]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/md.c
block: replace bi_bdev with a gendisk pointer and partitions index
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 struct md_cluster_operations *md_cluster_ops;
88 EXPORT_SYMBOL(md_cluster_ops);
89 struct module *md_cluster_mod;
90 EXPORT_SYMBOL(md_cluster_mod);
91
92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
93 static struct workqueue_struct *md_wq;
94 static struct workqueue_struct *md_misc_wq;
95
96 static int remove_and_add_spares(struct mddev *mddev,
97 struct md_rdev *this);
98 static void mddev_detach(struct mddev *mddev);
99
100 /*
101 * Default number of read corrections we'll attempt on an rdev
102 * before ejecting it from the array. We divide the read error
103 * count by 2 for every hour elapsed between read errors.
104 */
105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
106 /*
107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
108 * is 1000 KB/sec, so the extra system load does not show up that much.
109 * Increase it if you want to have more _guaranteed_ speed. Note that
110 * the RAID driver will use the maximum available bandwidth if the IO
111 * subsystem is idle. There is also an 'absolute maximum' reconstruction
112 * speed limit - in case reconstruction slows down your system despite
113 * idle IO detection.
114 *
115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
116 * or /sys/block/mdX/md/sync_speed_{min,max}
117 */
118
119 static int sysctl_speed_limit_min = 1000;
120 static int sysctl_speed_limit_max = 200000;
121 static inline int speed_min(struct mddev *mddev)
122 {
123 return mddev->sync_speed_min ?
124 mddev->sync_speed_min : sysctl_speed_limit_min;
125 }
126
127 static inline int speed_max(struct mddev *mddev)
128 {
129 return mddev->sync_speed_max ?
130 mddev->sync_speed_max : sysctl_speed_limit_max;
131 }
132
133 static struct ctl_table_header *raid_table_header;
134
135 static struct ctl_table raid_table[] = {
136 {
137 .procname = "speed_limit_min",
138 .data = &sysctl_speed_limit_min,
139 .maxlen = sizeof(int),
140 .mode = S_IRUGO|S_IWUSR,
141 .proc_handler = proc_dointvec,
142 },
143 {
144 .procname = "speed_limit_max",
145 .data = &sysctl_speed_limit_max,
146 .maxlen = sizeof(int),
147 .mode = S_IRUGO|S_IWUSR,
148 .proc_handler = proc_dointvec,
149 },
150 { }
151 };
152
153 static struct ctl_table raid_dir_table[] = {
154 {
155 .procname = "raid",
156 .maxlen = 0,
157 .mode = S_IRUGO|S_IXUGO,
158 .child = raid_table,
159 },
160 { }
161 };
162
163 static struct ctl_table raid_root_table[] = {
164 {
165 .procname = "dev",
166 .maxlen = 0,
167 .mode = 0555,
168 .child = raid_dir_table,
169 },
170 { }
171 };
172
173 static const struct block_device_operations md_fops;
174
175 static int start_readonly;
176
177 /*
178 * The original mechanism for creating an md device is to create
179 * a device node in /dev and to open it. This causes races with device-close.
180 * The preferred method is to write to the "new_array" module parameter.
181 * This can avoid races.
182 * Setting create_on_open to false disables the original mechanism
183 * so all the races disappear.
184 */
185 static bool create_on_open = true;
186
187 /* bio_clone_mddev
188 * like bio_clone_bioset, but with a local bio set
189 */
190
191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
192 struct mddev *mddev)
193 {
194 struct bio *b;
195
196 if (!mddev || !mddev->bio_set)
197 return bio_alloc(gfp_mask, nr_iovecs);
198
199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
200 if (!b)
201 return NULL;
202 return b;
203 }
204 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
205
206 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
207 {
208 if (!mddev || !mddev->sync_set)
209 return bio_alloc(GFP_NOIO, 1);
210
211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set);
212 }
213
214 /*
215 * We have a system wide 'event count' that is incremented
216 * on any 'interesting' event, and readers of /proc/mdstat
217 * can use 'poll' or 'select' to find out when the event
218 * count increases.
219 *
220 * Events are:
221 * start array, stop array, error, add device, remove device,
222 * start build, activate spare
223 */
224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
225 static atomic_t md_event_count;
226 void md_new_event(struct mddev *mddev)
227 {
228 atomic_inc(&md_event_count);
229 wake_up(&md_event_waiters);
230 }
231 EXPORT_SYMBOL_GPL(md_new_event);
232
233 /*
234 * Enables to iterate over all existing md arrays
235 * all_mddevs_lock protects this list.
236 */
237 static LIST_HEAD(all_mddevs);
238 static DEFINE_SPINLOCK(all_mddevs_lock);
239
240 /*
241 * iterates through all used mddevs in the system.
242 * We take care to grab the all_mddevs_lock whenever navigating
243 * the list, and to always hold a refcount when unlocked.
244 * Any code which breaks out of this loop while own
245 * a reference to the current mddev and must mddev_put it.
246 */
247 #define for_each_mddev(_mddev,_tmp) \
248 \
249 for (({ spin_lock(&all_mddevs_lock); \
250 _tmp = all_mddevs.next; \
251 _mddev = NULL;}); \
252 ({ if (_tmp != &all_mddevs) \
253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
254 spin_unlock(&all_mddevs_lock); \
255 if (_mddev) mddev_put(_mddev); \
256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
257 _tmp != &all_mddevs;}); \
258 ({ spin_lock(&all_mddevs_lock); \
259 _tmp = _tmp->next;}) \
260 )
261
262 /* Rather than calling directly into the personality make_request function,
263 * IO requests come here first so that we can check if the device is
264 * being suspended pending a reconfiguration.
265 * We hold a refcount over the call to ->make_request. By the time that
266 * call has finished, the bio has been linked into some internal structure
267 * and so is visible to ->quiesce(), so we don't need the refcount any more.
268 */
269 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
270 {
271 const int rw = bio_data_dir(bio);
272 struct mddev *mddev = q->queuedata;
273 unsigned int sectors;
274 int cpu;
275
276 blk_queue_split(q, &bio);
277
278 if (mddev == NULL || mddev->pers == NULL) {
279 bio_io_error(bio);
280 return BLK_QC_T_NONE;
281 }
282 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
283 if (bio_sectors(bio) != 0)
284 bio->bi_status = BLK_STS_IOERR;
285 bio_endio(bio);
286 return BLK_QC_T_NONE;
287 }
288 check_suspended:
289 rcu_read_lock();
290 if (mddev->suspended) {
291 DEFINE_WAIT(__wait);
292 for (;;) {
293 prepare_to_wait(&mddev->sb_wait, &__wait,
294 TASK_UNINTERRUPTIBLE);
295 if (!mddev->suspended)
296 break;
297 rcu_read_unlock();
298 schedule();
299 rcu_read_lock();
300 }
301 finish_wait(&mddev->sb_wait, &__wait);
302 }
303 atomic_inc(&mddev->active_io);
304 rcu_read_unlock();
305
306 /*
307 * save the sectors now since our bio can
308 * go away inside make_request
309 */
310 sectors = bio_sectors(bio);
311 /* bio could be mergeable after passing to underlayer */
312 bio->bi_opf &= ~REQ_NOMERGE;
313 if (!mddev->pers->make_request(mddev, bio)) {
314 atomic_dec(&mddev->active_io);
315 wake_up(&mddev->sb_wait);
316 goto check_suspended;
317 }
318
319 cpu = part_stat_lock();
320 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
321 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
322 part_stat_unlock();
323
324 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
325 wake_up(&mddev->sb_wait);
326
327 return BLK_QC_T_NONE;
328 }
329
330 /* mddev_suspend makes sure no new requests are submitted
331 * to the device, and that any requests that have been submitted
332 * are completely handled.
333 * Once mddev_detach() is called and completes, the module will be
334 * completely unused.
335 */
336 void mddev_suspend(struct mddev *mddev)
337 {
338 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
339 if (mddev->suspended++)
340 return;
341 synchronize_rcu();
342 wake_up(&mddev->sb_wait);
343 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
344 mddev->pers->quiesce(mddev, 1);
345
346 del_timer_sync(&mddev->safemode_timer);
347 }
348 EXPORT_SYMBOL_GPL(mddev_suspend);
349
350 void mddev_resume(struct mddev *mddev)
351 {
352 if (--mddev->suspended)
353 return;
354 wake_up(&mddev->sb_wait);
355 mddev->pers->quiesce(mddev, 0);
356
357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
358 md_wakeup_thread(mddev->thread);
359 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
360 }
361 EXPORT_SYMBOL_GPL(mddev_resume);
362
363 int mddev_congested(struct mddev *mddev, int bits)
364 {
365 struct md_personality *pers = mddev->pers;
366 int ret = 0;
367
368 rcu_read_lock();
369 if (mddev->suspended)
370 ret = 1;
371 else if (pers && pers->congested)
372 ret = pers->congested(mddev, bits);
373 rcu_read_unlock();
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(mddev_congested);
377 static int md_congested(void *data, int bits)
378 {
379 struct mddev *mddev = data;
380 return mddev_congested(mddev, bits);
381 }
382
383 /*
384 * Generic flush handling for md
385 */
386
387 static void md_end_flush(struct bio *bio)
388 {
389 struct md_rdev *rdev = bio->bi_private;
390 struct mddev *mddev = rdev->mddev;
391
392 rdev_dec_pending(rdev, mddev);
393
394 if (atomic_dec_and_test(&mddev->flush_pending)) {
395 /* The pre-request flush has finished */
396 queue_work(md_wq, &mddev->flush_work);
397 }
398 bio_put(bio);
399 }
400
401 static void md_submit_flush_data(struct work_struct *ws);
402
403 static void submit_flushes(struct work_struct *ws)
404 {
405 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
406 struct md_rdev *rdev;
407
408 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
409 atomic_set(&mddev->flush_pending, 1);
410 rcu_read_lock();
411 rdev_for_each_rcu(rdev, mddev)
412 if (rdev->raid_disk >= 0 &&
413 !test_bit(Faulty, &rdev->flags)) {
414 /* Take two references, one is dropped
415 * when request finishes, one after
416 * we reclaim rcu_read_lock
417 */
418 struct bio *bi;
419 atomic_inc(&rdev->nr_pending);
420 atomic_inc(&rdev->nr_pending);
421 rcu_read_unlock();
422 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
423 bi->bi_end_io = md_end_flush;
424 bi->bi_private = rdev;
425 bio_set_dev(bi, rdev->bdev);
426 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
427 atomic_inc(&mddev->flush_pending);
428 submit_bio(bi);
429 rcu_read_lock();
430 rdev_dec_pending(rdev, mddev);
431 }
432 rcu_read_unlock();
433 if (atomic_dec_and_test(&mddev->flush_pending))
434 queue_work(md_wq, &mddev->flush_work);
435 }
436
437 static void md_submit_flush_data(struct work_struct *ws)
438 {
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct bio *bio = mddev->flush_bio;
441
442 if (bio->bi_iter.bi_size == 0)
443 /* an empty barrier - all done */
444 bio_endio(bio);
445 else {
446 bio->bi_opf &= ~REQ_PREFLUSH;
447 mddev->pers->make_request(mddev, bio);
448 }
449
450 mddev->flush_bio = NULL;
451 wake_up(&mddev->sb_wait);
452 }
453
454 void md_flush_request(struct mddev *mddev, struct bio *bio)
455 {
456 spin_lock_irq(&mddev->lock);
457 wait_event_lock_irq(mddev->sb_wait,
458 !mddev->flush_bio,
459 mddev->lock);
460 mddev->flush_bio = bio;
461 spin_unlock_irq(&mddev->lock);
462
463 INIT_WORK(&mddev->flush_work, submit_flushes);
464 queue_work(md_wq, &mddev->flush_work);
465 }
466 EXPORT_SYMBOL(md_flush_request);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 atomic_inc(&mddev->active);
471 return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478 struct bio_set *bs = NULL, *sync_bs = NULL;
479
480 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 return;
482 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 mddev->ctime == 0 && !mddev->hold_active) {
484 /* Array is not configured at all, and not held active,
485 * so destroy it */
486 list_del_init(&mddev->all_mddevs);
487 bs = mddev->bio_set;
488 sync_bs = mddev->sync_set;
489 mddev->bio_set = NULL;
490 mddev->sync_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
496 */
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
501 }
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
505 if (sync_bs)
506 bioset_free(sync_bs);
507 }
508
509 static void md_safemode_timeout(unsigned long data);
510
511 void mddev_init(struct mddev *mddev)
512 {
513 mutex_init(&mddev->open_mutex);
514 mutex_init(&mddev->reconfig_mutex);
515 mutex_init(&mddev->bitmap_info.mutex);
516 INIT_LIST_HEAD(&mddev->disks);
517 INIT_LIST_HEAD(&mddev->all_mddevs);
518 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
519 (unsigned long) mddev);
520 atomic_set(&mddev->active, 1);
521 atomic_set(&mddev->openers, 0);
522 atomic_set(&mddev->active_io, 0);
523 spin_lock_init(&mddev->lock);
524 atomic_set(&mddev->flush_pending, 0);
525 init_waitqueue_head(&mddev->sb_wait);
526 init_waitqueue_head(&mddev->recovery_wait);
527 mddev->reshape_position = MaxSector;
528 mddev->reshape_backwards = 0;
529 mddev->last_sync_action = "none";
530 mddev->resync_min = 0;
531 mddev->resync_max = MaxSector;
532 mddev->level = LEVEL_NONE;
533 }
534 EXPORT_SYMBOL_GPL(mddev_init);
535
536 static struct mddev *mddev_find(dev_t unit)
537 {
538 struct mddev *mddev, *new = NULL;
539
540 if (unit && MAJOR(unit) != MD_MAJOR)
541 unit &= ~((1<<MdpMinorShift)-1);
542
543 retry:
544 spin_lock(&all_mddevs_lock);
545
546 if (unit) {
547 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
548 if (mddev->unit == unit) {
549 mddev_get(mddev);
550 spin_unlock(&all_mddevs_lock);
551 kfree(new);
552 return mddev;
553 }
554
555 if (new) {
556 list_add(&new->all_mddevs, &all_mddevs);
557 spin_unlock(&all_mddevs_lock);
558 new->hold_active = UNTIL_IOCTL;
559 return new;
560 }
561 } else if (new) {
562 /* find an unused unit number */
563 static int next_minor = 512;
564 int start = next_minor;
565 int is_free = 0;
566 int dev = 0;
567 while (!is_free) {
568 dev = MKDEV(MD_MAJOR, next_minor);
569 next_minor++;
570 if (next_minor > MINORMASK)
571 next_minor = 0;
572 if (next_minor == start) {
573 /* Oh dear, all in use. */
574 spin_unlock(&all_mddevs_lock);
575 kfree(new);
576 return NULL;
577 }
578
579 is_free = 1;
580 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581 if (mddev->unit == dev) {
582 is_free = 0;
583 break;
584 }
585 }
586 new->unit = dev;
587 new->md_minor = MINOR(dev);
588 new->hold_active = UNTIL_STOP;
589 list_add(&new->all_mddevs, &all_mddevs);
590 spin_unlock(&all_mddevs_lock);
591 return new;
592 }
593 spin_unlock(&all_mddevs_lock);
594
595 new = kzalloc(sizeof(*new), GFP_KERNEL);
596 if (!new)
597 return NULL;
598
599 new->unit = unit;
600 if (MAJOR(unit) == MD_MAJOR)
601 new->md_minor = MINOR(unit);
602 else
603 new->md_minor = MINOR(unit) >> MdpMinorShift;
604
605 mddev_init(new);
606
607 goto retry;
608 }
609
610 static struct attribute_group md_redundancy_group;
611
612 void mddev_unlock(struct mddev *mddev)
613 {
614 if (mddev->to_remove) {
615 /* These cannot be removed under reconfig_mutex as
616 * an access to the files will try to take reconfig_mutex
617 * while holding the file unremovable, which leads to
618 * a deadlock.
619 * So hold set sysfs_active while the remove in happeing,
620 * and anything else which might set ->to_remove or my
621 * otherwise change the sysfs namespace will fail with
622 * -EBUSY if sysfs_active is still set.
623 * We set sysfs_active under reconfig_mutex and elsewhere
624 * test it under the same mutex to ensure its correct value
625 * is seen.
626 */
627 struct attribute_group *to_remove = mddev->to_remove;
628 mddev->to_remove = NULL;
629 mddev->sysfs_active = 1;
630 mutex_unlock(&mddev->reconfig_mutex);
631
632 if (mddev->kobj.sd) {
633 if (to_remove != &md_redundancy_group)
634 sysfs_remove_group(&mddev->kobj, to_remove);
635 if (mddev->pers == NULL ||
636 mddev->pers->sync_request == NULL) {
637 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
638 if (mddev->sysfs_action)
639 sysfs_put(mddev->sysfs_action);
640 mddev->sysfs_action = NULL;
641 }
642 }
643 mddev->sysfs_active = 0;
644 } else
645 mutex_unlock(&mddev->reconfig_mutex);
646
647 /* As we've dropped the mutex we need a spinlock to
648 * make sure the thread doesn't disappear
649 */
650 spin_lock(&pers_lock);
651 md_wakeup_thread(mddev->thread);
652 spin_unlock(&pers_lock);
653 }
654 EXPORT_SYMBOL_GPL(mddev_unlock);
655
656 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each_rcu(rdev, mddev)
661 if (rdev->desc_nr == nr)
662 return rdev;
663
664 return NULL;
665 }
666 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
667
668 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
669 {
670 struct md_rdev *rdev;
671
672 rdev_for_each(rdev, mddev)
673 if (rdev->bdev->bd_dev == dev)
674 return rdev;
675
676 return NULL;
677 }
678
679 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
680 {
681 struct md_rdev *rdev;
682
683 rdev_for_each_rcu(rdev, mddev)
684 if (rdev->bdev->bd_dev == dev)
685 return rdev;
686
687 return NULL;
688 }
689
690 static struct md_personality *find_pers(int level, char *clevel)
691 {
692 struct md_personality *pers;
693 list_for_each_entry(pers, &pers_list, list) {
694 if (level != LEVEL_NONE && pers->level == level)
695 return pers;
696 if (strcmp(pers->name, clevel)==0)
697 return pers;
698 }
699 return NULL;
700 }
701
702 /* return the offset of the super block in 512byte sectors */
703 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
704 {
705 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
706 return MD_NEW_SIZE_SECTORS(num_sectors);
707 }
708
709 static int alloc_disk_sb(struct md_rdev *rdev)
710 {
711 rdev->sb_page = alloc_page(GFP_KERNEL);
712 if (!rdev->sb_page)
713 return -ENOMEM;
714 return 0;
715 }
716
717 void md_rdev_clear(struct md_rdev *rdev)
718 {
719 if (rdev->sb_page) {
720 put_page(rdev->sb_page);
721 rdev->sb_loaded = 0;
722 rdev->sb_page = NULL;
723 rdev->sb_start = 0;
724 rdev->sectors = 0;
725 }
726 if (rdev->bb_page) {
727 put_page(rdev->bb_page);
728 rdev->bb_page = NULL;
729 }
730 badblocks_exit(&rdev->badblocks);
731 }
732 EXPORT_SYMBOL_GPL(md_rdev_clear);
733
734 static void super_written(struct bio *bio)
735 {
736 struct md_rdev *rdev = bio->bi_private;
737 struct mddev *mddev = rdev->mddev;
738
739 if (bio->bi_status) {
740 pr_err("md: super_written gets error=%d\n", bio->bi_status);
741 md_error(mddev, rdev);
742 if (!test_bit(Faulty, &rdev->flags)
743 && (bio->bi_opf & MD_FAILFAST)) {
744 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
745 set_bit(LastDev, &rdev->flags);
746 }
747 } else
748 clear_bit(LastDev, &rdev->flags);
749
750 if (atomic_dec_and_test(&mddev->pending_writes))
751 wake_up(&mddev->sb_wait);
752 rdev_dec_pending(rdev, mddev);
753 bio_put(bio);
754 }
755
756 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
757 sector_t sector, int size, struct page *page)
758 {
759 /* write first size bytes of page to sector of rdev
760 * Increment mddev->pending_writes before returning
761 * and decrement it on completion, waking up sb_wait
762 * if zero is reached.
763 * If an error occurred, call md_error
764 */
765 struct bio *bio;
766 int ff = 0;
767
768 if (test_bit(Faulty, &rdev->flags))
769 return;
770
771 bio = md_bio_alloc_sync(mddev);
772
773 atomic_inc(&rdev->nr_pending);
774
775 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
776 bio->bi_iter.bi_sector = sector;
777 bio_add_page(bio, page, size, 0);
778 bio->bi_private = rdev;
779 bio->bi_end_io = super_written;
780
781 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
782 test_bit(FailFast, &rdev->flags) &&
783 !test_bit(LastDev, &rdev->flags))
784 ff = MD_FAILFAST;
785 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
786
787 atomic_inc(&mddev->pending_writes);
788 submit_bio(bio);
789 }
790
791 int md_super_wait(struct mddev *mddev)
792 {
793 /* wait for all superblock writes that were scheduled to complete */
794 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
795 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
796 return -EAGAIN;
797 return 0;
798 }
799
800 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
801 struct page *page, int op, int op_flags, bool metadata_op)
802 {
803 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
804 int ret;
805
806 if (metadata_op && rdev->meta_bdev)
807 bio_set_dev(bio, rdev->meta_bdev);
808 else
809 bio_set_dev(bio, rdev->bdev);
810 bio_set_op_attrs(bio, op, op_flags);
811 if (metadata_op)
812 bio->bi_iter.bi_sector = sector + rdev->sb_start;
813 else if (rdev->mddev->reshape_position != MaxSector &&
814 (rdev->mddev->reshape_backwards ==
815 (sector >= rdev->mddev->reshape_position)))
816 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
817 else
818 bio->bi_iter.bi_sector = sector + rdev->data_offset;
819 bio_add_page(bio, page, size, 0);
820
821 submit_bio_wait(bio);
822
823 ret = !bio->bi_status;
824 bio_put(bio);
825 return ret;
826 }
827 EXPORT_SYMBOL_GPL(sync_page_io);
828
829 static int read_disk_sb(struct md_rdev *rdev, int size)
830 {
831 char b[BDEVNAME_SIZE];
832
833 if (rdev->sb_loaded)
834 return 0;
835
836 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
837 goto fail;
838 rdev->sb_loaded = 1;
839 return 0;
840
841 fail:
842 pr_err("md: disabled device %s, could not read superblock.\n",
843 bdevname(rdev->bdev,b));
844 return -EINVAL;
845 }
846
847 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
848 {
849 return sb1->set_uuid0 == sb2->set_uuid0 &&
850 sb1->set_uuid1 == sb2->set_uuid1 &&
851 sb1->set_uuid2 == sb2->set_uuid2 &&
852 sb1->set_uuid3 == sb2->set_uuid3;
853 }
854
855 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
856 {
857 int ret;
858 mdp_super_t *tmp1, *tmp2;
859
860 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
861 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
862
863 if (!tmp1 || !tmp2) {
864 ret = 0;
865 goto abort;
866 }
867
868 *tmp1 = *sb1;
869 *tmp2 = *sb2;
870
871 /*
872 * nr_disks is not constant
873 */
874 tmp1->nr_disks = 0;
875 tmp2->nr_disks = 0;
876
877 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
878 abort:
879 kfree(tmp1);
880 kfree(tmp2);
881 return ret;
882 }
883
884 static u32 md_csum_fold(u32 csum)
885 {
886 csum = (csum & 0xffff) + (csum >> 16);
887 return (csum & 0xffff) + (csum >> 16);
888 }
889
890 static unsigned int calc_sb_csum(mdp_super_t *sb)
891 {
892 u64 newcsum = 0;
893 u32 *sb32 = (u32*)sb;
894 int i;
895 unsigned int disk_csum, csum;
896
897 disk_csum = sb->sb_csum;
898 sb->sb_csum = 0;
899
900 for (i = 0; i < MD_SB_BYTES/4 ; i++)
901 newcsum += sb32[i];
902 csum = (newcsum & 0xffffffff) + (newcsum>>32);
903
904 #ifdef CONFIG_ALPHA
905 /* This used to use csum_partial, which was wrong for several
906 * reasons including that different results are returned on
907 * different architectures. It isn't critical that we get exactly
908 * the same return value as before (we always csum_fold before
909 * testing, and that removes any differences). However as we
910 * know that csum_partial always returned a 16bit value on
911 * alphas, do a fold to maximise conformity to previous behaviour.
912 */
913 sb->sb_csum = md_csum_fold(disk_csum);
914 #else
915 sb->sb_csum = disk_csum;
916 #endif
917 return csum;
918 }
919
920 /*
921 * Handle superblock details.
922 * We want to be able to handle multiple superblock formats
923 * so we have a common interface to them all, and an array of
924 * different handlers.
925 * We rely on user-space to write the initial superblock, and support
926 * reading and updating of superblocks.
927 * Interface methods are:
928 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
929 * loads and validates a superblock on dev.
930 * if refdev != NULL, compare superblocks on both devices
931 * Return:
932 * 0 - dev has a superblock that is compatible with refdev
933 * 1 - dev has a superblock that is compatible and newer than refdev
934 * so dev should be used as the refdev in future
935 * -EINVAL superblock incompatible or invalid
936 * -othererror e.g. -EIO
937 *
938 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
939 * Verify that dev is acceptable into mddev.
940 * The first time, mddev->raid_disks will be 0, and data from
941 * dev should be merged in. Subsequent calls check that dev
942 * is new enough. Return 0 or -EINVAL
943 *
944 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
945 * Update the superblock for rdev with data in mddev
946 * This does not write to disc.
947 *
948 */
949
950 struct super_type {
951 char *name;
952 struct module *owner;
953 int (*load_super)(struct md_rdev *rdev,
954 struct md_rdev *refdev,
955 int minor_version);
956 int (*validate_super)(struct mddev *mddev,
957 struct md_rdev *rdev);
958 void (*sync_super)(struct mddev *mddev,
959 struct md_rdev *rdev);
960 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
961 sector_t num_sectors);
962 int (*allow_new_offset)(struct md_rdev *rdev,
963 unsigned long long new_offset);
964 };
965
966 /*
967 * Check that the given mddev has no bitmap.
968 *
969 * This function is called from the run method of all personalities that do not
970 * support bitmaps. It prints an error message and returns non-zero if mddev
971 * has a bitmap. Otherwise, it returns 0.
972 *
973 */
974 int md_check_no_bitmap(struct mddev *mddev)
975 {
976 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
977 return 0;
978 pr_warn("%s: bitmaps are not supported for %s\n",
979 mdname(mddev), mddev->pers->name);
980 return 1;
981 }
982 EXPORT_SYMBOL(md_check_no_bitmap);
983
984 /*
985 * load_super for 0.90.0
986 */
987 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
988 {
989 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
990 mdp_super_t *sb;
991 int ret;
992
993 /*
994 * Calculate the position of the superblock (512byte sectors),
995 * it's at the end of the disk.
996 *
997 * It also happens to be a multiple of 4Kb.
998 */
999 rdev->sb_start = calc_dev_sboffset(rdev);
1000
1001 ret = read_disk_sb(rdev, MD_SB_BYTES);
1002 if (ret)
1003 return ret;
1004
1005 ret = -EINVAL;
1006
1007 bdevname(rdev->bdev, b);
1008 sb = page_address(rdev->sb_page);
1009
1010 if (sb->md_magic != MD_SB_MAGIC) {
1011 pr_warn("md: invalid raid superblock magic on %s\n", b);
1012 goto abort;
1013 }
1014
1015 if (sb->major_version != 0 ||
1016 sb->minor_version < 90 ||
1017 sb->minor_version > 91) {
1018 pr_warn("Bad version number %d.%d on %s\n",
1019 sb->major_version, sb->minor_version, b);
1020 goto abort;
1021 }
1022
1023 if (sb->raid_disks <= 0)
1024 goto abort;
1025
1026 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1027 pr_warn("md: invalid superblock checksum on %s\n", b);
1028 goto abort;
1029 }
1030
1031 rdev->preferred_minor = sb->md_minor;
1032 rdev->data_offset = 0;
1033 rdev->new_data_offset = 0;
1034 rdev->sb_size = MD_SB_BYTES;
1035 rdev->badblocks.shift = -1;
1036
1037 if (sb->level == LEVEL_MULTIPATH)
1038 rdev->desc_nr = -1;
1039 else
1040 rdev->desc_nr = sb->this_disk.number;
1041
1042 if (!refdev) {
1043 ret = 1;
1044 } else {
1045 __u64 ev1, ev2;
1046 mdp_super_t *refsb = page_address(refdev->sb_page);
1047 if (!md_uuid_equal(refsb, sb)) {
1048 pr_warn("md: %s has different UUID to %s\n",
1049 b, bdevname(refdev->bdev,b2));
1050 goto abort;
1051 }
1052 if (!md_sb_equal(refsb, sb)) {
1053 pr_warn("md: %s has same UUID but different superblock to %s\n",
1054 b, bdevname(refdev->bdev, b2));
1055 goto abort;
1056 }
1057 ev1 = md_event(sb);
1058 ev2 = md_event(refsb);
1059 if (ev1 > ev2)
1060 ret = 1;
1061 else
1062 ret = 0;
1063 }
1064 rdev->sectors = rdev->sb_start;
1065 /* Limit to 4TB as metadata cannot record more than that.
1066 * (not needed for Linear and RAID0 as metadata doesn't
1067 * record this size)
1068 */
1069 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1070 sb->level >= 1)
1071 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1072
1073 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1074 /* "this cannot possibly happen" ... */
1075 ret = -EINVAL;
1076
1077 abort:
1078 return ret;
1079 }
1080
1081 /*
1082 * validate_super for 0.90.0
1083 */
1084 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1085 {
1086 mdp_disk_t *desc;
1087 mdp_super_t *sb = page_address(rdev->sb_page);
1088 __u64 ev1 = md_event(sb);
1089
1090 rdev->raid_disk = -1;
1091 clear_bit(Faulty, &rdev->flags);
1092 clear_bit(In_sync, &rdev->flags);
1093 clear_bit(Bitmap_sync, &rdev->flags);
1094 clear_bit(WriteMostly, &rdev->flags);
1095
1096 if (mddev->raid_disks == 0) {
1097 mddev->major_version = 0;
1098 mddev->minor_version = sb->minor_version;
1099 mddev->patch_version = sb->patch_version;
1100 mddev->external = 0;
1101 mddev->chunk_sectors = sb->chunk_size >> 9;
1102 mddev->ctime = sb->ctime;
1103 mddev->utime = sb->utime;
1104 mddev->level = sb->level;
1105 mddev->clevel[0] = 0;
1106 mddev->layout = sb->layout;
1107 mddev->raid_disks = sb->raid_disks;
1108 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1109 mddev->events = ev1;
1110 mddev->bitmap_info.offset = 0;
1111 mddev->bitmap_info.space = 0;
1112 /* bitmap can use 60 K after the 4K superblocks */
1113 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1114 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1115 mddev->reshape_backwards = 0;
1116
1117 if (mddev->minor_version >= 91) {
1118 mddev->reshape_position = sb->reshape_position;
1119 mddev->delta_disks = sb->delta_disks;
1120 mddev->new_level = sb->new_level;
1121 mddev->new_layout = sb->new_layout;
1122 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1123 if (mddev->delta_disks < 0)
1124 mddev->reshape_backwards = 1;
1125 } else {
1126 mddev->reshape_position = MaxSector;
1127 mddev->delta_disks = 0;
1128 mddev->new_level = mddev->level;
1129 mddev->new_layout = mddev->layout;
1130 mddev->new_chunk_sectors = mddev->chunk_sectors;
1131 }
1132
1133 if (sb->state & (1<<MD_SB_CLEAN))
1134 mddev->recovery_cp = MaxSector;
1135 else {
1136 if (sb->events_hi == sb->cp_events_hi &&
1137 sb->events_lo == sb->cp_events_lo) {
1138 mddev->recovery_cp = sb->recovery_cp;
1139 } else
1140 mddev->recovery_cp = 0;
1141 }
1142
1143 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1144 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1145 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1146 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1147
1148 mddev->max_disks = MD_SB_DISKS;
1149
1150 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1151 mddev->bitmap_info.file == NULL) {
1152 mddev->bitmap_info.offset =
1153 mddev->bitmap_info.default_offset;
1154 mddev->bitmap_info.space =
1155 mddev->bitmap_info.default_space;
1156 }
1157
1158 } else if (mddev->pers == NULL) {
1159 /* Insist on good event counter while assembling, except
1160 * for spares (which don't need an event count) */
1161 ++ev1;
1162 if (sb->disks[rdev->desc_nr].state & (
1163 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1164 if (ev1 < mddev->events)
1165 return -EINVAL;
1166 } else if (mddev->bitmap) {
1167 /* if adding to array with a bitmap, then we can accept an
1168 * older device ... but not too old.
1169 */
1170 if (ev1 < mddev->bitmap->events_cleared)
1171 return 0;
1172 if (ev1 < mddev->events)
1173 set_bit(Bitmap_sync, &rdev->flags);
1174 } else {
1175 if (ev1 < mddev->events)
1176 /* just a hot-add of a new device, leave raid_disk at -1 */
1177 return 0;
1178 }
1179
1180 if (mddev->level != LEVEL_MULTIPATH) {
1181 desc = sb->disks + rdev->desc_nr;
1182
1183 if (desc->state & (1<<MD_DISK_FAULTY))
1184 set_bit(Faulty, &rdev->flags);
1185 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1186 desc->raid_disk < mddev->raid_disks */) {
1187 set_bit(In_sync, &rdev->flags);
1188 rdev->raid_disk = desc->raid_disk;
1189 rdev->saved_raid_disk = desc->raid_disk;
1190 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1191 /* active but not in sync implies recovery up to
1192 * reshape position. We don't know exactly where
1193 * that is, so set to zero for now */
1194 if (mddev->minor_version >= 91) {
1195 rdev->recovery_offset = 0;
1196 rdev->raid_disk = desc->raid_disk;
1197 }
1198 }
1199 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1200 set_bit(WriteMostly, &rdev->flags);
1201 if (desc->state & (1<<MD_DISK_FAILFAST))
1202 set_bit(FailFast, &rdev->flags);
1203 } else /* MULTIPATH are always insync */
1204 set_bit(In_sync, &rdev->flags);
1205 return 0;
1206 }
1207
1208 /*
1209 * sync_super for 0.90.0
1210 */
1211 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1212 {
1213 mdp_super_t *sb;
1214 struct md_rdev *rdev2;
1215 int next_spare = mddev->raid_disks;
1216
1217 /* make rdev->sb match mddev data..
1218 *
1219 * 1/ zero out disks
1220 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1221 * 3/ any empty disks < next_spare become removed
1222 *
1223 * disks[0] gets initialised to REMOVED because
1224 * we cannot be sure from other fields if it has
1225 * been initialised or not.
1226 */
1227 int i;
1228 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1229
1230 rdev->sb_size = MD_SB_BYTES;
1231
1232 sb = page_address(rdev->sb_page);
1233
1234 memset(sb, 0, sizeof(*sb));
1235
1236 sb->md_magic = MD_SB_MAGIC;
1237 sb->major_version = mddev->major_version;
1238 sb->patch_version = mddev->patch_version;
1239 sb->gvalid_words = 0; /* ignored */
1240 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1241 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1242 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1243 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1244
1245 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1246 sb->level = mddev->level;
1247 sb->size = mddev->dev_sectors / 2;
1248 sb->raid_disks = mddev->raid_disks;
1249 sb->md_minor = mddev->md_minor;
1250 sb->not_persistent = 0;
1251 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1252 sb->state = 0;
1253 sb->events_hi = (mddev->events>>32);
1254 sb->events_lo = (u32)mddev->events;
1255
1256 if (mddev->reshape_position == MaxSector)
1257 sb->minor_version = 90;
1258 else {
1259 sb->minor_version = 91;
1260 sb->reshape_position = mddev->reshape_position;
1261 sb->new_level = mddev->new_level;
1262 sb->delta_disks = mddev->delta_disks;
1263 sb->new_layout = mddev->new_layout;
1264 sb->new_chunk = mddev->new_chunk_sectors << 9;
1265 }
1266 mddev->minor_version = sb->minor_version;
1267 if (mddev->in_sync)
1268 {
1269 sb->recovery_cp = mddev->recovery_cp;
1270 sb->cp_events_hi = (mddev->events>>32);
1271 sb->cp_events_lo = (u32)mddev->events;
1272 if (mddev->recovery_cp == MaxSector)
1273 sb->state = (1<< MD_SB_CLEAN);
1274 } else
1275 sb->recovery_cp = 0;
1276
1277 sb->layout = mddev->layout;
1278 sb->chunk_size = mddev->chunk_sectors << 9;
1279
1280 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1281 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1282
1283 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1284 rdev_for_each(rdev2, mddev) {
1285 mdp_disk_t *d;
1286 int desc_nr;
1287 int is_active = test_bit(In_sync, &rdev2->flags);
1288
1289 if (rdev2->raid_disk >= 0 &&
1290 sb->minor_version >= 91)
1291 /* we have nowhere to store the recovery_offset,
1292 * but if it is not below the reshape_position,
1293 * we can piggy-back on that.
