspending(struct mapped_device *md)
482 {
483 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
484 }
485
486 /*
487 * Decrements the number of outstanding ios that a bio has been
488 * cloned into, completing the original io if necc.
489 */
490 static void dec_pending(struct dm_io *io, int error)
491 {
492 unsigned long flags;
493
494 /* Push-back supersedes any I/O errors */
495 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
496 io->error = error;
497
498 if (atomic_dec_and_test(&io->io_count)) {
499 if (io->error == DM_ENDIO_REQUEUE) {
500 /*
501 * Target requested pushing back the I/O.
502 * This must be handled before the sleeper on
503 * suspend queue merges the pushback list.
504 */
505 spin_lock_irqsave(&io->md->pushback_lock, flags);
506 if (__noflush_suspending(io->md))
507 bio_list_add(&io->md->pushback, io->bio);
508 else
509 /* noflush suspend was interrupted. */
510 io->error = -EIO;
511 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
512 }
513
514 if (end_io_acct(io))
515 /* nudge anyone waiting on suspend queue */
516 wake_up(&io->md->wait);
517
518 if (io->error != DM_ENDIO_REQUEUE) {
519 blk_add_trace_bio(io->md->queue, io->bio,
520 BLK_TA_COMPLETE);
521
522 bio_endio(io->bio, io->error);
523 }
524
525 free_io(io->md, io);
526 }
527 }
528
529 static void clone_endio(struct bio *bio, int error)
530 {
531 int r = 0;
532 struct dm_target_io *tio = bio->bi_private;
533 struct mapped_device *md = tio->io->md;
534 dm_endio_fn endio = tio->ti->type->end_io;
535
536 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
537 error = -EIO;
538
539 if (endio) {
540 r = endio(tio->ti, bio, error, &tio->info);
541 if (r < 0 || r == DM_ENDIO_REQUEUE)
542 /*
543 * error and requeue request are handled
544 * in dec_pending().
545 */
546 error = r;
547 else if (r == DM_ENDIO_INCOMPLETE)
548 /* The target will handle the io */
549 return;
550 else if (r) {
551 DMWARN("unimplemented target endio return value: %d", r);
552 BUG();
553 }
554 }
555
556 dec_pending(tio->io, error);
557
558 /*
559 * Store md for cleanup instead of tio which is about to get freed.
560 */
561 bio->bi_private = md->bs;
562
563 bio_put(bio);
564 free_tio(md, tio);
565 }
566
567 static sector_t max_io_len(struct mapped_device *md,
568 sector_t sector, struct dm_target *ti)
569 {
570 sector_t offset = sector - ti->begin;
571 sector_t len = ti->len - offset;
572
573 /*
574 * Does the target need to split even further ?
575 */
576 if (ti->split_io) {
577 sector_t boundary;
578 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
579 - offset;
580 if (len > boundary)
581 len = boundary;
582 }
583
584 return len;
585 }
586
587 static void __map_bio(struct dm_target *ti, struct bio *clone,
588 struct dm_target_io *tio)
589 {
590 int r;
591 sector_t sector;
592 struct mapped_device *md;
593
594 /*
595 * Sanity checks.
596 */
597 BUG_ON(!clone->bi_size);
598
599 clone->bi_end_io = clone_endio;
600 clone->bi_private = tio;
601
602 /*
603 * Map the clone. If r == 0 we don't need to do
604 * anything, the target has assumed ownership of
605 * this io.
606 */
607 atomic_inc(&tio->io->io_count);
608 sector = clone->bi_sector;
609 r = ti->type->map(ti, clone, &tio->info);
610 if (r == DM_MAPIO_REMAPPED) {
611 /* the bio has been remapped so dispatch it */
612
613 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
614 tio->io->bio->bi_bdev->bd_dev,
615 clone->bi_sector, sector);
616
617 generic_make_request(clone);
618 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
619 /* error the io and bail out, or requeue it if needed */
620 md = tio->io->md;
621 dec_pending(tio->io, r);
622 /*
623 * Store bio_set for cleanup.
