]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
Merge branch 'for-4.4/lightnvm' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 struct dm_stats_aux stats_aux;
90 unsigned long duration_jiffies;
91 unsigned n_sectors;
92 };
93
94 /*
95 * For request-based dm - the bio clones we allocate are embedded in these
96 * structs.
97 *
98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99 * the bioset is created - this means the bio has to come at the end of the
100 * struct.
101 */
102 struct dm_rq_clone_bio_info {
103 struct bio *orig;
104 struct dm_rq_target_io *tio;
105 struct bio clone;
106 };
107
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 if (rq && rq->end_io_data)
111 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115
116 #define MINOR_ALLOCED ((void *)-1)
117
118 /*
119 * Bits for the md->flags field.
120 */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_DEFERRED_REMOVE 6
128 #define DMF_SUSPENDED_INTERNALLY 7
129
130 /*
131 * A dummy definition to make RCU happy.
132 * struct dm_table should never be dereferenced in this file.
133 */
134 struct dm_table {
135 int undefined__;
136 };
137
138 /*
139 * Work processed by per-device workqueue.
140 */
141 struct mapped_device {
142 struct srcu_struct io_barrier;
143 struct mutex suspend_lock;
144 atomic_t holders;
145 atomic_t open_count;
146
147 /*
148 * The current mapping.
149 * Use dm_get_live_table{_fast} or take suspend_lock for
150 * dereference.
151 */
152 struct dm_table __rcu *map;
153
154 struct list_head table_devices;
155 struct mutex table_devices_lock;
156
157 unsigned long flags;
158
159 struct request_queue *queue;
160 unsigned type;
161 /* Protect queue and type against concurrent access. */
162 struct mutex type_lock;
163
164 struct target_type *immutable_target_type;
165
166 struct gendisk *disk;
167 char name[16];
168
169 void *interface_ptr;
170
171 /*
172 * A list of ios that arrived while we were suspended.
173 */
174 atomic_t pending[2];
175 wait_queue_head_t wait;
176 struct work_struct work;
177 struct bio_list deferred;
178 spinlock_t deferred_lock;
179
180 /*
181 * Processing queue (flush)
182 */
183 struct workqueue_struct *wq;
184
185 /*
186 * io objects are allocated from here.
187 */
188 mempool_t *io_pool;
189 mempool_t *rq_pool;
190
191 struct bio_set *bs;
192
193 /*
194 * Event handling.
195 */
196 atomic_t event_nr;
197 wait_queue_head_t eventq;
198 atomic_t uevent_seq;
199 struct list_head uevent_list;
200 spinlock_t uevent_lock; /* Protect access to uevent_list */
201
202 /*
203 * freeze/thaw support require holding onto a super block
204 */
205 struct super_block *frozen_sb;
206 struct block_device *bdev;
207
208 /* forced geometry settings */
209 struct hd_geometry geometry;
210
211 /* kobject and completion */
212 struct dm_kobject_holder kobj_holder;
213
214 /* zero-length flush that will be cloned and submitted to targets */
215 struct bio flush_bio;
216
217 /* the number of internal suspends */
218 unsigned internal_suspend_count;
219
220 struct dm_stats stats;
221
222 struct kthread_worker kworker;
223 struct task_struct *kworker_task;
224
225 /* for request-based merge heuristic in dm_request_fn() */
226 unsigned seq_rq_merge_deadline_usecs;
227 int last_rq_rw;
228 sector_t last_rq_pos;
229 ktime_t last_rq_start_time;
230
231 /* for blk-mq request-based DM support */
232 struct blk_mq_tag_set tag_set;
233 bool use_blk_mq;
234 };
235
236 #ifdef CONFIG_DM_MQ_DEFAULT
237 static bool use_blk_mq = true;
238 #else
239 static bool use_blk_mq = false;
240 #endif
241
242 bool dm_use_blk_mq(struct mapped_device *md)
243 {
244 return md->use_blk_mq;
245 }
246
247 /*
248 * For mempools pre-allocation at the table loading time.
249 */
250 struct dm_md_mempools {
251 mempool_t *io_pool;
252 mempool_t *rq_pool;
253 struct bio_set *bs;
254 };
255
256 struct table_device {
257 struct list_head list;
258 atomic_t count;
259 struct dm_dev dm_dev;
260 };
261
262 #define RESERVED_BIO_BASED_IOS 16
263 #define RESERVED_REQUEST_BASED_IOS 256
264 #define RESERVED_MAX_IOS 1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268
269 /*
270 * Bio-based DM's mempools' reserved IOs set by the user.
271 */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273
274 /*
275 * Request-based DM's mempools' reserved IOs set by the user.
276 */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278
279 static unsigned __dm_get_module_param(unsigned *module_param,
280 unsigned def, unsigned max)
281 {
282 unsigned param = ACCESS_ONCE(*module_param);
283 unsigned modified_param = 0;
284
285 if (!param)
286 modified_param = def;
287 else if (param > max)
288 modified_param = max;
289
290 if (modified_param) {
291 (void)cmpxchg(module_param, param, modified_param);
292 param = modified_param;
293 }
294
295 return param;
296 }
297
298 unsigned dm_get_reserved_bio_based_ios(void)
299 {
300 return __dm_get_module_param(&reserved_bio_based_ios,
301 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
302 }
303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
304
305 unsigned dm_get_reserved_rq_based_ios(void)
306 {
307 return __dm_get_module_param(&reserved_rq_based_ios,
308 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
309 }
310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
311
312 static int __init local_init(void)
313 {
314 int r = -ENOMEM;
315
316 /* allocate a slab for the dm_ios */
317 _io_cache = KMEM_CACHE(dm_io, 0);
318 if (!_io_cache)
319 return r;
320
321 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
322 if (!_rq_tio_cache)
323 goto out_free_io_cache;
324
325 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
326 __alignof__(struct request), 0, NULL);
327 if (!_rq_cache)
328 goto out_free_rq_tio_cache;
329
330 r = dm_uevent_init();
331 if (r)
332 goto out_free_rq_cache;
333
334 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
335 if (!deferred_remove_workqueue) {
336 r = -ENOMEM;
337 goto out_uevent_exit;
338 }
339
340 _major = major;
341 r = register_blkdev(_major, _name);
342 if (r < 0)
343 goto out_free_workqueue;
344
345 if (!_major)
346 _major = r;
347
348 return 0;
349
350 out_free_workqueue:
351 destroy_workqueue(deferred_remove_workqueue);
352 out_uevent_exit:
353 dm_uevent_exit();
354 out_free_rq_cache:
355 kmem_cache_destroy(_rq_cache);
356 out_free_rq_tio_cache:
357 kmem_cache_destroy(_rq_tio_cache);
358 out_free_io_cache:
359 kmem_cache_destroy(_io_cache);
360
361 return r;
362 }
363
364 static void local_exit(void)
365 {
366 flush_scheduled_work();
367 destroy_workqueue(deferred_remove_workqueue);
368
369 kmem_cache_destroy(_rq_cache);
370 kmem_cache_destroy(_rq_tio_cache);
371 kmem_cache_destroy(_io_cache);
372 unregister_blkdev(_major, _name);
373 dm_uevent_exit();
374
375 _major = 0;
376
377 DMINFO("cleaned up");
378 }
379
380 static int (*_inits[])(void) __initdata = {
381 local_init,
382 dm_target_init,
383 dm_linear_init,
384 dm_stripe_init,
385 dm_io_init,
386 dm_kcopyd_init,
387 dm_interface_init,
388 dm_statistics_init,
389 };
390
391 static void (*_exits[])(void) = {
392 local_exit,
393 dm_target_exit,
394 dm_linear_exit,
395 dm_stripe_exit,
396 dm_io_exit,
397 dm_kcopyd_exit,
398 dm_interface_exit,
399 dm_statistics_exit,
400 };
401
402 static int __init dm_init(void)
403 {
404 const int count = ARRAY_SIZE(_inits);
405
406 int r, i;
407
408 for (i = 0; i < count; i++) {
409 r = _inits[i]();
410 if (r)
411 goto bad;
412 }
413
414 return 0;
415
416 bad:
417 while (i--)
418 _exits[i]();
419
420 return r;
421 }
422
423 static void __exit dm_exit(void)
424 {
425 int i = ARRAY_SIZE(_exits);
426
427 while (i--)
428 _exits[i]();
429
430 /*
431 * Should be empty by this point.
432 */
433 idr_destroy(&_minor_idr);
434 }
435
436 /*
437 * Block device functions
438 */
439 int dm_deleting_md(struct mapped_device *md)
440 {
441 return test_bit(DMF_DELETING, &md->flags);
442 }
443
444 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
445 {
446 struct mapped_device *md;
447
448 spin_lock(&_minor_lock);
449
450 md = bdev->bd_disk->private_data;
451 if (!md)
452 goto out;
453
454 if (test_bit(DMF_FREEING, &md->flags) ||
455 dm_deleting_md(md)) {
456 md = NULL;
457 goto out;
458 }
459
460 dm_get(md);
461 atomic_inc(&md->open_count);
462 out:
463 spin_unlock(&_minor_lock);
464
465 return md ? 0 : -ENXIO;
466 }
467
468 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
469 {
470 struct mapped_device *md;
471
472 spin_lock(&_minor_lock);
473
474 md = disk->private_data;
475 if (WARN_ON(!md))
476 goto out;
477
478 if (atomic_dec_and_test(&md->open_count) &&
479 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
480 queue_work(deferred_remove_workqueue, &deferred_remove_work);
481
482 dm_put(md);
483 out:
484 spin_unlock(&_minor_lock);
485 }
486
487 int dm_open_count(struct mapped_device *md)
488 {
489 return atomic_read(&md->open_count);
490 }
491
492 /*
493 * Guarantees nothing is using the device before it's deleted.
494 */
495 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
496 {
497 int r = 0;
498
499 spin_lock(&_minor_lock);
500
501 if (dm_open_count(md)) {
502 r = -EBUSY;
503 if (mark_deferred)
504 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
505 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
506 r = -EEXIST;
507 else
508 set_bit(DMF_DELETING, &md->flags);
509
510 spin_unlock(&_minor_lock);
511
512 return r;
513 }
514
515 int dm_cancel_deferred_remove(struct mapped_device *md)
516 {
517 int r = 0;
518
519 spin_lock(&_minor_lock);
520
521 if (test_bit(DMF_DELETING, &md->flags))
522 r = -EBUSY;
523 else
524 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
525
526 spin_unlock(&_minor_lock);
527
528 return r;
529 }
530
531 static void do_deferred_remove(struct work_struct *w)
532 {
533 dm_deferred_remove();
534 }
535
536 sector_t dm_get_size(struct mapped_device *md)
537 {
538 return get_capacity(md->disk);
539 }
540
541 struct request_queue *dm_get_md_queue(struct mapped_device *md)
542 {
543 return md->queue;
544 }
545
546 struct dm_stats *dm_get_stats(struct mapped_device *md)
547 {
548 return &md->stats;
549 }
550
551 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
552 {
553 struct mapped_device *md = bdev->bd_disk->private_data;
554
555 return dm_get_geometry(md, geo);
556 }
557
558 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
559 unsigned int cmd, unsigned long arg)
560 {
561 struct mapped_device *md = bdev->bd_disk->private_data;
562 int srcu_idx;
563 struct dm_table *map;
564 struct dm_target *tgt;
565 int r = -ENOTTY;
566
567 retry:
568 map = dm_get_live_table(md, &srcu_idx);
569
570 if (!map || !dm_table_get_size(map))
571 goto out;
572
573 /* We only support devices that have a single target */
574 if (dm_table_get_num_targets(map) != 1)
575 goto out;
576
577 tgt = dm_table_get_target(map, 0);
578 if (!tgt->type->ioctl)
579 goto out;
580
581 if (dm_suspended_md(md)) {
582 r = -EAGAIN;
583 goto out;
584 }
585
586 r = tgt->type->ioctl(tgt, cmd, arg);
587
588 out:
589 dm_put_live_table(md, srcu_idx);
590
591 if (r == -ENOTCONN) {
592 msleep(10);
593 goto retry;
594 }
595
596 return r;
597 }
598
599 static struct dm_io *alloc_io(struct mapped_device *md)
600 {
601 return mempool_alloc(md->io_pool, GFP_NOIO);
602 }
603
604 static void free_io(struct mapped_device *md, struct dm_io *io)
605 {
606 mempool_free(io, md->io_pool);
607 }
608
609 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
610 {
611 bio_put(&tio->clone);
612 }
613
614 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
615 gfp_t gfp_mask)
616 {
617 return mempool_alloc(md->io_pool, gfp_mask);
618 }
619
620 static void free_rq_tio(struct dm_rq_target_io *tio)
621 {
622 mempool_free(tio, tio->md->io_pool);
623 }
624
625 static struct request *alloc_clone_request(struct mapped_device *md,
626 gfp_t gfp_mask)
627 {
628 return mempool_alloc(md->rq_pool, gfp_mask);
629 }
630
631 static void free_clone_request(struct mapped_device *md, struct request *rq)
632 {
633 mempool_free(rq, md->rq_pool);
634 }
635
636 static int md_in_flight(struct mapped_device *md)
637 {
638 return atomic_read(&md->pending[READ]) +
639 atomic_read(&md->pending[WRITE]);
640 }
641
642 static void start_io_acct(struct dm_io *io)
643 {
644 struct mapped_device *md = io->md;
645 struct bio *bio = io->bio;
646 int cpu;
647 int rw = bio_data_dir(bio);
648
649 io->start_time = jiffies;
650
651 cpu = part_stat_lock();
652 part_round_stats(cpu, &dm_disk(md)->part0);
653 part_stat_unlock();
654 atomic_set(&dm_disk(md)->part0.in_flight[rw],
655 atomic_inc_return(&md->pending[rw]));
656
657 if (unlikely(dm_stats_used(&md->stats)))
658 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
659 bio_sectors(bio), false, 0, &io->stats_aux);
660 }
661
662 static void end_io_acct(struct dm_io *io)
663 {
664 struct mapped_device *md = io->md;
665 struct bio *bio = io->bio;
666 unsigned long duration = jiffies - io->start_time;
667 int pending;
668 int rw = bio_data_dir(bio);
669
670 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
671
672 if (unlikely(dm_stats_used(&md->stats)))
673 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
674 bio_sectors(bio), true, duration, &io->stats_aux);
675
676 /*
677 * After this is decremented the bio must not be touched if it is
678 * a flush.