1294 */
1295 is_active = 1;
1296 if (rdev2->raid_disk < 0 ||
1297 test_bit(Faulty, &rdev2->flags))
1298 is_active = 0;
1299 if (is_active)
1300 desc_nr = rdev2->raid_disk;
1301 else
1302 desc_nr = next_spare++;
1303 rdev2->desc_nr = desc_nr;
1304 d = &sb->disks[rdev2->desc_nr];
1305 nr_disks++;
1306 d->number = rdev2->desc_nr;
1307 d->major = MAJOR(rdev2->bdev->bd_dev);
1308 d->minor = MINOR(rdev2->bdev->bd_dev);
1309 if (is_active)
1310 d->raid_disk = rdev2->raid_disk;
1311 else
1312 d->raid_disk = rdev2->desc_nr; /* compatibility */
1313 if (test_bit(Faulty, &rdev2->flags))
1314 d->state = (1<<MD_DISK_FAULTY);
1315 else if (is_active) {
1316 d->state = (1<<MD_DISK_ACTIVE);
1317 if (test_bit(In_sync, &rdev2->flags))
1318 d->state |= (1<<MD_DISK_SYNC);
1319 active++;
1320 working++;
1321 } else {
1322 d->state = 0;
1323 spare++;
1324 working++;
1325 }
1326 if (test_bit(WriteMostly, &rdev2->flags))
1327 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1328 if (test_bit(FailFast, &rdev2->flags))
1329 d->state |= (1<<MD_DISK_FAILFAST);
1330 }
1331 /* now set the "removed" and "faulty" bits on any missing devices */
1332 for (i=0 ; i < mddev->raid_disks ; i++) {
1333 mdp_disk_t *d = &sb->disks[i];
1334 if (d->state == 0 && d->number == 0) {
1335 d->number = i;
1336 d->raid_disk = i;
1337 d->state = (1<<MD_DISK_REMOVED);
1338 d->state |= (1<<MD_DISK_FAULTY);
1339 failed++;
1340 }
1341 }
1342 sb->nr_disks = nr_disks;
1343 sb->active_disks = active;
1344 sb->working_disks = working;
1345 sb->failed_disks = failed;
1346 sb->spare_disks = spare;
1347
1348 sb->this_disk = sb->disks[rdev->desc_nr];
1349 sb->sb_csum = calc_sb_csum(sb);
1350 }
1351
1352 /*
1353 * rdev_size_change for 0.90.0
1354 */
1355 static unsigned long long
1356 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1357 {
1358 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1359 return 0; /* component must fit device */
1360 if (rdev->mddev->bitmap_info.offset)
1361 return 0; /* can't move bitmap */
1362 rdev->sb_start = calc_dev_sboffset(rdev);
1363 if (!num_sectors || num_sectors > rdev->sb_start)
1364 num_sectors = rdev->sb_start;
1365 /* Limit to 4TB as metadata cannot record more than that.
1366 * 4TB == 2^32 KB, or 2*2^32 sectors.
1367 */
1368 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1369 rdev->mddev->level >= 1)
1370 num_sectors = (sector_t)(2ULL << 32) - 2;
1371 do {
1372 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1373 rdev->sb_page);
1374 } while (md_super_wait(rdev->mddev) < 0);
1375 return num_sectors;
1376 }
1377
1378 static int
1379 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1380 {
1381 /* non-zero offset changes not possible with v0.90 */
1382 return new_offset == 0;
1383 }
1384
1385 /*
1386 * version 1 superblock
1387 */
1388
1389 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1390 {
1391 __le32 disk_csum;
1392 u32 csum;
1393 unsigned long long newcsum;
1394 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1395 __le32 *isuper = (__le32*)sb;
1396
1397 disk_csum = sb->sb_csum;
1398 sb->sb_csum = 0;
1399 newcsum = 0;
1400 for (; size >= 4; size -= 4)
1401 newcsum += le32_to_cpu(*isuper++);
1402
1403 if (size == 2)
1404 newcsum += le16_to_cpu(*(__le16*) isuper);
1405
1406 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1407 sb->sb_csum = disk_csum;
1408 return cpu_to_le32(csum);
1409 }
1410
1411 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1412 {
1413 struct mdp_superblock_1 *sb;
1414 int ret;
1415 sector_t sb_start;
1416 sector_t sectors;
1417 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1418 int bmask;
1419
1420 /*
1421 * Calculate the position of the superblock in 512byte sectors.
1422 * It is always aligned to a 4K boundary and
1423 * depeding on minor_version, it can be:
1424 * 0: At least 8K, but less than 12K, from end of device
1425 * 1: At start of device
1426 * 2: 4K from start of device.
1427 */
1428 switch(minor_version) {
1429 case 0:
1430 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1431 sb_start -= 8*2;
1432 sb_start &= ~(sector_t)(4*2-1);
1433 break;
1434 case 1:
1435 sb_start = 0;
1436 break;
1437 case 2:
1438 sb_start = 8;
1439 break;
1440 default:
1441 return -EINVAL;
1442 }
1443 rdev->sb_start = sb_start;
1444
1445 /* superblock is rarely larger than 1K, but it can be larger,
1446 * and it is safe to read 4k, so we do that
1447 */
1448 ret = read_disk_sb(rdev, 4096);
1449 if (ret) return ret;
1450
1451 sb = page_address(rdev->sb_page);
1452
1453 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1454 sb->major_version != cpu_to_le32(1) ||
1455 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1456 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1457 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1458 return -EINVAL;
1459
1460 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1461 pr_warn("md: invalid superblock checksum on %s\n",
1462 bdevname(rdev->bdev,b));
1463 return -EINVAL;
1464 }
1465 if (le64_to_cpu(sb->data_size) < 10) {
1466 pr_warn("md: data_size too small on %s\n",
1467 bdevname(rdev->bdev,b));
1468 return -EINVAL;
1469 }
1470 if (sb->pad0 ||
1471 sb->pad3[0] ||
1472 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1473 /* Some padding is non-zero, might be a new feature */
1474 return -EINVAL;
1475
1476 rdev->preferred_minor = 0xffff;
1477 rdev->data_offset = le64_to_cpu(sb->data_offset);
1478 rdev->new_data_offset = rdev->data_offset;
1479 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1480 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1481 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1482 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1483
1484 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1485 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1486 if (rdev->sb_size & bmask)
1487 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1488
1489 if (minor_version
1490 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1491 return -EINVAL;
1492 if (minor_version
1493 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1494 return -EINVAL;
1495
1496 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1497 rdev->desc_nr = -1;
1498 else
1499 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1500
1501 if (!rdev->bb_page) {
1502 rdev->bb_page = alloc_page(GFP_KERNEL);
1503 if (!rdev->bb_page)
1504 return -ENOMEM;
1505 }
1506 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1507 rdev->badblocks.count == 0) {
1508 /* need to load the bad block list.
1509 * Currently we limit it to one page.
1510 */
1511 s32 offset;
1512 sector_t bb_sector;
1513 u64 *bbp;
1514 int i;
1515 int sectors = le16_to_cpu(sb->bblog_size);
1516 if (sectors > (PAGE_SIZE / 512))
1517 return -EINVAL;
1518 offset = le32_to_cpu(sb->bblog_offset);
1519 if (offset == 0)
1520 return -EINVAL;
1521 bb_sector = (long long)offset;
1522 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1523 rdev->bb_page, REQ_OP_READ, 0, true))
1524 return -EIO;
1525 bbp = (u64 *)page_address(rdev->bb_page);
1526 rdev->badblocks.shift = sb->bblog_shift;
1527 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1528 u64 bb = le64_to_cpu(*bbp);
1529 int count = bb & (0x3ff);
1530 u64 sector = bb >> 10;
1531 sector <<= sb->bblog_shift;
1532 count <<= sb->bblog_shift;
1533 if (bb + 1 == 0)
1534 break;
1535 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1536 return -EINVAL;
1537 }
1538 } else if (sb->bblog_offset != 0)
1539 rdev->badblocks.shift = 0;
1540
1541 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) {
1542 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1543 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1544 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1545 }
1546
1547 if (!refdev) {
1548 ret = 1;
1549 } else {
1550 __u64 ev1, ev2;
1551 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1552
1553 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1554 sb->level != refsb->level ||
1555 sb->layout != refsb->layout ||
1556 sb->chunksize != refsb->chunksize) {
1557 pr_warn("md: %s has strangely different superblock to %s\n",
1558 bdevname(rdev->bdev,b),
1559 bdevname(refdev->bdev,b2));
1560 return -EINVAL;
1561 }
1562 ev1 = le64_to_cpu(sb->events);
1563 ev2 = le64_to_cpu(refsb->events);
1564
1565 if (ev1 > ev2)
1566 ret = 1;
1567 else
1568 ret = 0;
1569 }
1570 if (minor_version) {
1571 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1572 sectors -= rdev->data_offset;
1573 } else
1574 sectors = rdev->sb_start;
1575 if (sectors < le64_to_cpu(sb->data_size))
1576 return -EINVAL;
1577 rdev->sectors = le64_to_cpu(sb->data_size);
1578 return ret;
1579 }
1580
1581 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1582 {
1583 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1584 __u64 ev1 = le64_to_cpu(sb->events);
1585
1586 rdev->raid_disk = -1;
1587 clear_bit(Faulty, &rdev->flags);
1588 clear_bit(In_sync, &rdev->flags);
1589 clear_bit(Bitmap_sync, &rdev->flags);
1590 clear_bit(WriteMostly, &rdev->flags);
1591
1592 if (mddev->raid_disks == 0) {
1593 mddev->major_version = 1;
1594 mddev->patch_version = 0;
1595 mddev->external = 0;
1596 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1597 mddev->ctime = le64_to_cpu(sb->ctime);
1598 mddev->utime = le64_to_cpu(sb->utime);
1599 mddev->level = le32_to_cpu(sb->level);
1600 mddev->clevel[0] = 0;
1601 mddev->layout = le32_to_cpu(sb->layout);
1602 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1603 mddev->dev_sectors = le64_to_cpu(sb->size);
1604 mddev->events = ev1;
1605 mddev->bitmap_info.offset = 0;
1606 mddev->bitmap_info.space = 0;
1607 /* Default location for bitmap is 1K after superblock
1608 * using 3K - total of 4K
1609 */
1610 mddev->bitmap_info.default_offset = 1024 >> 9;
1611 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1612 mddev->reshape_backwards = 0;
1613
1614 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1615 memcpy(mddev->uuid, sb->set_uuid, 16);
1616
1617 mddev->max_disks = (4096-256)/2;
1618
1619 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1620 mddev->bitmap_info.file == NULL) {
1621 mddev->bitmap_info.offset =
1622 (__s32)le32_to_cpu(sb->bitmap_offset);
1623 /* Metadata doesn't record how much space is available.
1624 * For 1.0, we assume we can use up to the superblock
1625 * if before, else to 4K beyond superblock.
1626 * For others, assume no change is possible.
1627 */
1628 if (mddev->minor_version > 0)
1629 mddev->bitmap_info.space = 0;
1630 else if (mddev->bitmap_info.offset > 0)
1631 mddev->bitmap_info.space =
1632 8 - mddev->bitmap_info.offset;
1633 else
1634 mddev->bitmap_info.space =
1635 -mddev->bitmap_info.offset;
1636 }
1637
1638 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1639 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1640 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1641 mddev->new_level = le32_to_cpu(sb->new_level);
1642 mddev->new_layout = le32_to_cpu(sb->new_layout);
1643 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1644 if (mddev->delta_disks < 0 ||
1645 (mddev->delta_disks == 0 &&
1646 (le32_to_cpu(sb->feature_map)
1647 & MD_FEATURE_RESHAPE_BACKWARDS)))
1648 mddev->reshape_backwards = 1;
1649 } else {
1650 mddev->reshape_position = MaxSector;
1651 mddev->delta_disks = 0;
1652 mddev->new_level = mddev->level;
1653 mddev->new_layout = mddev->layout;
1654 mddev->new_chunk_sectors = mddev->chunk_sectors;
1655 }
1656
1657 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1658 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1659
1660 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) {
1661 if (le32_to_cpu(sb->feature_map) &
1662 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1663 return -EINVAL;
1664 set_bit(MD_HAS_PPL, &mddev->flags);
1665 }
1666 } else if (mddev->pers == NULL) {
1667 /* Insist of good event counter while assembling, except for
1668 * spares (which don't need an event count) */
1669 ++ev1;
1670 if (rdev->desc_nr >= 0 &&
1671 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1672 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1673 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1674 if (ev1 < mddev->events)
1675 return -EINVAL;
1676 } else if (mddev->bitmap) {
1677 /* If adding to array with a bitmap, then we can accept an
1678 * older device, but not too old.
1679 */
1680 if (ev1 < mddev->bitmap->events_cleared)
1681 return 0;
1682 if (ev1 < mddev->events)
1683 set_bit(Bitmap_sync, &rdev->flags);
1684 } else {
1685 if (ev1 < mddev->events)
1686 /* just a hot-add of a new device, leave raid_disk at -1 */
1687 return 0;
1688 }
1689 if (mddev->level != LEVEL_MULTIPATH) {
1690 int role;
1691 if (rdev->desc_nr < 0 ||
1692 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1693 role = MD_DISK_ROLE_SPARE;
1694 rdev->desc_nr = -1;
1695 } else
1696 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1697 switch(role) {
1698 case MD_DISK_ROLE_SPARE: /* spare */
1699 break;
1700 case MD_DISK_ROLE_FAULTY: /* faulty */
1701 set_bit(Faulty, &rdev->flags);
1702 break;
1703 case MD_DISK_ROLE_JOURNAL: /* journal device */
1704 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1705 /* journal device without journal feature */
1706 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1707 return -EINVAL;
1708 }
1709 set_bit(Journal, &rdev->flags);
1710 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1711 rdev->raid_disk = 0;
1712 break;
1713 default:
1714 rdev->saved_raid_disk = role;
1715 if ((le32_to_cpu(sb->feature_map) &
1716 MD_FEATURE_RECOVERY_OFFSET)) {
1717 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718 if (!(le32_to_cpu(sb->feature_map) &
1719 MD_FEATURE_RECOVERY_BITMAP))
1720 rdev->saved_raid_disk = -1;
1721 } else
1722 set_bit(In_sync, &rdev->flags);
1723 rdev->raid_disk = role;
1724 break;
1725 }
1726 if (sb->devflags & WriteMostly1)
1727 set_bit(WriteMostly, &rdev->flags);
1728 if (sb->devflags & FailFast1)
1729 set_bit(FailFast, &rdev->flags);
1730 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1731 set_bit(Replacement, &rdev->flags);
1732 } else /* MULTIPATH are always insync */
1733 set_bit(In_sync, &rdev->flags);
1734
1735 return 0;
1736 }
1737
1738 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1739 {
1740 struct mdp_superblock_1 *sb;
1741 struct md_rdev *rdev2;
1742 int max_dev, i;
1743 /* make rdev->sb match mddev and rdev data. */
1744
1745 sb = page_address(rdev->sb_page);
1746
1747 sb->feature_map = 0;
1748 sb->pad0 = 0;
1749 sb->recovery_offset = cpu_to_le64(0);
1750 memset(sb->pad3, 0, sizeof(sb->pad3));
1751
1752 sb->utime = cpu_to_le64((__u64)mddev->utime);
1753 sb->events = cpu_to_le64(mddev->events);
1754 if (mddev->in_sync)
1755 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1756 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1757 sb->resync_offset = cpu_to_le64(MaxSector);
1758 else
1759 sb->resync_offset = cpu_to_le64(0);
1760
1761 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1762
1763 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1764 sb->size = cpu_to_le64(mddev->dev_sectors);
1765 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1766 sb->level = cpu_to_le32(mddev->level);
1767 sb->layout = cpu_to_le32(mddev->layout);
1768 if (test_bit(FailFast, &rdev->flags))
1769 sb->devflags |= FailFast1;
1770 else
1771 sb->devflags &= ~FailFast1;
1772
1773 if (test_bit(WriteMostly, &rdev->flags))
1774 sb->devflags |= WriteMostly1;
1775 else
1776 sb->devflags &= ~WriteMostly1;
1777 sb->data_offset = cpu_to_le64(rdev->data_offset);
1778 sb->data_size = cpu_to_le64(rdev->sectors);
1779
1780 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1781 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1782 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1783 }
1784
1785 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1786 !test_bit(In_sync, &rdev->flags)) {
1787 sb->feature_map |=
1788 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1789 sb->recovery_offset =
1790 cpu_to_le64(rdev->recovery_offset);
1791 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1792 sb->feature_map |=
1793 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1794 }
1795 /* Note: recovery_offset and journal_tail share space */
1796 if (test_bit(Journal, &rdev->flags))
1797 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1798 if (test_bit(Replacement, &rdev->flags))
1799 sb->feature_map |=
1800 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1801
1802 if (mddev->reshape_position != MaxSector) {
1803 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1804 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1805 sb->new_layout = cpu_to_le32(mddev->new_layout);
1806 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1807 sb->new_level = cpu_to_le32(mddev->new_level);
1808 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1809 if (mddev->delta_disks == 0 &&
1810 mddev->reshape_backwards)
1811 sb->feature_map
1812 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1813 if (rdev->new_data_offset != rdev->data_offset) {
1814 sb->feature_map
1815 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1816 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1817 - rdev->data_offset));
1818 }
1819 }
1820
1821 if (mddev_is_clustered(mddev))
1822 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1823
1824 if (rdev->badblocks.count == 0)
1825 /* Nothing to do for bad blocks*/ ;
1826 else if (sb->bblog_offset == 0)
1827 /* Cannot record bad blocks on this device */
1828 md_error(mddev, rdev);
1829 else {
1830 struct badblocks *bb = &rdev->badblocks;
1831 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1832 u64 *p = bb->page;
1833 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1834 if (bb->changed) {
1835 unsigned seq;
1836
1837 retry:
1838 seq = read_seqbegin(&bb->lock);
1839
1840 memset(bbp, 0xff, PAGE_SIZE);
1841
1842 for (i = 0 ; i < bb->count ; i++) {
1843 u64 internal_bb = p[i];
1844 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1845 | BB_LEN(internal_bb));
1846 bbp[i] = cpu_to_le64(store_bb);
1847 }
1848 bb->changed = 0;
1849 if (read_seqretry(&bb->lock, seq))
1850 goto retry;
1851
1852 bb->sector = (rdev->sb_start +
1853 (int)le32_to_cpu(sb->bblog_offset));
1854 bb->size = le16_to_cpu(sb->bblog_size);
1855 }
1856 }
1857
1858 max_dev = 0;
1859 rdev_for_each(rdev2, mddev)
1860 if (rdev2->desc_nr+1 > max_dev)
1861 max_dev = rdev2->desc_nr+1;
1862
1863 if (max_dev > le32_to_cpu(sb->max_dev)) {
1864 int bmask;
1865 sb->max_dev = cpu_to_le32(max_dev);
1866 rdev->sb_size = max_dev * 2 + 256;
1867 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1868 if (rdev->sb_size & bmask)
1869 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1870 } else
1871 max_dev = le32_to_cpu(sb->max_dev);
1872
1873 for (i=0; i<max_dev;i++)
1874 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1875
1876 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1877 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1878
1879 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1880 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1881 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1882 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1883 }
1884
1885 rdev_for_each(rdev2, mddev) {
1886 i = rdev2->desc_nr;
1887 if (test_bit(Faulty, &rdev2->flags))
1888 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1889 else if (test_bit(In_sync, &rdev2->flags))
1890 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1891 else if (test_bit(Journal, &rdev2->flags))
1892 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1893 else if (rdev2->raid_disk >= 0)
1894 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1895 else
1896 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1897 }
1898
1899 sb->sb_csum = calc_sb_1_csum(sb);
1900 }
1901
1902 static unsigned long long
1903 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1904 {
1905 struct mdp_superblock_1 *sb;
1906 sector_t max_sectors;
1907 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1908 return 0; /* component must fit device */
1909 if (rdev->data_offset != rdev->new_data_offset)
1910 return 0; /* too confusing */
1911 if (rdev->sb_start < rdev->data_offset) {
1912 /* minor versions 1 and 2; superblock before data */
1913 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1914 max_sectors -= rdev->data_offset;
1915 if (!num_sectors || num_sectors > max_sectors)
1916 num_sectors = max_sectors;
1917 } else if (rdev->mddev->bitmap_info.offset) {
1918 /* minor version 0 with bitmap we can't move */
1919 return 0;
1920 } else {
1921 /* minor version 0; superblock after data */
1922 sector_t sb_start;
1923 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1924 sb_start &= ~(sector_t)(4*2 - 1);
1925 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1926 if (!num_sectors || num_sectors > max_sectors)
1927 num_sectors = max_sectors;
1928 rdev->sb_start = sb_start;
1929 }
1930 sb = page_address(rdev->sb_page);
1931 sb->data_size = cpu_to_le64(num_sectors);
1932 sb->super_offset = cpu_to_le64(rdev->sb_start);
1933 sb->sb_csum = calc_sb_1_csum(sb);
1934 do {
1935 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1936 rdev->sb_page);
1937 } while (md_super_wait(rdev->mddev) < 0);
1938 return num_sectors;
1939
1940 }
1941
1942 static int
1943 super_1_allow_new_offset(struct md_rdev *rdev,
1944 unsigned long long new_offset)
1945 {
1946 /* All necessary checks on new >= old have been done */
1947 struct bitmap *bitmap;
1948 if (new_offset >= rdev->data_offset)
1949 return 1;
1950
1951 /* with 1.0 metadata, there is no metadata to tread on
1952 * so we can always move back */
1953 if (rdev->mddev->minor_version == 0)
1954 return 1;
1955
1956 /* otherwise we must be sure not to step on
1957 * any metadata, so stay:
1958 * 36K beyond start of superblock
1959 * beyond end of badblocks
1960 * beyond write-intent bitmap
1961 */
1962 if (rdev->sb_start + (32+4)*2 > new_offset)
1963 return 0;
1964 bitmap = rdev->mddev->bitmap;
1965 if (bitmap && !rdev->mddev->bitmap_info.file &&
1966 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1967 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1968 return 0;
1969 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1970 return 0;
1971
1972 return 1;
1973 }
1974
1975 static struct super_type super_types[] = {
1976 [0] = {
1977 .name = "0.90.0",
1978 .owner = THIS_MODULE,
1979 .load_super = super_90_load,
1980 .validate_super = super_90_validate,
1981 .sync_super = super_90_sync,
1982 .rdev_size_change = super_90_rdev_size_change,
1983 .allow_new_offset = super_90_allow_new_offset,
1984 },
1985 [1] = {
1986 .name = "md-1",
1987 .owner = THIS_MODULE,
1988 .load_super = super_1_load,
1989 .validate_super = super_1_validate,
1990 .sync_super = super_1_sync,
1991 .rdev_size_change = super_1_rdev_size_change,
1992 .allow_new_offset = super_1_allow_new_offset,
1993 },
1994 };
1995
1996 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1997 {
1998 if (mddev->sync_super) {
1999 mddev->sync_super(mddev, rdev);
2000 return;
2001 }
2002
2003 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2004
2005 super_types[mddev->major_version].sync_super(mddev, rdev);
2006 }
2007
2008 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2009 {
2010 struct md_rdev *rdev, *rdev2;
2011
2012 rcu_read_lock();
2013 rdev_for_each_rcu(rdev, mddev1) {
2014 if (test_bit(Faulty, &rdev->flags) ||
2015 test_bit(Journal, &rdev->flags) ||
2016 rdev->raid_disk == -1)
2017 continue;
2018 rdev_for_each_rcu(rdev2, mddev2) {
2019 if (test_bit(Faulty, &rdev2->flags) ||
2020 test_bit(Journal, &rdev2->flags) ||
2021 rdev2->raid_disk == -1)
2022 continue;
2023 if (rdev->bdev->bd_contains ==
2024 rdev2->bdev->bd_contains) {
2025 rcu_read_unlock();
2026 return 1;
2027 }
2028 }
2029 }
2030 rcu_read_unlock();
2031 return 0;
2032 }
2033
2034 static LIST_HEAD(pending_raid_disks);
2035
2036 /*
2037 * Try to register data integrity profile for an mddev
2038 *
2039 * This is called when an array is started and after a disk has been kicked
2040 * from the array. It only succeeds if all working and active component devices
2041 * are integrity capable with matching profiles.
2042 */
2043 int md_integrity_register(struct mddev *mddev)
2044 {
2045 struct md_rdev *rdev, *reference = NULL;
2046
2047 if (list_empty(&mddev->disks))
2048 return 0; /* nothing to do */
2049 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2050 return 0; /* shouldn't register, or already is */
2051 rdev_for_each(rdev, mddev) {
2052 /* skip spares and non-functional disks */
2053 if (test_bit(Faulty, &rdev->flags))
2054 continue;
2055 if (rdev->raid_disk < 0)
2056 continue;
2057 if (!reference) {
2058 /* Use the first rdev as the reference */
2059 reference = rdev;
2060 continue;
2061 }
2062 /* does this rdev's profile match the reference profile? */
2063 if (blk_integrity_compare(reference->bdev->bd_disk,
2064 rdev->bdev->bd_disk) < 0)
2065 return -EINVAL;
2066 }
2067 if (!reference || !bdev_get_integrity(reference->bdev))
2068 return 0;
2069 /*
2070 * All component devices are integrity capable and have matching
2071 * profiles, register the common profile for the md device.
2072 */
2073 blk_integrity_register(mddev->gendisk,
2074 bdev_get_integrity(reference->bdev));
2075
2076 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2077 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2078 pr_err("md: failed to create integrity pool for %s\n",
2079 mdname(mddev));
2080 return -EINVAL;
2081 }
2082 return 0;
2083 }
2084 EXPORT_SYMBOL(md_integrity_register);
2085
2086 /*
2087 * Attempt to add an rdev, but only if it is consistent with the current
2088 * integrity profile
2089 */
2090 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2091 {
2092 struct blk_integrity *bi_rdev;
2093 struct blk_integrity *bi_mddev;
2094 char name[BDEVNAME_SIZE];
2095
2096 if (!mddev->gendisk)
2097 return 0;
2098
2099 bi_rdev = bdev_get_integrity(rdev->bdev);
2100 bi_mddev = blk_get_integrity(mddev->gendisk);
2101
2102 if (!bi_mddev) /* nothing to do */
2103 return 0;
2104
2105 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2106 pr_err("%s: incompatible integrity profile for %s\n",
2107 mdname(mddev), bdevname(rdev->bdev, name));
2108 return -ENXIO;
2109 }
2110
2111 return 0;
2112 }
2113 EXPORT_SYMBOL(md_integrity_add_rdev);
2114
2115 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2116 {
2117 char b[BDEVNAME_SIZE];
2118 struct kobject *ko;
2119 int err;
2120
2121 /* prevent duplicates */
2122 if (find_rdev(mddev, rdev->bdev->bd_dev))
2123 return -EEXIST;
2124
2125 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2126 mddev->pers)
2127 return -EROFS;
2128
2129 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2130 if (!test_bit(Journal, &rdev->flags) &&
2131 rdev->sectors &&
2132 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2133 if (mddev->pers) {
2134 /* Cannot change size, so fail
2135 * If mddev->level <= 0, then we don't care
2136 * about aligning sizes (e.g. linear)
2137 */
2138 if (mddev->level > 0)
2139 return -ENOSPC;
2140 } else
2141 mddev->dev_sectors = rdev->sectors;
2142 }
2143
2144 /* Verify rdev->desc_nr is unique.
2145 * If it is -1, assign a free number, else
2146 * check number is not in use
2147 */
2148 rcu_read_lock();
2149 if (rdev->desc_nr < 0) {
2150 int choice = 0;
2151 if (mddev->pers)
2152 choice = mddev->raid_disks;
2153 while (md_find_rdev_nr_rcu(mddev, choice))
2154 choice++;
2155 rdev->desc_nr = choice;
2156 } else {
2157 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2158 rcu_read_unlock();
2159 return -EBUSY;
2160 }
2161 }
2162 rcu_read_unlock();
2163 if (!test_bit(Journal, &rdev->flags) &&
2164 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2165 pr_warn("md: %s: array is limited to %d devices\n",
2166 mdname(mddev), mddev->max_disks);
2167 return -EBUSY;
2168 }
2169 bdevname(rdev->bdev,b);
2170 strreplace(b, '/', '!');
2171
2172 rdev->mddev = mddev;
2173 pr_debug("md: bind<%s>\n", b);
2174
2175 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2176 goto fail;
2177
2178 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2179 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2180 /* failure here is OK */;
2181 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2182
2183 list_add_rcu(&rdev->same_set, &mddev->disks);
2184 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2185
2186 /* May as well allow recovery to be retried once */
2187 mddev->recovery_disabled++;
2188
2189 return 0;
2190
2191 fail:
2192 pr_warn("md: failed to register dev-%s for %s\n",
2193 b, mdname(mddev));
2194 return err;
2195 }
2196
2197 static void md_delayed_delete(struct work_struct *ws)
2198 {
2199 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2200 kobject_del(&rdev->kobj);
2201 kobject_put(&rdev->kobj);
2202 }
2203
2204 static void unbind_rdev_from_array(struct md_rdev *rdev)
2205 {
2206 char b[BDEVNAME_SIZE];
2207
2208 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2209 list_del_rcu(&rdev->same_set);
2210 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2211 rdev->mddev = NULL;
2212 sysfs_remove_link(&rdev->kobj, "block");
2213 sysfs_put(rdev->sysfs_state);
2214 rdev->sysfs_state = NULL;
2215 rdev->badblocks.count = 0;
2216 /* We need to delay this, otherwise we can deadlock when
2217 * writing to 'remove' to "dev/state". We also need
2218 * to delay it due to rcu usage.
2219 */
2220 synchronize_rcu();
2221 INIT_WORK(&rdev->del_work, md_delayed_delete);
2222 kobject_get(&rdev->kobj);
2223 queue_work(md_misc_wq, &rdev->del_work);
2224 }
2225
2226 /*
2227 * prevent the device from being mounted, repartitioned or
2228 * otherwise reused by a RAID array (or any other kernel
2229 * subsystem), by bd_claiming the device.
2230 */
2231 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2232 {
2233 int err = 0;
2234 struct block_device *bdev;
2235 char b[BDEVNAME_SIZE];
2236
2237 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2238 shared ? (struct md_rdev *)lock_rdev : rdev);
2239 if (IS_ERR(bdev)) {
2240 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2241 return PTR_ERR(bdev);
2242 }
2243 rdev->bdev = bdev;
2244 return err;
2245 }
2246
2247 static void unlock_rdev(struct md_rdev *rdev)
2248 {
2249 struct block_device *bdev = rdev->bdev;
2250 rdev->bdev = NULL;
2251 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2252 }
2253
2254 void md_autodetect_dev(dev_t dev);
2255
2256 static void export_rdev(struct md_rdev *rdev)
2257 {
2258 char b[BDEVNAME_SIZE];
2259
2260 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2261 md_rdev_clear(rdev);
2262 #ifndef MODULE
2263 if (test_bit(AutoDetected, &rdev->flags))
2264 md_autodetect_dev(rdev->bdev->bd_dev);
2265 #endif
2266 unlock_rdev(rdev);
2267 kobject_put(&rdev->kobj);
2268 }
2269
2270 void md_kick_rdev_from_array(struct md_rdev *rdev)
2271 {
2272 unbind_rdev_from_array(rdev);
2273 export_rdev(rdev);
2274 }
2275 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2276
2277 static void export_array(struct mddev *mddev)
2278 {
2279 struct md_rdev *rdev;
2280
2281 while (!list_empty(&mddev->disks)) {
2282 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2283 same_set);
2284 md_kick_rdev_from_array(rdev);
2285 }
2286 mddev->raid_disks = 0;
2287 mddev->major_version = 0;
2288 }
2289
2290 static bool set_in_sync(struct mddev *mddev)
2291 {
2292 WARN_ON_ONCE(NR_CPUS != 1 && !spin_is_locked(&mddev->lock));
2293 if (!mddev->in_sync) {
2294 mddev->sync_checkers++;
2295 spin_unlock(&mddev->lock);
2296 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2297 spin_lock(&mddev->lock);
2298 if (!mddev->in_sync &&
2299 percpu_ref_is_zero(&mddev->writes_pending)) {
2300 mddev->in_sync = 1;
2301 /*
2302 * Ensure ->in_sync is visible before we clear
2303 * ->sync_checkers.
2304 */
2305 smp_mb();
2306 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2307 sysfs_notify_dirent_safe(mddev->sysfs_state);
2308 }
2309 if (--mddev->sync_checkers == 0)
2310 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2311 }
2312 if (mddev->safemode == 1)
2313 mddev->safemode = 0;
2314 return mddev->in_sync;
2315 }
2316
2317 static void sync_sbs(struct mddev *mddev, int nospares)
2318 {
2319 /* Update each superblock (in-memory image), but
2320 * if we are allowed to, skip spares which already
2321 * have the right event counter, or have one earlier
2322 * (which would mean they aren't being marked as dirty
2323 * with the rest of the array)
2324 */
2325 struct md_rdev *rdev;
2326 rdev_for_each(rdev, mddev) {
2327 if (rdev->sb_events == mddev->events ||
2328 (nospares &&
2329 rdev->raid_disk < 0 &&
2330 rdev->sb_events+1 == mddev->events)) {
2331 /* Don't update this superblock */
2332 rdev->sb_loaded = 2;
2333 } else {
2334 sync_super(mddev, rdev);
2335 rdev->sb_loaded = 1;
2336 }
2337 }
2338 }
2339
2340 static bool does_sb_need_changing(struct mddev *mddev)
2341 {
2342 struct md_rdev *rdev;
2343 struct mdp_superblock_1 *sb;
2344 int role;
2345
2346 /* Find a good rdev */
2347 rdev_for_each(rdev, mddev)
2348 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2349 break;
2350
2351 /* No good device found. */
2352 if (!rdev)
2353 return false;
2354
2355 sb = page_address(rdev->sb_page);
2356 /* Check if a device has become faulty or a spare become active */
2357 rdev_for_each(rdev, mddev) {
2358 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2359 /* Device activated? */
2360 if (role == 0xffff && rdev->raid_disk >=0 &&
2361 !test_bit(Faulty, &rdev->flags))
2362 return true;
2363 /* Device turned faulty? */
2364 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2365 return true;
2366 }
2367
2368 /* Check if any mddev parameters have changed */
2369 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2370 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2371 (mddev->layout != le32_to_cpu(sb->layout)) ||
2372 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2373 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2374 return true;
2375
2376 return false;
2377 }
2378
2379 void md_update_sb(struct mddev *mddev, int force_change)
2380 {
2381 struct md_rdev *rdev;
2382 int sync_req;
2383 int nospares = 0;
2384 int any_badblocks_changed = 0;
2385 int ret = -1;
2386
2387 if (mddev->ro) {
2388 if (force_change)
2389 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2390 return;
2391 }
2392
2393 repeat:
2394 if (mddev_is_clustered(mddev)) {
2395 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2396 force_change = 1;
2397 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2398 nospares = 1;
2399 ret = md_cluster_ops->metadata_update_start(mddev);
2400 /* Has someone else has updated the sb */
2401 if (!does_sb_need_changing(mddev)) {
2402 if (ret == 0)
2403 md_cluster_ops->metadata_update_cancel(mddev);
2404 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2405 BIT(MD_SB_CHANGE_DEVS) |
2406 BIT(MD_SB_CHANGE_CLEAN));
2407 return;
2408 }
2409 }
2410
2411 /* First make sure individual recovery_offsets are correct */
2412 rdev_for_each(rdev, mddev) {
2413 if (rdev->raid_disk >= 0 &&
2414 mddev->delta_disks >= 0 &&
2415 !test_bit(Journal, &rdev->flags) &&
2416 !test_bit(In_sync, &rdev->flags) &&
2417 mddev->curr_resync_completed > rdev->recovery_offset)
2418 rdev->recovery_offset = mddev->curr_resync_completed;
2419
2420 }
2421 if (!mddev->persistent) {
2422 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2423 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2424 if (!mddev->external) {
2425 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2426 rdev_for_each(rdev, mddev) {
2427 if (rdev->badblocks.changed) {
2428 rdev->badblocks.changed = 0;
2429 ack_all_badblocks(&rdev->badblocks);
2430 md_error(mddev, rdev);
2431 }
2432 clear_bit(Blocked, &rdev->flags);
2433 clear_bit(BlockedBadBlocks, &rdev->flags);
2434 wake_up(&rdev->blocked_wait);
2435 }
2436 }
2437 wake_up(&mddev->sb_wait);
2438 return;
2439 }
2440
2441 spin_lock(&mddev->lock);
2442
2443 mddev->utime = ktime_get_real_seconds();
2444
2445 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2446 force_change = 1;
2447 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2448 /* just a clean<-> dirty transition, possibly leave spares alone,
2449 * though if events isn't the right even/odd, we will have to do
2450 * spares after all
2451 */
2452 nospares = 1;
2453 if (force_change)
2454 nospares = 0;
2455 if (mddev->degraded)
2456 /* If the array is degraded, then skipping spares is both
2457 * dangerous and fairly pointless.