624 */
625 clone->bi_private = md->bs;
626 bio_put(clone);
627 free_tio(md, tio);
628 } else if (r) {
629 DMWARN("unimplemented target map return value: %d", r);
630 BUG();
631 }
632 }
633
634 struct clone_info {
635 struct mapped_device *md;
636 struct dm_table *map;
637 struct bio *bio;
638 struct dm_io *io;
639 sector_t sector;
640 sector_t sector_count;
641 unsigned short idx;
642 };
643
644 static void dm_bio_destructor(struct bio *bio)
645 {
646 struct bio_set *bs = bio->bi_private;
647
648 bio_free(bio, bs);
649 }
650
651 /*
652 * Creates a little bio that is just does part of a bvec.
653 */
654 static struct bio *split_bvec(struct bio *bio, sector_t sector,
655 unsigned short idx, unsigned int offset,
656 unsigned int len, struct bio_set *bs)
657 {
658 struct bio *clone;
659 struct bio_vec *bv = bio->bi_io_vec + idx;
660
661 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
662 clone->bi_destructor = dm_bio_destructor;
663 *clone->bi_io_vec = *bv;
664
665 clone->bi_sector = sector;
666 clone->bi_bdev = bio->bi_bdev;
667 clone->bi_rw = bio->bi_rw;
668 clone->bi_vcnt = 1;
669 clone->bi_size = to_bytes(len);
670 clone->bi_io_vec->bv_offset = offset;
671 clone->bi_io_vec->bv_len = clone->bi_size;
672
673 return clone;
674 }
675
676 /*
677 * Creates a bio that consists of range of complete bvecs.
678 */
679 static struct bio *clone_bio(struct bio *bio, sector_t sector,
680 unsigned short idx, unsigned short bv_count,
681 unsigned int len, struct bio_set *bs)
682 {
683 struct bio *clone;
684
685 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
686 __bio_clone(clone, bio);
687 clone->bi_destructor = dm_bio_destructor;
688 clone->bi_sector = sector;
689 clone->bi_idx = idx;
690 clone->bi_vcnt = idx + bv_count;
691 clone->bi_size = to_bytes(len);
692 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
693
694 return clone;
695 }
696
697 static int __clone_and_map(struct clone_info *ci)
698 {
699 struct bio *clone, *bio = ci->bio;
700 struct dm_target *ti;
701 sector_t len = 0, max;
702 struct dm_target_io *tio;
703
704 ti = dm_table_find_target(ci->map, ci->sector);
705 if (!dm_target_is_valid(ti))
706 return -EIO;
707
708 max = max_io_len(ci->md, ci->sector, ti);
709
710 /*
711 * Allocate a target io object.
712 */
713 tio = alloc_tio(ci->md);
714 tio->io = ci->io;
715 tio->ti = ti;
716 memset(&tio->info, 0, sizeof(tio->info));
717
718 if (ci->sector_count <= max) {
719 /*
720 * Optimise for the simple case where we can do all of
721 * the remaining io with a single clone.
722 */
723 clone = clone_bio(bio, ci->sector, ci->idx,
724 bio->bi_vcnt - ci->idx, ci->sector_count,
725 ci->md->bs);
726 __map_bio(ti, clone, tio);
727 ci->sector_count = 0;
728
729 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
730 /*
731 * There are some bvecs that don't span targets.
732 * Do as many of these as possible.
733 */
734 int i;
735 sector_t remaining = max;
736 sector_t bv_len;
737
738 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
739 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
740
741 if (bv_len > remaining)
742 break;
743
744 remaining -= bv_len;
745 len += bv_len;
746 }
747
748 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
749 ci->md->bs);
750 __map_bio(ti, clone, tio);
751
752 ci->sector += len;
753 ci->sector_count -= len;
754 ci->idx = i;
755
756 } else {
757 /*
758 * Handle a bvec that must be split between two or more targets.
759 */
760 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
761 sector_t remaining = to_sector(bv->bv_len);
762 unsigned int offset = 0;
763
764 do {
765 if (offset) {
766 ti = dm_table_find_target(ci->map, ci->sector);
767 if (!dm_target_is_valid(ti))
768 return -EIO;
769
770 max = max_io_len(ci->md, ci->sector, ti);
771
772 tio = alloc_tio(ci->md);
773 tio->io = ci->io;
774 tio->ti = ti;
775 memset(&tio->info, 0, sizeof(tio->info));
776 }
777
778 len = min(remaining, max);
779
780 clone = split_bvec(bio, ci->sector, ci->idx,
781 bv->bv_offset + offset, len,
782 ci->md->bs);
783
784 __map_bio(ti, clone, tio);
785
786 ci->sector += len;
787 ci->sector_count -= len;
788 offset += to_bytes(len);
789 } while (remaining -= len);
790
791 ci->idx++;
792 }
793
794 return 0;
795 }
796
797 /*
798 * Split the bio into several clones.
