]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/md.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 struct md_cluster_operations *md_cluster_ops;
88 EXPORT_SYMBOL(md_cluster_ops);
89 struct module *md_cluster_mod;
90 EXPORT_SYMBOL(md_cluster_mod);
91
92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
93 static struct workqueue_struct *md_wq;
94 static struct workqueue_struct *md_misc_wq;
95
96 static int remove_and_add_spares(struct mddev *mddev,
97 struct md_rdev *this);
98 static void mddev_detach(struct mddev *mddev);
99
100 /*
101 * Default number of read corrections we'll attempt on an rdev
102 * before ejecting it from the array. We divide the read error
103 * count by 2 for every hour elapsed between read errors.
104 */
105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
106 /*
107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
108 * is 1000 KB/sec, so the extra system load does not show up that much.
109 * Increase it if you want to have more _guaranteed_ speed. Note that
110 * the RAID driver will use the maximum available bandwidth if the IO
111 * subsystem is idle. There is also an 'absolute maximum' reconstruction
112 * speed limit - in case reconstruction slows down your system despite
113 * idle IO detection.
114 *
115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
116 * or /sys/block/mdX/md/sync_speed_{min,max}
117 */
118
119 static int sysctl_speed_limit_min = 1000;
120 static int sysctl_speed_limit_max = 200000;
121 static inline int speed_min(struct mddev *mddev)
122 {
123 return mddev->sync_speed_min ?
124 mddev->sync_speed_min : sysctl_speed_limit_min;
125 }
126
127 static inline int speed_max(struct mddev *mddev)
128 {
129 return mddev->sync_speed_max ?
130 mddev->sync_speed_max : sysctl_speed_limit_max;
131 }
132
133 static struct ctl_table_header *raid_table_header;
134
135 static struct ctl_table raid_table[] = {
136 {
137 .procname = "speed_limit_min",
138 .data = &sysctl_speed_limit_min,
139 .maxlen = sizeof(int),
140 .mode = S_IRUGO|S_IWUSR,
141 .proc_handler = proc_dointvec,
142 },
143 {
144 .procname = "speed_limit_max",
145 .data = &sysctl_speed_limit_max,
146 .maxlen = sizeof(int),
147 .mode = S_IRUGO|S_IWUSR,
148 .proc_handler = proc_dointvec,
149 },
150 { }
151 };
152
153 static struct ctl_table raid_dir_table[] = {
154 {
155 .procname = "raid",
156 .maxlen = 0,
157 .mode = S_IRUGO|S_IXUGO,
158 .child = raid_table,
159 },
160 { }
161 };
162
163 static struct ctl_table raid_root_table[] = {
164 {
165 .procname = "dev",
166 .maxlen = 0,
167 .mode = 0555,
168 .child = raid_dir_table,
169 },
170 { }
171 };
172
173 static const struct block_device_operations md_fops;
174
175 static int start_readonly;
176
177 /*
178 * The original mechanism for creating an md device is to create
179 * a device node in /dev and to open it. This causes races with device-close.
180 * The preferred method is to write to the "new_array" module parameter.
181 * This can avoid races.
182 * Setting create_on_open to false disables the original mechanism
183 * so all the races disappear.
184 */
185 static bool create_on_open = true;
186
187 /* bio_clone_mddev
188 * like bio_clone_bioset, but with a local bio set
189 */
190
191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
192 struct mddev *mddev)
193 {
194 struct bio *b;
195
196 if (!mddev || !mddev->bio_set)
197 return bio_alloc(gfp_mask, nr_iovecs);
198
199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
200 if (!b)
201 return NULL;
202 return b;
203 }
204 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
205
206 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
207 {
208 if (!mddev || !mddev->sync_set)
209 return bio_alloc(GFP_NOIO, 1);
210
211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set);
212 }
213
214 /*
215 * We have a system wide 'event count' that is incremented
216 * on any 'interesting' event, and readers of /proc/mdstat
217 * can use 'poll' or 'select' to find out when the event
218 * count increases.
219 *
220 * Events are:
221 * start array, stop array, error, add device, remove device,
222 * start build, activate spare
223 */
224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
225 static atomic_t md_event_count;
226 void md_new_event(struct mddev *mddev)
227 {
228 atomic_inc(&md_event_count);
229 wake_up(&md_event_waiters);
230 }
231 EXPORT_SYMBOL_GPL(md_new_event);
232
233 /*
234 * Enables to iterate over all existing md arrays
235 * all_mddevs_lock protects this list.
236 */
237 static LIST_HEAD(all_mddevs);
238 static DEFINE_SPINLOCK(all_mddevs_lock);
239
240 /*
241 * iterates through all used mddevs in the system.
242 * We take care to grab the all_mddevs_lock whenever navigating
243 * the list, and to always hold a refcount when unlocked.
244 * Any code which breaks out of this loop while own
245 * a reference to the current mddev and must mddev_put it.
246 */
247 #define for_each_mddev(_mddev,_tmp) \
248 \
249 for (({ spin_lock(&all_mddevs_lock); \
250 _tmp = all_mddevs.next; \
251 _mddev = NULL;}); \
252 ({ if (_tmp != &all_mddevs) \
253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
254 spin_unlock(&all_mddevs_lock); \
255 if (_mddev) mddev_put(_mddev); \
256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
257 _tmp != &all_mddevs;}); \
258 ({ spin_lock(&all_mddevs_lock); \
259 _tmp = _tmp->next;}) \
260 )
261
262 /* Rather than calling directly into the personality make_request function,
263 * IO requests come here first so that we can check if the device is
264 * being suspended pending a reconfiguration.
265 * We hold a refcount over the call to ->make_request. By the time that
266 * call has finished, the bio has been linked into some internal structure
267 * and so is visible to ->quiesce(), so we don't need the refcount any more.
268 */
269 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
270 {
271 const int rw = bio_data_dir(bio);
272 struct mddev *mddev = q->queuedata;
273 unsigned int sectors;
274 int cpu;
275
276 blk_queue_split(q, &bio);
277
278 if (mddev == NULL || mddev->pers == NULL) {
279 bio_io_error(bio);
280 return BLK_QC_T_NONE;
281 }
282 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
283 if (bio_sectors(bio) != 0)
284 bio->bi_status = BLK_STS_IOERR;
285 bio_endio(bio);
286 return BLK_QC_T_NONE;
287 }
288 check_suspended:
289 rcu_read_lock();
290 if (mddev->suspended) {
291 DEFINE_WAIT(__wait);
292 for (;;) {
293 prepare_to_wait(&mddev->sb_wait, &__wait,
294 TASK_UNINTERRUPTIBLE);
295 if (!mddev->suspended)
296 break;
297 rcu_read_unlock();
298 schedule();
299 rcu_read_lock();
300 }
301 finish_wait(&mddev->sb_wait, &__wait);
302 }
303 atomic_inc(&mddev->active_io);
304 rcu_read_unlock();
305
306 /*
307 * save the sectors now since our bio can
308 * go away inside make_request
309 */
310 sectors = bio_sectors(bio);
311 /* bio could be mergeable after passing to underlayer */
312 bio->bi_opf &= ~REQ_NOMERGE;
313 if (!mddev->pers->make_request(mddev, bio)) {
314 atomic_dec(&mddev->active_io);
315 wake_up(&mddev->sb_wait);
316 goto check_suspended;
317 }
318
319 cpu = part_stat_lock();
320 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
321 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
322 part_stat_unlock();
323
324 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
325 wake_up(&mddev->sb_wait);
326
327 return BLK_QC_T_NONE;
328 }
329
330 /* mddev_suspend makes sure no new requests are submitted
331 * to the device, and that any requests that have been submitted
332 * are completely handled.
333 * Once mddev_detach() is called and completes, the module will be
334 * completely unused.
335 */
336 void mddev_suspend(struct mddev *mddev)
337 {
338 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
339 if (mddev->suspended++)
340 return;
341 synchronize_rcu();
342 wake_up(&mddev->sb_wait);
343 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
344 mddev->pers->quiesce(mddev, 1);
345
346 del_timer_sync(&mddev->safemode_timer);
347 }
348 EXPORT_SYMBOL_GPL(mddev_suspend);
349
350 void mddev_resume(struct mddev *mddev)
351 {
352 if (--mddev->suspended)
353 return;
354 wake_up(&mddev->sb_wait);
355 mddev->pers->quiesce(mddev, 0);
356
357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
358 md_wakeup_thread(mddev->thread);
359 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
360 }
361 EXPORT_SYMBOL_GPL(mddev_resume);
362
363 int mddev_congested(struct mddev *mddev, int bits)
364 {
365 struct md_personality *pers = mddev->pers;
366 int ret = 0;
367
368 rcu_read_lock();
369 if (mddev->suspended)
370 ret = 1;
371 else if (pers && pers->congested)
372 ret = pers->congested(mddev, bits);
373 rcu_read_unlock();
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(mddev_congested);
377 static int md_congested(void *data, int bits)
378 {
379 struct mddev *mddev = data;
380 return mddev_congested(mddev, bits);
381 }
382
383 /*
384 * Generic flush handling for md
385 */
386
387 static void md_end_flush(struct bio *bio)
388 {
389 struct md_rdev *rdev = bio->bi_private;
390 struct mddev *mddev = rdev->mddev;
391
392 rdev_dec_pending(rdev, mddev);
393
394 if (atomic_dec_and_test(&mddev->flush_pending)) {
395 /* The pre-request flush has finished */
396 queue_work(md_wq, &mddev->flush_work);
397 }
398 bio_put(bio);
399 }
400
401 static void md_submit_flush_data(struct work_struct *ws);
402
403 static void submit_flushes(struct work_struct *ws)
404 {
405 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
406 struct md_rdev *rdev;
407
408 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
409 atomic_set(&mddev->flush_pending, 1);
410 rcu_read_lock();
411 rdev_for_each_rcu(rdev, mddev)
412 if (rdev->raid_disk >= 0 &&
413 !test_bit(Faulty, &rdev->flags)) {
414 /* Take two references, one is dropped
415 * when request finishes, one after
416 * we reclaim rcu_read_lock
417 */
418 struct bio *bi;
419 atomic_inc(&rdev->nr_pending);
420 atomic_inc(&rdev->nr_pending);
421 rcu_read_unlock();
422 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
423 bi->bi_end_io = md_end_flush;
424 bi->bi_private = rdev;
425 bio_set_dev(bi, rdev->bdev);
426 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
427 atomic_inc(&mddev->flush_pending);
428 submit_bio(bi);
429 rcu_read_lock();
430 rdev_dec_pending(rdev, mddev);
431 }
432 rcu_read_unlock();
433 if (atomic_dec_and_test(&mddev->flush_pending))
434 queue_work(md_wq, &mddev->flush_work);
435 }
436
437 static void md_submit_flush_data(struct work_struct *ws)
438 {
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct bio *bio = mddev->flush_bio;
441
442 if (bio->bi_iter.bi_size == 0)
443 /* an empty barrier - all done */
444 bio_endio(bio);
445 else {
446 bio->bi_opf &= ~REQ_PREFLUSH;
447 mddev->pers->make_request(mddev, bio);
448 }
449
450 mddev->flush_bio = NULL;
451 wake_up(&mddev->sb_wait);
452 }
453
454 void md_flush_request(struct mddev *mddev, struct bio *bio)
455 {
456 spin_lock_irq(&mddev->lock);
457 wait_event_lock_irq(mddev->sb_wait,
458 !mddev->flush_bio,
459 mddev->lock);
460 mddev->flush_bio = bio;
461 spin_unlock_irq(&mddev->lock);
462
463 INIT_WORK(&mddev->flush_work, submit_flushes);
464 queue_work(md_wq, &mddev->flush_work);
465 }
466 EXPORT_SYMBOL(md_flush_request);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 atomic_inc(&mddev->active);
471 return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478 struct bio_set *bs = NULL, *sync_bs = NULL;
479
480 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 return;
482 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 mddev->ctime == 0 && !mddev->hold_active) {
484 /* Array is not configured at all, and not held active,
485 * so destroy it */
486 list_del_init(&mddev->all_mddevs);
487 bs = mddev->bio_set;
488 sync_bs = mddev->sync_set;
489 mddev->bio_set = NULL;
490 mddev->sync_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
496 */
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
501 }
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
505 if (sync_bs)
506 bioset_free(sync_bs);
507 }
508
509 static void md_safemode_timeout(unsigned long data);
510
511 void mddev_init(struct mddev *mddev)
512 {
513 mutex_init(&mddev->open_mutex);
514 mutex_init(&mddev->reconfig_mutex);
515 mutex_init(&mddev->bitmap_info.mutex);
516 INIT_LIST_HEAD(&mddev->disks);
517 INIT_LIST_HEAD(&mddev->all_mddevs);
518 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
519 (unsigned long) mddev);
520 atomic_set(&mddev->active, 1);
521 atomic_set(&mddev->openers, 0);
522 atomic_set(&mddev->active_io, 0);
523 spin_lock_init(&mddev->lock);
524 atomic_set(&mddev->flush_pending, 0);
525 init_waitqueue_head(&mddev->sb_wait);
526 init_waitqueue_head(&mddev->recovery_wait);
527 mddev->reshape_position = MaxSector;
528 mddev->reshape_backwards = 0;
529 mddev->last_sync_action = "none";
530 mddev->resync_min = 0;
531 mddev->resync_max = MaxSector;
532 mddev->level = LEVEL_NONE;
533 }
534 EXPORT_SYMBOL_GPL(mddev_init);
535
536 static struct mddev *mddev_find(dev_t unit)
537 {
538 struct mddev *mddev, *new = NULL;
539
540 if (unit && MAJOR(unit) != MD_MAJOR)
541 unit &= ~((1<<MdpMinorShift)-1);
542
543 retry:
544 spin_lock(&all_mddevs_lock);
545
546 if (unit) {
547 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
548 if (mddev->unit == unit) {
549 mddev_get(mddev);
550 spin_unlock(&all_mddevs_lock);
551 kfree(new);
552 return mddev;
553 }
554
555 if (new) {
556 list_add(&new->all_mddevs, &all_mddevs);
557 spin_unlock(&all_mddevs_lock);
558 new->hold_active = UNTIL_IOCTL;
559 return new;
560 }
561 } else if (new) {
562 /* find an unused unit number */
563 static int next_minor = 512;
564 int start = next_minor;
565 int is_free = 0;
566 int dev = 0;
567 while (!is_free) {
568 dev = MKDEV(MD_MAJOR, next_minor);
569 next_minor++;
570 if (next_minor > MINORMASK)
571 next_minor = 0;
572 if (next_minor == start) {
573 /* Oh dear, all in use. */
574 spin_unlock(&all_mddevs_lock);
575 kfree(new);
576 return NULL;
577 }
578
579 is_free = 1;
580 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581 if (mddev->unit == dev) {
582 is_free = 0;
583 break;
584 }
585 }
586 new->unit = dev;
587 new->md_minor = MINOR(dev);
588 new->hold_active = UNTIL_STOP;
589 list_add(&new->all_mddevs, &all_mddevs);
590 spin_unlock(&all_mddevs_lock);
591 return new;
592 }
593 spin_unlock(&all_mddevs_lock);
594
595 new = kzalloc(sizeof(*new), GFP_KERNEL);
596 if (!new)
597 return NULL;
598
599 new->unit = unit;
600 if (MAJOR(unit) == MD_MAJOR)
601 new->md_minor = MINOR(unit);
602 else
603 new->md_minor = MINOR(unit) >> MdpMinorShift;
604
605 mddev_init(new);
606
607 goto retry;
608 }
609
610 static struct attribute_group md_redundancy_group;
611
612 void mddev_unlock(struct mddev *mddev)
613 {
614 if (mddev->to_remove) {
615 /* These cannot be removed under reconfig_mutex as
616 * an access to the files will try to take reconfig_mutex
617 * while holding the file unremovable, which leads to
618 * a deadlock.
619 * So hold set sysfs_active while the remove in happeing,
620 * and anything else which might set ->to_remove or my
621 * otherwise change the sysfs namespace will fail with
622 * -EBUSY if sysfs_active is still set.
623 * We set sysfs_active under reconfig_mutex and elsewhere
624 * test it under the same mutex to ensure its correct value
625 * is seen.
626 */
627 struct attribute_group *to_remove = mddev->to_remove;
628 mddev->to_remove = NULL;
629 mddev->sysfs_active = 1;
630 mutex_unlock(&mddev->reconfig_mutex);
631
632 if (mddev->kobj.sd) {
633 if (to_remove != &md_redundancy_group)
634 sysfs_remove_group(&mddev->kobj, to_remove);
635 if (mddev->pers == NULL ||
636 mddev->pers->sync_request == NULL) {
637 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
638 if (mddev->sysfs_action)
639 sysfs_put(mddev->sysfs_action);
640 mddev->sysfs_action = NULL;
641 }
642 }
643 mddev->sysfs_active = 0;
644 } else
645 mutex_unlock(&mddev->reconfig_mutex);
646
647 /* As we've dropped the mutex we need a spinlock to
648 * make sure the thread doesn't disappear
649 */
650 spin_lock(&pers_lock);
651 md_wakeup_thread(mddev->thread);
652 spin_unlock(&pers_lock);
653 }
654 EXPORT_SYMBOL_GPL(mddev_unlock);
655
656 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each_rcu(rdev, mddev)
661 if (rdev->desc_nr == nr)
662 return rdev;
663
664 return NULL;
665 }
666 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
667
668 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
669 {
670 struct md_rdev *rdev;
671
672 rdev_for_each(rdev, mddev)
673 if (rdev->bdev->bd_dev == dev)
674 return rdev;
675
676 return NULL;
677 }
678
679 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
680 {
681 struct md_rdev *rdev;
682
683 rdev_for_each_rcu(rdev, mddev)
684 if (rdev->bdev->bd_dev == dev)
685 return rdev;
686
687 return NULL;
688 }
689
690 static struct md_personality *find_pers(int level, char *clevel)
691 {
692 struct md_personality *pers;
693 list_for_each_entry(pers, &pers_list, list) {
694 if (level != LEVEL_NONE && pers->level == level)
695 return pers;
696 if (strcmp(pers->name, clevel)==0)
697 return pers;
698 }
699 return NULL;
700 }
701
702 /* return the offset of the super block in 512byte sectors */
703 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
704 {
705 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
706 return MD_NEW_SIZE_SECTORS(num_sectors);
707 }
708
709 static int alloc_disk_sb(struct md_rdev *rdev)
710 {
711 rdev->sb_page = alloc_page(GFP_KERNEL);
712 if (!rdev->sb_page)
713 return -ENOMEM;
714 return 0;
715 }
716
717 void md_rdev_clear(struct md_rdev *rdev)
718 {
719 if (rdev->sb_page) {
720 put_page(rdev->sb_page);
721 rdev->sb_loaded = 0;
722 rdev->sb_page = NULL;
723 rdev->sb_start = 0;
724 rdev->sectors = 0;
725 }
726 if (rdev->bb_page) {
727 put_page(rdev->bb_page);
728 rdev->bb_page = NULL;
729 }
730 badblocks_exit(&rdev->badblocks);
731 }
732 EXPORT_SYMBOL_GPL(md_rdev_clear);
733
734 static void super_written(struct bio *bio)
735 {
736 struct md_rdev *rdev = bio->bi_private;
737 struct mddev *mddev = rdev->mddev;
738
739 if (bio->bi_status) {
740 pr_err("md: super_written gets error=%d\n", bio->bi_status);
741 md_error(mddev, rdev);
742 if (!test_bit(Faulty, &rdev->flags)
743 && (bio->bi_opf & MD_FAILFAST)) {
744 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
745 set_bit(LastDev, &rdev->flags);
746 }
747 } else
748 clear_bit(LastDev, &rdev->flags);
749
750 if (atomic_dec_and_test(&mddev->pending_writes))
751 wake_up(&mddev->sb_wait);
752 rdev_dec_pending(rdev, mddev);
753 bio_put(bio);
754 }
755
756 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
757 sector_t sector, int size, struct page *page)
758 {
759 /* write first size bytes of page to sector of rdev
760 * Increment mddev->pending_writes before returning
761 * and decrement it on completion, waking up sb_wait
762 * if zero is reached.
763 * If an error occurred, call md_error
764 */
765 struct bio *bio;
766 int ff = 0;
767
768 if (test_bit(Faulty, &rdev->flags))
769 return;
770
771 bio = md_bio_alloc_sync(mddev);
772
773 atomic_inc(&rdev->nr_pending);
774
775 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
776 bio->bi_iter.bi_sector = sector;
777 bio_add_page(bio, page, size, 0);
778 bio->bi_private = rdev;
779 bio->bi_end_io = super_written;
780
781 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
782 test_bit(FailFast, &rdev->flags) &&
783 !test_bit(LastDev, &rdev->flags))
784 ff = MD_FAILFAST;
785 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
786
787 atomic_inc(&mddev->pending_writes);
788 submit_bio(bio);
789 }
790
791 int md_super_wait(struct mddev *mddev)
792 {
793 /* wait for all superblock writes that were scheduled to complete */
794 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
795 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
796 return -EAGAIN;
797 return 0;
798 }
799
800 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
801 struct page *page, int op, int op_flags, bool metadata_op)
802 {
803 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
804 int ret;
805
806 if (metadata_op && rdev->meta_bdev)
807 bio_set_dev(bio, rdev->meta_bdev);
808 else
809 bio_set_dev(bio, rdev->bdev);
810 bio_set_op_attrs(bio, op, op_flags);
811 if (metadata_op)
812 bio->bi_iter.bi_sector = sector + rdev->sb_start;
813 else if (rdev->mddev->reshape_position != MaxSector &&
814 (rdev->mddev->reshape_backwards ==
815 (sector >= rdev->mddev->reshape_position)))
816 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
817 else
818 bio->bi_iter.bi_sector = sector + rdev->data_offset;
819 bio_add_page(bio, page, size, 0);
820
821 submit_bio_wait(bio);
822
823 ret = !bio->bi_status;
824 bio_put(bio);
825 return ret;
826 }
827 EXPORT_SYMBOL_GPL(sync_page_io);
828
829 static int read_disk_sb(struct md_rdev *rdev, int size)
830 {
831 char b[BDEVNAME_SIZE];
832
833 if (rdev->sb_loaded)
834 return 0;
835
836 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
837 goto fail;
838 rdev->sb_loaded = 1;
839 return 0;
840
841 fail:
842 pr_err("md: disabled device %s, could not read superblock.\n",
843 bdevname(rdev->bdev,b));
844 return -EINVAL;
845 }
846
847 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
848 {
849 return sb1->set_uuid0 == sb2->set_uuid0 &&
850 sb1->set_uuid1 == sb2->set_uuid1 &&
851 sb1->set_uuid2 == sb2->set_uuid2 &&
852 sb1->set_uuid3 == sb2->set_uuid3;
853 }
854
855 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
856 {
857 int ret;
858 mdp_super_t *tmp1, *tmp2;
859
860 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
861 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
862
863 if (!tmp1 || !tmp2) {
864 ret = 0;
865 goto abort;
866 }
867
868 *tmp1 = *sb1;
869 *tmp2 = *sb2;
870
871 /*
872 * nr_disks is not constant
873 */
874 tmp1->nr_disks = 0;
875 tmp2->nr_disks = 0;
876
877 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
878 abort:
879 kfree(tmp1);
880 kfree(tmp2);
881 return ret;
882 }
883
884 static u32 md_csum_fold(u32 csum)
885 {
886 csum = (csum & 0xffff) + (csum >> 16);
887 return (csum & 0xffff) + (csum >> 16);
888 }
889
890 static unsigned int calc_sb_csum(mdp_super_t *sb)
891 {
892 u64 newcsum = 0;
893 u32 *sb32 = (u32*)sb;
894 int i;
895 unsigned int disk_csum, csum;
896
897 disk_csum = sb->sb_csum;
898 sb->sb_csum = 0;
899
900 for (i = 0; i < MD_SB_BYTES/4 ; i++)
901 newcsum += sb32[i];
902 csum = (newcsum & 0xffffffff) + (newcsum>>32);
903
904 #ifdef CONFIG_ALPHA
905 /* This used to use csum_partial, which was wrong for several
906 * reasons including that different results are returned on
907 * different architectures. It isn't critical that we get exactly
908 * the same return value as before (we always csum_fold before
909 * testing, and that removes any differences). However as we
910 * know that csum_partial always returned a 16bit value on
911 * alphas, do a fold to maximise conformity to previous behaviour.
912 */
913 sb->sb_csum = md_csum_fold(disk_csum);
914 #else
915 sb->sb_csum = disk_csum;
916 #endif
917 return csum;
918 }
919
920 /*
921 * Handle superblock details.
922 * We want to be able to handle multiple superblock formats
923 * so we have a common interface to them all, and an array of
924 * different handlers.
925 * We rely on user-space to write the initial superblock, and support
926 * reading and updating of superblocks.
927 * Interface methods are:
928 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
929 * loads and validates a superblock on dev.
930 * if refdev != NULL, compare superblocks on both devices
931 * Return:
932 * 0 - dev has a superblock that is compatible with refdev
933 * 1 - dev has a superblock that is compatible and newer than refdev
934 * so dev should be used as the refdev in future
935 * -EINVAL superblock incompatible or invalid
936 * -othererror e.g. -EIO
937 *
938 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
939 * Verify that dev is acceptable into mddev.
940 * The first time, mddev->raid_disks will be 0, and data from
941 * dev should be merged in. Subsequent calls check that dev
942 * is new enough. Return 0 or -EINVAL
943 *
944 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
945 * Update the superblock for rdev with data in mddev
946 * This does not write to disc.
947 *
948 */
949
950 struct super_type {
951 char *name;
952 struct module *owner;
953 int (*load_super)(struct md_rdev *rdev,
954 struct md_rdev *refdev,
955 int minor_version);
956 int (*validate_super)(struct mddev *mddev,
957 struct md_rdev *rdev);
958 void (*sync_super)(struct mddev *mddev,
959 struct md_rdev *rdev);
960 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
961 sector_t num_sectors);
962 int (*allow_new_offset)(struct md_rdev *rdev,
963 unsigned long long new_offset);
964 };
965
966 /*
967 * Check that the given mddev has no bitmap.
968 *
969 * This function is called from the run method of all personalities that do not
970 * support bitmaps. It prints an error message and returns non-zero if mddev
971 * has a bitmap. Otherwise, it returns 0.
972 *
973 */
974 int md_check_no_bitmap(struct mddev *mddev)
975 {
976 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
977 return 0;
978 pr_warn("%s: bitmaps are not supported for %s\n",
979 mdname(mddev), mddev->pers->name);
980 return 1;
981 }
982 EXPORT_SYMBOL(md_check_no_bitmap);
983
984 /*
985 * load_super for 0.90.0
986 */
987 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
988 {
989 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
990 mdp_super_t *sb;
991 int ret;
992
993 /*
994 * Calculate the position of the superblock (512byte sectors),
995 * it's at the end of the disk.
996 *
997 * It also happens to be a multiple of 4Kb.
998 */
999 rdev->sb_start = calc_dev_sboffset(rdev);
1000
1001 ret = read_disk_sb(rdev, MD_SB_BYTES);
1002 if (ret)
1003 return ret;
1004
1005 ret = -EINVAL;
1006
1007 bdevname(rdev->bdev, b);
1008 sb = page_address(rdev->sb_page);
1009
1010 if (sb->md_magic != MD_SB_MAGIC) {
1011 pr_warn("md: invalid raid superblock magic on %s\n", b);
1012 goto abort;
1013 }
1014
1015 if (sb->major_version != 0 ||
1016 sb->minor_version < 90 ||
1017 sb->minor_version > 91) {
1018 pr_warn("Bad version number %d.%d on %s\n",
1019 sb->major_version, sb->minor_version, b);
1020 goto abort;
1021 }
1022
1023 if (sb->raid_disks <= 0)
1024 goto abort;
1025
1026 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1027 pr_warn("md: invalid superblock checksum on %s\n", b);
1028 goto abort;
1029 }
1030
1031 rdev->preferred_minor = sb->md_minor;
1032 rdev->data_offset = 0;
1033 rdev->new_data_offset = 0;
1034 rdev->sb_size = MD_SB_BYTES;
1035 rdev->badblocks.shift = -1;
1036
1037 if (sb->level == LEVEL_MULTIPATH)
1038 rdev->desc_nr = -1;
1039 else
1040 rdev->desc_nr = sb->this_disk.number;
1041
1042 if (!refdev) {
1043 ret = 1;
1044 } else {
1045 __u64 ev1, ev2;
1046 mdp_super_t *refsb = page_address(refdev->sb_page);
1047 if (!md_uuid_equal(refsb, sb)) {
1048 pr_warn("md: %s has different UUID to %s\n",
1049 b, bdevname(refdev->bdev,b2));
1050 goto abort;
1051 }
1052 if (!md_sb_equal(refsb, sb)) {
1053 pr_warn("md: %s has same UUID but different superblock to %s\n",
1054 b, bdevname(refdev->bdev, b2));
1055 goto abort;
1056 }
1057 ev1 = md_event(sb);
1058 ev2 = md_event(refsb);
1059 if (ev1 > ev2)
1060 ret = 1;
1061 else
1062 ret = 0;
1063 }
1064 rdev->sectors = rdev->sb_start;
1065 /* Limit to 4TB as metadata cannot record more than that.
1066 * (not needed for Linear and RAID0 as metadata doesn't
1067 * record this size)
1068 */
1069 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1070 sb->level >= 1)
1071 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1072
1073 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1074 /* "this cannot possibly happen" ... */
1075 ret = -EINVAL;
1076
1077 abort:
1078 return ret;
1079 }
1080
1081 /*
1082 * validate_super for 0.90.0
1083 */
1084 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1085 {
1086 mdp_disk_t *desc;
1087 mdp_super_t *sb = page_address(rdev->sb_page);
1088 __u64 ev1 = md_event(sb);
1089
1090 rdev->raid_disk = -1;
1091 clear_bit(Faulty, &rdev->flags);
1092 clear_bit(In_sync, &rdev->flags);
1093 clear_bit(Bitmap_sync, &rdev->flags);
1094 clear_bit(WriteMostly, &rdev->flags);
1095
1096 if (mddev->raid_disks == 0) {
1097 mddev->major_version = 0;
1098 mddev->minor_version = sb->minor_version;
1099 mddev->patch_version = sb->patch_version;
1100 mddev->external = 0;
1101 mddev->chunk_sectors = sb->chunk_size >> 9;
1102 mddev->ctime = sb->ctime;
1103 mddev->utime = sb->utime;
1104 mddev->level = sb->level;
1105 mddev->clevel[0] = 0;
1106 mddev->layout = sb->layout;
1107 mddev->raid_disks = sb->raid_disks;
1108 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1109 mddev->events = ev1;
1110 mddev->bitmap_info.offset = 0;
1111 mddev->bitmap_info.space = 0;
1112 /* bitmap can use 60 K after the 4K superblocks */
1113 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1114 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1115 mddev->reshape_backwards = 0;
1116
1117 if (mddev->minor_version >= 91) {
1118 mddev->reshape_position = sb->reshape_position;
1119 mddev->delta_disks = sb->delta_disks;
1120 mddev->new_level = sb->new_level;
1121 mddev->new_layout = sb->new_layout;
1122 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1123 if (mddev->delta_disks < 0)
1124 mddev->reshape_backwards = 1;
1125 } else {
1126 mddev->reshape_position = MaxSector;
1127 mddev->delta_disks = 0;
1128 mddev->new_level = mddev->level;
1129 mddev->new_layout = mddev->layout;
1130 mddev->new_chunk_sectors = mddev->chunk_sectors;
1131 }
1132
1133 if (sb->state & (1<<MD_SB_CLEAN))
1134 mddev->recovery_cp = MaxSector;
1135 else {
1136 if (sb->events_hi == sb->cp_events_hi &&
1137 sb->events_lo == sb->cp_events_lo) {
1138 mddev->recovery_cp = sb->recovery_cp;
1139 } else
1140 mddev->recovery_cp = 0;
1141 }
1142
1143 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1144 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1145 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1146 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1147
1148 mddev->max_disks = MD_SB_DISKS;
1149
1150 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1151 mddev->bitmap_info.file == NULL) {
1152 mddev->bitmap_info.offset =
1153 mddev->bitmap_info.default_offset;
1154 mddev->bitmap_info.space =
1155 mddev->bitmap_info.default_space;
1156 }
1157
1158 } else if (mddev->pers == NULL) {
1159 /* Insist on good event counter while assembling, except
1160 * for spares (which don't need an event count) */
1161 ++ev1;
1162 if (sb->disks[rdev->desc_nr].state & (
1163 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1164 if (ev1 < mddev->events)
1165 return -EINVAL;
1166 } else if (mddev->bitmap) {
1167 /* if adding to array with a bitmap, then we can accept an
1168 * older device ... but not too old.
1169 */
1170 if (ev1 < mddev->bitmap->events_cleared)
1171 return 0;
1172 if (ev1 < mddev->events)
1173 set_bit(Bitmap_sync, &rdev->flags);
1174 } else {
1175 if (ev1 < mddev->events)
1176 /* just a hot-add of a new device, leave raid_disk at -1 */
1177 return 0;
1178 }
1179
1180 if (mddev->level != LEVEL_MULTIPATH) {
1181 desc = sb->disks + rdev->desc_nr;
1182
1183 if (desc->state & (1<<MD_DISK_FAULTY))
1184 set_bit(Faulty, &rdev->flags);
1185 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1186 desc->raid_disk < mddev->raid_disks */) {
1187 set_bit(In_sync, &rdev->flags);
1188 rdev->raid_disk = desc->raid_disk;
1189 rdev->saved_raid_disk = desc->raid_disk;
1190 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1191 /* active but not in sync implies recovery up to
1192 * reshape position. We don't know exactly where
1193 * that is, so set to zero for now */
1194 if (mddev->minor_version >= 91) {
1195 rdev->recovery_offset = 0;
1196 rdev->raid_disk = desc->raid_disk;
1197 }
1198 }
1199 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1200 set_bit(WriteMostly, &rdev->flags);
1201 if (desc->state & (1<<MD_DISK_FAILFAST))
1202 set_bit(FailFast, &rdev->flags);
1203 } else /* MULTIPATH are always insync */
1204 set_bit(In_sync, &rdev->flags);
1205 return 0;
1206 }
1207
1208 /*
1209 * sync_super for 0.90.0
1210 */
1211 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1212 {
1213 mdp_super_t *sb;
1214 struct md_rdev *rdev2;
1215 int next_spare = mddev->raid_disks;
1216
1217 /* make rdev->sb match mddev data..
1218 *
1219 * 1/ zero out disks
1220 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1221 * 3/ any empty disks < next_spare become removed
1222 *
1223 * disks[0] gets initialised to REMOVED because
1224 * we cannot be sure from other fields if it has
1225 * been initialised or not.
1226 */
1227 int i;
1228 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1229
1230 rdev->sb_size = MD_SB_BYTES;
1231
1232 sb = page_address(rdev->sb_page);
1233
1234 memset(sb, 0, sizeof(*sb));
1235
1236 sb->md_magic = MD_SB_MAGIC;
1237 sb->major_version = mddev->major_version;
1238 sb->patch_version = mddev->patch_version;
1239 sb->gvalid_words = 0; /* ignored */
1240 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1241 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1242 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1243 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1244
1245 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1246 sb->level = mddev->level;
1247 sb->size = mddev->dev_sectors / 2;
1248 sb->raid_disks = mddev->raid_disks;
1249 sb->md_minor = mddev->md_minor;
1250 sb->not_persistent = 0;
1251 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1252 sb->state = 0;
1253 sb->events_hi = (mddev->events>>32);
1254 sb->events_lo = (u32)mddev->events;
1255
1256 if (mddev->reshape_position == MaxSector)
1257 sb->minor_version = 90;
1258 else {
1259 sb->minor_version = 91;
1260 sb->reshape_position = mddev->reshape_position;
1261 sb->new_level = mddev->new_level;
1262 sb->delta_disks = mddev->delta_disks;
1263 sb->new_layout = mddev->new_layout;
1264 sb->new_chunk = mddev->new_chunk_sectors << 9;
1265 }
1266 mddev->minor_version = sb->minor_version;
1267 if (mddev->in_sync)
1268 {
1269 sb->recovery_cp = mddev->recovery_cp;
1270 sb->cp_events_hi = (mddev->events>>32);
1271 sb->cp_events_lo = (u32)mddev->events;
1272 if (mddev->recovery_cp == MaxSector)
1273 sb->state = (1<< MD_SB_CLEAN);
1274 } else
1275 sb->recovery_cp = 0;
1276
1277 sb->layout = mddev->layout;
1278 sb->chunk_size = mddev->chunk_sectors << 9;
1279
1280 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1281 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1282
1283 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1284 rdev_for_each(rdev2, mddev) {
1285 mdp_disk_t *d;
1286 int desc_nr;
1287 int is_active = test_bit(In_sync, &rdev2->flags);
1288
1289 if (rdev2->raid_disk >= 0 &&
1290 sb->minor_version >= 91)
1291 /* we have nowhere to store the recovery_offset,
1292 * but if it is not below the reshape_position,
1293 * we can piggy-back on that.