2458 * Dangerous because a device that was removed from the array
2459 * might have a event_count that still looks up-to-date,
2460 * so it can be re-added without a resync.
2461 * Pointless because if there are any spares to skip,
2462 * then a recovery will happen and soon that array won't
2463 * be degraded any more and the spare can go back to sleep then.
2464 */
2465 nospares = 0;
2466
2467 sync_req = mddev->in_sync;
2468
2469 /* If this is just a dirty<->clean transition, and the array is clean
2470 * and 'events' is odd, we can roll back to the previous clean state */
2471 if (nospares
2472 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2473 && mddev->can_decrease_events
2474 && mddev->events != 1) {
2475 mddev->events--;
2476 mddev->can_decrease_events = 0;
2477 } else {
2478 /* otherwise we have to go forward and ... */
2479 mddev->events ++;
2480 mddev->can_decrease_events = nospares;
2481 }
2482
2483 /*
2484 * This 64-bit counter should never wrap.
2485 * Either we are in around ~1 trillion A.C., assuming
2486 * 1 reboot per second, or we have a bug...
2487 */
2488 WARN_ON(mddev->events == 0);
2489
2490 rdev_for_each(rdev, mddev) {
2491 if (rdev->badblocks.changed)
2492 any_badblocks_changed++;
2493 if (test_bit(Faulty, &rdev->flags))
2494 set_bit(FaultRecorded, &rdev->flags);
2495 }
2496
2497 sync_sbs(mddev, nospares);
2498 spin_unlock(&mddev->lock);
2499
2500 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2501 mdname(mddev), mddev->in_sync);
2502
2503 if (mddev->queue)
2504 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2505 rewrite:
2506 bitmap_update_sb(mddev->bitmap);
2507 rdev_for_each(rdev, mddev) {
2508 char b[BDEVNAME_SIZE];
2509
2510 if (rdev->sb_loaded != 1)
2511 continue; /* no noise on spare devices */
2512
2513 if (!test_bit(Faulty, &rdev->flags)) {
2514 md_super_write(mddev,rdev,
2515 rdev->sb_start, rdev->sb_size,
2516 rdev->sb_page);
2517 pr_debug("md: (write) %s's sb offset: %llu\n",
2518 bdevname(rdev->bdev, b),
2519 (unsigned long long)rdev->sb_start);
2520 rdev->sb_events = mddev->events;
2521 if (rdev->badblocks.size) {
2522 md_super_write(mddev, rdev,
2523 rdev->badblocks.sector,
2524 rdev->badblocks.size << 9,
2525 rdev->bb_page);
2526 rdev->badblocks.size = 0;
2527 }
2528
2529 } else
2530 pr_debug("md: %s (skipping faulty)\n",
2531 bdevname(rdev->bdev, b));
2532
2533 if (mddev->level == LEVEL_MULTIPATH)
2534 /* only need to write one superblock... */
2535 break;
2536 }
2537 if (md_super_wait(mddev) < 0)
2538 goto rewrite;
2539 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2540
2541 if (mddev_is_clustered(mddev) && ret == 0)
2542 md_cluster_ops->metadata_update_finish(mddev);
2543
2544 if (mddev->in_sync != sync_req ||
2545 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2546 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2547 /* have to write it out again */
2548 goto repeat;
2549 wake_up(&mddev->sb_wait);
2550 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2551 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2552
2553 rdev_for_each(rdev, mddev) {
2554 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2555 clear_bit(Blocked, &rdev->flags);
2556
2557 if (any_badblocks_changed)
2558 ack_all_badblocks(&rdev->badblocks);
2559 clear_bit(BlockedBadBlocks, &rdev->flags);
2560 wake_up(&rdev->blocked_wait);
2561 }
2562 }
2563 EXPORT_SYMBOL(md_update_sb);
2564
2565 static int add_bound_rdev(struct md_rdev *rdev)
2566 {
2567 struct mddev *mddev = rdev->mddev;
2568 int err = 0;
2569 bool add_journal = test_bit(Journal, &rdev->flags);
2570
2571 if (!mddev->pers->hot_remove_disk || add_journal) {
2572 /* If there is hot_add_disk but no hot_remove_disk
2573 * then added disks for geometry changes,
2574 * and should be added immediately.
2575 */
2576 super_types[mddev->major_version].
2577 validate_super(mddev, rdev);
2578 if (add_journal)
2579 mddev_suspend(mddev);
2580 err = mddev->pers->hot_add_disk(mddev, rdev);
2581 if (add_journal)
2582 mddev_resume(mddev);
2583 if (err) {
2584 md_kick_rdev_from_array(rdev);
2585 return err;
2586 }
2587 }
2588 sysfs_notify_dirent_safe(rdev->sysfs_state);
2589
2590 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2591 if (mddev->degraded)
2592 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2593 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2594 md_new_event(mddev);
2595 md_wakeup_thread(mddev->thread);
2596 return 0;
2597 }
2598
2599 /* words written to sysfs files may, or may not, be \n terminated.
2600 * We want to accept with case. For this we use cmd_match.
2601 */
2602 static int cmd_match(const char *cmd, const char *str)
2603 {
2604 /* See if cmd, written into a sysfs file, matches
2605 * str. They must either be the same, or cmd can
2606 * have a trailing newline
2607 */
2608 while (*cmd && *str && *cmd == *str) {
2609 cmd++;
2610 str++;
2611 }
2612 if (*cmd == '\n')
2613 cmd++;
2614 if (*str || *cmd)
2615 return 0;
2616 return 1;
2617 }
2618
2619 struct rdev_sysfs_entry {
2620 struct attribute attr;
2621 ssize_t (*show)(struct md_rdev *, char *);
2622 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2623 };
2624
2625 static ssize_t
2626 state_show(struct md_rdev *rdev, char *page)
2627 {
2628 char *sep = ",";
2629 size_t len = 0;
2630 unsigned long flags = ACCESS_ONCE(rdev->flags);
2631
2632 if (test_bit(Faulty, &flags) ||
2633 (!test_bit(ExternalBbl, &flags) &&
2634 rdev->badblocks.unacked_exist))
2635 len += sprintf(page+len, "faulty%s", sep);
2636 if (test_bit(In_sync, &flags))
2637 len += sprintf(page+len, "in_sync%s", sep);
2638 if (test_bit(Journal, &flags))
2639 len += sprintf(page+len, "journal%s", sep);
2640 if (test_bit(WriteMostly, &flags))
2641 len += sprintf(page+len, "write_mostly%s", sep);
2642 if (test_bit(Blocked, &flags) ||
2643 (rdev->badblocks.unacked_exist
2644 && !test_bit(Faulty, &flags)))
2645 len += sprintf(page+len, "blocked%s", sep);
2646 if (!test_bit(Faulty, &flags) &&
2647 !test_bit(Journal, &flags) &&
2648 !test_bit(In_sync, &flags))
2649 len += sprintf(page+len, "spare%s", sep);
2650 if (test_bit(WriteErrorSeen, &flags))
2651 len += sprintf(page+len, "write_error%s", sep);
2652 if (test_bit(WantReplacement, &flags))
2653 len += sprintf(page+len, "want_replacement%s", sep);
2654 if (test_bit(Replacement, &flags))
2655 len += sprintf(page+len, "replacement%s", sep);
2656 if (test_bit(ExternalBbl, &flags))
2657 len += sprintf(page+len, "external_bbl%s", sep);
2658 if (test_bit(FailFast, &flags))
2659 len += sprintf(page+len, "failfast%s", sep);
2660
2661 if (len)
2662 len -= strlen(sep);
2663
2664 return len+sprintf(page+len, "\n");
2665 }
2666
2667 static ssize_t
2668 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2669 {
2670 /* can write
2671 * faulty - simulates an error
2672 * remove - disconnects the device
2673 * writemostly - sets write_mostly
2674 * -writemostly - clears write_mostly
2675 * blocked - sets the Blocked flags
2676 * -blocked - clears the Blocked and possibly simulates an error
2677 * insync - sets Insync providing device isn't active
2678 * -insync - clear Insync for a device with a slot assigned,
2679 * so that it gets rebuilt based on bitmap
2680 * write_error - sets WriteErrorSeen
2681 * -write_error - clears WriteErrorSeen
2682 * {,-}failfast - set/clear FailFast
2683 */
2684 int err = -EINVAL;
2685 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2686 md_error(rdev->mddev, rdev);
2687 if (test_bit(Faulty, &rdev->flags))
2688 err = 0;
2689 else
2690 err = -EBUSY;
2691 } else if (cmd_match(buf, "remove")) {
2692 if (rdev->mddev->pers) {
2693 clear_bit(Blocked, &rdev->flags);
2694 remove_and_add_spares(rdev->mddev, rdev);
2695 }
2696 if (rdev->raid_disk >= 0)
2697 err = -EBUSY;
2698 else {
2699 struct mddev *mddev = rdev->mddev;
2700 err = 0;
2701 if (mddev_is_clustered(mddev))
2702 err = md_cluster_ops->remove_disk(mddev, rdev);
2703
2704 if (err == 0) {
2705 md_kick_rdev_from_array(rdev);
2706 if (mddev->pers) {
2707 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2708 md_wakeup_thread(mddev->thread);
2709 }
2710 md_new_event(mddev);
2711 }
2712 }
2713 } else if (cmd_match(buf, "writemostly")) {
2714 set_bit(WriteMostly, &rdev->flags);
2715 err = 0;
2716 } else if (cmd_match(buf, "-writemostly")) {
2717 clear_bit(WriteMostly, &rdev->flags);
2718 err = 0;
2719 } else if (cmd_match(buf, "blocked")) {
2720 set_bit(Blocked, &rdev->flags);
2721 err = 0;
2722 } else if (cmd_match(buf, "-blocked")) {
2723 if (!test_bit(Faulty, &rdev->flags) &&
2724 !test_bit(ExternalBbl, &rdev->flags) &&
2725 rdev->badblocks.unacked_exist) {
2726 /* metadata handler doesn't understand badblocks,
2727 * so we need to fail the device
2728 */
2729 md_error(rdev->mddev, rdev);
2730 }
2731 clear_bit(Blocked, &rdev->flags);
2732 clear_bit(BlockedBadBlocks, &rdev->flags);
2733 wake_up(&rdev->blocked_wait);
2734 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2735 md_wakeup_thread(rdev->mddev->thread);
2736
2737 err = 0;
2738 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2739 set_bit(In_sync, &rdev->flags);
2740 err = 0;
2741 } else if (cmd_match(buf, "failfast")) {
2742 set_bit(FailFast, &rdev->flags);
2743 err = 0;
2744 } else if (cmd_match(buf, "-failfast")) {
2745 clear_bit(FailFast, &rdev->flags);
2746 err = 0;
2747 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2748 !test_bit(Journal, &rdev->flags)) {
2749 if (rdev->mddev->pers == NULL) {
2750 clear_bit(In_sync, &rdev->flags);
2751 rdev->saved_raid_disk = rdev->raid_disk;
2752 rdev->raid_disk = -1;
2753 err = 0;
2754 }
2755 } else if (cmd_match(buf, "write_error")) {
2756 set_bit(WriteErrorSeen, &rdev->flags);
2757 err = 0;
2758 } else if (cmd_match(buf, "-write_error")) {
2759 clear_bit(WriteErrorSeen, &rdev->flags);
2760 err = 0;
2761 } else if (cmd_match(buf, "want_replacement")) {
2762 /* Any non-spare device that is not a replacement can
2763 * become want_replacement at any time, but we then need to
2764 * check if recovery is needed.
2765 */
2766 if (rdev->raid_disk >= 0 &&
2767 !test_bit(Journal, &rdev->flags) &&
2768 !test_bit(Replacement, &rdev->flags))
2769 set_bit(WantReplacement, &rdev->flags);
2770 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2771 md_wakeup_thread(rdev->mddev->thread);
2772 err = 0;
2773 } else if (cmd_match(buf, "-want_replacement")) {
2774 /* Clearing 'want_replacement' is always allowed.
2775 * Once replacements starts it is too late though.
2776 */
2777 err = 0;
2778 clear_bit(WantReplacement, &rdev->flags);
2779 } else if (cmd_match(buf, "replacement")) {
2780 /* Can only set a device as a replacement when array has not
2781 * yet been started. Once running, replacement is automatic
2782 * from spares, or by assigning 'slot'.
2783 */
2784 if (rdev->mddev->pers)
2785 err = -EBUSY;
2786 else {
2787 set_bit(Replacement, &rdev->flags);
2788 err = 0;
2789 }
2790 } else if (cmd_match(buf, "-replacement")) {
2791 /* Similarly, can only clear Replacement before start */
2792 if (rdev->mddev->pers)
2793 err = -EBUSY;
2794 else {
2795 clear_bit(Replacement, &rdev->flags);
2796 err = 0;
2797 }
2798 } else if (cmd_match(buf, "re-add")) {
2799 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2800 /* clear_bit is performed _after_ all the devices
2801 * have their local Faulty bit cleared. If any writes
2802 * happen in the meantime in the local node, they
2803 * will land in the local bitmap, which will be synced
2804 * by this node eventually
2805 */
2806 if (!mddev_is_clustered(rdev->mddev) ||
2807 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2808 clear_bit(Faulty, &rdev->flags);
2809 err = add_bound_rdev(rdev);
2810 }
2811 } else
2812 err = -EBUSY;
2813 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2814 set_bit(ExternalBbl, &rdev->flags);
2815 rdev->badblocks.shift = 0;
2816 err = 0;
2817 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2818 clear_bit(ExternalBbl, &rdev->flags);
2819 err = 0;
2820 }
2821 if (!err)
2822 sysfs_notify_dirent_safe(rdev->sysfs_state);
2823 return err ? err : len;
2824 }
2825 static struct rdev_sysfs_entry rdev_state =
2826 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2827
2828 static ssize_t
2829 errors_show(struct md_rdev *rdev, char *page)
2830 {
2831 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2832 }
2833
2834 static ssize_t
2835 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2836 {
2837 unsigned int n;
2838 int rv;
2839
2840 rv = kstrtouint(buf, 10, &n);
2841 if (rv < 0)
2842 return rv;
2843 atomic_set(&rdev->corrected_errors, n);
2844 return len;
2845 }
2846 static struct rdev_sysfs_entry rdev_errors =
2847 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2848
2849 static ssize_t
2850 slot_show(struct md_rdev *rdev, char *page)
2851 {
2852 if (test_bit(Journal, &rdev->flags))
2853 return sprintf(page, "journal\n");
2854 else if (rdev->raid_disk < 0)
2855 return sprintf(page, "none\n");
2856 else
2857 return sprintf(page, "%d\n", rdev->raid_disk);
2858 }
2859
2860 static ssize_t
2861 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2862 {
2863 int slot;
2864 int err;
2865
2866 if (test_bit(Journal, &rdev->flags))
2867 return -EBUSY;
2868 if (strncmp(buf, "none", 4)==0)
2869 slot = -1;
2870 else {
2871 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2872 if (err < 0)
2873 return err;
2874 }
2875 if (rdev->mddev->pers && slot == -1) {
2876 /* Setting 'slot' on an active array requires also
2877 * updating the 'rd%d' link, and communicating
2878 * with the personality with ->hot_*_disk.
2879 * For now we only support removing
2880 * failed/spare devices. This normally happens automatically,
2881 * but not when the metadata is externally managed.
2882 */
2883 if (rdev->raid_disk == -1)
2884 return -EEXIST;
2885 /* personality does all needed checks */
2886 if (rdev->mddev->pers->hot_remove_disk == NULL)
2887 return -EINVAL;
2888 clear_bit(Blocked, &rdev->flags);
2889 remove_and_add_spares(rdev->mddev, rdev);
2890 if (rdev->raid_disk >= 0)
2891 return -EBUSY;
2892 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2893 md_wakeup_thread(rdev->mddev->thread);
2894 } else if (rdev->mddev->pers) {
2895 /* Activating a spare .. or possibly reactivating
2896 * if we ever get bitmaps working here.
2897 */
2898 int err;
2899
2900 if (rdev->raid_disk != -1)
2901 return -EBUSY;
2902
2903 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2904 return -EBUSY;
2905
2906 if (rdev->mddev->pers->hot_add_disk == NULL)
2907 return -EINVAL;
2908
2909 if (slot >= rdev->mddev->raid_disks &&
2910 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2911 return -ENOSPC;
2912
2913 rdev->raid_disk = slot;
2914 if (test_bit(In_sync, &rdev->flags))
2915 rdev->saved_raid_disk = slot;
2916 else
2917 rdev->saved_raid_disk = -1;
2918 clear_bit(In_sync, &rdev->flags);
2919 clear_bit(Bitmap_sync, &rdev->flags);
2920 err = rdev->mddev->pers->
2921 hot_add_disk(rdev->mddev, rdev);
2922 if (err) {
2923 rdev->raid_disk = -1;
2924 return err;
2925 } else
2926 sysfs_notify_dirent_safe(rdev->sysfs_state);
2927 if (sysfs_link_rdev(rdev->mddev, rdev))
2928 /* failure here is OK */;
2929 /* don't wakeup anyone, leave that to userspace. */
2930 } else {
2931 if (slot >= rdev->mddev->raid_disks &&
2932 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2933 return -ENOSPC;
2934 rdev->raid_disk = slot;
2935 /* assume it is working */
2936 clear_bit(Faulty, &rdev->flags);
2937 clear_bit(WriteMostly, &rdev->flags);
2938 set_bit(In_sync, &rdev->flags);
2939 sysfs_notify_dirent_safe(rdev->sysfs_state);
2940 }
2941 return len;
2942 }
2943
2944 static struct rdev_sysfs_entry rdev_slot =
2945 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2946
2947 static ssize_t
2948 offset_show(struct md_rdev *rdev, char *page)
2949 {
2950 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2951 }
2952
2953 static ssize_t
2954 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2955 {
2956 unsigned long long offset;
2957 if (kstrtoull(buf, 10, &offset) < 0)
2958 return -EINVAL;
2959 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2960 return -EBUSY;
2961 if (rdev->sectors && rdev->mddev->external)
2962 /* Must set offset before size, so overlap checks
2963 * can be sane */
2964 return -EBUSY;
2965 rdev->data_offset = offset;
2966 rdev->new_data_offset = offset;
2967 return len;
2968 }
2969
2970 static struct rdev_sysfs_entry rdev_offset =
2971 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2972
2973 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2974 {
2975 return sprintf(page, "%llu\n",
2976 (unsigned long long)rdev->new_data_offset);
2977 }
2978
2979 static ssize_t new_offset_store(struct md_rdev *rdev,
2980 const char *buf, size_t len)
2981 {
2982 unsigned long long new_offset;
2983 struct mddev *mddev = rdev->mddev;
2984
2985 if (kstrtoull(buf, 10, &new_offset) < 0)
2986 return -EINVAL;
2987
2988 if (mddev->sync_thread ||
2989 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2990 return -EBUSY;
2991 if (new_offset == rdev->data_offset)
2992 /* reset is always permitted */
2993 ;
2994 else if (new_offset > rdev->data_offset) {
2995 /* must not push array size beyond rdev_sectors */
2996 if (new_offset - rdev->data_offset
2997 + mddev->dev_sectors > rdev->sectors)
2998 return -E2BIG;
2999 }
3000 /* Metadata worries about other space details. */
3001
3002 /* decreasing the offset is inconsistent with a backwards
3003 * reshape.
3004 */
3005 if (new_offset < rdev->data_offset &&
3006 mddev->reshape_backwards)
3007 return -EINVAL;
3008 /* Increasing offset is inconsistent with forwards
3009 * reshape. reshape_direction should be set to
3010 * 'backwards' first.
3011 */
3012 if (new_offset > rdev->data_offset &&
3013 !mddev->reshape_backwards)
3014 return -EINVAL;
3015
3016 if (mddev->pers && mddev->persistent &&
3017 !super_types[mddev->major_version]
3018 .allow_new_offset(rdev, new_offset))
3019 return -E2BIG;
3020 rdev->new_data_offset = new_offset;
3021 if (new_offset > rdev->data_offset)
3022 mddev->reshape_backwards = 1;
3023 else if (new_offset < rdev->data_offset)
3024 mddev->reshape_backwards = 0;
3025
3026 return len;
3027 }
3028 static struct rdev_sysfs_entry rdev_new_offset =
3029 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3030
3031 static ssize_t
3032 rdev_size_show(struct md_rdev *rdev, char *page)
3033 {
3034 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3035 }
3036
3037 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3038 {
3039 /* check if two start/length pairs overlap */
3040 if (s1+l1 <= s2)
3041 return 0;
3042 if (s2+l2 <= s1)
3043 return 0;
3044 return 1;
3045 }
3046
3047 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3048 {
3049 unsigned long long blocks;
3050 sector_t new;
3051
3052 if (kstrtoull(buf, 10, &blocks) < 0)
3053 return -EINVAL;
3054
3055 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3056 return -EINVAL; /* sector conversion overflow */
3057
3058 new = blocks * 2;
3059 if (new != blocks * 2)
3060 return -EINVAL; /* unsigned long long to sector_t overflow */
3061
3062 *sectors = new;
3063 return 0;
3064 }
3065
3066 static ssize_t
3067 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3068 {
3069 struct mddev *my_mddev = rdev->mddev;
3070 sector_t oldsectors = rdev->sectors;
3071 sector_t sectors;
3072
3073 if (test_bit(Journal, &rdev->flags))
3074 return -EBUSY;
3075 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3076 return -EINVAL;
3077 if (rdev->data_offset != rdev->new_data_offset)
3078 return -EINVAL; /* too confusing */
3079 if (my_mddev->pers && rdev->raid_disk >= 0) {
3080 if (my_mddev->persistent) {
3081 sectors = super_types[my_mddev->major_version].
3082 rdev_size_change(rdev, sectors);
3083 if (!sectors)
3084 return -EBUSY;
3085 } else if (!sectors)
3086 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3087 rdev->data_offset;
3088 if (!my_mddev->pers->resize)
3089 /* Cannot change size for RAID0 or Linear etc */
3090 return -EINVAL;
3091 }
3092 if (sectors < my_mddev->dev_sectors)
3093 return -EINVAL; /* component must fit device */
3094
3095 rdev->sectors = sectors;
3096 if (sectors > oldsectors && my_mddev->external) {
3097 /* Need to check that all other rdevs with the same
3098 * ->bdev do not overlap. 'rcu' is sufficient to walk
3099 * the rdev lists safely.
3100 * This check does not provide a hard guarantee, it
3101 * just helps avoid dangerous mistakes.
3102 */
3103 struct mddev *mddev;
3104 int overlap = 0;
3105 struct list_head *tmp;
3106
3107 rcu_read_lock();
3108 for_each_mddev(mddev, tmp) {
3109 struct md_rdev *rdev2;
3110
3111 rdev_for_each(rdev2, mddev)
3112 if (rdev->bdev == rdev2->bdev &&
3113 rdev != rdev2 &&
3114 overlaps(rdev->data_offset, rdev->sectors,
3115 rdev2->data_offset,
3116 rdev2->sectors)) {
3117 overlap = 1;
3118 break;
3119 }
3120 if (overlap) {
3121 mddev_put(mddev);
3122 break;
3123 }
3124 }
3125 rcu_read_unlock();
3126 if (overlap) {
3127 /* Someone else could have slipped in a size
3128 * change here, but doing so is just silly.
3129 * We put oldsectors back because we *know* it is
3130 * safe, and trust userspace not to race with
3131 * itself
3132 */
3133 rdev->sectors = oldsectors;
3134 return -EBUSY;
3135 }
3136 }
3137 return len;
3138 }
3139
3140 static struct rdev_sysfs_entry rdev_size =
3141 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3142
3143 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3144 {
3145 unsigned long long recovery_start = rdev->recovery_offset;
3146
3147 if (test_bit(In_sync, &rdev->flags) ||
3148 recovery_start == MaxSector)
3149 return sprintf(page, "none\n");
3150
3151 return sprintf(page, "%llu\n", recovery_start);
3152 }
3153
3154 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3155 {
3156 unsigned long long recovery_start;
3157
3158 if (cmd_match(buf, "none"))
3159 recovery_start = MaxSector;
3160 else if (kstrtoull(buf, 10, &recovery_start))
3161 return -EINVAL;
3162
3163 if (rdev->mddev->pers &&
3164 rdev->raid_disk >= 0)
3165 return -EBUSY;
3166
3167 rdev->recovery_offset = recovery_start;
3168 if (recovery_start == MaxSector)
3169 set_bit(In_sync, &rdev->flags);
3170 else
3171 clear_bit(In_sync, &rdev->flags);
3172 return len;
3173 }
3174
3175 static struct rdev_sysfs_entry rdev_recovery_start =
3176 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3177
3178 /* sysfs access to bad-blocks list.
3179 * We present two files.
3180 * 'bad-blocks' lists sector numbers and lengths of ranges that
3181 * are recorded as bad. The list is truncated to fit within
3182 * the one-page limit of sysfs.
3183 * Writing "sector length" to this file adds an acknowledged
3184 * bad block list.
3185 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3186 * been acknowledged. Writing to this file adds bad blocks
3187 * without acknowledging them. This is largely for testing.
3188 */
3189 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3190 {
3191 return badblocks_show(&rdev->badblocks, page, 0);
3192 }
3193 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3194 {
3195 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3196 /* Maybe that ack was all we needed */
3197 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3198 wake_up(&rdev->blocked_wait);
3199 return rv;
3200 }
3201 static struct rdev_sysfs_entry rdev_bad_blocks =
3202 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3203
3204 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3205 {
3206 return badblocks_show(&rdev->badblocks, page, 1);
3207 }
3208 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3209 {
3210 return badblocks_store(&rdev->badblocks, page, len, 1);
3211 }
3212 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3213 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3214
3215 static ssize_t
3216 ppl_sector_show(struct md_rdev *rdev, char *page)
3217 {
3218 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3219 }
3220
3221 static ssize_t
3222 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3223 {
3224 unsigned long long sector;
3225
3226 if (kstrtoull(buf, 10, &sector) < 0)
3227 return -EINVAL;
3228 if (sector != (sector_t)sector)
3229 return -EINVAL;
3230
3231 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3232 rdev->raid_disk >= 0)
3233 return -EBUSY;
3234
3235 if (rdev->mddev->persistent) {
3236 if (rdev->mddev->major_version == 0)
3237 return -EINVAL;
3238 if ((sector > rdev->sb_start &&
3239 sector - rdev->sb_start > S16_MAX) ||
3240 (sector < rdev->sb_start &&
3241 rdev->sb_start - sector > -S16_MIN))
3242 return -EINVAL;
3243 rdev->ppl.offset = sector - rdev->sb_start;
3244 } else if (!rdev->mddev->external) {
3245 return -EBUSY;
3246 }
3247 rdev->ppl.sector = sector;
3248 return len;
3249 }
3250
3251 static struct rdev_sysfs_entry rdev_ppl_sector =
3252 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3253
3254 static ssize_t
3255 ppl_size_show(struct md_rdev *rdev, char *page)
3256 {
3257 return sprintf(page, "%u\n", rdev->ppl.size);
3258 }
3259
3260 static ssize_t
3261 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3262 {
3263 unsigned int size;
3264
3265 if (kstrtouint(buf, 10, &size) < 0)
3266 return -EINVAL;
3267
3268 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3269 rdev->raid_disk >= 0)
3270 return -EBUSY;
3271
3272 if (rdev->mddev->persistent) {
3273 if (rdev->mddev->major_version == 0)
3274 return -EINVAL;
3275 if (size > U16_MAX)
3276 return -EINVAL;
3277 } else if (!rdev->mddev->external) {
3278 return -EBUSY;
3279 }
3280 rdev->ppl.size = size;
3281 return len;
3282 }
3283
3284 static struct rdev_sysfs_entry rdev_ppl_size =
3285 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3286
3287 static struct attribute *rdev_default_attrs[] = {
3288 &rdev_state.attr,
3289 &rdev_errors.attr,
3290 &rdev_slot.attr,
3291 &rdev_offset.attr,
3292 &rdev_new_offset.attr,
3293 &rdev_size.attr,
3294 &rdev_recovery_start.attr,
3295 &rdev_bad_blocks.attr,
3296 &rdev_unack_bad_blocks.attr,
3297 &rdev_ppl_sector.attr,
3298 &rdev_ppl_size.attr,
3299 NULL,
3300 };
3301 static ssize_t
3302 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3303 {
3304 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3305 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3306
3307 if (!entry->show)
3308 return -EIO;
3309 if (!rdev->mddev)
3310 return -EBUSY;
3311 return entry->show(rdev, page);
3312 }
3313
3314 static ssize_t
3315 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3316 const char *page, size_t length)
3317 {
3318 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3319 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3320 ssize_t rv;
3321 struct mddev *mddev = rdev->mddev;
3322
3323 if (!entry->store)
3324 return -EIO;
3325 if (!capable(CAP_SYS_ADMIN))
3326 return -EACCES;
3327 rv = mddev ? mddev_lock(mddev): -EBUSY;
3328 if (!rv) {
3329 if (rdev->mddev == NULL)
3330 rv = -EBUSY;
3331 else
3332 rv = entry->store(rdev, page, length);
3333 mddev_unlock(mddev);
3334 }
3335 return rv;
3336 }
3337
3338 static void rdev_free(struct kobject *ko)
3339 {
3340 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3341 kfree(rdev);
3342 }
3343 static const struct sysfs_ops rdev_sysfs_ops = {
3344 .show = rdev_attr_show,
3345 .store = rdev_attr_store,
3346 };
3347 static struct kobj_type rdev_ktype = {
3348 .release = rdev_free,
3349 .sysfs_ops = &rdev_sysfs_ops,
3350 .default_attrs = rdev_default_attrs,
3351 };
3352
3353 int md_rdev_init(struct md_rdev *rdev)
3354 {
3355 rdev->desc_nr = -1;
3356 rdev->saved_raid_disk = -1;
3357 rdev->raid_disk = -1;
3358 rdev->flags = 0;
3359 rdev->data_offset = 0;
3360 rdev->new_data_offset = 0;
3361 rdev->sb_events = 0;
3362 rdev->last_read_error = 0;
3363 rdev->sb_loaded = 0;
3364 rdev->bb_page = NULL;
3365 atomic_set(&rdev->nr_pending, 0);
3366 atomic_set(&rdev->read_errors, 0);
3367 atomic_set(&rdev->corrected_errors, 0);
3368
3369 INIT_LIST_HEAD(&rdev->same_set);
3370 init_waitqueue_head(&rdev->blocked_wait);
3371
3372 /* Add space to store bad block list.
3373 * This reserves the space even on arrays where it cannot
3374 * be used - I wonder if that matters
3375 */
3376 return badblocks_init(&rdev->badblocks, 0);
3377 }
3378 EXPORT_SYMBOL_GPL(md_rdev_init);
3379 /*
3380 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3381 *
3382 * mark the device faulty if:
3383 *
3384 * - the device is nonexistent (zero size)
3385 * - the device has no valid superblock
3386 *
3387 * a faulty rdev _never_ has rdev->sb set.
3388 */
3389 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3390 {
3391 char b[BDEVNAME_SIZE];
3392 int err;
3393 struct md_rdev *rdev;
3394 sector_t size;
3395
3396 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3397 if (!rdev)
3398 return ERR_PTR(-ENOMEM);
3399
3400 err = md_rdev_init(rdev);
3401 if (err)
3402 goto abort_free;
3403 err = alloc_disk_sb(rdev);
3404 if (err)
3405 goto abort_free;
3406
3407 err = lock_rdev(rdev, newdev, super_format == -2);
3408 if (err)
3409 goto abort_free;
3410
3411 kobject_init(&rdev->kobj, &rdev_ktype);
3412
3413 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3414 if (!size) {
3415 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3416 bdevname(rdev->bdev,b));
3417 err = -EINVAL;
3418 goto abort_free;
3419 }
3420
3421 if (super_format >= 0) {
3422 err = super_types[super_format].
3423 load_super(rdev, NULL, super_minor);
3424 if (err == -EINVAL) {
3425 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3426 bdevname(rdev->bdev,b),
3427 super_format, super_minor);
3428 goto abort_free;
3429 }
3430 if (err < 0) {
3431 pr_warn("md: could not read %s's sb, not importing!\n",
3432 bdevname(rdev->bdev,b));
3433 goto abort_free;
3434 }
3435 }
3436
3437 return rdev;
3438
3439 abort_free:
3440 if (rdev->bdev)
3441 unlock_rdev(rdev);
3442 md_rdev_clear(rdev);
3443 kfree(rdev);
3444 return ERR_PTR(err);
3445 }
3446
3447 /*
3448 * Check a full RAID array for plausibility
3449 */
3450
3451 static void analyze_sbs(struct mddev *mddev)
3452 {
3453 int i;
3454 struct md_rdev *rdev, *freshest, *tmp;
3455 char b[BDEVNAME_SIZE];
3456
3457 freshest = NULL;
3458 rdev_for_each_safe(rdev, tmp, mddev)
3459 switch (super_types[mddev->major_version].
3460 load_super(rdev, freshest, mddev->minor_version)) {
3461 case 1:
3462 freshest = rdev;
3463 break;
3464 case 0:
3465 break;
3466 default:
3467 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3468 bdevname(rdev->bdev,b));
3469 md_kick_rdev_from_array(rdev);
3470 }
3471
3472 super_types[mddev->major_version].
3473 validate_super(mddev, freshest);
3474
3475 i = 0;
3476 rdev_for_each_safe(rdev, tmp, mddev) {
3477 if (mddev->max_disks &&
3478 (rdev->desc_nr >= mddev->max_disks ||
3479 i > mddev->max_disks)) {
3480 pr_warn("md: %s: %s: only %d devices permitted\n",
3481 mdname(mddev), bdevname(rdev->bdev, b),
3482 mddev->max_disks);
3483 md_kick_rdev_from_array(rdev);
3484 continue;
3485 }
3486 if (rdev != freshest) {
3487 if (super_types[mddev->major_version].