799 */
800 static int __split_bio(struct mapped_device *md, struct bio *bio)
801 {
802 struct clone_info ci;
803 int error = 0;
804
805 ci.map = dm_get_table(md);
806 if (unlikely(!ci.map))
807 return -EIO;
808
809 ci.md = md;
810 ci.bio = bio;
811 ci.io = alloc_io(md);
812 ci.io->error = 0;
813 atomic_set(&ci.io->io_count, 1);
814 ci.io->bio = bio;
815 ci.io->md = md;
816 ci.sector = bio->bi_sector;
817 ci.sector_count = bio_sectors(bio);
818 ci.idx = bio->bi_idx;
819
820 start_io_acct(ci.io);
821 while (ci.sector_count && !error)
822 error = __clone_and_map(&ci);
823
824 /* drop the extra reference count */
825 dec_pending(ci.io, error);
826 dm_table_put(ci.map);
827
828 return 0;
829 }
830 /*-----------------------------------------------------------------
831 * CRUD END
832 *---------------------------------------------------------------*/
833
834 static int dm_merge_bvec(struct request_queue *q,
835 struct bvec_merge_data *bvm,
836 struct bio_vec *biovec)
837 {
838 struct mapped_device *md = q->queuedata;
839 struct dm_table *map = dm_get_table(md);
840 struct dm_target *ti;
841 sector_t max_sectors;
842 int max_size = 0;
843
844 if (unlikely(!map))
845 goto out;
846
847 ti = dm_table_find_target(map, bvm->bi_sector);
848 if (!dm_target_is_valid(ti))
849 goto out_table;
850
851 /*
852 * Find maximum amount of I/O that won't need splitting
853 */
854 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
855 (sector_t) BIO_MAX_SECTORS);
856 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
857 if (max_size < 0)
858 max_size = 0;
859
860 /*
861 * merge_bvec_fn() returns number of bytes
862 * it can accept at this offset
863 * max is precomputed maximal io size
864 */
865 if (max_size && ti->type->merge)
866 max_size = ti->type->merge(ti, bvm, biovec, max_size);
867
868 out_table:
869 dm_table_put(map);
870
871 out:
872 /*
873 * Always allow an entire first page
874 */
875 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
876 max_size = biovec->bv_len;
877
878 return max_size;
879 }
880
881 /*
882 * The request function that just remaps the bio built up by
883 * dm_merge_bvec.
884 */
885 static int dm_request(struct request_queue *q, struct bio *bio)
886 {
887 int r = -EIO;
888 int rw = bio_data_dir(bio);
889 struct mapped_device *md = q->queuedata;
890 int cpu;
891
892 /*
893 * There is no use in forwarding any barrier request since we can't
894 * guarantee it is (or can be) handled by the targets correctly.
895 */
896 if (unlikely(bio_barrier(bio))) {
897 bio_endio(bio, -EOPNOTSUPP);
898 return 0;
899 }
900
901 down_read(&md->io_lock);
902
903 cpu = part_stat_lock();
904 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
905 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
906 part_stat_unlock();
907
908 /*
909 * If we're suspended we have to queue
910 * this io for later.
911 */
912 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
913 up_read(&md->io_lock);
914
915 if (bio_rw(bio) != READA)
916 r = queue_io(md, bio);
917
918 if (r <= 0)
919 goto out_req;
920
921 /*
922 * We're in a while loop, because someone could suspend
923 * before we get to the following read lock.
924 */
925 down_read(&md->io_lock);
926 }
927
928 r = __split_bio(md, bio);
929 up_read(&md->io_lock);
930
931 out_req:
932 if (r < 0)
933 bio_io_error(bio);
934
935 return 0;
936 }
937
938 static void dm_unplug_all(struct request_queue *q)
939 {
940 struct mapped_device *md = q->queuedata;
941 struct dm_table *map = dm_get_table(md);
942
943 if (map) {
944 dm_table_unplug_all(map);
945 dm_table_put(map);
946 }
947 }
948
949 static int dm_any_congested(void *congested_data, int bdi_bits)
950 {
951 int r;
952 struct mapped_device *md = (struct mapped_device *) congested_data;
953 struct dm_table *map = dm_get_table(md);
954
955 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
956 r = bdi_bits;
957 else
958 r = dm_table_any_congested(map, bdi_bits);
959
960 dm_table_put(map);
961 return r;
962 }
963
964 /*-----------------------------------------------------------------
965 * An IDR is used to keep track of allocated minor numbers.