1294 */
1295 is_active = 1;
1296 if (rdev2->raid_disk < 0 ||
1297 test_bit(Faulty, &rdev2->flags))
1298 is_active = 0;
1299 if (is_active)
1300 desc_nr = rdev2->raid_disk;
1301 else
1302 desc_nr = next_spare++;
1303 rdev2->desc_nr = desc_nr;
1304 d = &sb->disks[rdev2->desc_nr];
1305 nr_disks++;
1306 d->number = rdev2->desc_nr;
1307 d->major = MAJOR(rdev2->bdev->bd_dev);
1308 d->minor = MINOR(rdev2->bdev->bd_dev);
1309 if (is_active)
1310 d->raid_disk = rdev2->raid_disk;
1311 else
1312 d->raid_disk = rdev2->desc_nr; /* compatibility */
1313 if (test_bit(Faulty, &rdev2->flags))
1314 d->state = (1<<MD_DISK_FAULTY);
1315 else if (is_active) {
1316 d->state = (1<<MD_DISK_ACTIVE);
1317 if (test_bit(In_sync, &rdev2->flags))
1318 d->state |= (1<<MD_DISK_SYNC);
1319 active++;
1320 working++;
1321 } else {
1322 d->state = 0;
1323 spare++;
1324 working++;
1325 }
1326 if (test_bit(WriteMostly, &rdev2->flags))
1327 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1328 if (test_bit(FailFast, &rdev2->flags))
1329 d->state |= (1<<MD_DISK_FAILFAST);
1330 }
1331 /* now set the "removed" and "faulty" bits on any missing devices */
1332 for (i=0 ; i < mddev->raid_disks ; i++) {
1333 mdp_disk_t *d = &sb->disks[i];
1334 if (d->state == 0 && d->number == 0) {
1335 d->number = i;
1336 d->raid_disk = i;
1337 d->state = (1<<MD_DISK_REMOVED);
1338 d->state |= (1<<MD_DISK_FAULTY);
1339 failed++;
1340 }
1341 }
1342 sb->nr_disks = nr_disks;
1343 sb->active_disks = active;
1344 sb->working_disks = working;
1345 sb->failed_disks = failed;
1346 sb->spare_disks = spare;
1347
1348 sb->this_disk = sb->disks[rdev->desc_nr];
1349 sb->sb_csum = calc_sb_csum(sb);
1350 }
1351
1352 /*
1353 * rdev_size_change for 0.90.0
1354 */
1355 static unsigned long long
1356 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1357 {
1358 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1359 return 0; /* component must fit device */
1360 if (rdev->mddev->bitmap_info.offset)
1361 return 0; /* can't move bitmap */
1362 rdev->sb_start = calc_dev_sboffset(rdev);
1363 if (!num_sectors || num_sectors > rdev->sb_start)
1364 num_sectors = rdev->sb_start;
1365 /* Limit to 4TB as metadata cannot record more than that.
1366 * 4TB == 2^32 KB, or 2*2^32 sectors.
1367 */
1368 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1369 rdev->mddev->level >= 1)
1370 num_sectors = (sector_t)(2ULL << 32) - 2;
1371 do {
1372 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1373 rdev->sb_page);
1374 } while (md_super_wait(rdev->mddev) < 0);
1375 return num_sectors;
1376 }
1377
1378 static int
1379 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1380 {
1381 /* non-zero offset changes not possible with v0.90 */
1382 return new_offset == 0;
1383 }
1384
1385 /*
1386 * version 1 superblock
1387 */
1388
1389 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1390 {
1391 __le32 disk_csum;
1392 u32 csum;
1393 unsigned long long newcsum;
1394 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1395 __le32 *isuper = (__le32*)sb;
1396
1397 disk_csum = sb->sb_csum;
1398 sb->sb_csum = 0;
1399 newcsum = 0;
1400 for (; size >= 4; size -= 4)
1401 newcsum += le32_to_cpu(*isuper++);
1402
1403 if (size == 2)
1404 newcsum += le16_to_cpu(*(__le16*) isuper);
1405
1406 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1407 sb->sb_csum = disk_csum;
1408 return cpu_to_le32(csum);
1409 }
1410
1411 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1412 {
1413 struct mdp_superblock_1 *sb;
1414 int ret;
1415 sector_t sb_start;
1416 sector_t sectors;
1417 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1418 int bmask;
1419
1420 /*
1421 * Calculate the position of the superblock in 512byte sectors.
1422 * It is always aligned to a 4K boundary and
1423 * depeding on minor_version, it can be:
1424 * 0: At least 8K, but less than 12K, from end of device
1425 * 1: At start of device
1426 * 2: 4K from start of device.
1427 */
1428 switch(minor_version) {
1429 case 0:
1430 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1431 sb_start -= 8*2;
1432 sb_start &= ~(sector_t)(4*2-1);
1433 break;
1434 case 1:
1435 sb_start = 0;
1436 break;
1437 case 2:
1438 sb_start = 8;
1439 break;
1440 default:
1441 return -EINVAL;
1442 }
1443 rdev->sb_start = sb_start;
1444
1445 /* superblock is rarely larger than 1K, but it can be larger,
1446 * and it is safe to read 4k, so we do that
1447 */
1448 ret = read_disk_sb(rdev, 4096);
1449 if (ret) return ret;
1450
1451 sb = page_address(rdev->sb_page);
1452
1453 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1454 sb->major_version != cpu_to_le32(1) ||
1455 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1456 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1457 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1458 return -EINVAL;
1459
1460 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1461 pr_warn("md: invalid superblock checksum on %s\n",
1462 bdevname(rdev->bdev,b));
1463 return -EINVAL;
1464 }
1465 if (le64_to_cpu(sb->data_size) < 10) {
1466 pr_warn("md: data_size too small on %s\n",
1467 bdevname(rdev->bdev,b));
1468 return -EINVAL;
1469 }
1470 if (sb->pad0 ||
1471 sb->pad3[0] ||
1472 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1473 /* Some padding is non-zero, might be a new feature */
1474 return -EINVAL;
1475
1476 rdev->preferred_minor = 0xffff;
1477 rdev->data_offset = le64_to_cpu(sb->data_offset);
1478 rdev->new_data_offset = rdev->data_offset;
1479 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1480 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1481 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1482 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1483
1484 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1485 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1486 if (rdev->sb_size & bmask)
1487 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1488
1489 if (minor_version
1490 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1491 return -EINVAL;
1492 if (minor_version
1493 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1494 return -EINVAL;
1495
1496 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1497 rdev->desc_nr = -1;
1498 else
1499 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1500
1501 if (!rdev->bb_page) {
1502 rdev->bb_page = alloc_page(GFP_KERNEL);
1503 if (!rdev->bb_page)
1504 return -ENOMEM;
1505 }
1506 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1507 rdev->badblocks.count == 0) {
1508 /* need to load the bad block list.
1509 * Currently we limit it to one page.
1510 */
1511 s32 offset;
1512 sector_t bb_sector;
1513 u64 *bbp;
1514 int i;
1515 int sectors = le16_to_cpu(sb->bblog_size);
1516 if (sectors > (PAGE_SIZE / 512))
1517 return -EINVAL;
1518 offset = le32_to_cpu(sb->bblog_offset);
1519 if (offset == 0)
1520 return -EINVAL;
1521 bb_sector = (long long)offset;
1522 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1523 rdev->bb_page, REQ_OP_READ, 0, true))
1524 return -EIO;
1525 bbp = (u64 *)page_address(rdev->bb_page);
1526 rdev->badblocks.shift = sb->bblog_shift;
1527 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1528 u64 bb = le64_to_cpu(*bbp);
1529 int count = bb & (0x3ff);
1530 u64 sector = bb >> 10;
1531 sector <<= sb->bblog_shift;
1532 count <<= sb->bblog_shift;
1533 if (bb + 1 == 0)
1534 break;
1535 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1536 return -EINVAL;
1537 }
1538 } else if (sb->bblog_offset != 0)
1539 rdev->badblocks.shift = 0;
1540
1541 if ((le32_to_cpu(sb->feature_map) &
1542 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1543 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1544 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1545 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1546 }
1547
1548 if (!refdev) {
1549 ret = 1;
1550 } else {
1551 __u64 ev1, ev2;
1552 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1553
1554 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1555 sb->level != refsb->level ||
1556 sb->layout != refsb->layout ||
1557 sb->chunksize != refsb->chunksize) {
1558 pr_warn("md: %s has strangely different superblock to %s\n",
1559 bdevname(rdev->bdev,b),
1560 bdevname(refdev->bdev,b2));
1561 return -EINVAL;
1562 }
1563 ev1 = le64_to_cpu(sb->events);
1564 ev2 = le64_to_cpu(refsb->events);
1565
1566 if (ev1 > ev2)
1567 ret = 1;
1568 else
1569 ret = 0;
1570 }
1571 if (minor_version) {
1572 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1573 sectors -= rdev->data_offset;
1574 } else
1575 sectors = rdev->sb_start;
1576 if (sectors < le64_to_cpu(sb->data_size))
1577 return -EINVAL;
1578 rdev->sectors = le64_to_cpu(sb->data_size);
1579 return ret;
1580 }
1581
1582 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1583 {
1584 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1585 __u64 ev1 = le64_to_cpu(sb->events);
1586
1587 rdev->raid_disk = -1;
1588 clear_bit(Faulty, &rdev->flags);
1589 clear_bit(In_sync, &rdev->flags);
1590 clear_bit(Bitmap_sync, &rdev->flags);
1591 clear_bit(WriteMostly, &rdev->flags);
1592
1593 if (mddev->raid_disks == 0) {
1594 mddev->major_version = 1;
1595 mddev->patch_version = 0;
1596 mddev->external = 0;
1597 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1598 mddev->ctime = le64_to_cpu(sb->ctime);
1599 mddev->utime = le64_to_cpu(sb->utime);
1600 mddev->level = le32_to_cpu(sb->level);
1601 mddev->clevel[0] = 0;
1602 mddev->layout = le32_to_cpu(sb->layout);
1603 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1604 mddev->dev_sectors = le64_to_cpu(sb->size);
1605 mddev->events = ev1;
1606 mddev->bitmap_info.offset = 0;
1607 mddev->bitmap_info.space = 0;
1608 /* Default location for bitmap is 1K after superblock
1609 * using 3K - total of 4K
1610 */
1611 mddev->bitmap_info.default_offset = 1024 >> 9;
1612 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1613 mddev->reshape_backwards = 0;
1614
1615 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1616 memcpy(mddev->uuid, sb->set_uuid, 16);
1617
1618 mddev->max_disks = (4096-256)/2;
1619
1620 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1621 mddev->bitmap_info.file == NULL) {
1622 mddev->bitmap_info.offset =
1623 (__s32)le32_to_cpu(sb->bitmap_offset);
1624 /* Metadata doesn't record how much space is available.
1625 * For 1.0, we assume we can use up to the superblock
1626 * if before, else to 4K beyond superblock.
1627 * For others, assume no change is possible.
1628 */
1629 if (mddev->minor_version > 0)
1630 mddev->bitmap_info.space = 0;
1631 else if (mddev->bitmap_info.offset > 0)
1632 mddev->bitmap_info.space =
1633 8 - mddev->bitmap_info.offset;
1634 else
1635 mddev->bitmap_info.space =
1636 -mddev->bitmap_info.offset;
1637 }
1638
1639 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1640 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1641 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1642 mddev->new_level = le32_to_cpu(sb->new_level);
1643 mddev->new_layout = le32_to_cpu(sb->new_layout);
1644 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1645 if (mddev->delta_disks < 0 ||
1646 (mddev->delta_disks == 0 &&
1647 (le32_to_cpu(sb->feature_map)
1648 & MD_FEATURE_RESHAPE_BACKWARDS)))
1649 mddev->reshape_backwards = 1;
1650 } else {
1651 mddev->reshape_position = MaxSector;
1652 mddev->delta_disks = 0;
1653 mddev->new_level = mddev->level;
1654 mddev->new_layout = mddev->layout;
1655 mddev->new_chunk_sectors = mddev->chunk_sectors;
1656 }
1657
1658 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1659 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1660
1661 if (le32_to_cpu(sb->feature_map) &
1662 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1663 if (le32_to_cpu(sb->feature_map) &
1664 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1665 return -EINVAL;
1666 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1667 (le32_to_cpu(sb->feature_map) &
1668 MD_FEATURE_MULTIPLE_PPLS))
1669 return -EINVAL;
1670 set_bit(MD_HAS_PPL, &mddev->flags);
1671 }
1672 } else if (mddev->pers == NULL) {
1673 /* Insist of good event counter while assembling, except for
1674 * spares (which don't need an event count) */
1675 ++ev1;
1676 if (rdev->desc_nr >= 0 &&
1677 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1679 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1680 if (ev1 < mddev->events)
1681 return -EINVAL;
1682 } else if (mddev->bitmap) {
1683 /* If adding to array with a bitmap, then we can accept an
1684 * older device, but not too old.
1685 */
1686 if (ev1 < mddev->bitmap->events_cleared)
1687 return 0;
1688 if (ev1 < mddev->events)
1689 set_bit(Bitmap_sync, &rdev->flags);
1690 } else {
1691 if (ev1 < mddev->events)
1692 /* just a hot-add of a new device, leave raid_disk at -1 */
1693 return 0;
1694 }
1695 if (mddev->level != LEVEL_MULTIPATH) {
1696 int role;
1697 if (rdev->desc_nr < 0 ||
1698 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699 role = MD_DISK_ROLE_SPARE;
1700 rdev->desc_nr = -1;
1701 } else
1702 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703 switch(role) {
1704 case MD_DISK_ROLE_SPARE: /* spare */
1705 break;
1706 case MD_DISK_ROLE_FAULTY: /* faulty */
1707 set_bit(Faulty, &rdev->flags);
1708 break;
1709 case MD_DISK_ROLE_JOURNAL: /* journal device */
1710 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1711 /* journal device without journal feature */
1712 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1713 return -EINVAL;
1714 }
1715 set_bit(Journal, &rdev->flags);
1716 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1717 rdev->raid_disk = 0;
1718 break;
1719 default:
1720 rdev->saved_raid_disk = role;
1721 if ((le32_to_cpu(sb->feature_map) &
1722 MD_FEATURE_RECOVERY_OFFSET)) {
1723 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1724 if (!(le32_to_cpu(sb->feature_map) &
1725 MD_FEATURE_RECOVERY_BITMAP))
1726 rdev->saved_raid_disk = -1;
1727 } else
1728 set_bit(In_sync, &rdev->flags);
1729 rdev->raid_disk = role;
1730 break;
1731 }
1732 if (sb->devflags & WriteMostly1)
1733 set_bit(WriteMostly, &rdev->flags);
1734 if (sb->devflags & FailFast1)
1735 set_bit(FailFast, &rdev->flags);
1736 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1737 set_bit(Replacement, &rdev->flags);
1738 } else /* MULTIPATH are always insync */
1739 set_bit(In_sync, &rdev->flags);
1740
1741 return 0;
1742 }
1743
1744 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1745 {
1746 struct mdp_superblock_1 *sb;
1747 struct md_rdev *rdev2;
1748 int max_dev, i;
1749 /* make rdev->sb match mddev and rdev data. */
1750
1751 sb = page_address(rdev->sb_page);
1752
1753 sb->feature_map = 0;
1754 sb->pad0 = 0;
1755 sb->recovery_offset = cpu_to_le64(0);
1756 memset(sb->pad3, 0, sizeof(sb->pad3));
1757
1758 sb->utime = cpu_to_le64((__u64)mddev->utime);
1759 sb->events = cpu_to_le64(mddev->events);
1760 if (mddev->in_sync)
1761 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1762 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1763 sb->resync_offset = cpu_to_le64(MaxSector);
1764 else
1765 sb->resync_offset = cpu_to_le64(0);
1766
1767 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1768
1769 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1770 sb->size = cpu_to_le64(mddev->dev_sectors);
1771 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1772 sb->level = cpu_to_le32(mddev->level);
1773 sb->layout = cpu_to_le32(mddev->layout);
1774 if (test_bit(FailFast, &rdev->flags))
1775 sb->devflags |= FailFast1;
1776 else
1777 sb->devflags &= ~FailFast1;
1778
1779 if (test_bit(WriteMostly, &rdev->flags))
1780 sb->devflags |= WriteMostly1;
1781 else
1782 sb->devflags &= ~WriteMostly1;
1783 sb->data_offset = cpu_to_le64(rdev->data_offset);
1784 sb->data_size = cpu_to_le64(rdev->sectors);
1785
1786 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1787 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1788 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1789 }
1790
1791 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1792 !test_bit(In_sync, &rdev->flags)) {
1793 sb->feature_map |=
1794 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1795 sb->recovery_offset =
1796 cpu_to_le64(rdev->recovery_offset);
1797 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1798 sb->feature_map |=
1799 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1800 }
1801 /* Note: recovery_offset and journal_tail share space */
1802 if (test_bit(Journal, &rdev->flags))
1803 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1804 if (test_bit(Replacement, &rdev->flags))
1805 sb->feature_map |=
1806 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1807
1808 if (mddev->reshape_position != MaxSector) {
1809 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1810 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1811 sb->new_layout = cpu_to_le32(mddev->new_layout);
1812 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1813 sb->new_level = cpu_to_le32(mddev->new_level);
1814 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1815 if (mddev->delta_disks == 0 &&
1816 mddev->reshape_backwards)
1817 sb->feature_map
1818 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1819 if (rdev->new_data_offset != rdev->data_offset) {
1820 sb->feature_map
1821 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1822 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1823 - rdev->data_offset));
1824 }
1825 }
1826
1827 if (mddev_is_clustered(mddev))
1828 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1829
1830 if (rdev->badblocks.count == 0)
1831 /* Nothing to do for bad blocks*/ ;
1832 else if (sb->bblog_offset == 0)
1833 /* Cannot record bad blocks on this device */
1834 md_error(mddev, rdev);
1835 else {
1836 struct badblocks *bb = &rdev->badblocks;
1837 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1838 u64 *p = bb->page;
1839 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1840 if (bb->changed) {
1841 unsigned seq;
1842
1843 retry:
1844 seq = read_seqbegin(&bb->lock);
1845
1846 memset(bbp, 0xff, PAGE_SIZE);
1847
1848 for (i = 0 ; i < bb->count ; i++) {
1849 u64 internal_bb = p[i];
1850 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1851 | BB_LEN(internal_bb));
1852 bbp[i] = cpu_to_le64(store_bb);
1853 }
1854 bb->changed = 0;
1855 if (read_seqretry(&bb->lock, seq))
1856 goto retry;
1857
1858 bb->sector = (rdev->sb_start +
1859 (int)le32_to_cpu(sb->bblog_offset));
1860 bb->size = le16_to_cpu(sb->bblog_size);
1861 }
1862 }
1863
1864 max_dev = 0;
1865 rdev_for_each(rdev2, mddev)
1866 if (rdev2->desc_nr+1 > max_dev)
1867 max_dev = rdev2->desc_nr+1;
1868
1869 if (max_dev > le32_to_cpu(sb->max_dev)) {
1870 int bmask;
1871 sb->max_dev = cpu_to_le32(max_dev);
1872 rdev->sb_size = max_dev * 2 + 256;
1873 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1874 if (rdev->sb_size & bmask)
1875 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1876 } else
1877 max_dev = le32_to_cpu(sb->max_dev);
1878
1879 for (i=0; i<max_dev;i++)
1880 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1881
1882 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1883 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1884
1885 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1886 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
1887 sb->feature_map |=
1888 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
1889 else
1890 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1891 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1892 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1893 }
1894
1895 rdev_for_each(rdev2, mddev) {
1896 i = rdev2->desc_nr;
1897 if (test_bit(Faulty, &rdev2->flags))
1898 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1899 else if (test_bit(In_sync, &rdev2->flags))
1900 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1901 else if (test_bit(Journal, &rdev2->flags))
1902 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1903 else if (rdev2->raid_disk >= 0)
1904 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1905 else
1906 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1907 }
1908
1909 sb->sb_csum = calc_sb_1_csum(sb);
1910 }
1911
1912 static unsigned long long
1913 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1914 {
1915 struct mdp_superblock_1 *sb;
1916 sector_t max_sectors;
1917 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1918 return 0; /* component must fit device */
1919 if (rdev->data_offset != rdev->new_data_offset)
1920 return 0; /* too confusing */
1921 if (rdev->sb_start < rdev->data_offset) {
1922 /* minor versions 1 and 2; superblock before data */
1923 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1924 max_sectors -= rdev->data_offset;
1925 if (!num_sectors || num_sectors > max_sectors)
1926 num_sectors = max_sectors;
1927 } else if (rdev->mddev->bitmap_info.offset) {
1928 /* minor version 0 with bitmap we can't move */
1929 return 0;
1930 } else {
1931 /* minor version 0; superblock after data */
1932 sector_t sb_start;
1933 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1934 sb_start &= ~(sector_t)(4*2 - 1);
1935 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1936 if (!num_sectors || num_sectors > max_sectors)
1937 num_sectors = max_sectors;
1938 rdev->sb_start = sb_start;
1939 }
1940 sb = page_address(rdev->sb_page);
1941 sb->data_size = cpu_to_le64(num_sectors);
1942 sb->super_offset = cpu_to_le64(rdev->sb_start);
1943 sb->sb_csum = calc_sb_1_csum(sb);
1944 do {
1945 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1946 rdev->sb_page);
1947 } while (md_super_wait(rdev->mddev) < 0);
1948 return num_sectors;
1949
1950 }
1951
1952 static int
1953 super_1_allow_new_offset(struct md_rdev *rdev,
1954 unsigned long long new_offset)
1955 {
1956 /* All necessary checks on new >= old have been done */
1957 struct bitmap *bitmap;
1958 if (new_offset >= rdev->data_offset)
1959 return 1;
1960
1961 /* with 1.0 metadata, there is no metadata to tread on
1962 * so we can always move back */
1963 if (rdev->mddev->minor_version == 0)
1964 return 1;
1965
1966 /* otherwise we must be sure not to step on
1967 * any metadata, so stay:
1968 * 36K beyond start of superblock
1969 * beyond end of badblocks
1970 * beyond write-intent bitmap
1971 */
1972 if (rdev->sb_start + (32+4)*2 > new_offset)
1973 return 0;
1974 bitmap = rdev->mddev->bitmap;
1975 if (bitmap && !rdev->mddev->bitmap_info.file &&
1976 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1977 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1978 return 0;
1979 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1980 return 0;
1981
1982 return 1;
1983 }
1984
1985 static struct super_type super_types[] = {
1986 [0] = {
1987 .name = "0.90.0",
1988 .owner = THIS_MODULE,
1989 .load_super = super_90_load,
1990 .validate_super = super_90_validate,
1991 .sync_super = super_90_sync,
1992 .rdev_size_change = super_90_rdev_size_change,
1993 .allow_new_offset = super_90_allow_new_offset,
1994 },
1995 [1] = {
1996 .name = "md-1",
1997 .owner = THIS_MODULE,
1998 .load_super = super_1_load,
1999 .validate_super = super_1_validate,
2000 .sync_super = super_1_sync,
2001 .rdev_size_change = super_1_rdev_size_change,
2002 .allow_new_offset = super_1_allow_new_offset,
2003 },
2004 };
2005
2006 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2007 {
2008 if (mddev->sync_super) {
2009 mddev->sync_super(mddev, rdev);
2010 return;
2011 }
2012
2013 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2014
2015 super_types[mddev->major_version].sync_super(mddev, rdev);
2016 }
2017
2018 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2019 {
2020 struct md_rdev *rdev, *rdev2;
2021
2022 rcu_read_lock();
2023 rdev_for_each_rcu(rdev, mddev1) {
2024 if (test_bit(Faulty, &rdev->flags) ||
2025 test_bit(Journal, &rdev->flags) ||
2026 rdev->raid_disk == -1)
2027 continue;
2028 rdev_for_each_rcu(rdev2, mddev2) {
2029 if (test_bit(Faulty, &rdev2->flags) ||
2030 test_bit(Journal, &rdev2->flags) ||
2031 rdev2->raid_disk == -1)
2032 continue;
2033 if (rdev->bdev->bd_contains ==
2034 rdev2->bdev->bd_contains) {
2035 rcu_read_unlock();
2036 return 1;
2037 }
2038 }
2039 }
2040 rcu_read_unlock();
2041 return 0;
2042 }
2043
2044 static LIST_HEAD(pending_raid_disks);
2045
2046 /*
2047 * Try to register data integrity profile for an mddev
2048 *
2049 * This is called when an array is started and after a disk has been kicked
2050 * from the array. It only succeeds if all working and active component devices
2051 * are integrity capable with matching profiles.
2052 */
2053 int md_integrity_register(struct mddev *mddev)
2054 {
2055 struct md_rdev *rdev, *reference = NULL;
2056
2057 if (list_empty(&mddev->disks))
2058 return 0; /* nothing to do */
2059 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2060 return 0; /* shouldn't register, or already is */
2061 rdev_for_each(rdev, mddev) {
2062 /* skip spares and non-functional disks */
2063 if (test_bit(Faulty, &rdev->flags))
2064 continue;
2065 if (rdev->raid_disk < 0)
2066 continue;
2067 if (!reference) {
2068 /* Use the first rdev as the reference */
2069 reference = rdev;
2070 continue;
2071 }
2072 /* does this rdev's profile match the reference profile? */
2073 if (blk_integrity_compare(reference->bdev->bd_disk,
2074 rdev->bdev->bd_disk) < 0)
2075 return -EINVAL;
2076 }
2077 if (!reference || !bdev_get_integrity(reference->bdev))
2078 return 0;
2079 /*
2080 * All component devices are integrity capable and have matching
2081 * profiles, register the common profile for the md device.
2082 */
2083 blk_integrity_register(mddev->gendisk,
2084 bdev_get_integrity(reference->bdev));
2085
2086 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2087 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2088 pr_err("md: failed to create integrity pool for %s\n",
2089 mdname(mddev));
2090 return -EINVAL;
2091 }
2092 return 0;
2093 }
2094 EXPORT_SYMBOL(md_integrity_register);
2095
2096 /*
2097 * Attempt to add an rdev, but only if it is consistent with the current
2098 * integrity profile
2099 */
2100 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2101 {
2102 struct blk_integrity *bi_rdev;
2103 struct blk_integrity *bi_mddev;
2104 char name[BDEVNAME_SIZE];
2105
2106 if (!mddev->gendisk)
2107 return 0;
2108
2109 bi_rdev = bdev_get_integrity(rdev->bdev);
2110 bi_mddev = blk_get_integrity(mddev->gendisk);
2111
2112 if (!bi_mddev) /* nothing to do */
2113 return 0;
2114
2115 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2116 pr_err("%s: incompatible integrity profile for %s\n",
2117 mdname(mddev), bdevname(rdev->bdev, name));
2118 return -ENXIO;
2119 }
2120
2121 return 0;
2122 }
2123 EXPORT_SYMBOL(md_integrity_add_rdev);
2124
2125 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2126 {
2127 char b[BDEVNAME_SIZE];
2128 struct kobject *ko;
2129 int err;
2130
2131 /* prevent duplicates */
2132 if (find_rdev(mddev, rdev->bdev->bd_dev))
2133 return -EEXIST;
2134
2135 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2136 mddev->pers)
2137 return -EROFS;
2138
2139 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2140 if (!test_bit(Journal, &rdev->flags) &&
2141 rdev->sectors &&
2142 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2143 if (mddev->pers) {
2144 /* Cannot change size, so fail
2145 * If mddev->level <= 0, then we don't care
2146 * about aligning sizes (e.g. linear)
2147 */
2148 if (mddev->level > 0)
2149 return -ENOSPC;
2150 } else
2151 mddev->dev_sectors = rdev->sectors;
2152 }
2153
2154 /* Verify rdev->desc_nr is unique.
2155 * If it is -1, assign a free number, else
2156 * check number is not in use
2157 */
2158 rcu_read_lock();
2159 if (rdev->desc_nr < 0) {
2160 int choice = 0;
2161 if (mddev->pers)
2162 choice = mddev->raid_disks;
2163 while (md_find_rdev_nr_rcu(mddev, choice))
2164 choice++;
2165 rdev->desc_nr = choice;
2166 } else {
2167 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2168 rcu_read_unlock();
2169 return -EBUSY;
2170 }
2171 }
2172 rcu_read_unlock();
2173 if (!test_bit(Journal, &rdev->flags) &&
2174 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2175 pr_warn("md: %s: array is limited to %d devices\n",
2176 mdname(mddev), mddev->max_disks);
2177 return -EBUSY;
2178 }
2179 bdevname(rdev->bdev,b);
2180 strreplace(b, '/', '!');
2181
2182 rdev->mddev = mddev;
2183 pr_debug("md: bind<%s>\n", b);
2184
2185 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2186 goto fail;
2187
2188 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2189 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2190 /* failure here is OK */;
2191 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2192
2193 list_add_rcu(&rdev->same_set, &mddev->disks);
2194 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2195
2196 /* May as well allow recovery to be retried once */
2197 mddev->recovery_disabled++;
2198
2199 return 0;
2200
2201 fail:
2202 pr_warn("md: failed to register dev-%s for %s\n",
2203 b, mdname(mddev));
2204 return err;
2205 }
2206
2207 static void md_delayed_delete(struct work_struct *ws)
2208 {
2209 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2210 kobject_del(&rdev->kobj);
2211 kobject_put(&rdev->kobj);
2212 }
2213
2214 static void unbind_rdev_from_array(struct md_rdev *rdev)
2215 {
2216 char b[BDEVNAME_SIZE];
2217
2218 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2219 list_del_rcu(&rdev->same_set);
2220 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2221 rdev->mddev = NULL;
2222 sysfs_remove_link(&rdev->kobj, "block");
2223 sysfs_put(rdev->sysfs_state);
2224 rdev->sysfs_state = NULL;
2225 rdev->badblocks.count = 0;
2226 /* We need to delay this, otherwise we can deadlock when
2227 * writing to 'remove' to "dev/state". We also need
2228 * to delay it due to rcu usage.
2229 */
2230 synchronize_rcu();
2231 INIT_WORK(&rdev->del_work, md_delayed_delete);
2232 kobject_get(&rdev->kobj);
2233 queue_work(md_misc_wq, &rdev->del_work);
2234 }
2235
2236 /*
2237 * prevent the device from being mounted, repartitioned or
2238 * otherwise reused by a RAID array (or any other kernel
2239 * subsystem), by bd_claiming the device.
2240 */
2241 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2242 {
2243 int err = 0;
2244 struct block_device *bdev;
2245 char b[BDEVNAME_SIZE];
2246
2247 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2248 shared ? (struct md_rdev *)lock_rdev : rdev);
2249 if (IS_ERR(bdev)) {
2250 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2251 return PTR_ERR(bdev);
2252 }
2253 rdev->bdev = bdev;
2254 return err;
2255 }
2256
2257 static void unlock_rdev(struct md_rdev *rdev)
2258 {
2259 struct block_device *bdev = rdev->bdev;
2260 rdev->bdev = NULL;
2261 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2262 }
2263
2264 void md_autodetect_dev(dev_t dev);
2265
2266 static void export_rdev(struct md_rdev *rdev)
2267 {
2268 char b[BDEVNAME_SIZE];
2269
2270 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2271 md_rdev_clear(rdev);
2272 #ifndef MODULE
2273 if (test_bit(AutoDetected, &rdev->flags))
2274 md_autodetect_dev(rdev->bdev->bd_dev);
2275 #endif
2276 unlock_rdev(rdev);
2277 kobject_put(&rdev->kobj);
2278 }
2279
2280 void md_kick_rdev_from_array(struct md_rdev *rdev)
2281 {
2282 unbind_rdev_from_array(rdev);
2283 export_rdev(rdev);
2284 }
2285 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2286
2287 static void export_array(struct mddev *mddev)
2288 {
2289 struct md_rdev *rdev;
2290
2291 while (!list_empty(&mddev->disks)) {
2292 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2293 same_set);
2294 md_kick_rdev_from_array(rdev);
2295 }
2296 mddev->raid_disks = 0;
2297 mddev->major_version = 0;
2298 }
2299
2300 static bool set_in_sync(struct mddev *mddev)
2301 {
2302 WARN_ON_ONCE(NR_CPUS != 1 && !spin_is_locked(&mddev->lock));
2303 if (!mddev->in_sync) {
2304 mddev->sync_checkers++;
2305 spin_unlock(&mddev->lock);
2306 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2307 spin_lock(&mddev->lock);
2308 if (!mddev->in_sync &&
2309 percpu_ref_is_zero(&mddev->writes_pending)) {
2310 mddev->in_sync = 1;
2311 /*
2312 * Ensure ->in_sync is visible before we clear
2313 * ->sync_checkers.