3488 validate_super(mddev, rdev)) {
3489 pr_warn("md: kicking non-fresh %s from array!\n",
3490 bdevname(rdev->bdev,b));
3491 md_kick_rdev_from_array(rdev);
3492 continue;
3493 }
3494 }
3495 if (mddev->level == LEVEL_MULTIPATH) {
3496 rdev->desc_nr = i++;
3497 rdev->raid_disk = rdev->desc_nr;
3498 set_bit(In_sync, &rdev->flags);
3499 } else if (rdev->raid_disk >=
3500 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3501 !test_bit(Journal, &rdev->flags)) {
3502 rdev->raid_disk = -1;
3503 clear_bit(In_sync, &rdev->flags);
3504 }
3505 }
3506 }
3507
3508 /* Read a fixed-point number.
3509 * Numbers in sysfs attributes should be in "standard" units where
3510 * possible, so time should be in seconds.
3511 * However we internally use a a much smaller unit such as
3512 * milliseconds or jiffies.
3513 * This function takes a decimal number with a possible fractional
3514 * component, and produces an integer which is the result of
3515 * multiplying that number by 10^'scale'.
3516 * all without any floating-point arithmetic.
3517 */
3518 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3519 {
3520 unsigned long result = 0;
3521 long decimals = -1;
3522 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3523 if (*cp == '.')
3524 decimals = 0;
3525 else if (decimals < scale) {
3526 unsigned int value;
3527 value = *cp - '0';
3528 result = result * 10 + value;
3529 if (decimals >= 0)
3530 decimals++;
3531 }
3532 cp++;
3533 }
3534 if (*cp == '\n')
3535 cp++;
3536 if (*cp)
3537 return -EINVAL;
3538 if (decimals < 0)
3539 decimals = 0;
3540 while (decimals < scale) {
3541 result *= 10;
3542 decimals ++;
3543 }
3544 *res = result;
3545 return 0;
3546 }
3547
3548 static ssize_t
3549 safe_delay_show(struct mddev *mddev, char *page)
3550 {
3551 int msec = (mddev->safemode_delay*1000)/HZ;
3552 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3553 }
3554 static ssize_t
3555 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3556 {
3557 unsigned long msec;
3558
3559 if (mddev_is_clustered(mddev)) {
3560 pr_warn("md: Safemode is disabled for clustered mode\n");
3561 return -EINVAL;
3562 }
3563
3564 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3565 return -EINVAL;
3566 if (msec == 0)
3567 mddev->safemode_delay = 0;
3568 else {
3569 unsigned long old_delay = mddev->safemode_delay;
3570 unsigned long new_delay = (msec*HZ)/1000;
3571
3572 if (new_delay == 0)
3573 new_delay = 1;
3574 mddev->safemode_delay = new_delay;
3575 if (new_delay < old_delay || old_delay == 0)
3576 mod_timer(&mddev->safemode_timer, jiffies+1);
3577 }
3578 return len;
3579 }
3580 static struct md_sysfs_entry md_safe_delay =
3581 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3582
3583 static ssize_t
3584 level_show(struct mddev *mddev, char *page)
3585 {
3586 struct md_personality *p;
3587 int ret;
3588 spin_lock(&mddev->lock);
3589 p = mddev->pers;
3590 if (p)
3591 ret = sprintf(page, "%s\n", p->name);
3592 else if (mddev->clevel[0])
3593 ret = sprintf(page, "%s\n", mddev->clevel);
3594 else if (mddev->level != LEVEL_NONE)
3595 ret = sprintf(page, "%d\n", mddev->level);
3596 else
3597 ret = 0;
3598 spin_unlock(&mddev->lock);
3599 return ret;
3600 }
3601
3602 static ssize_t
3603 level_store(struct mddev *mddev, const char *buf, size_t len)
3604 {
3605 char clevel[16];
3606 ssize_t rv;
3607 size_t slen = len;
3608 struct md_personality *pers, *oldpers;
3609 long level;
3610 void *priv, *oldpriv;
3611 struct md_rdev *rdev;
3612
3613 if (slen == 0 || slen >= sizeof(clevel))
3614 return -EINVAL;
3615
3616 rv = mddev_lock(mddev);
3617 if (rv)
3618 return rv;
3619
3620 if (mddev->pers == NULL) {
3621 strncpy(mddev->clevel, buf, slen);
3622 if (mddev->clevel[slen-1] == '\n')
3623 slen--;
3624 mddev->clevel[slen] = 0;
3625 mddev->level = LEVEL_NONE;
3626 rv = len;
3627 goto out_unlock;
3628 }
3629 rv = -EROFS;
3630 if (mddev->ro)
3631 goto out_unlock;
3632
3633 /* request to change the personality. Need to ensure:
3634 * - array is not engaged in resync/recovery/reshape
3635 * - old personality can be suspended
3636 * - new personality will access other array.
3637 */
3638
3639 rv = -EBUSY;
3640 if (mddev->sync_thread ||
3641 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3642 mddev->reshape_position != MaxSector ||
3643 mddev->sysfs_active)
3644 goto out_unlock;
3645
3646 rv = -EINVAL;
3647 if (!mddev->pers->quiesce) {
3648 pr_warn("md: %s: %s does not support online personality change\n",
3649 mdname(mddev), mddev->pers->name);
3650 goto out_unlock;
3651 }
3652
3653 /* Now find the new personality */
3654 strncpy(clevel, buf, slen);
3655 if (clevel[slen-1] == '\n')
3656 slen--;
3657 clevel[slen] = 0;
3658 if (kstrtol(clevel, 10, &level))
3659 level = LEVEL_NONE;
3660
3661 if (request_module("md-%s", clevel) != 0)
3662 request_module("md-level-%s", clevel);
3663 spin_lock(&pers_lock);
3664 pers = find_pers(level, clevel);
3665 if (!pers || !try_module_get(pers->owner)) {
3666 spin_unlock(&pers_lock);
3667 pr_warn("md: personality %s not loaded\n", clevel);
3668 rv = -EINVAL;
3669 goto out_unlock;
3670 }
3671 spin_unlock(&pers_lock);
3672
3673 if (pers == mddev->pers) {
3674 /* Nothing to do! */
3675 module_put(pers->owner);
3676 rv = len;
3677 goto out_unlock;
3678 }
3679 if (!pers->takeover) {
3680 module_put(pers->owner);
3681 pr_warn("md: %s: %s does not support personality takeover\n",
3682 mdname(mddev), clevel);
3683 rv = -EINVAL;
3684 goto out_unlock;
3685 }
3686
3687 rdev_for_each(rdev, mddev)
3688 rdev->new_raid_disk = rdev->raid_disk;
3689
3690 /* ->takeover must set new_* and/or delta_disks
3691 * if it succeeds, and may set them when it fails.
3692 */
3693 priv = pers->takeover(mddev);
3694 if (IS_ERR(priv)) {
3695 mddev->new_level = mddev->level;
3696 mddev->new_layout = mddev->layout;
3697 mddev->new_chunk_sectors = mddev->chunk_sectors;
3698 mddev->raid_disks -= mddev->delta_disks;
3699 mddev->delta_disks = 0;
3700 mddev->reshape_backwards = 0;
3701 module_put(pers->owner);
3702 pr_warn("md: %s: %s would not accept array\n",
3703 mdname(mddev), clevel);
3704 rv = PTR_ERR(priv);
3705 goto out_unlock;
3706 }
3707
3708 /* Looks like we have a winner */
3709 mddev_suspend(mddev);
3710 mddev_detach(mddev);
3711
3712 spin_lock(&mddev->lock);
3713 oldpers = mddev->pers;
3714 oldpriv = mddev->private;
3715 mddev->pers = pers;
3716 mddev->private = priv;
3717 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3718 mddev->level = mddev->new_level;
3719 mddev->layout = mddev->new_layout;
3720 mddev->chunk_sectors = mddev->new_chunk_sectors;
3721 mddev->delta_disks = 0;
3722 mddev->reshape_backwards = 0;
3723 mddev->degraded = 0;
3724 spin_unlock(&mddev->lock);
3725
3726 if (oldpers->sync_request == NULL &&
3727 mddev->external) {
3728 /* We are converting from a no-redundancy array
3729 * to a redundancy array and metadata is managed
3730 * externally so we need to be sure that writes
3731 * won't block due to a need to transition
3732 * clean->dirty
3733 * until external management is started.
3734 */
3735 mddev->in_sync = 0;
3736 mddev->safemode_delay = 0;
3737 mddev->safemode = 0;
3738 }
3739
3740 oldpers->free(mddev, oldpriv);
3741
3742 if (oldpers->sync_request == NULL &&
3743 pers->sync_request != NULL) {
3744 /* need to add the md_redundancy_group */
3745 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3746 pr_warn("md: cannot register extra attributes for %s\n",
3747 mdname(mddev));
3748 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3749 }
3750 if (oldpers->sync_request != NULL &&
3751 pers->sync_request == NULL) {
3752 /* need to remove the md_redundancy_group */
3753 if (mddev->to_remove == NULL)
3754 mddev->to_remove = &md_redundancy_group;
3755 }
3756
3757 module_put(oldpers->owner);
3758
3759 rdev_for_each(rdev, mddev) {
3760 if (rdev->raid_disk < 0)
3761 continue;
3762 if (rdev->new_raid_disk >= mddev->raid_disks)
3763 rdev->new_raid_disk = -1;
3764 if (rdev->new_raid_disk == rdev->raid_disk)
3765 continue;
3766 sysfs_unlink_rdev(mddev, rdev);
3767 }
3768 rdev_for_each(rdev, mddev) {
3769 if (rdev->raid_disk < 0)
3770 continue;
3771 if (rdev->new_raid_disk == rdev->raid_disk)
3772 continue;
3773 rdev->raid_disk = rdev->new_raid_disk;
3774 if (rdev->raid_disk < 0)
3775 clear_bit(In_sync, &rdev->flags);
3776 else {
3777 if (sysfs_link_rdev(mddev, rdev))
3778 pr_warn("md: cannot register rd%d for %s after level change\n",
3779 rdev->raid_disk, mdname(mddev));
3780 }
3781 }
3782
3783 if (pers->sync_request == NULL) {
3784 /* this is now an array without redundancy, so
3785 * it must always be in_sync
3786 */
3787 mddev->in_sync = 1;
3788 del_timer_sync(&mddev->safemode_timer);
3789 }
3790 blk_set_stacking_limits(&mddev->queue->limits);
3791 pers->run(mddev);
3792 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3793 mddev_resume(mddev);
3794 if (!mddev->thread)
3795 md_update_sb(mddev, 1);
3796 sysfs_notify(&mddev->kobj, NULL, "level");
3797 md_new_event(mddev);
3798 rv = len;
3799 out_unlock:
3800 mddev_unlock(mddev);
3801 return rv;
3802 }
3803
3804 static struct md_sysfs_entry md_level =
3805 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3806
3807 static ssize_t
3808 layout_show(struct mddev *mddev, char *page)
3809 {
3810 /* just a number, not meaningful for all levels */
3811 if (mddev->reshape_position != MaxSector &&
3812 mddev->layout != mddev->new_layout)
3813 return sprintf(page, "%d (%d)\n",
3814 mddev->new_layout, mddev->layout);
3815 return sprintf(page, "%d\n", mddev->layout);
3816 }
3817
3818 static ssize_t
3819 layout_store(struct mddev *mddev, const char *buf, size_t len)
3820 {
3821 unsigned int n;
3822 int err;
3823
3824 err = kstrtouint(buf, 10, &n);
3825 if (err < 0)
3826 return err;
3827 err = mddev_lock(mddev);
3828 if (err)
3829 return err;
3830
3831 if (mddev->pers) {
3832 if (mddev->pers->check_reshape == NULL)
3833 err = -EBUSY;
3834 else if (mddev->ro)
3835 err = -EROFS;
3836 else {
3837 mddev->new_layout = n;
3838 err = mddev->pers->check_reshape(mddev);
3839 if (err)
3840 mddev->new_layout = mddev->layout;
3841 }
3842 } else {
3843 mddev->new_layout = n;
3844 if (mddev->reshape_position == MaxSector)
3845 mddev->layout = n;
3846 }
3847 mddev_unlock(mddev);
3848 return err ?: len;
3849 }
3850 static struct md_sysfs_entry md_layout =
3851 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3852
3853 static ssize_t
3854 raid_disks_show(struct mddev *mddev, char *page)
3855 {
3856 if (mddev->raid_disks == 0)
3857 return 0;
3858 if (mddev->reshape_position != MaxSector &&
3859 mddev->delta_disks != 0)
3860 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3861 mddev->raid_disks - mddev->delta_disks);
3862 return sprintf(page, "%d\n", mddev->raid_disks);
3863 }
3864
3865 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3866
3867 static ssize_t
3868 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3869 {
3870 unsigned int n;
3871 int err;
3872
3873 err = kstrtouint(buf, 10, &n);
3874 if (err < 0)
3875 return err;
3876
3877 err = mddev_lock(mddev);
3878 if (err)
3879 return err;
3880 if (mddev->pers)
3881 err = update_raid_disks(mddev, n);
3882 else if (mddev->reshape_position != MaxSector) {
3883 struct md_rdev *rdev;
3884 int olddisks = mddev->raid_disks - mddev->delta_disks;
3885
3886 err = -EINVAL;
3887 rdev_for_each(rdev, mddev) {
3888 if (olddisks < n &&
3889 rdev->data_offset < rdev->new_data_offset)
3890 goto out_unlock;
3891 if (olddisks > n &&
3892 rdev->data_offset > rdev->new_data_offset)
3893 goto out_unlock;
3894 }
3895 err = 0;
3896 mddev->delta_disks = n - olddisks;
3897 mddev->raid_disks = n;
3898 mddev->reshape_backwards = (mddev->delta_disks < 0);
3899 } else
3900 mddev->raid_disks = n;
3901 out_unlock:
3902 mddev_unlock(mddev);
3903 return err ? err : len;
3904 }
3905 static struct md_sysfs_entry md_raid_disks =
3906 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3907
3908 static ssize_t
3909 chunk_size_show(struct mddev *mddev, char *page)
3910 {
3911 if (mddev->reshape_position != MaxSector &&
3912 mddev->chunk_sectors != mddev->new_chunk_sectors)
3913 return sprintf(page, "%d (%d)\n",
3914 mddev->new_chunk_sectors << 9,
3915 mddev->chunk_sectors << 9);
3916 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3917 }
3918
3919 static ssize_t
3920 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3921 {
3922 unsigned long n;
3923 int err;
3924
3925 err = kstrtoul(buf, 10, &n);
3926 if (err < 0)
3927 return err;
3928
3929 err = mddev_lock(mddev);
3930 if (err)
3931 return err;
3932 if (mddev->pers) {
3933 if (mddev->pers->check_reshape == NULL)
3934 err = -EBUSY;
3935 else if (mddev->ro)
3936 err = -EROFS;
3937 else {
3938 mddev->new_chunk_sectors = n >> 9;
3939 err = mddev->pers->check_reshape(mddev);
3940 if (err)
3941 mddev->new_chunk_sectors = mddev->chunk_sectors;
3942 }
3943 } else {
3944 mddev->new_chunk_sectors = n >> 9;
3945 if (mddev->reshape_position == MaxSector)
3946 mddev->chunk_sectors = n >> 9;
3947 }
3948 mddev_unlock(mddev);
3949 return err ?: len;
3950 }
3951 static struct md_sysfs_entry md_chunk_size =
3952 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3953
3954 static ssize_t
3955 resync_start_show(struct mddev *mddev, char *page)
3956 {
3957 if (mddev->recovery_cp == MaxSector)
3958 return sprintf(page, "none\n");
3959 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3960 }
3961
3962 static ssize_t
3963 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3964 {
3965 unsigned long long n;
3966 int err;
3967
3968 if (cmd_match(buf, "none"))
3969 n = MaxSector;
3970 else {
3971 err = kstrtoull(buf, 10, &n);
3972 if (err < 0)
3973 return err;
3974 if (n != (sector_t)n)
3975 return -EINVAL;
3976 }
3977
3978 err = mddev_lock(mddev);
3979 if (err)
3980 return err;
3981 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3982 err = -EBUSY;
3983
3984 if (!err) {
3985 mddev->recovery_cp = n;
3986 if (mddev->pers)
3987 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
3988 }
3989 mddev_unlock(mddev);
3990 return err ?: len;
3991 }
3992 static struct md_sysfs_entry md_resync_start =
3993 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3994 resync_start_show, resync_start_store);
3995
3996 /*
3997 * The array state can be:
3998 *
3999 * clear
4000 * No devices, no size, no level
4001 * Equivalent to STOP_ARRAY ioctl
4002 * inactive
4003 * May have some settings, but array is not active
4004 * all IO results in error
4005 * When written, doesn't tear down array, but just stops it
4006 * suspended (not supported yet)
4007 * All IO requests will block. The array can be reconfigured.
4008 * Writing this, if accepted, will block until array is quiescent
4009 * readonly
4010 * no resync can happen. no superblocks get written.
4011 * write requests fail
4012 * read-auto
4013 * like readonly, but behaves like 'clean' on a write request.
4014 *
4015 * clean - no pending writes, but otherwise active.
4016 * When written to inactive array, starts without resync
4017 * If a write request arrives then
4018 * if metadata is known, mark 'dirty' and switch to 'active'.
4019 * if not known, block and switch to write-pending
4020 * If written to an active array that has pending writes, then fails.
4021 * active
4022 * fully active: IO and resync can be happening.
4023 * When written to inactive array, starts with resync
4024 *
4025 * write-pending
4026 * clean, but writes are blocked waiting for 'active' to be written.
4027 *
4028 * active-idle
4029 * like active, but no writes have been seen for a while (100msec).
4030 *
4031 */
4032 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4033 write_pending, active_idle, bad_word};
4034 static char *array_states[] = {
4035 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4036 "write-pending", "active-idle", NULL };
4037
4038 static int match_word(const char *word, char **list)
4039 {
4040 int n;
4041 for (n=0; list[n]; n++)
4042 if (cmd_match(word, list[n]))
4043 break;
4044 return n;
4045 }
4046
4047 static ssize_t
4048 array_state_show(struct mddev *mddev, char *page)
4049 {
4050 enum array_state st = inactive;
4051
4052 if (mddev->pers)
4053 switch(mddev->ro) {
4054 case 1:
4055 st = readonly;
4056 break;
4057 case 2:
4058 st = read_auto;
4059 break;
4060 case 0:
4061 spin_lock(&mddev->lock);
4062 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4063 st = write_pending;
4064 else if (mddev->in_sync)
4065 st = clean;
4066 else if (mddev->safemode)
4067 st = active_idle;
4068 else
4069 st = active;
4070 spin_unlock(&mddev->lock);
4071 }
4072 else {
4073 if (list_empty(&mddev->disks) &&
4074 mddev->raid_disks == 0 &&
4075 mddev->dev_sectors == 0)
4076 st = clear;
4077 else
4078 st = inactive;
4079 }
4080 return sprintf(page, "%s\n", array_states[st]);
4081 }
4082
4083 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4084 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4085 static int do_md_run(struct mddev *mddev);
4086 static int restart_array(struct mddev *mddev);
4087
4088 static ssize_t
4089 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4090 {
4091 int err = 0;
4092 enum array_state st = match_word(buf, array_states);
4093
4094 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4095 /* don't take reconfig_mutex when toggling between
4096 * clean and active
4097 */
4098 spin_lock(&mddev->lock);
4099 if (st == active) {
4100 restart_array(mddev);
4101 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4102 md_wakeup_thread(mddev->thread);
4103 wake_up(&mddev->sb_wait);
4104 } else /* st == clean */ {
4105 restart_array(mddev);
4106 if (!set_in_sync(mddev))
4107 err = -EBUSY;
4108 }
4109 if (!err)
4110 sysfs_notify_dirent_safe(mddev->sysfs_state);
4111 spin_unlock(&mddev->lock);
4112 return err ?: len;
4113 }
4114 err = mddev_lock(mddev);
4115 if (err)
4116 return err;
4117 err = -EINVAL;
4118 switch(st) {
4119 case bad_word:
4120 break;
4121 case clear:
4122 /* stopping an active array */
4123 err = do_md_stop(mddev, 0, NULL);
4124 break;
4125 case inactive:
4126 /* stopping an active array */
4127 if (mddev->pers)
4128 err = do_md_stop(mddev, 2, NULL);
4129 else
4130 err = 0; /* already inactive */
4131 break;
4132 case suspended:
4133 break; /* not supported yet */
4134 case readonly:
4135 if (mddev->pers)
4136 err = md_set_readonly(mddev, NULL);
4137 else {
4138 mddev->ro = 1;
4139 set_disk_ro(mddev->gendisk, 1);
4140 err = do_md_run(mddev);
4141 }
4142 break;
4143 case read_auto:
4144 if (mddev->pers) {
4145 if (mddev->ro == 0)
4146 err = md_set_readonly(mddev, NULL);
4147 else if (mddev->ro == 1)
4148 err = restart_array(mddev);
4149 if (err == 0) {
4150 mddev->ro = 2;
4151 set_disk_ro(mddev->gendisk, 0);
4152 }
4153 } else {
4154 mddev->ro = 2;
4155 err = do_md_run(mddev);
4156 }
4157 break;
4158 case clean:
4159 if (mddev->pers) {
4160 err = restart_array(mddev);
4161 if (err)
4162 break;
4163 spin_lock(&mddev->lock);
4164 if (!set_in_sync(mddev))
4165 err = -EBUSY;
4166 spin_unlock(&mddev->lock);
4167 } else
4168 err = -EINVAL;
4169 break;
4170 case active:
4171 if (mddev->pers) {
4172 err = restart_array(mddev);
4173 if (err)
4174 break;
4175 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4176 wake_up(&mddev->sb_wait);
4177 err = 0;
4178 } else {
4179 mddev->ro = 0;
4180 set_disk_ro(mddev->gendisk, 0);
4181 err = do_md_run(mddev);
4182 }
4183 break;
4184 case write_pending:
4185 case active_idle:
4186 /* these cannot be set */
4187 break;
4188 }
4189
4190 if (!err) {
4191 if (mddev->hold_active == UNTIL_IOCTL)
4192 mddev->hold_active = 0;
4193 sysfs_notify_dirent_safe(mddev->sysfs_state);
4194 }
4195 mddev_unlock(mddev);
4196 return err ?: len;
4197 }
4198 static struct md_sysfs_entry md_array_state =
4199 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4200
4201 static ssize_t
4202 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4203 return sprintf(page, "%d\n",
4204 atomic_read(&mddev->max_corr_read_errors));
4205 }
4206
4207 static ssize_t
4208 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4209 {
4210 unsigned int n;
4211 int rv;
4212
4213 rv = kstrtouint(buf, 10, &n);
4214 if (rv < 0)
4215 return rv;
4216 atomic_set(&mddev->max_corr_read_errors, n);
4217 return len;
4218 }
4219
4220 static struct md_sysfs_entry max_corr_read_errors =
4221 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4222 max_corrected_read_errors_store);
4223
4224 static ssize_t
4225 null_show(struct mddev *mddev, char *page)
4226 {
4227 return -EINVAL;
4228 }
4229
4230 static ssize_t
4231 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4232 {
4233 /* buf must be %d:%d\n? giving major and minor numbers */
4234 /* The new device is added to the array.
4235 * If the array has a persistent superblock, we read the
4236 * superblock to initialise info and check validity.
4237 * Otherwise, only checking done is that in bind_rdev_to_array,
4238 * which mainly checks size.
4239 */
4240 char *e;
4241 int major = simple_strtoul(buf, &e, 10);
4242 int minor;
4243 dev_t dev;
4244 struct md_rdev *rdev;
4245 int err;
4246
4247 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4248 return -EINVAL;
4249 minor = simple_strtoul(e+1, &e, 10);
4250 if (*e && *e != '\n')
4251 return -EINVAL;
4252 dev = MKDEV(major, minor);
4253 if (major != MAJOR(dev) ||
4254 minor != MINOR(dev))
4255 return -EOVERFLOW;
4256
4257 flush_workqueue(md_misc_wq);
4258
4259 err = mddev_lock(mddev);
4260 if (err)
4261 return err;
4262 if (mddev->persistent) {
4263 rdev = md_import_device(dev, mddev->major_version,
4264 mddev->minor_version);
4265 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4266 struct md_rdev *rdev0
4267 = list_entry(mddev->disks.next,
4268 struct md_rdev, same_set);
4269 err = super_types[mddev->major_version]
4270 .load_super(rdev, rdev0, mddev->minor_version);
4271 if (err < 0)
4272 goto out;
4273 }
4274 } else if (mddev->external)
4275 rdev = md_import_device(dev, -2, -1);
4276 else
4277 rdev = md_import_device(dev, -1, -1);
4278
4279 if (IS_ERR(rdev)) {
4280 mddev_unlock(mddev);
4281 return PTR_ERR(rdev);
4282 }
4283 err = bind_rdev_to_array(rdev, mddev);
4284 out:
4285 if (err)
4286 export_rdev(rdev);
4287 mddev_unlock(mddev);
4288 return err ? err : len;
4289 }
4290
4291 static struct md_sysfs_entry md_new_device =
4292 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4293
4294 static ssize_t
4295 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4296 {
4297 char *end;
4298 unsigned long chunk, end_chunk;
4299 int err;
4300
4301 err = mddev_lock(mddev);
4302 if (err)
4303 return err;
4304 if (!mddev->bitmap)
4305 goto out;
4306 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4307 while (*buf) {
4308 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4309 if (buf == end) break;
4310 if (*end == '-') { /* range */
4311 buf = end + 1;
4312 end_chunk = simple_strtoul(buf, &end, 0);
4313 if (buf == end) break;
4314 }
4315 if (*end && !isspace(*end)) break;
4316 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4317 buf = skip_spaces(end);
4318 }
4319 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4320 out:
4321 mddev_unlock(mddev);
4322 return len;
4323 }
4324
4325 static struct md_sysfs_entry md_bitmap =
4326 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4327
4328 static ssize_t
4329 size_show(struct mddev *mddev, char *page)
4330 {
4331 return sprintf(page, "%llu\n",
4332 (unsigned long long)mddev->dev_sectors / 2);
4333 }
4334
4335 static int update_size(struct mddev *mddev, sector_t num_sectors);
4336
4337 static ssize_t
4338 size_store(struct mddev *mddev, const char *buf, size_t len)
4339 {
4340 /* If array is inactive, we can reduce the component size, but
4341 * not increase it (except from 0).
4342 * If array is active, we can try an on-line resize
4343 */
4344 sector_t sectors;
4345 int err = strict_blocks_to_sectors(buf, &sectors);
4346
4347 if (err < 0)
4348 return err;
4349 err = mddev_lock(mddev);
4350 if (err)
4351 return err;
4352 if (mddev->pers) {
4353 err = update_size(mddev, sectors);
4354 if (err == 0)
4355 md_update_sb(mddev, 1);
4356 } else {
4357 if (mddev->dev_sectors == 0 ||
4358 mddev->dev_sectors > sectors)
4359 mddev->dev_sectors = sectors;
4360 else
4361 err = -ENOSPC;
4362 }
4363 mddev_unlock(mddev);
4364 return err ? err : len;
4365 }
4366
4367 static struct md_sysfs_entry md_size =
4368 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4369
4370 /* Metadata version.
4371 * This is one of
4372 * 'none' for arrays with no metadata (good luck...)
4373 * 'external' for arrays with externally managed metadata,
4374 * or N.M for internally known formats
4375 */
4376 static ssize_t
4377 metadata_show(struct mddev *mddev, char *page)
4378 {
4379 if (mddev->persistent)
4380 return sprintf(page, "%d.%d\n",
4381 mddev->major_version, mddev->minor_version);
4382 else if (mddev->external)
4383 return sprintf(page, "external:%s\n", mddev->metadata_type);
4384 else
4385 return sprintf(page, "none\n");
4386 }
4387
4388 static ssize_t
4389 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4390 {
4391 int major, minor;
4392 char *e;
4393 int err;
4394 /* Changing the details of 'external' metadata is
4395 * always permitted. Otherwise there must be
4396 * no devices attached to the array.
4397 */
4398
4399 err = mddev_lock(mddev);
4400 if (err)
4401 return err;
4402 err = -EBUSY;
4403 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4404 ;
4405 else if (!list_empty(&mddev->disks))
4406 goto out_unlock;
4407
4408 err = 0;
4409 if (cmd_match(buf, "none")) {
4410 mddev->persistent = 0;
4411 mddev->external = 0;
4412 mddev->major_version = 0;
4413 mddev->minor_version = 90;
4414 goto out_unlock;
4415 }
4416 if (strncmp(buf, "external:", 9) == 0) {
4417 size_t namelen = len-9;
4418 if (namelen >= sizeof(mddev->metadata_type))
4419 namelen = sizeof(mddev->metadata_type)-1;
4420 strncpy(mddev->metadata_type, buf+9, namelen);
4421 mddev->metadata_type[namelen] = 0;
4422 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4423 mddev->metadata_type[--namelen] = 0;
4424 mddev->persistent = 0;
4425 mddev->external = 1;
4426 mddev->major_version = 0;
4427 mddev->minor_version = 90;
4428 goto out_unlock;
4429 }
4430 major = simple_strtoul(buf, &e, 10);
4431 err = -EINVAL;
4432 if (e==buf || *e != '.')