679 */
680 pending = atomic_dec_return(&md->pending[rw]);
681 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
682 pending += atomic_read(&md->pending[rw^0x1]);
683
684 /* nudge anyone waiting on suspend queue */
685 if (!pending)
686 wake_up(&md->wait);
687 }
688
689 /*
690 * Add the bio to the list of deferred io.
691 */
692 static void queue_io(struct mapped_device *md, struct bio *bio)
693 {
694 unsigned long flags;
695
696 spin_lock_irqsave(&md->deferred_lock, flags);
697 bio_list_add(&md->deferred, bio);
698 spin_unlock_irqrestore(&md->deferred_lock, flags);
699 queue_work(md->wq, &md->work);
700 }
701
702 /*
703 * Everyone (including functions in this file), should use this
704 * function to access the md->map field, and make sure they call
705 * dm_put_live_table() when finished.
706 */
707 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
708 {
709 *srcu_idx = srcu_read_lock(&md->io_barrier);
710
711 return srcu_dereference(md->map, &md->io_barrier);
712 }
713
714 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
715 {
716 srcu_read_unlock(&md->io_barrier, srcu_idx);
717 }
718
719 void dm_sync_table(struct mapped_device *md)
720 {
721 synchronize_srcu(&md->io_barrier);
722 synchronize_rcu_expedited();
723 }
724
725 /*
726 * A fast alternative to dm_get_live_table/dm_put_live_table.
727 * The caller must not block between these two functions.
728 */
729 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
730 {
731 rcu_read_lock();
732 return rcu_dereference(md->map);
733 }
734
735 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
736 {
737 rcu_read_unlock();
738 }
739
740 /*
741 * Open a table device so we can use it as a map destination.
742 */
743 static int open_table_device(struct table_device *td, dev_t dev,
744 struct mapped_device *md)
745 {
746 static char *_claim_ptr = "I belong to device-mapper";
747 struct block_device *bdev;
748
749 int r;
750
751 BUG_ON(td->dm_dev.bdev);
752
753 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
754 if (IS_ERR(bdev))
755 return PTR_ERR(bdev);
756
757 r = bd_link_disk_holder(bdev, dm_disk(md));
758 if (r) {
759 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
760 return r;
761 }
762
763 td->dm_dev.bdev = bdev;
764 return 0;
765 }
766
767 /*
768 * Close a table device that we've been using.
769 */
770 static void close_table_device(struct table_device *td, struct mapped_device *md)
771 {
772 if (!td->dm_dev.bdev)
773 return;
774
775 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
776 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
777 td->dm_dev.bdev = NULL;
778 }
779
780 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
781 fmode_t mode) {
782 struct table_device *td;
783
784 list_for_each_entry(td, l, list)
785 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
786 return td;
787
788 return NULL;
789 }
790
791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
792 struct dm_dev **result) {
793 int r;
794 struct table_device *td;
795
796 mutex_lock(&md->table_devices_lock);
797 td = find_table_device(&md->table_devices, dev, mode);
798 if (!td) {
799 td = kmalloc(sizeof(*td), GFP_KERNEL);
800 if (!td) {
801 mutex_unlock(&md->table_devices_lock);
802 return -ENOMEM;
803 }
804
805 td->dm_dev.mode = mode;
806 td->dm_dev.bdev = NULL;
807
808 if ((r = open_table_device(td, dev, md))) {
809 mutex_unlock(&md->table_devices_lock);
810 kfree(td);
811 return r;
812 }
813
814 format_dev_t(td->dm_dev.name, dev);
815
816 atomic_set(&td->count, 0);
817 list_add(&td->list, &md->table_devices);
818 }
819 atomic_inc(&td->count);
820 mutex_unlock(&md->table_devices_lock);
821
822 *result = &td->dm_dev;
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
826
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 struct table_device *td = container_of(d, struct table_device, dm_dev);
830
831 mutex_lock(&md->table_devices_lock);
832 if (atomic_dec_and_test(&td->count)) {
833 close_table_device(td, md);
834 list_del(&td->list);
835 kfree(td);
836 }
837 mutex_unlock(&md->table_devices_lock);
838 }
839 EXPORT_SYMBOL(dm_put_table_device);
840
841 static void free_table_devices(struct list_head *devices)
842 {
843 struct list_head *tmp, *next;
844
845 list_for_each_safe(tmp, next, devices) {
846 struct table_device *td = list_entry(tmp, struct table_device, list);
847
848 DMWARN("dm_destroy: %s still exists with %d references",
849 td->dm_dev.name, atomic_read(&td->count));
850 kfree(td);
851 }
852 }
853
854 /*
855 * Get the geometry associated with a dm device
856 */
857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 *geo = md->geometry;
860
861 return 0;
862 }
863
864 /*
865 * Set the geometry of a device.
866 */
867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870
871 if (geo->start > sz) {
872 DMWARN("Start sector is beyond the geometry limits.");
873 return -EINVAL;
874 }
875
876 md->geometry = *geo;
877
878 return 0;
879 }
880
881 /*-----------------------------------------------------------------
882 * CRUD START:
883 * A more elegant soln is in the works that uses the queue
884 * merge fn, unfortunately there are a couple of changes to
885 * the block layer that I want to make for this. So in the
886 * interests of getting something for people to use I give
887 * you this clearly demarcated crap.
888 *---------------------------------------------------------------*/
889
890 static int __noflush_suspending(struct mapped_device *md)
891 {
892 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
893 }
894
895 /*
896 * Decrements the number of outstanding ios that a bio has been
897 * cloned into, completing the original io if necc.
898 */
899 static void dec_pending(struct dm_io *io, int error)
900 {
901 unsigned long flags;
902 int io_error;
903 struct bio *bio;
904 struct mapped_device *md = io->md;
905
906 /* Push-back supersedes any I/O errors */
907 if (unlikely(error)) {
908 spin_lock_irqsave(&io->endio_lock, flags);
909 if (!(io->error > 0 && __noflush_suspending(md)))
910 io->error = error;
911 spin_unlock_irqrestore(&io->endio_lock, flags);
912 }
913
914 if (atomic_dec_and_test(&io->io_count)) {
915 if (io->error == DM_ENDIO_REQUEUE) {
916 /*
917 * Target requested pushing back the I/O.
918 */
919 spin_lock_irqsave(&md->deferred_lock, flags);
920 if (__noflush_suspending(md))
921 bio_list_add_head(&md->deferred, io->bio);
922 else
923 /* noflush suspend was interrupted. */
924 io->error = -EIO;
925 spin_unlock_irqrestore(&md->deferred_lock, flags);
926 }
927
928 io_error = io->error;
929 bio = io->bio;
930 end_io_acct(io);
931 free_io(md, io);
932
933 if (io_error == DM_ENDIO_REQUEUE)
934 return;
935
936 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
937 /*
938 * Preflush done for flush with data, reissue
939 * without REQ_FLUSH.
940 */
941 bio->bi_rw &= ~REQ_FLUSH;
942 queue_io(md, bio);
943 } else {
944 /* done with normal IO or empty flush */
945 trace_block_bio_complete(md->queue, bio, io_error);
946 bio->bi_error = io_error;
947 bio_endio(bio);
948 }
949 }
950 }
951
952 static void disable_write_same(struct mapped_device *md)
953 {
954 struct queue_limits *limits = dm_get_queue_limits(md);
955
956 /* device doesn't really support WRITE SAME, disable it */
957 limits->max_write_same_sectors = 0;
958 }
959
960 static void clone_endio(struct bio *bio)
961 {
962 int error = bio->bi_error;
963 int r = error;
964 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
965 struct dm_io *io = tio->io;
966 struct mapped_device *md = tio->io->md;
967 dm_endio_fn endio = tio->ti->type->end_io;
968
969 if (endio) {
970 r = endio(tio->ti, bio, error);
971 if (r < 0 || r == DM_ENDIO_REQUEUE)
972 /*
973 * error and requeue request are handled
974 * in dec_pending().
975 */
976 error = r;
977 else if (r == DM_ENDIO_INCOMPLETE)
978 /* The target will handle the io */
979 return;
980 else if (r) {
981 DMWARN("unimplemented target endio return value: %d", r);
982 BUG();
983 }
984 }
985
986 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
987 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
988 disable_write_same(md);
989
990 free_tio(md, tio);
991 dec_pending(io, error);
992 }
993
994 /*
995 * Partial completion handling for request-based dm
996 */
997 static void end_clone_bio(struct bio *clone)
998 {
999 struct dm_rq_clone_bio_info *info =
1000 container_of(clone, struct dm_rq_clone_bio_info, clone);
1001 struct dm_rq_target_io *tio = info->tio;
1002 struct bio *bio = info->orig;
1003 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1004 int error = clone->bi_error;
1005
1006 bio_put(clone);
1007
1008 if (tio->error)
1009 /*
1010 * An error has already been detected on the request.
1011 * Once error occurred, just let clone->end_io() handle
1012 * the remainder.
1013 */
1014 return;
1015 else if (error) {
1016 /*
1017 * Don't notice the error to the upper layer yet.
1018 * The error handling decision is made by the target driver,
1019 * when the request is completed.
1020 */
1021 tio->error = error;
1022 return;
1023 }
1024
1025 /*
1026 * I/O for the bio successfully completed.
1027 * Notice the data completion to the upper layer.
1028 */
1029
1030 /*
1031 * bios are processed from the head of the list.
1032 * So the completing bio should always be rq->bio.
1033 * If it's not, something wrong is happening.
1034 */
1035 if (tio->orig->bio != bio)
1036 DMERR("bio completion is going in the middle of the request");
1037
1038 /*
1039 * Update the original request.
1040 * Do not use blk_end_request() here, because it may complete
1041 * the original request before the clone, and break the ordering.
