]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/md.c
tile_net: Always enable PTP clock support on TILE-Gx
[mirror_ubuntu-bionic-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187 * We have a system wide 'event count' that is incremented
188 * on any 'interesting' event, and readers of /proc/mdstat
189 * can use 'poll' or 'select' to find out when the event
190 * count increases.
191 *
192 * Events are:
193 * start array, stop array, error, add device, remove device,
194 * start build, activate spare
195 */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 atomic_inc(&md_event_count);
201 wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206 * when calling sysfs_notify isn't needed.
207 */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 atomic_inc(&md_event_count);
211 wake_up(&md_event_waiters);
212 }
213
214 /*
215 * Enables to iterate over all existing md arrays
216 * all_mddevs_lock protects this list.
217 */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223 * iterates through all used mddevs in the system.
224 * We take care to grab the all_mddevs_lock whenever navigating
225 * the list, and to always hold a refcount when unlocked.
226 * Any code which breaks out of this loop while own
227 * a reference to the current mddev and must mddev_put it.
228 */
229 #define for_each_mddev(_mddev,_tmp) \
230 \
231 for (({ spin_lock(&all_mddevs_lock); \
232 _tmp = all_mddevs.next; \
233 _mddev = NULL;}); \
234 ({ if (_tmp != &all_mddevs) \
235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 spin_unlock(&all_mddevs_lock); \
237 if (_mddev) mddev_put(_mddev); \
238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
239 _tmp != &all_mddevs;}); \
240 ({ spin_lock(&all_mddevs_lock); \
241 _tmp = _tmp->next;}) \
242 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246 * IO requests come here first so that we can check if the device is
247 * being suspended pending a reconfiguration.
248 * We hold a refcount over the call to ->make_request. By the time that
249 * call has finished, the bio has been linked into some internal structure
250 * and so is visible to ->quiesce(), so we don't need the refcount any more.
251 */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 const int rw = bio_data_dir(bio);
255 struct mddev *mddev = q->queuedata;
256 int cpu;
257 unsigned int sectors;
258
259 if (mddev == NULL || mddev->pers == NULL
260 || !mddev->ready) {
261 bio_io_error(bio);
262 return;
263 }
264 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 return;
267 }
268 smp_rmb(); /* Ensure implications of 'active' are visible */
269 rcu_read_lock();
270 if (mddev->suspended) {
271 DEFINE_WAIT(__wait);
272 for (;;) {
273 prepare_to_wait(&mddev->sb_wait, &__wait,
274 TASK_UNINTERRUPTIBLE);
275 if (!mddev->suspended)
276 break;
277 rcu_read_unlock();
278 schedule();
279 rcu_read_lock();
280 }
281 finish_wait(&mddev->sb_wait, &__wait);
282 }
283 atomic_inc(&mddev->active_io);
284 rcu_read_unlock();
285
286 /*
287 * save the sectors now since our bio can
288 * go away inside make_request
289 */
290 sectors = bio_sectors(bio);
291 mddev->pers->make_request(mddev, bio);
292
293 cpu = part_stat_lock();
294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296 part_stat_unlock();
297
298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once ->stop is called and completes, the module will be completely
306 * unused.
307 */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 BUG_ON(mddev->suspended);
311 mddev->suspended = 1;
312 synchronize_rcu();
313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 mddev->pers->quiesce(mddev, 1);
315
316 del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322 mddev->suspended = 0;
323 wake_up(&mddev->sb_wait);
324 mddev->pers->quiesce(mddev, 0);
325
326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 md_wakeup_thread(mddev->thread);
328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339 * Generic flush handling for md
340 */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344 struct md_rdev *rdev = bio->bi_private;
345 struct mddev *mddev = rdev->mddev;
346
347 rdev_dec_pending(rdev, mddev);
348
349 if (atomic_dec_and_test(&mddev->flush_pending)) {
350 /* The pre-request flush has finished */
351 queue_work(md_wq, &mddev->flush_work);
352 }
353 bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 struct md_rdev *rdev;
362
363 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 atomic_set(&mddev->flush_pending, 1);
365 rcu_read_lock();
366 rdev_for_each_rcu(rdev, mddev)
367 if (rdev->raid_disk >= 0 &&
368 !test_bit(Faulty, &rdev->flags)) {
369 /* Take two references, one is dropped
370 * when request finishes, one after
371 * we reclaim rcu_read_lock
372 */
373 struct bio *bi;
374 atomic_inc(&rdev->nr_pending);
375 atomic_inc(&rdev->nr_pending);
376 rcu_read_unlock();
377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 bi->bi_end_io = md_end_flush;
379 bi->bi_private = rdev;
380 bi->bi_bdev = rdev->bdev;
381 atomic_inc(&mddev->flush_pending);
382 submit_bio(WRITE_FLUSH, bi);
383 rcu_read_lock();
384 rdev_dec_pending(rdev, mddev);
385 }
386 rcu_read_unlock();
387 if (atomic_dec_and_test(&mddev->flush_pending))
388 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 struct bio *bio = mddev->flush_bio;
395
396 if (bio->bi_size == 0)
397 /* an empty barrier - all done */
398 bio_endio(bio, 0);
399 else {
400 bio->bi_rw &= ~REQ_FLUSH;
401 mddev->pers->make_request(mddev, bio);
402 }
403
404 mddev->flush_bio = NULL;
405 wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410 spin_lock_irq(&mddev->write_lock);
411 wait_event_lock_irq(mddev->sb_wait,
412 !mddev->flush_bio,
413 mddev->write_lock);
414 mddev->flush_bio = bio;
415 spin_unlock_irq(&mddev->write_lock);
416
417 INIT_WORK(&mddev->flush_work, submit_flushes);
418 queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424 struct mddev *mddev = cb->data;
425 md_wakeup_thread(mddev->thread);
426 kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432 atomic_inc(&mddev->active);
433 return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440 struct bio_set *bs = NULL;
441
442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443 return;
444 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 mddev->ctime == 0 && !mddev->hold_active) {
446 /* Array is not configured at all, and not held active,
447 * so destroy it */
448 list_del_init(&mddev->all_mddevs);
449 bs = mddev->bio_set;
450 mddev->bio_set = NULL;
451 if (mddev->gendisk) {
452 /* We did a probe so need to clean up. Call
453 * queue_work inside the spinlock so that
454 * flush_workqueue() after mddev_find will
455 * succeed in waiting for the work to be done.
456 */
457 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 queue_work(md_misc_wq, &mddev->del_work);
459 } else
460 kfree(mddev);
461 }
462 spin_unlock(&all_mddevs_lock);
463 if (bs)
464 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469 mutex_init(&mddev->open_mutex);
470 mutex_init(&mddev->reconfig_mutex);
471 mutex_init(&mddev->bitmap_info.mutex);
472 INIT_LIST_HEAD(&mddev->disks);
473 INIT_LIST_HEAD(&mddev->all_mddevs);
474 init_timer(&mddev->safemode_timer);
475 atomic_set(&mddev->active, 1);
476 atomic_set(&mddev->openers, 0);
477 atomic_set(&mddev->active_io, 0);
478 spin_lock_init(&mddev->write_lock);
479 atomic_set(&mddev->flush_pending, 0);
480 init_waitqueue_head(&mddev->sb_wait);
481 init_waitqueue_head(&mddev->recovery_wait);
482 mddev->reshape_position = MaxSector;
483 mddev->reshape_backwards = 0;
484 mddev->last_sync_action = "none";
485 mddev->resync_min = 0;
486 mddev->resync_max = MaxSector;
487 mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493 struct mddev *mddev, *new = NULL;
494
495 if (unit && MAJOR(unit) != MD_MAJOR)
496 unit &= ~((1<<MdpMinorShift)-1);
497
498 retry:
499 spin_lock(&all_mddevs_lock);
500
501 if (unit) {
502 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 if (mddev->unit == unit) {
504 mddev_get(mddev);
505 spin_unlock(&all_mddevs_lock);
506 kfree(new);
507 return mddev;
508 }
509
510 if (new) {
511 list_add(&new->all_mddevs, &all_mddevs);
512 spin_unlock(&all_mddevs_lock);
513 new->hold_active = UNTIL_IOCTL;
514 return new;
515 }
516 } else if (new) {
517 /* find an unused unit number */
518 static int next_minor = 512;
519 int start = next_minor;
520 int is_free = 0;
521 int dev = 0;
522 while (!is_free) {
523 dev = MKDEV(MD_MAJOR, next_minor);
524 next_minor++;
525 if (next_minor > MINORMASK)
526 next_minor = 0;
527 if (next_minor == start) {
528 /* Oh dear, all in use. */
529 spin_unlock(&all_mddevs_lock);
530 kfree(new);
531 return NULL;
532 }
533
534 is_free = 1;
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == dev) {
537 is_free = 0;
538 break;
539 }
540 }
541 new->unit = dev;
542 new->md_minor = MINOR(dev);
543 new->hold_active = UNTIL_STOP;
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
546 return new;
547 }
548 spin_unlock(&all_mddevs_lock);
549
550 new = kzalloc(sizeof(*new), GFP_KERNEL);
551 if (!new)
552 return NULL;
553
554 new->unit = unit;
555 if (MAJOR(unit) == MD_MAJOR)
556 new->md_minor = MINOR(unit);
557 else
558 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560 mddev_init(new);
561
562 goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567 return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571 * failure due to interrupts is not acceptable.
572 */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575 mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580 return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585 return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592 if (mddev->to_remove) {
593 /* These cannot be removed under reconfig_mutex as
594 * an access to the files will try to take reconfig_mutex
595 * while holding the file unremovable, which leads to
596 * a deadlock.
597 * So hold set sysfs_active while the remove in happeing,
598 * and anything else which might set ->to_remove or my
599 * otherwise change the sysfs namespace will fail with
600 * -EBUSY if sysfs_active is still set.
601 * We set sysfs_active under reconfig_mutex and elsewhere
602 * test it under the same mutex to ensure its correct value
603 * is seen.
604 */
605 struct attribute_group *to_remove = mddev->to_remove;
606 mddev->to_remove = NULL;
607 mddev->sysfs_active = 1;
608 mutex_unlock(&mddev->reconfig_mutex);
609
610 if (mddev->kobj.sd) {
611 if (to_remove != &md_redundancy_group)
612 sysfs_remove_group(&mddev->kobj, to_remove);
613 if (mddev->pers == NULL ||
614 mddev->pers->sync_request == NULL) {
615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616 if (mddev->sysfs_action)
617 sysfs_put(mddev->sysfs_action);
618 mddev->sysfs_action = NULL;
619 }
620 }
621 mddev->sysfs_active = 0;
622 } else
623 mutex_unlock(&mddev->reconfig_mutex);
624
625 /* As we've dropped the mutex we need a spinlock to
626 * make sure the thread doesn't disappear
627 */
628 spin_lock(&pers_lock);
629 md_wakeup_thread(mddev->thread);
630 spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635 struct md_rdev *rdev;
636
637 rdev_for_each(rdev, mddev)
638 if (rdev->desc_nr == nr)
639 return rdev;
640
641 return NULL;
642 }
643
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 struct md_rdev *rdev;
647
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
650 return rdev;
651
652 return NULL;
653 }
654
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657 struct md_rdev *rdev;
658
659 rdev_for_each(rdev, mddev)
660 if (rdev->bdev->bd_dev == dev)
661 return rdev;
662
663 return NULL;
664 }
665
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668 struct md_rdev *rdev;
669
670 rdev_for_each_rcu(rdev, mddev)
671 if (rdev->bdev->bd_dev == dev)
672 return rdev;
673
674 return NULL;
675 }
676
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679 struct md_personality *pers;
680 list_for_each_entry(pers, &pers_list, list) {
681 if (level != LEVEL_NONE && pers->level == level)
682 return pers;
683 if (strcmp(pers->name, clevel)==0)
684 return pers;
685 }
686 return NULL;
687 }
688
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693 return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698 if (rdev->sb_page)
699 MD_BUG();
700
701 rdev->sb_page = alloc_page(GFP_KERNEL);
702 if (!rdev->sb_page) {
703 printk(KERN_ALERT "md: out of memory.\n");
704 return -ENOMEM;
705 }
706
707 return 0;
708 }
709
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712 if (rdev->sb_page) {
713 put_page(rdev->sb_page);
714 rdev->sb_loaded = 0;
715 rdev->sb_page = NULL;
716 rdev->sb_start = 0;
717 rdev->sectors = 0;
718 }
719 if (rdev->bb_page) {
720 put_page(rdev->bb_page);
721 rdev->bb_page = NULL;
722 }
723 kfree(rdev->badblocks.page);
724 rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727
728 static void super_written(struct bio *bio, int error)
729 {
730 struct md_rdev *rdev = bio->bi_private;
731 struct mddev *mddev = rdev->mddev;
732
733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734 printk("md: super_written gets error=%d, uptodate=%d\n",
735 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737 md_error(mddev, rdev);
738 }
739
740 if (atomic_dec_and_test(&mddev->pending_writes))
741 wake_up(&mddev->sb_wait);
742 bio_put(bio);
743 }
744
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746 sector_t sector, int size, struct page *page)
747 {
748 /* write first size bytes of page to sector of rdev
749 * Increment mddev->pending_writes before returning
750 * and decrement it on completion, waking up sb_wait
751 * if zero is reached.
752 * If an error occurred, call md_error
753 */
754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755
756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757 bio->bi_sector = sector;
758 bio_add_page(bio, page, size, 0);
759 bio->bi_private = rdev;
760 bio->bi_end_io = super_written;
761
762 atomic_inc(&mddev->pending_writes);
763 submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765
766 void md_super_wait(struct mddev *mddev)
767 {
768 /* wait for all superblock writes that were scheduled to complete */
769 DEFINE_WAIT(wq);
770 for(;;) {
771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772 if (atomic_read(&mddev->pending_writes)==0)
773 break;
774 schedule();
775 }
776 finish_wait(&mddev->sb_wait, &wq);
777 }
778
779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
780 struct page *page, int rw, bool metadata_op)
781 {
782 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
783 int ret;
784
785 rw |= REQ_SYNC;
786
787 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
788 rdev->meta_bdev : rdev->bdev;
789 if (metadata_op)
790 bio->bi_sector = sector + rdev->sb_start;
791 else if (rdev->mddev->reshape_position != MaxSector &&
792 (rdev->mddev->reshape_backwards ==
793 (sector >= rdev->mddev->reshape_position)))
794 bio->bi_sector = sector + rdev->new_data_offset;
795 else
796 bio->bi_sector = sector + rdev->data_offset;
797 bio_add_page(bio, page, size, 0);
798 submit_bio_wait(rw, bio);
799
800 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
801 bio_put(bio);
802 return ret;
803 }
804 EXPORT_SYMBOL_GPL(sync_page_io);
805
806 static int read_disk_sb(struct md_rdev * rdev, int size)
807 {
808 char b[BDEVNAME_SIZE];
809 if (!rdev->sb_page) {
810 MD_BUG();
811 return -EINVAL;
812 }
813 if (rdev->sb_loaded)
814 return 0;
815
816
817 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
818 goto fail;
819 rdev->sb_loaded = 1;
820 return 0;
821
822 fail:
823 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
824 bdevname(rdev->bdev,b));
825 return -EINVAL;
826 }
827
828 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
829 {
830 return sb1->set_uuid0 == sb2->set_uuid0 &&
831 sb1->set_uuid1 == sb2->set_uuid1 &&
832 sb1->set_uuid2 == sb2->set_uuid2 &&
833 sb1->set_uuid3 == sb2->set_uuid3;
834 }
835
836 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
837 {
838 int ret;
839 mdp_super_t *tmp1, *tmp2;
840
841 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
842 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
843
844 if (!tmp1 || !tmp2) {
845 ret = 0;
846 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
847 goto abort;
848 }
849
850 *tmp1 = *sb1;
851 *tmp2 = *sb2;
852
853 /*
854 * nr_disks is not constant
855 */
856 tmp1->nr_disks = 0;
857 tmp2->nr_disks = 0;
858
859 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
860 abort:
861 kfree(tmp1);
862 kfree(tmp2);
863 return ret;
864 }
865
866
867 static u32 md_csum_fold(u32 csum)
868 {
869 csum = (csum & 0xffff) + (csum >> 16);
870 return (csum & 0xffff) + (csum >> 16);
871 }
872
873 static unsigned int calc_sb_csum(mdp_super_t * sb)
874 {
875 u64 newcsum = 0;
876 u32 *sb32 = (u32*)sb;
877 int i;
878 unsigned int disk_csum, csum;
879
880 disk_csum = sb->sb_csum;
881 sb->sb_csum = 0;
882
883 for (i = 0; i < MD_SB_BYTES/4 ; i++)
884 newcsum += sb32[i];
885 csum = (newcsum & 0xffffffff) + (newcsum>>32);
886
887
888 #ifdef CONFIG_ALPHA
889 /* This used to use csum_partial, which was wrong for several
890 * reasons including that different results are returned on
891 * different architectures. It isn't critical that we get exactly
892 * the same return value as before (we always csum_fold before
893 * testing, and that removes any differences). However as we
894 * know that csum_partial always returned a 16bit value on
895 * alphas, do a fold to maximise conformity to previous behaviour.
896 */
897 sb->sb_csum = md_csum_fold(disk_csum);
898 #else
899 sb->sb_csum = disk_csum;
900 #endif
901 return csum;
902 }
903
904
905 /*
906 * Handle superblock details.
907 * We want to be able to handle multiple superblock formats
908 * so we have a common interface to them all, and an array of
909 * different handlers.
910 * We rely on user-space to write the initial superblock, and support
911 * reading and updating of superblocks.
912 * Interface methods are:
913 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
914 * loads and validates a superblock on dev.
915 * if refdev != NULL, compare superblocks on both devices
916 * Return:
917 * 0 - dev has a superblock that is compatible with refdev
918 * 1 - dev has a superblock that is compatible and newer than refdev
919 * so dev should be used as the refdev in future
920 * -EINVAL superblock incompatible or invalid
921 * -othererror e.g. -EIO
922 *
923 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
924 * Verify that dev is acceptable into mddev.
925 * The first time, mddev->raid_disks will be 0, and data from
926 * dev should be merged in. Subsequent calls check that dev
927 * is new enough. Return 0 or -EINVAL
928 *
929 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
930 * Update the superblock for rdev with data in mddev
931 * This does not write to disc.
932 *
933 */
934
935 struct super_type {
936 char *name;
937 struct module *owner;
938 int (*load_super)(struct md_rdev *rdev,
939 struct md_rdev *refdev,
940 int minor_version);
941 int (*validate_super)(struct mddev *mddev,
942 struct md_rdev *rdev);
943 void (*sync_super)(struct mddev *mddev,
944 struct md_rdev *rdev);
945 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
946 sector_t num_sectors);
947 int (*allow_new_offset)(struct md_rdev *rdev,
948 unsigned long long new_offset);
949 };
950
951 /*
952 * Check that the given mddev has no bitmap.
953 *
954 * This function is called from the run method of all personalities that do not
955 * support bitmaps. It prints an error message and returns non-zero if mddev
956 * has a bitmap. Otherwise, it returns 0.
957 *
958 */
959 int md_check_no_bitmap(struct mddev *mddev)
960 {
961 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
962 return 0;
963 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
964 mdname(mddev), mddev->pers->name);
965 return 1;
966 }
967 EXPORT_SYMBOL(md_check_no_bitmap);
968
969 /*
970 * load_super for 0.90.0
971 */
972 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
973 {
974 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
975 mdp_super_t *sb;
976 int ret;
977
978 /*
979 * Calculate the position of the superblock (512byte sectors),
980 * it's at the end of the disk.
981 *
982 * It also happens to be a multiple of 4Kb.
983 */
984 rdev->sb_start = calc_dev_sboffset(rdev);
985
986 ret = read_disk_sb(rdev, MD_SB_BYTES);
987 if (ret) return ret;
988
989 ret = -EINVAL;
990
991 bdevname(rdev->bdev, b);
992 sb = page_address(rdev->sb_page);
993
994 if (sb->md_magic != MD_SB_MAGIC) {
995 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
996 b);
997 goto abort;
998 }
999
1000 if (sb->major_version != 0 ||
1001 sb->minor_version < 90 ||
1002 sb->minor_version > 91) {
1003 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1004 sb->major_version, sb->minor_version,
1005 b);
1006 goto abort;
1007 }
1008
1009 if (sb->raid_disks <= 0)
1010 goto abort;
1011
1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1014 b);
1015 goto abort;
1016 }
1017
1018 rdev->preferred_minor = sb->md_minor;
1019 rdev->data_offset = 0;
1020 rdev->new_data_offset = 0;
1021 rdev->sb_size = MD_SB_BYTES;
1022 rdev->badblocks.shift = -1;
1023
1024 if (sb->level == LEVEL_MULTIPATH)
1025 rdev->desc_nr = -1;
1026 else
1027 rdev->desc_nr = sb->this_disk.number;
1028
1029 if (!refdev) {
1030 ret = 1;
1031 } else {
1032 __u64 ev1, ev2;
1033 mdp_super_t *refsb = page_address(refdev->sb_page);
1034 if (!uuid_equal(refsb, sb)) {
1035 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1036 b, bdevname(refdev->bdev,b2));
1037 goto abort;
1038 }
1039 if (!sb_equal(refsb, sb)) {
1040 printk(KERN_WARNING "md: %s has same UUID"
1041 " but different superblock to %s\n",
1042 b, bdevname(refdev->bdev, b2));
1043 goto abort;
1044 }
1045 ev1 = md_event(sb);
1046 ev2 = md_event(refsb);
1047 if (ev1 > ev2)
1048 ret = 1;
1049 else
1050 ret = 0;
1051 }
1052 rdev->sectors = rdev->sb_start;
1053 /* Limit to 4TB as metadata cannot record more than that.