966 *---------------------------------------------------------------*/
967 static DEFINE_IDR(_minor_idr);
968
969 static void free_minor(int minor)
970 {
971 spin_lock(&_minor_lock);
972 idr_remove(&_minor_idr, minor);
973 spin_unlock(&_minor_lock);
974 }
975
976 /*
977 * See if the device with a specific minor # is free.
978 */
979 static int specific_minor(int minor)
980 {
981 int r, m;
982
983 if (minor >= (1 << MINORBITS))
984 return -EINVAL;
985
986 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
987 if (!r)
988 return -ENOMEM;
989
990 spin_lock(&_minor_lock);
991
992 if (idr_find(&_minor_idr, minor)) {
993 r = -EBUSY;
994 goto out;
995 }
996
997 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
998 if (r)
999 goto out;
1000
1001 if (m != minor) {
1002 idr_remove(&_minor_idr, m);
1003 r = -EBUSY;
1004 goto out;
1005 }
1006
1007 out:
1008 spin_unlock(&_minor_lock);
1009 return r;
1010 }
1011
1012 static int next_free_minor(int *minor)
1013 {
1014 int r, m;
1015
1016 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1017 if (!r)
1018 return -ENOMEM;
1019
1020 spin_lock(&_minor_lock);
1021
1022 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1023 if (r)
1024 goto out;
1025
1026 if (m >= (1 << MINORBITS)) {
1027 idr_remove(&_minor_idr, m);
1028 r = -ENOSPC;
1029 goto out;
1030 }
1031
1032 *minor = m;
1033
1034 out:
1035 spin_unlock(&_minor_lock);
1036 return r;
1037 }
1038
1039 static struct block_device_operations dm_blk_dops;
1040
1041 /*
1042 * Allocate and initialise a blank device with a given minor.
1043 */
1044 static struct mapped_device *alloc_dev(int minor)
1045 {
1046 int r;
1047 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1048 void *old_md;
1049
1050 if (!md) {
1051 DMWARN("unable to allocate device, out of memory.");
1052 return NULL;
1053 }
1054
1055 if (!try_module_get(THIS_MODULE))
1056 goto bad_module_get;
1057
1058 /* get a minor number for the dev */
1059 if (minor == DM_ANY_MINOR)
1060 r = next_free_minor(&minor);
1061 else
1062 r = specific_minor(minor);
1063 if (r < 0)
1064 goto bad_minor;
1065
1066 init_rwsem(&md->io_lock);
1067 mutex_init(&md->suspend_lock);
1068 spin_lock_init(&md->pushback_lock);
1069 rwlock_init(&md->map_lock);
1070 atomic_set(&md->holders, 1);
1071 atomic_set(&md->open_count, 0);
1072 atomic_set(&md->event_nr, 0);
1073 atomic_set(&md->uevent_seq, 0);
1074 INIT_LIST_HEAD(&md->uevent_list);
1075 spin_lock_init(&md->uevent_lock);
1076
1077 md->queue = blk_alloc_queue(GFP_KERNEL);
1078 if (!md->queue)
1079 goto bad_queue;
1080
1081 md->queue->queuedata = md;
1082 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1083 md->queue->backing_dev_info.congested_data = md;
1084 blk_queue_make_request(md->queue, dm_request);
1085 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1086 md->queue->unplug_fn = dm_unplug_all;
1087 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1088
1089 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1090 if (!md->io_pool)
1091 goto bad_io_pool;
1092
1093 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1094 if (!md->tio_pool)
1095 goto bad_tio_pool;
1096
1097 md->bs = bioset_create(16, 16);
1098 if (!md->bs)
1099 goto bad_no_bioset;
1100
1101 md->disk = alloc_disk(1);
1102 if (!md->disk)
1103 goto bad_disk;
1104
1105 atomic_set(&md->pending, 0);
1106 init_waitqueue_head(&md->wait);
1107 init_waitqueue_head(&md->eventq);
1108
1109 md->disk->major = _major;
1110 md->disk->first_minor = minor;
1111 md->disk->fops = &dm_blk_dops;