1042 */
1043 blk_update_request(tio->orig, 0, nr_bytes);
1044 }
1045
1046 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1047 {
1048 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1049 }
1050
1051 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1052 {
1053 if (unlikely(dm_stats_used(&md->stats))) {
1054 struct dm_rq_target_io *tio = tio_from_request(orig);
1055 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1056 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1057 tio->n_sectors, true, tio->duration_jiffies,
1058 &tio->stats_aux);
1059 }
1060 }
1061
1062 /*
1063 * Don't touch any member of the md after calling this function because
1064 * the md may be freed in dm_put() at the end of this function.
1065 * Or do dm_get() before calling this function and dm_put() later.
1066 */
1067 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1068 {
1069 atomic_dec(&md->pending[rw]);
1070
1071 /* nudge anyone waiting on suspend queue */
1072 if (!md_in_flight(md))
1073 wake_up(&md->wait);
1074
1075 /*
1076 * Run this off this callpath, as drivers could invoke end_io while
1077 * inside their request_fn (and holding the queue lock). Calling
1078 * back into ->request_fn() could deadlock attempting to grab the
1079 * queue lock again.
1080 */
1081 if (run_queue) {
1082 if (md->queue->mq_ops)
1083 blk_mq_run_hw_queues(md->queue, true);
1084 else
1085 blk_run_queue_async(md->queue);
1086 }
1087
1088 /*
1089 * dm_put() must be at the end of this function. See the comment above
1090 */
1091 dm_put(md);
1092 }
1093
1094 static void free_rq_clone(struct request *clone)
1095 {
1096 struct dm_rq_target_io *tio = clone->end_io_data;
1097 struct mapped_device *md = tio->md;
1098
1099 blk_rq_unprep_clone(clone);
1100
1101 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1102 /* stacked on blk-mq queue(s) */
1103 tio->ti->type->release_clone_rq(clone);
1104 else if (!md->queue->mq_ops)
1105 /* request_fn queue stacked on request_fn queue(s) */
1106 free_clone_request(md, clone);
1107 /*
1108 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1109 * no need to call free_clone_request() because we leverage blk-mq by
1110 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1111 */
1112
1113 if (!md->queue->mq_ops)
1114 free_rq_tio(tio);
1115 }
1116
1117 /*
1118 * Complete the clone and the original request.
1119 * Must be called without clone's queue lock held,
1120 * see end_clone_request() for more details.
1121 */
1122 static void dm_end_request(struct request *clone, int error)
1123 {
1124 int rw = rq_data_dir(clone);
1125 struct dm_rq_target_io *tio = clone->end_io_data;
1126 struct mapped_device *md = tio->md;
1127 struct request *rq = tio->orig;
1128
1129 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1130 rq->errors = clone->errors;
1131 rq->resid_len = clone->resid_len;
1132
1133 if (rq->sense)
1134 /*
1135 * We are using the sense buffer of the original
1136 * request.
1137 * So setting the length of the sense data is enough.
1138 */
1139 rq->sense_len = clone->sense_len;
1140 }
1141
1142 free_rq_clone(clone);
1143 rq_end_stats(md, rq);
1144 if (!rq->q->mq_ops)
1145 blk_end_request_all(rq, error);
1146 else
1147 blk_mq_end_request(rq, error);
1148 rq_completed(md, rw, true);
1149 }
1150
1151 static void dm_unprep_request(struct request *rq)
1152 {
1153 struct dm_rq_target_io *tio = tio_from_request(rq);
1154 struct request *clone = tio->clone;
1155
1156 if (!rq->q->mq_ops) {
1157 rq->special = NULL;
1158 rq->cmd_flags &= ~REQ_DONTPREP;
1159 }
1160
1161 if (clone)
1162 free_rq_clone(clone);
1163 }
1164
1165 /*
1166 * Requeue the original request of a clone.
1167 */
1168 static void old_requeue_request(struct request *rq)
1169 {
1170 struct request_queue *q = rq->q;
1171 unsigned long flags;
1172
1173 spin_lock_irqsave(q->queue_lock, flags);
1174 blk_requeue_request(q, rq);
1175 blk_run_queue_async(q);
1176 spin_unlock_irqrestore(q->queue_lock, flags);
1177 }
1178
1179 static void dm_requeue_original_request(struct mapped_device *md,
1180 struct request *rq)
1181 {
1182 int rw = rq_data_dir(rq);
1183
1184 dm_unprep_request(rq);
1185
1186 rq_end_stats(md, rq);
1187 if (!rq->q->mq_ops)
1188 old_requeue_request(rq);
1189 else {
1190 blk_mq_requeue_request(rq);
1191 blk_mq_kick_requeue_list(rq->q);
1192 }
1193
1194 rq_completed(md, rw, false);
1195 }
1196
1197 static void old_stop_queue(struct request_queue *q)
1198 {
1199 unsigned long flags;
1200
1201 if (blk_queue_stopped(q))
1202 return;
1203
1204 spin_lock_irqsave(q->queue_lock, flags);
1205 blk_stop_queue(q);
1206 spin_unlock_irqrestore(q->queue_lock, flags);
1207 }
1208
1209 static void stop_queue(struct request_queue *q)
1210 {
1211 if (!q->mq_ops)
1212 old_stop_queue(q);
1213 else
1214 blk_mq_stop_hw_queues(q);
1215 }
1216
1217 static void old_start_queue(struct request_queue *q)
1218 {
1219 unsigned long flags;
1220
1221 spin_lock_irqsave(q->queue_lock, flags);
1222 if (blk_queue_stopped(q))
1223 blk_start_queue(q);
1224 spin_unlock_irqrestore(q->queue_lock, flags);
1225 }
1226
1227 static void start_queue(struct request_queue *q)
1228 {
1229 if (!q->mq_ops)
1230 old_start_queue(q);
1231 else
1232 blk_mq_start_stopped_hw_queues(q, true);
1233 }
1234
1235 static void dm_done(struct request *clone, int error, bool mapped)
1236 {
1237 int r = error;
1238 struct dm_rq_target_io *tio = clone->end_io_data;
1239 dm_request_endio_fn rq_end_io = NULL;
1240
1241 if (tio->ti) {
1242 rq_end_io = tio->ti->type->rq_end_io;
1243
1244 if (mapped && rq_end_io)
1245 r = rq_end_io(tio->ti, clone, error, &tio->info);
1246 }
1247
1248 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1249 !clone->q->limits.max_write_same_sectors))
1250 disable_write_same(tio->md);
1251
1252 if (r <= 0)
1253 /* The target wants to complete the I/O */
1254 dm_end_request(clone, r);
1255 else if (r == DM_ENDIO_INCOMPLETE)
1256 /* The target will handle the I/O */
1257 return;
1258 else if (r == DM_ENDIO_REQUEUE)
1259 /* The target wants to requeue the I/O */
1260 dm_requeue_original_request(tio->md, tio->orig);
1261 else {
1262 DMWARN("unimplemented target endio return value: %d", r);
1263 BUG();
1264 }
1265 }
1266
1267 /*
1268 * Request completion handler for request-based dm
1269 */
1270 static void dm_softirq_done(struct request *rq)
1271 {
1272 bool mapped = true;
1273 struct dm_rq_target_io *tio = tio_from_request(rq);
1274 struct request *clone = tio->clone;
1275 int rw;
1276
1277 if (!clone) {
1278 rq_end_stats(tio->md, rq);
1279 rw = rq_data_dir(rq);
1280 if (!rq->q->mq_ops) {
1281 blk_end_request_all(rq, tio->error);
1282 rq_completed(tio->md, rw, false);
1283 free_rq_tio(tio);
1284 } else {
1285 blk_mq_end_request(rq, tio->error);
1286 rq_completed(tio->md, rw, false);
1287 }
1288 return;
1289 }
1290
1291 if (rq->cmd_flags & REQ_FAILED)
1292 mapped = false;
1293
1294 dm_done(clone, tio->error, mapped);
1295 }
1296
1297 /*
1298 * Complete the clone and the original request with the error status
1299 * through softirq context.
1300 */
1301 static void dm_complete_request(struct request *rq, int error)
1302 {
1303 struct dm_rq_target_io *tio = tio_from_request(rq);
1304
1305 tio->error = error;
1306 blk_complete_request(rq);
1307 }
1308
1309 /*
1310 * Complete the not-mapped clone and the original request with the error status
1311 * through softirq context.
1312 * Target's rq_end_io() function isn't called.
1313 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1314 */
1315 static void dm_kill_unmapped_request(struct request *rq, int error)
1316 {
1317 rq->cmd_flags |= REQ_FAILED;
1318 dm_complete_request(rq, error);
1319 }
1320
1321 /*
1322 * Called with the clone's queue lock held (for non-blk-mq)
1323 */
1324 static void end_clone_request(struct request *clone, int error)
1325 {
1326 struct dm_rq_target_io *tio = clone->end_io_data;
1327
1328 if (!clone->q->mq_ops) {
1329 /*
1330 * For just cleaning up the information of the queue in which
1331 * the clone was dispatched.
1332 * The clone is *NOT* freed actually here because it is alloced
1333 * from dm own mempool (REQ_ALLOCED isn't set).
1334 */
1335 __blk_put_request(clone->q, clone);
1336 }
1337
1338 /*
1339 * Actual request completion is done in a softirq context which doesn't
1340 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1341 * - another request may be submitted by the upper level driver
1342 * of the stacking during the completion
1343 * - the submission which requires queue lock may be done
1344 * against this clone's queue
1345 */
1346 dm_complete_request(tio->orig, error);
1347 }
1348
1349 /*
1350 * Return maximum size of I/O possible at the supplied sector up to the current
1351 * target boundary.
1352 */
1353 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1354 {
1355 sector_t target_offset = dm_target_offset(ti, sector);
1356
1357 return ti->len - target_offset;
1358 }
1359
1360 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1361 {
1362 sector_t len = max_io_len_target_boundary(sector, ti);
1363 sector_t offset, max_len;
1364
1365 /*
1366 * Does the target need to split even further?
1367 */
1368 if (ti->max_io_len) {
1369 offset = dm_target_offset(ti, sector);
1370 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1371 max_len = sector_div(offset, ti->max_io_len);
1372 else
1373 max_len = offset & (ti->max_io_len - 1);
1374 max_len = ti->max_io_len - max_len;
1375
1376 if (len > max_len)
1377 len = max_len;
1378 }
1379
1380 return len;
1381 }
1382
1383 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1384 {
1385 if (len > UINT_MAX) {
1386 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1387 (unsigned long long)len, UINT_MAX);
1388 ti->error = "Maximum size of target IO is too large";
1389 return -EINVAL;
1390 }
1391
1392 ti->max_io_len = (uint32_t) len;
1393
1394 return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1397
1398 /*
1399 * A target may call dm_accept_partial_bio only from the map routine. It is
1400 * allowed for all bio types except REQ_FLUSH.
1401 *
1402 * dm_accept_partial_bio informs the dm that the target only wants to process
1403 * additional n_sectors sectors of the bio and the rest of the data should be
1404 * sent in a next bio.
1405 *
1406 * A diagram that explains the arithmetics:
1407 * +--------------------+---------------+-------+
1408 * | 1 | 2 | 3 |
1409 * +--------------------+---------------+-------+
1410 *
1411 * <-------------- *tio->len_ptr --------------->
1412 * <------- bi_size ------->
1413 * <-- n_sectors -->
1414 *
1415 * Region 1 was already iterated over with bio_advance or similar function.
1416 * (it may be empty if the target doesn't use bio_advance)
1417 * Region 2 is the remaining bio size that the target wants to process.
1418 * (it may be empty if region 1 is non-empty, although there is no reason
1419 * to make it empty)
1420 * The target requires that region 3 is to be sent in the next bio.
1421 *
1422 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1423 * the partially processed part (the sum of regions 1+2) must be the same for all
1424 * copies of the bio.