1054 * (not needed for Linear and RAID0 as metadata doesn't
1055 * record this size)
1056 */
1057 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1058 rdev->sectors = (2ULL << 32) - 2;
1059
1060 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1061 /* "this cannot possibly happen" ... */
1062 ret = -EINVAL;
1063
1064 abort:
1065 return ret;
1066 }
1067
1068 /*
1069 * validate_super for 0.90.0
1070 */
1071 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1072 {
1073 mdp_disk_t *desc;
1074 mdp_super_t *sb = page_address(rdev->sb_page);
1075 __u64 ev1 = md_event(sb);
1076
1077 rdev->raid_disk = -1;
1078 clear_bit(Faulty, &rdev->flags);
1079 clear_bit(In_sync, &rdev->flags);
1080 clear_bit(WriteMostly, &rdev->flags);
1081
1082 if (mddev->raid_disks == 0) {
1083 mddev->major_version = 0;
1084 mddev->minor_version = sb->minor_version;
1085 mddev->patch_version = sb->patch_version;
1086 mddev->external = 0;
1087 mddev->chunk_sectors = sb->chunk_size >> 9;
1088 mddev->ctime = sb->ctime;
1089 mddev->utime = sb->utime;
1090 mddev->level = sb->level;
1091 mddev->clevel[0] = 0;
1092 mddev->layout = sb->layout;
1093 mddev->raid_disks = sb->raid_disks;
1094 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1095 mddev->events = ev1;
1096 mddev->bitmap_info.offset = 0;
1097 mddev->bitmap_info.space = 0;
1098 /* bitmap can use 60 K after the 4K superblocks */
1099 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1100 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1101 mddev->reshape_backwards = 0;
1102
1103 if (mddev->minor_version >= 91) {
1104 mddev->reshape_position = sb->reshape_position;
1105 mddev->delta_disks = sb->delta_disks;
1106 mddev->new_level = sb->new_level;
1107 mddev->new_layout = sb->new_layout;
1108 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1109 if (mddev->delta_disks < 0)
1110 mddev->reshape_backwards = 1;
1111 } else {
1112 mddev->reshape_position = MaxSector;
1113 mddev->delta_disks = 0;
1114 mddev->new_level = mddev->level;
1115 mddev->new_layout = mddev->layout;
1116 mddev->new_chunk_sectors = mddev->chunk_sectors;
1117 }
1118
1119 if (sb->state & (1<<MD_SB_CLEAN))
1120 mddev->recovery_cp = MaxSector;
1121 else {
1122 if (sb->events_hi == sb->cp_events_hi &&
1123 sb->events_lo == sb->cp_events_lo) {
1124 mddev->recovery_cp = sb->recovery_cp;
1125 } else
1126 mddev->recovery_cp = 0;
1127 }
1128
1129 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1130 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1131 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1132 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1133
1134 mddev->max_disks = MD_SB_DISKS;
1135
1136 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1137 mddev->bitmap_info.file == NULL) {
1138 mddev->bitmap_info.offset =
1139 mddev->bitmap_info.default_offset;
1140 mddev->bitmap_info.space =
1141 mddev->bitmap_info.default_space;
1142 }
1143
1144 } else if (mddev->pers == NULL) {
1145 /* Insist on good event counter while assembling, except
1146 * for spares (which don't need an event count) */
1147 ++ev1;
1148 if (sb->disks[rdev->desc_nr].state & (
1149 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1150 if (ev1 < mddev->events)
1151 return -EINVAL;
1152 } else if (mddev->bitmap) {
1153 /* if adding to array with a bitmap, then we can accept an
1154 * older device ... but not too old.
1155 */
1156 if (ev1 < mddev->bitmap->events_cleared)
1157 return 0;
1158 } else {
1159 if (ev1 < mddev->events)
1160 /* just a hot-add of a new device, leave raid_disk at -1 */
1161 return 0;
1162 }
1163
1164 if (mddev->level != LEVEL_MULTIPATH) {
1165 desc = sb->disks + rdev->desc_nr;
1166
1167 if (desc->state & (1<<MD_DISK_FAULTY))
1168 set_bit(Faulty, &rdev->flags);
1169 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1170 desc->raid_disk < mddev->raid_disks */) {
1171 set_bit(In_sync, &rdev->flags);
1172 rdev->raid_disk = desc->raid_disk;
1173 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1174 /* active but not in sync implies recovery up to
1175 * reshape position. We don't know exactly where
1176 * that is, so set to zero for now */
1177 if (mddev->minor_version >= 91) {
1178 rdev->recovery_offset = 0;
1179 rdev->raid_disk = desc->raid_disk;
1180 }
1181 }
1182 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1183 set_bit(WriteMostly, &rdev->flags);
1184 } else /* MULTIPATH are always insync */
1185 set_bit(In_sync, &rdev->flags);
1186 return 0;
1187 }
1188
1189 /*
1190 * sync_super for 0.90.0
1191 */
1192 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1193 {
1194 mdp_super_t *sb;
1195 struct md_rdev *rdev2;
1196 int next_spare = mddev->raid_disks;
1197
1198
1199 /* make rdev->sb match mddev data..
1200 *
1201 * 1/ zero out disks
1202 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1203 * 3/ any empty disks < next_spare become removed
1204 *
1205 * disks[0] gets initialised to REMOVED because
1206 * we cannot be sure from other fields if it has
1207 * been initialised or not.
1208 */
1209 int i;
1210 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1211
1212 rdev->sb_size = MD_SB_BYTES;
1213
1214 sb = page_address(rdev->sb_page);
1215
1216 memset(sb, 0, sizeof(*sb));
1217
1218 sb->md_magic = MD_SB_MAGIC;
1219 sb->major_version = mddev->major_version;
1220 sb->patch_version = mddev->patch_version;
1221 sb->gvalid_words = 0; /* ignored */
1222 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1223 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1224 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1225 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1226
1227 sb->ctime = mddev->ctime;
1228 sb->level = mddev->level;
1229 sb->size = mddev->dev_sectors / 2;
1230 sb->raid_disks = mddev->raid_disks;
1231 sb->md_minor = mddev->md_minor;
1232 sb->not_persistent = 0;
1233 sb->utime = mddev->utime;
1234 sb->state = 0;
1235 sb->events_hi = (mddev->events>>32);
1236 sb->events_lo = (u32)mddev->events;
1237
1238 if (mddev->reshape_position == MaxSector)
1239 sb->minor_version = 90;
1240 else {
1241 sb->minor_version = 91;
1242 sb->reshape_position = mddev->reshape_position;
1243 sb->new_level = mddev->new_level;
1244 sb->delta_disks = mddev->delta_disks;
1245 sb->new_layout = mddev->new_layout;
1246 sb->new_chunk = mddev->new_chunk_sectors << 9;
1247 }
1248 mddev->minor_version = sb->minor_version;
1249 if (mddev->in_sync)
1250 {
1251 sb->recovery_cp = mddev->recovery_cp;
1252 sb->cp_events_hi = (mddev->events>>32);
1253 sb->cp_events_lo = (u32)mddev->events;
1254 if (mddev->recovery_cp == MaxSector)
1255 sb->state = (1<< MD_SB_CLEAN);
1256 } else
1257 sb->recovery_cp = 0;
1258
1259 sb->layout = mddev->layout;
1260 sb->chunk_size = mddev->chunk_sectors << 9;
1261
1262 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1263 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1264
1265 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1266 rdev_for_each(rdev2, mddev) {
1267 mdp_disk_t *d;
1268 int desc_nr;
1269 int is_active = test_bit(In_sync, &rdev2->flags);
1270
1271 if (rdev2->raid_disk >= 0 &&
1272 sb->minor_version >= 91)
1273 /* we have nowhere to store the recovery_offset,
1274 * but if it is not below the reshape_position,
1275 * we can piggy-back on that.
1276 */
1277 is_active = 1;
1278 if (rdev2->raid_disk < 0 ||
1279 test_bit(Faulty, &rdev2->flags))
1280 is_active = 0;
1281 if (is_active)
1282 desc_nr = rdev2->raid_disk;
1283 else
1284 desc_nr = next_spare++;
1285 rdev2->desc_nr = desc_nr;
1286 d = &sb->disks[rdev2->desc_nr];
1287 nr_disks++;
1288 d->number = rdev2->desc_nr;
1289 d->major = MAJOR(rdev2->bdev->bd_dev);
1290 d->minor = MINOR(rdev2->bdev->bd_dev);
1291 if (is_active)
1292 d->raid_disk = rdev2->raid_disk;
1293 else
1294 d->raid_disk = rdev2->desc_nr; /* compatibility */
1295 if (test_bit(Faulty, &rdev2->flags))
1296 d->state = (1<<MD_DISK_FAULTY);
1297 else if (is_active) {
1298 d->state = (1<<MD_DISK_ACTIVE);
1299 if (test_bit(In_sync, &rdev2->flags))
1300 d->state |= (1<<MD_DISK_SYNC);
1301 active++;
1302 working++;
1303 } else {
1304 d->state = 0;
1305 spare++;
1306 working++;
1307 }
1308 if (test_bit(WriteMostly, &rdev2->flags))
1309 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1310 }
1311 /* now set the "removed" and "faulty" bits on any missing devices */
1312 for (i=0 ; i < mddev->raid_disks ; i++) {
1313 mdp_disk_t *d = &sb->disks[i];
1314 if (d->state == 0 && d->number == 0) {
1315 d->number = i;
1316 d->raid_disk = i;
1317 d->state = (1<<MD_DISK_REMOVED);
1318 d->state |= (1<<MD_DISK_FAULTY);
1319 failed++;
1320 }
1321 }
1322 sb->nr_disks = nr_disks;
1323 sb->active_disks = active;
1324 sb->working_disks = working;
1325 sb->failed_disks = failed;
1326 sb->spare_disks = spare;
1327
1328 sb->this_disk = sb->disks[rdev->desc_nr];
1329 sb->sb_csum = calc_sb_csum(sb);
1330 }
1331
1332 /*
1333 * rdev_size_change for 0.90.0
1334 */
1335 static unsigned long long
1336 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1337 {
1338 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1339 return 0; /* component must fit device */
1340 if (rdev->mddev->bitmap_info.offset)
1341 return 0; /* can't move bitmap */
1342 rdev->sb_start = calc_dev_sboffset(rdev);
1343 if (!num_sectors || num_sectors > rdev->sb_start)
1344 num_sectors = rdev->sb_start;
1345 /* Limit to 4TB as metadata cannot record more than that.
1346 * 4TB == 2^32 KB, or 2*2^32 sectors.
1347 */
1348 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1349 num_sectors = (2ULL << 32) - 2;
1350 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1351 rdev->sb_page);
1352 md_super_wait(rdev->mddev);
1353 return num_sectors;
1354 }
1355
1356 static int
1357 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1358 {
1359 /* non-zero offset changes not possible with v0.90 */
1360 return new_offset == 0;
1361 }
1362
1363 /*
1364 * version 1 superblock
1365 */
1366
1367 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1368 {
1369 __le32 disk_csum;
1370 u32 csum;
1371 unsigned long long newcsum;
1372 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1373 __le32 *isuper = (__le32*)sb;
1374
1375 disk_csum = sb->sb_csum;
1376 sb->sb_csum = 0;
1377 newcsum = 0;
1378 for (; size >= 4; size -= 4)
1379 newcsum += le32_to_cpu(*isuper++);
1380
1381 if (size == 2)
1382 newcsum += le16_to_cpu(*(__le16*) isuper);
1383
1384 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1385 sb->sb_csum = disk_csum;
1386 return cpu_to_le32(csum);
1387 }
1388
1389 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1390 int acknowledged);
1391 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1392 {
1393 struct mdp_superblock_1 *sb;
1394 int ret;
1395 sector_t sb_start;
1396 sector_t sectors;
1397 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1398 int bmask;
1399
1400 /*
1401 * Calculate the position of the superblock in 512byte sectors.
1402 * It is always aligned to a 4K boundary and
1403 * depeding on minor_version, it can be:
1404 * 0: At least 8K, but less than 12K, from end of device
1405 * 1: At start of device
1406 * 2: 4K from start of device.
1407 */
1408 switch(minor_version) {
1409 case 0:
1410 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1411 sb_start -= 8*2;
1412 sb_start &= ~(sector_t)(4*2-1);
1413 break;
1414 case 1:
1415 sb_start = 0;
1416 break;
1417 case 2:
1418 sb_start = 8;
1419 break;
1420 default:
1421 return -EINVAL;
1422 }
1423 rdev->sb_start = sb_start;
1424
1425 /* superblock is rarely larger than 1K, but it can be larger,
1426 * and it is safe to read 4k, so we do that
1427 */
1428 ret = read_disk_sb(rdev, 4096);
1429 if (ret) return ret;
1430
1431
1432 sb = page_address(rdev->sb_page);
1433
1434 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1435 sb->major_version != cpu_to_le32(1) ||
1436 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1437 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1438 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1439 return -EINVAL;
1440
1441 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1442 printk("md: invalid superblock checksum on %s\n",
1443 bdevname(rdev->bdev,b));
1444 return -EINVAL;
1445 }
1446 if (le64_to_cpu(sb->data_size) < 10) {
1447 printk("md: data_size too small on %s\n",
1448 bdevname(rdev->bdev,b));
1449 return -EINVAL;
1450 }
1451 if (sb->pad0 ||
1452 sb->pad3[0] ||
1453 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1454 /* Some padding is non-zero, might be a new feature */
1455 return -EINVAL;
1456
1457 rdev->preferred_minor = 0xffff;
1458 rdev->data_offset = le64_to_cpu(sb->data_offset);
1459 rdev->new_data_offset = rdev->data_offset;
1460 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1461 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1462 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1463 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1464
1465 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1466 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1467 if (rdev->sb_size & bmask)
1468 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1469
1470 if (minor_version
1471 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1472 return -EINVAL;
1473 if (minor_version
1474 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1475 return -EINVAL;
1476
1477 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1478 rdev->desc_nr = -1;
1479 else
1480 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1481
1482 if (!rdev->bb_page) {
1483 rdev->bb_page = alloc_page(GFP_KERNEL);
1484 if (!rdev->bb_page)
1485 return -ENOMEM;
1486 }
1487 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1488 rdev->badblocks.count == 0) {
1489 /* need to load the bad block list.
1490 * Currently we limit it to one page.
1491 */
1492 s32 offset;
1493 sector_t bb_sector;
1494 u64 *bbp;
1495 int i;
1496 int sectors = le16_to_cpu(sb->bblog_size);
1497 if (sectors > (PAGE_SIZE / 512))
1498 return -EINVAL;
1499 offset = le32_to_cpu(sb->bblog_offset);
1500 if (offset == 0)
1501 return -EINVAL;
1502 bb_sector = (long long)offset;
1503 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1504 rdev->bb_page, READ, true))
1505 return -EIO;
1506 bbp = (u64 *)page_address(rdev->bb_page);
1507 rdev->badblocks.shift = sb->bblog_shift;
1508 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1509 u64 bb = le64_to_cpu(*bbp);
1510 int count = bb & (0x3ff);
1511 u64 sector = bb >> 10;
1512 sector <<= sb->bblog_shift;
1513 count <<= sb->bblog_shift;
1514 if (bb + 1 == 0)
1515 break;
1516 if (md_set_badblocks(&rdev->badblocks,
1517 sector, count, 1) == 0)
1518 return -EINVAL;
1519 }
1520 } else if (sb->bblog_offset != 0)
1521 rdev->badblocks.shift = 0;
1522
1523 if (!refdev) {
1524 ret = 1;
1525 } else {
1526 __u64 ev1, ev2;
1527 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1528
1529 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1530 sb->level != refsb->level ||
1531 sb->layout != refsb->layout ||
1532 sb->chunksize != refsb->chunksize) {
1533 printk(KERN_WARNING "md: %s has strangely different"
1534 " superblock to %s\n",
1535 bdevname(rdev->bdev,b),
1536 bdevname(refdev->bdev,b2));
1537 return -EINVAL;
1538 }
1539 ev1 = le64_to_cpu(sb->events);
1540 ev2 = le64_to_cpu(refsb->events);
1541
1542 if (ev1 > ev2)
1543 ret = 1;
1544 else
1545 ret = 0;
1546 }
1547 if (minor_version) {
1548 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1549 sectors -= rdev->data_offset;
1550 } else
1551 sectors = rdev->sb_start;
1552 if (sectors < le64_to_cpu(sb->data_size))
1553 return -EINVAL;
1554 rdev->sectors = le64_to_cpu(sb->data_size);
1555 return ret;
1556 }
1557
1558 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1559 {
1560 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1561 __u64 ev1 = le64_to_cpu(sb->events);
1562
1563 rdev->raid_disk = -1;
1564 clear_bit(Faulty, &rdev->flags);
1565 clear_bit(In_sync, &rdev->flags);
1566 clear_bit(WriteMostly, &rdev->flags);
1567
1568 if (mddev->raid_disks == 0) {
1569 mddev->major_version = 1;
1570 mddev->patch_version = 0;
1571 mddev->external = 0;
1572 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1573 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1574 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1575 mddev->level = le32_to_cpu(sb->level);
1576 mddev->clevel[0] = 0;
1577 mddev->layout = le32_to_cpu(sb->layout);
1578 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1579 mddev->dev_sectors = le64_to_cpu(sb->size);
1580 mddev->events = ev1;
1581 mddev->bitmap_info.offset = 0;
1582 mddev->bitmap_info.space = 0;
1583 /* Default location for bitmap is 1K after superblock
1584 * using 3K - total of 4K
1585 */
1586 mddev->bitmap_info.default_offset = 1024 >> 9;
1587 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1588 mddev->reshape_backwards = 0;
1589
1590 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1591 memcpy(mddev->uuid, sb->set_uuid, 16);
1592
1593 mddev->max_disks = (4096-256)/2;
1594
1595 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1596 mddev->bitmap_info.file == NULL) {
1597 mddev->bitmap_info.offset =
1598 (__s32)le32_to_cpu(sb->bitmap_offset);
1599 /* Metadata doesn't record how much space is available.
1600 * For 1.0, we assume we can use up to the superblock
1601 * if before, else to 4K beyond superblock.
1602 * For others, assume no change is possible.
1603 */
1604 if (mddev->minor_version > 0)
1605 mddev->bitmap_info.space = 0;
1606 else if (mddev->bitmap_info.offset > 0)
1607 mddev->bitmap_info.space =
1608 8 - mddev->bitmap_info.offset;
1609 else
1610 mddev->bitmap_info.space =
1611 -mddev->bitmap_info.offset;
1612 }
1613
1614 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1615 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1616 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1617 mddev->new_level = le32_to_cpu(sb->new_level);
1618 mddev->new_layout = le32_to_cpu(sb->new_layout);
1619 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1620 if (mddev->delta_disks < 0 ||
1621 (mddev->delta_disks == 0 &&
1622 (le32_to_cpu(sb->feature_map)
1623 & MD_FEATURE_RESHAPE_BACKWARDS)))
1624 mddev->reshape_backwards = 1;
1625 } else {
1626 mddev->reshape_position = MaxSector;
1627 mddev->delta_disks = 0;
1628 mddev->new_level = mddev->level;
1629 mddev->new_layout = mddev->layout;
1630 mddev->new_chunk_sectors = mddev->chunk_sectors;
1631 }
1632
1633 } else if (mddev->pers == NULL) {
1634 /* Insist of good event counter while assembling, except for
1635 * spares (which don't need an event count) */
1636 ++ev1;
1637 if (rdev->desc_nr >= 0 &&
1638 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1639 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1640 if (ev1 < mddev->events)
1641 return -EINVAL;
1642 } else if (mddev->bitmap) {
1643 /* If adding to array with a bitmap, then we can accept an
1644 * older device, but not too old.