1112 md->disk->queue = md->queue;
1113 md->disk->private_data = md;
1114 sprintf(md->disk->disk_name, "dm-%d", minor);
1115 add_disk(md->disk);
1116 format_dev_t(md->name, MKDEV(_major, minor));
1117
1118 md->wq = create_singlethread_workqueue("kdmflush");
1119 if (!md->wq)
1120 goto bad_thread;
1121
1122 /* Populate the mapping, nobody knows we exist yet */
1123 spin_lock(&_minor_lock);
1124 old_md = idr_replace(&_minor_idr, md, minor);
1125 spin_unlock(&_minor_lock);
1126
1127 BUG_ON(old_md != MINOR_ALLOCED);
1128
1129 return md;
1130
1131 bad_thread:
1132 put_disk(md->disk);
1133 bad_disk:
1134 bioset_free(md->bs);
1135 bad_no_bioset:
1136 mempool_destroy(md->tio_pool);
1137 bad_tio_pool:
1138 mempool_destroy(md->io_pool);
1139 bad_io_pool:
1140 blk_cleanup_queue(md->queue);
1141 bad_queue:
1142 free_minor(minor);
1143 bad_minor:
1144 module_put(THIS_MODULE);
1145 bad_module_get:
1146 kfree(md);
1147 return NULL;
1148 }
1149
1150 static void unlock_fs(struct mapped_device *md);
1151
1152 static void free_dev(struct mapped_device *md)
1153 {
1154 int minor = MINOR(disk_devt(md->disk));
1155
1156 if (md->suspended_bdev) {
1157 unlock_fs(md);
1158 bdput(md->suspended_bdev);
1159 }
1160 destroy_workqueue(md->wq);
1161 mempool_destroy(md->tio_pool);
1162 mempool_destroy(md->io_pool);
1163 bioset_free(md->bs);
1164 del_gendisk(md->disk);
1165 free_minor(minor);
1166
1167 spin_lock(&_minor_lock);
1168 md->disk->private_data = NULL;
1169 spin_unlock(&_minor_lock);
1170
1171 put_disk(md->disk);
1172 blk_cleanup_queue(md->queue);
1173 module_put(THIS_MODULE);
1174 kfree(md);
1175 }
1176
1177 /*
1178 * Bind a table to the device.
1179 */
1180 static void event_callback(void *context)
1181 {
1182 unsigned long flags;
1183 LIST_HEAD(uevents);
1184 struct mapped_device *md = (struct mapped_device *) context;
1185
1186 spin_lock_irqsave(&md->uevent_lock, flags);
1187 list_splice_init(&md->uevent_list, &uevents);
1188 spin_unlock_irqrestore(&md->uevent_lock, flags);
1189
1190 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1191
1192 atomic_inc(&md->event_nr);
1193 wake_up(&md->eventq);
1194 }
1195
1196 static void __set_size(struct mapped_device *md, sector_t size)
1197 {
1198 set_capacity(md->disk, size);
1199
1200 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1201 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1202 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1203 }
1204
1205 static int __bind(struct mapped_device *md, struct dm_table *t)
1206 {
1207 struct request_queue *q = md->queue;
1208 sector_t size;
1209
1210 size = dm_table_get_size(t);
1211
1212 /*
1213 * Wipe any geometry if the size of the table changed.
1214 */
1215 if (size != get_capacity(md->disk))
1216 memset(&md->geometry, 0, sizeof(md->geometry));
1217
1218 if (md->suspended_bdev)
1219 __set_size(md, size);
1220 if (size == 0)
1221 return 0;
1222
1223 dm_table_get(t);
1224 dm_table_event_callback(t, event_callback, md);
1225
1226 write_lock(&md->map_lock);
1227 md->map = t;
1228 dm_table_set_restrictions(t, q);
1229 write_unlock(&md->map_lock);
1230
1231 return 0;
1232 }
1233
1234 static void __unbind(struct mapped_device *md)
1235 {
1236 struct dm_table *map = md->map;
1237
1238 if (!map)
1239 return;
1240
1241 dm_table_event_callback(map, NULL, NULL);
1242 write_lock(&md->map_lock);
1243 md->map = NULL;
1244 write_unlock(&md->map_lock);
1245 dm_table_put(map);
1246 }
1247
1248 /*
1249 * Constructor for a new device.