2314 */
2315 smp_mb();
2316 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2317 sysfs_notify_dirent_safe(mddev->sysfs_state);
2318 }
2319 if (--mddev->sync_checkers == 0)
2320 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2321 }
2322 if (mddev->safemode == 1)
2323 mddev->safemode = 0;
2324 return mddev->in_sync;
2325 }
2326
2327 static void sync_sbs(struct mddev *mddev, int nospares)
2328 {
2329 /* Update each superblock (in-memory image), but
2330 * if we are allowed to, skip spares which already
2331 * have the right event counter, or have one earlier
2332 * (which would mean they aren't being marked as dirty
2333 * with the rest of the array)
2334 */
2335 struct md_rdev *rdev;
2336 rdev_for_each(rdev, mddev) {
2337 if (rdev->sb_events == mddev->events ||
2338 (nospares &&
2339 rdev->raid_disk < 0 &&
2340 rdev->sb_events+1 == mddev->events)) {
2341 /* Don't update this superblock */
2342 rdev->sb_loaded = 2;
2343 } else {
2344 sync_super(mddev, rdev);
2345 rdev->sb_loaded = 1;
2346 }
2347 }
2348 }
2349
2350 static bool does_sb_need_changing(struct mddev *mddev)
2351 {
2352 struct md_rdev *rdev;
2353 struct mdp_superblock_1 *sb;
2354 int role;
2355
2356 /* Find a good rdev */
2357 rdev_for_each(rdev, mddev)
2358 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2359 break;
2360
2361 /* No good device found. */
2362 if (!rdev)
2363 return false;
2364
2365 sb = page_address(rdev->sb_page);
2366 /* Check if a device has become faulty or a spare become active */
2367 rdev_for_each(rdev, mddev) {
2368 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2369 /* Device activated? */
2370 if (role == 0xffff && rdev->raid_disk >=0 &&
2371 !test_bit(Faulty, &rdev->flags))
2372 return true;
2373 /* Device turned faulty? */
2374 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2375 return true;
2376 }
2377
2378 /* Check if any mddev parameters have changed */
2379 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2380 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2381 (mddev->layout != le32_to_cpu(sb->layout)) ||
2382 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2383 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2384 return true;
2385
2386 return false;
2387 }
2388
2389 void md_update_sb(struct mddev *mddev, int force_change)
2390 {
2391 struct md_rdev *rdev;
2392 int sync_req;
2393 int nospares = 0;
2394 int any_badblocks_changed = 0;
2395 int ret = -1;
2396
2397 if (mddev->ro) {
2398 if (force_change)
2399 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2400 return;
2401 }
2402
2403 repeat:
2404 if (mddev_is_clustered(mddev)) {
2405 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2406 force_change = 1;
2407 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2408 nospares = 1;
2409 ret = md_cluster_ops->metadata_update_start(mddev);
2410 /* Has someone else has updated the sb */
2411 if (!does_sb_need_changing(mddev)) {
2412 if (ret == 0)
2413 md_cluster_ops->metadata_update_cancel(mddev);
2414 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2415 BIT(MD_SB_CHANGE_DEVS) |
2416 BIT(MD_SB_CHANGE_CLEAN));
2417 return;
2418 }
2419 }
2420
2421 /* First make sure individual recovery_offsets are correct */
2422 rdev_for_each(rdev, mddev) {
2423 if (rdev->raid_disk >= 0 &&
2424 mddev->delta_disks >= 0 &&
2425 !test_bit(Journal, &rdev->flags) &&
2426 !test_bit(In_sync, &rdev->flags) &&
2427 mddev->curr_resync_completed > rdev->recovery_offset)
2428 rdev->recovery_offset = mddev->curr_resync_completed;
2429
2430 }
2431 if (!mddev->persistent) {
2432 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2433 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2434 if (!mddev->external) {
2435 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2436 rdev_for_each(rdev, mddev) {
2437 if (rdev->badblocks.changed) {
2438 rdev->badblocks.changed = 0;
2439 ack_all_badblocks(&rdev->badblocks);
2440 md_error(mddev, rdev);
2441 }
2442 clear_bit(Blocked, &rdev->flags);
2443 clear_bit(BlockedBadBlocks, &rdev->flags);
2444 wake_up(&rdev->blocked_wait);
2445 }
2446 }
2447 wake_up(&mddev->sb_wait);
2448 return;
2449 }
2450
2451 spin_lock(&mddev->lock);
2452
2453 mddev->utime = ktime_get_real_seconds();
2454
2455 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2456 force_change = 1;
2457 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2458 /* just a clean<-> dirty transition, possibly leave spares alone,
2459 * though if events isn't the right even/odd, we will have to do
2460 * spares after all
2461 */
2462 nospares = 1;
2463 if (force_change)
2464 nospares = 0;
2465 if (mddev->degraded)
2466 /* If the array is degraded, then skipping spares is both
2467 * dangerous and fairly pointless.
2468 * Dangerous because a device that was removed from the array
2469 * might have a event_count that still looks up-to-date,
2470 * so it can be re-added without a resync.
2471 * Pointless because if there are any spares to skip,
2472 * then a recovery will happen and soon that array won't
2473 * be degraded any more and the spare can go back to sleep then.
2474 */
2475 nospares = 0;
2476
2477 sync_req = mddev->in_sync;
2478
2479 /* If this is just a dirty<->clean transition, and the array is clean
2480 * and 'events' is odd, we can roll back to the previous clean state */
2481 if (nospares
2482 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2483 && mddev->can_decrease_events
2484 && mddev->events != 1) {
2485 mddev->events--;
2486 mddev->can_decrease_events = 0;
2487 } else {
2488 /* otherwise we have to go forward and ... */
2489 mddev->events ++;
2490 mddev->can_decrease_events = nospares;
2491 }
2492
2493 /*
2494 * This 64-bit counter should never wrap.
2495 * Either we are in around ~1 trillion A.C., assuming
2496 * 1 reboot per second, or we have a bug...
2497 */
2498 WARN_ON(mddev->events == 0);
2499
2500 rdev_for_each(rdev, mddev) {
2501 if (rdev->badblocks.changed)
2502 any_badblocks_changed++;
2503 if (test_bit(Faulty, &rdev->flags))
2504 set_bit(FaultRecorded, &rdev->flags);
2505 }
2506
2507 sync_sbs(mddev, nospares);
2508 spin_unlock(&mddev->lock);
2509
2510 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2511 mdname(mddev), mddev->in_sync);
2512
2513 if (mddev->queue)
2514 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2515 rewrite:
2516 bitmap_update_sb(mddev->bitmap);
2517 rdev_for_each(rdev, mddev) {
2518 char b[BDEVNAME_SIZE];
2519
2520 if (rdev->sb_loaded != 1)
2521 continue; /* no noise on spare devices */
2522
2523 if (!test_bit(Faulty, &rdev->flags)) {
2524 md_super_write(mddev,rdev,
2525 rdev->sb_start, rdev->sb_size,
2526 rdev->sb_page);
2527 pr_debug("md: (write) %s's sb offset: %llu\n",
2528 bdevname(rdev->bdev, b),
2529 (unsigned long long)rdev->sb_start);
2530 rdev->sb_events = mddev->events;
2531 if (rdev->badblocks.size) {
2532 md_super_write(mddev, rdev,
2533 rdev->badblocks.sector,
2534 rdev->badblocks.size << 9,
2535 rdev->bb_page);
2536 rdev->badblocks.size = 0;
2537 }
2538
2539 } else
2540 pr_debug("md: %s (skipping faulty)\n",
2541 bdevname(rdev->bdev, b));
2542
2543 if (mddev->level == LEVEL_MULTIPATH)
2544 /* only need to write one superblock... */
2545 break;
2546 }
2547 if (md_super_wait(mddev) < 0)
2548 goto rewrite;
2549 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2550
2551 if (mddev_is_clustered(mddev) && ret == 0)
2552 md_cluster_ops->metadata_update_finish(mddev);
2553
2554 if (mddev->in_sync != sync_req ||
2555 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2556 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2557 /* have to write it out again */
2558 goto repeat;
2559 wake_up(&mddev->sb_wait);
2560 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2561 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2562
2563 rdev_for_each(rdev, mddev) {
2564 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2565 clear_bit(Blocked, &rdev->flags);
2566
2567 if (any_badblocks_changed)
2568 ack_all_badblocks(&rdev->badblocks);
2569 clear_bit(BlockedBadBlocks, &rdev->flags);
2570 wake_up(&rdev->blocked_wait);
2571 }
2572 }
2573 EXPORT_SYMBOL(md_update_sb);
2574
2575 static int add_bound_rdev(struct md_rdev *rdev)
2576 {
2577 struct mddev *mddev = rdev->mddev;
2578 int err = 0;
2579 bool add_journal = test_bit(Journal, &rdev->flags);
2580
2581 if (!mddev->pers->hot_remove_disk || add_journal) {
2582 /* If there is hot_add_disk but no hot_remove_disk
2583 * then added disks for geometry changes,
2584 * and should be added immediately.
2585 */
2586 super_types[mddev->major_version].
2587 validate_super(mddev, rdev);
2588 if (add_journal)
2589 mddev_suspend(mddev);
2590 err = mddev->pers->hot_add_disk(mddev, rdev);
2591 if (add_journal)
2592 mddev_resume(mddev);
2593 if (err) {
2594 md_kick_rdev_from_array(rdev);
2595 return err;
2596 }
2597 }
2598 sysfs_notify_dirent_safe(rdev->sysfs_state);
2599
2600 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2601 if (mddev->degraded)
2602 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2603 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2604 md_new_event(mddev);
2605 md_wakeup_thread(mddev->thread);
2606 return 0;
2607 }
2608
2609 /* words written to sysfs files may, or may not, be \n terminated.
2610 * We want to accept with case. For this we use cmd_match.
2611 */
2612 static int cmd_match(const char *cmd, const char *str)
2613 {
2614 /* See if cmd, written into a sysfs file, matches
2615 * str. They must either be the same, or cmd can
2616 * have a trailing newline
2617 */
2618 while (*cmd && *str && *cmd == *str) {
2619 cmd++;
2620 str++;
2621 }
2622 if (*cmd == '\n')
2623 cmd++;
2624 if (*str || *cmd)
2625 return 0;
2626 return 1;
2627 }
2628
2629 struct rdev_sysfs_entry {
2630 struct attribute attr;
2631 ssize_t (*show)(struct md_rdev *, char *);
2632 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2633 };
2634
2635 static ssize_t
2636 state_show(struct md_rdev *rdev, char *page)
2637 {
2638 char *sep = ",";
2639 size_t len = 0;
2640 unsigned long flags = ACCESS_ONCE(rdev->flags);
2641
2642 if (test_bit(Faulty, &flags) ||
2643 (!test_bit(ExternalBbl, &flags) &&
2644 rdev->badblocks.unacked_exist))
2645 len += sprintf(page+len, "faulty%s", sep);
2646 if (test_bit(In_sync, &flags))
2647 len += sprintf(page+len, "in_sync%s", sep);
2648 if (test_bit(Journal, &flags))
2649 len += sprintf(page+len, "journal%s", sep);
2650 if (test_bit(WriteMostly, &flags))
2651 len += sprintf(page+len, "write_mostly%s", sep);
2652 if (test_bit(Blocked, &flags) ||
2653 (rdev->badblocks.unacked_exist
2654 && !test_bit(Faulty, &flags)))
2655 len += sprintf(page+len, "blocked%s", sep);
2656 if (!test_bit(Faulty, &flags) &&
2657 !test_bit(Journal, &flags) &&
2658 !test_bit(In_sync, &flags))
2659 len += sprintf(page+len, "spare%s", sep);
2660 if (test_bit(WriteErrorSeen, &flags))
2661 len += sprintf(page+len, "write_error%s", sep);
2662 if (test_bit(WantReplacement, &flags))
2663 len += sprintf(page+len, "want_replacement%s", sep);
2664 if (test_bit(Replacement, &flags))
2665 len += sprintf(page+len, "replacement%s", sep);
2666 if (test_bit(ExternalBbl, &flags))
2667 len += sprintf(page+len, "external_bbl%s", sep);
2668 if (test_bit(FailFast, &flags))
2669 len += sprintf(page+len, "failfast%s", sep);
2670
2671 if (len)
2672 len -= strlen(sep);
2673
2674 return len+sprintf(page+len, "\n");
2675 }
2676
2677 static ssize_t
2678 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2679 {
2680 /* can write
2681 * faulty - simulates an error
2682 * remove - disconnects the device
2683 * writemostly - sets write_mostly
2684 * -writemostly - clears write_mostly
2685 * blocked - sets the Blocked flags
2686 * -blocked - clears the Blocked and possibly simulates an error
2687 * insync - sets Insync providing device isn't active
2688 * -insync - clear Insync for a device with a slot assigned,
2689 * so that it gets rebuilt based on bitmap
2690 * write_error - sets WriteErrorSeen
2691 * -write_error - clears WriteErrorSeen
2692 * {,-}failfast - set/clear FailFast
2693 */
2694 int err = -EINVAL;
2695 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2696 md_error(rdev->mddev, rdev);
2697 if (test_bit(Faulty, &rdev->flags))
2698 err = 0;
2699 else
2700 err = -EBUSY;
2701 } else if (cmd_match(buf, "remove")) {
2702 if (rdev->mddev->pers) {
2703 clear_bit(Blocked, &rdev->flags);
2704 remove_and_add_spares(rdev->mddev, rdev);
2705 }
2706 if (rdev->raid_disk >= 0)
2707 err = -EBUSY;
2708 else {
2709 struct mddev *mddev = rdev->mddev;
2710 err = 0;
2711 if (mddev_is_clustered(mddev))
2712 err = md_cluster_ops->remove_disk(mddev, rdev);
2713
2714 if (err == 0) {
2715 md_kick_rdev_from_array(rdev);
2716 if (mddev->pers) {
2717 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2718 md_wakeup_thread(mddev->thread);
2719 }
2720 md_new_event(mddev);
2721 }
2722 }
2723 } else if (cmd_match(buf, "writemostly")) {
2724 set_bit(WriteMostly, &rdev->flags);
2725 err = 0;
2726 } else if (cmd_match(buf, "-writemostly")) {
2727 clear_bit(WriteMostly, &rdev->flags);
2728 err = 0;
2729 } else if (cmd_match(buf, "blocked")) {
2730 set_bit(Blocked, &rdev->flags);
2731 err = 0;
2732 } else if (cmd_match(buf, "-blocked")) {
2733 if (!test_bit(Faulty, &rdev->flags) &&
2734 !test_bit(ExternalBbl, &rdev->flags) &&
2735 rdev->badblocks.unacked_exist) {
2736 /* metadata handler doesn't understand badblocks,
2737 * so we need to fail the device
2738 */
2739 md_error(rdev->mddev, rdev);
2740 }
2741 clear_bit(Blocked, &rdev->flags);
2742 clear_bit(BlockedBadBlocks, &rdev->flags);
2743 wake_up(&rdev->blocked_wait);
2744 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2745 md_wakeup_thread(rdev->mddev->thread);
2746
2747 err = 0;
2748 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2749 set_bit(In_sync, &rdev->flags);
2750 err = 0;
2751 } else if (cmd_match(buf, "failfast")) {
2752 set_bit(FailFast, &rdev->flags);
2753 err = 0;
2754 } else if (cmd_match(buf, "-failfast")) {
2755 clear_bit(FailFast, &rdev->flags);
2756 err = 0;
2757 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2758 !test_bit(Journal, &rdev->flags)) {
2759 if (rdev->mddev->pers == NULL) {
2760 clear_bit(In_sync, &rdev->flags);
2761 rdev->saved_raid_disk = rdev->raid_disk;
2762 rdev->raid_disk = -1;
2763 err = 0;
2764 }
2765 } else if (cmd_match(buf, "write_error")) {
2766 set_bit(WriteErrorSeen, &rdev->flags);
2767 err = 0;
2768 } else if (cmd_match(buf, "-write_error")) {
2769 clear_bit(WriteErrorSeen, &rdev->flags);
2770 err = 0;
2771 } else if (cmd_match(buf, "want_replacement")) {
2772 /* Any non-spare device that is not a replacement can
2773 * become want_replacement at any time, but we then need to
2774 * check if recovery is needed.
2775 */
2776 if (rdev->raid_disk >= 0 &&
2777 !test_bit(Journal, &rdev->flags) &&
2778 !test_bit(Replacement, &rdev->flags))
2779 set_bit(WantReplacement, &rdev->flags);
2780 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2781 md_wakeup_thread(rdev->mddev->thread);
2782 err = 0;
2783 } else if (cmd_match(buf, "-want_replacement")) {
2784 /* Clearing 'want_replacement' is always allowed.
2785 * Once replacements starts it is too late though.
2786 */
2787 err = 0;
2788 clear_bit(WantReplacement, &rdev->flags);
2789 } else if (cmd_match(buf, "replacement")) {
2790 /* Can only set a device as a replacement when array has not
2791 * yet been started. Once running, replacement is automatic
2792 * from spares, or by assigning 'slot'.
2793 */
2794 if (rdev->mddev->pers)
2795 err = -EBUSY;
2796 else {
2797 set_bit(Replacement, &rdev->flags);
2798 err = 0;
2799 }
2800 } else if (cmd_match(buf, "-replacement")) {
2801 /* Similarly, can only clear Replacement before start */
2802 if (rdev->mddev->pers)
2803 err = -EBUSY;
2804 else {
2805 clear_bit(Replacement, &rdev->flags);
2806 err = 0;
2807 }
2808 } else if (cmd_match(buf, "re-add")) {
2809 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2810 /* clear_bit is performed _after_ all the devices
2811 * have their local Faulty bit cleared. If any writes
2812 * happen in the meantime in the local node, they
2813 * will land in the local bitmap, which will be synced
2814 * by this node eventually
2815 */
2816 if (!mddev_is_clustered(rdev->mddev) ||
2817 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2818 clear_bit(Faulty, &rdev->flags);
2819 err = add_bound_rdev(rdev);
2820 }
2821 } else
2822 err = -EBUSY;
2823 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2824 set_bit(ExternalBbl, &rdev->flags);
2825 rdev->badblocks.shift = 0;
2826 err = 0;
2827 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2828 clear_bit(ExternalBbl, &rdev->flags);
2829 err = 0;
2830 }
2831 if (!err)
2832 sysfs_notify_dirent_safe(rdev->sysfs_state);
2833 return err ? err : len;
2834 }
2835 static struct rdev_sysfs_entry rdev_state =
2836 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2837
2838 static ssize_t
2839 errors_show(struct md_rdev *rdev, char *page)
2840 {
2841 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2842 }
2843
2844 static ssize_t
2845 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2846 {
2847 unsigned int n;
2848 int rv;
2849
2850 rv = kstrtouint(buf, 10, &n);
2851 if (rv < 0)
2852 return rv;
2853 atomic_set(&rdev->corrected_errors, n);
2854 return len;
2855 }
2856 static struct rdev_sysfs_entry rdev_errors =
2857 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2858
2859 static ssize_t
2860 slot_show(struct md_rdev *rdev, char *page)
2861 {
2862 if (test_bit(Journal, &rdev->flags))
2863 return sprintf(page, "journal\n");
2864 else if (rdev->raid_disk < 0)
2865 return sprintf(page, "none\n");
2866 else
2867 return sprintf(page, "%d\n", rdev->raid_disk);
2868 }
2869
2870 static ssize_t
2871 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2872 {
2873 int slot;
2874 int err;
2875
2876 if (test_bit(Journal, &rdev->flags))
2877 return -EBUSY;
2878 if (strncmp(buf, "none", 4)==0)
2879 slot = -1;
2880 else {
2881 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2882 if (err < 0)
2883 return err;
2884 }
2885 if (rdev->mddev->pers && slot == -1) {
2886 /* Setting 'slot' on an active array requires also
2887 * updating the 'rd%d' link, and communicating
2888 * with the personality with ->hot_*_disk.
2889 * For now we only support removing
2890 * failed/spare devices. This normally happens automatically,
2891 * but not when the metadata is externally managed.
2892 */
2893 if (rdev->raid_disk == -1)
2894 return -EEXIST;
2895 /* personality does all needed checks */
2896 if (rdev->mddev->pers->hot_remove_disk == NULL)
2897 return -EINVAL;
2898 clear_bit(Blocked, &rdev->flags);
2899 remove_and_add_spares(rdev->mddev, rdev);
2900 if (rdev->raid_disk >= 0)
2901 return -EBUSY;
2902 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2903 md_wakeup_thread(rdev->mddev->thread);
2904 } else if (rdev->mddev->pers) {
2905 /* Activating a spare .. or possibly reactivating
2906 * if we ever get bitmaps working here.
2907 */
2908 int err;
2909
2910 if (rdev->raid_disk != -1)
2911 return -EBUSY;
2912
2913 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2914 return -EBUSY;
2915
2916 if (rdev->mddev->pers->hot_add_disk == NULL)
2917 return -EINVAL;
2918
2919 if (slot >= rdev->mddev->raid_disks &&
2920 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2921 return -ENOSPC;
2922
2923 rdev->raid_disk = slot;
2924 if (test_bit(In_sync, &rdev->flags))
2925 rdev->saved_raid_disk = slot;
2926 else
2927 rdev->saved_raid_disk = -1;
2928 clear_bit(In_sync, &rdev->flags);
2929 clear_bit(Bitmap_sync, &rdev->flags);
2930 err = rdev->mddev->pers->
2931 hot_add_disk(rdev->mddev, rdev);
2932 if (err) {
2933 rdev->raid_disk = -1;
2934 return err;
2935 } else
2936 sysfs_notify_dirent_safe(rdev->sysfs_state);
2937 if (sysfs_link_rdev(rdev->mddev, rdev))
2938 /* failure here is OK */;
2939 /* don't wakeup anyone, leave that to userspace. */
2940 } else {
2941 if (slot >= rdev->mddev->raid_disks &&
2942 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2943 return -ENOSPC;
2944 rdev->raid_disk = slot;
2945 /* assume it is working */
2946 clear_bit(Faulty, &rdev->flags);
2947 clear_bit(WriteMostly, &rdev->flags);
2948 set_bit(In_sync, &rdev->flags);
2949 sysfs_notify_dirent_safe(rdev->sysfs_state);
2950 }
2951 return len;
2952 }
2953
2954 static struct rdev_sysfs_entry rdev_slot =
2955 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2956
2957 static ssize_t
2958 offset_show(struct md_rdev *rdev, char *page)
2959 {
2960 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2961 }
2962
2963 static ssize_t
2964 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2965 {
2966 unsigned long long offset;
2967 if (kstrtoull(buf, 10, &offset) < 0)
2968 return -EINVAL;
2969 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2970 return -EBUSY;
2971 if (rdev->sectors && rdev->mddev->external)
2972 /* Must set offset before size, so overlap checks
2973 * can be sane */
2974 return -EBUSY;
2975 rdev->data_offset = offset;
2976 rdev->new_data_offset = offset;
2977 return len;
2978 }
2979
2980 static struct rdev_sysfs_entry rdev_offset =
2981 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2982
2983 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2984 {
2985 return sprintf(page, "%llu\n",
2986 (unsigned long long)rdev->new_data_offset);
2987 }
2988
2989 static ssize_t new_offset_store(struct md_rdev *rdev,
2990 const char *buf, size_t len)
2991 {
2992 unsigned long long new_offset;
2993 struct mddev *mddev = rdev->mddev;
2994
2995 if (kstrtoull(buf, 10, &new_offset) < 0)
2996 return -EINVAL;
2997
2998 if (mddev->sync_thread ||
2999 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3000 return -EBUSY;
3001 if (new_offset == rdev->data_offset)
3002 /* reset is always permitted */
3003 ;
3004 else if (new_offset > rdev->data_offset) {
3005 /* must not push array size beyond rdev_sectors */
3006 if (new_offset - rdev->data_offset
3007 + mddev->dev_sectors > rdev->sectors)
3008 return -E2BIG;
3009 }
3010 /* Metadata worries about other space details. */
3011
3012 /* decreasing the offset is inconsistent with a backwards
3013 * reshape.
3014 */
3015 if (new_offset < rdev->data_offset &&
3016 mddev->reshape_backwards)
3017 return -EINVAL;
3018 /* Increasing offset is inconsistent with forwards
3019 * reshape. reshape_direction should be set to
3020 * 'backwards' first.
3021 */
3022 if (new_offset > rdev->data_offset &&
3023 !mddev->reshape_backwards)
3024 return -EINVAL;
3025
3026 if (mddev->pers && mddev->persistent &&
3027 !super_types[mddev->major_version]
3028 .allow_new_offset(rdev, new_offset))
3029 return -E2BIG;
3030 rdev->new_data_offset = new_offset;
3031 if (new_offset > rdev->data_offset)
3032 mddev->reshape_backwards = 1;
3033 else if (new_offset < rdev->data_offset)
3034 mddev->reshape_backwards = 0;
3035
3036 return len;
3037 }
3038 static struct rdev_sysfs_entry rdev_new_offset =
3039 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3040
3041 static ssize_t
3042 rdev_size_show(struct md_rdev *rdev, char *page)
3043 {
3044 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3045 }
3046
3047 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3048 {
3049 /* check if two start/length pairs overlap */
3050 if (s1+l1 <= s2)
3051 return 0;
3052 if (s2+l2 <= s1)
3053 return 0;
3054 return 1;
3055 }
3056
3057 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3058 {
3059 unsigned long long blocks;
3060 sector_t new;
3061
3062 if (kstrtoull(buf, 10, &blocks) < 0)
3063 return -EINVAL;
3064
3065 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3066 return -EINVAL; /* sector conversion overflow */
3067
3068 new = blocks * 2;
3069 if (new != blocks * 2)
3070 return -EINVAL; /* unsigned long long to sector_t overflow */
3071
3072 *sectors = new;
3073 return 0;
3074 }
3075
3076 static ssize_t
3077 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3078 {
3079 struct mddev *my_mddev = rdev->mddev;
3080 sector_t oldsectors = rdev->sectors;
3081 sector_t sectors;
3082
3083 if (test_bit(Journal, &rdev->flags))
3084 return -EBUSY;
3085 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3086 return -EINVAL;
3087 if (rdev->data_offset != rdev->new_data_offset)
3088 return -EINVAL; /* too confusing */
3089 if (my_mddev->pers && rdev->raid_disk >= 0) {
3090 if (my_mddev->persistent) {
3091 sectors = super_types[my_mddev->major_version].
3092 rdev_size_change(rdev, sectors);
3093 if (!sectors)
3094 return -EBUSY;
3095 } else if (!sectors)
3096 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3097 rdev->data_offset;
3098 if (!my_mddev->pers->resize)
3099 /* Cannot change size for RAID0 or Linear etc */
3100 return -EINVAL;
3101 }
3102 if (sectors < my_mddev->dev_sectors)
3103 return -EINVAL; /* component must fit device */
3104
3105 rdev->sectors = sectors;
3106 if (sectors > oldsectors && my_mddev->external) {
3107 /* Need to check that all other rdevs with the same
3108 * ->bdev do not overlap. 'rcu' is sufficient to walk
3109 * the rdev lists safely.
3110 * This check does not provide a hard guarantee, it
3111 * just helps avoid dangerous mistakes.
3112 */
3113 struct mddev *mddev;
3114 int overlap = 0;
3115 struct list_head *tmp;
3116
3117 rcu_read_lock();
3118 for_each_mddev(mddev, tmp) {
3119 struct md_rdev *rdev2;
3120
3121 rdev_for_each(rdev2, mddev)
3122 if (rdev->bdev == rdev2->bdev &&
3123 rdev != rdev2 &&
3124 overlaps(rdev->data_offset, rdev->sectors,
3125 rdev2->data_offset,
3126 rdev2->sectors)) {
3127 overlap = 1;
3128 break;
3129 }
3130 if (overlap) {
3131 mddev_put(mddev);
3132 break;
3133 }
3134 }
3135 rcu_read_unlock();
3136 if (overlap) {
3137 /* Someone else could have slipped in a size
3138 * change here, but doing so is just silly.
3139 * We put oldsectors back because we *know* it is
3140 * safe, and trust userspace not to race with
3141 * itself
3142 */
3143 rdev->sectors = oldsectors;
3144 return -EBUSY;
3145 }
3146 }
3147 return len;
3148 }
3149
3150 static struct rdev_sysfs_entry rdev_size =
3151 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3152
3153 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3154 {
3155 unsigned long long recovery_start = rdev->recovery_offset;
3156
3157 if (test_bit(In_sync, &rdev->flags) ||
3158 recovery_start == MaxSector)
3159 return sprintf(page, "none\n");
3160
3161 return sprintf(page, "%llu\n", recovery_start);
3162 }
3163
3164 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3165 {
3166 unsigned long long recovery_start;
3167
3168 if (cmd_match(buf, "none"))
3169 recovery_start = MaxSector;
3170 else if (kstrtoull(buf, 10, &recovery_start))
3171 return -EINVAL;
3172
3173 if (rdev->mddev->pers &&
3174 rdev->raid_disk >= 0)
3175 return -EBUSY;
3176
3177 rdev->recovery_offset = recovery_start;
3178 if (recovery_start == MaxSector)
3179 set_bit(In_sync, &rdev->flags);
3180 else
3181 clear_bit(In_sync, &rdev->flags);
3182 return len;
3183 }
3184
3185 static struct rdev_sysfs_entry rdev_recovery_start =
3186 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3187
3188 /* sysfs access to bad-blocks list.
3189 * We present two files.
3190 * 'bad-blocks' lists sector numbers and lengths of ranges that
3191 * are recorded as bad. The list is truncated to fit within
3192 * the one-page limit of sysfs.
3193 * Writing "sector length" to this file adds an acknowledged
3194 * bad block list.
3195 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3196 * been acknowledged. Writing to this file adds bad blocks
3197 * without acknowledging them. This is largely for testing.
3198 */
3199 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3200 {
3201 return badblocks_show(&rdev->badblocks, page, 0);
3202 }
3203 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3204 {
3205 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3206 /* Maybe that ack was all we needed */
3207 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3208 wake_up(&rdev->blocked_wait);
3209 return rv;
3210 }
3211 static struct rdev_sysfs_entry rdev_bad_blocks =
3212 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3213
3214 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3215 {
3216 return badblocks_show(&rdev->badblocks, page, 1);
3217 }
3218 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3219 {
3220 return badblocks_store(&rdev->badblocks, page, len, 1);
3221 }
3222 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3223 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3224
3225 static ssize_t
3226 ppl_sector_show(struct md_rdev *rdev, char *page)
3227 {
3228 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3229 }
3230
3231 static ssize_t
3232 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3233 {
3234 unsigned long long sector;
3235
3236 if (kstrtoull(buf, 10, &sector) < 0)
3237 return -EINVAL;
3238 if (sector != (sector_t)sector)
3239 return -EINVAL;
3240
3241 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3242 rdev->raid_disk >= 0)
3243 return -EBUSY;
3244
3245 if (rdev->mddev->persistent) {
3246 if (rdev->mddev->major_version == 0)
3247 return -EINVAL;
3248 if ((sector > rdev->sb_start &&
3249 sector - rdev->sb_start > S16_MAX) ||
3250 (sector < rdev->sb_start &&
3251 rdev->sb_start - sector > -S16_MIN))
3252 return -EINVAL;
3253 rdev->ppl.offset = sector - rdev->sb_start;
3254 } else if (!rdev->mddev->external) {
3255 return -EBUSY;
3256 }
3257 rdev->ppl.sector = sector;
3258 return len;
3259 }
3260
3261 static struct rdev_sysfs_entry rdev_ppl_sector =
3262 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3263
3264 static ssize_t
3265 ppl_size_show(struct md_rdev *rdev, char *page)
3266 {
3267 return sprintf(page, "%u\n", rdev->ppl.size);
3268 }
3269
3270 static ssize_t
3271 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3272 {
3273 unsigned int size;
3274
3275 if (kstrtouint(buf, 10, &size) < 0)
3276 return -EINVAL;
3277
3278 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3279 rdev->raid_disk >= 0)
3280 return -EBUSY;
3281
3282 if (rdev->mddev->persistent) {
3283 if (rdev->mddev->major_version == 0)
3284 return -EINVAL;
3285 if (size > U16_MAX)
3286 return -EINVAL;
3287 } else if (!rdev->mddev->external) {
3288 return -EBUSY;
3289 }
3290 rdev->ppl.size = size;
3291 return len;
3292 }
3293
3294 static struct rdev_sysfs_entry rdev_ppl_size =
3295 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3296
3297 static struct attribute *rdev_default_attrs[] = {
3298 &rdev_state.attr,
3299 &rdev_errors.attr,
3300 &rdev_slot.attr,
3301 &rdev_offset.attr,
3302 &rdev_new_offset.attr,
3303 &rdev_size.attr,
3304 &rdev_recovery_start.attr,
3305 &rdev_bad_blocks.attr,
3306 &rdev_unack_bad_blocks.attr,
3307 &rdev_ppl_sector.attr,
3308 &rdev_ppl_size.attr,
3309 NULL,
3310 };
3311 static ssize_t
3312 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3313 {
3314 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3315 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3316
3317 if (!entry->show)
3318 return -EIO;
3319 if (!rdev->mddev)
3320 return -EBUSY;
3321 return entry->show(rdev, page);
3322 }
3323
3324 static ssize_t
3325 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3326 const char *page, size_t length)
3327 {
3328 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3329 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3330 ssize_t rv;
3331 struct mddev *mddev = rdev->mddev;
3332
3333 if (!entry->store)
3334 return -EIO;
3335 if (!capable(CAP_SYS_ADMIN))
3336 return -EACCES;
3337 rv = mddev ? mddev_lock(mddev): -EBUSY;
3338 if (!rv) {
3339 if (rdev->mddev == NULL)
3340 rv = -EBUSY;
3341 else
3342 rv = entry->store(rdev, page, length);
3343 mddev_unlock(mddev);
3344 }
3345 return rv;
3346 }
3347
3348 static void rdev_free(struct kobject *ko)
3349 {
3350 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3351 kfree(rdev);
3352 }
3353 static const struct sysfs_ops rdev_sysfs_ops = {
3354 .show = rdev_attr_show,
3355 .store = rdev_attr_store,
3356 };
3357 static struct kobj_type rdev_ktype = {
3358 .release = rdev_free,
3359 .sysfs_ops = &rdev_sysfs_ops,
3360 .default_attrs = rdev_default_attrs,
3361 };
3362
3363 int md_rdev_init(struct md_rdev *rdev)
3364 {
3365 rdev->desc_nr = -1;
3366 rdev->saved_raid_disk = -1;
3367 rdev->raid_disk = -1;
3368 rdev->flags = 0;
3369 rdev->data_offset = 0;
3370 rdev->new_data_offset = 0;
3371 rdev->sb_events = 0;
3372 rdev->last_read_error = 0;
3373 rdev->sb_loaded = 0;
3374 rdev->bb_page = NULL;
3375 atomic_set(&rdev->nr_pending, 0);
3376 atomic_set(&rdev->read_errors, 0);
3377 atomic_set(&rdev->corrected_errors, 0);
3378
3379 INIT_LIST_HEAD(&rdev->same_set);
3380 init_waitqueue_head(&rdev->blocked_wait);
3381
3382 /* Add space to store bad block list.
3383 * This reserves the space even on arrays where it cannot
3384 * be used - I wonder if that matters
3385 */
3386 return badblocks_init(&rdev->badblocks, 0);
3387 }
3388 EXPORT_SYMBOL_GPL(md_rdev_init);
3389 /*
3390 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3391 *
3392 * mark the device faulty if:
3393 *
3394 * - the device is nonexistent (zero size)
3395 * - the device has no valid superblock
3396 *
3397 * a faulty rdev _never_ has rdev->sb set.
3398 */
3399 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3400 {
3401 char b[BDEVNAME_SIZE];
3402 int err;
3403 struct md_rdev *rdev;
3404 sector_t size;
3405
3406 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3407 if (!rdev)
3408 return ERR_PTR(-ENOMEM);
3409
3410 err = md_rdev_init(rdev);
3411 if (err)
3412 goto abort_free;
3413 err = alloc_disk_sb(rdev);
3414 if (err)
3415 goto abort_free;
3416
3417 err = lock_rdev(rdev, newdev, super_format == -2);
3418 if (err)
3419 goto abort_free;
3420
3421 kobject_init(&rdev->kobj, &rdev_ktype);
3422
3423 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3424 if (!size) {
3425 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3426 bdevname(rdev->bdev,b));
3427 err = -EINVAL;
3428 goto abort_free;
3429 }
3430
3431 if (super_format >= 0) {
3432 err = super_types[super_format].
3433 load_super(rdev, NULL, super_minor);
3434 if (err == -EINVAL) {
3435 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3436 bdevname(rdev->bdev,b),
3437 super_format, super_minor);
3438 goto abort_free;
3439 }
3440 if (err < 0) {
3441 pr_warn("md: could not read %s's sb, not importing!\n",
3442 bdevname(rdev->bdev,b));
3443 goto abort_free;
3444 }
3445 }
3446
3447 return rdev;
3448
3449 abort_free:
3450 if (rdev->bdev)
3451 unlock_rdev(rdev);
3452 md_rdev_clear(rdev);
3453 kfree(rdev);
3454 return ERR_PTR(err);
3455 }
3456
3457 /*
3458 * Check a full RAID array for plausibility
3459 */
3460
3461 static void analyze_sbs(struct mddev *mddev)
3462 {
3463 int i;
3464 struct md_rdev *rdev, *freshest, *tmp;
3465 char b[BDEVNAME_SIZE];
3466
3467 freshest = NULL;
3468 rdev_for_each_safe(rdev, tmp, mddev)
3469 switch (super_types[mddev->major_version].
3470 load_super(rdev, freshest, mddev->minor_version)) {
3471 case 1:
3472 freshest = rdev;
3473 break;
3474 case 0:
3475 break;
3476 default:
3477 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3478 bdevname(rdev->bdev,b));
3479 md_kick_rdev_from_array(rdev);
3480 }
3481
3482 super_types[mddev->major_version].
3483 validate_super(mddev, freshest);
3484
3485 i = 0;
3486 rdev_for_each_safe(rdev, tmp, mddev) {
3487 if (mddev->max_disks &&
3488 (rdev->desc_nr >= mddev->max_disks ||
3489 i > mddev->max_disks)) {
3490 pr_warn("md: %s: %s: only %d devices permitted\n",
3491 mdname(mddev), bdevname(rdev->bdev, b),
3492 mddev->max_disks);
3493 md_kick_rdev_from_array(rdev);
3494 continue;
3495 }
3496 if (rdev != freshest) {
3497 if (super_types[mddev->major_version].