1645 */
1646 if (ev1 < mddev->bitmap->events_cleared)
1647 return 0;
1648 } else {
1649 if (ev1 < mddev->events)
1650 /* just a hot-add of a new device, leave raid_disk at -1 */
1651 return 0;
1652 }
1653 if (mddev->level != LEVEL_MULTIPATH) {
1654 int role;
1655 if (rdev->desc_nr < 0 ||
1656 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1657 role = 0xffff;
1658 rdev->desc_nr = -1;
1659 } else
1660 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1661 switch(role) {
1662 case 0xffff: /* spare */
1663 break;
1664 case 0xfffe: /* faulty */
1665 set_bit(Faulty, &rdev->flags);
1666 break;
1667 default:
1668 if ((le32_to_cpu(sb->feature_map) &
1669 MD_FEATURE_RECOVERY_OFFSET))
1670 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1671 else
1672 set_bit(In_sync, &rdev->flags);
1673 rdev->raid_disk = role;
1674 break;
1675 }
1676 if (sb->devflags & WriteMostly1)
1677 set_bit(WriteMostly, &rdev->flags);
1678 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1679 set_bit(Replacement, &rdev->flags);
1680 } else /* MULTIPATH are always insync */
1681 set_bit(In_sync, &rdev->flags);
1682
1683 return 0;
1684 }
1685
1686 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1687 {
1688 struct mdp_superblock_1 *sb;
1689 struct md_rdev *rdev2;
1690 int max_dev, i;
1691 /* make rdev->sb match mddev and rdev data. */
1692
1693 sb = page_address(rdev->sb_page);
1694
1695 sb->feature_map = 0;
1696 sb->pad0 = 0;
1697 sb->recovery_offset = cpu_to_le64(0);
1698 memset(sb->pad3, 0, sizeof(sb->pad3));
1699
1700 sb->utime = cpu_to_le64((__u64)mddev->utime);
1701 sb->events = cpu_to_le64(mddev->events);
1702 if (mddev->in_sync)
1703 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1704 else
1705 sb->resync_offset = cpu_to_le64(0);
1706
1707 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1708
1709 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1710 sb->size = cpu_to_le64(mddev->dev_sectors);
1711 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1712 sb->level = cpu_to_le32(mddev->level);
1713 sb->layout = cpu_to_le32(mddev->layout);
1714
1715 if (test_bit(WriteMostly, &rdev->flags))
1716 sb->devflags |= WriteMostly1;
1717 else
1718 sb->devflags &= ~WriteMostly1;
1719 sb->data_offset = cpu_to_le64(rdev->data_offset);
1720 sb->data_size = cpu_to_le64(rdev->sectors);
1721
1722 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1723 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1724 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1725 }
1726
1727 if (rdev->raid_disk >= 0 &&
1728 !test_bit(In_sync, &rdev->flags)) {
1729 sb->feature_map |=
1730 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1731 sb->recovery_offset =
1732 cpu_to_le64(rdev->recovery_offset);
1733 }
1734 if (test_bit(Replacement, &rdev->flags))
1735 sb->feature_map |=
1736 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1737
1738 if (mddev->reshape_position != MaxSector) {
1739 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1740 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1741 sb->new_layout = cpu_to_le32(mddev->new_layout);
1742 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1743 sb->new_level = cpu_to_le32(mddev->new_level);
1744 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1745 if (mddev->delta_disks == 0 &&
1746 mddev->reshape_backwards)
1747 sb->feature_map
1748 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1749 if (rdev->new_data_offset != rdev->data_offset) {
1750 sb->feature_map
1751 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1752 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1753 - rdev->data_offset));
1754 }
1755 }
1756
1757 if (rdev->badblocks.count == 0)
1758 /* Nothing to do for bad blocks*/ ;
1759 else if (sb->bblog_offset == 0)
1760 /* Cannot record bad blocks on this device */
1761 md_error(mddev, rdev);
1762 else {
1763 struct badblocks *bb = &rdev->badblocks;
1764 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1765 u64 *p = bb->page;
1766 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1767 if (bb->changed) {
1768 unsigned seq;
1769
1770 retry:
1771 seq = read_seqbegin(&bb->lock);
1772
1773 memset(bbp, 0xff, PAGE_SIZE);
1774
1775 for (i = 0 ; i < bb->count ; i++) {
1776 u64 internal_bb = p[i];
1777 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1778 | BB_LEN(internal_bb));
1779 bbp[i] = cpu_to_le64(store_bb);
1780 }
1781 bb->changed = 0;
1782 if (read_seqretry(&bb->lock, seq))
1783 goto retry;
1784
1785 bb->sector = (rdev->sb_start +
1786 (int)le32_to_cpu(sb->bblog_offset));
1787 bb->size = le16_to_cpu(sb->bblog_size);
1788 }
1789 }
1790
1791 max_dev = 0;
1792 rdev_for_each(rdev2, mddev)
1793 if (rdev2->desc_nr+1 > max_dev)
1794 max_dev = rdev2->desc_nr+1;
1795
1796 if (max_dev > le32_to_cpu(sb->max_dev)) {
1797 int bmask;
1798 sb->max_dev = cpu_to_le32(max_dev);
1799 rdev->sb_size = max_dev * 2 + 256;
1800 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1801 if (rdev->sb_size & bmask)
1802 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1803 } else
1804 max_dev = le32_to_cpu(sb->max_dev);
1805
1806 for (i=0; i<max_dev;i++)
1807 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1808
1809 rdev_for_each(rdev2, mddev) {
1810 i = rdev2->desc_nr;
1811 if (test_bit(Faulty, &rdev2->flags))
1812 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1813 else if (test_bit(In_sync, &rdev2->flags))
1814 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1815 else if (rdev2->raid_disk >= 0)
1816 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1817 else
1818 sb->dev_roles[i] = cpu_to_le16(0xffff);
1819 }
1820
1821 sb->sb_csum = calc_sb_1_csum(sb);
1822 }
1823
1824 static unsigned long long
1825 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1826 {
1827 struct mdp_superblock_1 *sb;
1828 sector_t max_sectors;
1829 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1830 return 0; /* component must fit device */
1831 if (rdev->data_offset != rdev->new_data_offset)
1832 return 0; /* too confusing */
1833 if (rdev->sb_start < rdev->data_offset) {
1834 /* minor versions 1 and 2; superblock before data */
1835 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1836 max_sectors -= rdev->data_offset;
1837 if (!num_sectors || num_sectors > max_sectors)
1838 num_sectors = max_sectors;
1839 } else if (rdev->mddev->bitmap_info.offset) {
1840 /* minor version 0 with bitmap we can't move */
1841 return 0;
1842 } else {
1843 /* minor version 0; superblock after data */
1844 sector_t sb_start;
1845 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1846 sb_start &= ~(sector_t)(4*2 - 1);
1847 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1848 if (!num_sectors || num_sectors > max_sectors)
1849 num_sectors = max_sectors;
1850 rdev->sb_start = sb_start;
1851 }
1852 sb = page_address(rdev->sb_page);
1853 sb->data_size = cpu_to_le64(num_sectors);
1854 sb->super_offset = rdev->sb_start;
1855 sb->sb_csum = calc_sb_1_csum(sb);
1856 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1857 rdev->sb_page);
1858 md_super_wait(rdev->mddev);
1859 return num_sectors;
1860
1861 }
1862
1863 static int
1864 super_1_allow_new_offset(struct md_rdev *rdev,
1865 unsigned long long new_offset)
1866 {
1867 /* All necessary checks on new >= old have been done */
1868 struct bitmap *bitmap;
1869 if (new_offset >= rdev->data_offset)
1870 return 1;
1871
1872 /* with 1.0 metadata, there is no metadata to tread on
1873 * so we can always move back */
1874 if (rdev->mddev->minor_version == 0)
1875 return 1;
1876
1877 /* otherwise we must be sure not to step on
1878 * any metadata, so stay:
1879 * 36K beyond start of superblock
1880 * beyond end of badblocks
1881 * beyond write-intent bitmap
1882 */
1883 if (rdev->sb_start + (32+4)*2 > new_offset)
1884 return 0;
1885 bitmap = rdev->mddev->bitmap;
1886 if (bitmap && !rdev->mddev->bitmap_info.file &&
1887 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1888 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1889 return 0;
1890 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1891 return 0;
1892
1893 return 1;
1894 }
1895
1896 static struct super_type super_types[] = {
1897 [0] = {
1898 .name = "0.90.0",
1899 .owner = THIS_MODULE,
1900 .load_super = super_90_load,
1901 .validate_super = super_90_validate,
1902 .sync_super = super_90_sync,
1903 .rdev_size_change = super_90_rdev_size_change,
1904 .allow_new_offset = super_90_allow_new_offset,
1905 },
1906 [1] = {
1907 .name = "md-1",
1908 .owner = THIS_MODULE,
1909 .load_super = super_1_load,
1910 .validate_super = super_1_validate,
1911 .sync_super = super_1_sync,
1912 .rdev_size_change = super_1_rdev_size_change,
1913 .allow_new_offset = super_1_allow_new_offset,
1914 },
1915 };
1916
1917 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1918 {
1919 if (mddev->sync_super) {
1920 mddev->sync_super(mddev, rdev);
1921 return;
1922 }
1923
1924 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1925
1926 super_types[mddev->major_version].sync_super(mddev, rdev);
1927 }
1928
1929 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1930 {
1931 struct md_rdev *rdev, *rdev2;
1932
1933 rcu_read_lock();
1934 rdev_for_each_rcu(rdev, mddev1)
1935 rdev_for_each_rcu(rdev2, mddev2)
1936 if (rdev->bdev->bd_contains ==
1937 rdev2->bdev->bd_contains) {
1938 rcu_read_unlock();
1939 return 1;
1940 }
1941 rcu_read_unlock();
1942 return 0;
1943 }
1944
1945 static LIST_HEAD(pending_raid_disks);
1946
1947 /*
1948 * Try to register data integrity profile for an mddev
1949 *
1950 * This is called when an array is started and after a disk has been kicked
1951 * from the array. It only succeeds if all working and active component devices
1952 * are integrity capable with matching profiles.
1953 */
1954 int md_integrity_register(struct mddev *mddev)
1955 {
1956 struct md_rdev *rdev, *reference = NULL;
1957
1958 if (list_empty(&mddev->disks))
1959 return 0; /* nothing to do */
1960 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1961 return 0; /* shouldn't register, or already is */
1962 rdev_for_each(rdev, mddev) {
1963 /* skip spares and non-functional disks */
1964 if (test_bit(Faulty, &rdev->flags))
1965 continue;
1966 if (rdev->raid_disk < 0)
1967 continue;
1968 if (!reference) {
1969 /* Use the first rdev as the reference */
1970 reference = rdev;
1971 continue;
1972 }
1973 /* does this rdev's profile match the reference profile? */
1974 if (blk_integrity_compare(reference->bdev->bd_disk,
1975 rdev->bdev->bd_disk) < 0)
1976 return -EINVAL;
1977 }
1978 if (!reference || !bdev_get_integrity(reference->bdev))
1979 return 0;
1980 /*
1981 * All component devices are integrity capable and have matching
1982 * profiles, register the common profile for the md device.
1983 */
1984 if (blk_integrity_register(mddev->gendisk,
1985 bdev_get_integrity(reference->bdev)) != 0) {
1986 printk(KERN_ERR "md: failed to register integrity for %s\n",
1987 mdname(mddev));
1988 return -EINVAL;
1989 }
1990 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1991 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1992 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1993 mdname(mddev));
1994 return -EINVAL;
1995 }
1996 return 0;
1997 }
1998 EXPORT_SYMBOL(md_integrity_register);
1999
2000 /* Disable data integrity if non-capable/non-matching disk is being added */
2001 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2002 {
2003 struct blk_integrity *bi_rdev;
2004 struct blk_integrity *bi_mddev;
2005
2006 if (!mddev->gendisk)
2007 return;
2008
2009 bi_rdev = bdev_get_integrity(rdev->bdev);
2010 bi_mddev = blk_get_integrity(mddev->gendisk);
2011
2012 if (!bi_mddev) /* nothing to do */
2013 return;
2014 if (rdev->raid_disk < 0) /* skip spares */
2015 return;
2016 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2017 rdev->bdev->bd_disk) >= 0)
2018 return;
2019 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2020 blk_integrity_unregister(mddev->gendisk);
2021 }
2022 EXPORT_SYMBOL(md_integrity_add_rdev);
2023
2024 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2025 {
2026 char b[BDEVNAME_SIZE];
2027 struct kobject *ko;
2028 char *s;
2029 int err;
2030
2031 if (rdev->mddev) {
2032 MD_BUG();
2033 return -EINVAL;
2034 }
2035
2036 /* prevent duplicates */
2037 if (find_rdev(mddev, rdev->bdev->bd_dev))
2038 return -EEXIST;
2039
2040 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2041 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2042 rdev->sectors < mddev->dev_sectors)) {
2043 if (mddev->pers) {
2044 /* Cannot change size, so fail
2045 * If mddev->level <= 0, then we don't care
2046 * about aligning sizes (e.g. linear)
2047 */
2048 if (mddev->level > 0)
2049 return -ENOSPC;
2050 } else
2051 mddev->dev_sectors = rdev->sectors;
2052 }
2053
2054 /* Verify rdev->desc_nr is unique.
2055 * If it is -1, assign a free number, else
2056 * check number is not in use
2057 */
2058 if (rdev->desc_nr < 0) {
2059 int choice = 0;
2060 if (mddev->pers) choice = mddev->raid_disks;
2061 while (find_rdev_nr(mddev, choice))
2062 choice++;
2063 rdev->desc_nr = choice;
2064 } else {
2065 if (find_rdev_nr(mddev, rdev->desc_nr))
2066 return -EBUSY;
2067 }
2068 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2069 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2070 mdname(mddev), mddev->max_disks);
2071 return -EBUSY;
2072 }
2073 bdevname(rdev->bdev,b);
2074 while ( (s=strchr(b, '/')) != NULL)
2075 *s = '!';
2076
2077 rdev->mddev = mddev;
2078 printk(KERN_INFO "md: bind<%s>\n", b);
2079
2080 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2081 goto fail;
2082
2083 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2084 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2085 /* failure here is OK */;
2086 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2087
2088 list_add_rcu(&rdev->same_set, &mddev->disks);
2089 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2090
2091 /* May as well allow recovery to be retried once */
2092 mddev->recovery_disabled++;
2093
2094 return 0;
2095
2096 fail:
2097 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2098 b, mdname(mddev));
2099 return err;
2100 }
2101
2102 static void md_delayed_delete(struct work_struct *ws)
2103 {
2104 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2105 kobject_del(&rdev->kobj);
2106 kobject_put(&rdev->kobj);
2107 }
2108
2109 static void unbind_rdev_from_array(struct md_rdev * rdev)
2110 {
2111 char b[BDEVNAME_SIZE];
2112 if (!rdev->mddev) {
2113 MD_BUG();
2114 return;
2115 }
2116 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2117 list_del_rcu(&rdev->same_set);
2118 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2119 rdev->mddev = NULL;
2120 sysfs_remove_link(&rdev->kobj, "block");
2121 sysfs_put(rdev->sysfs_state);
2122 rdev->sysfs_state = NULL;
2123 rdev->badblocks.count = 0;
2124 /* We need to delay this, otherwise we can deadlock when
2125 * writing to 'remove' to "dev/state". We also need
2126 * to delay it due to rcu usage.
2127 */
2128 synchronize_rcu();
2129 INIT_WORK(&rdev->del_work, md_delayed_delete);
2130 kobject_get(&rdev->kobj);
2131 queue_work(md_misc_wq, &rdev->del_work);
2132 }
2133
2134 /*
2135 * prevent the device from being mounted, repartitioned or
2136 * otherwise reused by a RAID array (or any other kernel
2137 * subsystem), by bd_claiming the device.
2138 */
2139 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2140 {
2141 int err = 0;
2142 struct block_device *bdev;
2143 char b[BDEVNAME_SIZE];
2144
2145 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2146 shared ? (struct md_rdev *)lock_rdev : rdev);
2147 if (IS_ERR(bdev)) {
2148 printk(KERN_ERR "md: could not open %s.\n",
2149 __bdevname(dev, b));
2150 return PTR_ERR(bdev);
2151 }
2152 rdev->bdev = bdev;
2153 return err;
2154 }
2155
2156 static void unlock_rdev(struct md_rdev *rdev)
2157 {
2158 struct block_device *bdev = rdev->bdev;
2159 rdev->bdev = NULL;
2160 if (!bdev)
2161 MD_BUG();
2162 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2163 }
2164
2165 void md_autodetect_dev(dev_t dev);
2166
2167 static void export_rdev(struct md_rdev * rdev)
2168 {
2169 char b[BDEVNAME_SIZE];
2170 printk(KERN_INFO "md: export_rdev(%s)\n",
2171 bdevname(rdev->bdev,b));
2172 if (rdev->mddev)
2173 MD_BUG();
2174 md_rdev_clear(rdev);
2175 #ifndef MODULE
2176 if (test_bit(AutoDetected, &rdev->flags))
2177 md_autodetect_dev(rdev->bdev->bd_dev);
2178 #endif
2179 unlock_rdev(rdev);
2180 kobject_put(&rdev->kobj);
2181 }
2182
2183 static void kick_rdev_from_array(struct md_rdev * rdev)
2184 {
2185 unbind_rdev_from_array(rdev);
2186 export_rdev(rdev);
2187 }
2188
2189 static void export_array(struct mddev *mddev)
2190 {
2191 struct md_rdev *rdev, *tmp;
2192
2193 rdev_for_each_safe(rdev, tmp, mddev) {
2194 if (!rdev->mddev) {
2195 MD_BUG();
2196 continue;
2197 }
2198 kick_rdev_from_array(rdev);
2199 }
2200 if (!list_empty(&mddev->disks))
2201 MD_BUG();
2202 mddev->raid_disks = 0;
2203 mddev->major_version = 0;
2204 }
2205
2206 static void print_desc(mdp_disk_t *desc)
2207 {
2208 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2209 desc->major,desc->minor,desc->raid_disk,desc->state);
2210 }
2211
2212 static void print_sb_90(mdp_super_t *sb)
2213 {
2214 int i;
2215
2216 printk(KERN_INFO
2217 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2218 sb->major_version, sb->minor_version, sb->patch_version,
2219 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2220 sb->ctime);
2221 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2222 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2223 sb->md_minor, sb->layout, sb->chunk_size);
2224 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2225 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2226 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2227 sb->failed_disks, sb->spare_disks,
2228 sb->sb_csum, (unsigned long)sb->events_lo);
2229
2230 printk(KERN_INFO);
2231 for (i = 0; i < MD_SB_DISKS; i++) {
2232 mdp_disk_t *desc;
2233
2234 desc = sb->disks + i;
2235 if (desc->number || desc->major || desc->minor ||
2236 desc->raid_disk || (desc->state && (desc->state != 4))) {
2237 printk(" D %2d: ", i);
2238 print_desc(desc);
2239 }
2240 }
2241 printk(KERN_INFO "md: THIS: ");
2242 print_desc(&sb->this_disk);
2243 }
2244
2245 static void print_sb_1(struct mdp_superblock_1 *sb)
2246 {
2247 __u8 *uuid;
2248
2249 uuid = sb->set_uuid;
2250 printk(KERN_INFO
2251 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2252 "md: Name: \"%s\" CT:%llu\n",
2253 le32_to_cpu(sb->major_version),
2254 le32_to_cpu(sb->feature_map),
2255 uuid,
2256 sb->set_name,
2257 (unsigned long long)le64_to_cpu(sb->ctime)
2258 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2259
2260 uuid = sb->device_uuid;
2261 printk(KERN_INFO
2262 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2263 " RO:%llu\n"
2264 "md: Dev:%08x UUID: %pU\n"
2265 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2266 "md: (MaxDev:%u) \n",
2267 le32_to_cpu(sb->level),
2268 (unsigned long long)le64_to_cpu(sb->size),
2269 le32_to_cpu(sb->raid_disks),
2270 le32_to_cpu(sb->layout),
2271 le32_to_cpu(sb->chunksize),
2272 (unsigned long long)le64_to_cpu(sb->data_offset),
2273 (unsigned long long)le64_to_cpu(sb->data_size),
2274 (unsigned long long)le64_to_cpu(sb->super_offset),
2275 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2276 le32_to_cpu(sb->dev_number),
2277 uuid,
2278 sb->devflags,
2279 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2280 (unsigned long long)le64_to_cpu(sb->events),
2281 (unsigned long long)le64_to_cpu(sb->resync_offset),
2282 le32_to_cpu(sb->sb_csum),
2283 le32_to_cpu(sb->max_dev)
2284 );
2285 }
2286
2287 static void print_rdev(struct md_rdev *rdev, int major_version)
2288 {
2289 char b[BDEVNAME_SIZE];
2290 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2291 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2292 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2293 rdev->desc_nr);
2294 if (rdev->sb_loaded) {
2295 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2296 switch (major_version) {
2297 case 0:
2298 print_sb_90(page_address(rdev->sb_page));
2299 break;
2300 case 1:
2301 print_sb_1(page_address(rdev->sb_page));
2302 break;
2303 }
2304 } else
2305 printk(KERN_INFO "md: no rdev superblock!\n");
2306 }
2307
2308 static void md_print_devices(void)
2309 {
2310 struct list_head *tmp;
2311 struct md_rdev *rdev;
2312 struct mddev *mddev;
2313 char b[BDEVNAME_SIZE];
2314
2315 printk("\n");
2316 printk("md: **********************************\n");
2317 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2318 printk("md: **********************************\n");
2319 for_each_mddev(mddev, tmp) {
2320
2321 if (mddev->bitmap)
2322 bitmap_print_sb(mddev->bitmap);
2323 else
2324 printk("%s: ", mdname(mddev));
2325 rdev_for_each(rdev, mddev)
2326 printk("<%s>", bdevname(rdev->bdev,b));
2327 printk("\n");
2328
2329 rdev_for_each(rdev, mddev)
2330 print_rdev(rdev, mddev->major_version);
2331 }
2332 printk("md: **********************************\n");
2333 printk("\n");
2334 }
2335
2336
2337 static void sync_sbs(struct mddev * mddev, int nospares)
2338 {
2339 /* Update each superblock (in-memory image), but
2340 * if we are allowed to, skip spares which already
2341 * have the right event counter, or have one earlier
2342 * (which would mean they aren't being marked as dirty
2343 * with the rest of the array)
2344 */
2345 struct md_rdev *rdev;
2346 rdev_for_each(rdev, mddev) {
2347 if (rdev->sb_events == mddev->events ||
2348 (nospares &&
2349 rdev->raid_disk < 0 &&
2350 rdev->sb_events+1 == mddev->events)) {
2351 /* Don't update this superblock */
2352 rdev->sb_loaded = 2;
2353 } else {
2354 sync_super(mddev, rdev);
2355 rdev->sb_loaded = 1;
2356 }
2357 }
2358 }
2359
2360 static void md_update_sb(struct mddev * mddev, int force_change)
2361 {
2362 struct md_rdev *rdev;
2363 int sync_req;
2364 int nospares = 0;
2365 int any_badblocks_changed = 0;
2366
2367 if (mddev->ro) {
2368 if (force_change)
2369 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2370 return;
2371 }
2372 repeat:
2373 /* First make sure individual recovery_offsets are correct */
2374 rdev_for_each(rdev, mddev) {
2375 if (rdev->raid_disk >= 0 &&
2376 mddev->delta_disks >= 0 &&
2377 !test_bit(In_sync, &rdev->flags) &&
2378 mddev->curr_resync_completed > rdev->recovery_offset)
2379 rdev->recovery_offset = mddev->curr_resync_completed;
2380
2381 }
2382 if (!mddev->persistent) {
2383 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2384 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2385 if (!mddev->external) {
2386 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2387 rdev_for_each(rdev, mddev) {
2388 if (rdev->badblocks.changed) {
2389 rdev->badblocks.changed = 0;
2390 md_ack_all_badblocks(&rdev->badblocks);
2391 md_error(mddev, rdev);
2392 }
2393 clear_bit(Blocked, &rdev->flags);
2394 clear_bit(BlockedBadBlocks, &rdev->flags);
2395 wake_up(&rdev->blocked_wait);
2396 }
2397 }
2398 wake_up(&mddev->sb_wait);
2399 return;
2400 }
2401
2402 spin_lock_irq(&mddev->write_lock);
2403
2404 mddev->utime = get_seconds();
2405
2406 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2407 force_change = 1;
2408 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2409 /* just a clean<-> dirty transition, possibly leave spares alone,
2410 * though if events isn't the right even/odd, we will have to do
2411 * spares after all
2412 */
2413 nospares = 1;
2414 if (force_change)
2415 nospares = 0;
2416 if (mddev->degraded)
2417 /* If the array is degraded, then skipping spares is both
2418 * dangerous and fairly pointless.