4433 goto out_unlock;
4434 buf = e+1;
4435 minor = simple_strtoul(buf, &e, 10);
4436 if (e==buf || (*e && *e != '\n') )
4437 goto out_unlock;
4438 err = -ENOENT;
4439 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4440 goto out_unlock;
4441 mddev->major_version = major;
4442 mddev->minor_version = minor;
4443 mddev->persistent = 1;
4444 mddev->external = 0;
4445 err = 0;
4446 out_unlock:
4447 mddev_unlock(mddev);
4448 return err ?: len;
4449 }
4450
4451 static struct md_sysfs_entry md_metadata =
4452 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4453
4454 static ssize_t
4455 action_show(struct mddev *mddev, char *page)
4456 {
4457 char *type = "idle";
4458 unsigned long recovery = mddev->recovery;
4459 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4460 type = "frozen";
4461 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4462 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4463 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4464 type = "reshape";
4465 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4466 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4467 type = "resync";
4468 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4469 type = "check";
4470 else
4471 type = "repair";
4472 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4473 type = "recover";
4474 else if (mddev->reshape_position != MaxSector)
4475 type = "reshape";
4476 }
4477 return sprintf(page, "%s\n", type);
4478 }
4479
4480 static ssize_t
4481 action_store(struct mddev *mddev, const char *page, size_t len)
4482 {
4483 if (!mddev->pers || !mddev->pers->sync_request)
4484 return -EINVAL;
4485
4486
4487 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4488 if (cmd_match(page, "frozen"))
4489 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4490 else
4491 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4492 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4493 mddev_lock(mddev) == 0) {
4494 flush_workqueue(md_misc_wq);
4495 if (mddev->sync_thread) {
4496 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4497 md_reap_sync_thread(mddev);
4498 }
4499 mddev_unlock(mddev);
4500 }
4501 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4502 return -EBUSY;
4503 else if (cmd_match(page, "resync"))
4504 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4505 else if (cmd_match(page, "recover")) {
4506 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4507 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4508 } else if (cmd_match(page, "reshape")) {
4509 int err;
4510 if (mddev->pers->start_reshape == NULL)
4511 return -EINVAL;
4512 err = mddev_lock(mddev);
4513 if (!err) {
4514 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4515 err = -EBUSY;
4516 else {
4517 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4518 err = mddev->pers->start_reshape(mddev);
4519 }
4520 mddev_unlock(mddev);
4521 }
4522 if (err)
4523 return err;
4524 sysfs_notify(&mddev->kobj, NULL, "degraded");
4525 } else {
4526 if (cmd_match(page, "check"))
4527 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4528 else if (!cmd_match(page, "repair"))
4529 return -EINVAL;
4530 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4531 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4532 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4533 }
4534 if (mddev->ro == 2) {
4535 /* A write to sync_action is enough to justify
4536 * canceling read-auto mode
4537 */
4538 mddev->ro = 0;
4539 md_wakeup_thread(mddev->sync_thread);
4540 }
4541 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4542 md_wakeup_thread(mddev->thread);
4543 sysfs_notify_dirent_safe(mddev->sysfs_action);
4544 return len;
4545 }
4546
4547 static struct md_sysfs_entry md_scan_mode =
4548 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4549
4550 static ssize_t
4551 last_sync_action_show(struct mddev *mddev, char *page)
4552 {
4553 return sprintf(page, "%s\n", mddev->last_sync_action);
4554 }
4555
4556 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4557
4558 static ssize_t
4559 mismatch_cnt_show(struct mddev *mddev, char *page)
4560 {
4561 return sprintf(page, "%llu\n",
4562 (unsigned long long)
4563 atomic64_read(&mddev->resync_mismatches));
4564 }
4565
4566 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4567
4568 static ssize_t
4569 sync_min_show(struct mddev *mddev, char *page)
4570 {
4571 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4572 mddev->sync_speed_min ? "local": "system");
4573 }
4574
4575 static ssize_t
4576 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578 unsigned int min;
4579 int rv;
4580
4581 if (strncmp(buf, "system", 6)==0) {
4582 min = 0;
4583 } else {
4584 rv = kstrtouint(buf, 10, &min);
4585 if (rv < 0)
4586 return rv;
4587 if (min == 0)
4588 return -EINVAL;
4589 }
4590 mddev->sync_speed_min = min;
4591 return len;
4592 }
4593
4594 static struct md_sysfs_entry md_sync_min =
4595 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4596
4597 static ssize_t
4598 sync_max_show(struct mddev *mddev, char *page)
4599 {
4600 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4601 mddev->sync_speed_max ? "local": "system");
4602 }
4603
4604 static ssize_t
4605 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4606 {
4607 unsigned int max;
4608 int rv;
4609
4610 if (strncmp(buf, "system", 6)==0) {
4611 max = 0;
4612 } else {
4613 rv = kstrtouint(buf, 10, &max);
4614 if (rv < 0)
4615 return rv;
4616 if (max == 0)
4617 return -EINVAL;
4618 }
4619 mddev->sync_speed_max = max;
4620 return len;
4621 }
4622
4623 static struct md_sysfs_entry md_sync_max =
4624 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4625
4626 static ssize_t
4627 degraded_show(struct mddev *mddev, char *page)
4628 {
4629 return sprintf(page, "%d\n", mddev->degraded);
4630 }
4631 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4632
4633 static ssize_t
4634 sync_force_parallel_show(struct mddev *mddev, char *page)
4635 {
4636 return sprintf(page, "%d\n", mddev->parallel_resync);
4637 }
4638
4639 static ssize_t
4640 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4641 {
4642 long n;
4643
4644 if (kstrtol(buf, 10, &n))
4645 return -EINVAL;
4646
4647 if (n != 0 && n != 1)
4648 return -EINVAL;
4649
4650 mddev->parallel_resync = n;
4651
4652 if (mddev->sync_thread)
4653 wake_up(&resync_wait);
4654
4655 return len;
4656 }
4657
4658 /* force parallel resync, even with shared block devices */
4659 static struct md_sysfs_entry md_sync_force_parallel =
4660 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4661 sync_force_parallel_show, sync_force_parallel_store);
4662
4663 static ssize_t
4664 sync_speed_show(struct mddev *mddev, char *page)
4665 {
4666 unsigned long resync, dt, db;
4667 if (mddev->curr_resync == 0)
4668 return sprintf(page, "none\n");
4669 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4670 dt = (jiffies - mddev->resync_mark) / HZ;
4671 if (!dt) dt++;
4672 db = resync - mddev->resync_mark_cnt;
4673 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4674 }
4675
4676 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4677
4678 static ssize_t
4679 sync_completed_show(struct mddev *mddev, char *page)
4680 {
4681 unsigned long long max_sectors, resync;
4682
4683 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4684 return sprintf(page, "none\n");
4685
4686 if (mddev->curr_resync == 1 ||
4687 mddev->curr_resync == 2)
4688 return sprintf(page, "delayed\n");
4689
4690 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4691 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4692 max_sectors = mddev->resync_max_sectors;
4693 else
4694 max_sectors = mddev->dev_sectors;
4695
4696 resync = mddev->curr_resync_completed;
4697 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4698 }
4699
4700 static struct md_sysfs_entry md_sync_completed =
4701 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4702
4703 static ssize_t
4704 min_sync_show(struct mddev *mddev, char *page)
4705 {
4706 return sprintf(page, "%llu\n",
4707 (unsigned long long)mddev->resync_min);
4708 }
4709 static ssize_t
4710 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4711 {
4712 unsigned long long min;
4713 int err;
4714
4715 if (kstrtoull(buf, 10, &min))
4716 return -EINVAL;
4717
4718 spin_lock(&mddev->lock);
4719 err = -EINVAL;
4720 if (min > mddev->resync_max)
4721 goto out_unlock;
4722
4723 err = -EBUSY;
4724 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4725 goto out_unlock;
4726
4727 /* Round down to multiple of 4K for safety */
4728 mddev->resync_min = round_down(min, 8);
4729 err = 0;
4730
4731 out_unlock:
4732 spin_unlock(&mddev->lock);
4733 return err ?: len;
4734 }
4735
4736 static struct md_sysfs_entry md_min_sync =
4737 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4738
4739 static ssize_t
4740 max_sync_show(struct mddev *mddev, char *page)
4741 {
4742 if (mddev->resync_max == MaxSector)
4743 return sprintf(page, "max\n");
4744 else
4745 return sprintf(page, "%llu\n",
4746 (unsigned long long)mddev->resync_max);
4747 }
4748 static ssize_t
4749 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4750 {
4751 int err;
4752 spin_lock(&mddev->lock);
4753 if (strncmp(buf, "max", 3) == 0)
4754 mddev->resync_max = MaxSector;
4755 else {
4756 unsigned long long max;
4757 int chunk;
4758
4759 err = -EINVAL;
4760 if (kstrtoull(buf, 10, &max))
4761 goto out_unlock;
4762 if (max < mddev->resync_min)
4763 goto out_unlock;
4764
4765 err = -EBUSY;
4766 if (max < mddev->resync_max &&
4767 mddev->ro == 0 &&
4768 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4769 goto out_unlock;
4770
4771 /* Must be a multiple of chunk_size */
4772 chunk = mddev->chunk_sectors;
4773 if (chunk) {
4774 sector_t temp = max;
4775
4776 err = -EINVAL;
4777 if (sector_div(temp, chunk))
4778 goto out_unlock;
4779 }
4780 mddev->resync_max = max;
4781 }
4782 wake_up(&mddev->recovery_wait);
4783 err = 0;
4784 out_unlock:
4785 spin_unlock(&mddev->lock);
4786 return err ?: len;
4787 }
4788
4789 static struct md_sysfs_entry md_max_sync =
4790 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4791
4792 static ssize_t
4793 suspend_lo_show(struct mddev *mddev, char *page)
4794 {
4795 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4796 }
4797
4798 static ssize_t
4799 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4800 {
4801 unsigned long long old, new;
4802 int err;
4803
4804 err = kstrtoull(buf, 10, &new);
4805 if (err < 0)
4806 return err;
4807 if (new != (sector_t)new)
4808 return -EINVAL;
4809
4810 err = mddev_lock(mddev);
4811 if (err)
4812 return err;
4813 err = -EINVAL;
4814 if (mddev->pers == NULL ||
4815 mddev->pers->quiesce == NULL)
4816 goto unlock;
4817 old = mddev->suspend_lo;
4818 mddev->suspend_lo = new;
4819 if (new >= old)
4820 /* Shrinking suspended region */
4821 mddev->pers->quiesce(mddev, 2);
4822 else {
4823 /* Expanding suspended region - need to wait */
4824 mddev->pers->quiesce(mddev, 1);
4825 mddev->pers->quiesce(mddev, 0);
4826 }
4827 err = 0;
4828 unlock:
4829 mddev_unlock(mddev);
4830 return err ?: len;
4831 }
4832 static struct md_sysfs_entry md_suspend_lo =
4833 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4834
4835 static ssize_t
4836 suspend_hi_show(struct mddev *mddev, char *page)
4837 {
4838 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4839 }
4840
4841 static ssize_t
4842 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4843 {
4844 unsigned long long old, new;
4845 int err;
4846
4847 err = kstrtoull(buf, 10, &new);
4848 if (err < 0)
4849 return err;
4850 if (new != (sector_t)new)
4851 return -EINVAL;
4852
4853 err = mddev_lock(mddev);
4854 if (err)
4855 return err;
4856 err = -EINVAL;
4857 if (mddev->pers == NULL ||
4858 mddev->pers->quiesce == NULL)
4859 goto unlock;
4860 old = mddev->suspend_hi;
4861 mddev->suspend_hi = new;
4862 if (new <= old)
4863 /* Shrinking suspended region */
4864 mddev->pers->quiesce(mddev, 2);
4865 else {
4866 /* Expanding suspended region - need to wait */
4867 mddev->pers->quiesce(mddev, 1);
4868 mddev->pers->quiesce(mddev, 0);
4869 }
4870 err = 0;
4871 unlock:
4872 mddev_unlock(mddev);
4873 return err ?: len;
4874 }
4875 static struct md_sysfs_entry md_suspend_hi =
4876 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4877
4878 static ssize_t
4879 reshape_position_show(struct mddev *mddev, char *page)
4880 {
4881 if (mddev->reshape_position != MaxSector)
4882 return sprintf(page, "%llu\n",
4883 (unsigned long long)mddev->reshape_position);
4884 strcpy(page, "none\n");
4885 return 5;
4886 }
4887
4888 static ssize_t
4889 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4890 {
4891 struct md_rdev *rdev;
4892 unsigned long long new;
4893 int err;
4894
4895 err = kstrtoull(buf, 10, &new);
4896 if (err < 0)
4897 return err;
4898 if (new != (sector_t)new)
4899 return -EINVAL;
4900 err = mddev_lock(mddev);
4901 if (err)
4902 return err;
4903 err = -EBUSY;
4904 if (mddev->pers)
4905 goto unlock;
4906 mddev->reshape_position = new;
4907 mddev->delta_disks = 0;
4908 mddev->reshape_backwards = 0;
4909 mddev->new_level = mddev->level;
4910 mddev->new_layout = mddev->layout;
4911 mddev->new_chunk_sectors = mddev->chunk_sectors;
4912 rdev_for_each(rdev, mddev)
4913 rdev->new_data_offset = rdev->data_offset;
4914 err = 0;
4915 unlock:
4916 mddev_unlock(mddev);
4917 return err ?: len;
4918 }
4919
4920 static struct md_sysfs_entry md_reshape_position =
4921 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4922 reshape_position_store);
4923
4924 static ssize_t
4925 reshape_direction_show(struct mddev *mddev, char *page)
4926 {
4927 return sprintf(page, "%s\n",
4928 mddev->reshape_backwards ? "backwards" : "forwards");
4929 }
4930
4931 static ssize_t
4932 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4933 {
4934 int backwards = 0;
4935 int err;
4936
4937 if (cmd_match(buf, "forwards"))
4938 backwards = 0;
4939 else if (cmd_match(buf, "backwards"))
4940 backwards = 1;
4941 else
4942 return -EINVAL;
4943 if (mddev->reshape_backwards == backwards)
4944 return len;
4945
4946 err = mddev_lock(mddev);
4947 if (err)
4948 return err;
4949 /* check if we are allowed to change */
4950 if (mddev->delta_disks)
4951 err = -EBUSY;
4952 else if (mddev->persistent &&
4953 mddev->major_version == 0)
4954 err = -EINVAL;
4955 else
4956 mddev->reshape_backwards = backwards;
4957 mddev_unlock(mddev);
4958 return err ?: len;
4959 }
4960
4961 static struct md_sysfs_entry md_reshape_direction =
4962 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4963 reshape_direction_store);
4964
4965 static ssize_t
4966 array_size_show(struct mddev *mddev, char *page)
4967 {
4968 if (mddev->external_size)
4969 return sprintf(page, "%llu\n",
4970 (unsigned long long)mddev->array_sectors/2);
4971 else
4972 return sprintf(page, "default\n");
4973 }
4974
4975 static ssize_t
4976 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4977 {
4978 sector_t sectors;
4979 int err;
4980
4981 err = mddev_lock(mddev);
4982 if (err)
4983 return err;
4984
4985 /* cluster raid doesn't support change array_sectors */
4986 if (mddev_is_clustered(mddev)) {
4987 mddev_unlock(mddev);
4988 return -EINVAL;
4989 }
4990
4991 if (strncmp(buf, "default", 7) == 0) {
4992 if (mddev->pers)
4993 sectors = mddev->pers->size(mddev, 0, 0);
4994 else
4995 sectors = mddev->array_sectors;
4996
4997 mddev->external_size = 0;
4998 } else {
4999 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5000 err = -EINVAL;
5001 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5002 err = -E2BIG;
5003 else
5004 mddev->external_size = 1;
5005 }
5006
5007 if (!err) {
5008 mddev->array_sectors = sectors;
5009 if (mddev->pers) {
5010 set_capacity(mddev->gendisk, mddev->array_sectors);
5011 revalidate_disk(mddev->gendisk);
5012 }
5013 }
5014 mddev_unlock(mddev);
5015 return err ?: len;
5016 }
5017
5018 static struct md_sysfs_entry md_array_size =
5019 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5020 array_size_store);
5021
5022 static ssize_t
5023 consistency_policy_show(struct mddev *mddev, char *page)
5024 {
5025 int ret;
5026
5027 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5028 ret = sprintf(page, "journal\n");
5029 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5030 ret = sprintf(page, "ppl\n");
5031 } else if (mddev->bitmap) {
5032 ret = sprintf(page, "bitmap\n");
5033 } else if (mddev->pers) {
5034 if (mddev->pers->sync_request)
5035 ret = sprintf(page, "resync\n");
5036 else
5037 ret = sprintf(page, "none\n");
5038 } else {
5039 ret = sprintf(page, "unknown\n");
5040 }
5041
5042 return ret;
5043 }
5044
5045 static ssize_t
5046 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5047 {
5048 int err = 0;
5049
5050 if (mddev->pers) {
5051 if (mddev->pers->change_consistency_policy)
5052 err = mddev->pers->change_consistency_policy(mddev, buf);
5053 else
5054 err = -EBUSY;
5055 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5056 set_bit(MD_HAS_PPL, &mddev->flags);
5057 } else {
5058 err = -EINVAL;
5059 }
5060
5061 return err ? err : len;
5062 }
5063
5064 static struct md_sysfs_entry md_consistency_policy =
5065 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5066 consistency_policy_store);
5067
5068 static struct attribute *md_default_attrs[] = {
5069 &md_level.attr,
5070 &md_layout.attr,
5071 &md_raid_disks.attr,
5072 &md_chunk_size.attr,
5073 &md_size.attr,
5074 &md_resync_start.attr,
5075 &md_metadata.attr,
5076 &md_new_device.attr,
5077 &md_safe_delay.attr,
5078 &md_array_state.attr,
5079 &md_reshape_position.attr,
5080 &md_reshape_direction.attr,
5081 &md_array_size.attr,
5082 &max_corr_read_errors.attr,
5083 &md_consistency_policy.attr,
5084 NULL,
5085 };
5086
5087 static struct attribute *md_redundancy_attrs[] = {
5088 &md_scan_mode.attr,
5089 &md_last_scan_mode.attr,
5090 &md_mismatches.attr,
5091 &md_sync_min.attr,
5092 &md_sync_max.attr,
5093 &md_sync_speed.attr,
5094 &md_sync_force_parallel.attr,
5095 &md_sync_completed.attr,
5096 &md_min_sync.attr,
5097 &md_max_sync.attr,
5098 &md_suspend_lo.attr,
5099 &md_suspend_hi.attr,
5100 &md_bitmap.attr,
5101 &md_degraded.attr,
5102 NULL,
5103 };
5104 static struct attribute_group md_redundancy_group = {
5105 .name = NULL,
5106 .attrs = md_redundancy_attrs,
5107 };
5108
5109 static ssize_t
5110 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5111 {
5112 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5113 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5114 ssize_t rv;
5115
5116 if (!entry->show)
5117 return -EIO;
5118 spin_lock(&all_mddevs_lock);
5119 if (list_empty(&mddev->all_mddevs)) {
5120 spin_unlock(&all_mddevs_lock);
5121 return -EBUSY;
5122 }
5123 mddev_get(mddev);
5124 spin_unlock(&all_mddevs_lock);
5125
5126 rv = entry->show(mddev, page);
5127 mddev_put(mddev);
5128 return rv;
5129 }
5130
5131 static ssize_t
5132 md_attr_store(struct kobject *kobj, struct attribute *attr,
5133 const char *page, size_t length)
5134 {
5135 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5136 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5137 ssize_t rv;
5138
5139 if (!entry->store)
5140 return -EIO;
5141 if (!capable(CAP_SYS_ADMIN))
5142 return -EACCES;
5143 spin_lock(&all_mddevs_lock);
5144 if (list_empty(&mddev->all_mddevs)) {
5145 spin_unlock(&all_mddevs_lock);
5146 return -EBUSY;
5147 }
5148 mddev_get(mddev);
5149 spin_unlock(&all_mddevs_lock);
5150 rv = entry->store(mddev, page, length);
5151 mddev_put(mddev);
5152 return rv;
5153 }
5154
5155 static void md_free(struct kobject *ko)
5156 {
5157 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5158
5159 if (mddev->sysfs_state)
5160 sysfs_put(mddev->sysfs_state);
5161
5162 if (mddev->queue)
5163 blk_cleanup_queue(mddev->queue);
5164 if (mddev->gendisk) {
5165 del_gendisk(mddev->gendisk);
5166 put_disk(mddev->gendisk);
5167 }
5168 percpu_ref_exit(&mddev->writes_pending);
5169
5170 kfree(mddev);
5171 }
5172
5173 static const struct sysfs_ops md_sysfs_ops = {
5174 .show = md_attr_show,
5175 .store = md_attr_store,
5176 };
5177 static struct kobj_type md_ktype = {
5178 .release = md_free,
5179 .sysfs_ops = &md_sysfs_ops,
5180 .default_attrs = md_default_attrs,
5181 };
5182
5183 int mdp_major = 0;
5184
5185 static void mddev_delayed_delete(struct work_struct *ws)
5186 {
5187 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5188
5189 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5190 kobject_del(&mddev->kobj);
5191 kobject_put(&mddev->kobj);
5192 }
5193
5194 static void no_op(struct percpu_ref *r) {}
5195
5196 int mddev_init_writes_pending(struct mddev *mddev)
5197 {
5198 if (mddev->writes_pending.percpu_count_ptr)
5199 return 0;
5200 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5201 return -ENOMEM;
5202 /* We want to start with the refcount at zero */
5203 percpu_ref_put(&mddev->writes_pending);
5204 return 0;
5205 }
5206 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5207
5208 static int md_alloc(dev_t dev, char *name)
5209 {
5210 /*
5211 * If dev is zero, name is the name of a device to allocate with
5212 * an arbitrary minor number. It will be "md_???"
5213 * If dev is non-zero it must be a device number with a MAJOR of
5214 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5215 * the device is being created by opening a node in /dev.
5216 * If "name" is not NULL, the device is being created by
5217 * writing to /sys/module/md_mod/parameters/new_array.
5218 */
5219 static DEFINE_MUTEX(disks_mutex);
5220 struct mddev *mddev = mddev_find(dev);
5221 struct gendisk *disk;
5222 int partitioned;
5223 int shift;
5224 int unit;
5225 int error;
5226
5227 if (!mddev)
5228 return -ENODEV;
5229
5230 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5231 shift = partitioned ? MdpMinorShift : 0;
5232 unit = MINOR(mddev->unit) >> shift;
5233
5234 /* wait for any previous instance of this device to be
5235 * completely removed (mddev_delayed_delete).
5236 */
5237 flush_workqueue(md_misc_wq);
5238
5239 mutex_lock(&disks_mutex);
5240 error = -EEXIST;
5241 if (mddev->gendisk)
5242 goto abort;
5243
5244 if (name && !dev) {
5245 /* Need to ensure that 'name' is not a duplicate.
5246 */
5247 struct mddev *mddev2;
5248 spin_lock(&all_mddevs_lock);
5249
5250 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5251 if (mddev2->gendisk &&
5252 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5253 spin_unlock(&all_mddevs_lock);
5254 goto abort;
5255 }
5256 spin_unlock(&all_mddevs_lock);
5257 }
5258 if (name && dev)
5259 /*
5260 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5261 */
5262 mddev->hold_active = UNTIL_STOP;
5263
5264 error = -ENOMEM;
5265 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5266 if (!mddev->queue)
5267 goto abort;
5268 mddev->queue->queuedata = mddev;
5269
5270 blk_queue_make_request(mddev->queue, md_make_request);
5271 blk_set_stacking_limits(&mddev->queue->limits);
5272
5273 disk = alloc_disk(1 << shift);
5274 if (!disk) {
5275 blk_cleanup_queue(mddev->queue);
5276 mddev->queue = NULL;
5277 goto abort;
5278 }
5279 disk->major = MAJOR(mddev->unit);
5280 disk->first_minor = unit << shift;
5281 if (name)
5282 strcpy(disk->disk_name, name);
5283 else if (partitioned)
5284 sprintf(disk->disk_name, "md_d%d", unit);
5285 else
5286 sprintf(disk->disk_name, "md%d", unit);
5287 disk->fops = &md_fops;
5288 disk->private_data = mddev;
5289 disk->queue = mddev->queue;
5290 blk_queue_write_cache(mddev->queue, true, true);
5291 /* Allow extended partitions. This makes the
5292 * 'mdp' device redundant, but we can't really
5293 * remove it now.
5294 */
5295 disk->flags |= GENHD_FL_EXT_DEVT;
5296 mddev->gendisk = disk;
5297 /* As soon as we call add_disk(), another thread could get
5298 * through to md_open, so make sure it doesn't get too far
5299 */
5300 mutex_lock(&mddev->open_mutex);
5301 add_disk(disk);
5302
5303 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5304 &disk_to_dev(disk)->kobj, "%s", "md");
5305 if (error) {
5306 /* This isn't possible, but as kobject_init_and_add is marked
5307 * __must_check, we must do something with the result
5308 */
5309 pr_debug("md: cannot register %s/md - name in use\n",
5310 disk->disk_name);
5311 error = 0;
5312 }
5313 if (mddev->kobj.sd &&
5314 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5315 pr_debug("pointless warning\n");
5316 mutex_unlock(&mddev->open_mutex);
5317 abort:
5318 mutex_unlock(&disks_mutex);
5319 if (!error && mddev->kobj.sd) {
5320 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5321 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5322 }
5323 mddev_put(mddev);
5324 return error;
5325 }
5326
5327 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5328 {
5329 if (create_on_open)
5330 md_alloc(dev, NULL);
5331 return NULL;
5332 }
5333
5334 static int add_named_array(const char *val, struct kernel_param *kp)
5335 {
5336 /*
5337 * val must be "md_*" or "mdNNN".
5338 * For "md_*" we allocate an array with a large free minor number, and
5339 * set the name to val. val must not already be an active name.
5340 * For "mdNNN" we allocate an array with the minor number NNN
5341 * which must not already be in use.
5342 */
5343 int len = strlen(val);
5344 char buf[DISK_NAME_LEN];
5345 unsigned long devnum;
5346
5347 while (len && val[len-1] == '\n')
5348 len--;
5349 if (len >= DISK_NAME_LEN)
5350 return -E2BIG;
5351 strlcpy(buf, val, len+1);
5352 if (strncmp(buf, "md_", 3) == 0)
5353 return md_alloc(0, buf);
5354 if (strncmp(buf, "md", 2) == 0 &&
5355 isdigit(buf[2]) &&
5356 kstrtoul(buf+2, 10, &devnum) == 0 &&
5357 devnum <= MINORMASK)
5358 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5359
5360 return -EINVAL;
5361 }
5362
5363 static void md_safemode_timeout(unsigned long data)
5364 {
5365 struct mddev *mddev = (struct mddev *) data;
5366
5367 mddev->safemode = 1;
5368 if (mddev->external)
5369 sysfs_notify_dirent_safe(mddev->sysfs_state);
5370
5371 md_wakeup_thread(mddev->thread);
5372 }
5373
5374 static int start_dirty_degraded;
5375
5376 int md_run(struct mddev *mddev)
5377 {
5378 int err;
5379 struct md_rdev *rdev;
5380 struct md_personality *pers;
5381
5382 if (list_empty(&mddev->disks))
5383 /* cannot run an array with no devices.. */
5384 return -EINVAL;
5385
5386 if (mddev->pers)
5387 return -EBUSY;
5388 /* Cannot run until previous stop completes properly */
5389 if (mddev->sysfs_active)
5390 return -EBUSY;
5391
5392 /*
5393 * Analyze all RAID superblock(s)
5394 */
5395 if (!mddev->raid_disks) {
5396 if (!mddev->persistent)
5397 return -EINVAL;
5398 analyze_sbs(mddev);
5399 }
5400
5401 if (mddev->level != LEVEL_NONE)
5402 request_module("md-level-%d", mddev->level);
5403 else if (mddev->clevel[0])
5404 request_module("md-%s", mddev->clevel);
5405
5406 /*
5407 * Drop all container device buffers, from now on
5408 * the only valid external interface is through the md
5409 * device.
5410 */
5411 rdev_for_each(rdev, mddev) {
5412 if (test_bit(Faulty, &rdev->flags))
5413 continue;
5414 sync_blockdev(rdev->bdev);
5415 invalidate_bdev(rdev->bdev);
5416 if (mddev->ro != 1 &&
5417 (bdev_read_only(rdev->bdev) ||
5418 bdev_read_only(rdev->meta_bdev))) {
5419 mddev->ro = 1;
5420 if (mddev->gendisk)
5421 set_disk_ro(mddev->gendisk, 1);
5422 }
5423
5424 /* perform some consistency tests on the device.
5425 * We don't want the data to overlap the metadata,
5426 * Internal Bitmap issues have been handled elsewhere.
5427 */
5428 if (rdev->meta_bdev) {
5429 /* Nothing to check */;
5430 } else if (rdev->data_offset < rdev->sb_start) {
5431 if (mddev->dev_sectors &&
5432 rdev->data_offset + mddev->dev_sectors
5433 > rdev->sb_start) {
5434 pr_warn("md: %s: data overlaps metadata\n",
5435 mdname(mddev));
5436 return -EINVAL;
5437 }
5438 } else {
5439 if (rdev->sb_start + rdev->sb_size/512
5440 > rdev->data_offset) {
5441 pr_warn("md: %s: metadata overlaps data\n",
5442 mdname(mddev));
5443 return -EINVAL;
5444 }
5445 }
5446 sysfs_notify_dirent_safe(rdev->sysfs_state);
5447 }
5448
5449 if (mddev->bio_set == NULL) {
5450 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5451 if (!mddev->bio_set)
5452 return -ENOMEM;
5453 }
5454 if (mddev->sync_set == NULL) {
5455 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5456 if (!mddev->sync_set)
5457 return -ENOMEM;
5458 }
5459
5460 spin_lock(&pers_lock);
5461 pers = find_pers(mddev->level, mddev->clevel);
5462 if (!pers || !try_module_get(pers->owner)) {
5463 spin_unlock(&pers_lock);
5464 if (mddev->level != LEVEL_NONE)
5465 pr_warn("md: personality for level %d is not loaded!\n",
5466 mddev->level);
5467 else
5468 pr_warn("md: personality for level %s is not loaded!\n",
5469 mddev->clevel);
5470 return -EINVAL;
5471 }
5472 spin_unlock(&pers_lock);
5473 if (mddev->level != pers->level) {
5474 mddev->level = pers->level;
5475 mddev->new_level = pers->level;
5476 }
5477 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5478
5479 if (mddev->reshape_position != MaxSector &&
5480 pers->start_reshape == NULL) {
5481 /* This personality cannot handle reshaping... */
5482 module_put(pers->owner);
5483 return -EINVAL;
5484 }
5485
5486 if (pers->sync_request) {
5487 /* Warn if this is a potentially silly
5488 * configuration.
5489 */
5490 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5491 struct md_rdev *rdev2;
5492 int warned = 0;
5493
5494 rdev_for_each(rdev, mddev)
5495 rdev_for_each(rdev2, mddev) {
5496 if (rdev < rdev2 &&
5497 rdev->bdev->bd_contains ==
5498 rdev2->bdev->bd_contains) {
5499 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5500 mdname(mddev),
5501 bdevname(rdev->bdev,b),
5502 bdevname(rdev2->bdev,b2));
5503 warned = 1;
5504 }
5505 }
5506
5507 if (warned)
5508 pr_warn("True protection against single-disk failure might be compromised.\n");
5509 }
5510
5511 mddev->recovery = 0;
5512 /* may be over-ridden by personality */
5513 mddev->resync_max_sectors = mddev->dev_sectors;
5514
5515 mddev->ok_start_degraded = start_dirty_degraded;
5516
5517 if (start_readonly && mddev->ro == 0)
5518 mddev->ro = 2; /* read-only, but switch on first write */
5519
5520 /*
5521 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes
5522 * up mddev->thread. It is important to initialize critical
5523 * resources for mddev->thread BEFORE calling pers->run().
5524 */
5525 err = pers->run(mddev);
5526 if (err)
5527 pr_warn("md: pers->run() failed ...\n");
5528 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5529 WARN_ONCE(!mddev->external_size,
5530 "%s: default size too small, but 'external_size' not in effect?\n",
5531 __func__);
5532 pr_warn("md: invalid array_size %llu > default size %llu\n",
5533 (unsigned long long)mddev->array_sectors / 2,
5534 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5535 err = -EINVAL;
5536 }
5537 if (err == 0 && pers->sync_request &&
5538 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5539 struct bitmap *bitmap;
5540
5541 bitmap = bitmap_create(mddev, -1);
5542 if (IS_ERR(bitmap)) {
5543 err = PTR_ERR(bitmap);
5544 pr_warn("%s: failed to create bitmap (%d)\n",
5545 mdname(mddev), err);
5546 } else
5547 mddev->bitmap = bitmap;
5548
5549 }
5550 if (err) {
5551 mddev_detach(mddev);
5552 if (mddev->private)
5553 pers->free(mddev, mddev->private);
5554 mddev->private = NULL;
5555 module_put(pers->owner);
5556 bitmap_destroy(mddev);
5557 return err;
5558 }
5559 if (mddev->queue) {
5560 bool nonrot = true;
5561
5562 rdev_for_each(rdev, mddev) {
5563 if (rdev->raid_disk >= 0 &&
5564 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5565 nonrot = false;
5566 break;
5567 }
5568 }
5569 if (mddev->degraded)
5570 nonrot = false;
5571 if (nonrot)
5572 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5573 else
5574 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5575 mddev->queue->backing_dev_info->congested_data = mddev;
5576 mddev->queue->backing_dev_info->congested_fn = md_congested;
5577 }
5578 if (pers->sync_request) {
5579 if (mddev->kobj.sd &&
5580 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5581 pr_warn("md: cannot register extra attributes for %s\n",
5582 mdname(mddev));
5583 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5584 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5585 mddev->ro = 0;
5586
5587 atomic_set(&mddev->max_corr_read_errors,
5588 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5589 mddev->safemode = 0;
5590 if (mddev_is_clustered(mddev))
5591 mddev->safemode_delay = 0;
5592 else
5593 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5594 mddev->in_sync = 1;
5595 smp_wmb();
5596 spin_lock(&mddev->lock);
5597 mddev->pers = pers;
5598 spin_unlock(&mddev->lock);
5599 rdev_for_each(rdev, mddev)
5600 if (rdev->raid_disk >= 0)
5601 if (sysfs_link_rdev(mddev, rdev))
5602 /* failure here is OK */;
5603
5604 if (mddev->degraded && !mddev->ro)
5605 /* This ensures that recovering status is reported immediately
5606 * via sysfs - until a lack of spares is confirmed.
5607 */
5608 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5609 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5610
5611 if (mddev->sb_flags)
5612 md_update_sb(mddev, 0);
5613
5614 md_new_event(mddev);
5615 sysfs_notify_dirent_safe(mddev->sysfs_state);
5616 sysfs_notify_dirent_safe(mddev->sysfs_action);
5617 sysfs_notify(&mddev->kobj, NULL, "degraded");
5618 return 0;
5619 }
5620 EXPORT_SYMBOL_GPL(md_run);
5621
5622 static int do_md_run(struct mddev *mddev)
5623 {
5624 int err;
5625
5626 err = md_run(mddev);
5627 if (err)
5628 goto out;
5629 err = bitmap_load(mddev);
5630 if (err) {
5631 bitmap_destroy(mddev);
5632 goto out;
5633 }
5634
5635 if (mddev_is_clustered(mddev))
5636 md_allow_write(mddev);
5637
5638 md_wakeup_thread(mddev->thread);
5639 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5640
5641 set_capacity(mddev->gendisk, mddev->array_sectors);
5642 revalidate_disk(mddev->gendisk);
5643 mddev->changed = 1;
5644 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5645 out:
5646 return err;
5647 }
5648
5649 static int restart_array(struct mddev *mddev)
5650 {
5651 struct gendisk *disk = mddev->gendisk;
5652 struct md_rdev *rdev;
5653 bool has_journal = false;
5654 bool has_readonly = false;
5655
5656 /* Complain if it has no devices */
5657 if (list_empty(&mddev->disks))
5658 return -ENXIO;
5659 if (!mddev->pers)
5660 return -EINVAL;
5661 if (!mddev->ro)
5662 return -EBUSY;
5663
5664 rcu_read_lock();
5665 rdev_for_each_rcu(rdev, mddev) {
5666 if (test_bit(Journal, &rdev->flags) &&
5667 !test_bit(Faulty, &rdev->flags))
5668 has_journal = true;
5669 if (bdev_read_only(rdev->bdev))
5670 has_readonly = true;
5671 }
5672 rcu_read_unlock();
5673 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5674 /* Don't restart rw with journal missing/faulty */
5675 return -EINVAL;
5676 if (has_readonly)
5677 return -EROFS;
5678
5679 mddev->safemode = 0;
5680 mddev->ro = 0;
5681 set_disk_ro(disk, 0);
5682 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5683 /* Kick recovery or resync if necessary */
5684 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5685 md_wakeup_thread(mddev->thread);
5686 md_wakeup_thread(mddev->sync_thread);
5687 sysfs_notify_dirent_safe(mddev->sysfs_state);
5688 return 0;
5689 }
5690
5691 static void md_clean(struct mddev *mddev)
5692 {
5693 mddev->array_sectors = 0;
5694 mddev->external_size = 0;
5695 mddev->dev_sectors = 0;
5696 mddev->raid_disks = 0;
5697 mddev->recovery_cp = 0;
5698 mddev->resync_min = 0;
5699 mddev->resync_max = MaxSector;
5700 mddev->reshape_position = MaxSector;
5701 mddev->external = 0;
5702 mddev->persistent = 0;
5703 mddev->level = LEVEL_NONE;
5704 mddev->clevel[0] = 0;
5705 mddev->flags = 0;
5706 mddev->sb_flags = 0;
5707 mddev->ro = 0;
5708 mddev->metadata_type[0] = 0;
5709 mddev->chunk_sectors = 0;
5710 mddev->ctime = mddev->utime = 0;
5711 mddev->layout = 0;
5712 mddev->max_disks = 0;
5713 mddev->events = 0;
5714 mddev->can_decrease_events = 0;
5715 mddev->delta_disks = 0;
5716 mddev->reshape_backwards = 0;
5717 mddev->new_level = LEVEL_NONE;
5718 mddev->new_layout = 0;
5719 mddev->new_chunk_sectors = 0;
5720 mddev->curr_resync = 0;
5721 atomic64_set(&mddev->resync_mismatches, 0);
5722 mddev->suspend_lo = mddev->suspend_hi = 0;
5723 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5724 mddev->recovery = 0;
5725 mddev->in_sync = 0;
5726 mddev->changed = 0;
5727 mddev->degraded = 0;
5728 mddev->safemode = 0;
5729 mddev->private = NULL;
5730 mddev->cluster_info = NULL;
5731 mddev->bitmap_info.offset = 0;
5732 mddev->bitmap_info.default_offset = 0;
5733 mddev->bitmap_info.default_space = 0;
5734 mddev->bitmap_info.chunksize = 0;
5735 mddev->bitmap_info.daemon_sleep = 0;
5736 mddev->bitmap_info.max_write_behind = 0;
5737 mddev->bitmap_info.nodes = 0;
5738 }
5739
5740 static void __md_stop_writes(struct mddev *mddev)
5741 {
5742 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5743 flush_workqueue(md_misc_wq);
5744 if (mddev->sync_thread) {
5745 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5746 md_reap_sync_thread(mddev);
5747 }
5748
5749 del_timer_sync(&mddev->safemode_timer);
5750
5751 if (mddev->pers && mddev->pers->quiesce) {
5752 mddev->pers->quiesce(mddev, 1);
5753 mddev->pers->quiesce(mddev, 0);
5754 }
5755 bitmap_flush(mddev);
5756
5757 if (mddev->ro == 0 &&
5758 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5759 mddev->sb_flags)) {
5760 /* mark array as shutdown cleanly */
5761 if (!mddev_is_clustered(mddev))
5762 mddev->in_sync = 1;
5763 md_update_sb(mddev, 1);
5764 }
5765 }
5766
5767 void md_stop_writes(struct mddev *mddev)
5768 {
5769 mddev_lock_nointr(mddev);
5770 __md_stop_writes(mddev);
5771 mddev_unlock(mddev);
5772 }
5773 EXPORT_SYMBOL_GPL(md_stop_writes);
5774
5775 static void mddev_detach(struct mddev *mddev)
5776 {
5777 bitmap_wait_behind_writes(mddev);
5778 if (mddev->pers && mddev->pers->quiesce) {
5779 mddev->pers->quiesce(mddev, 1);
5780 mddev->pers->quiesce(mddev, 0);
5781 }
5782 md_unregister_thread(&mddev->thread);
5783 if (mddev->queue)
5784 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5785 }
5786
5787 static void __md_stop(struct mddev *mddev)
5788 {
5789 struct md_personality *pers = mddev->pers;
5790 bitmap_destroy(mddev);
5791 mddev_detach(mddev);
5792 /* Ensure ->event_work is done */
5793 flush_workqueue(md_misc_wq);
5794 spin_lock(&mddev->lock);
5795 mddev->pers = NULL;
5796 spin_unlock(&mddev->lock);
5797 pers->free(mddev, mddev->private);
5798 mddev->private = NULL;
5799 if (pers->sync_request && mddev->to_remove == NULL)
5800 mddev->to_remove = &md_redundancy_group;
5801 module_put(pers->owner);
5802 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5803 }
5804
5805 void md_stop(struct mddev *mddev)
5806 {
5807 /* stop the array and free an attached data structures.