1250 */
1251 int dm_create(int minor, struct mapped_device **result)
1252 {
1253 struct mapped_device *md;
1254
1255 md = alloc_dev(minor);
1256 if (!md)
1257 return -ENXIO;
1258
1259 *result = md;
1260 return 0;
1261 }
1262
1263 static struct mapped_device *dm_find_md(dev_t dev)
1264 {
1265 struct mapped_device *md;
1266 unsigned minor = MINOR(dev);
1267
1268 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1269 return NULL;
1270
1271 spin_lock(&_minor_lock);
1272
1273 md = idr_find(&_minor_idr, minor);
1274 if (md && (md == MINOR_ALLOCED ||
1275 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1276 test_bit(DMF_FREEING, &md->flags))) {
1277 md = NULL;
1278 goto out;
1279 }
1280
1281 out:
1282 spin_unlock(&_minor_lock);
1283
1284 return md;
1285 }
1286
1287 struct mapped_device *dm_get_md(dev_t dev)
1288 {
1289 struct mapped_device *md = dm_find_md(dev);
1290
1291 if (md)
1292 dm_get(md);
1293
1294 return md;
1295 }
1296
1297 void *dm_get_mdptr(struct mapped_device *md)
1298 {
1299 return md->interface_ptr;
1300 }
1301
1302 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1303 {
1304 md->interface_ptr = ptr;
1305 }
1306
1307 void dm_get(struct mapped_device *md)
1308 {
1309 atomic_inc(&md->holders);
1310 }
1311
1312 const char *dm_device_name(struct mapped_device *md)
1313 {
1314 return md->name;
1315 }
1316 EXPORT_SYMBOL_GPL(dm_device_name);
1317
1318 void dm_put(struct mapped_device *md)
1319 {
1320 struct dm_table *map;
1321
1322 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1323
1324 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1325 map = dm_get_table(md);
1326 idr_replace(&_minor_idr, MINOR_ALLOCED,
1327 MINOR(disk_devt(dm_disk(md))));
1328 set_bit(DMF_FREEING, &md->flags);
1329 spin_unlock(&_minor_lock);
1330 if (!dm_suspended(md)) {
1331 dm_table_presuspend_targets(map);
1332 dm_table_postsuspend_targets(map);
1333 }
1334 __unbind(md);
1335 dm_table_put(map);
1336 free_dev(md);
1337 }
1338 }
1339 EXPORT_SYMBOL_GPL(dm_put);
1340
1341 static int dm_wait_for_completion(struct mapped_device *md)
1342 {
1343 int r = 0;
1344
1345 while (1) {
1346 set_current_state(TASK_INTERRUPTIBLE);
1347
1348 smp_mb();
1349 if (!atomic_read(&md->pending))
1350 break;
1351
1352 if (signal_pending(current)) {
1353 r = -EINTR;
1354 break;
1355 }
1356
1357 io_schedule();
1358 }
1359 set_current_state(TASK_RUNNING);
1360
1361 return r;
1362 }
1363
1364 /*
1365 * Process the deferred bios
1366 */
1367 static void __flush_deferred_io(struct mapped_device *md)
1368 {
1369 struct bio *c;
1370
1371 while ((c = bio_list_pop(&md->deferred))) {
1372 if (__split_bio(md, c))
1373 bio_io_error(c);
1374 }
1375
1376 clear_bit(DMF_BLOCK_IO, &md->flags);
1377 }
1378
1379 static void __merge_pushback_list(struct mapped_device *md)
1380 {
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&md->pushback_lock, flags);
1384 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1385 bio_list_merge_head(&md->deferred, &md->pushback);
1386 bio_list_init(&md->pushback);
1387 spin_unlock_irqrestore(&md->pushback_lock, flags);
1388 }
1389
1390 static void dm_wq_work(struct work_struct *work)
1391 {
1392 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1393 struct mapped_device *md = req->md;
1394
1395 down_write(&md->io_lock);
1396 switch (req->type) {
1397 case DM_WQ_FLUSH_ALL:
1398 __merge_pushback_list(md);
1399 /* pass through */
1400 case DM_WQ_FLUSH_DEFERRED:
1401 __flush_deferred_io(md);
1402 break;
1403 default:
1404 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1405 BUG();
1406 }
1407 up_write(&md->io_lock);
1408 }
1409
1410 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1411 struct dm_wq_req *req)
1412 {
1413 req->type = type;
1414 req->md = md;
1415 req->context = context;
1416 INIT_WORK(&req->work, dm_wq_work);
1417 queue_work(md->wq, &req->work);
1418 }
1419
1420 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1421 {
1422 struct dm_wq_req req;
1423
1424 dm_wq_queue(md, type, context, &req);
1425 flush_workqueue(md->wq);
1426 }
1427
1428 /*
1429 * Swap in a new table (destroying old one).