2419 * Dangerous because a device that was removed from the array
2420 * might have a event_count that still looks up-to-date,
2421 * so it can be re-added without a resync.
2422 * Pointless because if there are any spares to skip,
2423 * then a recovery will happen and soon that array won't
2424 * be degraded any more and the spare can go back to sleep then.
2425 */
2426 nospares = 0;
2427
2428 sync_req = mddev->in_sync;
2429
2430 /* If this is just a dirty<->clean transition, and the array is clean
2431 * and 'events' is odd, we can roll back to the previous clean state */
2432 if (nospares
2433 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2434 && mddev->can_decrease_events
2435 && mddev->events != 1) {
2436 mddev->events--;
2437 mddev->can_decrease_events = 0;
2438 } else {
2439 /* otherwise we have to go forward and ... */
2440 mddev->events ++;
2441 mddev->can_decrease_events = nospares;
2442 }
2443
2444 if (!mddev->events) {
2445 /*
2446 * oops, this 64-bit counter should never wrap.
2447 * Either we are in around ~1 trillion A.C., assuming
2448 * 1 reboot per second, or we have a bug:
2449 */
2450 MD_BUG();
2451 mddev->events --;
2452 }
2453
2454 rdev_for_each(rdev, mddev) {
2455 if (rdev->badblocks.changed)
2456 any_badblocks_changed++;
2457 if (test_bit(Faulty, &rdev->flags))
2458 set_bit(FaultRecorded, &rdev->flags);
2459 }
2460
2461 sync_sbs(mddev, nospares);
2462 spin_unlock_irq(&mddev->write_lock);
2463
2464 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2465 mdname(mddev), mddev->in_sync);
2466
2467 bitmap_update_sb(mddev->bitmap);
2468 rdev_for_each(rdev, mddev) {
2469 char b[BDEVNAME_SIZE];
2470
2471 if (rdev->sb_loaded != 1)
2472 continue; /* no noise on spare devices */
2473
2474 if (!test_bit(Faulty, &rdev->flags) &&
2475 rdev->saved_raid_disk == -1) {
2476 md_super_write(mddev,rdev,
2477 rdev->sb_start, rdev->sb_size,
2478 rdev->sb_page);
2479 pr_debug("md: (write) %s's sb offset: %llu\n",
2480 bdevname(rdev->bdev, b),
2481 (unsigned long long)rdev->sb_start);
2482 rdev->sb_events = mddev->events;
2483 if (rdev->badblocks.size) {
2484 md_super_write(mddev, rdev,
2485 rdev->badblocks.sector,
2486 rdev->badblocks.size << 9,
2487 rdev->bb_page);
2488 rdev->badblocks.size = 0;
2489 }
2490
2491 } else if (test_bit(Faulty, &rdev->flags))
2492 pr_debug("md: %s (skipping faulty)\n",
2493 bdevname(rdev->bdev, b));
2494 else
2495 pr_debug("(skipping incremental s/r ");
2496
2497 if (mddev->level == LEVEL_MULTIPATH)
2498 /* only need to write one superblock... */
2499 break;
2500 }
2501 md_super_wait(mddev);
2502 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2503
2504 spin_lock_irq(&mddev->write_lock);
2505 if (mddev->in_sync != sync_req ||
2506 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2507 /* have to write it out again */
2508 spin_unlock_irq(&mddev->write_lock);
2509 goto repeat;
2510 }
2511 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2512 spin_unlock_irq(&mddev->write_lock);
2513 wake_up(&mddev->sb_wait);
2514 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2515 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2516
2517 rdev_for_each(rdev, mddev) {
2518 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2519 clear_bit(Blocked, &rdev->flags);
2520
2521 if (any_badblocks_changed)
2522 md_ack_all_badblocks(&rdev->badblocks);
2523 clear_bit(BlockedBadBlocks, &rdev->flags);
2524 wake_up(&rdev->blocked_wait);
2525 }
2526 }
2527
2528 /* words written to sysfs files may, or may not, be \n terminated.
2529 * We want to accept with case. For this we use cmd_match.
2530 */
2531 static int cmd_match(const char *cmd, const char *str)
2532 {
2533 /* See if cmd, written into a sysfs file, matches
2534 * str. They must either be the same, or cmd can
2535 * have a trailing newline
2536 */
2537 while (*cmd && *str && *cmd == *str) {
2538 cmd++;
2539 str++;
2540 }
2541 if (*cmd == '\n')
2542 cmd++;
2543 if (*str || *cmd)
2544 return 0;
2545 return 1;
2546 }
2547
2548 struct rdev_sysfs_entry {
2549 struct attribute attr;
2550 ssize_t (*show)(struct md_rdev *, char *);
2551 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2552 };
2553
2554 static ssize_t
2555 state_show(struct md_rdev *rdev, char *page)
2556 {
2557 char *sep = "";
2558 size_t len = 0;
2559
2560 if (test_bit(Faulty, &rdev->flags) ||
2561 rdev->badblocks.unacked_exist) {
2562 len+= sprintf(page+len, "%sfaulty",sep);
2563 sep = ",";
2564 }
2565 if (test_bit(In_sync, &rdev->flags)) {
2566 len += sprintf(page+len, "%sin_sync",sep);
2567 sep = ",";
2568 }
2569 if (test_bit(WriteMostly, &rdev->flags)) {
2570 len += sprintf(page+len, "%swrite_mostly",sep);
2571 sep = ",";
2572 }
2573 if (test_bit(Blocked, &rdev->flags) ||
2574 (rdev->badblocks.unacked_exist
2575 && !test_bit(Faulty, &rdev->flags))) {
2576 len += sprintf(page+len, "%sblocked", sep);
2577 sep = ",";
2578 }
2579 if (!test_bit(Faulty, &rdev->flags) &&
2580 !test_bit(In_sync, &rdev->flags)) {
2581 len += sprintf(page+len, "%sspare", sep);
2582 sep = ",";
2583 }
2584 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2585 len += sprintf(page+len, "%swrite_error", sep);
2586 sep = ",";
2587 }
2588 if (test_bit(WantReplacement, &rdev->flags)) {
2589 len += sprintf(page+len, "%swant_replacement", sep);
2590 sep = ",";
2591 }
2592 if (test_bit(Replacement, &rdev->flags)) {
2593 len += sprintf(page+len, "%sreplacement", sep);
2594 sep = ",";
2595 }
2596
2597 return len+sprintf(page+len, "\n");
2598 }
2599
2600 static ssize_t
2601 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2602 {
2603 /* can write
2604 * faulty - simulates an error
2605 * remove - disconnects the device
2606 * writemostly - sets write_mostly
2607 * -writemostly - clears write_mostly
2608 * blocked - sets the Blocked flags
2609 * -blocked - clears the Blocked and possibly simulates an error
2610 * insync - sets Insync providing device isn't active
2611 * write_error - sets WriteErrorSeen
2612 * -write_error - clears WriteErrorSeen
2613 */
2614 int err = -EINVAL;
2615 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2616 md_error(rdev->mddev, rdev);
2617 if (test_bit(Faulty, &rdev->flags))
2618 err = 0;
2619 else
2620 err = -EBUSY;
2621 } else if (cmd_match(buf, "remove")) {
2622 if (rdev->raid_disk >= 0)
2623 err = -EBUSY;
2624 else {
2625 struct mddev *mddev = rdev->mddev;
2626 kick_rdev_from_array(rdev);
2627 if (mddev->pers)
2628 md_update_sb(mddev, 1);
2629 md_new_event(mddev);
2630 err = 0;
2631 }
2632 } else if (cmd_match(buf, "writemostly")) {
2633 set_bit(WriteMostly, &rdev->flags);
2634 err = 0;
2635 } else if (cmd_match(buf, "-writemostly")) {
2636 clear_bit(WriteMostly, &rdev->flags);
2637 err = 0;
2638 } else if (cmd_match(buf, "blocked")) {
2639 set_bit(Blocked, &rdev->flags);
2640 err = 0;
2641 } else if (cmd_match(buf, "-blocked")) {
2642 if (!test_bit(Faulty, &rdev->flags) &&
2643 rdev->badblocks.unacked_exist) {
2644 /* metadata handler doesn't understand badblocks,
2645 * so we need to fail the device
2646 */
2647 md_error(rdev->mddev, rdev);
2648 }
2649 clear_bit(Blocked, &rdev->flags);
2650 clear_bit(BlockedBadBlocks, &rdev->flags);
2651 wake_up(&rdev->blocked_wait);
2652 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2653 md_wakeup_thread(rdev->mddev->thread);
2654
2655 err = 0;
2656 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2657 set_bit(In_sync, &rdev->flags);
2658 err = 0;
2659 } else if (cmd_match(buf, "write_error")) {
2660 set_bit(WriteErrorSeen, &rdev->flags);
2661 err = 0;
2662 } else if (cmd_match(buf, "-write_error")) {
2663 clear_bit(WriteErrorSeen, &rdev->flags);
2664 err = 0;
2665 } else if (cmd_match(buf, "want_replacement")) {
2666 /* Any non-spare device that is not a replacement can
2667 * become want_replacement at any time, but we then need to
2668 * check if recovery is needed.
2669 */
2670 if (rdev->raid_disk >= 0 &&
2671 !test_bit(Replacement, &rdev->flags))
2672 set_bit(WantReplacement, &rdev->flags);
2673 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2674 md_wakeup_thread(rdev->mddev->thread);
2675 err = 0;
2676 } else if (cmd_match(buf, "-want_replacement")) {
2677 /* Clearing 'want_replacement' is always allowed.
2678 * Once replacements starts it is too late though.
2679 */
2680 err = 0;
2681 clear_bit(WantReplacement, &rdev->flags);
2682 } else if (cmd_match(buf, "replacement")) {
2683 /* Can only set a device as a replacement when array has not
2684 * yet been started. Once running, replacement is automatic
2685 * from spares, or by assigning 'slot'.
2686 */
2687 if (rdev->mddev->pers)
2688 err = -EBUSY;
2689 else {
2690 set_bit(Replacement, &rdev->flags);
2691 err = 0;
2692 }
2693 } else if (cmd_match(buf, "-replacement")) {
2694 /* Similarly, can only clear Replacement before start */
2695 if (rdev->mddev->pers)
2696 err = -EBUSY;
2697 else {
2698 clear_bit(Replacement, &rdev->flags);
2699 err = 0;
2700 }
2701 }
2702 if (!err)
2703 sysfs_notify_dirent_safe(rdev->sysfs_state);
2704 return err ? err : len;
2705 }
2706 static struct rdev_sysfs_entry rdev_state =
2707 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2708
2709 static ssize_t
2710 errors_show(struct md_rdev *rdev, char *page)
2711 {
2712 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2713 }
2714
2715 static ssize_t
2716 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2717 {
2718 char *e;
2719 unsigned long n = simple_strtoul(buf, &e, 10);
2720 if (*buf && (*e == 0 || *e == '\n')) {
2721 atomic_set(&rdev->corrected_errors, n);
2722 return len;
2723 }
2724 return -EINVAL;
2725 }
2726 static struct rdev_sysfs_entry rdev_errors =
2727 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2728
2729 static ssize_t
2730 slot_show(struct md_rdev *rdev, char *page)
2731 {
2732 if (rdev->raid_disk < 0)
2733 return sprintf(page, "none\n");
2734 else
2735 return sprintf(page, "%d\n", rdev->raid_disk);
2736 }
2737
2738 static ssize_t
2739 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2740 {
2741 char *e;
2742 int err;
2743 int slot = simple_strtoul(buf, &e, 10);
2744 if (strncmp(buf, "none", 4)==0)
2745 slot = -1;
2746 else if (e==buf || (*e && *e!= '\n'))
2747 return -EINVAL;
2748 if (rdev->mddev->pers && slot == -1) {
2749 /* Setting 'slot' on an active array requires also
2750 * updating the 'rd%d' link, and communicating
2751 * with the personality with ->hot_*_disk.
2752 * For now we only support removing
2753 * failed/spare devices. This normally happens automatically,
2754 * but not when the metadata is externally managed.
2755 */
2756 if (rdev->raid_disk == -1)
2757 return -EEXIST;
2758 /* personality does all needed checks */
2759 if (rdev->mddev->pers->hot_remove_disk == NULL)
2760 return -EINVAL;
2761 clear_bit(Blocked, &rdev->flags);
2762 remove_and_add_spares(rdev->mddev, rdev);
2763 if (rdev->raid_disk >= 0)
2764 return -EBUSY;
2765 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2766 md_wakeup_thread(rdev->mddev->thread);
2767 } else if (rdev->mddev->pers) {
2768 /* Activating a spare .. or possibly reactivating
2769 * if we ever get bitmaps working here.
2770 */
2771
2772 if (rdev->raid_disk != -1)
2773 return -EBUSY;
2774
2775 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2776 return -EBUSY;
2777
2778 if (rdev->mddev->pers->hot_add_disk == NULL)
2779 return -EINVAL;
2780
2781 if (slot >= rdev->mddev->raid_disks &&
2782 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2783 return -ENOSPC;
2784
2785 rdev->raid_disk = slot;
2786 if (test_bit(In_sync, &rdev->flags))
2787 rdev->saved_raid_disk = slot;
2788 else
2789 rdev->saved_raid_disk = -1;
2790 clear_bit(In_sync, &rdev->flags);
2791 err = rdev->mddev->pers->
2792 hot_add_disk(rdev->mddev, rdev);
2793 if (err) {
2794 rdev->raid_disk = -1;
2795 return err;
2796 } else
2797 sysfs_notify_dirent_safe(rdev->sysfs_state);
2798 if (sysfs_link_rdev(rdev->mddev, rdev))
2799 /* failure here is OK */;
2800 /* don't wakeup anyone, leave that to userspace. */
2801 } else {
2802 if (slot >= rdev->mddev->raid_disks &&
2803 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2804 return -ENOSPC;
2805 rdev->raid_disk = slot;
2806 /* assume it is working */
2807 clear_bit(Faulty, &rdev->flags);
2808 clear_bit(WriteMostly, &rdev->flags);
2809 set_bit(In_sync, &rdev->flags);
2810 sysfs_notify_dirent_safe(rdev->sysfs_state);
2811 }
2812 return len;
2813 }
2814
2815
2816 static struct rdev_sysfs_entry rdev_slot =
2817 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2818
2819 static ssize_t
2820 offset_show(struct md_rdev *rdev, char *page)
2821 {
2822 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2823 }
2824
2825 static ssize_t
2826 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2827 {
2828 unsigned long long offset;
2829 if (kstrtoull(buf, 10, &offset) < 0)
2830 return -EINVAL;
2831 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2832 return -EBUSY;
2833 if (rdev->sectors && rdev->mddev->external)
2834 /* Must set offset before size, so overlap checks
2835 * can be sane */
2836 return -EBUSY;
2837 rdev->data_offset = offset;
2838 rdev->new_data_offset = offset;
2839 return len;
2840 }
2841
2842 static struct rdev_sysfs_entry rdev_offset =
2843 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2844
2845 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2846 {
2847 return sprintf(page, "%llu\n",
2848 (unsigned long long)rdev->new_data_offset);
2849 }
2850
2851 static ssize_t new_offset_store(struct md_rdev *rdev,
2852 const char *buf, size_t len)
2853 {
2854 unsigned long long new_offset;
2855 struct mddev *mddev = rdev->mddev;
2856
2857 if (kstrtoull(buf, 10, &new_offset) < 0)
2858 return -EINVAL;
2859
2860 if (mddev->sync_thread)
2861 return -EBUSY;
2862 if (new_offset == rdev->data_offset)
2863 /* reset is always permitted */
2864 ;
2865 else if (new_offset > rdev->data_offset) {
2866 /* must not push array size beyond rdev_sectors */
2867 if (new_offset - rdev->data_offset
2868 + mddev->dev_sectors > rdev->sectors)
2869 return -E2BIG;
2870 }
2871 /* Metadata worries about other space details. */
2872
2873 /* decreasing the offset is inconsistent with a backwards
2874 * reshape.
2875 */
2876 if (new_offset < rdev->data_offset &&
2877 mddev->reshape_backwards)
2878 return -EINVAL;
2879 /* Increasing offset is inconsistent with forwards
2880 * reshape. reshape_direction should be set to
2881 * 'backwards' first.
2882 */
2883 if (new_offset > rdev->data_offset &&
2884 !mddev->reshape_backwards)
2885 return -EINVAL;
2886
2887 if (mddev->pers && mddev->persistent &&
2888 !super_types[mddev->major_version]
2889 .allow_new_offset(rdev, new_offset))
2890 return -E2BIG;
2891 rdev->new_data_offset = new_offset;
2892 if (new_offset > rdev->data_offset)
2893 mddev->reshape_backwards = 1;
2894 else if (new_offset < rdev->data_offset)
2895 mddev->reshape_backwards = 0;
2896
2897 return len;
2898 }
2899 static struct rdev_sysfs_entry rdev_new_offset =
2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2901
2902 static ssize_t
2903 rdev_size_show(struct md_rdev *rdev, char *page)
2904 {
2905 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2906 }
2907
2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2909 {
2910 /* check if two start/length pairs overlap */
2911 if (s1+l1 <= s2)
2912 return 0;
2913 if (s2+l2 <= s1)
2914 return 0;
2915 return 1;
2916 }
2917
2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2919 {
2920 unsigned long long blocks;
2921 sector_t new;
2922
2923 if (kstrtoull(buf, 10, &blocks) < 0)
2924 return -EINVAL;
2925
2926 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2927 return -EINVAL; /* sector conversion overflow */
2928
2929 new = blocks * 2;
2930 if (new != blocks * 2)
2931 return -EINVAL; /* unsigned long long to sector_t overflow */
2932
2933 *sectors = new;
2934 return 0;
2935 }
2936
2937 static ssize_t
2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2939 {
2940 struct mddev *my_mddev = rdev->mddev;
2941 sector_t oldsectors = rdev->sectors;
2942 sector_t sectors;
2943
2944 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2945 return -EINVAL;
2946 if (rdev->data_offset != rdev->new_data_offset)
2947 return -EINVAL; /* too confusing */
2948 if (my_mddev->pers && rdev->raid_disk >= 0) {
2949 if (my_mddev->persistent) {
2950 sectors = super_types[my_mddev->major_version].
2951 rdev_size_change(rdev, sectors);
2952 if (!sectors)
2953 return -EBUSY;
2954 } else if (!sectors)
2955 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2956 rdev->data_offset;
2957 if (!my_mddev->pers->resize)
2958 /* Cannot change size for RAID0 or Linear etc */
2959 return -EINVAL;
2960 }
2961 if (sectors < my_mddev->dev_sectors)
2962 return -EINVAL; /* component must fit device */
2963
2964 rdev->sectors = sectors;
2965 if (sectors > oldsectors && my_mddev->external) {
2966 /* need to check that all other rdevs with the same ->bdev
2967 * do not overlap. We need to unlock the mddev to avoid
2968 * a deadlock. We have already changed rdev->sectors, and if
2969 * we have to change it back, we will have the lock again.
2970 */
2971 struct mddev *mddev;
2972 int overlap = 0;
2973 struct list_head *tmp;
2974
2975 mddev_unlock(my_mddev);
2976 for_each_mddev(mddev, tmp) {
2977 struct md_rdev *rdev2;
2978
2979 mddev_lock_nointr(mddev);
2980 rdev_for_each(rdev2, mddev)
2981 if (rdev->bdev == rdev2->bdev &&
2982 rdev != rdev2 &&
2983 overlaps(rdev->data_offset, rdev->sectors,
2984 rdev2->data_offset,
2985 rdev2->sectors)) {
2986 overlap = 1;
2987 break;
2988 }
2989 mddev_unlock(mddev);
2990 if (overlap) {
2991 mddev_put(mddev);
2992 break;
2993 }
2994 }
2995 mddev_lock_nointr(my_mddev);
2996 if (overlap) {
2997 /* Someone else could have slipped in a size
2998 * change here, but doing so is just silly.