5808 * This is called from dm-raid
5809 */
5810 __md_stop(mddev);
5811 if (mddev->bio_set)
5812 bioset_free(mddev->bio_set);
5813 }
5814
5815 EXPORT_SYMBOL_GPL(md_stop);
5816
5817 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5818 {
5819 int err = 0;
5820 int did_freeze = 0;
5821
5822 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5823 did_freeze = 1;
5824 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5825 md_wakeup_thread(mddev->thread);
5826 }
5827 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5828 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5829 if (mddev->sync_thread)
5830 /* Thread might be blocked waiting for metadata update
5831 * which will now never happen */
5832 wake_up_process(mddev->sync_thread->tsk);
5833
5834 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5835 return -EBUSY;
5836 mddev_unlock(mddev);
5837 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5838 &mddev->recovery));
5839 wait_event(mddev->sb_wait,
5840 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5841 mddev_lock_nointr(mddev);
5842
5843 mutex_lock(&mddev->open_mutex);
5844 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5845 mddev->sync_thread ||
5846 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5847 pr_warn("md: %s still in use.\n",mdname(mddev));
5848 if (did_freeze) {
5849 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5850 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5851 md_wakeup_thread(mddev->thread);
5852 }
5853 err = -EBUSY;
5854 goto out;
5855 }
5856 if (mddev->pers) {
5857 __md_stop_writes(mddev);
5858
5859 err = -ENXIO;
5860 if (mddev->ro==1)
5861 goto out;
5862 mddev->ro = 1;
5863 set_disk_ro(mddev->gendisk, 1);
5864 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5865 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5866 md_wakeup_thread(mddev->thread);
5867 sysfs_notify_dirent_safe(mddev->sysfs_state);
5868 err = 0;
5869 }
5870 out:
5871 mutex_unlock(&mddev->open_mutex);
5872 return err;
5873 }
5874
5875 /* mode:
5876 * 0 - completely stop and dis-assemble array
5877 * 2 - stop but do not disassemble array
5878 */
5879 static int do_md_stop(struct mddev *mddev, int mode,
5880 struct block_device *bdev)
5881 {
5882 struct gendisk *disk = mddev->gendisk;
5883 struct md_rdev *rdev;
5884 int did_freeze = 0;
5885
5886 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5887 did_freeze = 1;
5888 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5889 md_wakeup_thread(mddev->thread);
5890 }
5891 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5892 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5893 if (mddev->sync_thread)
5894 /* Thread might be blocked waiting for metadata update
5895 * which will now never happen */
5896 wake_up_process(mddev->sync_thread->tsk);
5897
5898 mddev_unlock(mddev);
5899 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5900 !test_bit(MD_RECOVERY_RUNNING,
5901 &mddev->recovery)));
5902 mddev_lock_nointr(mddev);
5903
5904 mutex_lock(&mddev->open_mutex);
5905 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5906 mddev->sysfs_active ||
5907 mddev->sync_thread ||
5908 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5909 pr_warn("md: %s still in use.\n",mdname(mddev));
5910 mutex_unlock(&mddev->open_mutex);
5911 if (did_freeze) {
5912 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5913 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5914 md_wakeup_thread(mddev->thread);
5915 }
5916 return -EBUSY;
5917 }
5918 if (mddev->pers) {
5919 if (mddev->ro)
5920 set_disk_ro(disk, 0);
5921
5922 __md_stop_writes(mddev);
5923 __md_stop(mddev);
5924 mddev->queue->backing_dev_info->congested_fn = NULL;
5925
5926 /* tell userspace to handle 'inactive' */
5927 sysfs_notify_dirent_safe(mddev->sysfs_state);
5928
5929 rdev_for_each(rdev, mddev)
5930 if (rdev->raid_disk >= 0)
5931 sysfs_unlink_rdev(mddev, rdev);
5932
5933 set_capacity(disk, 0);
5934 mutex_unlock(&mddev->open_mutex);
5935 mddev->changed = 1;
5936 revalidate_disk(disk);
5937
5938 if (mddev->ro)
5939 mddev->ro = 0;
5940 } else
5941 mutex_unlock(&mddev->open_mutex);
5942 /*
5943 * Free resources if final stop
5944 */
5945 if (mode == 0) {
5946 pr_info("md: %s stopped.\n", mdname(mddev));
5947
5948 if (mddev->bitmap_info.file) {
5949 struct file *f = mddev->bitmap_info.file;
5950 spin_lock(&mddev->lock);
5951 mddev->bitmap_info.file = NULL;
5952 spin_unlock(&mddev->lock);
5953 fput(f);
5954 }
5955 mddev->bitmap_info.offset = 0;
5956
5957 export_array(mddev);
5958
5959 md_clean(mddev);
5960 if (mddev->hold_active == UNTIL_STOP)
5961 mddev->hold_active = 0;
5962 }
5963 md_new_event(mddev);
5964 sysfs_notify_dirent_safe(mddev->sysfs_state);
5965 return 0;
5966 }
5967
5968 #ifndef MODULE
5969 static void autorun_array(struct mddev *mddev)
5970 {
5971 struct md_rdev *rdev;
5972 int err;
5973
5974 if (list_empty(&mddev->disks))
5975 return;
5976
5977 pr_info("md: running: ");
5978
5979 rdev_for_each(rdev, mddev) {
5980 char b[BDEVNAME_SIZE];
5981 pr_cont("<%s>", bdevname(rdev->bdev,b));
5982 }
5983 pr_cont("\n");
5984
5985 err = do_md_run(mddev);
5986 if (err) {
5987 pr_warn("md: do_md_run() returned %d\n", err);
5988 do_md_stop(mddev, 0, NULL);
5989 }
5990 }
5991
5992 /*
5993 * lets try to run arrays based on all disks that have arrived
5994 * until now. (those are in pending_raid_disks)
5995 *
5996 * the method: pick the first pending disk, collect all disks with
5997 * the same UUID, remove all from the pending list and put them into
5998 * the 'same_array' list. Then order this list based on superblock
5999 * update time (freshest comes first), kick out 'old' disks and
6000 * compare superblocks. If everything's fine then run it.
6001 *
6002 * If "unit" is allocated, then bump its reference count
6003 */
6004 static void autorun_devices(int part)
6005 {
6006 struct md_rdev *rdev0, *rdev, *tmp;
6007 struct mddev *mddev;
6008 char b[BDEVNAME_SIZE];
6009
6010 pr_info("md: autorun ...\n");
6011 while (!list_empty(&pending_raid_disks)) {
6012 int unit;
6013 dev_t dev;
6014 LIST_HEAD(candidates);
6015 rdev0 = list_entry(pending_raid_disks.next,
6016 struct md_rdev, same_set);
6017
6018 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6019 INIT_LIST_HEAD(&candidates);
6020 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6021 if (super_90_load(rdev, rdev0, 0) >= 0) {
6022 pr_debug("md: adding %s ...\n",
6023 bdevname(rdev->bdev,b));
6024 list_move(&rdev->same_set, &candidates);
6025 }
6026 /*
6027 * now we have a set of devices, with all of them having
6028 * mostly sane superblocks. It's time to allocate the
6029 * mddev.
6030 */
6031 if (part) {
6032 dev = MKDEV(mdp_major,
6033 rdev0->preferred_minor << MdpMinorShift);
6034 unit = MINOR(dev) >> MdpMinorShift;
6035 } else {
6036 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6037 unit = MINOR(dev);
6038 }
6039 if (rdev0->preferred_minor != unit) {
6040 pr_warn("md: unit number in %s is bad: %d\n",
6041 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6042 break;
6043 }
6044
6045 md_probe(dev, NULL, NULL);
6046 mddev = mddev_find(dev);
6047 if (!mddev || !mddev->gendisk) {
6048 if (mddev)
6049 mddev_put(mddev);
6050 break;
6051 }
6052 if (mddev_lock(mddev))
6053 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6054 else if (mddev->raid_disks || mddev->major_version
6055 || !list_empty(&mddev->disks)) {
6056 pr_warn("md: %s already running, cannot run %s\n",
6057 mdname(mddev), bdevname(rdev0->bdev,b));
6058 mddev_unlock(mddev);
6059 } else {
6060 pr_debug("md: created %s\n", mdname(mddev));
6061 mddev->persistent = 1;
6062 rdev_for_each_list(rdev, tmp, &candidates) {
6063 list_del_init(&rdev->same_set);
6064 if (bind_rdev_to_array(rdev, mddev))
6065 export_rdev(rdev);
6066 }
6067 autorun_array(mddev);
6068 mddev_unlock(mddev);
6069 }
6070 /* on success, candidates will be empty, on error
6071 * it won't...
6072 */
6073 rdev_for_each_list(rdev, tmp, &candidates) {
6074 list_del_init(&rdev->same_set);
6075 export_rdev(rdev);
6076 }
6077 mddev_put(mddev);
6078 }
6079 pr_info("md: ... autorun DONE.\n");
6080 }
6081 #endif /* !MODULE */
6082
6083 static int get_version(void __user *arg)
6084 {
6085 mdu_version_t ver;
6086
6087 ver.major = MD_MAJOR_VERSION;
6088 ver.minor = MD_MINOR_VERSION;
6089 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6090
6091 if (copy_to_user(arg, &ver, sizeof(ver)))
6092 return -EFAULT;
6093
6094 return 0;
6095 }
6096
6097 static int get_array_info(struct mddev *mddev, void __user *arg)
6098 {
6099 mdu_array_info_t info;
6100 int nr,working,insync,failed,spare;
6101 struct md_rdev *rdev;
6102
6103 nr = working = insync = failed = spare = 0;
6104 rcu_read_lock();
6105 rdev_for_each_rcu(rdev, mddev) {
6106 nr++;
6107 if (test_bit(Faulty, &rdev->flags))
6108 failed++;
6109 else {
6110 working++;
6111 if (test_bit(In_sync, &rdev->flags))
6112 insync++;
6113 else if (test_bit(Journal, &rdev->flags))
6114 /* TODO: add journal count to md_u.h */
6115 ;
6116 else
6117 spare++;
6118 }
6119 }
6120 rcu_read_unlock();
6121
6122 info.major_version = mddev->major_version;
6123 info.minor_version = mddev->minor_version;
6124 info.patch_version = MD_PATCHLEVEL_VERSION;
6125 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6126 info.level = mddev->level;
6127 info.size = mddev->dev_sectors / 2;
6128 if (info.size != mddev->dev_sectors / 2) /* overflow */
6129 info.size = -1;
6130 info.nr_disks = nr;
6131 info.raid_disks = mddev->raid_disks;
6132 info.md_minor = mddev->md_minor;
6133 info.not_persistent= !mddev->persistent;
6134
6135 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6136 info.state = 0;
6137 if (mddev->in_sync)
6138 info.state = (1<<MD_SB_CLEAN);
6139 if (mddev->bitmap && mddev->bitmap_info.offset)
6140 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6141 if (mddev_is_clustered(mddev))
6142 info.state |= (1<<MD_SB_CLUSTERED);
6143 info.active_disks = insync;
6144 info.working_disks = working;
6145 info.failed_disks = failed;
6146 info.spare_disks = spare;
6147
6148 info.layout = mddev->layout;
6149 info.chunk_size = mddev->chunk_sectors << 9;
6150
6151 if (copy_to_user(arg, &info, sizeof(info)))
6152 return -EFAULT;
6153
6154 return 0;
6155 }
6156
6157 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6158 {
6159 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6160 char *ptr;
6161 int err;
6162
6163 file = kzalloc(sizeof(*file), GFP_NOIO);
6164 if (!file)
6165 return -ENOMEM;
6166
6167 err = 0;
6168 spin_lock(&mddev->lock);
6169 /* bitmap enabled */
6170 if (mddev->bitmap_info.file) {
6171 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6172 sizeof(file->pathname));
6173 if (IS_ERR(ptr))
6174 err = PTR_ERR(ptr);
6175 else
6176 memmove(file->pathname, ptr,
6177 sizeof(file->pathname)-(ptr-file->pathname));
6178 }
6179 spin_unlock(&mddev->lock);
6180
6181 if (err == 0 &&
6182 copy_to_user(arg, file, sizeof(*file)))
6183 err = -EFAULT;
6184
6185 kfree(file);
6186 return err;
6187 }
6188
6189 static int get_disk_info(struct mddev *mddev, void __user * arg)
6190 {
6191 mdu_disk_info_t info;
6192 struct md_rdev *rdev;
6193
6194 if (copy_from_user(&info, arg, sizeof(info)))
6195 return -EFAULT;
6196
6197 rcu_read_lock();
6198 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6199 if (rdev) {
6200 info.major = MAJOR(rdev->bdev->bd_dev);
6201 info.minor = MINOR(rdev->bdev->bd_dev);
6202 info.raid_disk = rdev->raid_disk;
6203 info.state = 0;
6204 if (test_bit(Faulty, &rdev->flags))
6205 info.state |= (1<<MD_DISK_FAULTY);
6206 else if (test_bit(In_sync, &rdev->flags)) {
6207 info.state |= (1<<MD_DISK_ACTIVE);
6208 info.state |= (1<<MD_DISK_SYNC);
6209 }
6210 if (test_bit(Journal, &rdev->flags))
6211 info.state |= (1<<MD_DISK_JOURNAL);
6212 if (test_bit(WriteMostly, &rdev->flags))
6213 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6214 if (test_bit(FailFast, &rdev->flags))
6215 info.state |= (1<<MD_DISK_FAILFAST);
6216 } else {
6217 info.major = info.minor = 0;
6218 info.raid_disk = -1;
6219 info.state = (1<<MD_DISK_REMOVED);
6220 }
6221 rcu_read_unlock();
6222
6223 if (copy_to_user(arg, &info, sizeof(info)))
6224 return -EFAULT;
6225
6226 return 0;
6227 }
6228
6229 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6230 {
6231 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6232 struct md_rdev *rdev;
6233 dev_t dev = MKDEV(info->major,info->minor);
6234
6235 if (mddev_is_clustered(mddev) &&
6236 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6237 pr_warn("%s: Cannot add to clustered mddev.\n",
6238 mdname(mddev));
6239 return -EINVAL;
6240 }
6241
6242 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6243 return -EOVERFLOW;
6244
6245 if (!mddev->raid_disks) {
6246 int err;
6247 /* expecting a device which has a superblock */
6248 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6249 if (IS_ERR(rdev)) {
6250 pr_warn("md: md_import_device returned %ld\n",
6251 PTR_ERR(rdev));
6252 return PTR_ERR(rdev);
6253 }
6254 if (!list_empty(&mddev->disks)) {
6255 struct md_rdev *rdev0
6256 = list_entry(mddev->disks.next,
6257 struct md_rdev, same_set);
6258 err = super_types[mddev->major_version]
6259 .load_super(rdev, rdev0, mddev->minor_version);
6260 if (err < 0) {
6261 pr_warn("md: %s has different UUID to %s\n",
6262 bdevname(rdev->bdev,b),
6263 bdevname(rdev0->bdev,b2));
6264 export_rdev(rdev);
6265 return -EINVAL;
6266 }
6267 }
6268 err = bind_rdev_to_array(rdev, mddev);
6269 if (err)
6270 export_rdev(rdev);
6271 return err;
6272 }
6273
6274 /*
6275 * add_new_disk can be used once the array is assembled
6276 * to add "hot spares". They must already have a superblock
6277 * written
6278 */
6279 if (mddev->pers) {
6280 int err;
6281 if (!mddev->pers->hot_add_disk) {
6282 pr_warn("%s: personality does not support diskops!\n",
6283 mdname(mddev));
6284 return -EINVAL;
6285 }
6286 if (mddev->persistent)
6287 rdev = md_import_device(dev, mddev->major_version,
6288 mddev->minor_version);
6289 else
6290 rdev = md_import_device(dev, -1, -1);
6291 if (IS_ERR(rdev)) {
6292 pr_warn("md: md_import_device returned %ld\n",
6293 PTR_ERR(rdev));
6294 return PTR_ERR(rdev);
6295 }
6296 /* set saved_raid_disk if appropriate */
6297 if (!mddev->persistent) {
6298 if (info->state & (1<<MD_DISK_SYNC) &&
6299 info->raid_disk < mddev->raid_disks) {
6300 rdev->raid_disk = info->raid_disk;
6301 set_bit(In_sync, &rdev->flags);
6302 clear_bit(Bitmap_sync, &rdev->flags);
6303 } else
6304 rdev->raid_disk = -1;
6305 rdev->saved_raid_disk = rdev->raid_disk;
6306 } else
6307 super_types[mddev->major_version].
6308 validate_super(mddev, rdev);
6309 if ((info->state & (1<<MD_DISK_SYNC)) &&
6310 rdev->raid_disk != info->raid_disk) {
6311 /* This was a hot-add request, but events doesn't
6312 * match, so reject it.
6313 */
6314 export_rdev(rdev);
6315 return -EINVAL;
6316 }
6317
6318 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6319 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6320 set_bit(WriteMostly, &rdev->flags);
6321 else
6322 clear_bit(WriteMostly, &rdev->flags);
6323 if (info->state & (1<<MD_DISK_FAILFAST))
6324 set_bit(FailFast, &rdev->flags);
6325 else
6326 clear_bit(FailFast, &rdev->flags);
6327
6328 if (info->state & (1<<MD_DISK_JOURNAL)) {
6329 struct md_rdev *rdev2;
6330 bool has_journal = false;
6331
6332 /* make sure no existing journal disk */
6333 rdev_for_each(rdev2, mddev) {
6334 if (test_bit(Journal, &rdev2->flags)) {
6335 has_journal = true;
6336 break;
6337 }
6338 }
6339 if (has_journal) {
6340 export_rdev(rdev);
6341 return -EBUSY;
6342 }
6343 set_bit(Journal, &rdev->flags);
6344 }
6345 /*
6346 * check whether the device shows up in other nodes
6347 */
6348 if (mddev_is_clustered(mddev)) {
6349 if (info->state & (1 << MD_DISK_CANDIDATE))
6350 set_bit(Candidate, &rdev->flags);
6351 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6352 /* --add initiated by this node */
6353 err = md_cluster_ops->add_new_disk(mddev, rdev);
6354 if (err) {
6355 export_rdev(rdev);
6356 return err;
6357 }
6358 }
6359 }
6360
6361 rdev->raid_disk = -1;
6362 err = bind_rdev_to_array(rdev, mddev);
6363
6364 if (err)
6365 export_rdev(rdev);
6366
6367 if (mddev_is_clustered(mddev)) {
6368 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6369 if (!err) {
6370 err = md_cluster_ops->new_disk_ack(mddev,
6371 err == 0);
6372 if (err)
6373 md_kick_rdev_from_array(rdev);
6374 }
6375 } else {
6376 if (err)
6377 md_cluster_ops->add_new_disk_cancel(mddev);
6378 else
6379 err = add_bound_rdev(rdev);
6380 }
6381
6382 } else if (!err)
6383 err = add_bound_rdev(rdev);
6384
6385 return err;
6386 }
6387
6388 /* otherwise, add_new_disk is only allowed
6389 * for major_version==0 superblocks
6390 */
6391 if (mddev->major_version != 0) {
6392 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6393 return -EINVAL;
6394 }
6395
6396 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6397 int err;
6398 rdev = md_import_device(dev, -1, 0);
6399 if (IS_ERR(rdev)) {
6400 pr_warn("md: error, md_import_device() returned %ld\n",
6401 PTR_ERR(rdev));
6402 return PTR_ERR(rdev);
6403 }
6404 rdev->desc_nr = info->number;
6405 if (info->raid_disk < mddev->raid_disks)
6406 rdev->raid_disk = info->raid_disk;
6407 else
6408 rdev->raid_disk = -1;
6409
6410 if (rdev->raid_disk < mddev->raid_disks)
6411 if (info->state & (1<<MD_DISK_SYNC))
6412 set_bit(In_sync, &rdev->flags);
6413
6414 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6415 set_bit(WriteMostly, &rdev->flags);
6416 if (info->state & (1<<MD_DISK_FAILFAST))
6417 set_bit(FailFast, &rdev->flags);
6418
6419 if (!mddev->persistent) {
6420 pr_debug("md: nonpersistent superblock ...\n");
6421 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6422 } else
6423 rdev->sb_start = calc_dev_sboffset(rdev);
6424 rdev->sectors = rdev->sb_start;
6425
6426 err = bind_rdev_to_array(rdev, mddev);
6427 if (err) {
6428 export_rdev(rdev);
6429 return err;
6430 }
6431 }
6432
6433 return 0;
6434 }
6435
6436 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6437 {
6438 char b[BDEVNAME_SIZE];
6439 struct md_rdev *rdev;
6440
6441 rdev = find_rdev(mddev, dev);
6442 if (!rdev)
6443 return -ENXIO;
6444
6445 if (rdev->raid_disk < 0)
6446 goto kick_rdev;
6447
6448 clear_bit(Blocked, &rdev->flags);
6449 remove_and_add_spares(mddev, rdev);
6450
6451 if (rdev->raid_disk >= 0)
6452 goto busy;
6453
6454 kick_rdev:
6455 if (mddev_is_clustered(mddev))
6456 md_cluster_ops->remove_disk(mddev, rdev);
6457
6458 md_kick_rdev_from_array(rdev);
6459 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6460 if (mddev->thread)
6461 md_wakeup_thread(mddev->thread);
6462 else
6463 md_update_sb(mddev, 1);
6464 md_new_event(mddev);
6465
6466 return 0;
6467 busy:
6468 pr_debug("md: cannot remove active disk %s from %s ...\n",
6469 bdevname(rdev->bdev,b), mdname(mddev));
6470 return -EBUSY;
6471 }
6472
6473 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6474 {
6475 char b[BDEVNAME_SIZE];
6476 int err;
6477 struct md_rdev *rdev;
6478
6479 if (!mddev->pers)
6480 return -ENODEV;
6481
6482 if (mddev->major_version != 0) {
6483 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6484 mdname(mddev));
6485 return -EINVAL;
6486 }
6487 if (!mddev->pers->hot_add_disk) {
6488 pr_warn("%s: personality does not support diskops!\n",
6489 mdname(mddev));
6490 return -EINVAL;
6491 }
6492
6493 rdev = md_import_device(dev, -1, 0);
6494 if (IS_ERR(rdev)) {
6495 pr_warn("md: error, md_import_device() returned %ld\n",
6496 PTR_ERR(rdev));
6497 return -EINVAL;
6498 }
6499
6500 if (mddev->persistent)
6501 rdev->sb_start = calc_dev_sboffset(rdev);
6502 else
6503 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6504
6505 rdev->sectors = rdev->sb_start;
6506
6507 if (test_bit(Faulty, &rdev->flags)) {
6508 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6509 bdevname(rdev->bdev,b), mdname(mddev));
6510 err = -EINVAL;
6511 goto abort_export;
6512 }
6513
6514 clear_bit(In_sync, &rdev->flags);
6515 rdev->desc_nr = -1;
6516 rdev->saved_raid_disk = -1;
6517 err = bind_rdev_to_array(rdev, mddev);
6518 if (err)
6519 goto abort_export;
6520
6521 /*
6522 * The rest should better be atomic, we can have disk failures
6523 * noticed in interrupt contexts ...
6524 */
6525
6526 rdev->raid_disk = -1;
6527
6528 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6529 if (!mddev->thread)
6530 md_update_sb(mddev, 1);
6531 /*
6532 * Kick recovery, maybe this spare has to be added to the
6533 * array immediately.
6534 */
6535 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6536 md_wakeup_thread(mddev->thread);
6537 md_new_event(mddev);
6538 return 0;
6539
6540 abort_export:
6541 export_rdev(rdev);
6542 return err;
6543 }
6544
6545 static int set_bitmap_file(struct mddev *mddev, int fd)
6546 {
6547 int err = 0;
6548
6549 if (mddev->pers) {
6550 if (!mddev->pers->quiesce || !mddev->thread)
6551 return -EBUSY;
6552 if (mddev->recovery || mddev->sync_thread)
6553 return -EBUSY;
6554 /* we should be able to change the bitmap.. */
6555 }
6556
6557 if (fd >= 0) {
6558 struct inode *inode;
6559 struct file *f;
6560
6561 if (mddev->bitmap || mddev->bitmap_info.file)
6562 return -EEXIST; /* cannot add when bitmap is present */
6563 f = fget(fd);
6564
6565 if (f == NULL) {
6566 pr_warn("%s: error: failed to get bitmap file\n",
6567 mdname(mddev));
6568 return -EBADF;
6569 }
6570
6571 inode = f->f_mapping->host;
6572 if (!S_ISREG(inode->i_mode)) {
6573 pr_warn("%s: error: bitmap file must be a regular file\n",
6574 mdname(mddev));
6575 err = -EBADF;
6576 } else if (!(f->f_mode & FMODE_WRITE)) {
6577 pr_warn("%s: error: bitmap file must open for write\n",
6578 mdname(mddev));
6579 err = -EBADF;
6580 } else if (atomic_read(&inode->i_writecount) != 1) {
6581 pr_warn("%s: error: bitmap file is already in use\n",
6582 mdname(mddev));
6583 err = -EBUSY;
6584 }
6585 if (err) {
6586 fput(f);
6587 return err;
6588 }
6589 mddev->bitmap_info.file = f;
6590 mddev->bitmap_info.offset = 0; /* file overrides offset */
6591 } else if (mddev->bitmap == NULL)
6592 return -ENOENT; /* cannot remove what isn't there */
6593 err = 0;
6594 if (mddev->pers) {
6595 mddev->pers->quiesce(mddev, 1);
6596 if (fd >= 0) {
6597 struct bitmap *bitmap;
6598
6599 bitmap = bitmap_create(mddev, -1);
6600 if (!IS_ERR(bitmap)) {
6601 mddev->bitmap = bitmap;
6602 err = bitmap_load(mddev);
6603 } else
6604 err = PTR_ERR(bitmap);
6605 }
6606 if (fd < 0 || err) {
6607 bitmap_destroy(mddev);
6608 fd = -1; /* make sure to put the file */
6609 }
6610 mddev->pers->quiesce(mddev, 0);
6611 }
6612 if (fd < 0) {
6613 struct file *f = mddev->bitmap_info.file;
6614 if (f) {
6615 spin_lock(&mddev->lock);
6616 mddev->bitmap_info.file = NULL;
6617 spin_unlock(&mddev->lock);
6618 fput(f);
6619 }
6620 }
6621
6622 return err;
6623 }
6624
6625 /*
6626 * set_array_info is used two different ways
6627 * The original usage is when creating a new array.
6628 * In this usage, raid_disks is > 0 and it together with
6629 * level, size, not_persistent,layout,chunksize determine the
6630 * shape of the array.
6631 * This will always create an array with a type-0.90.0 superblock.
6632 * The newer usage is when assembling an array.
6633 * In this case raid_disks will be 0, and the major_version field is
6634 * use to determine which style super-blocks are to be found on the devices.
6635 * The minor and patch _version numbers are also kept incase the
6636 * super_block handler wishes to interpret them.
6637 */
6638 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6639 {
6640
6641 if (info->raid_disks == 0) {
6642 /* just setting version number for superblock loading */
6643 if (info->major_version < 0 ||
6644 info->major_version >= ARRAY_SIZE(super_types) ||
6645 super_types[info->major_version].name == NULL) {
6646 /* maybe try to auto-load a module? */
6647 pr_warn("md: superblock version %d not known\n",
6648 info->major_version);
6649 return -EINVAL;
6650 }
6651 mddev->major_version = info->major_version;
6652 mddev->minor_version = info->minor_version;
6653 mddev->patch_version = info->patch_version;
6654 mddev->persistent = !info->not_persistent;
6655 /* ensure mddev_put doesn't delete this now that there
6656 * is some minimal configuration.
6657 */
6658 mddev->ctime = ktime_get_real_seconds();
6659 return 0;
6660 }
6661 mddev->major_version = MD_MAJOR_VERSION;
6662 mddev->minor_version = MD_MINOR_VERSION;
6663 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6664 mddev->ctime = ktime_get_real_seconds();
6665
6666 mddev->level = info->level;
6667 mddev->clevel[0] = 0;
6668 mddev->dev_sectors = 2 * (sector_t)info->size;
6669 mddev->raid_disks = info->raid_disks;
6670 /* don't set md_minor, it is determined by which /dev/md* was
6671 * openned
6672 */
6673 if (info->state & (1<<MD_SB_CLEAN))
6674 mddev->recovery_cp = MaxSector;
6675 else
6676 mddev->recovery_cp = 0;
6677 mddev->persistent = ! info->not_persistent;
6678 mddev->external = 0;
6679
6680 mddev->layout = info->layout;
6681 mddev->chunk_sectors = info->chunk_size >> 9;
6682
6683 if (mddev->persistent) {
6684 mddev->max_disks = MD_SB_DISKS;
6685 mddev->flags = 0;
6686 mddev->sb_flags = 0;
6687 }
6688 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6689
6690 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6691 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6692 mddev->bitmap_info.offset = 0;
6693
6694 mddev->reshape_position = MaxSector;
6695
6696 /*
6697 * Generate a 128 bit UUID
6698 */
6699 get_random_bytes(mddev->uuid, 16);
6700
6701 mddev->new_level = mddev->level;
6702 mddev->new_chunk_sectors = mddev->chunk_sectors;
6703 mddev->new_layout = mddev->layout;
6704 mddev->delta_disks = 0;
6705 mddev->reshape_backwards = 0;
6706
6707 return 0;
6708 }
6709
6710 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6711 {
6712 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6713
6714 if (mddev->external_size)
6715 return;
6716
6717 mddev->array_sectors = array_sectors;
6718 }
6719 EXPORT_SYMBOL(md_set_array_sectors);
6720
6721 static int update_size(struct mddev *mddev, sector_t num_sectors)
6722 {
6723 struct md_rdev *rdev;
6724 int rv;
6725 int fit = (num_sectors == 0);
6726 sector_t old_dev_sectors = mddev->dev_sectors;
6727
6728 if (mddev->pers->resize == NULL)
6729 return -EINVAL;
6730 /* The "num_sectors" is the number of sectors of each device that
6731 * is used. This can only make sense for arrays with redundancy.
6732 * linear and raid0 always use whatever space is available. We can only
6733 * consider changing this number if no resync or reconstruction is
6734 * happening, and if the new size is acceptable. It must fit before the
6735 * sb_start or, if that is <data_offset, it must fit before the size
6736 * of each device. If num_sectors is zero, we find the largest size
6737 * that fits.
6738 */
6739 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6740 mddev->sync_thread)
6741 return -EBUSY;
6742 if (mddev->ro)
6743 return -EROFS;
6744
6745 rdev_for_each(rdev, mddev) {
6746 sector_t avail = rdev->sectors;
6747
6748 if (fit && (num_sectors == 0 || num_sectors > avail))
6749 num_sectors = avail;
6750 if (avail < num_sectors)
6751 return -ENOSPC;
6752 }
6753 rv = mddev->pers->resize(mddev, num_sectors);
6754 if (!rv) {
6755 if (mddev_is_clustered(mddev))
6756 md_cluster_ops->update_size(mddev, old_dev_sectors);
6757 else if (mddev->queue) {
6758 set_capacity(mddev->gendisk, mddev->array_sectors);
6759 revalidate_disk(mddev->gendisk);
6760 }
6761 }
6762 return rv;
6763 }
6764
6765 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6766 {
6767 int rv;
6768 struct md_rdev *rdev;
6769 /* change the number of raid disks */
6770 if (mddev->pers->check_reshape == NULL)
6771 return -EINVAL;
6772 if (mddev->ro)
6773 return -EROFS;
6774 if (raid_disks <= 0 ||
6775 (mddev->max_disks && raid_disks >= mddev->max_disks))
6776 return -EINVAL;
6777 if (mddev->sync_thread ||
6778 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6779 mddev->reshape_position != MaxSector)
6780 return -EBUSY;
6781
6782 rdev_for_each(rdev, mddev) {
6783 if (mddev->raid_disks < raid_disks &&
6784 rdev->data_offset < rdev->new_data_offset)
6785 return -EINVAL;
6786 if (mddev->raid_disks > raid_disks &&
6787 rdev->data_offset > rdev->new_data_offset)
6788 return -EINVAL;
6789 }
6790
6791 mddev->delta_disks = raid_disks - mddev->raid_disks;
6792 if (mddev->delta_disks < 0)
6793 mddev->reshape_backwards = 1;
6794 else if (mddev->delta_disks > 0)
6795 mddev->reshape_backwards = 0;
6796
6797 rv = mddev->pers->check_reshape(mddev);
6798 if (rv < 0) {
6799 mddev->delta_disks = 0;
6800 mddev->reshape_backwards = 0;
6801 }
6802 return rv;
6803 }
6804
6805 /*
6806 * update_array_info is used to change the configuration of an
6807 * on-line array.
6808 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6809 * fields in the info are checked against the array.
6810 * Any differences that cannot be handled will cause an error.
6811 * Normally, only one change can be managed at a time.
6812 */
6813 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6814 {
6815 int rv = 0;
6816 int cnt = 0;
6817 int state = 0;
6818
6819 /* calculate expected state,ignoring low bits */
6820 if (mddev->bitmap && mddev->bitmap_info.offset)
6821 state |= (1 << MD_SB_BITMAP_PRESENT);
6822
6823 if (mddev->major_version != info->major_version ||
6824 mddev->minor_version != info->minor_version ||
6825 /* mddev->patch_version != info->patch_version || */
6826 mddev->ctime != info->ctime ||
6827 mddev->level != info->level ||
6828 /* mddev->layout != info->layout || */
6829 mddev->persistent != !info->not_persistent ||
6830 mddev->chunk_sectors != info->chunk_size >> 9 ||
6831 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6832 ((state^info->state) & 0xfffffe00)
6833 )
6834 return -EINVAL;
6835 /* Check there is only one change */
6836 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6837 cnt++;
6838 if (mddev->raid_disks != info->raid_disks)
6839 cnt++;
6840 if (mddev->layout != info->layout)
6841 cnt++;
6842 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6843 cnt++;
6844 if (cnt == 0)
6845 return 0;
6846 if (cnt > 1)
6847 return -EINVAL;
6848
6849 if (mddev->layout != info->layout) {
6850 /* Change layout
6851 * we don't need to do anything at the md level, the
6852 * personality will take care of it all.