1430 */
1431 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1432 {
1433 int r = -EINVAL;
1434
1435 mutex_lock(&md->suspend_lock);
1436
1437 /* device must be suspended */
1438 if (!dm_suspended(md))
1439 goto out;
1440
1441 /* without bdev, the device size cannot be changed */
1442 if (!md->suspended_bdev)
1443 if (get_capacity(md->disk) != dm_table_get_size(table))
1444 goto out;
1445
1446 __unbind(md);
1447 r = __bind(md, table);
1448
1449 out:
1450 mutex_unlock(&md->suspend_lock);
1451 return r;
1452 }
1453
1454 /*
1455 * Functions to lock and unlock any filesystem running on the
1456 * device.
1457 */
1458 static int lock_fs(struct mapped_device *md)
1459 {
1460 int r;
1461
1462 WARN_ON(md->frozen_sb);
1463
1464 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1465 if (IS_ERR(md->frozen_sb)) {
1466 r = PTR_ERR(md->frozen_sb);
1467 md->frozen_sb = NULL;
1468 return r;
1469 }
1470
1471 set_bit(DMF_FROZEN, &md->flags);
1472
1473 /* don't bdput right now, we don't want the bdev
1474 * to go away while it is locked.
1475 */
1476 return 0;
1477 }
1478
1479 static void unlock_fs(struct mapped_device *md)
1480 {
1481 if (!test_bit(DMF_FROZEN, &md->flags))
1482 return;
1483
1484 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1485 md->frozen_sb = NULL;
1486 clear_bit(DMF_FROZEN, &md->flags);
1487 }
1488
1489 /*
1490 * We need to be able to change a mapping table under a mounted
1491 * filesystem. For example we might want to move some data in
1492 * the background. Before the table can be swapped with
1493 * dm_bind_table, dm_suspend must be called to flush any in
1494 * flight bios and ensure that any further io gets deferred.
1495 */
1496 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1497 {
1498 struct dm_table *map = NULL;
1499 DECLARE_WAITQUEUE(wait, current);
1500 int r = 0;
1501 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1502 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1503
1504 mutex_lock(&md->suspend_lock);
1505
1506 if (dm_suspended(md)) {
1507 r = -EINVAL;
1508 goto out_unlock;
1509 }
1510
1511 map = dm_get_table(md);
1512
1513 /*
1514 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1515 * This flag is cleared before dm_suspend returns.
1516 */
1517 if (noflush)
1518 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1519
1520 /* This does not get reverted if there's an error later. */
1521 dm_table_presuspend_targets(map);
1522
1523 /* bdget() can stall if the pending I/Os are not flushed */
1524 if (!noflush) {
1525 md->suspended_bdev = bdget_disk(md->disk, 0);
1526 if (!md->suspended_bdev) {
1527 DMWARN("bdget failed in dm_suspend");
1528 r = -ENOMEM;
1529 goto flush_and_out;
1530 }
1531
1532 /*
1533 * Flush I/O to the device. noflush supersedes do_lockfs,
1534 * because lock_fs() needs to flush I/Os.
1535 */
1536 if (do_lockfs) {
1537 r = lock_fs(md);
1538 if (r)
1539 goto out;
1540 }
1541 }
1542
1543 /*
1544 * First we set the BLOCK_IO flag so no more ios will be mapped.
1545 */
1546 down_write(&md->io_lock);
1547 set_bit(DMF_BLOCK_IO, &md->flags);
1548
1549 add_wait_queue(&md->wait, &wait);
1550 up_write(&md->io_lock);
1551
1552 /* unplug */
1553 if (map)
1554 dm_table_unplug_all(map);
1555
1556 /*
1557 * Wait for the already-mapped ios to complete.