2999 * We put oldsectors back because we *know* it is
3000 * safe, and trust userspace not to race with
3001 * itself
3002 */
3003 rdev->sectors = oldsectors;
3004 return -EBUSY;
3005 }
3006 }
3007 return len;
3008 }
3009
3010 static struct rdev_sysfs_entry rdev_size =
3011 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3012
3013
3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3015 {
3016 unsigned long long recovery_start = rdev->recovery_offset;
3017
3018 if (test_bit(In_sync, &rdev->flags) ||
3019 recovery_start == MaxSector)
3020 return sprintf(page, "none\n");
3021
3022 return sprintf(page, "%llu\n", recovery_start);
3023 }
3024
3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3026 {
3027 unsigned long long recovery_start;
3028
3029 if (cmd_match(buf, "none"))
3030 recovery_start = MaxSector;
3031 else if (kstrtoull(buf, 10, &recovery_start))
3032 return -EINVAL;
3033
3034 if (rdev->mddev->pers &&
3035 rdev->raid_disk >= 0)
3036 return -EBUSY;
3037
3038 rdev->recovery_offset = recovery_start;
3039 if (recovery_start == MaxSector)
3040 set_bit(In_sync, &rdev->flags);
3041 else
3042 clear_bit(In_sync, &rdev->flags);
3043 return len;
3044 }
3045
3046 static struct rdev_sysfs_entry rdev_recovery_start =
3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3048
3049
3050 static ssize_t
3051 badblocks_show(struct badblocks *bb, char *page, int unack);
3052 static ssize_t
3053 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3054
3055 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3056 {
3057 return badblocks_show(&rdev->badblocks, page, 0);
3058 }
3059 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3060 {
3061 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3062 /* Maybe that ack was all we needed */
3063 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3064 wake_up(&rdev->blocked_wait);
3065 return rv;
3066 }
3067 static struct rdev_sysfs_entry rdev_bad_blocks =
3068 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3069
3070
3071 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3072 {
3073 return badblocks_show(&rdev->badblocks, page, 1);
3074 }
3075 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3076 {
3077 return badblocks_store(&rdev->badblocks, page, len, 1);
3078 }
3079 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3080 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3081
3082 static struct attribute *rdev_default_attrs[] = {
3083 &rdev_state.attr,
3084 &rdev_errors.attr,
3085 &rdev_slot.attr,
3086 &rdev_offset.attr,
3087 &rdev_new_offset.attr,
3088 &rdev_size.attr,
3089 &rdev_recovery_start.attr,
3090 &rdev_bad_blocks.attr,
3091 &rdev_unack_bad_blocks.attr,
3092 NULL,
3093 };
3094 static ssize_t
3095 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3096 {
3097 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3098 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3099 struct mddev *mddev = rdev->mddev;
3100 ssize_t rv;
3101
3102 if (!entry->show)
3103 return -EIO;
3104
3105 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3106 if (!rv) {
3107 if (rdev->mddev == NULL)
3108 rv = -EBUSY;
3109 else
3110 rv = entry->show(rdev, page);
3111 mddev_unlock(mddev);
3112 }
3113 return rv;
3114 }
3115
3116 static ssize_t
3117 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3118 const char *page, size_t length)
3119 {
3120 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3121 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3122 ssize_t rv;
3123 struct mddev *mddev = rdev->mddev;
3124
3125 if (!entry->store)
3126 return -EIO;
3127 if (!capable(CAP_SYS_ADMIN))
3128 return -EACCES;
3129 rv = mddev ? mddev_lock(mddev): -EBUSY;
3130 if (!rv) {
3131 if (rdev->mddev == NULL)
3132 rv = -EBUSY;
3133 else
3134 rv = entry->store(rdev, page, length);
3135 mddev_unlock(mddev);
3136 }
3137 return rv;
3138 }
3139
3140 static void rdev_free(struct kobject *ko)
3141 {
3142 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3143 kfree(rdev);
3144 }
3145 static const struct sysfs_ops rdev_sysfs_ops = {
3146 .show = rdev_attr_show,
3147 .store = rdev_attr_store,
3148 };
3149 static struct kobj_type rdev_ktype = {
3150 .release = rdev_free,
3151 .sysfs_ops = &rdev_sysfs_ops,
3152 .default_attrs = rdev_default_attrs,
3153 };
3154
3155 int md_rdev_init(struct md_rdev *rdev)
3156 {
3157 rdev->desc_nr = -1;
3158 rdev->saved_raid_disk = -1;
3159 rdev->raid_disk = -1;
3160 rdev->flags = 0;
3161 rdev->data_offset = 0;
3162 rdev->new_data_offset = 0;
3163 rdev->sb_events = 0;
3164 rdev->last_read_error.tv_sec = 0;
3165 rdev->last_read_error.tv_nsec = 0;
3166 rdev->sb_loaded = 0;
3167 rdev->bb_page = NULL;
3168 atomic_set(&rdev->nr_pending, 0);
3169 atomic_set(&rdev->read_errors, 0);
3170 atomic_set(&rdev->corrected_errors, 0);
3171
3172 INIT_LIST_HEAD(&rdev->same_set);
3173 init_waitqueue_head(&rdev->blocked_wait);
3174
3175 /* Add space to store bad block list.
3176 * This reserves the space even on arrays where it cannot
3177 * be used - I wonder if that matters
3178 */
3179 rdev->badblocks.count = 0;
3180 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3181 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3182 seqlock_init(&rdev->badblocks.lock);
3183 if (rdev->badblocks.page == NULL)
3184 return -ENOMEM;
3185
3186 return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(md_rdev_init);
3189 /*
3190 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3191 *
3192 * mark the device faulty if:
3193 *
3194 * - the device is nonexistent (zero size)
3195 * - the device has no valid superblock
3196 *
3197 * a faulty rdev _never_ has rdev->sb set.
3198 */
3199 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3200 {
3201 char b[BDEVNAME_SIZE];
3202 int err;
3203 struct md_rdev *rdev;
3204 sector_t size;
3205
3206 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3207 if (!rdev) {
3208 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3209 return ERR_PTR(-ENOMEM);
3210 }
3211
3212 err = md_rdev_init(rdev);
3213 if (err)
3214 goto abort_free;
3215 err = alloc_disk_sb(rdev);
3216 if (err)
3217 goto abort_free;
3218
3219 err = lock_rdev(rdev, newdev, super_format == -2);
3220 if (err)
3221 goto abort_free;
3222
3223 kobject_init(&rdev->kobj, &rdev_ktype);
3224
3225 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3226 if (!size) {
3227 printk(KERN_WARNING
3228 "md: %s has zero or unknown size, marking faulty!\n",
3229 bdevname(rdev->bdev,b));
3230 err = -EINVAL;
3231 goto abort_free;
3232 }
3233
3234 if (super_format >= 0) {
3235 err = super_types[super_format].
3236 load_super(rdev, NULL, super_minor);
3237 if (err == -EINVAL) {
3238 printk(KERN_WARNING
3239 "md: %s does not have a valid v%d.%d "
3240 "superblock, not importing!\n",
3241 bdevname(rdev->bdev,b),
3242 super_format, super_minor);
3243 goto abort_free;
3244 }
3245 if (err < 0) {
3246 printk(KERN_WARNING
3247 "md: could not read %s's sb, not importing!\n",
3248 bdevname(rdev->bdev,b));
3249 goto abort_free;
3250 }
3251 }
3252
3253 return rdev;
3254
3255 abort_free:
3256 if (rdev->bdev)
3257 unlock_rdev(rdev);
3258 md_rdev_clear(rdev);
3259 kfree(rdev);
3260 return ERR_PTR(err);
3261 }
3262
3263 /*
3264 * Check a full RAID array for plausibility
3265 */
3266
3267
3268 static void analyze_sbs(struct mddev * mddev)
3269 {
3270 int i;
3271 struct md_rdev *rdev, *freshest, *tmp;
3272 char b[BDEVNAME_SIZE];
3273
3274 freshest = NULL;
3275 rdev_for_each_safe(rdev, tmp, mddev)
3276 switch (super_types[mddev->major_version].
3277 load_super(rdev, freshest, mddev->minor_version)) {
3278 case 1:
3279 freshest = rdev;
3280 break;
3281 case 0:
3282 break;
3283 default:
3284 printk( KERN_ERR \
3285 "md: fatal superblock inconsistency in %s"
3286 " -- removing from array\n",
3287 bdevname(rdev->bdev,b));
3288 kick_rdev_from_array(rdev);
3289 }
3290
3291
3292 super_types[mddev->major_version].
3293 validate_super(mddev, freshest);
3294
3295 i = 0;
3296 rdev_for_each_safe(rdev, tmp, mddev) {
3297 if (mddev->max_disks &&
3298 (rdev->desc_nr >= mddev->max_disks ||
3299 i > mddev->max_disks)) {
3300 printk(KERN_WARNING
3301 "md: %s: %s: only %d devices permitted\n",
3302 mdname(mddev), bdevname(rdev->bdev, b),
3303 mddev->max_disks);
3304 kick_rdev_from_array(rdev);
3305 continue;
3306 }
3307 if (rdev != freshest)
3308 if (super_types[mddev->major_version].
3309 validate_super(mddev, rdev)) {
3310 printk(KERN_WARNING "md: kicking non-fresh %s"
3311 " from array!\n",
3312 bdevname(rdev->bdev,b));
3313 kick_rdev_from_array(rdev);
3314 continue;
3315 }
3316 if (mddev->level == LEVEL_MULTIPATH) {
3317 rdev->desc_nr = i++;
3318 rdev->raid_disk = rdev->desc_nr;
3319 set_bit(In_sync, &rdev->flags);
3320 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3321 rdev->raid_disk = -1;
3322 clear_bit(In_sync, &rdev->flags);
3323 }
3324 }
3325 }
3326
3327 /* Read a fixed-point number.
3328 * Numbers in sysfs attributes should be in "standard" units where
3329 * possible, so time should be in seconds.
3330 * However we internally use a a much smaller unit such as
3331 * milliseconds or jiffies.
3332 * This function takes a decimal number with a possible fractional
3333 * component, and produces an integer which is the result of
3334 * multiplying that number by 10^'scale'.
3335 * all without any floating-point arithmetic.
3336 */
3337 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3338 {
3339 unsigned long result = 0;
3340 long decimals = -1;
3341 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3342 if (*cp == '.')
3343 decimals = 0;
3344 else if (decimals < scale) {
3345 unsigned int value;
3346 value = *cp - '0';
3347 result = result * 10 + value;
3348 if (decimals >= 0)
3349 decimals++;
3350 }
3351 cp++;
3352 }
3353 if (*cp == '\n')
3354 cp++;
3355 if (*cp)
3356 return -EINVAL;
3357 if (decimals < 0)
3358 decimals = 0;
3359 while (decimals < scale) {
3360 result *= 10;
3361 decimals ++;
3362 }
3363 *res = result;
3364 return 0;
3365 }
3366
3367
3368 static void md_safemode_timeout(unsigned long data);
3369
3370 static ssize_t
3371 safe_delay_show(struct mddev *mddev, char *page)
3372 {
3373 int msec = (mddev->safemode_delay*1000)/HZ;
3374 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3375 }
3376 static ssize_t
3377 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3378 {
3379 unsigned long msec;
3380
3381 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3382 return -EINVAL;
3383 if (msec == 0)
3384 mddev->safemode_delay = 0;
3385 else {
3386 unsigned long old_delay = mddev->safemode_delay;
3387 mddev->safemode_delay = (msec*HZ)/1000;
3388 if (mddev->safemode_delay == 0)
3389 mddev->safemode_delay = 1;
3390 if (mddev->safemode_delay < old_delay || old_delay == 0)
3391 md_safemode_timeout((unsigned long)mddev);
3392 }
3393 return len;
3394 }
3395 static struct md_sysfs_entry md_safe_delay =
3396 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3397
3398 static ssize_t
3399 level_show(struct mddev *mddev, char *page)
3400 {
3401 struct md_personality *p = mddev->pers;
3402 if (p)
3403 return sprintf(page, "%s\n", p->name);
3404 else if (mddev->clevel[0])
3405 return sprintf(page, "%s\n", mddev->clevel);
3406 else if (mddev->level != LEVEL_NONE)
3407 return sprintf(page, "%d\n", mddev->level);
3408 else
3409 return 0;
3410 }
3411
3412 static ssize_t
3413 level_store(struct mddev *mddev, const char *buf, size_t len)
3414 {
3415 char clevel[16];
3416 ssize_t rv = len;
3417 struct md_personality *pers;
3418 long level;
3419 void *priv;
3420 struct md_rdev *rdev;
3421
3422 if (mddev->pers == NULL) {
3423 if (len == 0)
3424 return 0;
3425 if (len >= sizeof(mddev->clevel))
3426 return -ENOSPC;
3427 strncpy(mddev->clevel, buf, len);
3428 if (mddev->clevel[len-1] == '\n')
3429 len--;
3430 mddev->clevel[len] = 0;
3431 mddev->level = LEVEL_NONE;
3432 return rv;
3433 }
3434
3435 /* request to change the personality. Need to ensure:
3436 * - array is not engaged in resync/recovery/reshape
3437 * - old personality can be suspended
3438 * - new personality will access other array.
3439 */
3440
3441 if (mddev->sync_thread ||
3442 mddev->reshape_position != MaxSector ||
3443 mddev->sysfs_active)
3444 return -EBUSY;
3445
3446 if (!mddev->pers->quiesce) {
3447 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3448 mdname(mddev), mddev->pers->name);
3449 return -EINVAL;
3450 }
3451
3452 /* Now find the new personality */
3453 if (len == 0 || len >= sizeof(clevel))
3454 return -EINVAL;
3455 strncpy(clevel, buf, len);
3456 if (clevel[len-1] == '\n')
3457 len--;
3458 clevel[len] = 0;
3459 if (kstrtol(clevel, 10, &level))
3460 level = LEVEL_NONE;
3461
3462 if (request_module("md-%s", clevel) != 0)
3463 request_module("md-level-%s", clevel);
3464 spin_lock(&pers_lock);
3465 pers = find_pers(level, clevel);
3466 if (!pers || !try_module_get(pers->owner)) {
3467 spin_unlock(&pers_lock);
3468 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3469 return -EINVAL;
3470 }
3471 spin_unlock(&pers_lock);
3472
3473 if (pers == mddev->pers) {
3474 /* Nothing to do! */
3475 module_put(pers->owner);
3476 return rv;
3477 }
3478 if (!pers->takeover) {
3479 module_put(pers->owner);
3480 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3481 mdname(mddev), clevel);
3482 return -EINVAL;
3483 }
3484
3485 rdev_for_each(rdev, mddev)
3486 rdev->new_raid_disk = rdev->raid_disk;
3487
3488 /* ->takeover must set new_* and/or delta_disks
3489 * if it succeeds, and may set them when it fails.
3490 */
3491 priv = pers->takeover(mddev);
3492 if (IS_ERR(priv)) {
3493 mddev->new_level = mddev->level;
3494 mddev->new_layout = mddev->layout;
3495 mddev->new_chunk_sectors = mddev->chunk_sectors;
3496 mddev->raid_disks -= mddev->delta_disks;
3497 mddev->delta_disks = 0;
3498 mddev->reshape_backwards = 0;
3499 module_put(pers->owner);
3500 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3501 mdname(mddev), clevel);
3502 return PTR_ERR(priv);
3503 }
3504
3505 /* Looks like we have a winner */
3506 mddev_suspend(mddev);
3507 mddev->pers->stop(mddev);
3508
3509 if (mddev->pers->sync_request == NULL &&
3510 pers->sync_request != NULL) {
3511 /* need to add the md_redundancy_group */
3512 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3513 printk(KERN_WARNING
3514 "md: cannot register extra attributes for %s\n",
3515 mdname(mddev));
3516 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3517 }
3518 if (mddev->pers->sync_request != NULL &&
3519 pers->sync_request == NULL) {
3520 /* need to remove the md_redundancy_group */
3521 if (mddev->to_remove == NULL)
3522 mddev->to_remove = &md_redundancy_group;
3523 }
3524
3525 if (mddev->pers->sync_request == NULL &&
3526 mddev->external) {
3527 /* We are converting from a no-redundancy array
3528 * to a redundancy array and metadata is managed
3529 * externally so we need to be sure that writes
3530 * won't block due to a need to transition
3531 * clean->dirty
3532 * until external management is started.
3533 */
3534 mddev->in_sync = 0;
3535 mddev->safemode_delay = 0;
3536 mddev->safemode = 0;
3537 }
3538
3539 rdev_for_each(rdev, mddev) {
3540 if (rdev->raid_disk < 0)
3541 continue;
3542 if (rdev->new_raid_disk >= mddev->raid_disks)
3543 rdev->new_raid_disk = -1;
3544 if (rdev->new_raid_disk == rdev->raid_disk)
3545 continue;
3546 sysfs_unlink_rdev(mddev, rdev);
3547 }
3548 rdev_for_each(rdev, mddev) {
3549 if (rdev->raid_disk < 0)
3550 continue;
3551 if (rdev->new_raid_disk == rdev->raid_disk)
3552 continue;
3553 rdev->raid_disk = rdev->new_raid_disk;
3554 if (rdev->raid_disk < 0)
3555 clear_bit(In_sync, &rdev->flags);
3556 else {
3557 if (sysfs_link_rdev(mddev, rdev))
3558 printk(KERN_WARNING "md: cannot register rd%d"
3559 " for %s after level change\n",
3560 rdev->raid_disk, mdname(mddev));
3561 }
3562 }
3563
3564 module_put(mddev->pers->owner);
3565 mddev->pers = pers;
3566 mddev->private = priv;
3567 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3568 mddev->level = mddev->new_level;
3569 mddev->layout = mddev->new_layout;
3570 mddev->chunk_sectors = mddev->new_chunk_sectors;
3571 mddev->delta_disks = 0;
3572 mddev->reshape_backwards = 0;
3573 mddev->degraded = 0;
3574 if (mddev->pers->sync_request == NULL) {
3575 /* this is now an array without redundancy, so
3576 * it must always be in_sync
3577 */
3578 mddev->in_sync = 1;
3579 del_timer_sync(&mddev->safemode_timer);
3580 }
3581 blk_set_stacking_limits(&mddev->queue->limits);
3582 pers->run(mddev);
3583 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3584 mddev_resume(mddev);
3585 sysfs_notify(&mddev->kobj, NULL, "level");
3586 md_new_event(mddev);
3587 return rv;
3588 }
3589
3590 static struct md_sysfs_entry md_level =
3591 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3592
3593
3594 static ssize_t
3595 layout_show(struct mddev *mddev, char *page)
3596 {
3597 /* just a number, not meaningful for all levels */
3598 if (mddev->reshape_position != MaxSector &&
3599 mddev->layout != mddev->new_layout)
3600 return sprintf(page, "%d (%d)\n",
3601 mddev->new_layout, mddev->layout);
3602 return sprintf(page, "%d\n", mddev->layout);
3603 }
3604
3605 static ssize_t
3606 layout_store(struct mddev *mddev, const char *buf, size_t len)
3607 {
3608 char *e;
3609 unsigned long n = simple_strtoul(buf, &e, 10);
3610
3611 if (!*buf || (*e && *e != '\n'))
3612 return -EINVAL;
3613
3614 if (mddev->pers) {
3615 int err;
3616 if (mddev->pers->check_reshape == NULL)
3617 return -EBUSY;
3618 mddev->new_layout = n;
3619 err = mddev->pers->check_reshape(mddev);
3620 if (err) {
3621 mddev->new_layout = mddev->layout;
3622 return err;
3623 }
3624 } else {
3625 mddev->new_layout = n;
3626 if (mddev->reshape_position == MaxSector)
3627 mddev->layout = n;
3628 }
3629 return len;
3630 }
3631 static struct md_sysfs_entry md_layout =
3632 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3633
3634
3635 static ssize_t
3636 raid_disks_show(struct mddev *mddev, char *page)
3637 {
3638 if (mddev->raid_disks == 0)
3639 return 0;
3640 if (mddev->reshape_position != MaxSector &&
3641 mddev->delta_disks != 0)
3642 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3643 mddev->raid_disks - mddev->delta_disks);
3644 return sprintf(page, "%d\n", mddev->raid_disks);
3645 }
3646
3647 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3648
3649 static ssize_t
3650 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3651 {
3652 char *e;
3653 int rv = 0;
3654 unsigned long n = simple_strtoul(buf, &e, 10);
3655
3656 if (!*buf || (*e && *e != '\n'))
3657 return -EINVAL;
3658
3659 if (mddev->pers)
3660 rv = update_raid_disks(mddev, n);
3661 else if (mddev->reshape_position != MaxSector) {
3662 struct md_rdev *rdev;
3663 int olddisks = mddev->raid_disks - mddev->delta_disks;
3664
3665 rdev_for_each(rdev, mddev) {
3666 if (olddisks < n &&
3667 rdev->data_offset < rdev->new_data_offset)
3668 return -EINVAL;
3669 if (olddisks > n &&
3670 rdev->data_offset > rdev->new_data_offset)
3671 return -EINVAL;
3672 }
3673 mddev->delta_disks = n - olddisks;
3674 mddev->raid_disks = n;
3675 mddev->reshape_backwards = (mddev->delta_disks < 0);
3676 } else
3677 mddev->raid_disks = n;
3678 return rv ? rv : len;
3679 }
3680 static struct md_sysfs_entry md_raid_disks =
3681 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3682
3683 static ssize_t
3684 chunk_size_show(struct mddev *mddev, char *page)
3685 {
3686 if (mddev->reshape_position != MaxSector &&
3687 mddev->chunk_sectors != mddev->new_chunk_sectors)
3688 return sprintf(page, "%d (%d)\n",
3689 mddev->new_chunk_sectors << 9,
3690 mddev->chunk_sectors << 9);
3691 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3692 }
3693
3694 static ssize_t
3695 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3696 {
3697 char *e;
3698 unsigned long n = simple_strtoul(buf, &e, 10);
3699
3700 if (!*buf || (*e && *e != '\n'))
3701 return -EINVAL;
3702
3703 if (mddev->pers) {
3704 int err;
3705 if (mddev->pers->check_reshape == NULL)
3706 return -EBUSY;
3707 mddev->new_chunk_sectors = n >> 9;
3708 err = mddev->pers->check_reshape(mddev);
3709 if (err) {
3710 mddev->new_chunk_sectors = mddev->chunk_sectors;
3711 return err;
3712 }
3713 } else {
3714 mddev->new_chunk_sectors = n >> 9;
3715 if (mddev->reshape_position == MaxSector)
3716 mddev->chunk_sectors = n >> 9;
3717 }
3718 return len;
3719 }
3720 static struct md_sysfs_entry md_chunk_size =
3721 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3722
3723 static ssize_t
3724 resync_start_show(struct mddev *mddev, char *page)
3725 {
3726 if (mddev->recovery_cp == MaxSector)
3727 return sprintf(page, "none\n");
3728 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3729 }
3730
3731 static ssize_t
3732 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3733 {
3734 char *e;
3735 unsigned long long n = simple_strtoull(buf, &e, 10);
3736
3737 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3738 return -EBUSY;
3739 if (cmd_match(buf, "none"))
3740 n = MaxSector;
3741 else if (!*buf || (*e && *e != '\n'))
3742 return -EINVAL;
3743
3744 mddev->recovery_cp = n;
3745 if (mddev->pers)
3746 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3747 return len;
3748 }
3749 static struct md_sysfs_entry md_resync_start =
3750 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3751
3752 /*
3753 * The array state can be:
3754 *
3755 * clear
3756 * No devices, no size, no level
3757 * Equivalent to STOP_ARRAY ioctl
3758 * inactive
3759 * May have some settings, but array is not active
3760 * all IO results in error
3761 * When written, doesn't tear down array, but just stops it
3762 * suspended (not supported yet)
3763 * All IO requests will block. The array can be reconfigured.