6853 */
6854 if (mddev->pers->check_reshape == NULL)
6855 return -EINVAL;
6856 else {
6857 mddev->new_layout = info->layout;
6858 rv = mddev->pers->check_reshape(mddev);
6859 if (rv)
6860 mddev->new_layout = mddev->layout;
6861 return rv;
6862 }
6863 }
6864 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6865 rv = update_size(mddev, (sector_t)info->size * 2);
6866
6867 if (mddev->raid_disks != info->raid_disks)
6868 rv = update_raid_disks(mddev, info->raid_disks);
6869
6870 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6871 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6872 rv = -EINVAL;
6873 goto err;
6874 }
6875 if (mddev->recovery || mddev->sync_thread) {
6876 rv = -EBUSY;
6877 goto err;
6878 }
6879 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6880 struct bitmap *bitmap;
6881 /* add the bitmap */
6882 if (mddev->bitmap) {
6883 rv = -EEXIST;
6884 goto err;
6885 }
6886 if (mddev->bitmap_info.default_offset == 0) {
6887 rv = -EINVAL;
6888 goto err;
6889 }
6890 mddev->bitmap_info.offset =
6891 mddev->bitmap_info.default_offset;
6892 mddev->bitmap_info.space =
6893 mddev->bitmap_info.default_space;
6894 mddev->pers->quiesce(mddev, 1);
6895 bitmap = bitmap_create(mddev, -1);
6896 if (!IS_ERR(bitmap)) {
6897 mddev->bitmap = bitmap;
6898 rv = bitmap_load(mddev);
6899 } else
6900 rv = PTR_ERR(bitmap);
6901 if (rv)
6902 bitmap_destroy(mddev);
6903 mddev->pers->quiesce(mddev, 0);
6904 } else {
6905 /* remove the bitmap */
6906 if (!mddev->bitmap) {
6907 rv = -ENOENT;
6908 goto err;
6909 }
6910 if (mddev->bitmap->storage.file) {
6911 rv = -EINVAL;
6912 goto err;
6913 }
6914 if (mddev->bitmap_info.nodes) {
6915 /* hold PW on all the bitmap lock */
6916 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6917 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6918 rv = -EPERM;
6919 md_cluster_ops->unlock_all_bitmaps(mddev);
6920 goto err;
6921 }
6922
6923 mddev->bitmap_info.nodes = 0;
6924 md_cluster_ops->leave(mddev);
6925 }
6926 mddev->pers->quiesce(mddev, 1);
6927 bitmap_destroy(mddev);
6928 mddev->pers->quiesce(mddev, 0);
6929 mddev->bitmap_info.offset = 0;
6930 }
6931 }
6932 md_update_sb(mddev, 1);
6933 return rv;
6934 err:
6935 return rv;
6936 }
6937
6938 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6939 {
6940 struct md_rdev *rdev;
6941 int err = 0;
6942
6943 if (mddev->pers == NULL)
6944 return -ENODEV;
6945
6946 rcu_read_lock();
6947 rdev = find_rdev_rcu(mddev, dev);
6948 if (!rdev)
6949 err = -ENODEV;
6950 else {
6951 md_error(mddev, rdev);
6952 if (!test_bit(Faulty, &rdev->flags))
6953 err = -EBUSY;
6954 }
6955 rcu_read_unlock();
6956 return err;
6957 }
6958
6959 /*
6960 * We have a problem here : there is no easy way to give a CHS
6961 * virtual geometry. We currently pretend that we have a 2 heads
6962 * 4 sectors (with a BIG number of cylinders...). This drives
6963 * dosfs just mad... ;-)
6964 */
6965 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6966 {
6967 struct mddev *mddev = bdev->bd_disk->private_data;
6968
6969 geo->heads = 2;
6970 geo->sectors = 4;
6971 geo->cylinders = mddev->array_sectors / 8;
6972 return 0;
6973 }
6974
6975 static inline bool md_ioctl_valid(unsigned int cmd)
6976 {
6977 switch (cmd) {
6978 case ADD_NEW_DISK:
6979 case BLKROSET:
6980 case GET_ARRAY_INFO:
6981 case GET_BITMAP_FILE:
6982 case GET_DISK_INFO:
6983 case HOT_ADD_DISK:
6984 case HOT_REMOVE_DISK:
6985 case RAID_AUTORUN:
6986 case RAID_VERSION:
6987 case RESTART_ARRAY_RW:
6988 case RUN_ARRAY:
6989 case SET_ARRAY_INFO:
6990 case SET_BITMAP_FILE:
6991 case SET_DISK_FAULTY:
6992 case STOP_ARRAY:
6993 case STOP_ARRAY_RO:
6994 case CLUSTERED_DISK_NACK:
6995 return true;
6996 default:
6997 return false;
6998 }
6999 }
7000
7001 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7002 unsigned int cmd, unsigned long arg)
7003 {
7004 int err = 0;
7005 void __user *argp = (void __user *)arg;
7006 struct mddev *mddev = NULL;
7007 int ro;
7008 bool did_set_md_closing = false;
7009
7010 if (!md_ioctl_valid(cmd))
7011 return -ENOTTY;
7012
7013 switch (cmd) {
7014 case RAID_VERSION:
7015 case GET_ARRAY_INFO:
7016 case GET_DISK_INFO:
7017 break;
7018 default:
7019 if (!capable(CAP_SYS_ADMIN))
7020 return -EACCES;
7021 }
7022
7023 /*
7024 * Commands dealing with the RAID driver but not any
7025 * particular array:
7026 */
7027 switch (cmd) {
7028 case RAID_VERSION:
7029 err = get_version(argp);
7030 goto out;
7031
7032 #ifndef MODULE
7033 case RAID_AUTORUN:
7034 err = 0;
7035 autostart_arrays(arg);
7036 goto out;
7037 #endif
7038 default:;
7039 }
7040
7041 /*
7042 * Commands creating/starting a new array:
7043 */
7044
7045 mddev = bdev->bd_disk->private_data;
7046
7047 if (!mddev) {
7048 BUG();
7049 goto out;
7050 }
7051
7052 /* Some actions do not requires the mutex */
7053 switch (cmd) {
7054 case GET_ARRAY_INFO:
7055 if (!mddev->raid_disks && !mddev->external)
7056 err = -ENODEV;
7057 else
7058 err = get_array_info(mddev, argp);
7059 goto out;
7060
7061 case GET_DISK_INFO:
7062 if (!mddev->raid_disks && !mddev->external)
7063 err = -ENODEV;
7064 else
7065 err = get_disk_info(mddev, argp);
7066 goto out;
7067
7068 case SET_DISK_FAULTY:
7069 err = set_disk_faulty(mddev, new_decode_dev(arg));
7070 goto out;
7071
7072 case GET_BITMAP_FILE:
7073 err = get_bitmap_file(mddev, argp);
7074 goto out;
7075
7076 }
7077
7078 if (cmd == ADD_NEW_DISK)
7079 /* need to ensure md_delayed_delete() has completed */
7080 flush_workqueue(md_misc_wq);
7081
7082 if (cmd == HOT_REMOVE_DISK)
7083 /* need to ensure recovery thread has run */
7084 wait_event_interruptible_timeout(mddev->sb_wait,
7085 !test_bit(MD_RECOVERY_NEEDED,
7086 &mddev->recovery),
7087 msecs_to_jiffies(5000));
7088 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7089 /* Need to flush page cache, and ensure no-one else opens
7090 * and writes
7091 */
7092 mutex_lock(&mddev->open_mutex);
7093 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7094 mutex_unlock(&mddev->open_mutex);
7095 err = -EBUSY;
7096 goto out;
7097 }
7098 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7099 set_bit(MD_CLOSING, &mddev->flags);
7100 did_set_md_closing = true;
7101 mutex_unlock(&mddev->open_mutex);
7102 sync_blockdev(bdev);
7103 }
7104 err = mddev_lock(mddev);
7105 if (err) {
7106 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7107 err, cmd);
7108 goto out;
7109 }
7110
7111 if (cmd == SET_ARRAY_INFO) {
7112 mdu_array_info_t info;
7113 if (!arg)
7114 memset(&info, 0, sizeof(info));
7115 else if (copy_from_user(&info, argp, sizeof(info))) {
7116 err = -EFAULT;
7117 goto unlock;
7118 }
7119 if (mddev->pers) {
7120 err = update_array_info(mddev, &info);
7121 if (err) {
7122 pr_warn("md: couldn't update array info. %d\n", err);
7123 goto unlock;
7124 }
7125 goto unlock;
7126 }
7127 if (!list_empty(&mddev->disks)) {
7128 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7129 err = -EBUSY;
7130 goto unlock;
7131 }
7132 if (mddev->raid_disks) {
7133 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7134 err = -EBUSY;
7135 goto unlock;
7136 }
7137 err = set_array_info(mddev, &info);
7138 if (err) {
7139 pr_warn("md: couldn't set array info. %d\n", err);
7140 goto unlock;
7141 }
7142 goto unlock;
7143 }
7144
7145 /*
7146 * Commands querying/configuring an existing array:
7147 */
7148 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7149 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7150 if ((!mddev->raid_disks && !mddev->external)
7151 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7152 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7153 && cmd != GET_BITMAP_FILE) {
7154 err = -ENODEV;
7155 goto unlock;
7156 }
7157
7158 /*
7159 * Commands even a read-only array can execute:
7160 */
7161 switch (cmd) {
7162 case RESTART_ARRAY_RW:
7163 err = restart_array(mddev);
7164 goto unlock;
7165
7166 case STOP_ARRAY:
7167 err = do_md_stop(mddev, 0, bdev);
7168 goto unlock;
7169
7170 case STOP_ARRAY_RO:
7171 err = md_set_readonly(mddev, bdev);
7172 goto unlock;
7173
7174 case HOT_REMOVE_DISK:
7175 err = hot_remove_disk(mddev, new_decode_dev(arg));
7176 goto unlock;
7177
7178 case ADD_NEW_DISK:
7179 /* We can support ADD_NEW_DISK on read-only arrays
7180 * only if we are re-adding a preexisting device.
7181 * So require mddev->pers and MD_DISK_SYNC.
7182 */
7183 if (mddev->pers) {
7184 mdu_disk_info_t info;
7185 if (copy_from_user(&info, argp, sizeof(info)))
7186 err = -EFAULT;
7187 else if (!(info.state & (1<<MD_DISK_SYNC)))
7188 /* Need to clear read-only for this */
7189 break;
7190 else
7191 err = add_new_disk(mddev, &info);
7192 goto unlock;
7193 }
7194 break;
7195
7196 case BLKROSET:
7197 if (get_user(ro, (int __user *)(arg))) {
7198 err = -EFAULT;
7199 goto unlock;
7200 }
7201 err = -EINVAL;
7202
7203 /* if the bdev is going readonly the value of mddev->ro
7204 * does not matter, no writes are coming
7205 */
7206 if (ro)
7207 goto unlock;
7208
7209 /* are we are already prepared for writes? */
7210 if (mddev->ro != 1)
7211 goto unlock;
7212
7213 /* transitioning to readauto need only happen for
7214 * arrays that call md_write_start
7215 */
7216 if (mddev->pers) {
7217 err = restart_array(mddev);
7218 if (err == 0) {
7219 mddev->ro = 2;
7220 set_disk_ro(mddev->gendisk, 0);
7221 }
7222 }
7223 goto unlock;
7224 }
7225
7226 /*
7227 * The remaining ioctls are changing the state of the
7228 * superblock, so we do not allow them on read-only arrays.
7229 */
7230 if (mddev->ro && mddev->pers) {
7231 if (mddev->ro == 2) {
7232 mddev->ro = 0;
7233 sysfs_notify_dirent_safe(mddev->sysfs_state);
7234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7235 /* mddev_unlock will wake thread */
7236 /* If a device failed while we were read-only, we
7237 * need to make sure the metadata is updated now.
7238 */
7239 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7240 mddev_unlock(mddev);
7241 wait_event(mddev->sb_wait,
7242 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7243 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7244 mddev_lock_nointr(mddev);
7245 }
7246 } else {
7247 err = -EROFS;
7248 goto unlock;
7249 }
7250 }
7251
7252 switch (cmd) {
7253 case ADD_NEW_DISK:
7254 {
7255 mdu_disk_info_t info;
7256 if (copy_from_user(&info, argp, sizeof(info)))
7257 err = -EFAULT;
7258 else
7259 err = add_new_disk(mddev, &info);
7260 goto unlock;
7261 }
7262
7263 case CLUSTERED_DISK_NACK:
7264 if (mddev_is_clustered(mddev))
7265 md_cluster_ops->new_disk_ack(mddev, false);
7266 else
7267 err = -EINVAL;
7268 goto unlock;
7269
7270 case HOT_ADD_DISK:
7271 err = hot_add_disk(mddev, new_decode_dev(arg));
7272 goto unlock;
7273
7274 case RUN_ARRAY:
7275 err = do_md_run(mddev);
7276 goto unlock;
7277
7278 case SET_BITMAP_FILE:
7279 err = set_bitmap_file(mddev, (int)arg);
7280 goto unlock;
7281
7282 default:
7283 err = -EINVAL;
7284 goto unlock;
7285 }
7286
7287 unlock:
7288 if (mddev->hold_active == UNTIL_IOCTL &&
7289 err != -EINVAL)
7290 mddev->hold_active = 0;
7291 mddev_unlock(mddev);
7292 out:
7293 if(did_set_md_closing)
7294 clear_bit(MD_CLOSING, &mddev->flags);
7295 return err;
7296 }
7297 #ifdef CONFIG_COMPAT
7298 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7299 unsigned int cmd, unsigned long arg)
7300 {
7301 switch (cmd) {
7302 case HOT_REMOVE_DISK:
7303 case HOT_ADD_DISK:
7304 case SET_DISK_FAULTY:
7305 case SET_BITMAP_FILE:
7306 /* These take in integer arg, do not convert */
7307 break;
7308 default:
7309 arg = (unsigned long)compat_ptr(arg);
7310 break;
7311 }
7312
7313 return md_ioctl(bdev, mode, cmd, arg);
7314 }
7315 #endif /* CONFIG_COMPAT */
7316
7317 static int md_open(struct block_device *bdev, fmode_t mode)
7318 {
7319 /*
7320 * Succeed if we can lock the mddev, which confirms that
7321 * it isn't being stopped right now.
7322 */
7323 struct mddev *mddev = mddev_find(bdev->bd_dev);
7324 int err;
7325
7326 if (!mddev)
7327 return -ENODEV;
7328
7329 if (mddev->gendisk != bdev->bd_disk) {
7330 /* we are racing with mddev_put which is discarding this
7331 * bd_disk.
7332 */
7333 mddev_put(mddev);
7334 /* Wait until bdev->bd_disk is definitely gone */
7335 flush_workqueue(md_misc_wq);
7336 /* Then retry the open from the top */
7337 return -ERESTARTSYS;
7338 }
7339 BUG_ON(mddev != bdev->bd_disk->private_data);
7340
7341 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7342 goto out;
7343
7344 if (test_bit(MD_CLOSING, &mddev->flags)) {
7345 mutex_unlock(&mddev->open_mutex);
7346 err = -ENODEV;
7347 goto out;
7348 }
7349
7350 err = 0;
7351 atomic_inc(&mddev->openers);
7352 mutex_unlock(&mddev->open_mutex);
7353
7354 check_disk_change(bdev);
7355 out:
7356 if (err)
7357 mddev_put(mddev);
7358 return err;
7359 }
7360
7361 static void md_release(struct gendisk *disk, fmode_t mode)
7362 {
7363 struct mddev *mddev = disk->private_data;
7364
7365 BUG_ON(!mddev);
7366 atomic_dec(&mddev->openers);
7367 mddev_put(mddev);
7368 }
7369
7370 static int md_media_changed(struct gendisk *disk)
7371 {
7372 struct mddev *mddev = disk->private_data;
7373
7374 return mddev->changed;
7375 }
7376
7377 static int md_revalidate(struct gendisk *disk)
7378 {
7379 struct mddev *mddev = disk->private_data;
7380
7381 mddev->changed = 0;
7382 return 0;
7383 }
7384 static const struct block_device_operations md_fops =
7385 {
7386 .owner = THIS_MODULE,
7387 .open = md_open,
7388 .release = md_release,
7389 .ioctl = md_ioctl,
7390 #ifdef CONFIG_COMPAT
7391 .compat_ioctl = md_compat_ioctl,
7392 #endif
7393 .getgeo = md_getgeo,
7394 .media_changed = md_media_changed,
7395 .revalidate_disk= md_revalidate,
7396 };
7397
7398 static int md_thread(void *arg)
7399 {
7400 struct md_thread *thread = arg;
7401
7402 /*
7403 * md_thread is a 'system-thread', it's priority should be very
7404 * high. We avoid resource deadlocks individually in each
7405 * raid personality. (RAID5 does preallocation) We also use RR and
7406 * the very same RT priority as kswapd, thus we will never get
7407 * into a priority inversion deadlock.
7408 *
7409 * we definitely have to have equal or higher priority than
7410 * bdflush, otherwise bdflush will deadlock if there are too
7411 * many dirty RAID5 blocks.
7412 */
7413
7414 allow_signal(SIGKILL);
7415 while (!kthread_should_stop()) {
7416
7417 /* We need to wait INTERRUPTIBLE so that
7418 * we don't add to the load-average.
7419 * That means we need to be sure no signals are
7420 * pending
7421 */
7422 if (signal_pending(current))
7423 flush_signals(current);
7424
7425 wait_event_interruptible_timeout
7426 (thread->wqueue,
7427 test_bit(THREAD_WAKEUP, &thread->flags)
7428 || kthread_should_stop() || kthread_should_park(),
7429 thread->timeout);
7430
7431 clear_bit(THREAD_WAKEUP, &thread->flags);
7432 if (kthread_should_park())
7433 kthread_parkme();
7434 if (!kthread_should_stop())
7435 thread->run(thread);
7436 }
7437
7438 return 0;
7439 }
7440
7441 void md_wakeup_thread(struct md_thread *thread)
7442 {
7443 if (thread) {
7444 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7445 if (!test_and_set_bit(THREAD_WAKEUP, &thread->flags))
7446 wake_up(&thread->wqueue);
7447 }
7448 }
7449 EXPORT_SYMBOL(md_wakeup_thread);
7450
7451 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7452 struct mddev *mddev, const char *name)
7453 {
7454 struct md_thread *thread;
7455
7456 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7457 if (!thread)
7458 return NULL;
7459
7460 init_waitqueue_head(&thread->wqueue);
7461
7462 thread->run = run;
7463 thread->mddev = mddev;
7464 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7465 thread->tsk = kthread_run(md_thread, thread,
7466 "%s_%s",
7467 mdname(thread->mddev),
7468 name);
7469 if (IS_ERR(thread->tsk)) {
7470 kfree(thread);
7471 return NULL;
7472 }
7473 return thread;
7474 }
7475 EXPORT_SYMBOL(md_register_thread);
7476
7477 void md_unregister_thread(struct md_thread **threadp)
7478 {
7479 struct md_thread *thread = *threadp;
7480 if (!thread)
7481 return;
7482 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7483 /* Locking ensures that mddev_unlock does not wake_up a
7484 * non-existent thread
7485 */
7486 spin_lock(&pers_lock);
7487 *threadp = NULL;
7488 spin_unlock(&pers_lock);
7489
7490 kthread_stop(thread->tsk);
7491 kfree(thread);
7492 }
7493 EXPORT_SYMBOL(md_unregister_thread);
7494
7495 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7496 {
7497 if (!rdev || test_bit(Faulty, &rdev->flags))
7498 return;
7499
7500 if (!mddev->pers || !mddev->pers->error_handler)
7501 return;
7502 mddev->pers->error_handler(mddev,rdev);
7503 if (mddev->degraded)
7504 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7505 sysfs_notify_dirent_safe(rdev->sysfs_state);
7506 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7507 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7508 md_wakeup_thread(mddev->thread);
7509 if (mddev->event_work.func)
7510 queue_work(md_misc_wq, &mddev->event_work);
7511 md_new_event(mddev);
7512 }
7513 EXPORT_SYMBOL(md_error);
7514
7515 /* seq_file implementation /proc/mdstat */
7516
7517 static void status_unused(struct seq_file *seq)
7518 {
7519 int i = 0;
7520 struct md_rdev *rdev;
7521
7522 seq_printf(seq, "unused devices: ");
7523
7524 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7525 char b[BDEVNAME_SIZE];
7526 i++;
7527 seq_printf(seq, "%s ",
7528 bdevname(rdev->bdev,b));
7529 }
7530 if (!i)
7531 seq_printf(seq, "<none>");
7532
7533 seq_printf(seq, "\n");
7534 }
7535
7536 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7537 {
7538 sector_t max_sectors, resync, res;
7539 unsigned long dt, db;
7540 sector_t rt;
7541 int scale;
7542 unsigned int per_milli;
7543
7544 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7545 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7546 max_sectors = mddev->resync_max_sectors;
7547 else
7548 max_sectors = mddev->dev_sectors;
7549
7550 resync = mddev->curr_resync;
7551 if (resync <= 3) {
7552 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7553 /* Still cleaning up */
7554 resync = max_sectors;
7555 } else
7556 resync -= atomic_read(&mddev->recovery_active);
7557
7558 if (resync == 0) {
7559 if (mddev->recovery_cp < MaxSector) {
7560 seq_printf(seq, "\tresync=PENDING");
7561 return 1;
7562 }
7563 return 0;
7564 }
7565 if (resync < 3) {
7566 seq_printf(seq, "\tresync=DELAYED");
7567 return 1;
7568 }
7569
7570 WARN_ON(max_sectors == 0);
7571 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7572 * in a sector_t, and (max_sectors>>scale) will fit in a
7573 * u32, as those are the requirements for sector_div.
7574 * Thus 'scale' must be at least 10
7575 */
7576 scale = 10;
7577 if (sizeof(sector_t) > sizeof(unsigned long)) {
7578 while ( max_sectors/2 > (1ULL<<(scale+32)))
7579 scale++;
7580 }
7581 res = (resync>>scale)*1000;
7582 sector_div(res, (u32)((max_sectors>>scale)+1));
7583
7584 per_milli = res;
7585 {
7586 int i, x = per_milli/50, y = 20-x;
7587 seq_printf(seq, "[");
7588 for (i = 0; i < x; i++)
7589 seq_printf(seq, "=");
7590 seq_printf(seq, ">");
7591 for (i = 0; i < y; i++)
7592 seq_printf(seq, ".");
7593 seq_printf(seq, "] ");
7594 }
7595 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7596 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7597 "reshape" :
7598 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7599 "check" :
7600 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7601 "resync" : "recovery"))),
7602 per_milli/10, per_milli % 10,
7603 (unsigned long long) resync/2,
7604 (unsigned long long) max_sectors/2);
7605
7606 /*
7607 * dt: time from mark until now
7608 * db: blocks written from mark until now
7609 * rt: remaining time
7610 *
7611 * rt is a sector_t, so could be 32bit or 64bit.
7612 * So we divide before multiply in case it is 32bit and close
7613 * to the limit.
7614 * We scale the divisor (db) by 32 to avoid losing precision
7615 * near the end of resync when the number of remaining sectors
7616 * is close to 'db'.
7617 * We then divide rt by 32 after multiplying by db to compensate.
7618 * The '+1' avoids division by zero if db is very small.
7619 */
7620 dt = ((jiffies - mddev->resync_mark) / HZ);
7621 if (!dt) dt++;
7622 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7623 - mddev->resync_mark_cnt;
7624
7625 rt = max_sectors - resync; /* number of remaining sectors */
7626 sector_div(rt, db/32+1);
7627 rt *= dt;
7628 rt >>= 5;
7629
7630 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7631 ((unsigned long)rt % 60)/6);
7632
7633 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7634 return 1;
7635 }
7636
7637 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7638 {
7639 struct list_head *tmp;
7640 loff_t l = *pos;
7641 struct mddev *mddev;
7642
7643 if (l >= 0x10000)
7644 return NULL;
7645 if (!l--)
7646 /* header */
7647 return (void*)1;
7648
7649 spin_lock(&all_mddevs_lock);
7650 list_for_each(tmp,&all_mddevs)
7651 if (!l--) {
7652 mddev = list_entry(tmp, struct mddev, all_mddevs);
7653 mddev_get(mddev);
7654 spin_unlock(&all_mddevs_lock);
7655 return mddev;
7656 }
7657 spin_unlock(&all_mddevs_lock);
7658 if (!l--)
7659 return (void*)2;/* tail */
7660 return NULL;
7661 }
7662
7663 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7664 {
7665 struct list_head *tmp;
7666 struct mddev *next_mddev, *mddev = v;
7667
7668 ++*pos;
7669 if (v == (void*)2)
7670 return NULL;
7671
7672 spin_lock(&all_mddevs_lock);
7673 if (v == (void*)1)
7674 tmp = all_mddevs.next;
7675 else
7676 tmp = mddev->all_mddevs.next;
7677 if (tmp != &all_mddevs)
7678 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7679 else {
7680 next_mddev = (void*)2;
7681 *pos = 0x10000;
7682 }
7683 spin_unlock(&all_mddevs_lock);
7684
7685 if (v != (void*)1)
7686 mddev_put(mddev);
7687 return next_mddev;
7688
7689 }
7690
7691 static void md_seq_stop(struct seq_file *seq, void *v)
7692 {
7693 struct mddev *mddev = v;
7694
7695 if (mddev && v != (void*)1 && v != (void*)2)
7696 mddev_put(mddev);
7697 }
7698
7699 static int md_seq_show(struct seq_file *seq, void *v)
7700 {
7701 struct mddev *mddev = v;
7702 sector_t sectors;
7703 struct md_rdev *rdev;
7704
7705 if (v == (void*)1) {
7706 struct md_personality *pers;
7707 seq_printf(seq, "Personalities : ");
7708 spin_lock(&pers_lock);
7709 list_for_each_entry(pers, &pers_list, list)
7710 seq_printf(seq, "[%s] ", pers->name);
7711
7712 spin_unlock(&pers_lock);
7713 seq_printf(seq, "\n");
7714 seq->poll_event = atomic_read(&md_event_count);
7715 return 0;
7716 }
7717 if (v == (void*)2) {
7718 status_unused(seq);
7719 return 0;
7720 }
7721
7722 spin_lock(&mddev->lock);
7723 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7724 seq_printf(seq, "%s : %sactive", mdname(mddev),
7725 mddev->pers ? "" : "in");
7726 if (mddev->pers) {
7727 if (mddev->ro==1)
7728 seq_printf(seq, " (read-only)");
7729 if (mddev->ro==2)
7730 seq_printf(seq, " (auto-read-only)");
7731 seq_printf(seq, " %s", mddev->pers->name);
7732 }
7733
7734 sectors = 0;
7735 rcu_read_lock();
7736 rdev_for_each_rcu(rdev, mddev) {
7737 char b[BDEVNAME_SIZE];
7738 seq_printf(seq, " %s[%d]",
7739 bdevname(rdev->bdev,b), rdev->desc_nr);
7740 if (test_bit(WriteMostly, &rdev->flags))
7741 seq_printf(seq, "(W)");
7742 if (test_bit(Journal, &rdev->flags))
7743 seq_printf(seq, "(J)");
7744 if (test_bit(Faulty, &rdev->flags)) {
7745 seq_printf(seq, "(F)");
7746 continue;
7747 }
7748 if (rdev->raid_disk < 0)
7749 seq_printf(seq, "(S)"); /* spare */
7750 if (test_bit(Replacement, &rdev->flags))
7751 seq_printf(seq, "(R)");
7752 sectors += rdev->sectors;
7753 }
7754 rcu_read_unlock();
7755
7756 if (!list_empty(&mddev->disks)) {
7757 if (mddev->pers)
7758 seq_printf(seq, "\n %llu blocks",
7759 (unsigned long long)
7760 mddev->array_sectors / 2);
7761 else
7762 seq_printf(seq, "\n %llu blocks",
7763 (unsigned long long)sectors / 2);
7764 }
7765 if (mddev->persistent) {
7766 if (mddev->major_version != 0 ||
7767 mddev->minor_version != 90) {
7768 seq_printf(seq," super %d.%d",
7769 mddev->major_version,
7770 mddev->minor_version);
7771 }
7772 } else if (mddev->external)
7773 seq_printf(seq, " super external:%s",
7774 mddev->metadata_type);
7775 else
7776 seq_printf(seq, " super non-persistent");
7777
7778 if (mddev->pers) {
7779 mddev->pers->status(seq, mddev);
7780 seq_printf(seq, "\n ");
7781 if (mddev->pers->sync_request) {
7782 if (status_resync(seq, mddev))
7783 seq_printf(seq, "\n ");
7784 }
7785 } else
7786 seq_printf(seq, "\n ");
7787
7788 bitmap_status(seq, mddev->bitmap);
7789
7790 seq_printf(seq, "\n");
7791 }
7792 spin_unlock(&mddev->lock);
7793
7794 return 0;
7795 }
7796
7797 static const struct seq_operations md_seq_ops = {
7798 .start = md_seq_start,
7799 .next = md_seq_next,
7800 .stop = md_seq_stop,
7801 .show = md_seq_show,
7802 };
7803
7804 static int md_seq_open(struct inode *inode, struct file *file)
7805 {
7806 struct seq_file *seq;
7807 int error;
7808
7809 error = seq_open(file, &md_seq_ops);
7810 if (error)
7811 return error;
7812
7813 seq = file->private_data;
7814 seq->poll_event = atomic_read(&md_event_count);
7815 return error;
7816 }
7817
7818 static int md_unloading;
7819 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7820 {
7821 struct seq_file *seq = filp->private_data;
7822 int mask;
7823
7824 if (md_unloading)
7825 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7826 poll_wait(filp, &md_event_waiters, wait);
7827
7828 /* always allow read */
7829 mask = POLLIN | POLLRDNORM;
7830
7831 if (seq->poll_event != atomic_read(&md_event_count))
7832 mask |= POLLERR | POLLPRI;
7833 return mask;
7834 }
7835
7836 static const struct file_operations md_seq_fops = {
7837 .owner = THIS_MODULE,
7838 .open = md_seq_open,
7839 .read = seq_read,
7840 .llseek = seq_lseek,
7841 .release = seq_release_private,
7842 .poll = mdstat_poll,
7843 };
7844
7845 int register_md_personality(struct md_personality *p)
7846 {
7847 pr_debug("md: %s personality registered for level %d\n",
7848 p->name, p->level);
7849 spin_lock(&pers_lock);
7850 list_add_tail(&p->list, &pers_list);
7851 spin_unlock(&pers_lock);
7852 return 0;
7853 }
7854 EXPORT_SYMBOL(register_md_personality);
7855
7856 int unregister_md_personality(struct md_personality *p)
7857 {
7858 pr_debug("md: %s personality unregistered\n", p->name);
7859 spin_lock(&pers_lock);
7860 list_del_init(&p->list);
7861 spin_unlock(&pers_lock);
7862 return 0;
7863 }
7864 EXPORT_SYMBOL(unregister_md_personality);
7865
7866 int register_md_cluster_operations(struct md_cluster_operations *ops,
7867 struct module *module)
7868 {
7869 int ret = 0;
7870 spin_lock(&pers_lock);
7871 if (md_cluster_ops != NULL)
7872 ret = -EALREADY;
7873 else {
7874 md_cluster_ops = ops;
7875 md_cluster_mod = module;
7876 }
7877 spin_unlock(&pers_lock);
7878 return ret;
7879 }
7880 EXPORT_SYMBOL(register_md_cluster_operations);
7881
7882 int unregister_md_cluster_operations(void)
7883 {
7884 spin_lock(&pers_lock);
7885 md_cluster_ops = NULL;
7886 spin_unlock(&pers_lock);
7887 return 0;
7888 }
7889 EXPORT_SYMBOL(unregister_md_cluster_operations);
7890
7891 int md_setup_cluster(struct mddev *mddev, int nodes)
7892 {
7893 if (!md_cluster_ops)
7894 request_module("md-cluster");
7895 spin_lock(&pers_lock);
7896 /* ensure module won't be unloaded */
7897 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7898 pr_warn("can't find md-cluster module or get it's reference.\n");
7899 spin_unlock(&pers_lock);
7900 return -ENOENT;
7901 }
7902 spin_unlock(&pers_lock);
7903
7904 return md_cluster_ops->join(mddev, nodes);
7905 }
7906
7907 void md_cluster_stop(struct mddev *mddev)
7908 {
7909 if (!md_cluster_ops)
7910 return;
7911 md_cluster_ops->leave(mddev);
7912 module_put(md_cluster_mod);
7913 }
7914
7915 static int is_mddev_idle(struct mddev *mddev, int init)
7916 {
7917 struct md_rdev *rdev;
7918 int idle;
7919 int curr_events;
7920
7921 idle = 1;
7922 rcu_read_lock();
7923 rdev_for_each_rcu(rdev, mddev) {
7924 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7925 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7926 (int)part_stat_read(&disk->part0, sectors[1]) -
7927 atomic_read(&disk->sync_io);
7928 /* sync IO will cause sync_io to increase before the disk_stats
7929 * as sync_io is counted when a request starts, and
7930 * disk_stats is counted when it completes.
7931 * So resync activity will cause curr_events to be smaller than
7932 * when there was no such activity.
7933 * non-sync IO will cause disk_stat to increase without
7934 * increasing sync_io so curr_events will (eventually)
7935 * be larger than it was before. Once it becomes
7936 * substantially larger, the test below will cause
7937 * the array to appear non-idle, and resync will slow
7938 * down.
7939 * If there is a lot of outstanding resync activity when
7940 * we set last_event to curr_events, then all that activity
7941 * completing might cause the array to appear non-idle
7942 * and resync will be slowed down even though there might
7943 * not have been non-resync activity. This will only
7944 * happen once though. 'last_events' will soon reflect
7945 * the state where there is little or no outstanding
7946 * resync requests, and further resync activity will
7947 * always make curr_events less than last_events.
7948 *
7949 */
7950 if (init || curr_events - rdev->last_events > 64) {
7951 rdev->last_events = curr_events;
7952 idle = 0;
7953 }
7954 }
7955 rcu_read_unlock();
7956 return idle;
7957 }
7958
7959 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7960 {
7961 /* another "blocks" (512byte) blocks have been synced */
7962 atomic_sub(blocks, &mddev->recovery_active);
7963 wake_up(&mddev->recovery_wait);
7964 if (!ok) {
7965 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7966 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7967 md_wakeup_thread(mddev->thread);
7968 // stop recovery, signal do_sync ....
7969 }
7970 }
7971 EXPORT_SYMBOL(md_done_sync);
7972
7973 /* md_write_start(mddev, bi)
7974 * If we need to update some array metadata (e.g. 'active' flag
7975 * in superblock) before writing, schedule a superblock update
7976 * and wait for it to complete.
7977 * A return value of 'false' means that the write wasn't recorded
7978 * and cannot proceed as the array is being suspend.
7979 */
7980 bool md_write_start(struct mddev *mddev, struct bio *bi)
7981 {
7982 int did_change = 0;
7983 if (bio_data_dir(bi) != WRITE)
7984 return true;
7985
7986 BUG_ON(mddev->ro == 1);
7987 if (mddev->ro == 2) {
7988 /* need to switch to read/write */
7989 mddev->ro = 0;
7990 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7991 md_wakeup_thread(mddev->thread);
7992 md_wakeup_thread(mddev->sync_thread);
7993 did_change = 1;
7994 }
7995 rcu_read_lock();
7996 percpu_ref_get(&mddev->writes_pending);
7997 smp_mb(); /* Match smp_mb in set_in_sync() */
7998 if (mddev->safemode == 1)
7999 mddev->safemode = 0;
8000 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8001 if (mddev->in_sync || !mddev->sync_checkers) {
8002 spin_lock(&mddev->lock);
8003 if (mddev->in_sync) {
8004 mddev->in_sync = 0;
8005 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8006 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8007 md_wakeup_thread(mddev->thread);
8008 did_change = 1;
8009 }
8010 spin_unlock(&mddev->lock);
8011 }
8012 rcu_read_unlock();
8013 if (did_change)
8014 sysfs_notify_dirent_safe(mddev->sysfs_state);
8015 wait_event(mddev->sb_wait,
8016 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && !mddev->suspended);
8017 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8018 percpu_ref_put(&mddev->writes_pending);
8019 return false;
8020 }
8021 return true;
8022 }
8023 EXPORT_SYMBOL(md_write_start);
8024
8025 /* md_write_inc can only be called when md_write_start() has
8026 * already been called at least once of the current request.
8027 * It increments the counter and is useful when a single request
8028 * is split into several parts. Each part causes an increment and
8029 * so needs a matching md_write_end().
8030 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8031 * a spinlocked region.
8032 */
8033 void md_write_inc(struct mddev *mddev, struct bio *bi)
8034 {
8035 if (bio_data_dir(bi) != WRITE)
8036 return;
8037 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8038 percpu_ref_get(&mddev->writes_pending);
8039 }
8040 EXPORT_SYMBOL(md_write_inc);
8041
8042 void md_write_end(struct mddev *mddev)
8043 {
8044 percpu_ref_put(&mddev->writes_pending);
8045
8046 if (mddev->safemode == 2)
8047 md_wakeup_thread(mddev->thread);
8048 else if (mddev->safemode_delay)
8049 /* The roundup() ensures this only performs locking once
8050 * every ->safemode_delay jiffies
8051 */
8052 mod_timer(&mddev->safemode_timer,
8053 roundup(jiffies, mddev->safemode_delay) +
8054 mddev->safemode_delay);
8055 }
8056
8057 EXPORT_SYMBOL(md_write_end);
8058
8059 /* md_allow_write(mddev)
8060 * Calling this ensures that the array is marked 'active' so that writes
8061 * may proceed without blocking. It is important to call this before
8062 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8063 * Must be called with mddev_lock held.