3498 validate_super(mddev, rdev)) {
3499 pr_warn("md: kicking non-fresh %s from array!\n",
3500 bdevname(rdev->bdev,b));
3501 md_kick_rdev_from_array(rdev);
3502 continue;
3503 }
3504 }
3505 if (mddev->level == LEVEL_MULTIPATH) {
3506 rdev->desc_nr = i++;
3507 rdev->raid_disk = rdev->desc_nr;
3508 set_bit(In_sync, &rdev->flags);
3509 } else if (rdev->raid_disk >=
3510 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3511 !test_bit(Journal, &rdev->flags)) {
3512 rdev->raid_disk = -1;
3513 clear_bit(In_sync, &rdev->flags);
3514 }
3515 }
3516 }
3517
3518 /* Read a fixed-point number.
3519 * Numbers in sysfs attributes should be in "standard" units where
3520 * possible, so time should be in seconds.
3521 * However we internally use a a much smaller unit such as
3522 * milliseconds or jiffies.
3523 * This function takes a decimal number with a possible fractional
3524 * component, and produces an integer which is the result of
3525 * multiplying that number by 10^'scale'.
3526 * all without any floating-point arithmetic.
3527 */
3528 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3529 {
3530 unsigned long result = 0;
3531 long decimals = -1;
3532 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3533 if (*cp == '.')
3534 decimals = 0;
3535 else if (decimals < scale) {
3536 unsigned int value;
3537 value = *cp - '0';
3538 result = result * 10 + value;
3539 if (decimals >= 0)
3540 decimals++;
3541 }
3542 cp++;
3543 }
3544 if (*cp == '\n')
3545 cp++;
3546 if (*cp)
3547 return -EINVAL;
3548 if (decimals < 0)
3549 decimals = 0;
3550 while (decimals < scale) {
3551 result *= 10;
3552 decimals ++;
3553 }
3554 *res = result;
3555 return 0;
3556 }
3557
3558 static ssize_t
3559 safe_delay_show(struct mddev *mddev, char *page)
3560 {
3561 int msec = (mddev->safemode_delay*1000)/HZ;
3562 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3563 }
3564 static ssize_t
3565 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3566 {
3567 unsigned long msec;
3568
3569 if (mddev_is_clustered(mddev)) {
3570 pr_warn("md: Safemode is disabled for clustered mode\n");
3571 return -EINVAL;
3572 }
3573
3574 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3575 return -EINVAL;
3576 if (msec == 0)
3577 mddev->safemode_delay = 0;
3578 else {
3579 unsigned long old_delay = mddev->safemode_delay;
3580 unsigned long new_delay = (msec*HZ)/1000;
3581
3582 if (new_delay == 0)
3583 new_delay = 1;
3584 mddev->safemode_delay = new_delay;
3585 if (new_delay < old_delay || old_delay == 0)
3586 mod_timer(&mddev->safemode_timer, jiffies+1);
3587 }
3588 return len;
3589 }
3590 static struct md_sysfs_entry md_safe_delay =
3591 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3592
3593 static ssize_t
3594 level_show(struct mddev *mddev, char *page)
3595 {
3596 struct md_personality *p;
3597 int ret;
3598 spin_lock(&mddev->lock);
3599 p = mddev->pers;
3600 if (p)
3601 ret = sprintf(page, "%s\n", p->name);
3602 else if (mddev->clevel[0])
3603 ret = sprintf(page, "%s\n", mddev->clevel);
3604 else if (mddev->level != LEVEL_NONE)
3605 ret = sprintf(page, "%d\n", mddev->level);
3606 else
3607 ret = 0;
3608 spin_unlock(&mddev->lock);
3609 return ret;
3610 }
3611
3612 static ssize_t
3613 level_store(struct mddev *mddev, const char *buf, size_t len)
3614 {
3615 char clevel[16];
3616 ssize_t rv;
3617 size_t slen = len;
3618 struct md_personality *pers, *oldpers;
3619 long level;
3620 void *priv, *oldpriv;
3621 struct md_rdev *rdev;
3622
3623 if (slen == 0 || slen >= sizeof(clevel))
3624 return -EINVAL;
3625
3626 rv = mddev_lock(mddev);
3627 if (rv)
3628 return rv;
3629
3630 if (mddev->pers == NULL) {
3631 strncpy(mddev->clevel, buf, slen);
3632 if (mddev->clevel[slen-1] == '\n')
3633 slen--;
3634 mddev->clevel[slen] = 0;
3635 mddev->level = LEVEL_NONE;
3636 rv = len;
3637 goto out_unlock;
3638 }
3639 rv = -EROFS;
3640 if (mddev->ro)
3641 goto out_unlock;
3642
3643 /* request to change the personality. Need to ensure:
3644 * - array is not engaged in resync/recovery/reshape
3645 * - old personality can be suspended
3646 * - new personality will access other array.
3647 */
3648
3649 rv = -EBUSY;
3650 if (mddev->sync_thread ||
3651 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3652 mddev->reshape_position != MaxSector ||
3653 mddev->sysfs_active)
3654 goto out_unlock;
3655
3656 rv = -EINVAL;
3657 if (!mddev->pers->quiesce) {
3658 pr_warn("md: %s: %s does not support online personality change\n",
3659 mdname(mddev), mddev->pers->name);
3660 goto out_unlock;
3661 }
3662
3663 /* Now find the new personality */
3664 strncpy(clevel, buf, slen);
3665 if (clevel[slen-1] == '\n')
3666 slen--;
3667 clevel[slen] = 0;
3668 if (kstrtol(clevel, 10, &level))
3669 level = LEVEL_NONE;
3670
3671 if (request_module("md-%s", clevel) != 0)
3672 request_module("md-level-%s", clevel);
3673 spin_lock(&pers_lock);
3674 pers = find_pers(level, clevel);
3675 if (!pers || !try_module_get(pers->owner)) {
3676 spin_unlock(&pers_lock);
3677 pr_warn("md: personality %s not loaded\n", clevel);
3678 rv = -EINVAL;
3679 goto out_unlock;
3680 }
3681 spin_unlock(&pers_lock);
3682
3683 if (pers == mddev->pers) {
3684 /* Nothing to do! */
3685 module_put(pers->owner);
3686 rv = len;
3687 goto out_unlock;
3688 }
3689 if (!pers->takeover) {
3690 module_put(pers->owner);
3691 pr_warn("md: %s: %s does not support personality takeover\n",
3692 mdname(mddev), clevel);
3693 rv = -EINVAL;
3694 goto out_unlock;
3695 }
3696
3697 rdev_for_each(rdev, mddev)
3698 rdev->new_raid_disk = rdev->raid_disk;
3699
3700 /* ->takeover must set new_* and/or delta_disks
3701 * if it succeeds, and may set them when it fails.
3702 */
3703 priv = pers->takeover(mddev);
3704 if (IS_ERR(priv)) {
3705 mddev->new_level = mddev->level;
3706 mddev->new_layout = mddev->layout;
3707 mddev->new_chunk_sectors = mddev->chunk_sectors;
3708 mddev->raid_disks -= mddev->delta_disks;
3709 mddev->delta_disks = 0;
3710 mddev->reshape_backwards = 0;
3711 module_put(pers->owner);
3712 pr_warn("md: %s: %s would not accept array\n",
3713 mdname(mddev), clevel);
3714 rv = PTR_ERR(priv);
3715 goto out_unlock;
3716 }
3717
3718 /* Looks like we have a winner */
3719 mddev_suspend(mddev);
3720 mddev_detach(mddev);
3721
3722 spin_lock(&mddev->lock);
3723 oldpers = mddev->pers;
3724 oldpriv = mddev->private;
3725 mddev->pers = pers;
3726 mddev->private = priv;
3727 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3728 mddev->level = mddev->new_level;
3729 mddev->layout = mddev->new_layout;
3730 mddev->chunk_sectors = mddev->new_chunk_sectors;
3731 mddev->delta_disks = 0;
3732 mddev->reshape_backwards = 0;
3733 mddev->degraded = 0;
3734 spin_unlock(&mddev->lock);
3735
3736 if (oldpers->sync_request == NULL &&
3737 mddev->external) {
3738 /* We are converting from a no-redundancy array
3739 * to a redundancy array and metadata is managed
3740 * externally so we need to be sure that writes
3741 * won't block due to a need to transition
3742 * clean->dirty
3743 * until external management is started.
3744 */
3745 mddev->in_sync = 0;
3746 mddev->safemode_delay = 0;
3747 mddev->safemode = 0;
3748 }
3749
3750 oldpers->free(mddev, oldpriv);
3751
3752 if (oldpers->sync_request == NULL &&
3753 pers->sync_request != NULL) {
3754 /* need to add the md_redundancy_group */
3755 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3756 pr_warn("md: cannot register extra attributes for %s\n",
3757 mdname(mddev));
3758 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3759 }
3760 if (oldpers->sync_request != NULL &&
3761 pers->sync_request == NULL) {
3762 /* need to remove the md_redundancy_group */
3763 if (mddev->to_remove == NULL)
3764 mddev->to_remove = &md_redundancy_group;
3765 }
3766
3767 module_put(oldpers->owner);
3768
3769 rdev_for_each(rdev, mddev) {
3770 if (rdev->raid_disk < 0)
3771 continue;
3772 if (rdev->new_raid_disk >= mddev->raid_disks)
3773 rdev->new_raid_disk = -1;
3774 if (rdev->new_raid_disk == rdev->raid_disk)
3775 continue;
3776 sysfs_unlink_rdev(mddev, rdev);
3777 }
3778 rdev_for_each(rdev, mddev) {
3779 if (rdev->raid_disk < 0)
3780 continue;
3781 if (rdev->new_raid_disk == rdev->raid_disk)
3782 continue;
3783 rdev->raid_disk = rdev->new_raid_disk;
3784 if (rdev->raid_disk < 0)
3785 clear_bit(In_sync, &rdev->flags);
3786 else {
3787 if (sysfs_link_rdev(mddev, rdev))
3788 pr_warn("md: cannot register rd%d for %s after level change\n",
3789 rdev->raid_disk, mdname(mddev));
3790 }
3791 }
3792
3793 if (pers->sync_request == NULL) {
3794 /* this is now an array without redundancy, so
3795 * it must always be in_sync
3796 */
3797 mddev->in_sync = 1;
3798 del_timer_sync(&mddev->safemode_timer);
3799 }
3800 blk_set_stacking_limits(&mddev->queue->limits);
3801 pers->run(mddev);
3802 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3803 mddev_resume(mddev);
3804 if (!mddev->thread)
3805 md_update_sb(mddev, 1);
3806 sysfs_notify(&mddev->kobj, NULL, "level");
3807 md_new_event(mddev);
3808 rv = len;
3809 out_unlock:
3810 mddev_unlock(mddev);
3811 return rv;
3812 }
3813
3814 static struct md_sysfs_entry md_level =
3815 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3816
3817 static ssize_t
3818 layout_show(struct mddev *mddev, char *page)
3819 {
3820 /* just a number, not meaningful for all levels */
3821 if (mddev->reshape_position != MaxSector &&
3822 mddev->layout != mddev->new_layout)
3823 return sprintf(page, "%d (%d)\n",
3824 mddev->new_layout, mddev->layout);
3825 return sprintf(page, "%d\n", mddev->layout);
3826 }
3827
3828 static ssize_t
3829 layout_store(struct mddev *mddev, const char *buf, size_t len)
3830 {
3831 unsigned int n;
3832 int err;
3833
3834 err = kstrtouint(buf, 10, &n);
3835 if (err < 0)
3836 return err;
3837 err = mddev_lock(mddev);
3838 if (err)
3839 return err;
3840
3841 if (mddev->pers) {
3842 if (mddev->pers->check_reshape == NULL)
3843 err = -EBUSY;
3844 else if (mddev->ro)
3845 err = -EROFS;
3846 else {
3847 mddev->new_layout = n;
3848 err = mddev->pers->check_reshape(mddev);
3849 if (err)
3850 mddev->new_layout = mddev->layout;
3851 }
3852 } else {
3853 mddev->new_layout = n;
3854 if (mddev->reshape_position == MaxSector)
3855 mddev->layout = n;
3856 }
3857 mddev_unlock(mddev);
3858 return err ?: len;
3859 }
3860 static struct md_sysfs_entry md_layout =
3861 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3862
3863 static ssize_t
3864 raid_disks_show(struct mddev *mddev, char *page)
3865 {
3866 if (mddev->raid_disks == 0)
3867 return 0;
3868 if (mddev->reshape_position != MaxSector &&
3869 mddev->delta_disks != 0)
3870 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3871 mddev->raid_disks - mddev->delta_disks);
3872 return sprintf(page, "%d\n", mddev->raid_disks);
3873 }
3874
3875 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3876
3877 static ssize_t
3878 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3879 {
3880 unsigned int n;
3881 int err;
3882
3883 err = kstrtouint(buf, 10, &n);
3884 if (err < 0)
3885 return err;
3886
3887 err = mddev_lock(mddev);
3888 if (err)
3889 return err;
3890 if (mddev->pers)
3891 err = update_raid_disks(mddev, n);
3892 else if (mddev->reshape_position != MaxSector) {
3893 struct md_rdev *rdev;
3894 int olddisks = mddev->raid_disks - mddev->delta_disks;
3895
3896 err = -EINVAL;
3897 rdev_for_each(rdev, mddev) {
3898 if (olddisks < n &&
3899 rdev->data_offset < rdev->new_data_offset)
3900 goto out_unlock;
3901 if (olddisks > n &&
3902 rdev->data_offset > rdev->new_data_offset)
3903 goto out_unlock;
3904 }
3905 err = 0;
3906 mddev->delta_disks = n - olddisks;
3907 mddev->raid_disks = n;
3908 mddev->reshape_backwards = (mddev->delta_disks < 0);
3909 } else
3910 mddev->raid_disks = n;
3911 out_unlock:
3912 mddev_unlock(mddev);
3913 return err ? err : len;
3914 }
3915 static struct md_sysfs_entry md_raid_disks =
3916 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3917
3918 static ssize_t
3919 chunk_size_show(struct mddev *mddev, char *page)
3920 {
3921 if (mddev->reshape_position != MaxSector &&
3922 mddev->chunk_sectors != mddev->new_chunk_sectors)
3923 return sprintf(page, "%d (%d)\n",
3924 mddev->new_chunk_sectors << 9,
3925 mddev->chunk_sectors << 9);
3926 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3927 }
3928
3929 static ssize_t
3930 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3931 {
3932 unsigned long n;
3933 int err;
3934
3935 err = kstrtoul(buf, 10, &n);
3936 if (err < 0)
3937 return err;
3938
3939 err = mddev_lock(mddev);
3940 if (err)
3941 return err;
3942 if (mddev->pers) {
3943 if (mddev->pers->check_reshape == NULL)
3944 err = -EBUSY;
3945 else if (mddev->ro)
3946 err = -EROFS;
3947 else {
3948 mddev->new_chunk_sectors = n >> 9;
3949 err = mddev->pers->check_reshape(mddev);
3950 if (err)
3951 mddev->new_chunk_sectors = mddev->chunk_sectors;
3952 }
3953 } else {
3954 mddev->new_chunk_sectors = n >> 9;
3955 if (mddev->reshape_position == MaxSector)
3956 mddev->chunk_sectors = n >> 9;
3957 }
3958 mddev_unlock(mddev);
3959 return err ?: len;
3960 }
3961 static struct md_sysfs_entry md_chunk_size =
3962 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3963
3964 static ssize_t
3965 resync_start_show(struct mddev *mddev, char *page)
3966 {
3967 if (mddev->recovery_cp == MaxSector)
3968 return sprintf(page, "none\n");
3969 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3970 }
3971
3972 static ssize_t
3973 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3974 {
3975 unsigned long long n;
3976 int err;
3977
3978 if (cmd_match(buf, "none"))
3979 n = MaxSector;
3980 else {
3981 err = kstrtoull(buf, 10, &n);
3982 if (err < 0)
3983 return err;
3984 if (n != (sector_t)n)
3985 return -EINVAL;
3986 }
3987
3988 err = mddev_lock(mddev);
3989 if (err)
3990 return err;
3991 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3992 err = -EBUSY;
3993
3994 if (!err) {
3995 mddev->recovery_cp = n;
3996 if (mddev->pers)
3997 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
3998 }
3999 mddev_unlock(mddev);
4000 return err ?: len;
4001 }
4002 static struct md_sysfs_entry md_resync_start =
4003 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4004 resync_start_show, resync_start_store);
4005
4006 /*
4007 * The array state can be:
4008 *
4009 * clear
4010 * No devices, no size, no level
4011 * Equivalent to STOP_ARRAY ioctl
4012 * inactive
4013 * May have some settings, but array is not active
4014 * all IO results in error
4015 * When written, doesn't tear down array, but just stops it
4016 * suspended (not supported yet)
4017 * All IO requests will block. The array can be reconfigured.
4018 * Writing this, if accepted, will block until array is quiescent
4019 * readonly
4020 * no resync can happen. no superblocks get written.
4021 * write requests fail
4022 * read-auto
4023 * like readonly, but behaves like 'clean' on a write request.
4024 *
4025 * clean - no pending writes, but otherwise active.
4026 * When written to inactive array, starts without resync
4027 * If a write request arrives then
4028 * if metadata is known, mark 'dirty' and switch to 'active'.
4029 * if not known, block and switch to write-pending
4030 * If written to an active array that has pending writes, then fails.
4031 * active
4032 * fully active: IO and resync can be happening.
4033 * When written to inactive array, starts with resync
4034 *
4035 * write-pending
4036 * clean, but writes are blocked waiting for 'active' to be written.
4037 *
4038 * active-idle
4039 * like active, but no writes have been seen for a while (100msec).
4040 *
4041 */
4042 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4043 write_pending, active_idle, bad_word};
4044 static char *array_states[] = {
4045 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4046 "write-pending", "active-idle", NULL };
4047
4048 static int match_word(const char *word, char **list)
4049 {
4050 int n;
4051 for (n=0; list[n]; n++)
4052 if (cmd_match(word, list[n]))
4053 break;
4054 return n;
4055 }
4056
4057 static ssize_t
4058 array_state_show(struct mddev *mddev, char *page)
4059 {
4060 enum array_state st = inactive;
4061
4062 if (mddev->pers)
4063 switch(mddev->ro) {
4064 case 1:
4065 st = readonly;
4066 break;
4067 case 2:
4068 st = read_auto;
4069 break;
4070 case 0:
4071 spin_lock(&mddev->lock);
4072 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4073 st = write_pending;
4074 else if (mddev->in_sync)
4075 st = clean;
4076 else if (mddev->safemode)
4077 st = active_idle;
4078 else
4079 st = active;
4080 spin_unlock(&mddev->lock);
4081 }
4082 else {
4083 if (list_empty(&mddev->disks) &&
4084 mddev->raid_disks == 0 &&
4085 mddev->dev_sectors == 0)
4086 st = clear;
4087 else
4088 st = inactive;
4089 }
4090 return sprintf(page, "%s\n", array_states[st]);
4091 }
4092
4093 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4094 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4095 static int do_md_run(struct mddev *mddev);
4096 static int restart_array(struct mddev *mddev);
4097
4098 static ssize_t
4099 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101 int err = 0;
4102 enum array_state st = match_word(buf, array_states);
4103
4104 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4105 /* don't take reconfig_mutex when toggling between
4106 * clean and active
4107 */
4108 spin_lock(&mddev->lock);
4109 if (st == active) {
4110 restart_array(mddev);
4111 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4112 md_wakeup_thread(mddev->thread);
4113 wake_up(&mddev->sb_wait);
4114 } else /* st == clean */ {
4115 restart_array(mddev);
4116 if (!set_in_sync(mddev))
4117 err = -EBUSY;
4118 }
4119 if (!err)
4120 sysfs_notify_dirent_safe(mddev->sysfs_state);
4121 spin_unlock(&mddev->lock);
4122 return err ?: len;
4123 }
4124 err = mddev_lock(mddev);
4125 if (err)
4126 return err;
4127 err = -EINVAL;
4128 switch(st) {
4129 case bad_word:
4130 break;
4131 case clear:
4132 /* stopping an active array */
4133 err = do_md_stop(mddev, 0, NULL);
4134 break;
4135 case inactive:
4136 /* stopping an active array */
4137 if (mddev->pers)
4138 err = do_md_stop(mddev, 2, NULL);
4139 else
4140 err = 0; /* already inactive */
4141 break;
4142 case suspended:
4143 break; /* not supported yet */
4144 case readonly:
4145 if (mddev->pers)
4146 err = md_set_readonly(mddev, NULL);
4147 else {
4148 mddev->ro = 1;
4149 set_disk_ro(mddev->gendisk, 1);
4150 err = do_md_run(mddev);
4151 }
4152 break;
4153 case read_auto:
4154 if (mddev->pers) {
4155 if (mddev->ro == 0)
4156 err = md_set_readonly(mddev, NULL);
4157 else if (mddev->ro == 1)
4158 err = restart_array(mddev);
4159 if (err == 0) {
4160 mddev->ro = 2;
4161 set_disk_ro(mddev->gendisk, 0);
4162 }
4163 } else {
4164 mddev->ro = 2;
4165 err = do_md_run(mddev);
4166 }
4167 break;
4168 case clean:
4169 if (mddev->pers) {
4170 err = restart_array(mddev);
4171 if (err)
4172 break;
4173 spin_lock(&mddev->lock);
4174 if (!set_in_sync(mddev))
4175 err = -EBUSY;
4176 spin_unlock(&mddev->lock);
4177 } else
4178 err = -EINVAL;
4179 break;
4180 case active:
4181 if (mddev->pers) {
4182 err = restart_array(mddev);
4183 if (err)
4184 break;
4185 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4186 wake_up(&mddev->sb_wait);
4187 err = 0;
4188 } else {
4189 mddev->ro = 0;
4190 set_disk_ro(mddev->gendisk, 0);
4191 err = do_md_run(mddev);
4192 }
4193 break;
4194 case write_pending:
4195 case active_idle:
4196 /* these cannot be set */
4197 break;
4198 }
4199
4200 if (!err) {
4201 if (mddev->hold_active == UNTIL_IOCTL)
4202 mddev->hold_active = 0;
4203 sysfs_notify_dirent_safe(mddev->sysfs_state);
4204 }
4205 mddev_unlock(mddev);
4206 return err ?: len;
4207 }
4208 static struct md_sysfs_entry md_array_state =
4209 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4210
4211 static ssize_t
4212 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4213 return sprintf(page, "%d\n",
4214 atomic_read(&mddev->max_corr_read_errors));
4215 }
4216
4217 static ssize_t
4218 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4219 {
4220 unsigned int n;
4221 int rv;
4222
4223 rv = kstrtouint(buf, 10, &n);
4224 if (rv < 0)
4225 return rv;
4226 atomic_set(&mddev->max_corr_read_errors, n);
4227 return len;
4228 }
4229
4230 static struct md_sysfs_entry max_corr_read_errors =
4231 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4232 max_corrected_read_errors_store);
4233
4234 static ssize_t
4235 null_show(struct mddev *mddev, char *page)
4236 {
4237 return -EINVAL;
4238 }
4239
4240 static ssize_t
4241 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4242 {
4243 /* buf must be %d:%d\n? giving major and minor numbers */
4244 /* The new device is added to the array.
4245 * If the array has a persistent superblock, we read the
4246 * superblock to initialise info and check validity.
4247 * Otherwise, only checking done is that in bind_rdev_to_array,
4248 * which mainly checks size.
4249 */
4250 char *e;
4251 int major = simple_strtoul(buf, &e, 10);
4252 int minor;
4253 dev_t dev;
4254 struct md_rdev *rdev;
4255 int err;
4256
4257 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4258 return -EINVAL;
4259 minor = simple_strtoul(e+1, &e, 10);
4260 if (*e && *e != '\n')
4261 return -EINVAL;
4262 dev = MKDEV(major, minor);
4263 if (major != MAJOR(dev) ||
4264 minor != MINOR(dev))
4265 return -EOVERFLOW;
4266
4267 flush_workqueue(md_misc_wq);
4268
4269 err = mddev_lock(mddev);
4270 if (err)
4271 return err;
4272 if (mddev->persistent) {
4273 rdev = md_import_device(dev, mddev->major_version,
4274 mddev->minor_version);
4275 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4276 struct md_rdev *rdev0
4277 = list_entry(mddev->disks.next,
4278 struct md_rdev, same_set);
4279 err = super_types[mddev->major_version]
4280 .load_super(rdev, rdev0, mddev->minor_version);
4281 if (err < 0)
4282 goto out;
4283 }
4284 } else if (mddev->external)
4285 rdev = md_import_device(dev, -2, -1);
4286 else
4287 rdev = md_import_device(dev, -1, -1);
4288
4289 if (IS_ERR(rdev)) {
4290 mddev_unlock(mddev);
4291 return PTR_ERR(rdev);
4292 }
4293 err = bind_rdev_to_array(rdev, mddev);
4294 out:
4295 if (err)
4296 export_rdev(rdev);
4297 mddev_unlock(mddev);
4298 if (!err)
4299 md_new_event(mddev);
4300 return err ? err : len;
4301 }
4302
4303 static struct md_sysfs_entry md_new_device =
4304 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4305
4306 static ssize_t
4307 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4308 {
4309 char *end;
4310 unsigned long chunk, end_chunk;
4311 int err;
4312
4313 err = mddev_lock(mddev);
4314 if (err)
4315 return err;
4316 if (!mddev->bitmap)
4317 goto out;
4318 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4319 while (*buf) {
4320 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4321 if (buf == end) break;
4322 if (*end == '-') { /* range */
4323 buf = end + 1;
4324 end_chunk = simple_strtoul(buf, &end, 0);
4325 if (buf == end) break;
4326 }
4327 if (*end && !isspace(*end)) break;
4328 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4329 buf = skip_spaces(end);
4330 }
4331 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4332 out:
4333 mddev_unlock(mddev);
4334 return len;
4335 }
4336
4337 static struct md_sysfs_entry md_bitmap =
4338 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4339
4340 static ssize_t
4341 size_show(struct mddev *mddev, char *page)
4342 {
4343 return sprintf(page, "%llu\n",
4344 (unsigned long long)mddev->dev_sectors / 2);
4345 }
4346
4347 static int update_size(struct mddev *mddev, sector_t num_sectors);
4348
4349 static ssize_t
4350 size_store(struct mddev *mddev, const char *buf, size_t len)
4351 {
4352 /* If array is inactive, we can reduce the component size, but
4353 * not increase it (except from 0).
4354 * If array is active, we can try an on-line resize
4355 */
4356 sector_t sectors;
4357 int err = strict_blocks_to_sectors(buf, &sectors);
4358
4359 if (err < 0)
4360 return err;
4361 err = mddev_lock(mddev);
4362 if (err)
4363 return err;
4364 if (mddev->pers) {
4365 err = update_size(mddev, sectors);
4366 if (err == 0)
4367 md_update_sb(mddev, 1);
4368 } else {
4369 if (mddev->dev_sectors == 0 ||
4370 mddev->dev_sectors > sectors)
4371 mddev->dev_sectors = sectors;
4372 else
4373 err = -ENOSPC;
4374 }
4375 mddev_unlock(mddev);
4376 return err ? err : len;
4377 }
4378
4379 static struct md_sysfs_entry md_size =
4380 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4381
4382 /* Metadata version.
4383 * This is one of
4384 * 'none' for arrays with no metadata (good luck...)
4385 * 'external' for arrays with externally managed metadata,
4386 * or N.M for internally known formats
4387 */
4388 static ssize_t
4389 metadata_show(struct mddev *mddev, char *page)
4390 {
4391 if (mddev->persistent)
4392 return sprintf(page, "%d.%d\n",
4393 mddev->major_version, mddev->minor_version);
4394 else if (mddev->external)
4395 return sprintf(page, "external:%s\n", mddev->metadata_type);
4396 else
4397 return sprintf(page, "none\n");
4398 }
4399
4400 static ssize_t
4401 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4402 {
4403 int major, minor;
4404 char *e;
4405 int err;
4406 /* Changing the details of 'external' metadata is
4407 * always permitted. Otherwise there must be
4408 * no devices attached to the array.
4409 */
4410
4411 err = mddev_lock(mddev);
4412 if (err)
4413 return err;
4414 err = -EBUSY;
4415 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4416 ;
4417 else if (!list_empty(&mddev->disks))
4418 goto out_unlock;
4419
4420 err = 0;
4421 if (cmd_match(buf, "none")) {
4422 mddev->persistent = 0;
4423 mddev->external = 0;
4424 mddev->major_version = 0;
4425 mddev->minor_version = 90;
4426 goto out_unlock;
4427 }
4428 if (strncmp(buf, "external:", 9) == 0) {
4429 size_t namelen = len-9;
4430 if (namelen >= sizeof(mddev->metadata_type))
4431 namelen = sizeof(mddev->metadata_type)-1;
4432 strncpy(mddev->metadata_type, buf+9, namelen);
4433 mddev->metadata_type[namelen] = 0;
4434 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4435 mddev->metadata_type[--namelen] = 0;
4436 mddev->persistent = 0;
4437 mddev->external = 1;
4438 mddev->major_version = 0;
4439 mddev->minor_version = 90;
4440 goto out_unlock;
4441 }
4442 major = simple_strtoul(buf, &e, 10);
4443 err = -EINVAL;
4444 if (e==buf || *e != '.')