1425 */
1426 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1427 {
1428 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1429 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1430 BUG_ON(bio->bi_rw & REQ_FLUSH);
1431 BUG_ON(bi_size > *tio->len_ptr);
1432 BUG_ON(n_sectors > bi_size);
1433 *tio->len_ptr -= bi_size - n_sectors;
1434 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1435 }
1436 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1437
1438 static void __map_bio(struct dm_target_io *tio)
1439 {
1440 int r;
1441 sector_t sector;
1442 struct mapped_device *md;
1443 struct bio *clone = &tio->clone;
1444 struct dm_target *ti = tio->ti;
1445
1446 clone->bi_end_io = clone_endio;
1447
1448 /*
1449 * Map the clone. If r == 0 we don't need to do
1450 * anything, the target has assumed ownership of
1451 * this io.
1452 */
1453 atomic_inc(&tio->io->io_count);
1454 sector = clone->bi_iter.bi_sector;
1455 r = ti->type->map(ti, clone);
1456 if (r == DM_MAPIO_REMAPPED) {
1457 /* the bio has been remapped so dispatch it */
1458
1459 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1460 tio->io->bio->bi_bdev->bd_dev, sector);
1461
1462 generic_make_request(clone);
1463 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1464 /* error the io and bail out, or requeue it if needed */
1465 md = tio->io->md;
1466 dec_pending(tio->io, r);
1467 free_tio(md, tio);
1468 } else if (r != DM_MAPIO_SUBMITTED) {
1469 DMWARN("unimplemented target map return value: %d", r);
1470 BUG();
1471 }
1472 }
1473
1474 struct clone_info {
1475 struct mapped_device *md;
1476 struct dm_table *map;
1477 struct bio *bio;
1478 struct dm_io *io;
1479 sector_t sector;
1480 unsigned sector_count;
1481 };
1482
1483 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1484 {
1485 bio->bi_iter.bi_sector = sector;
1486 bio->bi_iter.bi_size = to_bytes(len);
1487 }
1488
1489 /*
1490 * Creates a bio that consists of range of complete bvecs.
1491 */
1492 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1493 sector_t sector, unsigned len)
1494 {
1495 struct bio *clone = &tio->clone;
1496
1497 __bio_clone_fast(clone, bio);
1498
1499 if (bio_integrity(bio))
1500 bio_integrity_clone(clone, bio, GFP_NOIO);
1501
1502 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1503 clone->bi_iter.bi_size = to_bytes(len);
1504
1505 if (bio_integrity(bio))
1506 bio_integrity_trim(clone, 0, len);
1507 }
1508
1509 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1510 struct dm_target *ti,
1511 unsigned target_bio_nr)
1512 {
1513 struct dm_target_io *tio;
1514 struct bio *clone;
1515
1516 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1517 tio = container_of(clone, struct dm_target_io, clone);
1518
1519 tio->io = ci->io;
1520 tio->ti = ti;
1521 tio->target_bio_nr = target_bio_nr;
1522
1523 return tio;
1524 }
1525
1526 static void __clone_and_map_simple_bio(struct clone_info *ci,
1527 struct dm_target *ti,
1528 unsigned target_bio_nr, unsigned *len)
1529 {
1530 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1531 struct bio *clone = &tio->clone;
1532
1533 tio->len_ptr = len;
1534
1535 __bio_clone_fast(clone, ci->bio);
1536 if (len)
1537 bio_setup_sector(clone, ci->sector, *len);
1538
1539 __map_bio(tio);
1540 }
1541
1542 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1543 unsigned num_bios, unsigned *len)
1544 {
1545 unsigned target_bio_nr;
1546
1547 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1548 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1549 }
1550
1551 static int __send_empty_flush(struct clone_info *ci)
1552 {
1553 unsigned target_nr = 0;
1554 struct dm_target *ti;
1555
1556 BUG_ON(bio_has_data(ci->bio));
1557 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1558 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1559
1560 return 0;
1561 }
1562
1563 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1564 sector_t sector, unsigned *len)
1565 {
1566 struct bio *bio = ci->bio;
1567 struct dm_target_io *tio;
1568 unsigned target_bio_nr;
1569 unsigned num_target_bios = 1;
1570
1571 /*
1572 * Does the target want to receive duplicate copies of the bio?
1573 */
1574 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1575 num_target_bios = ti->num_write_bios(ti, bio);
1576
1577 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1578 tio = alloc_tio(ci, ti, target_bio_nr);
1579 tio->len_ptr = len;
1580 clone_bio(tio, bio, sector, *len);
1581 __map_bio(tio);
1582 }
1583 }
1584
1585 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1586
1587 static unsigned get_num_discard_bios(struct dm_target *ti)
1588 {
1589 return ti->num_discard_bios;
1590 }
1591
1592 static unsigned get_num_write_same_bios(struct dm_target *ti)
1593 {
1594 return ti->num_write_same_bios;
1595 }
1596
1597 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1598
1599 static bool is_split_required_for_discard(struct dm_target *ti)
1600 {
1601 return ti->split_discard_bios;
1602 }
1603
1604 static int __send_changing_extent_only(struct clone_info *ci,
1605 get_num_bios_fn get_num_bios,
1606 is_split_required_fn is_split_required)
1607 {
1608 struct dm_target *ti;
1609 unsigned len;
1610 unsigned num_bios;
1611
1612 do {
1613 ti = dm_table_find_target(ci->map, ci->sector);
1614 if (!dm_target_is_valid(ti))
1615 return -EIO;
1616
1617 /*
1618 * Even though the device advertised support for this type of
1619 * request, that does not mean every target supports it, and
1620 * reconfiguration might also have changed that since the
1621 * check was performed.
1622 */
1623 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1624 if (!num_bios)
1625 return -EOPNOTSUPP;
1626
1627 if (is_split_required && !is_split_required(ti))
1628 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1629 else
1630 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1631
1632 __send_duplicate_bios(ci, ti, num_bios, &len);
1633
1634 ci->sector += len;
1635 } while (ci->sector_count -= len);
1636
1637 return 0;
1638 }
1639
1640 static int __send_discard(struct clone_info *ci)
1641 {
1642 return __send_changing_extent_only(ci, get_num_discard_bios,
1643 is_split_required_for_discard);
1644 }
1645
1646 static int __send_write_same(struct clone_info *ci)
1647 {
1648 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1649 }
1650
1651 /*
1652 * Select the correct strategy for processing a non-flush bio.
1653 */
1654 static int __split_and_process_non_flush(struct clone_info *ci)
1655 {
1656 struct bio *bio = ci->bio;
1657 struct dm_target *ti;
1658 unsigned len;
1659
1660 if (unlikely(bio->bi_rw & REQ_DISCARD))
1661 return __send_discard(ci);
1662 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1663 return __send_write_same(ci);
1664
1665 ti = dm_table_find_target(ci->map, ci->sector);
1666 if (!dm_target_is_valid(ti))
1667 return -EIO;
1668
1669 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1670
1671 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1672
1673 ci->sector += len;
1674 ci->sector_count -= len;
1675
1676 return 0;
1677 }
1678
1679 /*
1680 * Entry point to split a bio into clones and submit them to the targets.
1681 */
1682 static void __split_and_process_bio(struct mapped_device *md,
1683 struct dm_table *map, struct bio *bio)
1684 {
1685 struct clone_info ci;
1686 int error = 0;
1687
1688 if (unlikely(!map)) {
1689 bio_io_error(bio);
1690 return;
1691 }
1692
1693 ci.map = map;
1694 ci.md = md;
1695 ci.io = alloc_io(md);
1696 ci.io->error = 0;
1697 atomic_set(&ci.io->io_count, 1);
1698 ci.io->bio = bio;
1699 ci.io->md = md;
1700 spin_lock_init(&ci.io->endio_lock);
1701 ci.sector = bio->bi_iter.bi_sector;
1702
1703 start_io_acct(ci.io);
1704
1705 if (bio->bi_rw & REQ_FLUSH) {
1706 ci.bio = &ci.md->flush_bio;
1707 ci.sector_count = 0;
1708 error = __send_empty_flush(&ci);
1709 /* dec_pending submits any data associated with flush */
1710 } else {
1711 ci.bio = bio;
1712 ci.sector_count = bio_sectors(bio);
1713 while (ci.sector_count && !error)
1714 error = __split_and_process_non_flush(&ci);
1715 }
1716
1717 /* drop the extra reference count */
1718 dec_pending(ci.io, error);
1719 }
1720 /*-----------------------------------------------------------------
1721 * CRUD END
1722 *---------------------------------------------------------------*/
1723
1724 /*
1725 * The request function that just remaps the bio built up by
1726 * dm_merge_bvec.
1727 */
1728 static void dm_make_request(struct request_queue *q, struct bio *bio)
1729 {
1730 int rw = bio_data_dir(bio);
1731 struct mapped_device *md = q->queuedata;
1732 int srcu_idx;
1733 struct dm_table *map;
1734
1735 map = dm_get_live_table(md, &srcu_idx);
1736
1737 blk_queue_split(q, &bio, q->bio_split);
1738
1739 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1740
1741 /* if we're suspended, we have to queue this io for later */
1742 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1743 dm_put_live_table(md, srcu_idx);
1744
1745 if (bio_rw(bio) != READA)
1746 queue_io(md, bio);
1747 else
1748 bio_io_error(bio);
1749 return;
1750 }
1751
1752 __split_and_process_bio(md, map, bio);
1753 dm_put_live_table(md, srcu_idx);
1754 return;
1755 }
1756
1757 int dm_request_based(struct mapped_device *md)
1758 {
1759 return blk_queue_stackable(md->queue);
1760 }
1761
1762 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1763 {
1764 int r;
1765
1766 if (blk_queue_io_stat(clone->q))
1767 clone->cmd_flags |= REQ_IO_STAT;
1768
1769 clone->start_time = jiffies;
1770 r = blk_insert_cloned_request(clone->q, clone);
1771 if (r)
1772 /* must complete clone in terms of original request */
1773 dm_complete_request(rq, r);
1774 }
1775
1776 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1777 void *data)
1778 {
1779 struct dm_rq_target_io *tio = data;
1780 struct dm_rq_clone_bio_info *info =
1781 container_of(bio, struct dm_rq_clone_bio_info, clone);
1782
1783 info->orig = bio_orig;
1784 info->tio = tio;
1785 bio->bi_end_io = end_clone_bio;
1786
1787 return 0;
1788 }
1789
1790 static int setup_clone(struct request *clone, struct request *rq,
1791 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1792 {
1793 int r;
1794
1795 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1796 dm_rq_bio_constructor, tio);
1797 if (r)
1798 return r;
1799
1800 clone->cmd = rq->cmd;
1801 clone->cmd_len = rq->cmd_len;
1802 clone->sense = rq->sense;
1803 clone->end_io = end_clone_request;
1804 clone->end_io_data = tio;
1805
1806 tio->clone = clone;
1807
1808 return 0;
1809 }
1810
1811 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1812 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1813 {
1814 /*
1815 * Do not allocate a clone if tio->clone was already set
1816 * (see: dm_mq_queue_rq).
1817 */
1818 bool alloc_clone = !tio->clone;
1819 struct request *clone;
1820
1821 if (alloc_clone) {
1822 clone = alloc_clone_request(md, gfp_mask);
1823 if (!clone)
1824 return NULL;
1825 } else
1826 clone = tio->clone;
1827
1828 blk_rq_init(NULL, clone);
1829 if (setup_clone(clone, rq, tio, gfp_mask)) {
1830 /* -ENOMEM */
1831 if (alloc_clone)
1832 free_clone_request(md, clone);
1833 return NULL;
1834 }
1835
1836 return clone;
1837 }
1838
1839 static void map_tio_request(struct kthread_work *work);
1840
1841 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1842 struct mapped_device *md)
1843 {
1844 tio->md = md;
1845 tio->ti = NULL;
1846 tio->clone = NULL;
1847 tio->orig = rq;
1848 tio->error = 0;
1849 memset(&tio->info, 0, sizeof(tio->info));
1850 if (md->kworker_task)
1851 init_kthread_work(&tio->work, map_tio_request);
1852 }
1853
1854 static struct dm_rq_target_io *prep_tio(struct request *rq,
1855 struct mapped_device *md, gfp_t gfp_mask)
1856 {
1857 struct dm_rq_target_io *tio;
1858 int srcu_idx;
1859 struct dm_table *table;
1860
1861 tio = alloc_rq_tio(md, gfp_mask);
1862 if (!tio)
1863 return NULL;
1864
1865 init_tio(tio, rq, md);
1866
1867 table = dm_get_live_table(md, &srcu_idx);
1868 if (!dm_table_mq_request_based(table)) {
1869 if (!clone_rq(rq, md, tio, gfp_mask)) {
1870 dm_put_live_table(md, srcu_idx);
1871 free_rq_tio(tio);
1872 return NULL;
1873 }
1874 }
1875 dm_put_live_table(md, srcu_idx);
1876
1877 return tio;
1878 }
1879
1880 /*
1881 * Called with the queue lock held.