1558 */
1559 r = dm_wait_for_completion(md);
1560
1561 down_write(&md->io_lock);
1562 remove_wait_queue(&md->wait, &wait);
1563
1564 if (noflush)
1565 __merge_pushback_list(md);
1566 up_write(&md->io_lock);
1567
1568 /* were we interrupted ? */
1569 if (r < 0) {
1570 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1571
1572 unlock_fs(md);
1573 goto out; /* pushback list is already flushed, so skip flush */
1574 }
1575
1576 dm_table_postsuspend_targets(map);
1577
1578 set_bit(DMF_SUSPENDED, &md->flags);
1579
1580 flush_and_out:
1581 if (r && noflush)
1582 /*
1583 * Because there may be already I/Os in the pushback list,
1584 * flush them before return.
1585 */
1586 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1587
1588 out:
1589 if (r && md->suspended_bdev) {
1590 bdput(md->suspended_bdev);
1591 md->suspended_bdev = NULL;
1592 }
1593
1594 dm_table_put(map);
1595
1596 out_unlock:
1597 mutex_unlock(&md->suspend_lock);
1598 return r;
1599 }
1600
1601 int dm_resume(struct mapped_device *md)
1602 {
1603 int r = -EINVAL;
1604 struct dm_table *map = NULL;
1605
1606 mutex_lock(&md->suspend_lock);
1607 if (!dm_suspended(md))
1608 goto out;
1609
1610 map = dm_get_table(md);
1611 if (!map || !dm_table_get_size(map))
1612 goto out;
1613
1614 r = dm_table_resume_targets(map);
1615 if (r)
1616 goto out;
1617
1618 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1619
1620 unlock_fs(md);
1621
1622 if (md->suspended_bdev) {
1623 bdput(md->suspended_bdev);
1624 md->suspended_bdev = NULL;
1625 }
1626
1627 clear_bit(DMF_SUSPENDED, &md->flags);
1628
1629 dm_table_unplug_all(map);
1630
1631 dm_kobject_uevent(md);
1632
1633 r = 0;
1634
1635 out:
1636 dm_table_put(map);
1637 mutex_unlock(&md->suspend_lock);
1638
1639 return r;
1640 }
1641
1642 /*-----------------------------------------------------------------
1643 * Event notification.
1644 *---------------------------------------------------------------*/
1645 void dm_kobject_uevent(struct mapped_device *md)
1646 {
1647 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1648 }
1649
1650 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1651 {
1652 return atomic_add_return(1, &md->uevent_seq);
1653 }
1654
1655 uint32_t dm_get_event_nr(struct mapped_device *md)
1656 {
1657 return atomic_read(&md->event_nr);
1658 }
1659
1660 int dm_wait_event(struct mapped_device *md, int event_nr)
1661 {
1662 return wait_event_interruptible(md->eventq,
1663 (event_nr != atomic_read(&md->event_nr)));
1664 }
1665
1666 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1667 {
1668 unsigned long flags;
1669
1670 spin_lock_irqsave(&md->uevent_lock, flags);
1671 list_add(elist, &md->uevent_list);
1672 spin_unlock_irqrestore(&md->uevent_lock, flags);
1673 }
1674
1675 /*
1676 * The gendisk is only valid as long as you have a reference
1677 * count on 'md'.
1678 */
1679 struct gendisk *dm_disk(struct mapped_device *md)
1680 {
1681 return md->disk;
1682 }
1683
1684 int dm_suspended(struct mapped_device *md)
1685 {
1686 return test_bit(DMF_SUSPENDED, &md->flags);
1687 }
1688
1689 int dm_noflush_suspending(struct dm_target *ti)
1690 {
1691 struct mapped_device *md = dm_table_get_md(ti->table);
1692 int r = __noflush_suspending(md);
1693
1694 dm_put(md);
1695
1696 return r;
1697 }
1698 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1699
1700 static struct block_device_operations dm_blk_dops = {
1701 .open = dm_blk_open,
1702 .release = dm_blk_close,
1703 .ioctl = dm_blk_ioctl,
1704 .getgeo = dm_blk_getgeo,
1705 .owner = THIS_MODULE
1706 };
1707
1708 EXPORT_SYMBOL(dm_get_mapinfo);
1709
1710 /*
1711 * module hooks
1712 */
1713 module_init(dm_init);
1714 module_exit(dm_exit);
1715
1716 module_param(major, uint, 0);
1717 MODULE_PARM_DESC(major, "The major number of the device mapper");
1718 MODULE_DESCRIPTION(DM_NAME " driver");
1719 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1720 MODULE_LICENSE("GPL");