4445 goto out_unlock;
4446 buf = e+1;
4447 minor = simple_strtoul(buf, &e, 10);
4448 if (e==buf || (*e && *e != '\n') )
4449 goto out_unlock;
4450 err = -ENOENT;
4451 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4452 goto out_unlock;
4453 mddev->major_version = major;
4454 mddev->minor_version = minor;
4455 mddev->persistent = 1;
4456 mddev->external = 0;
4457 err = 0;
4458 out_unlock:
4459 mddev_unlock(mddev);
4460 return err ?: len;
4461 }
4462
4463 static struct md_sysfs_entry md_metadata =
4464 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4465
4466 static ssize_t
4467 action_show(struct mddev *mddev, char *page)
4468 {
4469 char *type = "idle";
4470 unsigned long recovery = mddev->recovery;
4471 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4472 type = "frozen";
4473 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4474 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4475 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4476 type = "reshape";
4477 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4478 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4479 type = "resync";
4480 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4481 type = "check";
4482 else
4483 type = "repair";
4484 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4485 type = "recover";
4486 else if (mddev->reshape_position != MaxSector)
4487 type = "reshape";
4488 }
4489 return sprintf(page, "%s\n", type);
4490 }
4491
4492 static ssize_t
4493 action_store(struct mddev *mddev, const char *page, size_t len)
4494 {
4495 if (!mddev->pers || !mddev->pers->sync_request)
4496 return -EINVAL;
4497
4498
4499 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4500 if (cmd_match(page, "frozen"))
4501 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4502 else
4503 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4504 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4505 mddev_lock(mddev) == 0) {
4506 flush_workqueue(md_misc_wq);
4507 if (mddev->sync_thread) {
4508 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4509 md_reap_sync_thread(mddev);
4510 }
4511 mddev_unlock(mddev);
4512 }
4513 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4514 return -EBUSY;
4515 else if (cmd_match(page, "resync"))
4516 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4517 else if (cmd_match(page, "recover")) {
4518 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4519 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4520 } else if (cmd_match(page, "reshape")) {
4521 int err;
4522 if (mddev->pers->start_reshape == NULL)
4523 return -EINVAL;
4524 err = mddev_lock(mddev);
4525 if (!err) {
4526 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4527 err = -EBUSY;
4528 else {
4529 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4530 err = mddev->pers->start_reshape(mddev);
4531 }
4532 mddev_unlock(mddev);
4533 }
4534 if (err)
4535 return err;
4536 sysfs_notify(&mddev->kobj, NULL, "degraded");
4537 } else {
4538 if (cmd_match(page, "check"))
4539 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4540 else if (!cmd_match(page, "repair"))
4541 return -EINVAL;
4542 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4543 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4544 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4545 }
4546 if (mddev->ro == 2) {
4547 /* A write to sync_action is enough to justify
4548 * canceling read-auto mode
4549 */
4550 mddev->ro = 0;
4551 md_wakeup_thread(mddev->sync_thread);
4552 }
4553 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4554 md_wakeup_thread(mddev->thread);
4555 sysfs_notify_dirent_safe(mddev->sysfs_action);
4556 return len;
4557 }
4558
4559 static struct md_sysfs_entry md_scan_mode =
4560 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4561
4562 static ssize_t
4563 last_sync_action_show(struct mddev *mddev, char *page)
4564 {
4565 return sprintf(page, "%s\n", mddev->last_sync_action);
4566 }
4567
4568 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4569
4570 static ssize_t
4571 mismatch_cnt_show(struct mddev *mddev, char *page)
4572 {
4573 return sprintf(page, "%llu\n",
4574 (unsigned long long)
4575 atomic64_read(&mddev->resync_mismatches));
4576 }
4577
4578 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4579
4580 static ssize_t
4581 sync_min_show(struct mddev *mddev, char *page)
4582 {
4583 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4584 mddev->sync_speed_min ? "local": "system");
4585 }
4586
4587 static ssize_t
4588 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4589 {
4590 unsigned int min;
4591 int rv;
4592
4593 if (strncmp(buf, "system", 6)==0) {
4594 min = 0;
4595 } else {
4596 rv = kstrtouint(buf, 10, &min);
4597 if (rv < 0)
4598 return rv;
4599 if (min == 0)
4600 return -EINVAL;
4601 }
4602 mddev->sync_speed_min = min;
4603 return len;
4604 }
4605
4606 static struct md_sysfs_entry md_sync_min =
4607 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4608
4609 static ssize_t
4610 sync_max_show(struct mddev *mddev, char *page)
4611 {
4612 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4613 mddev->sync_speed_max ? "local": "system");
4614 }
4615
4616 static ssize_t
4617 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4618 {
4619 unsigned int max;
4620 int rv;
4621
4622 if (strncmp(buf, "system", 6)==0) {
4623 max = 0;
4624 } else {
4625 rv = kstrtouint(buf, 10, &max);
4626 if (rv < 0)
4627 return rv;
4628 if (max == 0)
4629 return -EINVAL;
4630 }
4631 mddev->sync_speed_max = max;
4632 return len;
4633 }
4634
4635 static struct md_sysfs_entry md_sync_max =
4636 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4637
4638 static ssize_t
4639 degraded_show(struct mddev *mddev, char *page)
4640 {
4641 return sprintf(page, "%d\n", mddev->degraded);
4642 }
4643 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4644
4645 static ssize_t
4646 sync_force_parallel_show(struct mddev *mddev, char *page)
4647 {
4648 return sprintf(page, "%d\n", mddev->parallel_resync);
4649 }
4650
4651 static ssize_t
4652 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4653 {
4654 long n;
4655
4656 if (kstrtol(buf, 10, &n))
4657 return -EINVAL;
4658
4659 if (n != 0 && n != 1)
4660 return -EINVAL;
4661
4662 mddev->parallel_resync = n;
4663
4664 if (mddev->sync_thread)
4665 wake_up(&resync_wait);
4666
4667 return len;
4668 }
4669
4670 /* force parallel resync, even with shared block devices */
4671 static struct md_sysfs_entry md_sync_force_parallel =
4672 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4673 sync_force_parallel_show, sync_force_parallel_store);
4674
4675 static ssize_t
4676 sync_speed_show(struct mddev *mddev, char *page)
4677 {
4678 unsigned long resync, dt, db;
4679 if (mddev->curr_resync == 0)
4680 return sprintf(page, "none\n");
4681 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4682 dt = (jiffies - mddev->resync_mark) / HZ;
4683 if (!dt) dt++;
4684 db = resync - mddev->resync_mark_cnt;
4685 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4686 }
4687
4688 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4689
4690 static ssize_t
4691 sync_completed_show(struct mddev *mddev, char *page)
4692 {
4693 unsigned long long max_sectors, resync;
4694
4695 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4696 return sprintf(page, "none\n");
4697
4698 if (mddev->curr_resync == 1 ||
4699 mddev->curr_resync == 2)
4700 return sprintf(page, "delayed\n");
4701
4702 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4703 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4704 max_sectors = mddev->resync_max_sectors;
4705 else
4706 max_sectors = mddev->dev_sectors;
4707
4708 resync = mddev->curr_resync_completed;
4709 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4710 }
4711
4712 static struct md_sysfs_entry md_sync_completed =
4713 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4714
4715 static ssize_t
4716 min_sync_show(struct mddev *mddev, char *page)
4717 {
4718 return sprintf(page, "%llu\n",
4719 (unsigned long long)mddev->resync_min);
4720 }
4721 static ssize_t
4722 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4723 {
4724 unsigned long long min;
4725 int err;
4726
4727 if (kstrtoull(buf, 10, &min))
4728 return -EINVAL;
4729
4730 spin_lock(&mddev->lock);
4731 err = -EINVAL;
4732 if (min > mddev->resync_max)
4733 goto out_unlock;
4734
4735 err = -EBUSY;
4736 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4737 goto out_unlock;
4738
4739 /* Round down to multiple of 4K for safety */
4740 mddev->resync_min = round_down(min, 8);
4741 err = 0;
4742
4743 out_unlock:
4744 spin_unlock(&mddev->lock);
4745 return err ?: len;
4746 }
4747
4748 static struct md_sysfs_entry md_min_sync =
4749 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4750
4751 static ssize_t
4752 max_sync_show(struct mddev *mddev, char *page)
4753 {
4754 if (mddev->resync_max == MaxSector)
4755 return sprintf(page, "max\n");
4756 else
4757 return sprintf(page, "%llu\n",
4758 (unsigned long long)mddev->resync_max);
4759 }
4760 static ssize_t
4761 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4762 {
4763 int err;
4764 spin_lock(&mddev->lock);
4765 if (strncmp(buf, "max", 3) == 0)
4766 mddev->resync_max = MaxSector;
4767 else {
4768 unsigned long long max;
4769 int chunk;
4770
4771 err = -EINVAL;
4772 if (kstrtoull(buf, 10, &max))
4773 goto out_unlock;
4774 if (max < mddev->resync_min)
4775 goto out_unlock;
4776
4777 err = -EBUSY;
4778 if (max < mddev->resync_max &&
4779 mddev->ro == 0 &&
4780 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4781 goto out_unlock;
4782
4783 /* Must be a multiple of chunk_size */
4784 chunk = mddev->chunk_sectors;
4785 if (chunk) {
4786 sector_t temp = max;
4787
4788 err = -EINVAL;
4789 if (sector_div(temp, chunk))
4790 goto out_unlock;
4791 }
4792 mddev->resync_max = max;
4793 }
4794 wake_up(&mddev->recovery_wait);
4795 err = 0;
4796 out_unlock:
4797 spin_unlock(&mddev->lock);
4798 return err ?: len;
4799 }
4800
4801 static struct md_sysfs_entry md_max_sync =
4802 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4803
4804 static ssize_t
4805 suspend_lo_show(struct mddev *mddev, char *page)
4806 {
4807 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4808 }
4809
4810 static ssize_t
4811 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4812 {
4813 unsigned long long old, new;
4814 int err;
4815
4816 err = kstrtoull(buf, 10, &new);
4817 if (err < 0)
4818 return err;
4819 if (new != (sector_t)new)
4820 return -EINVAL;
4821
4822 err = mddev_lock(mddev);
4823 if (err)
4824 return err;
4825 err = -EINVAL;
4826 if (mddev->pers == NULL ||
4827 mddev->pers->quiesce == NULL)
4828 goto unlock;
4829 old = mddev->suspend_lo;
4830 mddev->suspend_lo = new;
4831 if (new >= old)
4832 /* Shrinking suspended region */
4833 mddev->pers->quiesce(mddev, 2);
4834 else {
4835 /* Expanding suspended region - need to wait */
4836 mddev->pers->quiesce(mddev, 1);
4837 mddev->pers->quiesce(mddev, 0);
4838 }
4839 err = 0;
4840 unlock:
4841 mddev_unlock(mddev);
4842 return err ?: len;
4843 }
4844 static struct md_sysfs_entry md_suspend_lo =
4845 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4846
4847 static ssize_t
4848 suspend_hi_show(struct mddev *mddev, char *page)
4849 {
4850 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4851 }
4852
4853 static ssize_t
4854 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4855 {
4856 unsigned long long old, new;
4857 int err;
4858
4859 err = kstrtoull(buf, 10, &new);
4860 if (err < 0)
4861 return err;
4862 if (new != (sector_t)new)
4863 return -EINVAL;
4864
4865 err = mddev_lock(mddev);
4866 if (err)
4867 return err;
4868 err = -EINVAL;
4869 if (mddev->pers == NULL ||
4870 mddev->pers->quiesce == NULL)
4871 goto unlock;
4872 old = mddev->suspend_hi;
4873 mddev->suspend_hi = new;
4874 if (new <= old)
4875 /* Shrinking suspended region */
4876 mddev->pers->quiesce(mddev, 2);
4877 else {
4878 /* Expanding suspended region - need to wait */
4879 mddev->pers->quiesce(mddev, 1);
4880 mddev->pers->quiesce(mddev, 0);
4881 }
4882 err = 0;
4883 unlock:
4884 mddev_unlock(mddev);
4885 return err ?: len;
4886 }
4887 static struct md_sysfs_entry md_suspend_hi =
4888 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4889
4890 static ssize_t
4891 reshape_position_show(struct mddev *mddev, char *page)
4892 {
4893 if (mddev->reshape_position != MaxSector)
4894 return sprintf(page, "%llu\n",
4895 (unsigned long long)mddev->reshape_position);
4896 strcpy(page, "none\n");
4897 return 5;
4898 }
4899
4900 static ssize_t
4901 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4902 {
4903 struct md_rdev *rdev;
4904 unsigned long long new;
4905 int err;
4906
4907 err = kstrtoull(buf, 10, &new);
4908 if (err < 0)
4909 return err;
4910 if (new != (sector_t)new)
4911 return -EINVAL;
4912 err = mddev_lock(mddev);
4913 if (err)
4914 return err;
4915 err = -EBUSY;
4916 if (mddev->pers)
4917 goto unlock;
4918 mddev->reshape_position = new;
4919 mddev->delta_disks = 0;
4920 mddev->reshape_backwards = 0;
4921 mddev->new_level = mddev->level;
4922 mddev->new_layout = mddev->layout;
4923 mddev->new_chunk_sectors = mddev->chunk_sectors;
4924 rdev_for_each(rdev, mddev)
4925 rdev->new_data_offset = rdev->data_offset;
4926 err = 0;
4927 unlock:
4928 mddev_unlock(mddev);
4929 return err ?: len;
4930 }
4931
4932 static struct md_sysfs_entry md_reshape_position =
4933 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4934 reshape_position_store);
4935
4936 static ssize_t
4937 reshape_direction_show(struct mddev *mddev, char *page)
4938 {
4939 return sprintf(page, "%s\n",
4940 mddev->reshape_backwards ? "backwards" : "forwards");
4941 }
4942
4943 static ssize_t
4944 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4945 {
4946 int backwards = 0;
4947 int err;
4948
4949 if (cmd_match(buf, "forwards"))
4950 backwards = 0;
4951 else if (cmd_match(buf, "backwards"))
4952 backwards = 1;
4953 else
4954 return -EINVAL;
4955 if (mddev->reshape_backwards == backwards)
4956 return len;
4957
4958 err = mddev_lock(mddev);
4959 if (err)
4960 return err;
4961 /* check if we are allowed to change */
4962 if (mddev->delta_disks)
4963 err = -EBUSY;
4964 else if (mddev->persistent &&
4965 mddev->major_version == 0)
4966 err = -EINVAL;
4967 else
4968 mddev->reshape_backwards = backwards;
4969 mddev_unlock(mddev);
4970 return err ?: len;
4971 }
4972
4973 static struct md_sysfs_entry md_reshape_direction =
4974 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4975 reshape_direction_store);
4976
4977 static ssize_t
4978 array_size_show(struct mddev *mddev, char *page)
4979 {
4980 if (mddev->external_size)
4981 return sprintf(page, "%llu\n",
4982 (unsigned long long)mddev->array_sectors/2);
4983 else
4984 return sprintf(page, "default\n");
4985 }
4986
4987 static ssize_t
4988 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4989 {
4990 sector_t sectors;
4991 int err;
4992
4993 err = mddev_lock(mddev);
4994 if (err)
4995 return err;
4996
4997 /* cluster raid doesn't support change array_sectors */
4998 if (mddev_is_clustered(mddev)) {
4999 mddev_unlock(mddev);
5000 return -EINVAL;
5001 }
5002
5003 if (strncmp(buf, "default", 7) == 0) {
5004 if (mddev->pers)
5005 sectors = mddev->pers->size(mddev, 0, 0);
5006 else
5007 sectors = mddev->array_sectors;
5008
5009 mddev->external_size = 0;
5010 } else {
5011 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5012 err = -EINVAL;
5013 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5014 err = -E2BIG;
5015 else
5016 mddev->external_size = 1;
5017 }
5018
5019 if (!err) {
5020 mddev->array_sectors = sectors;
5021 if (mddev->pers) {
5022 set_capacity(mddev->gendisk, mddev->array_sectors);
5023 revalidate_disk(mddev->gendisk);
5024 }
5025 }
5026 mddev_unlock(mddev);
5027 return err ?: len;
5028 }
5029
5030 static struct md_sysfs_entry md_array_size =
5031 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5032 array_size_store);
5033
5034 static ssize_t
5035 consistency_policy_show(struct mddev *mddev, char *page)
5036 {
5037 int ret;
5038
5039 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5040 ret = sprintf(page, "journal\n");
5041 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5042 ret = sprintf(page, "ppl\n");
5043 } else if (mddev->bitmap) {
5044 ret = sprintf(page, "bitmap\n");
5045 } else if (mddev->pers) {
5046 if (mddev->pers->sync_request)
5047 ret = sprintf(page, "resync\n");
5048 else
5049 ret = sprintf(page, "none\n");
5050 } else {
5051 ret = sprintf(page, "unknown\n");
5052 }
5053
5054 return ret;
5055 }
5056
5057 static ssize_t
5058 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5059 {
5060 int err = 0;
5061
5062 if (mddev->pers) {
5063 if (mddev->pers->change_consistency_policy)
5064 err = mddev->pers->change_consistency_policy(mddev, buf);
5065 else
5066 err = -EBUSY;
5067 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5068 set_bit(MD_HAS_PPL, &mddev->flags);
5069 } else {
5070 err = -EINVAL;
5071 }
5072
5073 return err ? err : len;
5074 }
5075
5076 static struct md_sysfs_entry md_consistency_policy =
5077 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5078 consistency_policy_store);
5079
5080 static struct attribute *md_default_attrs[] = {
5081 &md_level.attr,
5082 &md_layout.attr,
5083 &md_raid_disks.attr,
5084 &md_chunk_size.attr,
5085 &md_size.attr,
5086 &md_resync_start.attr,
5087 &md_metadata.attr,
5088 &md_new_device.attr,
5089 &md_safe_delay.attr,
5090 &md_array_state.attr,
5091 &md_reshape_position.attr,
5092 &md_reshape_direction.attr,
5093 &md_array_size.attr,
5094 &max_corr_read_errors.attr,
5095 &md_consistency_policy.attr,
5096 NULL,
5097 };
5098
5099 static struct attribute *md_redundancy_attrs[] = {
5100 &md_scan_mode.attr,
5101 &md_last_scan_mode.attr,
5102 &md_mismatches.attr,
5103 &md_sync_min.attr,
5104 &md_sync_max.attr,
5105 &md_sync_speed.attr,
5106 &md_sync_force_parallel.attr,
5107 &md_sync_completed.attr,
5108 &md_min_sync.attr,
5109 &md_max_sync.attr,
5110 &md_suspend_lo.attr,
5111 &md_suspend_hi.attr,
5112 &md_bitmap.attr,
5113 &md_degraded.attr,
5114 NULL,
5115 };
5116 static struct attribute_group md_redundancy_group = {
5117 .name = NULL,
5118 .attrs = md_redundancy_attrs,
5119 };
5120
5121 static ssize_t
5122 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5123 {
5124 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5125 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5126 ssize_t rv;
5127
5128 if (!entry->show)
5129 return -EIO;
5130 spin_lock(&all_mddevs_lock);
5131 if (list_empty(&mddev->all_mddevs)) {
5132 spin_unlock(&all_mddevs_lock);
5133 return -EBUSY;
5134 }
5135 mddev_get(mddev);
5136 spin_unlock(&all_mddevs_lock);
5137
5138 rv = entry->show(mddev, page);
5139 mddev_put(mddev);
5140 return rv;
5141 }
5142
5143 static ssize_t
5144 md_attr_store(struct kobject *kobj, struct attribute *attr,
5145 const char *page, size_t length)
5146 {
5147 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5148 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5149 ssize_t rv;
5150
5151 if (!entry->store)
5152 return -EIO;
5153 if (!capable(CAP_SYS_ADMIN))
5154 return -EACCES;
5155 spin_lock(&all_mddevs_lock);
5156 if (list_empty(&mddev->all_mddevs)) {
5157 spin_unlock(&all_mddevs_lock);
5158 return -EBUSY;
5159 }
5160 mddev_get(mddev);
5161 spin_unlock(&all_mddevs_lock);
5162 rv = entry->store(mddev, page, length);
5163 mddev_put(mddev);
5164 return rv;
5165 }
5166
5167 static void md_free(struct kobject *ko)
5168 {
5169 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5170
5171 if (mddev->sysfs_state)
5172 sysfs_put(mddev->sysfs_state);
5173
5174 if (mddev->queue)
5175 blk_cleanup_queue(mddev->queue);
5176 if (mddev->gendisk) {
5177 del_gendisk(mddev->gendisk);
5178 put_disk(mddev->gendisk);
5179 }
5180 percpu_ref_exit(&mddev->writes_pending);
5181
5182 kfree(mddev);
5183 }
5184
5185 static const struct sysfs_ops md_sysfs_ops = {
5186 .show = md_attr_show,
5187 .store = md_attr_store,
5188 };
5189 static struct kobj_type md_ktype = {
5190 .release = md_free,
5191 .sysfs_ops = &md_sysfs_ops,
5192 .default_attrs = md_default_attrs,
5193 };
5194
5195 int mdp_major = 0;
5196
5197 static void mddev_delayed_delete(struct work_struct *ws)
5198 {
5199 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5200
5201 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5202 kobject_del(&mddev->kobj);
5203 kobject_put(&mddev->kobj);
5204 }
5205
5206 static void no_op(struct percpu_ref *r) {}
5207
5208 int mddev_init_writes_pending(struct mddev *mddev)
5209 {
5210 if (mddev->writes_pending.percpu_count_ptr)
5211 return 0;
5212 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5213 return -ENOMEM;
5214 /* We want to start with the refcount at zero */
5215 percpu_ref_put(&mddev->writes_pending);
5216 return 0;
5217 }
5218 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5219
5220 static int md_alloc(dev_t dev, char *name)
5221 {
5222 /*
5223 * If dev is zero, name is the name of a device to allocate with
5224 * an arbitrary minor number. It will be "md_???"
5225 * If dev is non-zero it must be a device number with a MAJOR of
5226 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5227 * the device is being created by opening a node in /dev.
5228 * If "name" is not NULL, the device is being created by
5229 * writing to /sys/module/md_mod/parameters/new_array.
5230 */
5231 static DEFINE_MUTEX(disks_mutex);
5232 struct mddev *mddev = mddev_find(dev);
5233 struct gendisk *disk;
5234 int partitioned;
5235 int shift;
5236 int unit;
5237 int error;
5238
5239 if (!mddev)
5240 return -ENODEV;
5241
5242 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5243 shift = partitioned ? MdpMinorShift : 0;
5244 unit = MINOR(mddev->unit) >> shift;
5245
5246 /* wait for any previous instance of this device to be
5247 * completely removed (mddev_delayed_delete).
5248 */
5249 flush_workqueue(md_misc_wq);
5250
5251 mutex_lock(&disks_mutex);
5252 error = -EEXIST;
5253 if (mddev->gendisk)
5254 goto abort;
5255
5256 if (name && !dev) {
5257 /* Need to ensure that 'name' is not a duplicate.
5258 */
5259 struct mddev *mddev2;
5260 spin_lock(&all_mddevs_lock);
5261
5262 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5263 if (mddev2->gendisk &&
5264 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5265 spin_unlock(&all_mddevs_lock);
5266 goto abort;
5267 }
5268 spin_unlock(&all_mddevs_lock);
5269 }
5270 if (name && dev)
5271 /*
5272 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5273 */
5274 mddev->hold_active = UNTIL_STOP;
5275
5276 error = -ENOMEM;
5277 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5278 if (!mddev->queue)
5279 goto abort;
5280 mddev->queue->queuedata = mddev;
5281
5282 blk_queue_make_request(mddev->queue, md_make_request);
5283 blk_set_stacking_limits(&mddev->queue->limits);
5284
5285 disk = alloc_disk(1 << shift);
5286 if (!disk) {
5287 blk_cleanup_queue(mddev->queue);
5288 mddev->queue = NULL;
5289 goto abort;
5290 }
5291 disk->major = MAJOR(mddev->unit);
5292 disk->first_minor = unit << shift;
5293 if (name)
5294 strcpy(disk->disk_name, name);
5295 else if (partitioned)
5296 sprintf(disk->disk_name, "md_d%d", unit);
5297 else
5298 sprintf(disk->disk_name, "md%d", unit);
5299 disk->fops = &md_fops;
5300 disk->private_data = mddev;
5301 disk->queue = mddev->queue;
5302 blk_queue_write_cache(mddev->queue, true, true);
5303 /* Allow extended partitions. This makes the
5304 * 'mdp' device redundant, but we can't really
5305 * remove it now.
5306 */
5307 disk->flags |= GENHD_FL_EXT_DEVT;
5308 mddev->gendisk = disk;
5309 /* As soon as we call add_disk(), another thread could get
5310 * through to md_open, so make sure it doesn't get too far
5311 */
5312 mutex_lock(&mddev->open_mutex);
5313 add_disk(disk);
5314
5315 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5316 &disk_to_dev(disk)->kobj, "%s", "md");
5317 if (error) {
5318 /* This isn't possible, but as kobject_init_and_add is marked
5319 * __must_check, we must do something with the result
5320 */
5321 pr_debug("md: cannot register %s/md - name in use\n",
5322 disk->disk_name);
5323 error = 0;
5324 }
5325 if (mddev->kobj.sd &&
5326 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5327 pr_debug("pointless warning\n");
5328 mutex_unlock(&mddev->open_mutex);
5329 abort:
5330 mutex_unlock(&disks_mutex);
5331 if (!error && mddev->kobj.sd) {
5332 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5333 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5334 }
5335 mddev_put(mddev);
5336 return error;
5337 }
5338
5339 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5340 {
5341 if (create_on_open)
5342 md_alloc(dev, NULL);
5343 return NULL;
5344 }
5345
5346 static int add_named_array(const char *val, struct kernel_param *kp)
5347 {
5348 /*
5349 * val must be "md_*" or "mdNNN".
5350 * For "md_*" we allocate an array with a large free minor number, and
5351 * set the name to val. val must not already be an active name.
5352 * For "mdNNN" we allocate an array with the minor number NNN
5353 * which must not already be in use.
5354 */
5355 int len = strlen(val);
5356 char buf[DISK_NAME_LEN];
5357 unsigned long devnum;
5358
5359 while (len && val[len-1] == '\n')
5360 len--;
5361 if (len >= DISK_NAME_LEN)
5362 return -E2BIG;
5363 strlcpy(buf, val, len+1);
5364 if (strncmp(buf, "md_", 3) == 0)
5365 return md_alloc(0, buf);
5366 if (strncmp(buf, "md", 2) == 0 &&
5367 isdigit(buf[2]) &&
5368 kstrtoul(buf+2, 10, &devnum) == 0 &&
5369 devnum <= MINORMASK)
5370 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5371
5372 return -EINVAL;
5373 }
5374
5375 static void md_safemode_timeout(unsigned long data)
5376 {
5377 struct mddev *mddev = (struct mddev *) data;
5378
5379 mddev->safemode = 1;
5380 if (mddev->external)
5381 sysfs_notify_dirent_safe(mddev->sysfs_state);
5382
5383 md_wakeup_thread(mddev->thread);
5384 }
5385
5386 static int start_dirty_degraded;
5387
5388 int md_run(struct mddev *mddev)
5389 {
5390 int err;
5391 struct md_rdev *rdev;
5392 struct md_personality *pers;
5393
5394 if (list_empty(&mddev->disks))
5395 /* cannot run an array with no devices.. */
5396 return -EINVAL;
5397
5398 if (mddev->pers)
5399 return -EBUSY;
5400 /* Cannot run until previous stop completes properly */
5401 if (mddev->sysfs_active)
5402 return -EBUSY;
5403
5404 /*
5405 * Analyze all RAID superblock(s)
5406 */
5407 if (!mddev->raid_disks) {
5408 if (!mddev->persistent)
5409 return -EINVAL;
5410 analyze_sbs(mddev);
5411 }
5412
5413 if (mddev->level != LEVEL_NONE)
5414 request_module("md-level-%d", mddev->level);
5415 else if (mddev->clevel[0])
5416 request_module("md-%s", mddev->clevel);
5417
5418 /*
5419 * Drop all container device buffers, from now on
5420 * the only valid external interface is through the md
5421 * device.
5422 */
5423 rdev_for_each(rdev, mddev) {
5424 if (test_bit(Faulty, &rdev->flags))
5425 continue;
5426 sync_blockdev(rdev->bdev);
5427 invalidate_bdev(rdev->bdev);
5428 if (mddev->ro != 1 &&
5429 (bdev_read_only(rdev->bdev) ||
5430 bdev_read_only(rdev->meta_bdev))) {
5431 mddev->ro = 1;
5432 if (mddev->gendisk)
5433 set_disk_ro(mddev->gendisk, 1);
5434 }
5435
5436 /* perform some consistency tests on the device.
5437 * We don't want the data to overlap the metadata,
5438 * Internal Bitmap issues have been handled elsewhere.
5439 */
5440 if (rdev->meta_bdev) {
5441 /* Nothing to check */;
5442 } else if (rdev->data_offset < rdev->sb_start) {
5443 if (mddev->dev_sectors &&
5444 rdev->data_offset + mddev->dev_sectors
5445 > rdev->sb_start) {
5446 pr_warn("md: %s: data overlaps metadata\n",
5447 mdname(mddev));
5448 return -EINVAL;
5449 }
5450 } else {
5451 if (rdev->sb_start + rdev->sb_size/512
5452 > rdev->data_offset) {
5453 pr_warn("md: %s: metadata overlaps data\n",
5454 mdname(mddev));
5455 return -EINVAL;
5456 }
5457 }
5458 sysfs_notify_dirent_safe(rdev->sysfs_state);
5459 }
5460
5461 if (mddev->bio_set == NULL) {
5462 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5463 if (!mddev->bio_set)
5464 return -ENOMEM;
5465 }
5466 if (mddev->sync_set == NULL) {
5467 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5468 if (!mddev->sync_set)
5469 return -ENOMEM;
5470 }
5471
5472 spin_lock(&pers_lock);
5473 pers = find_pers(mddev->level, mddev->clevel);
5474 if (!pers || !try_module_get(pers->owner)) {
5475 spin_unlock(&pers_lock);
5476 if (mddev->level != LEVEL_NONE)
5477 pr_warn("md: personality for level %d is not loaded!\n",
5478 mddev->level);
5479 else
5480 pr_warn("md: personality for level %s is not loaded!\n",
5481 mddev->clevel);
5482 return -EINVAL;
5483 }
5484 spin_unlock(&pers_lock);
5485 if (mddev->level != pers->level) {
5486 mddev->level = pers->level;
5487 mddev->new_level = pers->level;
5488 }
5489 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5490
5491 if (mddev->reshape_position != MaxSector &&
5492 pers->start_reshape == NULL) {
5493 /* This personality cannot handle reshaping... */
5494 module_put(pers->owner);
5495 return -EINVAL;
5496 }
5497
5498 if (pers->sync_request) {
5499 /* Warn if this is a potentially silly
5500 * configuration.
5501 */
5502 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5503 struct md_rdev *rdev2;
5504 int warned = 0;
5505
5506 rdev_for_each(rdev, mddev)
5507 rdev_for_each(rdev2, mddev) {
5508 if (rdev < rdev2 &&
5509 rdev->bdev->bd_contains ==
5510 rdev2->bdev->bd_contains) {
5511 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5512 mdname(mddev),
5513 bdevname(rdev->bdev,b),
5514 bdevname(rdev2->bdev,b2));
5515 warned = 1;
5516 }
5517 }
5518
5519 if (warned)
5520 pr_warn("True protection against single-disk failure might be compromised.\n");
5521 }
5522
5523 mddev->recovery = 0;
5524 /* may be over-ridden by personality */
5525 mddev->resync_max_sectors = mddev->dev_sectors;
5526
5527 mddev->ok_start_degraded = start_dirty_degraded;
5528
5529 if (start_readonly && mddev->ro == 0)
5530 mddev->ro = 2; /* read-only, but switch on first write */
5531
5532 /*
5533 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes
5534 * up mddev->thread. It is important to initialize critical
5535 * resources for mddev->thread BEFORE calling pers->run().
5536 */
5537 err = pers->run(mddev);
5538 if (err)
5539 pr_warn("md: pers->run() failed ...\n");
5540 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5541 WARN_ONCE(!mddev->external_size,
5542 "%s: default size too small, but 'external_size' not in effect?\n",
5543 __func__);
5544 pr_warn("md: invalid array_size %llu > default size %llu\n",
5545 (unsigned long long)mddev->array_sectors / 2,
5546 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5547 err = -EINVAL;
5548 }
5549 if (err == 0 && pers->sync_request &&
5550 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5551 struct bitmap *bitmap;
5552
5553 bitmap = bitmap_create(mddev, -1);
5554 if (IS_ERR(bitmap)) {
5555 err = PTR_ERR(bitmap);
5556 pr_warn("%s: failed to create bitmap (%d)\n",
5557 mdname(mddev), err);
5558 } else
5559 mddev->bitmap = bitmap;
5560
5561 }
5562 if (err) {
5563 mddev_detach(mddev);
5564 if (mddev->private)
5565 pers->free(mddev, mddev->private);
5566 mddev->private = NULL;
5567 module_put(pers->owner);
5568 bitmap_destroy(mddev);
5569 return err;
5570 }
5571 if (mddev->queue) {
5572 bool nonrot = true;
5573
5574 rdev_for_each(rdev, mddev) {
5575 if (rdev->raid_disk >= 0 &&
5576 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5577 nonrot = false;
5578 break;
5579 }
5580 }
5581 if (mddev->degraded)
5582 nonrot = false;
5583 if (nonrot)
5584 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5585 else
5586 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5587 mddev->queue->backing_dev_info->congested_data = mddev;
5588 mddev->queue->backing_dev_info->congested_fn = md_congested;
5589 }
5590 if (pers->sync_request) {
5591 if (mddev->kobj.sd &&
5592 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5593 pr_warn("md: cannot register extra attributes for %s\n",
5594 mdname(mddev));
5595 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5596 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5597 mddev->ro = 0;
5598
5599 atomic_set(&mddev->max_corr_read_errors,
5600 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5601 mddev->safemode = 0;
5602 if (mddev_is_clustered(mddev))
5603 mddev->safemode_delay = 0;
5604 else
5605 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5606 mddev->in_sync = 1;
5607 smp_wmb();
5608 spin_lock(&mddev->lock);
5609 mddev->pers = pers;
5610 spin_unlock(&mddev->lock);
5611 rdev_for_each(rdev, mddev)
5612 if (rdev->raid_disk >= 0)
5613 if (sysfs_link_rdev(mddev, rdev))
5614 /* failure here is OK */;
5615
5616 if (mddev->degraded && !mddev->ro)
5617 /* This ensures that recovering status is reported immediately
5618 * via sysfs - until a lack of spares is confirmed.
5619 */
5620 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5621 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5622
5623 if (mddev->sb_flags)
5624 md_update_sb(mddev, 0);
5625
5626 md_new_event(mddev);
5627 sysfs_notify_dirent_safe(mddev->sysfs_state);
5628 sysfs_notify_dirent_safe(mddev->sysfs_action);
5629 sysfs_notify(&mddev->kobj, NULL, "degraded");
5630 return 0;
5631 }
5632 EXPORT_SYMBOL_GPL(md_run);
5633
5634 static int do_md_run(struct mddev *mddev)
5635 {
5636 int err;
5637
5638 err = md_run(mddev);
5639 if (err)
5640 goto out;
5641 err = bitmap_load(mddev);
5642 if (err) {
5643 bitmap_destroy(mddev);
5644 goto out;
5645 }
5646
5647 if (mddev_is_clustered(mddev))
5648 md_allow_write(mddev);
5649
5650 md_wakeup_thread(mddev->thread);
5651 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5652
5653 set_capacity(mddev->gendisk, mddev->array_sectors);
5654 revalidate_disk(mddev->gendisk);
5655 mddev->changed = 1;
5656 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5657 out:
5658 return err;
5659 }
5660
5661 static int restart_array(struct mddev *mddev)
5662 {
5663 struct gendisk *disk = mddev->gendisk;
5664 struct md_rdev *rdev;
5665 bool has_journal = false;
5666 bool has_readonly = false;
5667
5668 /* Complain if it has no devices */
5669 if (list_empty(&mddev->disks))
5670 return -ENXIO;
5671 if (!mddev->pers)
5672 return -EINVAL;
5673 if (!mddev->ro)
5674 return -EBUSY;
5675
5676 rcu_read_lock();
5677 rdev_for_each_rcu(rdev, mddev) {
5678 if (test_bit(Journal, &rdev->flags) &&
5679 !test_bit(Faulty, &rdev->flags))
5680 has_journal = true;
5681 if (bdev_read_only(rdev->bdev))
5682 has_readonly = true;
5683 }
5684 rcu_read_unlock();
5685 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5686 /* Don't restart rw with journal missing/faulty */
5687 return -EINVAL;
5688 if (has_readonly)
5689 return -EROFS;
5690
5691 mddev->safemode = 0;
5692 mddev->ro = 0;
5693 set_disk_ro(disk, 0);
5694 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5695 /* Kick recovery or resync if necessary */
5696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5697 md_wakeup_thread(mddev->thread);
5698 md_wakeup_thread(mddev->sync_thread);
5699 sysfs_notify_dirent_safe(mddev->sysfs_state);
5700 return 0;
5701 }
5702
5703 static void md_clean(struct mddev *mddev)
5704 {
5705 mddev->array_sectors = 0;
5706 mddev->external_size = 0;
5707 mddev->dev_sectors = 0;
5708 mddev->raid_disks = 0;
5709 mddev->recovery_cp = 0;
5710 mddev->resync_min = 0;
5711 mddev->resync_max = MaxSector;
5712 mddev->reshape_position = MaxSector;
5713 mddev->external = 0;
5714 mddev->persistent = 0;
5715 mddev->level = LEVEL_NONE;
5716 mddev->clevel[0] = 0;
5717 mddev->flags = 0;
5718 mddev->sb_flags = 0;
5719 mddev->ro = 0;
5720 mddev->metadata_type[0] = 0;
5721 mddev->chunk_sectors = 0;
5722 mddev->ctime = mddev->utime = 0;
5723 mddev->layout = 0;
5724 mddev->max_disks = 0;
5725 mddev->events = 0;
5726 mddev->can_decrease_events = 0;
5727 mddev->delta_disks = 0;
5728 mddev->reshape_backwards = 0;
5729 mddev->new_level = LEVEL_NONE;
5730 mddev->new_layout = 0;
5731 mddev->new_chunk_sectors = 0;
5732 mddev->curr_resync = 0;
5733 atomic64_set(&mddev->resync_mismatches, 0);
5734 mddev->suspend_lo = mddev->suspend_hi = 0;
5735 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5736 mddev->recovery = 0;
5737 mddev->in_sync = 0;
5738 mddev->changed = 0;
5739 mddev->degraded = 0;
5740 mddev->safemode = 0;
5741 mddev->private = NULL;
5742 mddev->cluster_info = NULL;
5743 mddev->bitmap_info.offset = 0;
5744 mddev->bitmap_info.default_offset = 0;
5745 mddev->bitmap_info.default_space = 0;
5746 mddev->bitmap_info.chunksize = 0;
5747 mddev->bitmap_info.daemon_sleep = 0;
5748 mddev->bitmap_info.max_write_behind = 0;
5749 mddev->bitmap_info.nodes = 0;
5750 }
5751
5752 static void __md_stop_writes(struct mddev *mddev)
5753 {
5754 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5755 flush_workqueue(md_misc_wq);
5756 if (mddev->sync_thread) {
5757 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5758 md_reap_sync_thread(mddev);
5759 }
5760
5761 del_timer_sync(&mddev->safemode_timer);
5762
5763 if (mddev->pers && mddev->pers->quiesce) {
5764 mddev->pers->quiesce(mddev, 1);
5765 mddev->pers->quiesce(mddev, 0);
5766 }
5767 bitmap_flush(mddev);
5768
5769 if (mddev->ro == 0 &&
5770 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5771 mddev->sb_flags)) {
5772 /* mark array as shutdown cleanly */
5773 if (!mddev_is_clustered(mddev))
5774 mddev->in_sync = 1;
5775 md_update_sb(mddev, 1);
5776 }
5777 }
5778
5779 void md_stop_writes(struct mddev *mddev)
5780 {
5781 mddev_lock_nointr(mddev);
5782 __md_stop_writes(mddev);
5783 mddev_unlock(mddev);
5784 }
5785 EXPORT_SYMBOL_GPL(md_stop_writes);
5786
5787 static void mddev_detach(struct mddev *mddev)
5788 {
5789 bitmap_wait_behind_writes(mddev);
5790 if (mddev->pers && mddev->pers->quiesce) {
5791 mddev->pers->quiesce(mddev, 1);
5792 mddev->pers->quiesce(mddev, 0);
5793 }
5794 md_unregister_thread(&mddev->thread);
5795 if (mddev->queue)
5796 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5797 }
5798
5799 static void __md_stop(struct mddev *mddev)
5800 {
5801 struct md_personality *pers = mddev->pers;
5802 bitmap_destroy(mddev);
5803 mddev_detach(mddev);
5804 /* Ensure ->event_work is done */
5805 flush_workqueue(md_misc_wq);
5806 spin_lock(&mddev->lock);
5807 mddev->pers = NULL;
5808 spin_unlock(&mddev->lock);
5809 pers->free(mddev, mddev->private);
5810 mddev->private = NULL;
5811 if (pers->sync_request && mddev->to_remove == NULL)
5812 mddev->to_remove = &md_redundancy_group;
5813 module_put(pers->owner);
5814 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5815 }
5816
5817 void md_stop(struct mddev *mddev)
5818 {
5819 /* stop the array and free an attached data structures.