1882 */
1883 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1884 {
1885 struct mapped_device *md = q->queuedata;
1886 struct dm_rq_target_io *tio;
1887
1888 if (unlikely(rq->special)) {
1889 DMWARN("Already has something in rq->special.");
1890 return BLKPREP_KILL;
1891 }
1892
1893 tio = prep_tio(rq, md, GFP_ATOMIC);
1894 if (!tio)
1895 return BLKPREP_DEFER;
1896
1897 rq->special = tio;
1898 rq->cmd_flags |= REQ_DONTPREP;
1899
1900 return BLKPREP_OK;
1901 }
1902
1903 /*
1904 * Returns:
1905 * 0 : the request has been processed
1906 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1907 * < 0 : the request was completed due to failure
1908 */
1909 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1910 struct mapped_device *md)
1911 {
1912 int r;
1913 struct dm_target *ti = tio->ti;
1914 struct request *clone = NULL;
1915
1916 if (tio->clone) {
1917 clone = tio->clone;
1918 r = ti->type->map_rq(ti, clone, &tio->info);
1919 } else {
1920 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1921 if (r < 0) {
1922 /* The target wants to complete the I/O */
1923 dm_kill_unmapped_request(rq, r);
1924 return r;
1925 }
1926 if (r != DM_MAPIO_REMAPPED)
1927 return r;
1928 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1929 /* -ENOMEM */
1930 ti->type->release_clone_rq(clone);
1931 return DM_MAPIO_REQUEUE;
1932 }
1933 }
1934
1935 switch (r) {
1936 case DM_MAPIO_SUBMITTED:
1937 /* The target has taken the I/O to submit by itself later */
1938 break;
1939 case DM_MAPIO_REMAPPED:
1940 /* The target has remapped the I/O so dispatch it */
1941 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1942 blk_rq_pos(rq));
1943 dm_dispatch_clone_request(clone, rq);
1944 break;
1945 case DM_MAPIO_REQUEUE:
1946 /* The target wants to requeue the I/O */
1947 dm_requeue_original_request(md, tio->orig);
1948 break;
1949 default:
1950 if (r > 0) {
1951 DMWARN("unimplemented target map return value: %d", r);
1952 BUG();
1953 }
1954
1955 /* The target wants to complete the I/O */
1956 dm_kill_unmapped_request(rq, r);
1957 return r;
1958 }
1959
1960 return 0;
1961 }
1962
1963 static void map_tio_request(struct kthread_work *work)
1964 {
1965 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1966 struct request *rq = tio->orig;
1967 struct mapped_device *md = tio->md;
1968
1969 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1970 dm_requeue_original_request(md, rq);
1971 }
1972
1973 static void dm_start_request(struct mapped_device *md, struct request *orig)
1974 {
1975 if (!orig->q->mq_ops)
1976 blk_start_request(orig);
1977 else
1978 blk_mq_start_request(orig);
1979 atomic_inc(&md->pending[rq_data_dir(orig)]);
1980
1981 if (md->seq_rq_merge_deadline_usecs) {
1982 md->last_rq_pos = rq_end_sector(orig);
1983 md->last_rq_rw = rq_data_dir(orig);
1984 md->last_rq_start_time = ktime_get();
1985 }
1986
1987 if (unlikely(dm_stats_used(&md->stats))) {
1988 struct dm_rq_target_io *tio = tio_from_request(orig);
1989 tio->duration_jiffies = jiffies;
1990 tio->n_sectors = blk_rq_sectors(orig);
1991 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1992 tio->n_sectors, false, 0, &tio->stats_aux);
1993 }
1994
1995 /*
1996 * Hold the md reference here for the in-flight I/O.
1997 * We can't rely on the reference count by device opener,
1998 * because the device may be closed during the request completion
1999 * when all bios are completed.
2000 * See the comment in rq_completed() too.
2001 */
2002 dm_get(md);
2003 }
2004
2005 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2006
2007 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2008 {
2009 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2010 }
2011
2012 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2013 const char *buf, size_t count)
2014 {
2015 unsigned deadline;
2016
2017 if (!dm_request_based(md) || md->use_blk_mq)
2018 return count;
2019
2020 if (kstrtouint(buf, 10, &deadline))
2021 return -EINVAL;
2022
2023 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2024 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2025
2026 md->seq_rq_merge_deadline_usecs = deadline;
2027
2028 return count;
2029 }
2030
2031 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2032 {
2033 ktime_t kt_deadline;
2034
2035 if (!md->seq_rq_merge_deadline_usecs)
2036 return false;
2037
2038 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2039 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2040
2041 return !ktime_after(ktime_get(), kt_deadline);
2042 }
2043
2044 /*
2045 * q->request_fn for request-based dm.
2046 * Called with the queue lock held.
2047 */
2048 static void dm_request_fn(struct request_queue *q)
2049 {
2050 struct mapped_device *md = q->queuedata;
2051 int srcu_idx;
2052 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2053 struct dm_target *ti;
2054 struct request *rq;
2055 struct dm_rq_target_io *tio;
2056 sector_t pos;
2057
2058 /*
2059 * For suspend, check blk_queue_stopped() and increment
2060 * ->pending within a single queue_lock not to increment the
2061 * number of in-flight I/Os after the queue is stopped in
2062 * dm_suspend().
2063 */
2064 while (!blk_queue_stopped(q)) {
2065 rq = blk_peek_request(q);
2066 if (!rq)
2067 goto out;
2068
2069 /* always use block 0 to find the target for flushes for now */
2070 pos = 0;
2071 if (!(rq->cmd_flags & REQ_FLUSH))
2072 pos = blk_rq_pos(rq);
2073
2074 ti = dm_table_find_target(map, pos);
2075 if (!dm_target_is_valid(ti)) {
2076 /*
2077 * Must perform setup, that rq_completed() requires,
2078 * before calling dm_kill_unmapped_request
2079 */
2080 DMERR_LIMIT("request attempted access beyond the end of device");
2081 dm_start_request(md, rq);
2082 dm_kill_unmapped_request(rq, -EIO);
2083 continue;
2084 }
2085
2086 if (dm_request_peeked_before_merge_deadline(md) &&
2087 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2088 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2089 goto delay_and_out;
2090
2091 if (ti->type->busy && ti->type->busy(ti))
2092 goto delay_and_out;
2093
2094 dm_start_request(md, rq);
2095
2096 tio = tio_from_request(rq);
2097 /* Establish tio->ti before queuing work (map_tio_request) */
2098 tio->ti = ti;
2099 queue_kthread_work(&md->kworker, &tio->work);
2100 BUG_ON(!irqs_disabled());
2101 }
2102
2103 goto out;
2104
2105 delay_and_out:
2106 blk_delay_queue(q, HZ / 100);
2107 out:
2108 dm_put_live_table(md, srcu_idx);
2109 }
2110
2111 static int dm_any_congested(void *congested_data, int bdi_bits)
2112 {
2113 int r = bdi_bits;
2114 struct mapped_device *md = congested_data;
2115 struct dm_table *map;
2116
2117 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2118 map = dm_get_live_table_fast(md);
2119 if (map) {
2120 /*
2121 * Request-based dm cares about only own queue for
2122 * the query about congestion status of request_queue
2123 */
2124 if (dm_request_based(md))
2125 r = md->queue->backing_dev_info.wb.state &
2126 bdi_bits;
2127 else
2128 r = dm_table_any_congested(map, bdi_bits);
2129 }
2130 dm_put_live_table_fast(md);
2131 }
2132
2133 return r;
2134 }
2135
2136 /*-----------------------------------------------------------------
2137 * An IDR is used to keep track of allocated minor numbers.
2138 *---------------------------------------------------------------*/
2139 static void free_minor(int minor)
2140 {
2141 spin_lock(&_minor_lock);
2142 idr_remove(&_minor_idr, minor);
2143 spin_unlock(&_minor_lock);
2144 }
2145
2146 /*
2147 * See if the device with a specific minor # is free.
2148 */
2149 static int specific_minor(int minor)
2150 {
2151 int r;
2152
2153 if (minor >= (1 << MINORBITS))
2154 return -EINVAL;
2155
2156 idr_preload(GFP_KERNEL);
2157 spin_lock(&_minor_lock);
2158
2159 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2160
2161 spin_unlock(&_minor_lock);
2162 idr_preload_end();
2163 if (r < 0)
2164 return r == -ENOSPC ? -EBUSY : r;
2165 return 0;
2166 }
2167
2168 static int next_free_minor(int *minor)
2169 {
2170 int r;
2171
2172 idr_preload(GFP_KERNEL);
2173 spin_lock(&_minor_lock);
2174
2175 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2176
2177 spin_unlock(&_minor_lock);
2178 idr_preload_end();
2179 if (r < 0)
2180 return r;
2181 *minor = r;
2182 return 0;
2183 }
2184
2185 static const struct block_device_operations dm_blk_dops;
2186
2187 static void dm_wq_work(struct work_struct *work);
2188
2189 static void dm_init_md_queue(struct mapped_device *md)
2190 {
2191 /*
2192 * Request-based dm devices cannot be stacked on top of bio-based dm
2193 * devices. The type of this dm device may not have been decided yet.
2194 * The type is decided at the first table loading time.
2195 * To prevent problematic device stacking, clear the queue flag
2196 * for request stacking support until then.
2197 *
2198 * This queue is new, so no concurrency on the queue_flags.
2199 */
2200 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2201 }
2202
2203 static void dm_init_old_md_queue(struct mapped_device *md)
2204 {
2205 md->use_blk_mq = false;
2206 dm_init_md_queue(md);
2207
2208 /*
2209 * Initialize aspects of queue that aren't relevant for blk-mq
2210 */
2211 md->queue->queuedata = md;
2212 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2213 md->queue->backing_dev_info.congested_data = md;
2214
2215 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2216 }
2217
2218 static void cleanup_mapped_device(struct mapped_device *md)
2219 {
2220 if (md->wq)
2221 destroy_workqueue(md->wq);
2222 if (md->kworker_task)
2223 kthread_stop(md->kworker_task);
2224 if (md->io_pool)
2225 mempool_destroy(md->io_pool);
2226 if (md->rq_pool)
2227 mempool_destroy(md->rq_pool);
2228 if (md->bs)
2229 bioset_free(md->bs);
2230
2231 cleanup_srcu_struct(&md->io_barrier);
2232
2233 if (md->disk) {
2234 spin_lock(&_minor_lock);
2235 md->disk->private_data = NULL;
2236 spin_unlock(&_minor_lock);
2237 if (blk_get_integrity(md->disk))
2238 blk_integrity_unregister(md->disk);
2239 del_gendisk(md->disk);
2240 put_disk(md->disk);
2241 }
2242
2243 if (md->queue)
2244 blk_cleanup_queue(md->queue);
2245
2246 if (md->bdev) {
2247 bdput(md->bdev);
2248 md->bdev = NULL;
2249 }
2250 }
2251
2252 /*
2253 * Allocate and initialise a blank device with a given minor.