3764 * Writing this, if accepted, will block until array is quiescent
3765 * readonly
3766 * no resync can happen. no superblocks get written.
3767 * write requests fail
3768 * read-auto
3769 * like readonly, but behaves like 'clean' on a write request.
3770 *
3771 * clean - no pending writes, but otherwise active.
3772 * When written to inactive array, starts without resync
3773 * If a write request arrives then
3774 * if metadata is known, mark 'dirty' and switch to 'active'.
3775 * if not known, block and switch to write-pending
3776 * If written to an active array that has pending writes, then fails.
3777 * active
3778 * fully active: IO and resync can be happening.
3779 * When written to inactive array, starts with resync
3780 *
3781 * write-pending
3782 * clean, but writes are blocked waiting for 'active' to be written.
3783 *
3784 * active-idle
3785 * like active, but no writes have been seen for a while (100msec).
3786 *
3787 */
3788 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3789 write_pending, active_idle, bad_word};
3790 static char *array_states[] = {
3791 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3792 "write-pending", "active-idle", NULL };
3793
3794 static int match_word(const char *word, char **list)
3795 {
3796 int n;
3797 for (n=0; list[n]; n++)
3798 if (cmd_match(word, list[n]))
3799 break;
3800 return n;
3801 }
3802
3803 static ssize_t
3804 array_state_show(struct mddev *mddev, char *page)
3805 {
3806 enum array_state st = inactive;
3807
3808 if (mddev->pers)
3809 switch(mddev->ro) {
3810 case 1:
3811 st = readonly;
3812 break;
3813 case 2:
3814 st = read_auto;
3815 break;
3816 case 0:
3817 if (mddev->in_sync)
3818 st = clean;
3819 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3820 st = write_pending;
3821 else if (mddev->safemode)
3822 st = active_idle;
3823 else
3824 st = active;
3825 }
3826 else {
3827 if (list_empty(&mddev->disks) &&
3828 mddev->raid_disks == 0 &&
3829 mddev->dev_sectors == 0)
3830 st = clear;
3831 else
3832 st = inactive;
3833 }
3834 return sprintf(page, "%s\n", array_states[st]);
3835 }
3836
3837 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3838 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3839 static int do_md_run(struct mddev * mddev);
3840 static int restart_array(struct mddev *mddev);
3841
3842 static ssize_t
3843 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3844 {
3845 int err = -EINVAL;
3846 enum array_state st = match_word(buf, array_states);
3847 switch(st) {
3848 case bad_word:
3849 break;
3850 case clear:
3851 /* stopping an active array */
3852 err = do_md_stop(mddev, 0, NULL);
3853 break;
3854 case inactive:
3855 /* stopping an active array */
3856 if (mddev->pers)
3857 err = do_md_stop(mddev, 2, NULL);
3858 else
3859 err = 0; /* already inactive */
3860 break;
3861 case suspended:
3862 break; /* not supported yet */
3863 case readonly:
3864 if (mddev->pers)
3865 err = md_set_readonly(mddev, NULL);
3866 else {
3867 mddev->ro = 1;
3868 set_disk_ro(mddev->gendisk, 1);
3869 err = do_md_run(mddev);
3870 }
3871 break;
3872 case read_auto:
3873 if (mddev->pers) {
3874 if (mddev->ro == 0)
3875 err = md_set_readonly(mddev, NULL);
3876 else if (mddev->ro == 1)
3877 err = restart_array(mddev);
3878 if (err == 0) {
3879 mddev->ro = 2;
3880 set_disk_ro(mddev->gendisk, 0);
3881 }
3882 } else {
3883 mddev->ro = 2;
3884 err = do_md_run(mddev);
3885 }
3886 break;
3887 case clean:
3888 if (mddev->pers) {
3889 restart_array(mddev);
3890 spin_lock_irq(&mddev->write_lock);
3891 if (atomic_read(&mddev->writes_pending) == 0) {
3892 if (mddev->in_sync == 0) {
3893 mddev->in_sync = 1;
3894 if (mddev->safemode == 1)
3895 mddev->safemode = 0;
3896 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3897 }
3898 err = 0;
3899 } else
3900 err = -EBUSY;
3901 spin_unlock_irq(&mddev->write_lock);
3902 } else
3903 err = -EINVAL;
3904 break;
3905 case active:
3906 if (mddev->pers) {
3907 restart_array(mddev);
3908 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3909 wake_up(&mddev->sb_wait);
3910 err = 0;
3911 } else {
3912 mddev->ro = 0;
3913 set_disk_ro(mddev->gendisk, 0);
3914 err = do_md_run(mddev);
3915 }
3916 break;
3917 case write_pending:
3918 case active_idle:
3919 /* these cannot be set */
3920 break;
3921 }
3922 if (err)
3923 return err;
3924 else {
3925 if (mddev->hold_active == UNTIL_IOCTL)
3926 mddev->hold_active = 0;
3927 sysfs_notify_dirent_safe(mddev->sysfs_state);
3928 return len;
3929 }
3930 }
3931 static struct md_sysfs_entry md_array_state =
3932 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3933
3934 static ssize_t
3935 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3936 return sprintf(page, "%d\n",
3937 atomic_read(&mddev->max_corr_read_errors));
3938 }
3939
3940 static ssize_t
3941 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3942 {
3943 char *e;
3944 unsigned long n = simple_strtoul(buf, &e, 10);
3945
3946 if (*buf && (*e == 0 || *e == '\n')) {
3947 atomic_set(&mddev->max_corr_read_errors, n);
3948 return len;
3949 }
3950 return -EINVAL;
3951 }
3952
3953 static struct md_sysfs_entry max_corr_read_errors =
3954 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3955 max_corrected_read_errors_store);
3956
3957 static ssize_t
3958 null_show(struct mddev *mddev, char *page)
3959 {
3960 return -EINVAL;
3961 }
3962
3963 static ssize_t
3964 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3965 {
3966 /* buf must be %d:%d\n? giving major and minor numbers */
3967 /* The new device is added to the array.
3968 * If the array has a persistent superblock, we read the
3969 * superblock to initialise info and check validity.
3970 * Otherwise, only checking done is that in bind_rdev_to_array,
3971 * which mainly checks size.
3972 */
3973 char *e;
3974 int major = simple_strtoul(buf, &e, 10);
3975 int minor;
3976 dev_t dev;
3977 struct md_rdev *rdev;
3978 int err;
3979
3980 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3981 return -EINVAL;
3982 minor = simple_strtoul(e+1, &e, 10);
3983 if (*e && *e != '\n')
3984 return -EINVAL;
3985 dev = MKDEV(major, minor);
3986 if (major != MAJOR(dev) ||
3987 minor != MINOR(dev))
3988 return -EOVERFLOW;
3989
3990
3991 if (mddev->persistent) {
3992 rdev = md_import_device(dev, mddev->major_version,
3993 mddev->minor_version);
3994 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3995 struct md_rdev *rdev0
3996 = list_entry(mddev->disks.next,
3997 struct md_rdev, same_set);
3998 err = super_types[mddev->major_version]
3999 .load_super(rdev, rdev0, mddev->minor_version);
4000 if (err < 0)
4001 goto out;
4002 }
4003 } else if (mddev->external)
4004 rdev = md_import_device(dev, -2, -1);
4005 else
4006 rdev = md_import_device(dev, -1, -1);
4007
4008 if (IS_ERR(rdev))
4009 return PTR_ERR(rdev);
4010 err = bind_rdev_to_array(rdev, mddev);
4011 out:
4012 if (err)
4013 export_rdev(rdev);
4014 return err ? err : len;
4015 }
4016
4017 static struct md_sysfs_entry md_new_device =
4018 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4019
4020 static ssize_t
4021 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4022 {
4023 char *end;
4024 unsigned long chunk, end_chunk;
4025
4026 if (!mddev->bitmap)
4027 goto out;
4028 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4029 while (*buf) {
4030 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4031 if (buf == end) break;
4032 if (*end == '-') { /* range */
4033 buf = end + 1;
4034 end_chunk = simple_strtoul(buf, &end, 0);
4035 if (buf == end) break;
4036 }
4037 if (*end && !isspace(*end)) break;
4038 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4039 buf = skip_spaces(end);
4040 }
4041 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4042 out:
4043 return len;
4044 }
4045
4046 static struct md_sysfs_entry md_bitmap =
4047 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4048
4049 static ssize_t
4050 size_show(struct mddev *mddev, char *page)
4051 {
4052 return sprintf(page, "%llu\n",
4053 (unsigned long long)mddev->dev_sectors / 2);
4054 }
4055
4056 static int update_size(struct mddev *mddev, sector_t num_sectors);
4057
4058 static ssize_t
4059 size_store(struct mddev *mddev, const char *buf, size_t len)
4060 {
4061 /* If array is inactive, we can reduce the component size, but
4062 * not increase it (except from 0).
4063 * If array is active, we can try an on-line resize
4064 */
4065 sector_t sectors;
4066 int err = strict_blocks_to_sectors(buf, &sectors);
4067
4068 if (err < 0)
4069 return err;
4070 if (mddev->pers) {
4071 err = update_size(mddev, sectors);
4072 md_update_sb(mddev, 1);
4073 } else {
4074 if (mddev->dev_sectors == 0 ||
4075 mddev->dev_sectors > sectors)
4076 mddev->dev_sectors = sectors;
4077 else
4078 err = -ENOSPC;
4079 }
4080 return err ? err : len;
4081 }
4082
4083 static struct md_sysfs_entry md_size =
4084 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4085
4086
4087 /* Metadata version.
4088 * This is one of
4089 * 'none' for arrays with no metadata (good luck...)
4090 * 'external' for arrays with externally managed metadata,
4091 * or N.M for internally known formats
4092 */
4093 static ssize_t
4094 metadata_show(struct mddev *mddev, char *page)
4095 {
4096 if (mddev->persistent)
4097 return sprintf(page, "%d.%d\n",
4098 mddev->major_version, mddev->minor_version);
4099 else if (mddev->external)
4100 return sprintf(page, "external:%s\n", mddev->metadata_type);
4101 else
4102 return sprintf(page, "none\n");
4103 }
4104
4105 static ssize_t
4106 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4107 {
4108 int major, minor;
4109 char *e;
4110 /* Changing the details of 'external' metadata is
4111 * always permitted. Otherwise there must be
4112 * no devices attached to the array.
4113 */
4114 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4115 ;
4116 else if (!list_empty(&mddev->disks))
4117 return -EBUSY;
4118
4119 if (cmd_match(buf, "none")) {
4120 mddev->persistent = 0;
4121 mddev->external = 0;
4122 mddev->major_version = 0;
4123 mddev->minor_version = 90;
4124 return len;
4125 }
4126 if (strncmp(buf, "external:", 9) == 0) {
4127 size_t namelen = len-9;
4128 if (namelen >= sizeof(mddev->metadata_type))
4129 namelen = sizeof(mddev->metadata_type)-1;
4130 strncpy(mddev->metadata_type, buf+9, namelen);
4131 mddev->metadata_type[namelen] = 0;
4132 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4133 mddev->metadata_type[--namelen] = 0;
4134 mddev->persistent = 0;
4135 mddev->external = 1;
4136 mddev->major_version = 0;
4137 mddev->minor_version = 90;
4138 return len;
4139 }
4140 major = simple_strtoul(buf, &e, 10);
4141 if (e==buf || *e != '.')
4142 return -EINVAL;
4143 buf = e+1;
4144 minor = simple_strtoul(buf, &e, 10);
4145 if (e==buf || (*e && *e != '\n') )
4146 return -EINVAL;
4147 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4148 return -ENOENT;
4149 mddev->major_version = major;
4150 mddev->minor_version = minor;
4151 mddev->persistent = 1;
4152 mddev->external = 0;
4153 return len;
4154 }
4155
4156 static struct md_sysfs_entry md_metadata =
4157 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4158
4159 static ssize_t
4160 action_show(struct mddev *mddev, char *page)
4161 {
4162 char *type = "idle";
4163 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4164 type = "frozen";
4165 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4166 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4167 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4168 type = "reshape";
4169 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4170 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4171 type = "resync";
4172 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4173 type = "check";
4174 else
4175 type = "repair";
4176 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4177 type = "recover";
4178 }
4179 return sprintf(page, "%s\n", type);
4180 }
4181
4182 static ssize_t
4183 action_store(struct mddev *mddev, const char *page, size_t len)
4184 {
4185 if (!mddev->pers || !mddev->pers->sync_request)
4186 return -EINVAL;
4187
4188 if (cmd_match(page, "frozen"))
4189 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4190 else
4191 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4192
4193 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4194 if (mddev->sync_thread) {
4195 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4196 md_reap_sync_thread(mddev);
4197 }
4198 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4199 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4200 return -EBUSY;
4201 else if (cmd_match(page, "resync"))
4202 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4203 else if (cmd_match(page, "recover")) {
4204 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4205 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4206 } else if (cmd_match(page, "reshape")) {
4207 int err;
4208 if (mddev->pers->start_reshape == NULL)
4209 return -EINVAL;
4210 err = mddev->pers->start_reshape(mddev);
4211 if (err)
4212 return err;
4213 sysfs_notify(&mddev->kobj, NULL, "degraded");
4214 } else {
4215 if (cmd_match(page, "check"))
4216 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4217 else if (!cmd_match(page, "repair"))
4218 return -EINVAL;
4219 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4220 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4221 }
4222 if (mddev->ro == 2) {
4223 /* A write to sync_action is enough to justify
4224 * canceling read-auto mode
4225 */
4226 mddev->ro = 0;
4227 md_wakeup_thread(mddev->sync_thread);
4228 }
4229 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4230 md_wakeup_thread(mddev->thread);
4231 sysfs_notify_dirent_safe(mddev->sysfs_action);
4232 return len;
4233 }
4234
4235 static struct md_sysfs_entry md_scan_mode =
4236 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4237
4238 static ssize_t
4239 last_sync_action_show(struct mddev *mddev, char *page)
4240 {
4241 return sprintf(page, "%s\n", mddev->last_sync_action);
4242 }
4243
4244 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4245
4246 static ssize_t
4247 mismatch_cnt_show(struct mddev *mddev, char *page)
4248 {
4249 return sprintf(page, "%llu\n",
4250 (unsigned long long)
4251 atomic64_read(&mddev->resync_mismatches));
4252 }
4253
4254 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4255
4256 static ssize_t
4257 sync_min_show(struct mddev *mddev, char *page)
4258 {
4259 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4260 mddev->sync_speed_min ? "local": "system");
4261 }
4262
4263 static ssize_t
4264 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4265 {
4266 int min;
4267 char *e;
4268 if (strncmp(buf, "system", 6)==0) {
4269 mddev->sync_speed_min = 0;
4270 return len;
4271 }
4272 min = simple_strtoul(buf, &e, 10);
4273 if (buf == e || (*e && *e != '\n') || min <= 0)
4274 return -EINVAL;
4275 mddev->sync_speed_min = min;
4276 return len;
4277 }
4278
4279 static struct md_sysfs_entry md_sync_min =
4280 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4281
4282 static ssize_t
4283 sync_max_show(struct mddev *mddev, char *page)
4284 {
4285 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4286 mddev->sync_speed_max ? "local": "system");
4287 }
4288
4289 static ssize_t
4290 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4291 {
4292 int max;
4293 char *e;
4294 if (strncmp(buf, "system", 6)==0) {
4295 mddev->sync_speed_max = 0;
4296 return len;
4297 }
4298 max = simple_strtoul(buf, &e, 10);
4299 if (buf == e || (*e && *e != '\n') || max <= 0)
4300 return -EINVAL;
4301 mddev->sync_speed_max = max;
4302 return len;
4303 }
4304
4305 static struct md_sysfs_entry md_sync_max =
4306 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4307
4308 static ssize_t
4309 degraded_show(struct mddev *mddev, char *page)
4310 {
4311 return sprintf(page, "%d\n", mddev->degraded);
4312 }
4313 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4314
4315 static ssize_t
4316 sync_force_parallel_show(struct mddev *mddev, char *page)
4317 {
4318 return sprintf(page, "%d\n", mddev->parallel_resync);
4319 }
4320
4321 static ssize_t
4322 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4323 {
4324 long n;
4325
4326 if (kstrtol(buf, 10, &n))
4327 return -EINVAL;
4328
4329 if (n != 0 && n != 1)
4330 return -EINVAL;
4331
4332 mddev->parallel_resync = n;
4333
4334 if (mddev->sync_thread)
4335 wake_up(&resync_wait);
4336
4337 return len;
4338 }
4339
4340 /* force parallel resync, even with shared block devices */
4341 static struct md_sysfs_entry md_sync_force_parallel =
4342 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4343 sync_force_parallel_show, sync_force_parallel_store);
4344
4345 static ssize_t
4346 sync_speed_show(struct mddev *mddev, char *page)
4347 {
4348 unsigned long resync, dt, db;
4349 if (mddev->curr_resync == 0)
4350 return sprintf(page, "none\n");
4351 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4352 dt = (jiffies - mddev->resync_mark) / HZ;
4353 if (!dt) dt++;
4354 db = resync - mddev->resync_mark_cnt;
4355 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4356 }
4357
4358 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4359
4360 static ssize_t
4361 sync_completed_show(struct mddev *mddev, char *page)
4362 {
4363 unsigned long long max_sectors, resync;
4364
4365 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4366 return sprintf(page, "none\n");
4367
4368 if (mddev->curr_resync == 1 ||
4369 mddev->curr_resync == 2)
4370 return sprintf(page, "delayed\n");
4371
4372 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4373 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4374 max_sectors = mddev->resync_max_sectors;
4375 else
4376 max_sectors = mddev->dev_sectors;
4377
4378 resync = mddev->curr_resync_completed;
4379 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4380 }
4381
4382 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4383
4384 static ssize_t
4385 min_sync_show(struct mddev *mddev, char *page)
4386 {
4387 return sprintf(page, "%llu\n",
4388 (unsigned long long)mddev->resync_min);
4389 }
4390 static ssize_t
4391 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4392 {
4393 unsigned long long min;
4394 if (kstrtoull(buf, 10, &min))
4395 return -EINVAL;
4396 if (min > mddev->resync_max)
4397 return -EINVAL;
4398 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4399 return -EBUSY;
4400
4401 /* Must be a multiple of chunk_size */
4402 if (mddev->chunk_sectors) {
4403 sector_t temp = min;
4404 if (sector_div(temp, mddev->chunk_sectors))
4405 return -EINVAL;
4406 }
4407 mddev->resync_min = min;
4408
4409 return len;
4410 }
4411
4412 static struct md_sysfs_entry md_min_sync =
4413 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4414
4415 static ssize_t
4416 max_sync_show(struct mddev *mddev, char *page)
4417 {
4418 if (mddev->resync_max == MaxSector)
4419 return sprintf(page, "max\n");
4420 else
4421 return sprintf(page, "%llu\n",
4422 (unsigned long long)mddev->resync_max);
4423 }
4424 static ssize_t
4425 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4426 {
4427 if (strncmp(buf, "max", 3) == 0)
4428 mddev->resync_max = MaxSector;
4429 else {
4430 unsigned long long max;
4431 if (kstrtoull(buf, 10, &max))
4432 return -EINVAL;
4433 if (max < mddev->resync_min)
4434 return -EINVAL;
4435 if (max < mddev->resync_max &&
4436 mddev->ro == 0 &&
4437 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4438 return -EBUSY;
4439
4440 /* Must be a multiple of chunk_size */
4441 if (mddev->chunk_sectors) {
4442 sector_t temp = max;
4443 if (sector_div(temp, mddev->chunk_sectors))
4444 return -EINVAL;
4445 }
4446 mddev->resync_max = max;
4447 }
4448 wake_up(&mddev->recovery_wait);
4449 return len;
4450 }
4451
4452 static struct md_sysfs_entry md_max_sync =
4453 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4454
4455 static ssize_t
4456 suspend_lo_show(struct mddev *mddev, char *page)
4457 {
4458 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4459 }
4460
4461 static ssize_t
4462 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4463 {
4464 char *e;
4465 unsigned long long new = simple_strtoull(buf, &e, 10);
4466 unsigned long long old = mddev->suspend_lo;
4467
4468 if (mddev->pers == NULL ||
4469 mddev->pers->quiesce == NULL)
4470 return -EINVAL;
4471 if (buf == e || (*e && *e != '\n'))
4472 return -EINVAL;
4473
4474 mddev->suspend_lo = new;
4475 if (new >= old)
4476 /* Shrinking suspended region */
4477 mddev->pers->quiesce(mddev, 2);
4478 else {
4479 /* Expanding suspended region - need to wait */
4480 mddev->pers->quiesce(mddev, 1);
4481 mddev->pers->quiesce(mddev, 0);
4482 }
4483 return len;
4484 }
4485 static struct md_sysfs_entry md_suspend_lo =
4486 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4487
4488
4489 static ssize_t
4490 suspend_hi_show(struct mddev *mddev, char *page)
4491 {
4492 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4493 }
4494
4495 static ssize_t
4496 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4497 {
4498 char *e;
4499 unsigned long long new = simple_strtoull(buf, &e, 10);
4500 unsigned long long old = mddev->suspend_hi;
4501
4502 if (mddev->pers == NULL ||
4503 mddev->pers->quiesce == NULL)
4504 return -EINVAL;
4505 if (buf == e || (*e && *e != '\n'))
4506 return -EINVAL;
4507
4508 mddev->suspend_hi = new;
4509 if (new <= old)
4510 /* Shrinking suspended region */
4511 mddev->pers->quiesce(mddev, 2);
4512 else {
4513 /* Expanding suspended region - need to wait */
4514 mddev->pers->quiesce(mddev, 1);