5820 * This is called from dm-raid
5821 */
5822 __md_stop(mddev);
5823 if (mddev->bio_set)
5824 bioset_free(mddev->bio_set);
5825 }
5826
5827 EXPORT_SYMBOL_GPL(md_stop);
5828
5829 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5830 {
5831 int err = 0;
5832 int did_freeze = 0;
5833
5834 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5835 did_freeze = 1;
5836 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5837 md_wakeup_thread(mddev->thread);
5838 }
5839 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5840 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5841 if (mddev->sync_thread)
5842 /* Thread might be blocked waiting for metadata update
5843 * which will now never happen */
5844 wake_up_process(mddev->sync_thread->tsk);
5845
5846 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5847 return -EBUSY;
5848 mddev_unlock(mddev);
5849 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5850 &mddev->recovery));
5851 wait_event(mddev->sb_wait,
5852 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5853 mddev_lock_nointr(mddev);
5854
5855 mutex_lock(&mddev->open_mutex);
5856 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5857 mddev->sync_thread ||
5858 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5859 pr_warn("md: %s still in use.\n",mdname(mddev));
5860 if (did_freeze) {
5861 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5862 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5863 md_wakeup_thread(mddev->thread);
5864 }
5865 err = -EBUSY;
5866 goto out;
5867 }
5868 if (mddev->pers) {
5869 __md_stop_writes(mddev);
5870
5871 err = -ENXIO;
5872 if (mddev->ro==1)
5873 goto out;
5874 mddev->ro = 1;
5875 set_disk_ro(mddev->gendisk, 1);
5876 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5877 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5878 md_wakeup_thread(mddev->thread);
5879 sysfs_notify_dirent_safe(mddev->sysfs_state);
5880 err = 0;
5881 }
5882 out:
5883 mutex_unlock(&mddev->open_mutex);
5884 return err;
5885 }
5886
5887 /* mode:
5888 * 0 - completely stop and dis-assemble array
5889 * 2 - stop but do not disassemble array
5890 */
5891 static int do_md_stop(struct mddev *mddev, int mode,
5892 struct block_device *bdev)
5893 {
5894 struct gendisk *disk = mddev->gendisk;
5895 struct md_rdev *rdev;
5896 int did_freeze = 0;
5897
5898 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5899 did_freeze = 1;
5900 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5901 md_wakeup_thread(mddev->thread);
5902 }
5903 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5904 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5905 if (mddev->sync_thread)
5906 /* Thread might be blocked waiting for metadata update
5907 * which will now never happen */
5908 wake_up_process(mddev->sync_thread->tsk);
5909
5910 mddev_unlock(mddev);
5911 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5912 !test_bit(MD_RECOVERY_RUNNING,
5913 &mddev->recovery)));
5914 mddev_lock_nointr(mddev);
5915
5916 mutex_lock(&mddev->open_mutex);
5917 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5918 mddev->sysfs_active ||
5919 mddev->sync_thread ||
5920 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5921 pr_warn("md: %s still in use.\n",mdname(mddev));
5922 mutex_unlock(&mddev->open_mutex);
5923 if (did_freeze) {
5924 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5925 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5926 md_wakeup_thread(mddev->thread);
5927 }
5928 return -EBUSY;
5929 }
5930 if (mddev->pers) {
5931 if (mddev->ro)
5932 set_disk_ro(disk, 0);
5933
5934 __md_stop_writes(mddev);
5935 __md_stop(mddev);
5936 mddev->queue->backing_dev_info->congested_fn = NULL;
5937
5938 /* tell userspace to handle 'inactive' */
5939 sysfs_notify_dirent_safe(mddev->sysfs_state);
5940
5941 rdev_for_each(rdev, mddev)
5942 if (rdev->raid_disk >= 0)
5943 sysfs_unlink_rdev(mddev, rdev);
5944
5945 set_capacity(disk, 0);
5946 mutex_unlock(&mddev->open_mutex);
5947 mddev->changed = 1;
5948 revalidate_disk(disk);
5949
5950 if (mddev->ro)
5951 mddev->ro = 0;
5952 } else
5953 mutex_unlock(&mddev->open_mutex);
5954 /*
5955 * Free resources if final stop
5956 */
5957 if (mode == 0) {
5958 pr_info("md: %s stopped.\n", mdname(mddev));
5959
5960 if (mddev->bitmap_info.file) {
5961 struct file *f = mddev->bitmap_info.file;
5962 spin_lock(&mddev->lock);
5963 mddev->bitmap_info.file = NULL;
5964 spin_unlock(&mddev->lock);
5965 fput(f);
5966 }
5967 mddev->bitmap_info.offset = 0;
5968
5969 export_array(mddev);
5970
5971 md_clean(mddev);
5972 if (mddev->hold_active == UNTIL_STOP)
5973 mddev->hold_active = 0;
5974 }
5975 md_new_event(mddev);
5976 sysfs_notify_dirent_safe(mddev->sysfs_state);
5977 return 0;
5978 }
5979
5980 #ifndef MODULE
5981 static void autorun_array(struct mddev *mddev)
5982 {
5983 struct md_rdev *rdev;
5984 int err;
5985
5986 if (list_empty(&mddev->disks))
5987 return;
5988
5989 pr_info("md: running: ");
5990
5991 rdev_for_each(rdev, mddev) {
5992 char b[BDEVNAME_SIZE];
5993 pr_cont("<%s>", bdevname(rdev->bdev,b));
5994 }
5995 pr_cont("\n");
5996
5997 err = do_md_run(mddev);
5998 if (err) {
5999 pr_warn("md: do_md_run() returned %d\n", err);
6000 do_md_stop(mddev, 0, NULL);
6001 }
6002 }
6003
6004 /*
6005 * lets try to run arrays based on all disks that have arrived
6006 * until now. (those are in pending_raid_disks)
6007 *
6008 * the method: pick the first pending disk, collect all disks with
6009 * the same UUID, remove all from the pending list and put them into
6010 * the 'same_array' list. Then order this list based on superblock
6011 * update time (freshest comes first), kick out 'old' disks and
6012 * compare superblocks. If everything's fine then run it.
6013 *
6014 * If "unit" is allocated, then bump its reference count
6015 */
6016 static void autorun_devices(int part)
6017 {
6018 struct md_rdev *rdev0, *rdev, *tmp;
6019 struct mddev *mddev;
6020 char b[BDEVNAME_SIZE];
6021
6022 pr_info("md: autorun ...\n");
6023 while (!list_empty(&pending_raid_disks)) {
6024 int unit;
6025 dev_t dev;
6026 LIST_HEAD(candidates);
6027 rdev0 = list_entry(pending_raid_disks.next,
6028 struct md_rdev, same_set);
6029
6030 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6031 INIT_LIST_HEAD(&candidates);
6032 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6033 if (super_90_load(rdev, rdev0, 0) >= 0) {
6034 pr_debug("md: adding %s ...\n",
6035 bdevname(rdev->bdev,b));
6036 list_move(&rdev->same_set, &candidates);
6037 }
6038 /*
6039 * now we have a set of devices, with all of them having
6040 * mostly sane superblocks. It's time to allocate the
6041 * mddev.
6042 */
6043 if (part) {
6044 dev = MKDEV(mdp_major,
6045 rdev0->preferred_minor << MdpMinorShift);
6046 unit = MINOR(dev) >> MdpMinorShift;
6047 } else {
6048 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6049 unit = MINOR(dev);
6050 }
6051 if (rdev0->preferred_minor != unit) {
6052 pr_warn("md: unit number in %s is bad: %d\n",
6053 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6054 break;
6055 }
6056
6057 md_probe(dev, NULL, NULL);
6058 mddev = mddev_find(dev);
6059 if (!mddev || !mddev->gendisk) {
6060 if (mddev)
6061 mddev_put(mddev);
6062 break;
6063 }
6064 if (mddev_lock(mddev))
6065 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6066 else if (mddev->raid_disks || mddev->major_version
6067 || !list_empty(&mddev->disks)) {
6068 pr_warn("md: %s already running, cannot run %s\n",
6069 mdname(mddev), bdevname(rdev0->bdev,b));
6070 mddev_unlock(mddev);
6071 } else {
6072 pr_debug("md: created %s\n", mdname(mddev));
6073 mddev->persistent = 1;
6074 rdev_for_each_list(rdev, tmp, &candidates) {
6075 list_del_init(&rdev->same_set);
6076 if (bind_rdev_to_array(rdev, mddev))
6077 export_rdev(rdev);
6078 }
6079 autorun_array(mddev);
6080 mddev_unlock(mddev);
6081 }
6082 /* on success, candidates will be empty, on error
6083 * it won't...
6084 */
6085 rdev_for_each_list(rdev, tmp, &candidates) {
6086 list_del_init(&rdev->same_set);
6087 export_rdev(rdev);
6088 }
6089 mddev_put(mddev);
6090 }
6091 pr_info("md: ... autorun DONE.\n");
6092 }
6093 #endif /* !MODULE */
6094
6095 static int get_version(void __user *arg)
6096 {
6097 mdu_version_t ver;
6098
6099 ver.major = MD_MAJOR_VERSION;
6100 ver.minor = MD_MINOR_VERSION;
6101 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6102
6103 if (copy_to_user(arg, &ver, sizeof(ver)))
6104 return -EFAULT;
6105
6106 return 0;
6107 }
6108
6109 static int get_array_info(struct mddev *mddev, void __user *arg)
6110 {
6111 mdu_array_info_t info;
6112 int nr,working,insync,failed,spare;
6113 struct md_rdev *rdev;
6114
6115 nr = working = insync = failed = spare = 0;
6116 rcu_read_lock();
6117 rdev_for_each_rcu(rdev, mddev) {
6118 nr++;
6119 if (test_bit(Faulty, &rdev->flags))
6120 failed++;
6121 else {
6122 working++;
6123 if (test_bit(In_sync, &rdev->flags))
6124 insync++;
6125 else if (test_bit(Journal, &rdev->flags))
6126 /* TODO: add journal count to md_u.h */
6127 ;
6128 else
6129 spare++;
6130 }
6131 }
6132 rcu_read_unlock();
6133
6134 info.major_version = mddev->major_version;
6135 info.minor_version = mddev->minor_version;
6136 info.patch_version = MD_PATCHLEVEL_VERSION;
6137 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6138 info.level = mddev->level;
6139 info.size = mddev->dev_sectors / 2;
6140 if (info.size != mddev->dev_sectors / 2) /* overflow */
6141 info.size = -1;
6142 info.nr_disks = nr;
6143 info.raid_disks = mddev->raid_disks;
6144 info.md_minor = mddev->md_minor;
6145 info.not_persistent= !mddev->persistent;
6146
6147 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6148 info.state = 0;
6149 if (mddev->in_sync)
6150 info.state = (1<<MD_SB_CLEAN);
6151 if (mddev->bitmap && mddev->bitmap_info.offset)
6152 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6153 if (mddev_is_clustered(mddev))
6154 info.state |= (1<<MD_SB_CLUSTERED);
6155 info.active_disks = insync;
6156 info.working_disks = working;
6157 info.failed_disks = failed;
6158 info.spare_disks = spare;
6159
6160 info.layout = mddev->layout;
6161 info.chunk_size = mddev->chunk_sectors << 9;
6162
6163 if (copy_to_user(arg, &info, sizeof(info)))
6164 return -EFAULT;
6165
6166 return 0;
6167 }
6168
6169 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6170 {
6171 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6172 char *ptr;
6173 int err;
6174
6175 file = kzalloc(sizeof(*file), GFP_NOIO);
6176 if (!file)
6177 return -ENOMEM;
6178
6179 err = 0;
6180 spin_lock(&mddev->lock);
6181 /* bitmap enabled */
6182 if (mddev->bitmap_info.file) {
6183 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6184 sizeof(file->pathname));
6185 if (IS_ERR(ptr))
6186 err = PTR_ERR(ptr);
6187 else
6188 memmove(file->pathname, ptr,
6189 sizeof(file->pathname)-(ptr-file->pathname));
6190 }
6191 spin_unlock(&mddev->lock);
6192
6193 if (err == 0 &&
6194 copy_to_user(arg, file, sizeof(*file)))
6195 err = -EFAULT;
6196
6197 kfree(file);
6198 return err;
6199 }
6200
6201 static int get_disk_info(struct mddev *mddev, void __user * arg)
6202 {
6203 mdu_disk_info_t info;
6204 struct md_rdev *rdev;
6205
6206 if (copy_from_user(&info, arg, sizeof(info)))
6207 return -EFAULT;
6208
6209 rcu_read_lock();
6210 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6211 if (rdev) {
6212 info.major = MAJOR(rdev->bdev->bd_dev);
6213 info.minor = MINOR(rdev->bdev->bd_dev);
6214 info.raid_disk = rdev->raid_disk;
6215 info.state = 0;
6216 if (test_bit(Faulty, &rdev->flags))
6217 info.state |= (1<<MD_DISK_FAULTY);
6218 else if (test_bit(In_sync, &rdev->flags)) {
6219 info.state |= (1<<MD_DISK_ACTIVE);
6220 info.state |= (1<<MD_DISK_SYNC);
6221 }
6222 if (test_bit(Journal, &rdev->flags))
6223 info.state |= (1<<MD_DISK_JOURNAL);
6224 if (test_bit(WriteMostly, &rdev->flags))
6225 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6226 if (test_bit(FailFast, &rdev->flags))
6227 info.state |= (1<<MD_DISK_FAILFAST);
6228 } else {
6229 info.major = info.minor = 0;
6230 info.raid_disk = -1;
6231 info.state = (1<<MD_DISK_REMOVED);
6232 }
6233 rcu_read_unlock();
6234
6235 if (copy_to_user(arg, &info, sizeof(info)))
6236 return -EFAULT;
6237
6238 return 0;
6239 }
6240
6241 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6242 {
6243 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6244 struct md_rdev *rdev;
6245 dev_t dev = MKDEV(info->major,info->minor);
6246
6247 if (mddev_is_clustered(mddev) &&
6248 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6249 pr_warn("%s: Cannot add to clustered mddev.\n",
6250 mdname(mddev));
6251 return -EINVAL;
6252 }
6253
6254 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6255 return -EOVERFLOW;
6256
6257 if (!mddev->raid_disks) {
6258 int err;
6259 /* expecting a device which has a superblock */
6260 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6261 if (IS_ERR(rdev)) {
6262 pr_warn("md: md_import_device returned %ld\n",
6263 PTR_ERR(rdev));
6264 return PTR_ERR(rdev);
6265 }
6266 if (!list_empty(&mddev->disks)) {
6267 struct md_rdev *rdev0
6268 = list_entry(mddev->disks.next,
6269 struct md_rdev, same_set);
6270 err = super_types[mddev->major_version]
6271 .load_super(rdev, rdev0, mddev->minor_version);
6272 if (err < 0) {
6273 pr_warn("md: %s has different UUID to %s\n",
6274 bdevname(rdev->bdev,b),
6275 bdevname(rdev0->bdev,b2));
6276 export_rdev(rdev);
6277 return -EINVAL;
6278 }
6279 }
6280 err = bind_rdev_to_array(rdev, mddev);
6281 if (err)
6282 export_rdev(rdev);
6283 return err;
6284 }
6285
6286 /*
6287 * add_new_disk can be used once the array is assembled
6288 * to add "hot spares". They must already have a superblock
6289 * written
6290 */
6291 if (mddev->pers) {
6292 int err;
6293 if (!mddev->pers->hot_add_disk) {
6294 pr_warn("%s: personality does not support diskops!\n",
6295 mdname(mddev));
6296 return -EINVAL;
6297 }
6298 if (mddev->persistent)
6299 rdev = md_import_device(dev, mddev->major_version,
6300 mddev->minor_version);
6301 else
6302 rdev = md_import_device(dev, -1, -1);
6303 if (IS_ERR(rdev)) {
6304 pr_warn("md: md_import_device returned %ld\n",
6305 PTR_ERR(rdev));
6306 return PTR_ERR(rdev);
6307 }
6308 /* set saved_raid_disk if appropriate */
6309 if (!mddev->persistent) {
6310 if (info->state & (1<<MD_DISK_SYNC) &&
6311 info->raid_disk < mddev->raid_disks) {
6312 rdev->raid_disk = info->raid_disk;
6313 set_bit(In_sync, &rdev->flags);
6314 clear_bit(Bitmap_sync, &rdev->flags);
6315 } else
6316 rdev->raid_disk = -1;
6317 rdev->saved_raid_disk = rdev->raid_disk;
6318 } else
6319 super_types[mddev->major_version].
6320 validate_super(mddev, rdev);
6321 if ((info->state & (1<<MD_DISK_SYNC)) &&
6322 rdev->raid_disk != info->raid_disk) {
6323 /* This was a hot-add request, but events doesn't
6324 * match, so reject it.
6325 */
6326 export_rdev(rdev);
6327 return -EINVAL;
6328 }
6329
6330 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6331 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6332 set_bit(WriteMostly, &rdev->flags);
6333 else
6334 clear_bit(WriteMostly, &rdev->flags);
6335 if (info->state & (1<<MD_DISK_FAILFAST))
6336 set_bit(FailFast, &rdev->flags);
6337 else
6338 clear_bit(FailFast, &rdev->flags);
6339
6340 if (info->state & (1<<MD_DISK_JOURNAL)) {
6341 struct md_rdev *rdev2;
6342 bool has_journal = false;
6343
6344 /* make sure no existing journal disk */
6345 rdev_for_each(rdev2, mddev) {
6346 if (test_bit(Journal, &rdev2->flags)) {
6347 has_journal = true;
6348 break;
6349 }
6350 }
6351 if (has_journal) {
6352 export_rdev(rdev);
6353 return -EBUSY;
6354 }
6355 set_bit(Journal, &rdev->flags);
6356 }
6357 /*
6358 * check whether the device shows up in other nodes
6359 */
6360 if (mddev_is_clustered(mddev)) {
6361 if (info->state & (1 << MD_DISK_CANDIDATE))
6362 set_bit(Candidate, &rdev->flags);
6363 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6364 /* --add initiated by this node */
6365 err = md_cluster_ops->add_new_disk(mddev, rdev);
6366 if (err) {
6367 export_rdev(rdev);
6368 return err;
6369 }
6370 }
6371 }
6372
6373 rdev->raid_disk = -1;
6374 err = bind_rdev_to_array(rdev, mddev);
6375
6376 if (err)
6377 export_rdev(rdev);
6378
6379 if (mddev_is_clustered(mddev)) {
6380 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6381 if (!err) {
6382 err = md_cluster_ops->new_disk_ack(mddev,
6383 err == 0);
6384 if (err)
6385 md_kick_rdev_from_array(rdev);
6386 }
6387 } else {
6388 if (err)
6389 md_cluster_ops->add_new_disk_cancel(mddev);
6390 else
6391 err = add_bound_rdev(rdev);
6392 }
6393
6394 } else if (!err)
6395 err = add_bound_rdev(rdev);
6396
6397 return err;
6398 }
6399
6400 /* otherwise, add_new_disk is only allowed
6401 * for major_version==0 superblocks
6402 */
6403 if (mddev->major_version != 0) {
6404 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6405 return -EINVAL;
6406 }
6407
6408 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6409 int err;
6410 rdev = md_import_device(dev, -1, 0);
6411 if (IS_ERR(rdev)) {
6412 pr_warn("md: error, md_import_device() returned %ld\n",
6413 PTR_ERR(rdev));
6414 return PTR_ERR(rdev);
6415 }
6416 rdev->desc_nr = info->number;
6417 if (info->raid_disk < mddev->raid_disks)
6418 rdev->raid_disk = info->raid_disk;
6419 else
6420 rdev->raid_disk = -1;
6421
6422 if (rdev->raid_disk < mddev->raid_disks)
6423 if (info->state & (1<<MD_DISK_SYNC))
6424 set_bit(In_sync, &rdev->flags);
6425
6426 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6427 set_bit(WriteMostly, &rdev->flags);
6428 if (info->state & (1<<MD_DISK_FAILFAST))
6429 set_bit(FailFast, &rdev->flags);
6430
6431 if (!mddev->persistent) {
6432 pr_debug("md: nonpersistent superblock ...\n");
6433 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6434 } else
6435 rdev->sb_start = calc_dev_sboffset(rdev);
6436 rdev->sectors = rdev->sb_start;
6437
6438 err = bind_rdev_to_array(rdev, mddev);
6439 if (err) {
6440 export_rdev(rdev);
6441 return err;
6442 }
6443 }
6444
6445 return 0;
6446 }
6447
6448 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6449 {
6450 char b[BDEVNAME_SIZE];
6451 struct md_rdev *rdev;
6452
6453 rdev = find_rdev(mddev, dev);
6454 if (!rdev)
6455 return -ENXIO;
6456
6457 if (rdev->raid_disk < 0)
6458 goto kick_rdev;
6459
6460 clear_bit(Blocked, &rdev->flags);
6461 remove_and_add_spares(mddev, rdev);
6462
6463 if (rdev->raid_disk >= 0)
6464 goto busy;
6465
6466 kick_rdev:
6467 if (mddev_is_clustered(mddev))
6468 md_cluster_ops->remove_disk(mddev, rdev);
6469
6470 md_kick_rdev_from_array(rdev);
6471 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6472 if (mddev->thread)
6473 md_wakeup_thread(mddev->thread);
6474 else
6475 md_update_sb(mddev, 1);
6476 md_new_event(mddev);
6477
6478 return 0;
6479 busy:
6480 pr_debug("md: cannot remove active disk %s from %s ...\n",
6481 bdevname(rdev->bdev,b), mdname(mddev));
6482 return -EBUSY;
6483 }
6484
6485 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6486 {
6487 char b[BDEVNAME_SIZE];
6488 int err;
6489 struct md_rdev *rdev;
6490
6491 if (!mddev->pers)
6492 return -ENODEV;
6493
6494 if (mddev->major_version != 0) {
6495 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6496 mdname(mddev));
6497 return -EINVAL;
6498 }
6499 if (!mddev->pers->hot_add_disk) {
6500 pr_warn("%s: personality does not support diskops!\n",
6501 mdname(mddev));
6502 return -EINVAL;
6503 }
6504
6505 rdev = md_import_device(dev, -1, 0);
6506 if (IS_ERR(rdev)) {
6507 pr_warn("md: error, md_import_device() returned %ld\n",
6508 PTR_ERR(rdev));
6509 return -EINVAL;
6510 }
6511
6512 if (mddev->persistent)
6513 rdev->sb_start = calc_dev_sboffset(rdev);
6514 else
6515 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6516
6517 rdev->sectors = rdev->sb_start;
6518
6519 if (test_bit(Faulty, &rdev->flags)) {
6520 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6521 bdevname(rdev->bdev,b), mdname(mddev));
6522 err = -EINVAL;
6523 goto abort_export;
6524 }
6525
6526 clear_bit(In_sync, &rdev->flags);
6527 rdev->desc_nr = -1;
6528 rdev->saved_raid_disk = -1;
6529 err = bind_rdev_to_array(rdev, mddev);
6530 if (err)
6531 goto abort_export;
6532
6533 /*
6534 * The rest should better be atomic, we can have disk failures
6535 * noticed in interrupt contexts ...
6536 */
6537
6538 rdev->raid_disk = -1;
6539
6540 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6541 if (!mddev->thread)
6542 md_update_sb(mddev, 1);
6543 /*
6544 * Kick recovery, maybe this spare has to be added to the
6545 * array immediately.
6546 */
6547 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6548 md_wakeup_thread(mddev->thread);
6549 md_new_event(mddev);
6550 return 0;
6551
6552 abort_export:
6553 export_rdev(rdev);
6554 return err;
6555 }
6556
6557 static int set_bitmap_file(struct mddev *mddev, int fd)
6558 {
6559 int err = 0;
6560
6561 if (mddev->pers) {
6562 if (!mddev->pers->quiesce || !mddev->thread)
6563 return -EBUSY;
6564 if (mddev->recovery || mddev->sync_thread)
6565 return -EBUSY;
6566 /* we should be able to change the bitmap.. */
6567 }
6568
6569 if (fd >= 0) {
6570 struct inode *inode;
6571 struct file *f;
6572
6573 if (mddev->bitmap || mddev->bitmap_info.file)
6574 return -EEXIST; /* cannot add when bitmap is present */
6575 f = fget(fd);
6576
6577 if (f == NULL) {
6578 pr_warn("%s: error: failed to get bitmap file\n",
6579 mdname(mddev));
6580 return -EBADF;
6581 }
6582
6583 inode = f->f_mapping->host;
6584 if (!S_ISREG(inode->i_mode)) {
6585 pr_warn("%s: error: bitmap file must be a regular file\n",
6586 mdname(mddev));
6587 err = -EBADF;
6588 } else if (!(f->f_mode & FMODE_WRITE)) {
6589 pr_warn("%s: error: bitmap file must open for write\n",
6590 mdname(mddev));
6591 err = -EBADF;
6592 } else if (atomic_read(&inode->i_writecount) != 1) {
6593 pr_warn("%s: error: bitmap file is already in use\n",
6594 mdname(mddev));
6595 err = -EBUSY;
6596 }
6597 if (err) {
6598 fput(f);
6599 return err;
6600 }
6601 mddev->bitmap_info.file = f;
6602 mddev->bitmap_info.offset = 0; /* file overrides offset */
6603 } else if (mddev->bitmap == NULL)
6604 return -ENOENT; /* cannot remove what isn't there */
6605 err = 0;
6606 if (mddev->pers) {
6607 mddev->pers->quiesce(mddev, 1);
6608 if (fd >= 0) {
6609 struct bitmap *bitmap;
6610
6611 bitmap = bitmap_create(mddev, -1);
6612 if (!IS_ERR(bitmap)) {
6613 mddev->bitmap = bitmap;
6614 err = bitmap_load(mddev);
6615 } else
6616 err = PTR_ERR(bitmap);
6617 }
6618 if (fd < 0 || err) {
6619 bitmap_destroy(mddev);
6620 fd = -1; /* make sure to put the file */
6621 }
6622 mddev->pers->quiesce(mddev, 0);
6623 }
6624 if (fd < 0) {
6625 struct file *f = mddev->bitmap_info.file;
6626 if (f) {
6627 spin_lock(&mddev->lock);
6628 mddev->bitmap_info.file = NULL;
6629 spin_unlock(&mddev->lock);
6630 fput(f);
6631 }
6632 }
6633
6634 return err;
6635 }
6636
6637 /*
6638 * set_array_info is used two different ways
6639 * The original usage is when creating a new array.
6640 * In this usage, raid_disks is > 0 and it together with
6641 * level, size, not_persistent,layout,chunksize determine the
6642 * shape of the array.
6643 * This will always create an array with a type-0.90.0 superblock.
6644 * The newer usage is when assembling an array.
6645 * In this case raid_disks will be 0, and the major_version field is
6646 * use to determine which style super-blocks are to be found on the devices.
6647 * The minor and patch _version numbers are also kept incase the
6648 * super_block handler wishes to interpret them.
6649 */
6650 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6651 {
6652
6653 if (info->raid_disks == 0) {
6654 /* just setting version number for superblock loading */
6655 if (info->major_version < 0 ||
6656 info->major_version >= ARRAY_SIZE(super_types) ||
6657 super_types[info->major_version].name == NULL) {
6658 /* maybe try to auto-load a module? */
6659 pr_warn("md: superblock version %d not known\n",
6660 info->major_version);
6661 return -EINVAL;
6662 }
6663 mddev->major_version = info->major_version;
6664 mddev->minor_version = info->minor_version;
6665 mddev->patch_version = info->patch_version;
6666 mddev->persistent = !info->not_persistent;
6667 /* ensure mddev_put doesn't delete this now that there
6668 * is some minimal configuration.
6669 */
6670 mddev->ctime = ktime_get_real_seconds();
6671 return 0;
6672 }
6673 mddev->major_version = MD_MAJOR_VERSION;
6674 mddev->minor_version = MD_MINOR_VERSION;
6675 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6676 mddev->ctime = ktime_get_real_seconds();
6677
6678 mddev->level = info->level;
6679 mddev->clevel[0] = 0;
6680 mddev->dev_sectors = 2 * (sector_t)info->size;
6681 mddev->raid_disks = info->raid_disks;
6682 /* don't set md_minor, it is determined by which /dev/md* was
6683 * openned
6684 */
6685 if (info->state & (1<<MD_SB_CLEAN))
6686 mddev->recovery_cp = MaxSector;
6687 else
6688 mddev->recovery_cp = 0;
6689 mddev->persistent = ! info->not_persistent;
6690 mddev->external = 0;
6691
6692 mddev->layout = info->layout;
6693 mddev->chunk_sectors = info->chunk_size >> 9;
6694
6695 if (mddev->persistent) {
6696 mddev->max_disks = MD_SB_DISKS;
6697 mddev->flags = 0;
6698 mddev->sb_flags = 0;
6699 }
6700 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6701
6702 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6703 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6704 mddev->bitmap_info.offset = 0;
6705
6706 mddev->reshape_position = MaxSector;
6707
6708 /*
6709 * Generate a 128 bit UUID
6710 */
6711 get_random_bytes(mddev->uuid, 16);
6712
6713 mddev->new_level = mddev->level;
6714 mddev->new_chunk_sectors = mddev->chunk_sectors;
6715 mddev->new_layout = mddev->layout;
6716 mddev->delta_disks = 0;
6717 mddev->reshape_backwards = 0;
6718
6719 return 0;
6720 }
6721
6722 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6723 {
6724 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6725
6726 if (mddev->external_size)
6727 return;
6728
6729 mddev->array_sectors = array_sectors;
6730 }
6731 EXPORT_SYMBOL(md_set_array_sectors);
6732
6733 static int update_size(struct mddev *mddev, sector_t num_sectors)
6734 {
6735 struct md_rdev *rdev;
6736 int rv;
6737 int fit = (num_sectors == 0);
6738 sector_t old_dev_sectors = mddev->dev_sectors;
6739
6740 if (mddev->pers->resize == NULL)
6741 return -EINVAL;
6742 /* The "num_sectors" is the number of sectors of each device that
6743 * is used. This can only make sense for arrays with redundancy.
6744 * linear and raid0 always use whatever space is available. We can only
6745 * consider changing this number if no resync or reconstruction is
6746 * happening, and if the new size is acceptable. It must fit before the
6747 * sb_start or, if that is <data_offset, it must fit before the size
6748 * of each device. If num_sectors is zero, we find the largest size
6749 * that fits.
6750 */
6751 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6752 mddev->sync_thread)
6753 return -EBUSY;
6754 if (mddev->ro)
6755 return -EROFS;
6756
6757 rdev_for_each(rdev, mddev) {
6758 sector_t avail = rdev->sectors;
6759
6760 if (fit && (num_sectors == 0 || num_sectors > avail))
6761 num_sectors = avail;
6762 if (avail < num_sectors)
6763 return -ENOSPC;
6764 }
6765 rv = mddev->pers->resize(mddev, num_sectors);
6766 if (!rv) {
6767 if (mddev_is_clustered(mddev))
6768 md_cluster_ops->update_size(mddev, old_dev_sectors);
6769 else if (mddev->queue) {
6770 set_capacity(mddev->gendisk, mddev->array_sectors);
6771 revalidate_disk(mddev->gendisk);
6772 }
6773 }
6774 return rv;
6775 }
6776
6777 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6778 {
6779 int rv;
6780 struct md_rdev *rdev;
6781 /* change the number of raid disks */
6782 if (mddev->pers->check_reshape == NULL)
6783 return -EINVAL;
6784 if (mddev->ro)
6785 return -EROFS;
6786 if (raid_disks <= 0 ||
6787 (mddev->max_disks && raid_disks >= mddev->max_disks))
6788 return -EINVAL;
6789 if (mddev->sync_thread ||
6790 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6791 mddev->reshape_position != MaxSector)
6792 return -EBUSY;
6793
6794 rdev_for_each(rdev, mddev) {
6795 if (mddev->raid_disks < raid_disks &&
6796 rdev->data_offset < rdev->new_data_offset)
6797 return -EINVAL;
6798 if (mddev->raid_disks > raid_disks &&
6799 rdev->data_offset > rdev->new_data_offset)
6800 return -EINVAL;
6801 }
6802
6803 mddev->delta_disks = raid_disks - mddev->raid_disks;
6804 if (mddev->delta_disks < 0)
6805 mddev->reshape_backwards = 1;
6806 else if (mddev->delta_disks > 0)
6807 mddev->reshape_backwards = 0;
6808
6809 rv = mddev->pers->check_reshape(mddev);
6810 if (rv < 0) {
6811 mddev->delta_disks = 0;
6812 mddev->reshape_backwards = 0;
6813 }
6814 return rv;
6815 }
6816
6817 /*
6818 * update_array_info is used to change the configuration of an
6819 * on-line array.
6820 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6821 * fields in the info are checked against the array.
6822 * Any differences that cannot be handled will cause an error.
6823 * Normally, only one change can be managed at a time.
6824 */
6825 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6826 {
6827 int rv = 0;
6828 int cnt = 0;
6829 int state = 0;
6830
6831 /* calculate expected state,ignoring low bits */
6832 if (mddev->bitmap && mddev->bitmap_info.offset)
6833 state |= (1 << MD_SB_BITMAP_PRESENT);
6834
6835 if (mddev->major_version != info->major_version ||
6836 mddev->minor_version != info->minor_version ||
6837 /* mddev->patch_version != info->patch_version || */
6838 mddev->ctime != info->ctime ||
6839 mddev->level != info->level ||
6840 /* mddev->layout != info->layout || */
6841 mddev->persistent != !info->not_persistent ||
6842 mddev->chunk_sectors != info->chunk_size >> 9 ||
6843 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6844 ((state^info->state) & 0xfffffe00)
6845 )
6846 return -EINVAL;
6847 /* Check there is only one change */
6848 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6849 cnt++;
6850 if (mddev->raid_disks != info->raid_disks)
6851 cnt++;
6852 if (mddev->layout != info->layout)
6853 cnt++;
6854 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6855 cnt++;
6856 if (cnt == 0)
6857 return 0;
6858 if (cnt > 1)
6859 return -EINVAL;
6860
6861 if (mddev->layout != info->layout) {
6862 /* Change layout
6863 * we don't need to do anything at the md level, the
6864 * personality will take care of it all.