2254 */
2255 static struct mapped_device *alloc_dev(int minor)
2256 {
2257 int r;
2258 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2259 void *old_md;
2260
2261 if (!md) {
2262 DMWARN("unable to allocate device, out of memory.");
2263 return NULL;
2264 }
2265
2266 if (!try_module_get(THIS_MODULE))
2267 goto bad_module_get;
2268
2269 /* get a minor number for the dev */
2270 if (minor == DM_ANY_MINOR)
2271 r = next_free_minor(&minor);
2272 else
2273 r = specific_minor(minor);
2274 if (r < 0)
2275 goto bad_minor;
2276
2277 r = init_srcu_struct(&md->io_barrier);
2278 if (r < 0)
2279 goto bad_io_barrier;
2280
2281 md->use_blk_mq = use_blk_mq;
2282 md->type = DM_TYPE_NONE;
2283 mutex_init(&md->suspend_lock);
2284 mutex_init(&md->type_lock);
2285 mutex_init(&md->table_devices_lock);
2286 spin_lock_init(&md->deferred_lock);
2287 atomic_set(&md->holders, 1);
2288 atomic_set(&md->open_count, 0);
2289 atomic_set(&md->event_nr, 0);
2290 atomic_set(&md->uevent_seq, 0);
2291 INIT_LIST_HEAD(&md->uevent_list);
2292 INIT_LIST_HEAD(&md->table_devices);
2293 spin_lock_init(&md->uevent_lock);
2294
2295 md->queue = blk_alloc_queue(GFP_KERNEL);
2296 if (!md->queue)
2297 goto bad;
2298
2299 dm_init_md_queue(md);
2300
2301 md->disk = alloc_disk(1);
2302 if (!md->disk)
2303 goto bad;
2304
2305 atomic_set(&md->pending[0], 0);
2306 atomic_set(&md->pending[1], 0);
2307 init_waitqueue_head(&md->wait);
2308 INIT_WORK(&md->work, dm_wq_work);
2309 init_waitqueue_head(&md->eventq);
2310 init_completion(&md->kobj_holder.completion);
2311 md->kworker_task = NULL;
2312
2313 md->disk->major = _major;
2314 md->disk->first_minor = minor;
2315 md->disk->fops = &dm_blk_dops;
2316 md->disk->queue = md->queue;
2317 md->disk->private_data = md;
2318 sprintf(md->disk->disk_name, "dm-%d", minor);
2319 add_disk(md->disk);
2320 format_dev_t(md->name, MKDEV(_major, minor));
2321
2322 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2323 if (!md->wq)
2324 goto bad;
2325
2326 md->bdev = bdget_disk(md->disk, 0);
2327 if (!md->bdev)
2328 goto bad;
2329
2330 bio_init(&md->flush_bio);
2331 md->flush_bio.bi_bdev = md->bdev;
2332 md->flush_bio.bi_rw = WRITE_FLUSH;
2333
2334 dm_stats_init(&md->stats);
2335
2336 /* Populate the mapping, nobody knows we exist yet */
2337 spin_lock(&_minor_lock);
2338 old_md = idr_replace(&_minor_idr, md, minor);
2339 spin_unlock(&_minor_lock);
2340
2341 BUG_ON(old_md != MINOR_ALLOCED);
2342
2343 return md;
2344
2345 bad:
2346 cleanup_mapped_device(md);
2347 bad_io_barrier:
2348 free_minor(minor);
2349 bad_minor:
2350 module_put(THIS_MODULE);
2351 bad_module_get:
2352 kfree(md);
2353 return NULL;
2354 }
2355
2356 static void unlock_fs(struct mapped_device *md);
2357
2358 static void free_dev(struct mapped_device *md)
2359 {
2360 int minor = MINOR(disk_devt(md->disk));
2361
2362 unlock_fs(md);
2363
2364 cleanup_mapped_device(md);
2365 if (md->use_blk_mq)
2366 blk_mq_free_tag_set(&md->tag_set);
2367
2368 free_table_devices(&md->table_devices);
2369 dm_stats_cleanup(&md->stats);
2370 free_minor(minor);
2371
2372 module_put(THIS_MODULE);
2373 kfree(md);
2374 }
2375
2376 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2377 {
2378 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2379
2380 if (md->bs) {
2381 /* The md already has necessary mempools. */
2382 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2383 /*
2384 * Reload bioset because front_pad may have changed
2385 * because a different table was loaded.
2386 */
2387 bioset_free(md->bs);
2388 md->bs = p->bs;
2389 p->bs = NULL;
2390 }
2391 /*
2392 * There's no need to reload with request-based dm
2393 * because the size of front_pad doesn't change.
2394 * Note for future: If you are to reload bioset,
2395 * prep-ed requests in the queue may refer
2396 * to bio from the old bioset, so you must walk
2397 * through the queue to unprep.
2398 */
2399 goto out;
2400 }
2401
2402 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2403
2404 md->io_pool = p->io_pool;
2405 p->io_pool = NULL;
2406 md->rq_pool = p->rq_pool;
2407 p->rq_pool = NULL;
2408 md->bs = p->bs;
2409 p->bs = NULL;
2410
2411 out:
2412 /* mempool bind completed, no longer need any mempools in the table */
2413 dm_table_free_md_mempools(t);
2414 }
2415
2416 /*
2417 * Bind a table to the device.
2418 */
2419 static void event_callback(void *context)
2420 {
2421 unsigned long flags;
2422 LIST_HEAD(uevents);
2423 struct mapped_device *md = (struct mapped_device *) context;
2424
2425 spin_lock_irqsave(&md->uevent_lock, flags);
2426 list_splice_init(&md->uevent_list, &uevents);
2427 spin_unlock_irqrestore(&md->uevent_lock, flags);
2428
2429 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2430
2431 atomic_inc(&md->event_nr);
2432 wake_up(&md->eventq);
2433 }
2434
2435 /*
2436 * Protected by md->suspend_lock obtained by dm_swap_table().
2437 */
2438 static void __set_size(struct mapped_device *md, sector_t size)
2439 {
2440 set_capacity(md->disk, size);
2441
2442 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2443 }
2444
2445 /*
2446 * Returns old map, which caller must destroy.
2447 */
2448 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2449 struct queue_limits *limits)
2450 {
2451 struct dm_table *old_map;
2452 struct request_queue *q = md->queue;
2453 sector_t size;
2454
2455 size = dm_table_get_size(t);
2456
2457 /*
2458 * Wipe any geometry if the size of the table changed.
2459 */
2460 if (size != dm_get_size(md))
2461 memset(&md->geometry, 0, sizeof(md->geometry));
2462
2463 __set_size(md, size);
2464
2465 dm_table_event_callback(t, event_callback, md);
2466
2467 /*
2468 * The queue hasn't been stopped yet, if the old table type wasn't
2469 * for request-based during suspension. So stop it to prevent
2470 * I/O mapping before resume.
2471 * This must be done before setting the queue restrictions,
2472 * because request-based dm may be run just after the setting.
2473 */
2474 if (dm_table_request_based(t))
2475 stop_queue(q);
2476
2477 __bind_mempools(md, t);
2478
2479 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2480 rcu_assign_pointer(md->map, t);
2481 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2482
2483 dm_table_set_restrictions(t, q, limits);
2484 if (old_map)
2485 dm_sync_table(md);
2486
2487 return old_map;
2488 }
2489
2490 /*
2491 * Returns unbound table for the caller to free.
2492 */
2493 static struct dm_table *__unbind(struct mapped_device *md)
2494 {
2495 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2496
2497 if (!map)
2498 return NULL;
2499
2500 dm_table_event_callback(map, NULL, NULL);
2501 RCU_INIT_POINTER(md->map, NULL);
2502 dm_sync_table(md);
2503
2504 return map;
2505 }
2506
2507 /*
2508 * Constructor for a new device.
2509 */
2510 int dm_create(int minor, struct mapped_device **result)
2511 {
2512 struct mapped_device *md;
2513
2514 md = alloc_dev(minor);
2515 if (!md)
2516 return -ENXIO;
2517
2518 dm_sysfs_init(md);
2519
2520 *result = md;
2521 return 0;
2522 }
2523
2524 /*
2525 * Functions to manage md->type.
2526 * All are required to hold md->type_lock.
2527 */
2528 void dm_lock_md_type(struct mapped_device *md)
2529 {
2530 mutex_lock(&md->type_lock);
2531 }
2532
2533 void dm_unlock_md_type(struct mapped_device *md)
2534 {
2535 mutex_unlock(&md->type_lock);
2536 }
2537
2538 void dm_set_md_type(struct mapped_device *md, unsigned type)
2539 {
2540 BUG_ON(!mutex_is_locked(&md->type_lock));
2541 md->type = type;
2542 }
2543
2544 unsigned dm_get_md_type(struct mapped_device *md)
2545 {
2546 BUG_ON(!mutex_is_locked(&md->type_lock));
2547 return md->type;
2548 }
2549
2550 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2551 {
2552 return md->immutable_target_type;
2553 }
2554
2555 /*
2556 * The queue_limits are only valid as long as you have a reference
2557 * count on 'md'.
2558 */
2559 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2560 {
2561 BUG_ON(!atomic_read(&md->holders));
2562 return &md->queue->limits;
2563 }
2564 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2565
2566 static void init_rq_based_worker_thread(struct mapped_device *md)
2567 {
2568 /* Initialize the request-based DM worker thread */
2569 init_kthread_worker(&md->kworker);
2570 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2571 "kdmwork-%s", dm_device_name(md));
2572 }
2573
2574 /*
2575 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2576 */
2577 static int dm_init_request_based_queue(struct mapped_device *md)
2578 {
2579 struct request_queue *q = NULL;
2580
2581 /* Fully initialize the queue */
2582 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2583 if (!q)
2584 return -EINVAL;
2585
2586 /* disable dm_request_fn's merge heuristic by default */
2587 md->seq_rq_merge_deadline_usecs = 0;
2588
2589 md->queue = q;
2590 dm_init_old_md_queue(md);
2591 blk_queue_softirq_done(md->queue, dm_softirq_done);
2592 blk_queue_prep_rq(md->queue, dm_prep_fn);
2593
2594 init_rq_based_worker_thread(md);
2595
2596 elv_register_queue(md->queue);
2597
2598 return 0;
2599 }
2600
2601 static int dm_mq_init_request(void *data, struct request *rq,
2602 unsigned int hctx_idx, unsigned int request_idx,
2603 unsigned int numa_node)
2604 {
2605 struct mapped_device *md = data;
2606 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2607
2608 /*
2609 * Must initialize md member of tio, otherwise it won't
2610 * be available in dm_mq_queue_rq.
2611 */
2612 tio->md = md;
2613
2614 return 0;
2615 }
2616
2617 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2618 const struct blk_mq_queue_data *bd)
2619 {
2620 struct request *rq = bd->rq;
2621 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2622 struct mapped_device *md = tio->md;
2623 int srcu_idx;
2624 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2625 struct dm_target *ti;
2626 sector_t pos;
2627
2628 /* always use block 0 to find the target for flushes for now */
2629 pos = 0;
2630 if (!(rq->cmd_flags & REQ_FLUSH))
2631 pos = blk_rq_pos(rq);
2632
2633 ti = dm_table_find_target(map, pos);
2634 if (!dm_target_is_valid(ti)) {
2635 dm_put_live_table(md, srcu_idx);
2636 DMERR_LIMIT("request attempted access beyond the end of device");
2637 /*
2638 * Must perform setup, that rq_completed() requires,
2639 * before returning BLK_MQ_RQ_QUEUE_ERROR
2640 */
2641 dm_start_request(md, rq);
2642 return BLK_MQ_RQ_QUEUE_ERROR;
2643 }
2644 dm_put_live_table(md, srcu_idx);
2645
2646 if (ti->type->busy && ti->type->busy(ti))
2647 return BLK_MQ_RQ_QUEUE_BUSY;
2648
2649 dm_start_request(md, rq);
2650
2651 /* Init tio using md established in .init_request */
2652 init_tio(tio, rq, md);
2653
2654 /*
2655 * Establish tio->ti before queuing work (map_tio_request)
2656 * or making direct call to map_request().