8064 */
8065 void md_allow_write(struct mddev *mddev)
8066 {
8067 if (!mddev->pers)
8068 return;
8069 if (mddev->ro)
8070 return;
8071 if (!mddev->pers->sync_request)
8072 return;
8073
8074 spin_lock(&mddev->lock);
8075 if (mddev->in_sync) {
8076 mddev->in_sync = 0;
8077 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8078 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8079 if (mddev->safemode_delay &&
8080 mddev->safemode == 0)
8081 mddev->safemode = 1;
8082 spin_unlock(&mddev->lock);
8083 md_update_sb(mddev, 0);
8084 sysfs_notify_dirent_safe(mddev->sysfs_state);
8085 /* wait for the dirty state to be recorded in the metadata */
8086 wait_event(mddev->sb_wait,
8087 !test_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags) &&
8088 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8089 } else
8090 spin_unlock(&mddev->lock);
8091 }
8092 EXPORT_SYMBOL_GPL(md_allow_write);
8093
8094 #define SYNC_MARKS 10
8095 #define SYNC_MARK_STEP (3*HZ)
8096 #define UPDATE_FREQUENCY (5*60*HZ)
8097 void md_do_sync(struct md_thread *thread)
8098 {
8099 struct mddev *mddev = thread->mddev;
8100 struct mddev *mddev2;
8101 unsigned int currspeed = 0,
8102 window;
8103 sector_t max_sectors,j, io_sectors, recovery_done;
8104 unsigned long mark[SYNC_MARKS];
8105 unsigned long update_time;
8106 sector_t mark_cnt[SYNC_MARKS];
8107 int last_mark,m;
8108 struct list_head *tmp;
8109 sector_t last_check;
8110 int skipped = 0;
8111 struct md_rdev *rdev;
8112 char *desc, *action = NULL;
8113 struct blk_plug plug;
8114 int ret;
8115
8116 /* just incase thread restarts... */
8117 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8118 return;
8119 if (mddev->ro) {/* never try to sync a read-only array */
8120 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8121 return;
8122 }
8123
8124 if (mddev_is_clustered(mddev)) {
8125 ret = md_cluster_ops->resync_start(mddev);
8126 if (ret)
8127 goto skip;
8128
8129 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8130 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8131 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8132 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8133 && ((unsigned long long)mddev->curr_resync_completed
8134 < (unsigned long long)mddev->resync_max_sectors))
8135 goto skip;
8136 }
8137
8138 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8139 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8140 desc = "data-check";
8141 action = "check";
8142 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8143 desc = "requested-resync";
8144 action = "repair";
8145 } else
8146 desc = "resync";
8147 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8148 desc = "reshape";
8149 else
8150 desc = "recovery";
8151
8152 mddev->last_sync_action = action ?: desc;
8153
8154 /* we overload curr_resync somewhat here.
8155 * 0 == not engaged in resync at all
8156 * 2 == checking that there is no conflict with another sync
8157 * 1 == like 2, but have yielded to allow conflicting resync to
8158 * commense
8159 * other == active in resync - this many blocks
8160 *
8161 * Before starting a resync we must have set curr_resync to
8162 * 2, and then checked that every "conflicting" array has curr_resync
8163 * less than ours. When we find one that is the same or higher
8164 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8165 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8166 * This will mean we have to start checking from the beginning again.
8167 *
8168 */
8169
8170 do {
8171 int mddev2_minor = -1;
8172 mddev->curr_resync = 2;
8173
8174 try_again:
8175 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8176 goto skip;
8177 for_each_mddev(mddev2, tmp) {
8178 if (mddev2 == mddev)
8179 continue;
8180 if (!mddev->parallel_resync
8181 && mddev2->curr_resync
8182 && match_mddev_units(mddev, mddev2)) {
8183 DEFINE_WAIT(wq);
8184 if (mddev < mddev2 && mddev->curr_resync == 2) {
8185 /* arbitrarily yield */
8186 mddev->curr_resync = 1;
8187 wake_up(&resync_wait);
8188 }
8189 if (mddev > mddev2 && mddev->curr_resync == 1)
8190 /* no need to wait here, we can wait the next
8191 * time 'round when curr_resync == 2
8192 */
8193 continue;
8194 /* We need to wait 'interruptible' so as not to
8195 * contribute to the load average, and not to
8196 * be caught by 'softlockup'
8197 */
8198 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8199 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8200 mddev2->curr_resync >= mddev->curr_resync) {
8201 if (mddev2_minor != mddev2->md_minor) {
8202 mddev2_minor = mddev2->md_minor;
8203 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8204 desc, mdname(mddev),
8205 mdname(mddev2));
8206 }
8207 mddev_put(mddev2);
8208 if (signal_pending(current))
8209 flush_signals(current);
8210 schedule();
8211 finish_wait(&resync_wait, &wq);
8212 goto try_again;
8213 }
8214 finish_wait(&resync_wait, &wq);
8215 }
8216 }
8217 } while (mddev->curr_resync < 2);
8218
8219 j = 0;
8220 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8221 /* resync follows the size requested by the personality,
8222 * which defaults to physical size, but can be virtual size
8223 */
8224 max_sectors = mddev->resync_max_sectors;
8225 atomic64_set(&mddev->resync_mismatches, 0);
8226 /* we don't use the checkpoint if there's a bitmap */
8227 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8228 j = mddev->resync_min;
8229 else if (!mddev->bitmap)
8230 j = mddev->recovery_cp;
8231
8232 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8233 max_sectors = mddev->resync_max_sectors;
8234 else {
8235 /* recovery follows the physical size of devices */
8236 max_sectors = mddev->dev_sectors;
8237 j = MaxSector;
8238 rcu_read_lock();
8239 rdev_for_each_rcu(rdev, mddev)
8240 if (rdev->raid_disk >= 0 &&
8241 !test_bit(Journal, &rdev->flags) &&
8242 !test_bit(Faulty, &rdev->flags) &&
8243 !test_bit(In_sync, &rdev->flags) &&
8244 rdev->recovery_offset < j)
8245 j = rdev->recovery_offset;
8246 rcu_read_unlock();
8247
8248 /* If there is a bitmap, we need to make sure all
8249 * writes that started before we added a spare
8250 * complete before we start doing a recovery.
8251 * Otherwise the write might complete and (via
8252 * bitmap_endwrite) set a bit in the bitmap after the
8253 * recovery has checked that bit and skipped that
8254 * region.
8255 */
8256 if (mddev->bitmap) {
8257 mddev->pers->quiesce(mddev, 1);
8258 mddev->pers->quiesce(mddev, 0);
8259 }
8260 }
8261
8262 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8263 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8264 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8265 speed_max(mddev), desc);
8266
8267 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8268
8269 io_sectors = 0;
8270 for (m = 0; m < SYNC_MARKS; m++) {
8271 mark[m] = jiffies;
8272 mark_cnt[m] = io_sectors;
8273 }
8274 last_mark = 0;
8275 mddev->resync_mark = mark[last_mark];
8276 mddev->resync_mark_cnt = mark_cnt[last_mark];
8277
8278 /*
8279 * Tune reconstruction:
8280 */
8281 window = 32*(PAGE_SIZE/512);
8282 pr_debug("md: using %dk window, over a total of %lluk.\n",
8283 window/2, (unsigned long long)max_sectors/2);
8284
8285 atomic_set(&mddev->recovery_active, 0);
8286 last_check = 0;
8287
8288 if (j>2) {
8289 pr_debug("md: resuming %s of %s from checkpoint.\n",
8290 desc, mdname(mddev));
8291 mddev->curr_resync = j;
8292 } else
8293 mddev->curr_resync = 3; /* no longer delayed */
8294 mddev->curr_resync_completed = j;
8295 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8296 md_new_event(mddev);
8297 update_time = jiffies;
8298
8299 blk_start_plug(&plug);
8300 while (j < max_sectors) {
8301 sector_t sectors;
8302
8303 skipped = 0;
8304
8305 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8306 ((mddev->curr_resync > mddev->curr_resync_completed &&
8307 (mddev->curr_resync - mddev->curr_resync_completed)
8308 > (max_sectors >> 4)) ||
8309 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8310 (j - mddev->curr_resync_completed)*2
8311 >= mddev->resync_max - mddev->curr_resync_completed ||
8312 mddev->curr_resync_completed > mddev->resync_max
8313 )) {
8314 /* time to update curr_resync_completed */
8315 wait_event(mddev->recovery_wait,
8316 atomic_read(&mddev->recovery_active) == 0);
8317 mddev->curr_resync_completed = j;
8318 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8319 j > mddev->recovery_cp)
8320 mddev->recovery_cp = j;
8321 update_time = jiffies;
8322 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8323 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8324 }
8325
8326 while (j >= mddev->resync_max &&
8327 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8328 /* As this condition is controlled by user-space,
8329 * we can block indefinitely, so use '_interruptible'
8330 * to avoid triggering warnings.
8331 */
8332 flush_signals(current); /* just in case */
8333 wait_event_interruptible(mddev->recovery_wait,
8334 mddev->resync_max > j
8335 || test_bit(MD_RECOVERY_INTR,
8336 &mddev->recovery));
8337 }
8338
8339 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8340 break;
8341
8342 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8343 if (sectors == 0) {
8344 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8345 break;
8346 }
8347
8348 if (!skipped) { /* actual IO requested */
8349 io_sectors += sectors;
8350 atomic_add(sectors, &mddev->recovery_active);
8351 }
8352
8353 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8354 break;
8355
8356 j += sectors;
8357 if (j > max_sectors)
8358 /* when skipping, extra large numbers can be returned. */
8359 j = max_sectors;
8360 if (j > 2)
8361 mddev->curr_resync = j;
8362 mddev->curr_mark_cnt = io_sectors;
8363 if (last_check == 0)
8364 /* this is the earliest that rebuild will be
8365 * visible in /proc/mdstat
8366 */
8367 md_new_event(mddev);
8368
8369 if (last_check + window > io_sectors || j == max_sectors)
8370 continue;
8371
8372 last_check = io_sectors;
8373 repeat:
8374 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8375 /* step marks */
8376 int next = (last_mark+1) % SYNC_MARKS;
8377
8378 mddev->resync_mark = mark[next];
8379 mddev->resync_mark_cnt = mark_cnt[next];
8380 mark[next] = jiffies;
8381 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8382 last_mark = next;
8383 }
8384
8385 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8386 break;
8387
8388 /*
8389 * this loop exits only if either when we are slower than
8390 * the 'hard' speed limit, or the system was IO-idle for
8391 * a jiffy.
8392 * the system might be non-idle CPU-wise, but we only care
8393 * about not overloading the IO subsystem. (things like an
8394 * e2fsck being done on the RAID array should execute fast)
8395 */
8396 cond_resched();
8397
8398 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8399 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8400 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8401
8402 if (currspeed > speed_min(mddev)) {
8403 if (currspeed > speed_max(mddev)) {
8404 msleep(500);
8405 goto repeat;
8406 }
8407 if (!is_mddev_idle(mddev, 0)) {
8408 /*
8409 * Give other IO more of a chance.
8410 * The faster the devices, the less we wait.
8411 */
8412 wait_event(mddev->recovery_wait,
8413 !atomic_read(&mddev->recovery_active));
8414 }
8415 }
8416 }
8417 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8418 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8419 ? "interrupted" : "done");
8420 /*
8421 * this also signals 'finished resyncing' to md_stop
8422 */
8423 blk_finish_plug(&plug);
8424 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8425
8426 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8427 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8428 mddev->curr_resync > 3) {
8429 mddev->curr_resync_completed = mddev->curr_resync;
8430 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8431 }
8432 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8433
8434 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8435 mddev->curr_resync > 3) {
8436 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8437 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8438 if (mddev->curr_resync >= mddev->recovery_cp) {
8439 pr_debug("md: checkpointing %s of %s.\n",
8440 desc, mdname(mddev));
8441 if (test_bit(MD_RECOVERY_ERROR,
8442 &mddev->recovery))
8443 mddev->recovery_cp =
8444 mddev->curr_resync_completed;
8445 else
8446 mddev->recovery_cp =
8447 mddev->curr_resync;
8448 }
8449 } else
8450 mddev->recovery_cp = MaxSector;
8451 } else {
8452 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8453 mddev->curr_resync = MaxSector;
8454 rcu_read_lock();
8455 rdev_for_each_rcu(rdev, mddev)
8456 if (rdev->raid_disk >= 0 &&
8457 mddev->delta_disks >= 0 &&
8458 !test_bit(Journal, &rdev->flags) &&
8459 !test_bit(Faulty, &rdev->flags) &&
8460 !test_bit(In_sync, &rdev->flags) &&
8461 rdev->recovery_offset < mddev->curr_resync)
8462 rdev->recovery_offset = mddev->curr_resync;
8463 rcu_read_unlock();
8464 }
8465 }
8466 skip:
8467 /* set CHANGE_PENDING here since maybe another update is needed,
8468 * so other nodes are informed. It should be harmless for normal
8469 * raid */
8470 set_mask_bits(&mddev->sb_flags, 0,
8471 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8472
8473 spin_lock(&mddev->lock);
8474 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8475 /* We completed so min/max setting can be forgotten if used. */
8476 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8477 mddev->resync_min = 0;
8478 mddev->resync_max = MaxSector;
8479 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8480 mddev->resync_min = mddev->curr_resync_completed;
8481 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8482 mddev->curr_resync = 0;
8483 spin_unlock(&mddev->lock);
8484
8485 wake_up(&resync_wait);
8486 md_wakeup_thread(mddev->thread);
8487 return;
8488 }
8489 EXPORT_SYMBOL_GPL(md_do_sync);
8490
8491 static int remove_and_add_spares(struct mddev *mddev,
8492 struct md_rdev *this)
8493 {
8494 struct md_rdev *rdev;
8495 int spares = 0;
8496 int removed = 0;
8497 bool remove_some = false;
8498
8499 rdev_for_each(rdev, mddev) {
8500 if ((this == NULL || rdev == this) &&
8501 rdev->raid_disk >= 0 &&
8502 !test_bit(Blocked, &rdev->flags) &&
8503 test_bit(Faulty, &rdev->flags) &&
8504 atomic_read(&rdev->nr_pending)==0) {
8505 /* Faulty non-Blocked devices with nr_pending == 0
8506 * never get nr_pending incremented,
8507 * never get Faulty cleared, and never get Blocked set.
8508 * So we can synchronize_rcu now rather than once per device
8509 */
8510 remove_some = true;
8511 set_bit(RemoveSynchronized, &rdev->flags);
8512 }
8513 }
8514
8515 if (remove_some)
8516 synchronize_rcu();
8517 rdev_for_each(rdev, mddev) {
8518 if ((this == NULL || rdev == this) &&
8519 rdev->raid_disk >= 0 &&
8520 !test_bit(Blocked, &rdev->flags) &&
8521 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8522 (!test_bit(In_sync, &rdev->flags) &&
8523 !test_bit(Journal, &rdev->flags))) &&
8524 atomic_read(&rdev->nr_pending)==0)) {
8525 if (mddev->pers->hot_remove_disk(
8526 mddev, rdev) == 0) {
8527 sysfs_unlink_rdev(mddev, rdev);
8528 rdev->raid_disk = -1;
8529 removed++;
8530 }
8531 }
8532 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8533 clear_bit(RemoveSynchronized, &rdev->flags);
8534 }
8535
8536 if (removed && mddev->kobj.sd)
8537 sysfs_notify(&mddev->kobj, NULL, "degraded");
8538
8539 if (this && removed)
8540 goto no_add;
8541
8542 rdev_for_each(rdev, mddev) {
8543 if (this && this != rdev)
8544 continue;
8545 if (test_bit(Candidate, &rdev->flags))
8546 continue;
8547 if (rdev->raid_disk >= 0 &&
8548 !test_bit(In_sync, &rdev->flags) &&
8549 !test_bit(Journal, &rdev->flags) &&
8550 !test_bit(Faulty, &rdev->flags))
8551 spares++;
8552 if (rdev->raid_disk >= 0)
8553 continue;
8554 if (test_bit(Faulty, &rdev->flags))
8555 continue;
8556 if (!test_bit(Journal, &rdev->flags)) {
8557 if (mddev->ro &&
8558 ! (rdev->saved_raid_disk >= 0 &&
8559 !test_bit(Bitmap_sync, &rdev->flags)))
8560 continue;
8561
8562 rdev->recovery_offset = 0;
8563 }
8564 if (mddev->pers->
8565 hot_add_disk(mddev, rdev) == 0) {
8566 if (sysfs_link_rdev(mddev, rdev))
8567 /* failure here is OK */;
8568 if (!test_bit(Journal, &rdev->flags))
8569 spares++;
8570 md_new_event(mddev);
8571 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8572 }
8573 }
8574 no_add:
8575 if (removed)
8576 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8577 return spares;
8578 }
8579
8580 static void md_start_sync(struct work_struct *ws)
8581 {
8582 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8583
8584 mddev->sync_thread = md_register_thread(md_do_sync,
8585 mddev,
8586 "resync");
8587 if (!mddev->sync_thread) {
8588 pr_warn("%s: could not start resync thread...\n",
8589 mdname(mddev));
8590 /* leave the spares where they are, it shouldn't hurt */
8591 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8592 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8593 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8594 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8595 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8596 wake_up(&resync_wait);
8597 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8598 &mddev->recovery))
8599 if (mddev->sysfs_action)
8600 sysfs_notify_dirent_safe(mddev->sysfs_action);
8601 } else
8602 md_wakeup_thread(mddev->sync_thread);
8603 sysfs_notify_dirent_safe(mddev->sysfs_action);
8604 md_new_event(mddev);
8605 }
8606
8607 /*
8608 * This routine is regularly called by all per-raid-array threads to
8609 * deal with generic issues like resync and super-block update.
8610 * Raid personalities that don't have a thread (linear/raid0) do not
8611 * need this as they never do any recovery or update the superblock.
8612 *
8613 * It does not do any resync itself, but rather "forks" off other threads
8614 * to do that as needed.
8615 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8616 * "->recovery" and create a thread at ->sync_thread.
8617 * When the thread finishes it sets MD_RECOVERY_DONE
8618 * and wakeups up this thread which will reap the thread and finish up.
8619 * This thread also removes any faulty devices (with nr_pending == 0).
8620 *
8621 * The overall approach is:
8622 * 1/ if the superblock needs updating, update it.
8623 * 2/ If a recovery thread is running, don't do anything else.
8624 * 3/ If recovery has finished, clean up, possibly marking spares active.
8625 * 4/ If there are any faulty devices, remove them.
8626 * 5/ If array is degraded, try to add spares devices
8627 * 6/ If array has spares or is not in-sync, start a resync thread.
8628 */
8629 void md_check_recovery(struct mddev *mddev)
8630 {
8631 if (mddev->suspended)
8632 return;
8633
8634 if (mddev->bitmap)
8635 bitmap_daemon_work(mddev);
8636
8637 if (signal_pending(current)) {
8638 if (mddev->pers->sync_request && !mddev->external) {
8639 pr_debug("md: %s in immediate safe mode\n",
8640 mdname(mddev));
8641 mddev->safemode = 2;
8642 }
8643 flush_signals(current);
8644 }
8645
8646 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8647 return;
8648 if ( ! (
8649 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8650 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8651 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8652 (mddev->external == 0 && mddev->safemode == 1) ||
8653 (mddev->safemode == 2
8654 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8655 ))
8656 return;
8657
8658 if (mddev_trylock(mddev)) {
8659 int spares = 0;
8660
8661 if (mddev->ro) {
8662 struct md_rdev *rdev;
8663 if (!mddev->external && mddev->in_sync)
8664 /* 'Blocked' flag not needed as failed devices
8665 * will be recorded if array switched to read/write.
8666 * Leaving it set will prevent the device
8667 * from being removed.
8668 */
8669 rdev_for_each(rdev, mddev)
8670 clear_bit(Blocked, &rdev->flags);
8671 /* On a read-only array we can:
8672 * - remove failed devices
8673 * - add already-in_sync devices if the array itself
8674 * is in-sync.
8675 * As we only add devices that are already in-sync,
8676 * we can activate the spares immediately.
8677 */
8678 remove_and_add_spares(mddev, NULL);
8679 /* There is no thread, but we need to call
8680 * ->spare_active and clear saved_raid_disk
8681 */
8682 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8683 md_reap_sync_thread(mddev);
8684 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8685 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8686 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8687 goto unlock;
8688 }
8689
8690 if (mddev_is_clustered(mddev)) {
8691 struct md_rdev *rdev;
8692 /* kick the device if another node issued a
8693 * remove disk.
8694 */
8695 rdev_for_each(rdev, mddev) {
8696 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8697 rdev->raid_disk < 0)
8698 md_kick_rdev_from_array(rdev);
8699 }
8700 }
8701
8702 if (!mddev->external && !mddev->in_sync) {
8703 spin_lock(&mddev->lock);
8704 set_in_sync(mddev);
8705 spin_unlock(&mddev->lock);
8706 }
8707
8708 if (mddev->sb_flags)
8709 md_update_sb(mddev, 0);
8710
8711 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8712 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8713 /* resync/recovery still happening */
8714 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8715 goto unlock;
8716 }
8717 if (mddev->sync_thread) {
8718 md_reap_sync_thread(mddev);
8719 goto unlock;
8720 }
8721 /* Set RUNNING before clearing NEEDED to avoid
8722 * any transients in the value of "sync_action".
8723 */
8724 mddev->curr_resync_completed = 0;
8725 spin_lock(&mddev->lock);
8726 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8727 spin_unlock(&mddev->lock);
8728 /* Clear some bits that don't mean anything, but
8729 * might be left set
8730 */
8731 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8732 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8733
8734 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8735 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8736 goto not_running;
8737 /* no recovery is running.
8738 * remove any failed drives, then
8739 * add spares if possible.
8740 * Spares are also removed and re-added, to allow
8741 * the personality to fail the re-add.
8742 */
8743
8744 if (mddev->reshape_position != MaxSector) {
8745 if (mddev->pers->check_reshape == NULL ||
8746 mddev->pers->check_reshape(mddev) != 0)
8747 /* Cannot proceed */
8748 goto not_running;
8749 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8750 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8751 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8752 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8753 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8754 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8755 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8756 } else if (mddev->recovery_cp < MaxSector) {
8757 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8758 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8759 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8760 /* nothing to be done ... */
8761 goto not_running;
8762
8763 if (mddev->pers->sync_request) {
8764 if (spares) {
8765 /* We are adding a device or devices to an array
8766 * which has the bitmap stored on all devices.
8767 * So make sure all bitmap pages get written
8768 */
8769 bitmap_write_all(mddev->bitmap);
8770 }
8771 INIT_WORK(&mddev->del_work, md_start_sync);
8772 queue_work(md_misc_wq, &mddev->del_work);
8773 goto unlock;
8774 }
8775 not_running:
8776 if (!mddev->sync_thread) {
8777 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8778 wake_up(&resync_wait);
8779 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8780 &mddev->recovery))
8781 if (mddev->sysfs_action)
8782 sysfs_notify_dirent_safe(mddev->sysfs_action);
8783 }
8784 unlock:
8785 wake_up(&mddev->sb_wait);
8786 mddev_unlock(mddev);
8787 }
8788 }
8789 EXPORT_SYMBOL(md_check_recovery);
8790
8791 void md_reap_sync_thread(struct mddev *mddev)
8792 {
8793 struct md_rdev *rdev;
8794
8795 /* resync has finished, collect result */
8796 md_unregister_thread(&mddev->sync_thread);
8797 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8798 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8799 /* success...*/
8800 /* activate any spares */
8801 if (mddev->pers->spare_active(mddev)) {
8802 sysfs_notify(&mddev->kobj, NULL,
8803 "degraded");
8804 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8805 }
8806 }
8807 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8808 mddev->pers->finish_reshape)
8809 mddev->pers->finish_reshape(mddev);
8810
8811 /* If array is no-longer degraded, then any saved_raid_disk
8812 * information must be scrapped.
8813 */
8814 if (!mddev->degraded)
8815 rdev_for_each(rdev, mddev)
8816 rdev->saved_raid_disk = -1;
8817
8818 md_update_sb(mddev, 1);
8819 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8820 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8821 * clustered raid */
8822 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8823 md_cluster_ops->resync_finish(mddev);
8824 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8825 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8826 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8827 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8828 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8829 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8830 wake_up(&resync_wait);
8831 /* flag recovery needed just to double check */
8832 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8833 sysfs_notify_dirent_safe(mddev->sysfs_action);
8834 md_new_event(mddev);
8835 if (mddev->event_work.func)
8836 queue_work(md_misc_wq, &mddev->event_work);
8837 }
8838 EXPORT_SYMBOL(md_reap_sync_thread);
8839
8840 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8841 {
8842 sysfs_notify_dirent_safe(rdev->sysfs_state);
8843 wait_event_timeout(rdev->blocked_wait,
8844 !test_bit(Blocked, &rdev->flags) &&
8845 !test_bit(BlockedBadBlocks, &rdev->flags),
8846 msecs_to_jiffies(5000));
8847 rdev_dec_pending(rdev, mddev);
8848 }
8849 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8850
8851 void md_finish_reshape(struct mddev *mddev)
8852 {
8853 /* called be personality module when reshape completes. */
8854 struct md_rdev *rdev;
8855
8856 rdev_for_each(rdev, mddev) {
8857 if (rdev->data_offset > rdev->new_data_offset)
8858 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8859 else
8860 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8861 rdev->data_offset = rdev->new_data_offset;
8862 }
8863 }
8864 EXPORT_SYMBOL(md_finish_reshape);
8865
8866 /* Bad block management */
8867
8868 /* Returns 1 on success, 0 on failure */
8869 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8870 int is_new)
8871 {
8872 struct mddev *mddev = rdev->mddev;
8873 int rv;
8874 if (is_new)
8875 s += rdev->new_data_offset;
8876 else
8877 s += rdev->data_offset;
8878 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8879 if (rv == 0) {
8880 /* Make sure they get written out promptly */
8881 if (test_bit(ExternalBbl, &rdev->flags))
8882 sysfs_notify(&rdev->kobj, NULL,
8883 "unacknowledged_bad_blocks");
8884 sysfs_notify_dirent_safe(rdev->sysfs_state);
8885 set_mask_bits(&mddev->sb_flags, 0,
8886 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
8887 md_wakeup_thread(rdev->mddev->thread);
8888 return 1;
8889 } else
8890 return 0;
8891 }
8892 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8893
8894 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8895 int is_new)
8896 {
8897 int rv;
8898 if (is_new)
8899 s += rdev->new_data_offset;
8900 else
8901 s += rdev->data_offset;
8902 rv = badblocks_clear(&rdev->badblocks, s, sectors);
8903 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
8904 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
8905 return rv;
8906 }
8907 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8908
8909 static int md_notify_reboot(struct notifier_block *this,
8910 unsigned long code, void *x)
8911 {
8912 struct list_head *tmp;
8913 struct mddev *mddev;
8914 int need_delay = 0;
8915
8916 for_each_mddev(mddev, tmp) {
8917 if (mddev_trylock(mddev)) {
8918 if (mddev->pers)
8919 __md_stop_writes(mddev);
8920 if (mddev->persistent)
8921 mddev->safemode = 2;
8922 mddev_unlock(mddev);
8923 }
8924 need_delay = 1;
8925 }
8926 /*
8927 * certain more exotic SCSI devices are known to be
8928 * volatile wrt too early system reboots. While the
8929 * right place to handle this issue is the given
8930 * driver, we do want to have a safe RAID driver ...
8931 */
8932 if (need_delay)
8933 mdelay(1000*1);
8934
8935 return NOTIFY_DONE;
8936 }
8937
8938 static struct notifier_block md_notifier = {
8939 .notifier_call = md_notify_reboot,
8940 .next = NULL,
8941 .priority = INT_MAX, /* before any real devices */
8942 };
8943
8944 static void md_geninit(void)
8945 {
8946 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8947
8948 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8949 }
8950
8951 static int __init md_init(void)
8952 {
8953 int ret = -ENOMEM;
8954
8955 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8956 if (!md_wq)
8957 goto err_wq;
8958
8959 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8960 if (!md_misc_wq)
8961 goto err_misc_wq;
8962
8963 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8964 goto err_md;
8965
8966 if ((ret = register_blkdev(0, "mdp")) < 0)
8967 goto err_mdp;
8968 mdp_major = ret;
8969
8970 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8971 md_probe, NULL, NULL);
8972 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8973 md_probe, NULL, NULL);
8974
8975 register_reboot_notifier(&md_notifier);
8976 raid_table_header = register_sysctl_table(raid_root_table);
8977
8978 md_geninit();
8979 return 0;
8980
8981 err_mdp:
8982 unregister_blkdev(MD_MAJOR, "md");
8983 err_md:
8984 destroy_workqueue(md_misc_wq);
8985 err_misc_wq:
8986 destroy_workqueue(md_wq);
8987 err_wq:
8988 return ret;
8989 }
8990
8991 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8992 {
8993 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8994 struct md_rdev *rdev2;
8995 int role, ret;
8996 char b[BDEVNAME_SIZE];
8997
8998 /*
8999 * If size is changed in another node then we need to
9000 * do resize as well.
9001 */
9002 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9003 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9004 if (ret)
9005 pr_info("md-cluster: resize failed\n");
9006 else
9007 bitmap_update_sb(mddev->bitmap);
9008 }
9009
9010 /* Check for change of roles in the active devices */
9011 rdev_for_each(rdev2, mddev) {
9012 if (test_bit(Faulty, &rdev2->flags))
9013 continue;
9014
9015 /* Check if the roles changed */
9016 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9017
9018 if (test_bit(Candidate, &rdev2->flags)) {
9019 if (role == 0xfffe) {
9020 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9021 md_kick_rdev_from_array(rdev2);
9022 continue;
9023 }
9024 else
9025 clear_bit(Candidate, &rdev2->flags);
9026 }
9027
9028 if (role != rdev2->raid_disk) {
9029 /* got activated */
9030 if (rdev2->raid_disk == -1 && role != 0xffff) {
9031 rdev2->saved_raid_disk = role;
9032 ret = remove_and_add_spares(mddev, rdev2);
9033 pr_info("Activated spare: %s\n",
9034 bdevname(rdev2->bdev,b));
9035 /* wakeup mddev->thread here, so array could
9036 * perform resync with the new activated disk */
9037 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9038 md_wakeup_thread(mddev->thread);
9039
9040 }
9041 /* device faulty
9042 * We just want to do the minimum to mark the disk
9043 * as faulty. The recovery is performed by the
9044 * one who initiated the error.
9045 */
9046 if ((role == 0xfffe) || (role == 0xfffd)) {
9047 md_error(mddev, rdev2);
9048 clear_bit(Blocked, &rdev2->flags);
9049 }
9050 }
9051 }
9052
9053 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9054 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9055
9056 /* Finally set the event to be up to date */
9057 mddev->events = le64_to_cpu(sb->events);
9058 }
9059
9060 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9061 {
9062 int err;
9063 struct page *swapout = rdev->sb_page;
9064 struct mdp_superblock_1 *sb;
9065
9066 /* Store the sb page of the rdev in the swapout temporary
9067 * variable in case we err in the future
9068 */
9069 rdev->sb_page = NULL;
9070 err = alloc_disk_sb(rdev);
9071 if (err == 0) {
9072 ClearPageUptodate(rdev->sb_page);
9073 rdev->sb_loaded = 0;
9074 err = super_types[mddev->major_version].
9075 load_super(rdev, NULL, mddev->minor_version);
9076 }
9077 if (err < 0) {
9078 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9079 __func__, __LINE__, rdev->desc_nr, err);
9080 if (rdev->sb_page)
9081 put_page(rdev->sb_page);
9082 rdev->sb_page = swapout;
9083 rdev->sb_loaded = 1;
9084 return err;
9085 }
9086
9087 sb = page_address(rdev->sb_page);
9088 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9089 * is not set
9090 */
9091
9092 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9093 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9094
9095 /* The other node finished recovery, call spare_active to set
9096 * device In_sync and mddev->degraded
9097 */
9098 if (rdev->recovery_offset == MaxSector &&
9099 !test_bit(In_sync, &rdev->flags) &&
9100 mddev->pers->spare_active(mddev))
9101 sysfs_notify(&mddev->kobj, NULL, "degraded");
9102
9103 put_page(swapout);
9104 return 0;
9105 }
9106
9107 void md_reload_sb(struct mddev *mddev, int nr)
9108 {
9109 struct md_rdev *rdev;
9110 int err;
9111
9112 /* Find the rdev */
9113 rdev_for_each_rcu(rdev, mddev) {
9114 if (rdev->desc_nr == nr)
9115 break;
9116 }
9117
9118 if (!rdev || rdev->desc_nr != nr) {
9119 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9120 return;
9121 }
9122
9123 err = read_rdev(mddev, rdev);
9124 if (err < 0)
9125 return;
9126
9127 check_sb_changes(mddev, rdev);
9128
9129 /* Read all rdev's to update recovery_offset */
9130 rdev_for_each_rcu(rdev, mddev)
9131 read_rdev(mddev, rdev);
9132 }
9133 EXPORT_SYMBOL(md_reload_sb);
9134
9135 #ifndef MODULE
9136
9137 /*
9138 * Searches all registered partitions for autorun RAID arrays
9139 * at boot time.
9140 */
9141
9142 static DEFINE_MUTEX(detected_devices_mutex);
9143 static LIST_HEAD(all_detected_devices);
9144 struct detected_devices_node {
9145 struct list_head list;
9146 dev_t dev;
9147 };
9148
9149 void md_autodetect_dev(dev_t dev)
9150 {
9151 struct detected_devices_node *node_detected_dev;
9152
9153 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9154 if (node_detected_dev) {
9155 node_detected_dev->dev = dev;
9156 mutex_lock(&detected_devices_mutex);
9157 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9158 mutex_unlock(&detected_devices_mutex);
9159 }
9160 }
9161
9162 static void autostart_arrays(int part)
9163 {
9164 struct md_rdev *rdev;
9165 struct detected_devices_node *node_detected_dev;
9166 dev_t dev;
9167 int i_scanned, i_passed;
9168
9169 i_scanned = 0;
9170 i_passed = 0;
9171
9172 pr_info("md: Autodetecting RAID arrays.\n");
9173
9174 mutex_lock(&detected_devices_mutex);
9175 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9176 i_scanned++;
9177 node_detected_dev = list_entry(all_detected_devices.next,
9178 struct detected_devices_node, list);
9179 list_del(&node_detected_dev->list);
9180 dev = node_detected_dev->dev;
9181 kfree(node_detected_dev);
9182 mutex_unlock(&detected_devices_mutex);
9183 rdev = md_import_device(dev,0, 90);
9184 mutex_lock(&detected_devices_mutex);
9185 if (IS_ERR(rdev))
9186 continue;
9187
9188 if (test_bit(Faulty, &rdev->flags))
9189 continue;
9190
9191 set_bit(AutoDetected, &rdev->flags);
9192 list_add(&rdev->same_set, &pending_raid_disks);
9193 i_passed++;
9194 }
9195 mutex_unlock(&detected_devices_mutex);
9196
9197 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9198
9199 autorun_devices(part);
9200 }
9201
9202 #endif /* !MODULE */
9203
9204 static __exit void md_exit(void)
9205 {
9206 struct mddev *mddev;
9207 struct list_head *tmp;
9208 int delay = 1;
9209
9210 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9211 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9212
9213 unregister_blkdev(MD_MAJOR,"md");
9214 unregister_blkdev(mdp_major, "mdp");
9215 unregister_reboot_notifier(&md_notifier);
9216 unregister_sysctl_table(raid_table_header);
9217
9218 /* We cannot unload the modules while some process is
9219 * waiting for us in select() or poll() - wake them up
9220 */
9221 md_unloading = 1;
9222 while (waitqueue_active(&md_event_waiters)) {
9223 /* not safe to leave yet */
9224 wake_up(&md_event_waiters);
9225 msleep(delay);
9226 delay += delay;
9227 }
9228 remove_proc_entry("mdstat", NULL);
9229
9230 for_each_mddev(mddev, tmp) {
9231 export_array(mddev);
9232 mddev->ctime = 0;
9233 mddev->hold_active = 0;
9234 /*
9235 * for_each_mddev() will call mddev_put() at the end of each
9236 * iteration. As the mddev is now fully clear, this will
9237 * schedule the mddev for destruction by a workqueue, and the
9238 * destroy_workqueue() below will wait for that to complete.
9239 */
9240 }
9241 destroy_workqueue(md_misc_wq);
9242 destroy_workqueue(md_wq);
9243 }
9244
9245 subsys_initcall(md_init);
9246 module_exit(md_exit)
9247
9248 static int get_ro(char *buffer, struct kernel_param *kp)
9249 {
9250 return sprintf(buffer, "%d", start_readonly);
9251 }
9252 static int set_ro(const char *val, struct kernel_param *kp)
9253 {
9254 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9255 }
9256
9257 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9258 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9259 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9260 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9261
9262 MODULE_LICENSE("GPL");
9263 MODULE_DESCRIPTION("MD RAID framework");
9264 MODULE_ALIAS("md");
9265 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);