6865 */
6866 if (mddev->pers->check_reshape == NULL)
6867 return -EINVAL;
6868 else {
6869 mddev->new_layout = info->layout;
6870 rv = mddev->pers->check_reshape(mddev);
6871 if (rv)
6872 mddev->new_layout = mddev->layout;
6873 return rv;
6874 }
6875 }
6876 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6877 rv = update_size(mddev, (sector_t)info->size * 2);
6878
6879 if (mddev->raid_disks != info->raid_disks)
6880 rv = update_raid_disks(mddev, info->raid_disks);
6881
6882 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6883 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6884 rv = -EINVAL;
6885 goto err;
6886 }
6887 if (mddev->recovery || mddev->sync_thread) {
6888 rv = -EBUSY;
6889 goto err;
6890 }
6891 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6892 struct bitmap *bitmap;
6893 /* add the bitmap */
6894 if (mddev->bitmap) {
6895 rv = -EEXIST;
6896 goto err;
6897 }
6898 if (mddev->bitmap_info.default_offset == 0) {
6899 rv = -EINVAL;
6900 goto err;
6901 }
6902 mddev->bitmap_info.offset =
6903 mddev->bitmap_info.default_offset;
6904 mddev->bitmap_info.space =
6905 mddev->bitmap_info.default_space;
6906 mddev->pers->quiesce(mddev, 1);
6907 bitmap = bitmap_create(mddev, -1);
6908 if (!IS_ERR(bitmap)) {
6909 mddev->bitmap = bitmap;
6910 rv = bitmap_load(mddev);
6911 } else
6912 rv = PTR_ERR(bitmap);
6913 if (rv)
6914 bitmap_destroy(mddev);
6915 mddev->pers->quiesce(mddev, 0);
6916 } else {
6917 /* remove the bitmap */
6918 if (!mddev->bitmap) {
6919 rv = -ENOENT;
6920 goto err;
6921 }
6922 if (mddev->bitmap->storage.file) {
6923 rv = -EINVAL;
6924 goto err;
6925 }
6926 if (mddev->bitmap_info.nodes) {
6927 /* hold PW on all the bitmap lock */
6928 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6929 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6930 rv = -EPERM;
6931 md_cluster_ops->unlock_all_bitmaps(mddev);
6932 goto err;
6933 }
6934
6935 mddev->bitmap_info.nodes = 0;
6936 md_cluster_ops->leave(mddev);
6937 }
6938 mddev->pers->quiesce(mddev, 1);
6939 bitmap_destroy(mddev);
6940 mddev->pers->quiesce(mddev, 0);
6941 mddev->bitmap_info.offset = 0;
6942 }
6943 }
6944 md_update_sb(mddev, 1);
6945 return rv;
6946 err:
6947 return rv;
6948 }
6949
6950 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6951 {
6952 struct md_rdev *rdev;
6953 int err = 0;
6954
6955 if (mddev->pers == NULL)
6956 return -ENODEV;
6957
6958 rcu_read_lock();
6959 rdev = find_rdev_rcu(mddev, dev);
6960 if (!rdev)
6961 err = -ENODEV;
6962 else {
6963 md_error(mddev, rdev);
6964 if (!test_bit(Faulty, &rdev->flags))
6965 err = -EBUSY;
6966 }
6967 rcu_read_unlock();
6968 return err;
6969 }
6970
6971 /*
6972 * We have a problem here : there is no easy way to give a CHS
6973 * virtual geometry. We currently pretend that we have a 2 heads
6974 * 4 sectors (with a BIG number of cylinders...). This drives
6975 * dosfs just mad... ;-)
6976 */
6977 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6978 {
6979 struct mddev *mddev = bdev->bd_disk->private_data;
6980
6981 geo->heads = 2;
6982 geo->sectors = 4;
6983 geo->cylinders = mddev->array_sectors / 8;
6984 return 0;
6985 }
6986
6987 static inline bool md_ioctl_valid(unsigned int cmd)
6988 {
6989 switch (cmd) {
6990 case ADD_NEW_DISK:
6991 case BLKROSET:
6992 case GET_ARRAY_INFO:
6993 case GET_BITMAP_FILE:
6994 case GET_DISK_INFO:
6995 case HOT_ADD_DISK:
6996 case HOT_REMOVE_DISK:
6997 case RAID_AUTORUN:
6998 case RAID_VERSION:
6999 case RESTART_ARRAY_RW:
7000 case RUN_ARRAY:
7001 case SET_ARRAY_INFO:
7002 case SET_BITMAP_FILE:
7003 case SET_DISK_FAULTY:
7004 case STOP_ARRAY:
7005 case STOP_ARRAY_RO:
7006 case CLUSTERED_DISK_NACK:
7007 return true;
7008 default:
7009 return false;
7010 }
7011 }
7012
7013 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7014 unsigned int cmd, unsigned long arg)
7015 {
7016 int err = 0;
7017 void __user *argp = (void __user *)arg;
7018 struct mddev *mddev = NULL;
7019 int ro;
7020 bool did_set_md_closing = false;
7021
7022 if (!md_ioctl_valid(cmd))
7023 return -ENOTTY;
7024
7025 switch (cmd) {
7026 case RAID_VERSION:
7027 case GET_ARRAY_INFO:
7028 case GET_DISK_INFO:
7029 break;
7030 default:
7031 if (!capable(CAP_SYS_ADMIN))
7032 return -EACCES;
7033 }
7034
7035 /*
7036 * Commands dealing with the RAID driver but not any
7037 * particular array:
7038 */
7039 switch (cmd) {
7040 case RAID_VERSION:
7041 err = get_version(argp);
7042 goto out;
7043
7044 #ifndef MODULE
7045 case RAID_AUTORUN:
7046 err = 0;
7047 autostart_arrays(arg);
7048 goto out;
7049 #endif
7050 default:;
7051 }
7052
7053 /*
7054 * Commands creating/starting a new array:
7055 */
7056
7057 mddev = bdev->bd_disk->private_data;
7058
7059 if (!mddev) {
7060 BUG();
7061 goto out;
7062 }
7063
7064 /* Some actions do not requires the mutex */
7065 switch (cmd) {
7066 case GET_ARRAY_INFO:
7067 if (!mddev->raid_disks && !mddev->external)
7068 err = -ENODEV;
7069 else
7070 err = get_array_info(mddev, argp);
7071 goto out;
7072
7073 case GET_DISK_INFO:
7074 if (!mddev->raid_disks && !mddev->external)
7075 err = -ENODEV;
7076 else
7077 err = get_disk_info(mddev, argp);
7078 goto out;
7079
7080 case SET_DISK_FAULTY:
7081 err = set_disk_faulty(mddev, new_decode_dev(arg));
7082 goto out;
7083
7084 case GET_BITMAP_FILE:
7085 err = get_bitmap_file(mddev, argp);
7086 goto out;
7087
7088 }
7089
7090 if (cmd == ADD_NEW_DISK)
7091 /* need to ensure md_delayed_delete() has completed */
7092 flush_workqueue(md_misc_wq);
7093
7094 if (cmd == HOT_REMOVE_DISK)
7095 /* need to ensure recovery thread has run */
7096 wait_event_interruptible_timeout(mddev->sb_wait,
7097 !test_bit(MD_RECOVERY_NEEDED,
7098 &mddev->recovery),
7099 msecs_to_jiffies(5000));
7100 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7101 /* Need to flush page cache, and ensure no-one else opens
7102 * and writes
7103 */
7104 mutex_lock(&mddev->open_mutex);
7105 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7106 mutex_unlock(&mddev->open_mutex);
7107 err = -EBUSY;
7108 goto out;
7109 }
7110 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7111 set_bit(MD_CLOSING, &mddev->flags);
7112 did_set_md_closing = true;
7113 mutex_unlock(&mddev->open_mutex);
7114 sync_blockdev(bdev);
7115 }
7116 err = mddev_lock(mddev);
7117 if (err) {
7118 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7119 err, cmd);
7120 goto out;
7121 }
7122
7123 if (cmd == SET_ARRAY_INFO) {
7124 mdu_array_info_t info;
7125 if (!arg)
7126 memset(&info, 0, sizeof(info));
7127 else if (copy_from_user(&info, argp, sizeof(info))) {
7128 err = -EFAULT;
7129 goto unlock;
7130 }
7131 if (mddev->pers) {
7132 err = update_array_info(mddev, &info);
7133 if (err) {
7134 pr_warn("md: couldn't update array info. %d\n", err);
7135 goto unlock;
7136 }
7137 goto unlock;
7138 }
7139 if (!list_empty(&mddev->disks)) {
7140 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7141 err = -EBUSY;
7142 goto unlock;
7143 }
7144 if (mddev->raid_disks) {
7145 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7146 err = -EBUSY;
7147 goto unlock;
7148 }
7149 err = set_array_info(mddev, &info);
7150 if (err) {
7151 pr_warn("md: couldn't set array info. %d\n", err);
7152 goto unlock;
7153 }
7154 goto unlock;
7155 }
7156
7157 /*
7158 * Commands querying/configuring an existing array:
7159 */
7160 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7161 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7162 if ((!mddev->raid_disks && !mddev->external)
7163 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7164 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7165 && cmd != GET_BITMAP_FILE) {
7166 err = -ENODEV;
7167 goto unlock;
7168 }
7169
7170 /*
7171 * Commands even a read-only array can execute:
7172 */
7173 switch (cmd) {
7174 case RESTART_ARRAY_RW:
7175 err = restart_array(mddev);
7176 goto unlock;
7177
7178 case STOP_ARRAY:
7179 err = do_md_stop(mddev, 0, bdev);
7180 goto unlock;
7181
7182 case STOP_ARRAY_RO:
7183 err = md_set_readonly(mddev, bdev);
7184 goto unlock;
7185
7186 case HOT_REMOVE_DISK:
7187 err = hot_remove_disk(mddev, new_decode_dev(arg));
7188 goto unlock;
7189
7190 case ADD_NEW_DISK:
7191 /* We can support ADD_NEW_DISK on read-only arrays
7192 * only if we are re-adding a preexisting device.
7193 * So require mddev->pers and MD_DISK_SYNC.
7194 */
7195 if (mddev->pers) {
7196 mdu_disk_info_t info;
7197 if (copy_from_user(&info, argp, sizeof(info)))
7198 err = -EFAULT;
7199 else if (!(info.state & (1<<MD_DISK_SYNC)))
7200 /* Need to clear read-only for this */
7201 break;
7202 else
7203 err = add_new_disk(mddev, &info);
7204 goto unlock;
7205 }
7206 break;
7207
7208 case BLKROSET:
7209 if (get_user(ro, (int __user *)(arg))) {
7210 err = -EFAULT;
7211 goto unlock;
7212 }
7213 err = -EINVAL;
7214
7215 /* if the bdev is going readonly the value of mddev->ro
7216 * does not matter, no writes are coming
7217 */
7218 if (ro)
7219 goto unlock;
7220
7221 /* are we are already prepared for writes? */
7222 if (mddev->ro != 1)
7223 goto unlock;
7224
7225 /* transitioning to readauto need only happen for
7226 * arrays that call md_write_start
7227 */
7228 if (mddev->pers) {
7229 err = restart_array(mddev);
7230 if (err == 0) {
7231 mddev->ro = 2;
7232 set_disk_ro(mddev->gendisk, 0);
7233 }
7234 }
7235 goto unlock;
7236 }
7237
7238 /*
7239 * The remaining ioctls are changing the state of the
7240 * superblock, so we do not allow them on read-only arrays.
7241 */
7242 if (mddev->ro && mddev->pers) {
7243 if (mddev->ro == 2) {
7244 mddev->ro = 0;
7245 sysfs_notify_dirent_safe(mddev->sysfs_state);
7246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7247 /* mddev_unlock will wake thread */
7248 /* If a device failed while we were read-only, we
7249 * need to make sure the metadata is updated now.
7250 */
7251 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7252 mddev_unlock(mddev);
7253 wait_event(mddev->sb_wait,
7254 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7255 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7256 mddev_lock_nointr(mddev);
7257 }
7258 } else {
7259 err = -EROFS;
7260 goto unlock;
7261 }
7262 }
7263
7264 switch (cmd) {
7265 case ADD_NEW_DISK:
7266 {
7267 mdu_disk_info_t info;
7268 if (copy_from_user(&info, argp, sizeof(info)))
7269 err = -EFAULT;
7270 else
7271 err = add_new_disk(mddev, &info);
7272 goto unlock;
7273 }
7274
7275 case CLUSTERED_DISK_NACK:
7276 if (mddev_is_clustered(mddev))
7277 md_cluster_ops->new_disk_ack(mddev, false);
7278 else
7279 err = -EINVAL;
7280 goto unlock;
7281
7282 case HOT_ADD_DISK:
7283 err = hot_add_disk(mddev, new_decode_dev(arg));
7284 goto unlock;
7285
7286 case RUN_ARRAY:
7287 err = do_md_run(mddev);
7288 goto unlock;
7289
7290 case SET_BITMAP_FILE:
7291 err = set_bitmap_file(mddev, (int)arg);
7292 goto unlock;
7293
7294 default:
7295 err = -EINVAL;
7296 goto unlock;
7297 }
7298
7299 unlock:
7300 if (mddev->hold_active == UNTIL_IOCTL &&
7301 err != -EINVAL)
7302 mddev->hold_active = 0;
7303 mddev_unlock(mddev);
7304 out:
7305 if(did_set_md_closing)
7306 clear_bit(MD_CLOSING, &mddev->flags);
7307 return err;
7308 }
7309 #ifdef CONFIG_COMPAT
7310 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7311 unsigned int cmd, unsigned long arg)
7312 {
7313 switch (cmd) {
7314 case HOT_REMOVE_DISK:
7315 case HOT_ADD_DISK:
7316 case SET_DISK_FAULTY:
7317 case SET_BITMAP_FILE:
7318 /* These take in integer arg, do not convert */
7319 break;
7320 default:
7321 arg = (unsigned long)compat_ptr(arg);
7322 break;
7323 }
7324
7325 return md_ioctl(bdev, mode, cmd, arg);
7326 }
7327 #endif /* CONFIG_COMPAT */
7328
7329 static int md_open(struct block_device *bdev, fmode_t mode)
7330 {
7331 /*
7332 * Succeed if we can lock the mddev, which confirms that
7333 * it isn't being stopped right now.
7334 */
7335 struct mddev *mddev = mddev_find(bdev->bd_dev);
7336 int err;
7337
7338 if (!mddev)
7339 return -ENODEV;
7340
7341 if (mddev->gendisk != bdev->bd_disk) {
7342 /* we are racing with mddev_put which is discarding this
7343 * bd_disk.
7344 */
7345 mddev_put(mddev);
7346 /* Wait until bdev->bd_disk is definitely gone */
7347 flush_workqueue(md_misc_wq);
7348 /* Then retry the open from the top */
7349 return -ERESTARTSYS;
7350 }
7351 BUG_ON(mddev != bdev->bd_disk->private_data);
7352
7353 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7354 goto out;
7355
7356 if (test_bit(MD_CLOSING, &mddev->flags)) {
7357 mutex_unlock(&mddev->open_mutex);
7358 err = -ENODEV;
7359 goto out;
7360 }
7361
7362 err = 0;
7363 atomic_inc(&mddev->openers);
7364 mutex_unlock(&mddev->open_mutex);
7365
7366 check_disk_change(bdev);
7367 out:
7368 if (err)
7369 mddev_put(mddev);
7370 return err;
7371 }
7372
7373 static void md_release(struct gendisk *disk, fmode_t mode)
7374 {
7375 struct mddev *mddev = disk->private_data;
7376
7377 BUG_ON(!mddev);
7378 atomic_dec(&mddev->openers);
7379 mddev_put(mddev);
7380 }
7381
7382 static int md_media_changed(struct gendisk *disk)
7383 {
7384 struct mddev *mddev = disk->private_data;
7385
7386 return mddev->changed;
7387 }
7388
7389 static int md_revalidate(struct gendisk *disk)
7390 {
7391 struct mddev *mddev = disk->private_data;
7392
7393 mddev->changed = 0;
7394 return 0;
7395 }
7396 static const struct block_device_operations md_fops =
7397 {
7398 .owner = THIS_MODULE,
7399 .open = md_open,
7400 .release = md_release,
7401 .ioctl = md_ioctl,
7402 #ifdef CONFIG_COMPAT
7403 .compat_ioctl = md_compat_ioctl,
7404 #endif
7405 .getgeo = md_getgeo,
7406 .media_changed = md_media_changed,
7407 .revalidate_disk= md_revalidate,
7408 };
7409
7410 static int md_thread(void *arg)
7411 {
7412 struct md_thread *thread = arg;
7413
7414 /*
7415 * md_thread is a 'system-thread', it's priority should be very
7416 * high. We avoid resource deadlocks individually in each
7417 * raid personality. (RAID5 does preallocation) We also use RR and
7418 * the very same RT priority as kswapd, thus we will never get
7419 * into a priority inversion deadlock.
7420 *
7421 * we definitely have to have equal or higher priority than
7422 * bdflush, otherwise bdflush will deadlock if there are too
7423 * many dirty RAID5 blocks.
7424 */
7425
7426 allow_signal(SIGKILL);
7427 while (!kthread_should_stop()) {
7428
7429 /* We need to wait INTERRUPTIBLE so that
7430 * we don't add to the load-average.
7431 * That means we need to be sure no signals are
7432 * pending
7433 */
7434 if (signal_pending(current))
7435 flush_signals(current);
7436
7437 wait_event_interruptible_timeout
7438 (thread->wqueue,
7439 test_bit(THREAD_WAKEUP, &thread->flags)
7440 || kthread_should_stop() || kthread_should_park(),
7441 thread->timeout);
7442
7443 clear_bit(THREAD_WAKEUP, &thread->flags);
7444 if (kthread_should_park())
7445 kthread_parkme();
7446 if (!kthread_should_stop())
7447 thread->run(thread);
7448 }
7449
7450 return 0;
7451 }
7452
7453 void md_wakeup_thread(struct md_thread *thread)
7454 {
7455 if (thread) {
7456 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7457 if (!test_and_set_bit(THREAD_WAKEUP, &thread->flags))
7458 wake_up(&thread->wqueue);
7459 }
7460 }
7461 EXPORT_SYMBOL(md_wakeup_thread);
7462
7463 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7464 struct mddev *mddev, const char *name)
7465 {
7466 struct md_thread *thread;
7467
7468 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7469 if (!thread)
7470 return NULL;
7471
7472 init_waitqueue_head(&thread->wqueue);
7473
7474 thread->run = run;
7475 thread->mddev = mddev;
7476 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7477 thread->tsk = kthread_run(md_thread, thread,
7478 "%s_%s",
7479 mdname(thread->mddev),
7480 name);
7481 if (IS_ERR(thread->tsk)) {
7482 kfree(thread);
7483 return NULL;
7484 }
7485 return thread;
7486 }
7487 EXPORT_SYMBOL(md_register_thread);
7488
7489 void md_unregister_thread(struct md_thread **threadp)
7490 {
7491 struct md_thread *thread = *threadp;
7492 if (!thread)
7493 return;
7494 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7495 /* Locking ensures that mddev_unlock does not wake_up a
7496 * non-existent thread
7497 */
7498 spin_lock(&pers_lock);
7499 *threadp = NULL;
7500 spin_unlock(&pers_lock);
7501
7502 kthread_stop(thread->tsk);
7503 kfree(thread);
7504 }
7505 EXPORT_SYMBOL(md_unregister_thread);
7506
7507 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7508 {
7509 if (!rdev || test_bit(Faulty, &rdev->flags))
7510 return;
7511
7512 if (!mddev->pers || !mddev->pers->error_handler)
7513 return;
7514 mddev->pers->error_handler(mddev,rdev);
7515 if (mddev->degraded)
7516 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7517 sysfs_notify_dirent_safe(rdev->sysfs_state);
7518 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7520 md_wakeup_thread(mddev->thread);
7521 if (mddev->event_work.func)
7522 queue_work(md_misc_wq, &mddev->event_work);
7523 md_new_event(mddev);
7524 }
7525 EXPORT_SYMBOL(md_error);
7526
7527 /* seq_file implementation /proc/mdstat */
7528
7529 static void status_unused(struct seq_file *seq)
7530 {
7531 int i = 0;
7532 struct md_rdev *rdev;
7533
7534 seq_printf(seq, "unused devices: ");
7535
7536 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7537 char b[BDEVNAME_SIZE];
7538 i++;
7539 seq_printf(seq, "%s ",
7540 bdevname(rdev->bdev,b));
7541 }
7542 if (!i)
7543 seq_printf(seq, "<none>");
7544
7545 seq_printf(seq, "\n");
7546 }
7547
7548 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7549 {
7550 sector_t max_sectors, resync, res;
7551 unsigned long dt, db;
7552 sector_t rt;
7553 int scale;
7554 unsigned int per_milli;
7555
7556 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7557 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7558 max_sectors = mddev->resync_max_sectors;
7559 else
7560 max_sectors = mddev->dev_sectors;
7561
7562 resync = mddev->curr_resync;
7563 if (resync <= 3) {
7564 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7565 /* Still cleaning up */
7566 resync = max_sectors;
7567 } else
7568 resync -= atomic_read(&mddev->recovery_active);
7569
7570 if (resync == 0) {
7571 if (mddev->recovery_cp < MaxSector) {
7572 seq_printf(seq, "\tresync=PENDING");
7573 return 1;
7574 }
7575 return 0;
7576 }
7577 if (resync < 3) {
7578 seq_printf(seq, "\tresync=DELAYED");
7579 return 1;
7580 }
7581
7582 WARN_ON(max_sectors == 0);
7583 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7584 * in a sector_t, and (max_sectors>>scale) will fit in a
7585 * u32, as those are the requirements for sector_div.
7586 * Thus 'scale' must be at least 10
7587 */
7588 scale = 10;
7589 if (sizeof(sector_t) > sizeof(unsigned long)) {
7590 while ( max_sectors/2 > (1ULL<<(scale+32)))
7591 scale++;
7592 }
7593 res = (resync>>scale)*1000;
7594 sector_div(res, (u32)((max_sectors>>scale)+1));
7595
7596 per_milli = res;
7597 {
7598 int i, x = per_milli/50, y = 20-x;
7599 seq_printf(seq, "[");
7600 for (i = 0; i < x; i++)
7601 seq_printf(seq, "=");
7602 seq_printf(seq, ">");
7603 for (i = 0; i < y; i++)
7604 seq_printf(seq, ".");
7605 seq_printf(seq, "] ");
7606 }
7607 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7608 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7609 "reshape" :
7610 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7611 "check" :
7612 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7613 "resync" : "recovery"))),
7614 per_milli/10, per_milli % 10,
7615 (unsigned long long) resync/2,
7616 (unsigned long long) max_sectors/2);
7617
7618 /*
7619 * dt: time from mark until now
7620 * db: blocks written from mark until now
7621 * rt: remaining time
7622 *
7623 * rt is a sector_t, so could be 32bit or 64bit.
7624 * So we divide before multiply in case it is 32bit and close
7625 * to the limit.
7626 * We scale the divisor (db) by 32 to avoid losing precision
7627 * near the end of resync when the number of remaining sectors
7628 * is close to 'db'.
7629 * We then divide rt by 32 after multiplying by db to compensate.
7630 * The '+1' avoids division by zero if db is very small.
7631 */
7632 dt = ((jiffies - mddev->resync_mark) / HZ);
7633 if (!dt) dt++;
7634 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7635 - mddev->resync_mark_cnt;
7636
7637 rt = max_sectors - resync; /* number of remaining sectors */
7638 sector_div(rt, db/32+1);
7639 rt *= dt;
7640 rt >>= 5;
7641
7642 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7643 ((unsigned long)rt % 60)/6);
7644
7645 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7646 return 1;
7647 }
7648
7649 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7650 {
7651 struct list_head *tmp;
7652 loff_t l = *pos;
7653 struct mddev *mddev;
7654
7655 if (l >= 0x10000)
7656 return NULL;
7657 if (!l--)
7658 /* header */
7659 return (void*)1;
7660
7661 spin_lock(&all_mddevs_lock);
7662 list_for_each(tmp,&all_mddevs)
7663 if (!l--) {
7664 mddev = list_entry(tmp, struct mddev, all_mddevs);
7665 mddev_get(mddev);
7666 spin_unlock(&all_mddevs_lock);
7667 return mddev;
7668 }
7669 spin_unlock(&all_mddevs_lock);
7670 if (!l--)
7671 return (void*)2;/* tail */
7672 return NULL;
7673 }
7674
7675 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7676 {
7677 struct list_head *tmp;
7678 struct mddev *next_mddev, *mddev = v;
7679
7680 ++*pos;
7681 if (v == (void*)2)
7682 return NULL;
7683
7684 spin_lock(&all_mddevs_lock);
7685 if (v == (void*)1)
7686 tmp = all_mddevs.next;
7687 else
7688 tmp = mddev->all_mddevs.next;
7689 if (tmp != &all_mddevs)
7690 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7691 else {
7692 next_mddev = (void*)2;
7693 *pos = 0x10000;
7694 }
7695 spin_unlock(&all_mddevs_lock);
7696
7697 if (v != (void*)1)
7698 mddev_put(mddev);
7699 return next_mddev;
7700
7701 }
7702
7703 static void md_seq_stop(struct seq_file *seq, void *v)
7704 {
7705 struct mddev *mddev = v;
7706
7707 if (mddev && v != (void*)1 && v != (void*)2)
7708 mddev_put(mddev);
7709 }
7710
7711 static int md_seq_show(struct seq_file *seq, void *v)
7712 {
7713 struct mddev *mddev = v;
7714 sector_t sectors;
7715 struct md_rdev *rdev;
7716
7717 if (v == (void*)1) {
7718 struct md_personality *pers;
7719 seq_printf(seq, "Personalities : ");
7720 spin_lock(&pers_lock);
7721 list_for_each_entry(pers, &pers_list, list)
7722 seq_printf(seq, "[%s] ", pers->name);
7723
7724 spin_unlock(&pers_lock);
7725 seq_printf(seq, "\n");
7726 seq->poll_event = atomic_read(&md_event_count);
7727 return 0;
7728 }
7729 if (v == (void*)2) {
7730 status_unused(seq);
7731 return 0;
7732 }
7733
7734 spin_lock(&mddev->lock);
7735 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7736 seq_printf(seq, "%s : %sactive", mdname(mddev),
7737 mddev->pers ? "" : "in");
7738 if (mddev->pers) {
7739 if (mddev->ro==1)
7740 seq_printf(seq, " (read-only)");
7741 if (mddev->ro==2)
7742 seq_printf(seq, " (auto-read-only)");
7743 seq_printf(seq, " %s", mddev->pers->name);
7744 }
7745
7746 sectors = 0;
7747 rcu_read_lock();
7748 rdev_for_each_rcu(rdev, mddev) {
7749 char b[BDEVNAME_SIZE];
7750 seq_printf(seq, " %s[%d]",
7751 bdevname(rdev->bdev,b), rdev->desc_nr);
7752 if (test_bit(WriteMostly, &rdev->flags))
7753 seq_printf(seq, "(W)");
7754 if (test_bit(Journal, &rdev->flags))
7755 seq_printf(seq, "(J)");
7756 if (test_bit(Faulty, &rdev->flags)) {
7757 seq_printf(seq, "(F)");
7758 continue;
7759 }
7760 if (rdev->raid_disk < 0)
7761 seq_printf(seq, "(S)"); /* spare */
7762 if (test_bit(Replacement, &rdev->flags))
7763 seq_printf(seq, "(R)");
7764 sectors += rdev->sectors;
7765 }
7766 rcu_read_unlock();
7767
7768 if (!list_empty(&mddev->disks)) {
7769 if (mddev->pers)
7770 seq_printf(seq, "\n %llu blocks",
7771 (unsigned long long)
7772 mddev->array_sectors / 2);
7773 else
7774 seq_printf(seq, "\n %llu blocks",
7775 (unsigned long long)sectors / 2);
7776 }
7777 if (mddev->persistent) {
7778 if (mddev->major_version != 0 ||
7779 mddev->minor_version != 90) {
7780 seq_printf(seq," super %d.%d",
7781 mddev->major_version,
7782 mddev->minor_version);
7783 }
7784 } else if (mddev->external)
7785 seq_printf(seq, " super external:%s",
7786 mddev->metadata_type);
7787 else
7788 seq_printf(seq, " super non-persistent");
7789
7790 if (mddev->pers) {
7791 mddev->pers->status(seq, mddev);
7792 seq_printf(seq, "\n ");
7793 if (mddev->pers->sync_request) {
7794 if (status_resync(seq, mddev))
7795 seq_printf(seq, "\n ");
7796 }
7797 } else
7798 seq_printf(seq, "\n ");
7799
7800 bitmap_status(seq, mddev->bitmap);
7801
7802 seq_printf(seq, "\n");
7803 }
7804 spin_unlock(&mddev->lock);
7805
7806 return 0;
7807 }
7808
7809 static const struct seq_operations md_seq_ops = {
7810 .start = md_seq_start,
7811 .next = md_seq_next,
7812 .stop = md_seq_stop,
7813 .show = md_seq_show,
7814 };
7815
7816 static int md_seq_open(struct inode *inode, struct file *file)
7817 {
7818 struct seq_file *seq;
7819 int error;
7820
7821 error = seq_open(file, &md_seq_ops);
7822 if (error)
7823 return error;
7824
7825 seq = file->private_data;
7826 seq->poll_event = atomic_read(&md_event_count);
7827 return error;
7828 }
7829
7830 static int md_unloading;
7831 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7832 {
7833 struct seq_file *seq = filp->private_data;
7834 int mask;
7835
7836 if (md_unloading)
7837 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7838 poll_wait(filp, &md_event_waiters, wait);
7839
7840 /* always allow read */
7841 mask = POLLIN | POLLRDNORM;
7842
7843 if (seq->poll_event != atomic_read(&md_event_count))
7844 mask |= POLLERR | POLLPRI;
7845 return mask;
7846 }
7847
7848 static const struct file_operations md_seq_fops = {
7849 .owner = THIS_MODULE,
7850 .open = md_seq_open,
7851 .read = seq_read,
7852 .llseek = seq_lseek,
7853 .release = seq_release,
7854 .poll = mdstat_poll,
7855 };
7856
7857 int register_md_personality(struct md_personality *p)
7858 {
7859 pr_debug("md: %s personality registered for level %d\n",
7860 p->name, p->level);
7861 spin_lock(&pers_lock);
7862 list_add_tail(&p->list, &pers_list);
7863 spin_unlock(&pers_lock);
7864 return 0;
7865 }
7866 EXPORT_SYMBOL(register_md_personality);
7867
7868 int unregister_md_personality(struct md_personality *p)
7869 {
7870 pr_debug("md: %s personality unregistered\n", p->name);
7871 spin_lock(&pers_lock);
7872 list_del_init(&p->list);
7873 spin_unlock(&pers_lock);
7874 return 0;
7875 }
7876 EXPORT_SYMBOL(unregister_md_personality);
7877
7878 int register_md_cluster_operations(struct md_cluster_operations *ops,
7879 struct module *module)
7880 {
7881 int ret = 0;
7882 spin_lock(&pers_lock);
7883 if (md_cluster_ops != NULL)
7884 ret = -EALREADY;
7885 else {
7886 md_cluster_ops = ops;
7887 md_cluster_mod = module;
7888 }
7889 spin_unlock(&pers_lock);
7890 return ret;
7891 }
7892 EXPORT_SYMBOL(register_md_cluster_operations);
7893
7894 int unregister_md_cluster_operations(void)
7895 {
7896 spin_lock(&pers_lock);
7897 md_cluster_ops = NULL;
7898 spin_unlock(&pers_lock);
7899 return 0;
7900 }
7901 EXPORT_SYMBOL(unregister_md_cluster_operations);
7902
7903 int md_setup_cluster(struct mddev *mddev, int nodes)
7904 {
7905 if (!md_cluster_ops)
7906 request_module("md-cluster");
7907 spin_lock(&pers_lock);
7908 /* ensure module won't be unloaded */
7909 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7910 pr_warn("can't find md-cluster module or get it's reference.\n");
7911 spin_unlock(&pers_lock);
7912 return -ENOENT;
7913 }
7914 spin_unlock(&pers_lock);
7915
7916 return md_cluster_ops->join(mddev, nodes);
7917 }
7918
7919 void md_cluster_stop(struct mddev *mddev)
7920 {
7921 if (!md_cluster_ops)
7922 return;
7923 md_cluster_ops->leave(mddev);
7924 module_put(md_cluster_mod);
7925 }
7926
7927 static int is_mddev_idle(struct mddev *mddev, int init)
7928 {
7929 struct md_rdev *rdev;
7930 int idle;
7931 int curr_events;
7932
7933 idle = 1;
7934 rcu_read_lock();
7935 rdev_for_each_rcu(rdev, mddev) {
7936 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7937 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7938 (int)part_stat_read(&disk->part0, sectors[1]) -
7939 atomic_read(&disk->sync_io);
7940 /* sync IO will cause sync_io to increase before the disk_stats
7941 * as sync_io is counted when a request starts, and
7942 * disk_stats is counted when it completes.
7943 * So resync activity will cause curr_events to be smaller than
7944 * when there was no such activity.
7945 * non-sync IO will cause disk_stat to increase without
7946 * increasing sync_io so curr_events will (eventually)
7947 * be larger than it was before. Once it becomes
7948 * substantially larger, the test below will cause
7949 * the array to appear non-idle, and resync will slow
7950 * down.
7951 * If there is a lot of outstanding resync activity when
7952 * we set last_event to curr_events, then all that activity
7953 * completing might cause the array to appear non-idle
7954 * and resync will be slowed down even though there might
7955 * not have been non-resync activity. This will only
7956 * happen once though. 'last_events' will soon reflect
7957 * the state where there is little or no outstanding
7958 * resync requests, and further resync activity will
7959 * always make curr_events less than last_events.
7960 *
7961 */
7962 if (init || curr_events - rdev->last_events > 64) {
7963 rdev->last_events = curr_events;
7964 idle = 0;
7965 }
7966 }
7967 rcu_read_unlock();
7968 return idle;
7969 }
7970
7971 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7972 {
7973 /* another "blocks" (512byte) blocks have been synced */
7974 atomic_sub(blocks, &mddev->recovery_active);
7975 wake_up(&mddev->recovery_wait);
7976 if (!ok) {
7977 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7978 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7979 md_wakeup_thread(mddev->thread);
7980 // stop recovery, signal do_sync ....
7981 }
7982 }
7983 EXPORT_SYMBOL(md_done_sync);
7984
7985 /* md_write_start(mddev, bi)
7986 * If we need to update some array metadata (e.g. 'active' flag
7987 * in superblock) before writing, schedule a superblock update
7988 * and wait for it to complete.
7989 * A return value of 'false' means that the write wasn't recorded
7990 * and cannot proceed as the array is being suspend.
7991 */
7992 bool md_write_start(struct mddev *mddev, struct bio *bi)
7993 {
7994 int did_change = 0;
7995 if (bio_data_dir(bi) != WRITE)
7996 return true;
7997
7998 BUG_ON(mddev->ro == 1);
7999 if (mddev->ro == 2) {
8000 /* need to switch to read/write */
8001 mddev->ro = 0;
8002 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8003 md_wakeup_thread(mddev->thread);
8004 md_wakeup_thread(mddev->sync_thread);
8005 did_change = 1;
8006 }
8007 rcu_read_lock();
8008 percpu_ref_get(&mddev->writes_pending);
8009 smp_mb(); /* Match smp_mb in set_in_sync() */
8010 if (mddev->safemode == 1)
8011 mddev->safemode = 0;
8012 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8013 if (mddev->in_sync || mddev->sync_checkers) {
8014 spin_lock(&mddev->lock);
8015 if (mddev->in_sync) {
8016 mddev->in_sync = 0;
8017 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8018 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8019 md_wakeup_thread(mddev->thread);
8020 did_change = 1;
8021 }
8022 spin_unlock(&mddev->lock);
8023 }
8024 rcu_read_unlock();
8025 if (did_change)
8026 sysfs_notify_dirent_safe(mddev->sysfs_state);
8027 wait_event(mddev->sb_wait,
8028 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && !mddev->suspended);
8029 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8030 percpu_ref_put(&mddev->writes_pending);
8031 return false;
8032 }
8033 return true;
8034 }
8035 EXPORT_SYMBOL(md_write_start);
8036
8037 /* md_write_inc can only be called when md_write_start() has
8038 * already been called at least once of the current request.
8039 * It increments the counter and is useful when a single request
8040 * is split into several parts. Each part causes an increment and
8041 * so needs a matching md_write_end().
8042 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8043 * a spinlocked region.
8044 */
8045 void md_write_inc(struct mddev *mddev, struct bio *bi)
8046 {
8047 if (bio_data_dir(bi) != WRITE)
8048 return;
8049 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8050 percpu_ref_get(&mddev->writes_pending);
8051 }
8052 EXPORT_SYMBOL(md_write_inc);
8053
8054 void md_write_end(struct mddev *mddev)
8055 {
8056 percpu_ref_put(&mddev->writes_pending);
8057
8058 if (mddev->safemode == 2)
8059 md_wakeup_thread(mddev->thread);
8060 else if (mddev->safemode_delay)
8061 /* The roundup() ensures this only performs locking once
8062 * every ->safemode_delay jiffies
8063 */
8064 mod_timer(&mddev->safemode_timer,
8065 roundup(jiffies, mddev->safemode_delay) +
8066 mddev->safemode_delay);
8067 }
8068
8069 EXPORT_SYMBOL(md_write_end);
8070
8071 /* md_allow_write(mddev)
8072 * Calling this ensures that the array is marked 'active' so that writes
8073 * may proceed without blocking. It is important to call this before
8074 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8075 * Must be called with mddev_lock held.