2657 */
2658 tio->ti = ti;
2659
2660 /* Clone the request if underlying devices aren't blk-mq */
2661 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2662 /* clone request is allocated at the end of the pdu */
2663 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2664 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2665 queue_kthread_work(&md->kworker, &tio->work);
2666 } else {
2667 /* Direct call is fine since .queue_rq allows allocations */
2668 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2669 /* Undo dm_start_request() before requeuing */
2670 rq_end_stats(md, rq);
2671 rq_completed(md, rq_data_dir(rq), false);
2672 return BLK_MQ_RQ_QUEUE_BUSY;
2673 }
2674 }
2675
2676 return BLK_MQ_RQ_QUEUE_OK;
2677 }
2678
2679 static struct blk_mq_ops dm_mq_ops = {
2680 .queue_rq = dm_mq_queue_rq,
2681 .map_queue = blk_mq_map_queue,
2682 .complete = dm_softirq_done,
2683 .init_request = dm_mq_init_request,
2684 };
2685
2686 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2687 {
2688 unsigned md_type = dm_get_md_type(md);
2689 struct request_queue *q;
2690 int err;
2691
2692 memset(&md->tag_set, 0, sizeof(md->tag_set));
2693 md->tag_set.ops = &dm_mq_ops;
2694 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2695 md->tag_set.numa_node = NUMA_NO_NODE;
2696 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2697 md->tag_set.nr_hw_queues = 1;
2698 if (md_type == DM_TYPE_REQUEST_BASED) {
2699 /* make the memory for non-blk-mq clone part of the pdu */
2700 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2701 } else
2702 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2703 md->tag_set.driver_data = md;
2704
2705 err = blk_mq_alloc_tag_set(&md->tag_set);
2706 if (err)
2707 return err;
2708
2709 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2710 if (IS_ERR(q)) {
2711 err = PTR_ERR(q);
2712 goto out_tag_set;
2713 }
2714 md->queue = q;
2715 dm_init_md_queue(md);
2716
2717 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2718 blk_mq_register_disk(md->disk);
2719
2720 if (md_type == DM_TYPE_REQUEST_BASED)
2721 init_rq_based_worker_thread(md);
2722
2723 return 0;
2724
2725 out_tag_set:
2726 blk_mq_free_tag_set(&md->tag_set);
2727 return err;
2728 }
2729
2730 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2731 {
2732 if (type == DM_TYPE_BIO_BASED)
2733 return type;
2734
2735 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2736 }
2737
2738 /*
2739 * Setup the DM device's queue based on md's type
2740 */
2741 int dm_setup_md_queue(struct mapped_device *md)
2742 {
2743 int r;
2744 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2745
2746 switch (md_type) {
2747 case DM_TYPE_REQUEST_BASED:
2748 r = dm_init_request_based_queue(md);
2749 if (r) {
2750 DMWARN("Cannot initialize queue for request-based mapped device");
2751 return r;
2752 }
2753 break;
2754 case DM_TYPE_MQ_REQUEST_BASED:
2755 r = dm_init_request_based_blk_mq_queue(md);
2756 if (r) {
2757 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2758 return r;
2759 }
2760 break;
2761 case DM_TYPE_BIO_BASED:
2762 dm_init_old_md_queue(md);
2763 blk_queue_make_request(md->queue, dm_make_request);
2764 break;
2765 }
2766
2767 return 0;
2768 }
2769
2770 struct mapped_device *dm_get_md(dev_t dev)
2771 {
2772 struct mapped_device *md;
2773 unsigned minor = MINOR(dev);
2774
2775 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2776 return NULL;
2777
2778 spin_lock(&_minor_lock);
2779
2780 md = idr_find(&_minor_idr, minor);
2781 if (md) {
2782 if ((md == MINOR_ALLOCED ||
2783 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2784 dm_deleting_md(md) ||
2785 test_bit(DMF_FREEING, &md->flags))) {
2786 md = NULL;
2787 goto out;
2788 }
2789 dm_get(md);
2790 }
2791
2792 out:
2793 spin_unlock(&_minor_lock);
2794
2795 return md;
2796 }
2797 EXPORT_SYMBOL_GPL(dm_get_md);
2798
2799 void *dm_get_mdptr(struct mapped_device *md)
2800 {
2801 return md->interface_ptr;
2802 }
2803
2804 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2805 {
2806 md->interface_ptr = ptr;
2807 }
2808
2809 void dm_get(struct mapped_device *md)
2810 {
2811 atomic_inc(&md->holders);
2812 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2813 }
2814
2815 int dm_hold(struct mapped_device *md)
2816 {
2817 spin_lock(&_minor_lock);
2818 if (test_bit(DMF_FREEING, &md->flags)) {
2819 spin_unlock(&_minor_lock);
2820 return -EBUSY;
2821 }
2822 dm_get(md);
2823 spin_unlock(&_minor_lock);
2824 return 0;
2825 }
2826 EXPORT_SYMBOL_GPL(dm_hold);
2827
2828 const char *dm_device_name(struct mapped_device *md)
2829 {
2830 return md->name;
2831 }
2832 EXPORT_SYMBOL_GPL(dm_device_name);
2833
2834 static void __dm_destroy(struct mapped_device *md, bool wait)
2835 {
2836 struct dm_table *map;
2837 int srcu_idx;
2838
2839 might_sleep();
2840
2841 spin_lock(&_minor_lock);
2842 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2843 set_bit(DMF_FREEING, &md->flags);
2844 spin_unlock(&_minor_lock);
2845
2846 if (dm_request_based(md) && md->kworker_task)
2847 flush_kthread_worker(&md->kworker);
2848
2849 /*
2850 * Take suspend_lock so that presuspend and postsuspend methods
2851 * do not race with internal suspend.
2852 */
2853 mutex_lock(&md->suspend_lock);
2854 map = dm_get_live_table(md, &srcu_idx);
2855 if (!dm_suspended_md(md)) {
2856 dm_table_presuspend_targets(map);
2857 dm_table_postsuspend_targets(map);
2858 }
2859 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2860 dm_put_live_table(md, srcu_idx);
2861 mutex_unlock(&md->suspend_lock);
2862
2863 /*
2864 * Rare, but there may be I/O requests still going to complete,
2865 * for example. Wait for all references to disappear.
2866 * No one should increment the reference count of the mapped_device,
2867 * after the mapped_device state becomes DMF_FREEING.
2868 */
2869 if (wait)
2870 while (atomic_read(&md->holders))
2871 msleep(1);
2872 else if (atomic_read(&md->holders))
2873 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2874 dm_device_name(md), atomic_read(&md->holders));
2875
2876 dm_sysfs_exit(md);
2877 dm_table_destroy(__unbind(md));
2878 free_dev(md);
2879 }
2880
2881 void dm_destroy(struct mapped_device *md)
2882 {
2883 __dm_destroy(md, true);
2884 }
2885
2886 void dm_destroy_immediate(struct mapped_device *md)
2887 {
2888 __dm_destroy(md, false);
2889 }
2890
2891 void dm_put(struct mapped_device *md)
2892 {
2893 atomic_dec(&md->holders);
2894 }
2895 EXPORT_SYMBOL_GPL(dm_put);
2896
2897 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2898 {
2899 int r = 0;
2900 DECLARE_WAITQUEUE(wait, current);
2901
2902 add_wait_queue(&md->wait, &wait);
2903
2904 while (1) {
2905 set_current_state(interruptible);
2906
2907 if (!md_in_flight(md))
2908 break;
2909
2910 if (interruptible == TASK_INTERRUPTIBLE &&
2911 signal_pending(current)) {
2912 r = -EINTR;
2913 break;
2914 }
2915
2916 io_schedule();
2917 }
2918 set_current_state(TASK_RUNNING);
2919
2920 remove_wait_queue(&md->wait, &wait);
2921
2922 return r;
2923 }
2924
2925 /*
2926 * Process the deferred bios
2927 */
2928 static void dm_wq_work(struct work_struct *work)
2929 {
2930 struct mapped_device *md = container_of(work, struct mapped_device,
2931 work);
2932 struct bio *c;
2933 int srcu_idx;
2934 struct dm_table *map;
2935
2936 map = dm_get_live_table(md, &srcu_idx);
2937
2938 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2939 spin_lock_irq(&md->deferred_lock);
2940 c = bio_list_pop(&md->deferred);
2941 spin_unlock_irq(&md->deferred_lock);
2942
2943 if (!c)
2944 break;
2945
2946 if (dm_request_based(md))
2947 generic_make_request(c);
2948 else
2949 __split_and_process_bio(md, map, c);
2950 }
2951
2952 dm_put_live_table(md, srcu_idx);
2953 }
2954
2955 static void dm_queue_flush(struct mapped_device *md)
2956 {
2957 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2958 smp_mb__after_atomic();
2959 queue_work(md->wq, &md->work);
2960 }
2961
2962 /*
2963 * Swap in a new table, returning the old one for the caller to destroy.
2964 */
2965 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2966 {
2967 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2968 struct queue_limits limits;
2969 int r;
2970
2971 mutex_lock(&md->suspend_lock);
2972
2973 /* device must be suspended */
2974 if (!dm_suspended_md(md))
2975 goto out;
2976
2977 /*
2978 * If the new table has no data devices, retain the existing limits.
2979 * This helps multipath with queue_if_no_path if all paths disappear,
2980 * then new I/O is queued based on these limits, and then some paths
2981 * reappear.
2982 */
2983 if (dm_table_has_no_data_devices(table)) {
2984 live_map = dm_get_live_table_fast(md);
2985 if (live_map)
2986 limits = md->queue->limits;
2987 dm_put_live_table_fast(md);
2988 }
2989
2990 if (!live_map) {
2991 r = dm_calculate_queue_limits(table, &limits);
2992 if (r) {
2993 map = ERR_PTR(r);
2994 goto out;
2995 }
2996 }
2997
2998 map = __bind(md, table, &limits);
2999
3000 out:
3001 mutex_unlock(&md->suspend_lock);
3002 return map;
3003 }
3004
3005 /*
3006 * Functions to lock and unlock any filesystem running on the
3007 * device.
3008 */
3009 static int lock_fs(struct mapped_device *md)
3010 {
3011 int r;
3012
3013 WARN_ON(md->frozen_sb);
3014
3015 md->frozen_sb = freeze_bdev(md->bdev);
3016 if (IS_ERR(md->frozen_sb)) {
3017 r = PTR_ERR(md->frozen_sb);
3018 md->frozen_sb = NULL;
3019 return r;
3020 }
3021
3022 set_bit(DMF_FROZEN, &md->flags);
3023
3024 return 0;
3025 }
3026
3027 static void unlock_fs(struct mapped_device *md)
3028 {
3029 if (!test_bit(DMF_FROZEN, &md->flags))
3030 return;
3031
3032 thaw_bdev(md->bdev, md->frozen_sb);
3033 md->frozen_sb = NULL;
3034 clear_bit(DMF_FROZEN, &md->flags);
3035 }
3036
3037 /*
3038 * If __dm_suspend returns 0, the device is completely quiescent
3039 * now. There is no request-processing activity. All new requests
3040 * are being added to md->deferred list.
3041 *
3042 * Caller must hold md->suspend_lock
3043 */
3044 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3045 unsigned suspend_flags, int interruptible)
3046 {
3047 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3048 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3049 int r;
3050
3051 /*
3052 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3053 * This flag is cleared before dm_suspend returns.
3054 */
3055 if (noflush)
3056 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3057
3058 /*
3059 * This gets reverted if there's an error later and the targets
3060 * provide the .presuspend_undo hook.
3061 */
3062 dm_table_presuspend_targets(map);
3063
3064 /*
3065 * Flush I/O to the device.
3066 * Any I/O submitted after lock_fs() may not be flushed.
3067 * noflush takes precedence over do_lockfs.
3068 * (lock_fs() flushes I/Os and waits for them to complete.)
3069 */
3070 if (!noflush && do_lockfs) {
3071 r = lock_fs(md);
3072 if (r) {
3073 dm_table_presuspend_undo_targets(map);
3074 return r;
3075 }
3076 }
3077
3078 /*
3079 * Here we must make sure that no processes are submitting requests
3080 * to target drivers i.e. no one may be executing
3081 * __split_and_process_bio. This is called from dm_request and
3082 * dm_wq_work.
3083 *
3084 * To get all processes out of __split_and_process_bio in dm_request,
3085 * we take the write lock. To prevent any process from reentering
3086 * __split_and_process_bio from dm_request and quiesce the thread
3087 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3088 * flush_workqueue(md->wq).
3089 */
3090 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3091 if (map)
3092 synchronize_srcu(&md->io_barrier);
3093
3094 /*
3095 * Stop md->queue before flushing md->wq in case request-based
3096 * dm defers requests to md->wq from md->queue.