4515 mddev->pers->quiesce(mddev, 0);
4516 }
4517 return len;
4518 }
4519 static struct md_sysfs_entry md_suspend_hi =
4520 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4521
4522 static ssize_t
4523 reshape_position_show(struct mddev *mddev, char *page)
4524 {
4525 if (mddev->reshape_position != MaxSector)
4526 return sprintf(page, "%llu\n",
4527 (unsigned long long)mddev->reshape_position);
4528 strcpy(page, "none\n");
4529 return 5;
4530 }
4531
4532 static ssize_t
4533 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4534 {
4535 struct md_rdev *rdev;
4536 char *e;
4537 unsigned long long new = simple_strtoull(buf, &e, 10);
4538 if (mddev->pers)
4539 return -EBUSY;
4540 if (buf == e || (*e && *e != '\n'))
4541 return -EINVAL;
4542 mddev->reshape_position = new;
4543 mddev->delta_disks = 0;
4544 mddev->reshape_backwards = 0;
4545 mddev->new_level = mddev->level;
4546 mddev->new_layout = mddev->layout;
4547 mddev->new_chunk_sectors = mddev->chunk_sectors;
4548 rdev_for_each(rdev, mddev)
4549 rdev->new_data_offset = rdev->data_offset;
4550 return len;
4551 }
4552
4553 static struct md_sysfs_entry md_reshape_position =
4554 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4555 reshape_position_store);
4556
4557 static ssize_t
4558 reshape_direction_show(struct mddev *mddev, char *page)
4559 {
4560 return sprintf(page, "%s\n",
4561 mddev->reshape_backwards ? "backwards" : "forwards");
4562 }
4563
4564 static ssize_t
4565 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4566 {
4567 int backwards = 0;
4568 if (cmd_match(buf, "forwards"))
4569 backwards = 0;
4570 else if (cmd_match(buf, "backwards"))
4571 backwards = 1;
4572 else
4573 return -EINVAL;
4574 if (mddev->reshape_backwards == backwards)
4575 return len;
4576
4577 /* check if we are allowed to change */
4578 if (mddev->delta_disks)
4579 return -EBUSY;
4580
4581 if (mddev->persistent &&
4582 mddev->major_version == 0)
4583 return -EINVAL;
4584
4585 mddev->reshape_backwards = backwards;
4586 return len;
4587 }
4588
4589 static struct md_sysfs_entry md_reshape_direction =
4590 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4591 reshape_direction_store);
4592
4593 static ssize_t
4594 array_size_show(struct mddev *mddev, char *page)
4595 {
4596 if (mddev->external_size)
4597 return sprintf(page, "%llu\n",
4598 (unsigned long long)mddev->array_sectors/2);
4599 else
4600 return sprintf(page, "default\n");
4601 }
4602
4603 static ssize_t
4604 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4605 {
4606 sector_t sectors;
4607
4608 if (strncmp(buf, "default", 7) == 0) {
4609 if (mddev->pers)
4610 sectors = mddev->pers->size(mddev, 0, 0);
4611 else
4612 sectors = mddev->array_sectors;
4613
4614 mddev->external_size = 0;
4615 } else {
4616 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4617 return -EINVAL;
4618 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4619 return -E2BIG;
4620
4621 mddev->external_size = 1;
4622 }
4623
4624 mddev->array_sectors = sectors;
4625 if (mddev->pers) {
4626 set_capacity(mddev->gendisk, mddev->array_sectors);
4627 revalidate_disk(mddev->gendisk);
4628 }
4629 return len;
4630 }
4631
4632 static struct md_sysfs_entry md_array_size =
4633 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4634 array_size_store);
4635
4636 static struct attribute *md_default_attrs[] = {
4637 &md_level.attr,
4638 &md_layout.attr,
4639 &md_raid_disks.attr,
4640 &md_chunk_size.attr,
4641 &md_size.attr,
4642 &md_resync_start.attr,
4643 &md_metadata.attr,
4644 &md_new_device.attr,
4645 &md_safe_delay.attr,
4646 &md_array_state.attr,
4647 &md_reshape_position.attr,
4648 &md_reshape_direction.attr,
4649 &md_array_size.attr,
4650 &max_corr_read_errors.attr,
4651 NULL,
4652 };
4653
4654 static struct attribute *md_redundancy_attrs[] = {
4655 &md_scan_mode.attr,
4656 &md_last_scan_mode.attr,
4657 &md_mismatches.attr,
4658 &md_sync_min.attr,
4659 &md_sync_max.attr,
4660 &md_sync_speed.attr,
4661 &md_sync_force_parallel.attr,
4662 &md_sync_completed.attr,
4663 &md_min_sync.attr,
4664 &md_max_sync.attr,
4665 &md_suspend_lo.attr,
4666 &md_suspend_hi.attr,
4667 &md_bitmap.attr,
4668 &md_degraded.attr,
4669 NULL,
4670 };
4671 static struct attribute_group md_redundancy_group = {
4672 .name = NULL,
4673 .attrs = md_redundancy_attrs,
4674 };
4675
4676
4677 static ssize_t
4678 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4679 {
4680 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4681 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4682 ssize_t rv;
4683
4684 if (!entry->show)
4685 return -EIO;
4686 spin_lock(&all_mddevs_lock);
4687 if (list_empty(&mddev->all_mddevs)) {
4688 spin_unlock(&all_mddevs_lock);
4689 return -EBUSY;
4690 }
4691 mddev_get(mddev);
4692 spin_unlock(&all_mddevs_lock);
4693
4694 rv = mddev_lock(mddev);
4695 if (!rv) {
4696 rv = entry->show(mddev, page);
4697 mddev_unlock(mddev);
4698 }
4699 mddev_put(mddev);
4700 return rv;
4701 }
4702
4703 static ssize_t
4704 md_attr_store(struct kobject *kobj, struct attribute *attr,
4705 const char *page, size_t length)
4706 {
4707 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4708 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4709 ssize_t rv;
4710
4711 if (!entry->store)
4712 return -EIO;
4713 if (!capable(CAP_SYS_ADMIN))
4714 return -EACCES;
4715 spin_lock(&all_mddevs_lock);
4716 if (list_empty(&mddev->all_mddevs)) {
4717 spin_unlock(&all_mddevs_lock);
4718 return -EBUSY;
4719 }
4720 mddev_get(mddev);
4721 spin_unlock(&all_mddevs_lock);
4722 if (entry->store == new_dev_store)
4723 flush_workqueue(md_misc_wq);
4724 rv = mddev_lock(mddev);
4725 if (!rv) {
4726 rv = entry->store(mddev, page, length);
4727 mddev_unlock(mddev);
4728 }
4729 mddev_put(mddev);
4730 return rv;
4731 }
4732
4733 static void md_free(struct kobject *ko)
4734 {
4735 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4736
4737 if (mddev->sysfs_state)
4738 sysfs_put(mddev->sysfs_state);
4739
4740 if (mddev->gendisk) {
4741 del_gendisk(mddev->gendisk);
4742 put_disk(mddev->gendisk);
4743 }
4744 if (mddev->queue)
4745 blk_cleanup_queue(mddev->queue);
4746
4747 kfree(mddev);
4748 }
4749
4750 static const struct sysfs_ops md_sysfs_ops = {
4751 .show = md_attr_show,
4752 .store = md_attr_store,
4753 };
4754 static struct kobj_type md_ktype = {
4755 .release = md_free,
4756 .sysfs_ops = &md_sysfs_ops,
4757 .default_attrs = md_default_attrs,
4758 };
4759
4760 int mdp_major = 0;
4761
4762 static void mddev_delayed_delete(struct work_struct *ws)
4763 {
4764 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4765
4766 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4767 kobject_del(&mddev->kobj);
4768 kobject_put(&mddev->kobj);
4769 }
4770
4771 static int md_alloc(dev_t dev, char *name)
4772 {
4773 static DEFINE_MUTEX(disks_mutex);
4774 struct mddev *mddev = mddev_find(dev);
4775 struct gendisk *disk;
4776 int partitioned;
4777 int shift;
4778 int unit;
4779 int error;
4780
4781 if (!mddev)
4782 return -ENODEV;
4783
4784 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4785 shift = partitioned ? MdpMinorShift : 0;
4786 unit = MINOR(mddev->unit) >> shift;
4787
4788 /* wait for any previous instance of this device to be
4789 * completely removed (mddev_delayed_delete).
4790 */
4791 flush_workqueue(md_misc_wq);
4792
4793 mutex_lock(&disks_mutex);
4794 error = -EEXIST;
4795 if (mddev->gendisk)
4796 goto abort;
4797
4798 if (name) {
4799 /* Need to ensure that 'name' is not a duplicate.
4800 */
4801 struct mddev *mddev2;
4802 spin_lock(&all_mddevs_lock);
4803
4804 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4805 if (mddev2->gendisk &&
4806 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4807 spin_unlock(&all_mddevs_lock);
4808 goto abort;
4809 }
4810 spin_unlock(&all_mddevs_lock);
4811 }
4812
4813 error = -ENOMEM;
4814 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4815 if (!mddev->queue)
4816 goto abort;
4817 mddev->queue->queuedata = mddev;
4818
4819 blk_queue_make_request(mddev->queue, md_make_request);
4820 blk_set_stacking_limits(&mddev->queue->limits);
4821
4822 disk = alloc_disk(1 << shift);
4823 if (!disk) {
4824 blk_cleanup_queue(mddev->queue);
4825 mddev->queue = NULL;
4826 goto abort;
4827 }
4828 disk->major = MAJOR(mddev->unit);
4829 disk->first_minor = unit << shift;
4830 if (name)
4831 strcpy(disk->disk_name, name);
4832 else if (partitioned)
4833 sprintf(disk->disk_name, "md_d%d", unit);
4834 else
4835 sprintf(disk->disk_name, "md%d", unit);
4836 disk->fops = &md_fops;
4837 disk->private_data = mddev;
4838 disk->queue = mddev->queue;
4839 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4840 /* Allow extended partitions. This makes the
4841 * 'mdp' device redundant, but we can't really
4842 * remove it now.
4843 */
4844 disk->flags |= GENHD_FL_EXT_DEVT;
4845 mddev->gendisk = disk;
4846 /* As soon as we call add_disk(), another thread could get
4847 * through to md_open, so make sure it doesn't get too far
4848 */
4849 mutex_lock(&mddev->open_mutex);
4850 add_disk(disk);
4851
4852 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4853 &disk_to_dev(disk)->kobj, "%s", "md");
4854 if (error) {
4855 /* This isn't possible, but as kobject_init_and_add is marked
4856 * __must_check, we must do something with the result
4857 */
4858 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4859 disk->disk_name);
4860 error = 0;
4861 }
4862 if (mddev->kobj.sd &&
4863 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4864 printk(KERN_DEBUG "pointless warning\n");
4865 mutex_unlock(&mddev->open_mutex);
4866 abort:
4867 mutex_unlock(&disks_mutex);
4868 if (!error && mddev->kobj.sd) {
4869 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4870 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4871 }
4872 mddev_put(mddev);
4873 return error;
4874 }
4875
4876 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4877 {
4878 md_alloc(dev, NULL);
4879 return NULL;
4880 }
4881
4882 static int add_named_array(const char *val, struct kernel_param *kp)
4883 {
4884 /* val must be "md_*" where * is not all digits.
4885 * We allocate an array with a large free minor number, and
4886 * set the name to val. val must not already be an active name.
4887 */
4888 int len = strlen(val);
4889 char buf[DISK_NAME_LEN];
4890
4891 while (len && val[len-1] == '\n')
4892 len--;
4893 if (len >= DISK_NAME_LEN)
4894 return -E2BIG;
4895 strlcpy(buf, val, len+1);
4896 if (strncmp(buf, "md_", 3) != 0)
4897 return -EINVAL;
4898 return md_alloc(0, buf);
4899 }
4900
4901 static void md_safemode_timeout(unsigned long data)
4902 {
4903 struct mddev *mddev = (struct mddev *) data;
4904
4905 if (!atomic_read(&mddev->writes_pending)) {
4906 mddev->safemode = 1;
4907 if (mddev->external)
4908 sysfs_notify_dirent_safe(mddev->sysfs_state);
4909 }
4910 md_wakeup_thread(mddev->thread);
4911 }
4912
4913 static int start_dirty_degraded;
4914
4915 int md_run(struct mddev *mddev)
4916 {
4917 int err;
4918 struct md_rdev *rdev;
4919 struct md_personality *pers;
4920
4921 if (list_empty(&mddev->disks))
4922 /* cannot run an array with no devices.. */
4923 return -EINVAL;
4924
4925 if (mddev->pers)
4926 return -EBUSY;
4927 /* Cannot run until previous stop completes properly */
4928 if (mddev->sysfs_active)
4929 return -EBUSY;
4930
4931 /*
4932 * Analyze all RAID superblock(s)
4933 */
4934 if (!mddev->raid_disks) {
4935 if (!mddev->persistent)
4936 return -EINVAL;
4937 analyze_sbs(mddev);
4938 }
4939
4940 if (mddev->level != LEVEL_NONE)
4941 request_module("md-level-%d", mddev->level);
4942 else if (mddev->clevel[0])
4943 request_module("md-%s", mddev->clevel);
4944
4945 /*
4946 * Drop all container device buffers, from now on
4947 * the only valid external interface is through the md
4948 * device.
4949 */
4950 rdev_for_each(rdev, mddev) {
4951 if (test_bit(Faulty, &rdev->flags))
4952 continue;
4953 sync_blockdev(rdev->bdev);
4954 invalidate_bdev(rdev->bdev);
4955
4956 /* perform some consistency tests on the device.
4957 * We don't want the data to overlap the metadata,
4958 * Internal Bitmap issues have been handled elsewhere.
4959 */
4960 if (rdev->meta_bdev) {
4961 /* Nothing to check */;
4962 } else if (rdev->data_offset < rdev->sb_start) {
4963 if (mddev->dev_sectors &&
4964 rdev->data_offset + mddev->dev_sectors
4965 > rdev->sb_start) {
4966 printk("md: %s: data overlaps metadata\n",
4967 mdname(mddev));
4968 return -EINVAL;
4969 }
4970 } else {
4971 if (rdev->sb_start + rdev->sb_size/512
4972 > rdev->data_offset) {
4973 printk("md: %s: metadata overlaps data\n",
4974 mdname(mddev));
4975 return -EINVAL;
4976 }
4977 }
4978 sysfs_notify_dirent_safe(rdev->sysfs_state);
4979 }
4980
4981 if (mddev->bio_set == NULL)
4982 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4983
4984 spin_lock(&pers_lock);
4985 pers = find_pers(mddev->level, mddev->clevel);
4986 if (!pers || !try_module_get(pers->owner)) {
4987 spin_unlock(&pers_lock);
4988 if (mddev->level != LEVEL_NONE)
4989 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4990 mddev->level);
4991 else
4992 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4993 mddev->clevel);
4994 return -EINVAL;
4995 }
4996 mddev->pers = pers;
4997 spin_unlock(&pers_lock);
4998 if (mddev->level != pers->level) {
4999 mddev->level = pers->level;
5000 mddev->new_level = pers->level;
5001 }
5002 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5003
5004 if (mddev->reshape_position != MaxSector &&
5005 pers->start_reshape == NULL) {
5006 /* This personality cannot handle reshaping... */
5007 mddev->pers = NULL;
5008 module_put(pers->owner);
5009 return -EINVAL;
5010 }
5011
5012 if (pers->sync_request) {
5013 /* Warn if this is a potentially silly
5014 * configuration.
5015 */
5016 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5017 struct md_rdev *rdev2;
5018 int warned = 0;
5019
5020 rdev_for_each(rdev, mddev)
5021 rdev_for_each(rdev2, mddev) {
5022 if (rdev < rdev2 &&
5023 rdev->bdev->bd_contains ==
5024 rdev2->bdev->bd_contains) {
5025 printk(KERN_WARNING
5026 "%s: WARNING: %s appears to be"
5027 " on the same physical disk as"
5028 " %s.\n",
5029 mdname(mddev),
5030 bdevname(rdev->bdev,b),
5031 bdevname(rdev2->bdev,b2));
5032 warned = 1;
5033 }
5034 }
5035
5036 if (warned)
5037 printk(KERN_WARNING
5038 "True protection against single-disk"
5039 " failure might be compromised.\n");
5040 }
5041
5042 mddev->recovery = 0;
5043 /* may be over-ridden by personality */
5044 mddev->resync_max_sectors = mddev->dev_sectors;
5045
5046 mddev->ok_start_degraded = start_dirty_degraded;
5047
5048 if (start_readonly && mddev->ro == 0)
5049 mddev->ro = 2; /* read-only, but switch on first write */
5050
5051 err = mddev->pers->run(mddev);
5052 if (err)
5053 printk(KERN_ERR "md: pers->run() failed ...\n");
5054 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5055 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5056 " but 'external_size' not in effect?\n", __func__);
5057 printk(KERN_ERR
5058 "md: invalid array_size %llu > default size %llu\n",
5059 (unsigned long long)mddev->array_sectors / 2,
5060 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5061 err = -EINVAL;
5062 mddev->pers->stop(mddev);
5063 }
5064 if (err == 0 && mddev->pers->sync_request &&
5065 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5066 err = bitmap_create(mddev);
5067 if (err) {
5068 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5069 mdname(mddev), err);
5070 mddev->pers->stop(mddev);
5071 }
5072 }
5073 if (err) {
5074 module_put(mddev->pers->owner);
5075 mddev->pers = NULL;
5076 bitmap_destroy(mddev);
5077 return err;
5078 }
5079 if (mddev->pers->sync_request) {
5080 if (mddev->kobj.sd &&
5081 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5082 printk(KERN_WARNING
5083 "md: cannot register extra attributes for %s\n",
5084 mdname(mddev));
5085 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5086 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5087 mddev->ro = 0;
5088
5089 atomic_set(&mddev->writes_pending,0);
5090 atomic_set(&mddev->max_corr_read_errors,
5091 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5092 mddev->safemode = 0;
5093 mddev->safemode_timer.function = md_safemode_timeout;
5094 mddev->safemode_timer.data = (unsigned long) mddev;
5095 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5096 mddev->in_sync = 1;
5097 smp_wmb();
5098 mddev->ready = 1;
5099 rdev_for_each(rdev, mddev)
5100 if (rdev->raid_disk >= 0)
5101 if (sysfs_link_rdev(mddev, rdev))
5102 /* failure here is OK */;
5103
5104 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5105
5106 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5107 md_update_sb(mddev, 0);
5108
5109 md_new_event(mddev);
5110 sysfs_notify_dirent_safe(mddev->sysfs_state);
5111 sysfs_notify_dirent_safe(mddev->sysfs_action);
5112 sysfs_notify(&mddev->kobj, NULL, "degraded");
5113 return 0;
5114 }
5115 EXPORT_SYMBOL_GPL(md_run);
5116
5117 static int do_md_run(struct mddev *mddev)
5118 {
5119 int err;
5120
5121 err = md_run(mddev);
5122 if (err)
5123 goto out;
5124 err = bitmap_load(mddev);
5125 if (err) {
5126 bitmap_destroy(mddev);
5127 goto out;
5128 }
5129
5130 md_wakeup_thread(mddev->thread);
5131 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5132
5133 set_capacity(mddev->gendisk, mddev->array_sectors);
5134 revalidate_disk(mddev->gendisk);
5135 mddev->changed = 1;
5136 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5137 out:
5138 return err;
5139 }
5140
5141 static int restart_array(struct mddev *mddev)
5142 {
5143 struct gendisk *disk = mddev->gendisk;
5144
5145 /* Complain if it has no devices */
5146 if (list_empty(&mddev->disks))
5147 return -ENXIO;
5148 if (!mddev->pers)
5149 return -EINVAL;
5150 if (!mddev->ro)
5151 return -EBUSY;
5152 mddev->safemode = 0;
5153 mddev->ro = 0;
5154 set_disk_ro(disk, 0);
5155 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5156 mdname(mddev));
5157 /* Kick recovery or resync if necessary */
5158 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5159 md_wakeup_thread(mddev->thread);
5160 md_wakeup_thread(mddev->sync_thread);
5161 sysfs_notify_dirent_safe(mddev->sysfs_state);
5162 return 0;
5163 }
5164
5165 /* similar to deny_write_access, but accounts for our holding a reference
5166 * to the file ourselves */
5167 static int deny_bitmap_write_access(struct file * file)
5168 {
5169 struct inode *inode = file->f_mapping->host;
5170
5171 spin_lock(&inode->i_lock);
5172 if (atomic_read(&inode->i_writecount) > 1) {
5173 spin_unlock(&inode->i_lock);
5174 return -ETXTBSY;
5175 }
5176 atomic_set(&inode->i_writecount, -1);
5177 spin_unlock(&inode->i_lock);
5178
5179 return 0;
5180 }
5181
5182 void restore_bitmap_write_access(struct file *file)
5183 {
5184 struct inode *inode = file->f_mapping->host;
5185
5186 spin_lock(&inode->i_lock);
5187 atomic_set(&inode->i_writecount, 1);
5188 spin_unlock(&inode->i_lock);
5189 }
5190
5191 static void md_clean(struct mddev *mddev)
5192 {
5193 mddev->array_sectors = 0;
5194 mddev->external_size = 0;
5195 mddev->dev_sectors = 0;
5196 mddev->raid_disks = 0;
5197 mddev->recovery_cp = 0;
5198 mddev->resync_min = 0;
5199 mddev->resync_max = MaxSector;
5200 mddev->reshape_position = MaxSector;
5201 mddev->external = 0;
5202 mddev->persistent = 0;
5203 mddev->level = LEVEL_NONE;
5204 mddev->clevel[0] = 0;
5205 mddev->flags = 0;
5206 mddev->ro = 0;
5207 mddev->metadata_type[0] = 0;
5208 mddev->chunk_sectors = 0;
5209 mddev->ctime = mddev->utime = 0;
5210 mddev->layout = 0;
5211 mddev->max_disks = 0;
5212 mddev->events = 0;
5213 mddev->can_decrease_events = 0;
5214 mddev->delta_disks = 0;
5215 mddev->reshape_backwards = 0;
5216 mddev->new_level = LEVEL_NONE;
5217 mddev->new_layout = 0;
5218 mddev->new_chunk_sectors = 0;
5219 mddev->curr_resync = 0;
5220 atomic64_set(&mddev->resync_mismatches, 0);
5221 mddev->suspend_lo = mddev->suspend_hi = 0;
5222 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5223 mddev->recovery = 0;
5224 mddev->in_sync = 0;
5225 mddev->changed = 0;
5226 mddev->degraded = 0;
5227 mddev->safemode = 0;
5228 mddev->merge_check_needed = 0;
5229 mddev->bitmap_info.offset = 0;
5230 mddev->bitmap_info.default_offset = 0;
5231 mddev->bitmap_info.default_space = 0;
5232 mddev->bitmap_info.chunksize = 0;
5233 mddev->bitmap_info.daemon_sleep = 0;
5234 mddev->bitmap_info.max_write_behind = 0;
5235 }
5236
5237 static void __md_stop_writes(struct mddev *mddev)
5238 {
5239 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5240 if (mddev->sync_thread) {
5241 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5242 md_reap_sync_thread(mddev);
5243 }
5244
5245 del_timer_sync(&mddev->safemode_timer);
5246
5247 bitmap_flush(mddev);
5248 md_super_wait(mddev);
5249
5250 if (mddev->ro == 0 &&
5251 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5252 /* mark array as shutdown cleanly */
5253 mddev->in_sync = 1;
5254 md_update_sb(mddev, 1);
5255 }
5256 }
5257
5258 void md_stop_writes(struct mddev *mddev)
5259 {
5260 mddev_lock_nointr(mddev);
5261 __md_stop_writes(mddev);
5262 mddev_unlock(mddev);
5263 }
5264 EXPORT_SYMBOL_GPL(md_stop_writes);
5265
5266 static void __md_stop(struct mddev *mddev)
5267 {
5268 mddev->ready = 0;
5269 mddev->pers->stop(mddev);
5270 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5271 mddev->to_remove = &md_redundancy_group;
5272 module_put(mddev->pers->owner);
5273 mddev->pers = NULL;
5274 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5275 }
5276
5277 void md_stop(struct mddev *mddev)
5278 {
5279 /* stop the array and free an attached data structures.