8076 */
8077 void md_allow_write(struct mddev *mddev)
8078 {
8079 if (!mddev->pers)
8080 return;
8081 if (mddev->ro)
8082 return;
8083 if (!mddev->pers->sync_request)
8084 return;
8085
8086 spin_lock(&mddev->lock);
8087 if (mddev->in_sync) {
8088 mddev->in_sync = 0;
8089 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8090 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8091 if (mddev->safemode_delay &&
8092 mddev->safemode == 0)
8093 mddev->safemode = 1;
8094 spin_unlock(&mddev->lock);
8095 md_update_sb(mddev, 0);
8096 sysfs_notify_dirent_safe(mddev->sysfs_state);
8097 /* wait for the dirty state to be recorded in the metadata */
8098 wait_event(mddev->sb_wait,
8099 !test_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags) &&
8100 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8101 } else
8102 spin_unlock(&mddev->lock);
8103 }
8104 EXPORT_SYMBOL_GPL(md_allow_write);
8105
8106 #define SYNC_MARKS 10
8107 #define SYNC_MARK_STEP (3*HZ)
8108 #define UPDATE_FREQUENCY (5*60*HZ)
8109 void md_do_sync(struct md_thread *thread)
8110 {
8111 struct mddev *mddev = thread->mddev;
8112 struct mddev *mddev2;
8113 unsigned int currspeed = 0,
8114 window;
8115 sector_t max_sectors,j, io_sectors, recovery_done;
8116 unsigned long mark[SYNC_MARKS];
8117 unsigned long update_time;
8118 sector_t mark_cnt[SYNC_MARKS];
8119 int last_mark,m;
8120 struct list_head *tmp;
8121 sector_t last_check;
8122 int skipped = 0;
8123 struct md_rdev *rdev;
8124 char *desc, *action = NULL;
8125 struct blk_plug plug;
8126 int ret;
8127
8128 /* just incase thread restarts... */
8129 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8130 return;
8131 if (mddev->ro) {/* never try to sync a read-only array */
8132 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8133 return;
8134 }
8135
8136 if (mddev_is_clustered(mddev)) {
8137 ret = md_cluster_ops->resync_start(mddev);
8138 if (ret)
8139 goto skip;
8140
8141 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8142 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8143 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8144 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8145 && ((unsigned long long)mddev->curr_resync_completed
8146 < (unsigned long long)mddev->resync_max_sectors))
8147 goto skip;
8148 }
8149
8150 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8151 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8152 desc = "data-check";
8153 action = "check";
8154 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8155 desc = "requested-resync";
8156 action = "repair";
8157 } else
8158 desc = "resync";
8159 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8160 desc = "reshape";
8161 else
8162 desc = "recovery";
8163
8164 mddev->last_sync_action = action ?: desc;
8165
8166 /* we overload curr_resync somewhat here.
8167 * 0 == not engaged in resync at all
8168 * 2 == checking that there is no conflict with another sync
8169 * 1 == like 2, but have yielded to allow conflicting resync to
8170 * commense
8171 * other == active in resync - this many blocks
8172 *
8173 * Before starting a resync we must have set curr_resync to
8174 * 2, and then checked that every "conflicting" array has curr_resync
8175 * less than ours. When we find one that is the same or higher
8176 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8177 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8178 * This will mean we have to start checking from the beginning again.
8179 *
8180 */
8181
8182 do {
8183 int mddev2_minor = -1;
8184 mddev->curr_resync = 2;
8185
8186 try_again:
8187 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8188 goto skip;
8189 for_each_mddev(mddev2, tmp) {
8190 if (mddev2 == mddev)
8191 continue;
8192 if (!mddev->parallel_resync
8193 && mddev2->curr_resync
8194 && match_mddev_units(mddev, mddev2)) {
8195 DEFINE_WAIT(wq);
8196 if (mddev < mddev2 && mddev->curr_resync == 2) {
8197 /* arbitrarily yield */
8198 mddev->curr_resync = 1;
8199 wake_up(&resync_wait);
8200 }
8201 if (mddev > mddev2 && mddev->curr_resync == 1)
8202 /* no need to wait here, we can wait the next
8203 * time 'round when curr_resync == 2
8204 */
8205 continue;
8206 /* We need to wait 'interruptible' so as not to
8207 * contribute to the load average, and not to
8208 * be caught by 'softlockup'
8209 */
8210 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8211 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8212 mddev2->curr_resync >= mddev->curr_resync) {
8213 if (mddev2_minor != mddev2->md_minor) {
8214 mddev2_minor = mddev2->md_minor;
8215 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8216 desc, mdname(mddev),
8217 mdname(mddev2));
8218 }
8219 mddev_put(mddev2);
8220 if (signal_pending(current))
8221 flush_signals(current);
8222 schedule();
8223 finish_wait(&resync_wait, &wq);
8224 goto try_again;
8225 }
8226 finish_wait(&resync_wait, &wq);
8227 }
8228 }
8229 } while (mddev->curr_resync < 2);
8230
8231 j = 0;
8232 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8233 /* resync follows the size requested by the personality,
8234 * which defaults to physical size, but can be virtual size
8235 */
8236 max_sectors = mddev->resync_max_sectors;
8237 atomic64_set(&mddev->resync_mismatches, 0);
8238 /* we don't use the checkpoint if there's a bitmap */
8239 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8240 j = mddev->resync_min;
8241 else if (!mddev->bitmap)
8242 j = mddev->recovery_cp;
8243
8244 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8245 max_sectors = mddev->resync_max_sectors;
8246 else {
8247 /* recovery follows the physical size of devices */
8248 max_sectors = mddev->dev_sectors;
8249 j = MaxSector;
8250 rcu_read_lock();
8251 rdev_for_each_rcu(rdev, mddev)
8252 if (rdev->raid_disk >= 0 &&
8253 !test_bit(Journal, &rdev->flags) &&
8254 !test_bit(Faulty, &rdev->flags) &&
8255 !test_bit(In_sync, &rdev->flags) &&
8256 rdev->recovery_offset < j)
8257 j = rdev->recovery_offset;
8258 rcu_read_unlock();
8259
8260 /* If there is a bitmap, we need to make sure all
8261 * writes that started before we added a spare
8262 * complete before we start doing a recovery.
8263 * Otherwise the write might complete and (via
8264 * bitmap_endwrite) set a bit in the bitmap after the
8265 * recovery has checked that bit and skipped that
8266 * region.
8267 */
8268 if (mddev->bitmap) {
8269 mddev->pers->quiesce(mddev, 1);
8270 mddev->pers->quiesce(mddev, 0);
8271 }
8272 }
8273
8274 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8275 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8276 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8277 speed_max(mddev), desc);
8278
8279 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8280
8281 io_sectors = 0;
8282 for (m = 0; m < SYNC_MARKS; m++) {
8283 mark[m] = jiffies;
8284 mark_cnt[m] = io_sectors;
8285 }
8286 last_mark = 0;
8287 mddev->resync_mark = mark[last_mark];
8288 mddev->resync_mark_cnt = mark_cnt[last_mark];
8289
8290 /*
8291 * Tune reconstruction:
8292 */
8293 window = 32*(PAGE_SIZE/512);
8294 pr_debug("md: using %dk window, over a total of %lluk.\n",
8295 window/2, (unsigned long long)max_sectors/2);
8296
8297 atomic_set(&mddev->recovery_active, 0);
8298 last_check = 0;
8299
8300 if (j>2) {
8301 pr_debug("md: resuming %s of %s from checkpoint.\n",
8302 desc, mdname(mddev));
8303 mddev->curr_resync = j;
8304 } else
8305 mddev->curr_resync = 3; /* no longer delayed */
8306 mddev->curr_resync_completed = j;
8307 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8308 md_new_event(mddev);
8309 update_time = jiffies;
8310
8311 blk_start_plug(&plug);
8312 while (j < max_sectors) {
8313 sector_t sectors;
8314
8315 skipped = 0;
8316
8317 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8318 ((mddev->curr_resync > mddev->curr_resync_completed &&
8319 (mddev->curr_resync - mddev->curr_resync_completed)
8320 > (max_sectors >> 4)) ||
8321 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8322 (j - mddev->curr_resync_completed)*2
8323 >= mddev->resync_max - mddev->curr_resync_completed ||
8324 mddev->curr_resync_completed > mddev->resync_max
8325 )) {
8326 /* time to update curr_resync_completed */
8327 wait_event(mddev->recovery_wait,
8328 atomic_read(&mddev->recovery_active) == 0);
8329 mddev->curr_resync_completed = j;
8330 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8331 j > mddev->recovery_cp)
8332 mddev->recovery_cp = j;
8333 update_time = jiffies;
8334 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8335 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8336 }
8337
8338 while (j >= mddev->resync_max &&
8339 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8340 /* As this condition is controlled by user-space,
8341 * we can block indefinitely, so use '_interruptible'
8342 * to avoid triggering warnings.
8343 */
8344 flush_signals(current); /* just in case */
8345 wait_event_interruptible(mddev->recovery_wait,
8346 mddev->resync_max > j
8347 || test_bit(MD_RECOVERY_INTR,
8348 &mddev->recovery));
8349 }
8350
8351 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8352 break;
8353
8354 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8355 if (sectors == 0) {
8356 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8357 break;
8358 }
8359
8360 if (!skipped) { /* actual IO requested */
8361 io_sectors += sectors;
8362 atomic_add(sectors, &mddev->recovery_active);
8363 }
8364
8365 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8366 break;
8367
8368 j += sectors;
8369 if (j > max_sectors)
8370 /* when skipping, extra large numbers can be returned. */
8371 j = max_sectors;
8372 if (j > 2)
8373 mddev->curr_resync = j;
8374 mddev->curr_mark_cnt = io_sectors;
8375 if (last_check == 0)
8376 /* this is the earliest that rebuild will be
8377 * visible in /proc/mdstat
8378 */
8379 md_new_event(mddev);
8380
8381 if (last_check + window > io_sectors || j == max_sectors)
8382 continue;
8383
8384 last_check = io_sectors;
8385 repeat:
8386 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8387 /* step marks */
8388 int next = (last_mark+1) % SYNC_MARKS;
8389
8390 mddev->resync_mark = mark[next];
8391 mddev->resync_mark_cnt = mark_cnt[next];
8392 mark[next] = jiffies;
8393 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8394 last_mark = next;
8395 }
8396
8397 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8398 break;
8399
8400 /*
8401 * this loop exits only if either when we are slower than
8402 * the 'hard' speed limit, or the system was IO-idle for
8403 * a jiffy.
8404 * the system might be non-idle CPU-wise, but we only care
8405 * about not overloading the IO subsystem. (things like an
8406 * e2fsck being done on the RAID array should execute fast)
8407 */
8408 cond_resched();
8409
8410 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8411 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8412 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8413
8414 if (currspeed > speed_min(mddev)) {
8415 if (currspeed > speed_max(mddev)) {
8416 msleep(500);
8417 goto repeat;
8418 }
8419 if (!is_mddev_idle(mddev, 0)) {
8420 /*
8421 * Give other IO more of a chance.
8422 * The faster the devices, the less we wait.
8423 */
8424 wait_event(mddev->recovery_wait,
8425 !atomic_read(&mddev->recovery_active));
8426 }
8427 }
8428 }
8429 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8430 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8431 ? "interrupted" : "done");
8432 /*
8433 * this also signals 'finished resyncing' to md_stop
8434 */
8435 blk_finish_plug(&plug);
8436 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8437
8438 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8439 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8440 mddev->curr_resync > 3) {
8441 mddev->curr_resync_completed = mddev->curr_resync;
8442 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8443 }
8444 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8445
8446 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8447 mddev->curr_resync > 3) {
8448 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8449 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8450 if (mddev->curr_resync >= mddev->recovery_cp) {
8451 pr_debug("md: checkpointing %s of %s.\n",
8452 desc, mdname(mddev));
8453 if (test_bit(MD_RECOVERY_ERROR,
8454 &mddev->recovery))
8455 mddev->recovery_cp =
8456 mddev->curr_resync_completed;
8457 else
8458 mddev->recovery_cp =
8459 mddev->curr_resync;
8460 }
8461 } else
8462 mddev->recovery_cp = MaxSector;
8463 } else {
8464 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8465 mddev->curr_resync = MaxSector;
8466 rcu_read_lock();
8467 rdev_for_each_rcu(rdev, mddev)
8468 if (rdev->raid_disk >= 0 &&
8469 mddev->delta_disks >= 0 &&
8470 !test_bit(Journal, &rdev->flags) &&
8471 !test_bit(Faulty, &rdev->flags) &&
8472 !test_bit(In_sync, &rdev->flags) &&
8473 rdev->recovery_offset < mddev->curr_resync)
8474 rdev->recovery_offset = mddev->curr_resync;
8475 rcu_read_unlock();
8476 }
8477 }
8478 skip:
8479 /* set CHANGE_PENDING here since maybe another update is needed,
8480 * so other nodes are informed. It should be harmless for normal
8481 * raid */
8482 set_mask_bits(&mddev->sb_flags, 0,
8483 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8484
8485 spin_lock(&mddev->lock);
8486 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8487 /* We completed so min/max setting can be forgotten if used. */
8488 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8489 mddev->resync_min = 0;
8490 mddev->resync_max = MaxSector;
8491 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8492 mddev->resync_min = mddev->curr_resync_completed;
8493 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8494 mddev->curr_resync = 0;
8495 spin_unlock(&mddev->lock);
8496
8497 wake_up(&resync_wait);
8498 md_wakeup_thread(mddev->thread);
8499 return;
8500 }
8501 EXPORT_SYMBOL_GPL(md_do_sync);
8502
8503 static int remove_and_add_spares(struct mddev *mddev,
8504 struct md_rdev *this)
8505 {
8506 struct md_rdev *rdev;
8507 int spares = 0;
8508 int removed = 0;
8509 bool remove_some = false;
8510
8511 rdev_for_each(rdev, mddev) {
8512 if ((this == NULL || rdev == this) &&
8513 rdev->raid_disk >= 0 &&
8514 !test_bit(Blocked, &rdev->flags) &&
8515 test_bit(Faulty, &rdev->flags) &&
8516 atomic_read(&rdev->nr_pending)==0) {
8517 /* Faulty non-Blocked devices with nr_pending == 0
8518 * never get nr_pending incremented,
8519 * never get Faulty cleared, and never get Blocked set.
8520 * So we can synchronize_rcu now rather than once per device
8521 */
8522 remove_some = true;
8523 set_bit(RemoveSynchronized, &rdev->flags);
8524 }
8525 }
8526
8527 if (remove_some)
8528 synchronize_rcu();
8529 rdev_for_each(rdev, mddev) {
8530 if ((this == NULL || rdev == this) &&
8531 rdev->raid_disk >= 0 &&
8532 !test_bit(Blocked, &rdev->flags) &&
8533 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8534 (!test_bit(In_sync, &rdev->flags) &&
8535 !test_bit(Journal, &rdev->flags))) &&
8536 atomic_read(&rdev->nr_pending)==0)) {
8537 if (mddev->pers->hot_remove_disk(
8538 mddev, rdev) == 0) {
8539 sysfs_unlink_rdev(mddev, rdev);
8540 rdev->raid_disk = -1;
8541 removed++;
8542 }
8543 }
8544 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8545 clear_bit(RemoveSynchronized, &rdev->flags);
8546 }
8547
8548 if (removed && mddev->kobj.sd)
8549 sysfs_notify(&mddev->kobj, NULL, "degraded");
8550
8551 if (this && removed)
8552 goto no_add;
8553
8554 rdev_for_each(rdev, mddev) {
8555 if (this && this != rdev)
8556 continue;
8557 if (test_bit(Candidate, &rdev->flags))
8558 continue;
8559 if (rdev->raid_disk >= 0 &&
8560 !test_bit(In_sync, &rdev->flags) &&
8561 !test_bit(Journal, &rdev->flags) &&
8562 !test_bit(Faulty, &rdev->flags))
8563 spares++;
8564 if (rdev->raid_disk >= 0)
8565 continue;
8566 if (test_bit(Faulty, &rdev->flags))
8567 continue;
8568 if (!test_bit(Journal, &rdev->flags)) {
8569 if (mddev->ro &&
8570 ! (rdev->saved_raid_disk >= 0 &&
8571 !test_bit(Bitmap_sync, &rdev->flags)))
8572 continue;
8573
8574 rdev->recovery_offset = 0;
8575 }
8576 if (mddev->pers->
8577 hot_add_disk(mddev, rdev) == 0) {
8578 if (sysfs_link_rdev(mddev, rdev))
8579 /* failure here is OK */;
8580 if (!test_bit(Journal, &rdev->flags))
8581 spares++;
8582 md_new_event(mddev);
8583 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8584 }
8585 }
8586 no_add:
8587 if (removed)
8588 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8589 return spares;
8590 }
8591
8592 static void md_start_sync(struct work_struct *ws)
8593 {
8594 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8595
8596 mddev->sync_thread = md_register_thread(md_do_sync,
8597 mddev,
8598 "resync");
8599 if (!mddev->sync_thread) {
8600 pr_warn("%s: could not start resync thread...\n",
8601 mdname(mddev));
8602 /* leave the spares where they are, it shouldn't hurt */
8603 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8604 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8605 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8606 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8607 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8608 wake_up(&resync_wait);
8609 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8610 &mddev->recovery))
8611 if (mddev->sysfs_action)
8612 sysfs_notify_dirent_safe(mddev->sysfs_action);
8613 } else
8614 md_wakeup_thread(mddev->sync_thread);
8615 sysfs_notify_dirent_safe(mddev->sysfs_action);
8616 md_new_event(mddev);
8617 }
8618
8619 /*
8620 * This routine is regularly called by all per-raid-array threads to
8621 * deal with generic issues like resync and super-block update.
8622 * Raid personalities that don't have a thread (linear/raid0) do not
8623 * need this as they never do any recovery or update the superblock.
8624 *
8625 * It does not do any resync itself, but rather "forks" off other threads
8626 * to do that as needed.
8627 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8628 * "->recovery" and create a thread at ->sync_thread.
8629 * When the thread finishes it sets MD_RECOVERY_DONE
8630 * and wakeups up this thread which will reap the thread and finish up.
8631 * This thread also removes any faulty devices (with nr_pending == 0).
8632 *
8633 * The overall approach is:
8634 * 1/ if the superblock needs updating, update it.
8635 * 2/ If a recovery thread is running, don't do anything else.
8636 * 3/ If recovery has finished, clean up, possibly marking spares active.
8637 * 4/ If there are any faulty devices, remove them.
8638 * 5/ If array is degraded, try to add spares devices
8639 * 6/ If array has spares or is not in-sync, start a resync thread.
8640 */
8641 void md_check_recovery(struct mddev *mddev)
8642 {
8643 if (mddev->suspended)
8644 return;
8645
8646 if (mddev->bitmap)
8647 bitmap_daemon_work(mddev);
8648
8649 if (signal_pending(current)) {
8650 if (mddev->pers->sync_request && !mddev->external) {
8651 pr_debug("md: %s in immediate safe mode\n",
8652 mdname(mddev));
8653 mddev->safemode = 2;
8654 }
8655 flush_signals(current);
8656 }
8657
8658 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8659 return;
8660 if ( ! (
8661 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8662 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8663 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8664 (mddev->external == 0 && mddev->safemode == 1) ||
8665 (mddev->safemode == 2
8666 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8667 ))
8668 return;
8669
8670 if (mddev_trylock(mddev)) {
8671 int spares = 0;
8672
8673 if (!mddev->external && mddev->safemode == 1)
8674 mddev->safemode = 0;
8675
8676 if (mddev->ro) {
8677 struct md_rdev *rdev;
8678 if (!mddev->external && mddev->in_sync)
8679 /* 'Blocked' flag not needed as failed devices
8680 * will be recorded if array switched to read/write.
8681 * Leaving it set will prevent the device
8682 * from being removed.
8683 */
8684 rdev_for_each(rdev, mddev)
8685 clear_bit(Blocked, &rdev->flags);
8686 /* On a read-only array we can:
8687 * - remove failed devices
8688 * - add already-in_sync devices if the array itself
8689 * is in-sync.
8690 * As we only add devices that are already in-sync,
8691 * we can activate the spares immediately.
8692 */
8693 remove_and_add_spares(mddev, NULL);
8694 /* There is no thread, but we need to call
8695 * ->spare_active and clear saved_raid_disk
8696 */
8697 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8698 md_reap_sync_thread(mddev);
8699 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8700 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8701 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8702 goto unlock;
8703 }
8704
8705 if (mddev_is_clustered(mddev)) {
8706 struct md_rdev *rdev;
8707 /* kick the device if another node issued a
8708 * remove disk.
8709 */
8710 rdev_for_each(rdev, mddev) {
8711 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8712 rdev->raid_disk < 0)
8713 md_kick_rdev_from_array(rdev);
8714 }
8715 }
8716
8717 if (!mddev->external && !mddev->in_sync) {
8718 spin_lock(&mddev->lock);
8719 set_in_sync(mddev);
8720 spin_unlock(&mddev->lock);
8721 }
8722
8723 if (mddev->sb_flags)
8724 md_update_sb(mddev, 0);
8725
8726 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8727 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8728 /* resync/recovery still happening */
8729 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8730 goto unlock;
8731 }
8732 if (mddev->sync_thread) {
8733 md_reap_sync_thread(mddev);
8734 goto unlock;
8735 }
8736 /* Set RUNNING before clearing NEEDED to avoid
8737 * any transients in the value of "sync_action".
8738 */
8739 mddev->curr_resync_completed = 0;
8740 spin_lock(&mddev->lock);
8741 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8742 spin_unlock(&mddev->lock);
8743 /* Clear some bits that don't mean anything, but
8744 * might be left set
8745 */
8746 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8747 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8748
8749 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8750 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8751 goto not_running;
8752 /* no recovery is running.
8753 * remove any failed drives, then
8754 * add spares if possible.
8755 * Spares are also removed and re-added, to allow
8756 * the personality to fail the re-add.
8757 */
8758
8759 if (mddev->reshape_position != MaxSector) {
8760 if (mddev->pers->check_reshape == NULL ||
8761 mddev->pers->check_reshape(mddev) != 0)
8762 /* Cannot proceed */
8763 goto not_running;
8764 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8765 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8766 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8767 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8768 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8769 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8770 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8771 } else if (mddev->recovery_cp < MaxSector) {
8772 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8773 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8774 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8775 /* nothing to be done ... */
8776 goto not_running;
8777
8778 if (mddev->pers->sync_request) {
8779 if (spares) {
8780 /* We are adding a device or devices to an array
8781 * which has the bitmap stored on all devices.
8782 * So make sure all bitmap pages get written
8783 */
8784 bitmap_write_all(mddev->bitmap);
8785 }
8786 INIT_WORK(&mddev->del_work, md_start_sync);
8787 queue_work(md_misc_wq, &mddev->del_work);
8788 goto unlock;
8789 }
8790 not_running:
8791 if (!mddev->sync_thread) {
8792 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8793 wake_up(&resync_wait);
8794 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8795 &mddev->recovery))
8796 if (mddev->sysfs_action)
8797 sysfs_notify_dirent_safe(mddev->sysfs_action);
8798 }
8799 unlock:
8800 wake_up(&mddev->sb_wait);
8801 mddev_unlock(mddev);
8802 }
8803 }
8804 EXPORT_SYMBOL(md_check_recovery);
8805
8806 void md_reap_sync_thread(struct mddev *mddev)
8807 {
8808 struct md_rdev *rdev;
8809
8810 /* resync has finished, collect result */
8811 md_unregister_thread(&mddev->sync_thread);
8812 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8813 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8814 /* success...*/
8815 /* activate any spares */
8816 if (mddev->pers->spare_active(mddev)) {
8817 sysfs_notify(&mddev->kobj, NULL,
8818 "degraded");
8819 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8820 }
8821 }
8822 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8823 mddev->pers->finish_reshape)
8824 mddev->pers->finish_reshape(mddev);
8825
8826 /* If array is no-longer degraded, then any saved_raid_disk
8827 * information must be scrapped.
8828 */
8829 if (!mddev->degraded)
8830 rdev_for_each(rdev, mddev)
8831 rdev->saved_raid_disk = -1;
8832
8833 md_update_sb(mddev, 1);
8834 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8835 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8836 * clustered raid */
8837 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8838 md_cluster_ops->resync_finish(mddev);
8839 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8840 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8841 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8842 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8843 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8844 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8845 wake_up(&resync_wait);
8846 /* flag recovery needed just to double check */
8847 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8848 sysfs_notify_dirent_safe(mddev->sysfs_action);
8849 md_new_event(mddev);
8850 if (mddev->event_work.func)
8851 queue_work(md_misc_wq, &mddev->event_work);
8852 }
8853 EXPORT_SYMBOL(md_reap_sync_thread);
8854
8855 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8856 {
8857 sysfs_notify_dirent_safe(rdev->sysfs_state);
8858 wait_event_timeout(rdev->blocked_wait,
8859 !test_bit(Blocked, &rdev->flags) &&
8860 !test_bit(BlockedBadBlocks, &rdev->flags),
8861 msecs_to_jiffies(5000));
8862 rdev_dec_pending(rdev, mddev);
8863 }
8864 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8865
8866 void md_finish_reshape(struct mddev *mddev)
8867 {
8868 /* called be personality module when reshape completes. */
8869 struct md_rdev *rdev;
8870
8871 rdev_for_each(rdev, mddev) {
8872 if (rdev->data_offset > rdev->new_data_offset)
8873 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8874 else
8875 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8876 rdev->data_offset = rdev->new_data_offset;
8877 }
8878 }
8879 EXPORT_SYMBOL(md_finish_reshape);
8880
8881 /* Bad block management */
8882
8883 /* Returns 1 on success, 0 on failure */
8884 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8885 int is_new)
8886 {
8887 struct mddev *mddev = rdev->mddev;
8888 int rv;
8889 if (is_new)
8890 s += rdev->new_data_offset;
8891 else
8892 s += rdev->data_offset;
8893 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8894 if (rv == 0) {
8895 /* Make sure they get written out promptly */
8896 if (test_bit(ExternalBbl, &rdev->flags))
8897 sysfs_notify(&rdev->kobj, NULL,
8898 "unacknowledged_bad_blocks");
8899 sysfs_notify_dirent_safe(rdev->sysfs_state);
8900 set_mask_bits(&mddev->sb_flags, 0,
8901 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
8902 md_wakeup_thread(rdev->mddev->thread);
8903 return 1;
8904 } else
8905 return 0;
8906 }
8907 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8908
8909 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8910 int is_new)
8911 {
8912 int rv;
8913 if (is_new)
8914 s += rdev->new_data_offset;
8915 else
8916 s += rdev->data_offset;
8917 rv = badblocks_clear(&rdev->badblocks, s, sectors);
8918 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
8919 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
8920 return rv;
8921 }
8922 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8923
8924 static int md_notify_reboot(struct notifier_block *this,
8925 unsigned long code, void *x)
8926 {
8927 struct list_head *tmp;
8928 struct mddev *mddev;
8929 int need_delay = 0;
8930
8931 for_each_mddev(mddev, tmp) {
8932 if (mddev_trylock(mddev)) {
8933 if (mddev->pers)
8934 __md_stop_writes(mddev);
8935 if (mddev->persistent)
8936 mddev->safemode = 2;
8937 mddev_unlock(mddev);
8938 }
8939 need_delay = 1;
8940 }
8941 /*
8942 * certain more exotic SCSI devices are known to be
8943 * volatile wrt too early system reboots. While the
8944 * right place to handle this issue is the given
8945 * driver, we do want to have a safe RAID driver ...
8946 */
8947 if (need_delay)
8948 mdelay(1000*1);
8949
8950 return NOTIFY_DONE;
8951 }
8952
8953 static struct notifier_block md_notifier = {
8954 .notifier_call = md_notify_reboot,
8955 .next = NULL,
8956 .priority = INT_MAX, /* before any real devices */
8957 };
8958
8959 static void md_geninit(void)
8960 {
8961 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8962
8963 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8964 }
8965
8966 static int __init md_init(void)
8967 {
8968 int ret = -ENOMEM;
8969
8970 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8971 if (!md_wq)
8972 goto err_wq;
8973
8974 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8975 if (!md_misc_wq)
8976 goto err_misc_wq;
8977
8978 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8979 goto err_md;
8980
8981 if ((ret = register_blkdev(0, "mdp")) < 0)
8982 goto err_mdp;
8983 mdp_major = ret;
8984
8985 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8986 md_probe, NULL, NULL);
8987 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8988 md_probe, NULL, NULL);
8989
8990 register_reboot_notifier(&md_notifier);
8991 raid_table_header = register_sysctl_table(raid_root_table);
8992
8993 md_geninit();
8994 return 0;
8995
8996 err_mdp:
8997 unregister_blkdev(MD_MAJOR, "md");
8998 err_md:
8999 destroy_workqueue(md_misc_wq);
9000 err_misc_wq:
9001 destroy_workqueue(md_wq);
9002 err_wq:
9003 return ret;
9004 }
9005
9006 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9007 {
9008 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9009 struct md_rdev *rdev2;
9010 int role, ret;
9011 char b[BDEVNAME_SIZE];
9012
9013 /*
9014 * If size is changed in another node then we need to
9015 * do resize as well.
9016 */
9017 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9018 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9019 if (ret)
9020 pr_info("md-cluster: resize failed\n");
9021 else
9022 bitmap_update_sb(mddev->bitmap);
9023 }
9024
9025 /* Check for change of roles in the active devices */
9026 rdev_for_each(rdev2, mddev) {
9027 if (test_bit(Faulty, &rdev2->flags))
9028 continue;
9029
9030 /* Check if the roles changed */
9031 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9032
9033 if (test_bit(Candidate, &rdev2->flags)) {
9034 if (role == 0xfffe) {
9035 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9036 md_kick_rdev_from_array(rdev2);
9037 continue;
9038 }
9039 else
9040 clear_bit(Candidate, &rdev2->flags);
9041 }
9042
9043 if (role != rdev2->raid_disk) {
9044 /* got activated */
9045 if (rdev2->raid_disk == -1 && role != 0xffff) {
9046 rdev2->saved_raid_disk = role;
9047 ret = remove_and_add_spares(mddev, rdev2);
9048 pr_info("Activated spare: %s\n",
9049 bdevname(rdev2->bdev,b));
9050 /* wakeup mddev->thread here, so array could
9051 * perform resync with the new activated disk */
9052 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9053 md_wakeup_thread(mddev->thread);
9054
9055 }
9056 /* device faulty
9057 * We just want to do the minimum to mark the disk
9058 * as faulty. The recovery is performed by the
9059 * one who initiated the error.
9060 */
9061 if ((role == 0xfffe) || (role == 0xfffd)) {
9062 md_error(mddev, rdev2);
9063 clear_bit(Blocked, &rdev2->flags);
9064 }
9065 }
9066 }
9067
9068 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9069 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9070
9071 /* Finally set the event to be up to date */
9072 mddev->events = le64_to_cpu(sb->events);
9073 }
9074
9075 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9076 {
9077 int err;
9078 struct page *swapout = rdev->sb_page;
9079 struct mdp_superblock_1 *sb;
9080
9081 /* Store the sb page of the rdev in the swapout temporary
9082 * variable in case we err in the future
9083 */
9084 rdev->sb_page = NULL;
9085 err = alloc_disk_sb(rdev);
9086 if (err == 0) {
9087 ClearPageUptodate(rdev->sb_page);
9088 rdev->sb_loaded = 0;
9089 err = super_types[mddev->major_version].
9090 load_super(rdev, NULL, mddev->minor_version);
9091 }
9092 if (err < 0) {
9093 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9094 __func__, __LINE__, rdev->desc_nr, err);
9095 if (rdev->sb_page)
9096 put_page(rdev->sb_page);
9097 rdev->sb_page = swapout;
9098 rdev->sb_loaded = 1;
9099 return err;
9100 }
9101
9102 sb = page_address(rdev->sb_page);
9103 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9104 * is not set
9105 */
9106
9107 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9108 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9109
9110 /* The other node finished recovery, call spare_active to set
9111 * device In_sync and mddev->degraded
9112 */
9113 if (rdev->recovery_offset == MaxSector &&
9114 !test_bit(In_sync, &rdev->flags) &&
9115 mddev->pers->spare_active(mddev))
9116 sysfs_notify(&mddev->kobj, NULL, "degraded");
9117
9118 put_page(swapout);
9119 return 0;
9120 }
9121
9122 void md_reload_sb(struct mddev *mddev, int nr)
9123 {
9124 struct md_rdev *rdev;
9125 int err;
9126
9127 /* Find the rdev */
9128 rdev_for_each_rcu(rdev, mddev) {
9129 if (rdev->desc_nr == nr)
9130 break;
9131 }
9132
9133 if (!rdev || rdev->desc_nr != nr) {
9134 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9135 return;
9136 }
9137
9138 err = read_rdev(mddev, rdev);
9139 if (err < 0)
9140 return;
9141
9142 check_sb_changes(mddev, rdev);
9143
9144 /* Read all rdev's to update recovery_offset */
9145 rdev_for_each_rcu(rdev, mddev)
9146 read_rdev(mddev, rdev);
9147 }
9148 EXPORT_SYMBOL(md_reload_sb);
9149
9150 #ifndef MODULE
9151
9152 /*
9153 * Searches all registered partitions for autorun RAID arrays
9154 * at boot time.
9155 */
9156
9157 static DEFINE_MUTEX(detected_devices_mutex);
9158 static LIST_HEAD(all_detected_devices);
9159 struct detected_devices_node {
9160 struct list_head list;
9161 dev_t dev;
9162 };
9163
9164 void md_autodetect_dev(dev_t dev)
9165 {
9166 struct detected_devices_node *node_detected_dev;
9167
9168 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9169 if (node_detected_dev) {
9170 node_detected_dev->dev = dev;
9171 mutex_lock(&detected_devices_mutex);
9172 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9173 mutex_unlock(&detected_devices_mutex);
9174 }
9175 }
9176
9177 static void autostart_arrays(int part)
9178 {
9179 struct md_rdev *rdev;
9180 struct detected_devices_node *node_detected_dev;
9181 dev_t dev;
9182 int i_scanned, i_passed;
9183
9184 i_scanned = 0;
9185 i_passed = 0;
9186
9187 pr_info("md: Autodetecting RAID arrays.\n");
9188
9189 mutex_lock(&detected_devices_mutex);
9190 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9191 i_scanned++;
9192 node_detected_dev = list_entry(all_detected_devices.next,
9193 struct detected_devices_node, list);
9194 list_del(&node_detected_dev->list);
9195 dev = node_detected_dev->dev;
9196 kfree(node_detected_dev);
9197 mutex_unlock(&detected_devices_mutex);
9198 rdev = md_import_device(dev,0, 90);
9199 mutex_lock(&detected_devices_mutex);
9200 if (IS_ERR(rdev))
9201 continue;
9202
9203 if (test_bit(Faulty, &rdev->flags))
9204 continue;
9205
9206 set_bit(AutoDetected, &rdev->flags);
9207 list_add(&rdev->same_set, &pending_raid_disks);
9208 i_passed++;
9209 }
9210 mutex_unlock(&detected_devices_mutex);
9211
9212 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9213
9214 autorun_devices(part);
9215 }
9216
9217 #endif /* !MODULE */
9218
9219 static __exit void md_exit(void)
9220 {
9221 struct mddev *mddev;
9222 struct list_head *tmp;
9223 int delay = 1;
9224
9225 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9226 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9227
9228 unregister_blkdev(MD_MAJOR,"md");
9229 unregister_blkdev(mdp_major, "mdp");
9230 unregister_reboot_notifier(&md_notifier);
9231 unregister_sysctl_table(raid_table_header);
9232
9233 /* We cannot unload the modules while some process is
9234 * waiting for us in select() or poll() - wake them up
9235 */
9236 md_unloading = 1;
9237 while (waitqueue_active(&md_event_waiters)) {
9238 /* not safe to leave yet */
9239 wake_up(&md_event_waiters);
9240 msleep(delay);
9241 delay += delay;
9242 }
9243 remove_proc_entry("mdstat", NULL);
9244
9245 for_each_mddev(mddev, tmp) {
9246 export_array(mddev);
9247 mddev->ctime = 0;
9248 mddev->hold_active = 0;
9249 /*
9250 * for_each_mddev() will call mddev_put() at the end of each
9251 * iteration. As the mddev is now fully clear, this will
9252 * schedule the mddev for destruction by a workqueue, and the
9253 * destroy_workqueue() below will wait for that to complete.
9254 */
9255 }
9256 destroy_workqueue(md_misc_wq);
9257 destroy_workqueue(md_wq);
9258 }
9259
9260 subsys_initcall(md_init);
9261 module_exit(md_exit)
9262
9263 static int get_ro(char *buffer, struct kernel_param *kp)
9264 {
9265 return sprintf(buffer, "%d", start_readonly);
9266 }
9267 static int set_ro(const char *val, struct kernel_param *kp)
9268 {
9269 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9270 }
9271
9272 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9273 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9274 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9275 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9276
9277 MODULE_LICENSE("GPL");
9278 MODULE_DESCRIPTION("MD RAID framework");
9279 MODULE_ALIAS("md");
9280 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);