3097 */
3098 if (dm_request_based(md)) {
3099 stop_queue(md->queue);
3100 if (md->kworker_task)
3101 flush_kthread_worker(&md->kworker);
3102 }
3103
3104 flush_workqueue(md->wq);
3105
3106 /*
3107 * At this point no more requests are entering target request routines.
3108 * We call dm_wait_for_completion to wait for all existing requests
3109 * to finish.
3110 */
3111 r = dm_wait_for_completion(md, interruptible);
3112
3113 if (noflush)
3114 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3115 if (map)
3116 synchronize_srcu(&md->io_barrier);
3117
3118 /* were we interrupted ? */
3119 if (r < 0) {
3120 dm_queue_flush(md);
3121
3122 if (dm_request_based(md))
3123 start_queue(md->queue);
3124
3125 unlock_fs(md);
3126 dm_table_presuspend_undo_targets(map);
3127 /* pushback list is already flushed, so skip flush */
3128 }
3129
3130 return r;
3131 }
3132
3133 /*
3134 * We need to be able to change a mapping table under a mounted
3135 * filesystem. For example we might want to move some data in
3136 * the background. Before the table can be swapped with
3137 * dm_bind_table, dm_suspend must be called to flush any in
3138 * flight bios and ensure that any further io gets deferred.
3139 */
3140 /*
3141 * Suspend mechanism in request-based dm.
3142 *
3143 * 1. Flush all I/Os by lock_fs() if needed.
3144 * 2. Stop dispatching any I/O by stopping the request_queue.
3145 * 3. Wait for all in-flight I/Os to be completed or requeued.
3146 *
3147 * To abort suspend, start the request_queue.
3148 */
3149 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3150 {
3151 struct dm_table *map = NULL;
3152 int r = 0;
3153
3154 retry:
3155 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3156
3157 if (dm_suspended_md(md)) {
3158 r = -EINVAL;
3159 goto out_unlock;
3160 }
3161
3162 if (dm_suspended_internally_md(md)) {
3163 /* already internally suspended, wait for internal resume */
3164 mutex_unlock(&md->suspend_lock);
3165 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3166 if (r)
3167 return r;
3168 goto retry;
3169 }
3170
3171 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3172
3173 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3174 if (r)
3175 goto out_unlock;
3176
3177 set_bit(DMF_SUSPENDED, &md->flags);
3178
3179 dm_table_postsuspend_targets(map);
3180
3181 out_unlock:
3182 mutex_unlock(&md->suspend_lock);
3183 return r;
3184 }
3185
3186 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3187 {
3188 if (map) {
3189 int r = dm_table_resume_targets(map);
3190 if (r)
3191 return r;
3192 }
3193
3194 dm_queue_flush(md);
3195
3196 /*
3197 * Flushing deferred I/Os must be done after targets are resumed
3198 * so that mapping of targets can work correctly.
3199 * Request-based dm is queueing the deferred I/Os in its request_queue.
3200 */
3201 if (dm_request_based(md))
3202 start_queue(md->queue);
3203
3204 unlock_fs(md);
3205
3206 return 0;
3207 }
3208
3209 int dm_resume(struct mapped_device *md)
3210 {
3211 int r = -EINVAL;
3212 struct dm_table *map = NULL;
3213
3214 retry:
3215 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3216
3217 if (!dm_suspended_md(md))
3218 goto out;
3219
3220 if (dm_suspended_internally_md(md)) {
3221 /* already internally suspended, wait for internal resume */
3222 mutex_unlock(&md->suspend_lock);
3223 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3224 if (r)
3225 return r;
3226 goto retry;
3227 }
3228
3229 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3230 if (!map || !dm_table_get_size(map))
3231 goto out;
3232
3233 r = __dm_resume(md, map);
3234 if (r)
3235 goto out;
3236
3237 clear_bit(DMF_SUSPENDED, &md->flags);
3238
3239 r = 0;
3240 out:
3241 mutex_unlock(&md->suspend_lock);
3242
3243 return r;
3244 }
3245
3246 /*
3247 * Internal suspend/resume works like userspace-driven suspend. It waits
3248 * until all bios finish and prevents issuing new bios to the target drivers.
3249 * It may be used only from the kernel.
3250 */
3251
3252 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3253 {
3254 struct dm_table *map = NULL;
3255
3256 if (md->internal_suspend_count++)
3257 return; /* nested internal suspend */
3258
3259 if (dm_suspended_md(md)) {
3260 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3261 return; /* nest suspend */
3262 }
3263
3264 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3265
3266 /*
3267 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3268 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3269 * would require changing .presuspend to return an error -- avoid this
3270 * until there is a need for more elaborate variants of internal suspend.
3271 */
3272 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3273
3274 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3275
3276 dm_table_postsuspend_targets(map);
3277 }
3278
3279 static void __dm_internal_resume(struct mapped_device *md)
3280 {
3281 BUG_ON(!md->internal_suspend_count);
3282
3283 if (--md->internal_suspend_count)
3284 return; /* resume from nested internal suspend */
3285
3286 if (dm_suspended_md(md))
3287 goto done; /* resume from nested suspend */
3288
3289 /*
3290 * NOTE: existing callers don't need to call dm_table_resume_targets
3291 * (which may fail -- so best to avoid it for now by passing NULL map)
3292 */
3293 (void) __dm_resume(md, NULL);
3294
3295 done:
3296 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3297 smp_mb__after_atomic();
3298 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3299 }
3300
3301 void dm_internal_suspend_noflush(struct mapped_device *md)
3302 {
3303 mutex_lock(&md->suspend_lock);
3304 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3305 mutex_unlock(&md->suspend_lock);
3306 }
3307 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3308
3309 void dm_internal_resume(struct mapped_device *md)
3310 {
3311 mutex_lock(&md->suspend_lock);
3312 __dm_internal_resume(md);
3313 mutex_unlock(&md->suspend_lock);
3314 }
3315 EXPORT_SYMBOL_GPL(dm_internal_resume);
3316
3317 /*
3318 * Fast variants of internal suspend/resume hold md->suspend_lock,
3319 * which prevents interaction with userspace-driven suspend.
3320 */
3321
3322 void dm_internal_suspend_fast(struct mapped_device *md)
3323 {
3324 mutex_lock(&md->suspend_lock);
3325 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3326 return;
3327
3328 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3329 synchronize_srcu(&md->io_barrier);
3330 flush_workqueue(md->wq);
3331 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3332 }
3333 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3334
3335 void dm_internal_resume_fast(struct mapped_device *md)
3336 {
3337 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3338 goto done;
3339
3340 dm_queue_flush(md);
3341
3342 done:
3343 mutex_unlock(&md->suspend_lock);
3344 }
3345 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3346
3347 /*-----------------------------------------------------------------
3348 * Event notification.
3349 *---------------------------------------------------------------*/
3350 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3351 unsigned cookie)
3352 {
3353 char udev_cookie[DM_COOKIE_LENGTH];
3354 char *envp[] = { udev_cookie, NULL };
3355
3356 if (!cookie)
3357 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3358 else {
3359 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3360 DM_COOKIE_ENV_VAR_NAME, cookie);
3361 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3362 action, envp);
3363 }
3364 }
3365
3366 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3367 {
3368 return atomic_add_return(1, &md->uevent_seq);
3369 }
3370
3371 uint32_t dm_get_event_nr(struct mapped_device *md)
3372 {
3373 return atomic_read(&md->event_nr);
3374 }
3375
3376 int dm_wait_event(struct mapped_device *md, int event_nr)
3377 {
3378 return wait_event_interruptible(md->eventq,
3379 (event_nr != atomic_read(&md->event_nr)));
3380 }
3381
3382 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3383 {
3384 unsigned long flags;
3385
3386 spin_lock_irqsave(&md->uevent_lock, flags);
3387 list_add(elist, &md->uevent_list);
3388 spin_unlock_irqrestore(&md->uevent_lock, flags);
3389 }
3390
3391 /*
3392 * The gendisk is only valid as long as you have a reference
3393 * count on 'md'.
3394 */
3395 struct gendisk *dm_disk(struct mapped_device *md)
3396 {
3397 return md->disk;
3398 }
3399 EXPORT_SYMBOL_GPL(dm_disk);
3400
3401 struct kobject *dm_kobject(struct mapped_device *md)
3402 {
3403 return &md->kobj_holder.kobj;
3404 }
3405
3406 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3407 {
3408 struct mapped_device *md;
3409
3410 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3411
3412 if (test_bit(DMF_FREEING, &md->flags) ||
3413 dm_deleting_md(md))
3414 return NULL;
3415
3416 dm_get(md);
3417 return md;
3418 }
3419
3420 int dm_suspended_md(struct mapped_device *md)
3421 {
3422 return test_bit(DMF_SUSPENDED, &md->flags);
3423 }
3424
3425 int dm_suspended_internally_md(struct mapped_device *md)
3426 {
3427 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3428 }
3429
3430 int dm_test_deferred_remove_flag(struct mapped_device *md)
3431 {
3432 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3433 }
3434
3435 int dm_suspended(struct dm_target *ti)
3436 {
3437 return dm_suspended_md(dm_table_get_md(ti->table));
3438 }
3439 EXPORT_SYMBOL_GPL(dm_suspended);
3440
3441 int dm_noflush_suspending(struct dm_target *ti)
3442 {
3443 return __noflush_suspending(dm_table_get_md(ti->table));
3444 }
3445 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3446
3447 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3448 unsigned integrity, unsigned per_bio_data_size)
3449 {
3450 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3451 struct kmem_cache *cachep = NULL;
3452 unsigned int pool_size = 0;
3453 unsigned int front_pad;
3454
3455 if (!pools)
3456 return NULL;
3457
3458 type = filter_md_type(type, md);
3459
3460 switch (type) {
3461 case DM_TYPE_BIO_BASED:
3462 cachep = _io_cache;
3463 pool_size = dm_get_reserved_bio_based_ios();
3464 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3465 break;
3466 case DM_TYPE_REQUEST_BASED:
3467 cachep = _rq_tio_cache;
3468 pool_size = dm_get_reserved_rq_based_ios();
3469 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3470 if (!pools->rq_pool)
3471 goto out;
3472 /* fall through to setup remaining rq-based pools */
3473 case DM_TYPE_MQ_REQUEST_BASED:
3474 if (!pool_size)
3475 pool_size = dm_get_reserved_rq_based_ios();
3476 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3477 /* per_bio_data_size is not used. See __bind_mempools(). */
3478 WARN_ON(per_bio_data_size != 0);
3479 break;
3480 default:
3481 BUG();
3482 }
3483
3484 if (cachep) {
3485 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3486 if (!pools->io_pool)
3487 goto out;
3488 }
3489
3490 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3491 if (!pools->bs)
3492 goto out;
3493
3494 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3495 goto out;
3496
3497 return pools;
3498
3499 out:
3500 dm_free_md_mempools(pools);
3501
3502 return NULL;
3503 }
3504
3505 void dm_free_md_mempools(struct dm_md_mempools *pools)
3506 {
3507 if (!pools)
3508 return;
3509
3510 if (pools->io_pool)
3511 mempool_destroy(pools->io_pool);
3512
3513 if (pools->rq_pool)
3514 mempool_destroy(pools->rq_pool);
3515
3516 if (pools->bs)
3517 bioset_free(pools->bs);
3518
3519 kfree(pools);
3520 }
3521
3522 static const struct block_device_operations dm_blk_dops = {
3523 .open = dm_blk_open,
3524 .release = dm_blk_close,
3525 .ioctl = dm_blk_ioctl,
3526 .getgeo = dm_blk_getgeo,
3527 .owner = THIS_MODULE
3528 };
3529
3530 /*
3531 * module hooks
3532 */
3533 module_init(dm_init);
3534 module_exit(dm_exit);
3535
3536 module_param(major, uint, 0);
3537 MODULE_PARM_DESC(major, "The major number of the device mapper");
3538
3539 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3540 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3541
3542 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3543 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3544
3545 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3546 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3547
3548 MODULE_DESCRIPTION(DM_NAME " driver");
3549 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3550 MODULE_LICENSE("GPL");