5280 * This is called from dm-raid
5281 */
5282 __md_stop(mddev);
5283 bitmap_destroy(mddev);
5284 if (mddev->bio_set)
5285 bioset_free(mddev->bio_set);
5286 }
5287
5288 EXPORT_SYMBOL_GPL(md_stop);
5289
5290 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5291 {
5292 int err = 0;
5293 int did_freeze = 0;
5294
5295 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5296 did_freeze = 1;
5297 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5298 md_wakeup_thread(mddev->thread);
5299 }
5300 if (mddev->sync_thread) {
5301 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5302 /* Thread might be blocked waiting for metadata update
5303 * which will now never happen */
5304 wake_up_process(mddev->sync_thread->tsk);
5305 }
5306 mddev_unlock(mddev);
5307 wait_event(resync_wait, mddev->sync_thread == NULL);
5308 mddev_lock_nointr(mddev);
5309
5310 mutex_lock(&mddev->open_mutex);
5311 if (atomic_read(&mddev->openers) > !!bdev ||
5312 mddev->sync_thread ||
5313 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5314 printk("md: %s still in use.\n",mdname(mddev));
5315 if (did_freeze) {
5316 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5317 md_wakeup_thread(mddev->thread);
5318 }
5319 err = -EBUSY;
5320 goto out;
5321 }
5322 if (mddev->pers) {
5323 __md_stop_writes(mddev);
5324
5325 err = -ENXIO;
5326 if (mddev->ro==1)
5327 goto out;
5328 mddev->ro = 1;
5329 set_disk_ro(mddev->gendisk, 1);
5330 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5331 sysfs_notify_dirent_safe(mddev->sysfs_state);
5332 err = 0;
5333 }
5334 out:
5335 mutex_unlock(&mddev->open_mutex);
5336 return err;
5337 }
5338
5339 /* mode:
5340 * 0 - completely stop and dis-assemble array
5341 * 2 - stop but do not disassemble array
5342 */
5343 static int do_md_stop(struct mddev * mddev, int mode,
5344 struct block_device *bdev)
5345 {
5346 struct gendisk *disk = mddev->gendisk;
5347 struct md_rdev *rdev;
5348 int did_freeze = 0;
5349
5350 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5351 did_freeze = 1;
5352 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5353 md_wakeup_thread(mddev->thread);
5354 }
5355 if (mddev->sync_thread) {
5356 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5357 /* Thread might be blocked waiting for metadata update
5358 * which will now never happen */
5359 wake_up_process(mddev->sync_thread->tsk);
5360 }
5361 mddev_unlock(mddev);
5362 wait_event(resync_wait, mddev->sync_thread == NULL);
5363 mddev_lock_nointr(mddev);
5364
5365 mutex_lock(&mddev->open_mutex);
5366 if (atomic_read(&mddev->openers) > !!bdev ||
5367 mddev->sysfs_active ||
5368 mddev->sync_thread ||
5369 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5370 printk("md: %s still in use.\n",mdname(mddev));
5371 mutex_unlock(&mddev->open_mutex);
5372 if (did_freeze) {
5373 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5374 md_wakeup_thread(mddev->thread);
5375 }
5376 return -EBUSY;
5377 }
5378 if (mddev->pers) {
5379 if (mddev->ro)
5380 set_disk_ro(disk, 0);
5381
5382 __md_stop_writes(mddev);
5383 __md_stop(mddev);
5384 mddev->queue->merge_bvec_fn = NULL;
5385 mddev->queue->backing_dev_info.congested_fn = NULL;
5386
5387 /* tell userspace to handle 'inactive' */
5388 sysfs_notify_dirent_safe(mddev->sysfs_state);
5389
5390 rdev_for_each(rdev, mddev)
5391 if (rdev->raid_disk >= 0)
5392 sysfs_unlink_rdev(mddev, rdev);
5393
5394 set_capacity(disk, 0);
5395 mutex_unlock(&mddev->open_mutex);
5396 mddev->changed = 1;
5397 revalidate_disk(disk);
5398
5399 if (mddev->ro)
5400 mddev->ro = 0;
5401 } else
5402 mutex_unlock(&mddev->open_mutex);
5403 /*
5404 * Free resources if final stop
5405 */
5406 if (mode == 0) {
5407 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5408
5409 bitmap_destroy(mddev);
5410 if (mddev->bitmap_info.file) {
5411 restore_bitmap_write_access(mddev->bitmap_info.file);
5412 fput(mddev->bitmap_info.file);
5413 mddev->bitmap_info.file = NULL;
5414 }
5415 mddev->bitmap_info.offset = 0;
5416
5417 export_array(mddev);
5418
5419 md_clean(mddev);
5420 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5421 if (mddev->hold_active == UNTIL_STOP)
5422 mddev->hold_active = 0;
5423 }
5424 blk_integrity_unregister(disk);
5425 md_new_event(mddev);
5426 sysfs_notify_dirent_safe(mddev->sysfs_state);
5427 return 0;
5428 }
5429
5430 #ifndef MODULE
5431 static void autorun_array(struct mddev *mddev)
5432 {
5433 struct md_rdev *rdev;
5434 int err;
5435
5436 if (list_empty(&mddev->disks))
5437 return;
5438
5439 printk(KERN_INFO "md: running: ");
5440
5441 rdev_for_each(rdev, mddev) {
5442 char b[BDEVNAME_SIZE];
5443 printk("<%s>", bdevname(rdev->bdev,b));
5444 }
5445 printk("\n");
5446
5447 err = do_md_run(mddev);
5448 if (err) {
5449 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5450 do_md_stop(mddev, 0, NULL);
5451 }
5452 }
5453
5454 /*
5455 * lets try to run arrays based on all disks that have arrived
5456 * until now. (those are in pending_raid_disks)
5457 *
5458 * the method: pick the first pending disk, collect all disks with
5459 * the same UUID, remove all from the pending list and put them into
5460 * the 'same_array' list. Then order this list based on superblock
5461 * update time (freshest comes first), kick out 'old' disks and
5462 * compare superblocks. If everything's fine then run it.
5463 *
5464 * If "unit" is allocated, then bump its reference count
5465 */
5466 static void autorun_devices(int part)
5467 {
5468 struct md_rdev *rdev0, *rdev, *tmp;
5469 struct mddev *mddev;
5470 char b[BDEVNAME_SIZE];
5471
5472 printk(KERN_INFO "md: autorun ...\n");
5473 while (!list_empty(&pending_raid_disks)) {
5474 int unit;
5475 dev_t dev;
5476 LIST_HEAD(candidates);
5477 rdev0 = list_entry(pending_raid_disks.next,
5478 struct md_rdev, same_set);
5479
5480 printk(KERN_INFO "md: considering %s ...\n",
5481 bdevname(rdev0->bdev,b));
5482 INIT_LIST_HEAD(&candidates);
5483 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5484 if (super_90_load(rdev, rdev0, 0) >= 0) {
5485 printk(KERN_INFO "md: adding %s ...\n",
5486 bdevname(rdev->bdev,b));
5487 list_move(&rdev->same_set, &candidates);
5488 }
5489 /*
5490 * now we have a set of devices, with all of them having
5491 * mostly sane superblocks. It's time to allocate the
5492 * mddev.
5493 */
5494 if (part) {
5495 dev = MKDEV(mdp_major,
5496 rdev0->preferred_minor << MdpMinorShift);
5497 unit = MINOR(dev) >> MdpMinorShift;
5498 } else {
5499 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5500 unit = MINOR(dev);
5501 }
5502 if (rdev0->preferred_minor != unit) {
5503 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5504 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5505 break;
5506 }
5507
5508 md_probe(dev, NULL, NULL);
5509 mddev = mddev_find(dev);
5510 if (!mddev || !mddev->gendisk) {
5511 if (mddev)
5512 mddev_put(mddev);
5513 printk(KERN_ERR
5514 "md: cannot allocate memory for md drive.\n");
5515 break;
5516 }
5517 if (mddev_lock(mddev))
5518 printk(KERN_WARNING "md: %s locked, cannot run\n",
5519 mdname(mddev));
5520 else if (mddev->raid_disks || mddev->major_version
5521 || !list_empty(&mddev->disks)) {
5522 printk(KERN_WARNING
5523 "md: %s already running, cannot run %s\n",
5524 mdname(mddev), bdevname(rdev0->bdev,b));
5525 mddev_unlock(mddev);
5526 } else {
5527 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5528 mddev->persistent = 1;
5529 rdev_for_each_list(rdev, tmp, &candidates) {
5530 list_del_init(&rdev->same_set);
5531 if (bind_rdev_to_array(rdev, mddev))
5532 export_rdev(rdev);
5533 }
5534 autorun_array(mddev);
5535 mddev_unlock(mddev);
5536 }
5537 /* on success, candidates will be empty, on error
5538 * it won't...
5539 */
5540 rdev_for_each_list(rdev, tmp, &candidates) {
5541 list_del_init(&rdev->same_set);
5542 export_rdev(rdev);
5543 }
5544 mddev_put(mddev);
5545 }
5546 printk(KERN_INFO "md: ... autorun DONE.\n");
5547 }
5548 #endif /* !MODULE */
5549
5550 static int get_version(void __user * arg)
5551 {
5552 mdu_version_t ver;
5553
5554 ver.major = MD_MAJOR_VERSION;
5555 ver.minor = MD_MINOR_VERSION;
5556 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5557
5558 if (copy_to_user(arg, &ver, sizeof(ver)))
5559 return -EFAULT;
5560
5561 return 0;
5562 }
5563
5564 static int get_array_info(struct mddev * mddev, void __user * arg)
5565 {
5566 mdu_array_info_t info;
5567 int nr,working,insync,failed,spare;
5568 struct md_rdev *rdev;
5569
5570 nr = working = insync = failed = spare = 0;
5571 rcu_read_lock();
5572 rdev_for_each_rcu(rdev, mddev) {
5573 nr++;
5574 if (test_bit(Faulty, &rdev->flags))
5575 failed++;
5576 else {
5577 working++;
5578 if (test_bit(In_sync, &rdev->flags))
5579 insync++;
5580 else
5581 spare++;
5582 }
5583 }
5584 rcu_read_unlock();
5585
5586 info.major_version = mddev->major_version;
5587 info.minor_version = mddev->minor_version;
5588 info.patch_version = MD_PATCHLEVEL_VERSION;
5589 info.ctime = mddev->ctime;
5590 info.level = mddev->level;
5591 info.size = mddev->dev_sectors / 2;
5592 if (info.size != mddev->dev_sectors / 2) /* overflow */
5593 info.size = -1;
5594 info.nr_disks = nr;
5595 info.raid_disks = mddev->raid_disks;
5596 info.md_minor = mddev->md_minor;
5597 info.not_persistent= !mddev->persistent;
5598
5599 info.utime = mddev->utime;
5600 info.state = 0;
5601 if (mddev->in_sync)
5602 info.state = (1<<MD_SB_CLEAN);
5603 if (mddev->bitmap && mddev->bitmap_info.offset)
5604 info.state = (1<<MD_SB_BITMAP_PRESENT);
5605 info.active_disks = insync;
5606 info.working_disks = working;
5607 info.failed_disks = failed;
5608 info.spare_disks = spare;
5609
5610 info.layout = mddev->layout;
5611 info.chunk_size = mddev->chunk_sectors << 9;
5612
5613 if (copy_to_user(arg, &info, sizeof(info)))
5614 return -EFAULT;
5615
5616 return 0;
5617 }
5618
5619 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5620 {
5621 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5622 char *ptr, *buf = NULL;
5623 int err = -ENOMEM;
5624
5625 file = kmalloc(sizeof(*file), GFP_NOIO);
5626
5627 if (!file)
5628 goto out;
5629
5630 /* bitmap disabled, zero the first byte and copy out */
5631 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5632 file->pathname[0] = '\0';
5633 goto copy_out;
5634 }
5635
5636 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5637 if (!buf)
5638 goto out;
5639
5640 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5641 buf, sizeof(file->pathname));
5642 if (IS_ERR(ptr))
5643 goto out;
5644
5645 strcpy(file->pathname, ptr);
5646
5647 copy_out:
5648 err = 0;
5649 if (copy_to_user(arg, file, sizeof(*file)))
5650 err = -EFAULT;
5651 out:
5652 kfree(buf);
5653 kfree(file);
5654 return err;
5655 }
5656
5657 static int get_disk_info(struct mddev * mddev, void __user * arg)
5658 {
5659 mdu_disk_info_t info;
5660 struct md_rdev *rdev;
5661
5662 if (copy_from_user(&info, arg, sizeof(info)))
5663 return -EFAULT;
5664
5665 rcu_read_lock();
5666 rdev = find_rdev_nr_rcu(mddev, info.number);
5667 if (rdev) {
5668 info.major = MAJOR(rdev->bdev->bd_dev);
5669 info.minor = MINOR(rdev->bdev->bd_dev);
5670 info.raid_disk = rdev->raid_disk;
5671 info.state = 0;
5672 if (test_bit(Faulty, &rdev->flags))
5673 info.state |= (1<<MD_DISK_FAULTY);
5674 else if (test_bit(In_sync, &rdev->flags)) {
5675 info.state |= (1<<MD_DISK_ACTIVE);
5676 info.state |= (1<<MD_DISK_SYNC);
5677 }
5678 if (test_bit(WriteMostly, &rdev->flags))
5679 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5680 } else {
5681 info.major = info.minor = 0;
5682 info.raid_disk = -1;
5683 info.state = (1<<MD_DISK_REMOVED);
5684 }
5685 rcu_read_unlock();
5686
5687 if (copy_to_user(arg, &info, sizeof(info)))
5688 return -EFAULT;
5689
5690 return 0;
5691 }
5692
5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5694 {
5695 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5696 struct md_rdev *rdev;
5697 dev_t dev = MKDEV(info->major,info->minor);
5698
5699 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5700 return -EOVERFLOW;
5701
5702 if (!mddev->raid_disks) {
5703 int err;
5704 /* expecting a device which has a superblock */
5705 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5706 if (IS_ERR(rdev)) {
5707 printk(KERN_WARNING
5708 "md: md_import_device returned %ld\n",
5709 PTR_ERR(rdev));
5710 return PTR_ERR(rdev);
5711 }
5712 if (!list_empty(&mddev->disks)) {
5713 struct md_rdev *rdev0
5714 = list_entry(mddev->disks.next,
5715 struct md_rdev, same_set);
5716 err = super_types[mddev->major_version]
5717 .load_super(rdev, rdev0, mddev->minor_version);
5718 if (err < 0) {
5719 printk(KERN_WARNING
5720 "md: %s has different UUID to %s\n",
5721 bdevname(rdev->bdev,b),
5722 bdevname(rdev0->bdev,b2));
5723 export_rdev(rdev);
5724 return -EINVAL;
5725 }
5726 }
5727 err = bind_rdev_to_array(rdev, mddev);
5728 if (err)
5729 export_rdev(rdev);
5730 return err;
5731 }
5732
5733 /*
5734 * add_new_disk can be used once the array is assembled
5735 * to add "hot spares". They must already have a superblock
5736 * written
5737 */
5738 if (mddev->pers) {
5739 int err;
5740 if (!mddev->pers->hot_add_disk) {
5741 printk(KERN_WARNING
5742 "%s: personality does not support diskops!\n",
5743 mdname(mddev));
5744 return -EINVAL;
5745 }
5746 if (mddev->persistent)
5747 rdev = md_import_device(dev, mddev->major_version,
5748 mddev->minor_version);
5749 else
5750 rdev = md_import_device(dev, -1, -1);
5751 if (IS_ERR(rdev)) {
5752 printk(KERN_WARNING
5753 "md: md_import_device returned %ld\n",
5754 PTR_ERR(rdev));
5755 return PTR_ERR(rdev);
5756 }
5757 /* set saved_raid_disk if appropriate */
5758 if (!mddev->persistent) {
5759 if (info->state & (1<<MD_DISK_SYNC) &&
5760 info->raid_disk < mddev->raid_disks) {
5761 rdev->raid_disk = info->raid_disk;
5762 set_bit(In_sync, &rdev->flags);
5763 } else
5764 rdev->raid_disk = -1;
5765 } else
5766 super_types[mddev->major_version].
5767 validate_super(mddev, rdev);
5768 if ((info->state & (1<<MD_DISK_SYNC)) &&
5769 rdev->raid_disk != info->raid_disk) {
5770 /* This was a hot-add request, but events doesn't
5771 * match, so reject it.
5772 */
5773 export_rdev(rdev);
5774 return -EINVAL;
5775 }
5776
5777 if (test_bit(In_sync, &rdev->flags))
5778 rdev->saved_raid_disk = rdev->raid_disk;
5779 else
5780 rdev->saved_raid_disk = -1;
5781
5782 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5783 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5784 set_bit(WriteMostly, &rdev->flags);
5785 else
5786 clear_bit(WriteMostly, &rdev->flags);
5787
5788 rdev->raid_disk = -1;
5789 err = bind_rdev_to_array(rdev, mddev);
5790 if (!err && !mddev->pers->hot_remove_disk) {
5791 /* If there is hot_add_disk but no hot_remove_disk
5792 * then added disks for geometry changes,
5793 * and should be added immediately.
5794 */
5795 super_types[mddev->major_version].
5796 validate_super(mddev, rdev);
5797 err = mddev->pers->hot_add_disk(mddev, rdev);
5798 if (err)
5799 unbind_rdev_from_array(rdev);
5800 }
5801 if (err)
5802 export_rdev(rdev);
5803 else
5804 sysfs_notify_dirent_safe(rdev->sysfs_state);
5805
5806 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807 if (mddev->degraded)
5808 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5809 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5810 if (!err)
5811 md_new_event(mddev);
5812 md_wakeup_thread(mddev->thread);
5813 return err;
5814 }
5815
5816 /* otherwise, add_new_disk is only allowed
5817 * for major_version==0 superblocks
5818 */
5819 if (mddev->major_version != 0) {
5820 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5821 mdname(mddev));
5822 return -EINVAL;
5823 }
5824
5825 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5826 int err;
5827 rdev = md_import_device(dev, -1, 0);
5828 if (IS_ERR(rdev)) {
5829 printk(KERN_WARNING
5830 "md: error, md_import_device() returned %ld\n",
5831 PTR_ERR(rdev));
5832 return PTR_ERR(rdev);
5833 }
5834 rdev->desc_nr = info->number;
5835 if (info->raid_disk < mddev->raid_disks)
5836 rdev->raid_disk = info->raid_disk;
5837 else
5838 rdev->raid_disk = -1;
5839
5840 if (rdev->raid_disk < mddev->raid_disks)
5841 if (info->state & (1<<MD_DISK_SYNC))
5842 set_bit(In_sync, &rdev->flags);
5843
5844 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5845 set_bit(WriteMostly, &rdev->flags);
5846
5847 if (!mddev->persistent) {
5848 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5849 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5850 } else
5851 rdev->sb_start = calc_dev_sboffset(rdev);
5852 rdev->sectors = rdev->sb_start;
5853
5854 err = bind_rdev_to_array(rdev, mddev);
5855 if (err) {
5856 export_rdev(rdev);
5857 return err;
5858 }
5859 }
5860
5861 return 0;
5862 }
5863
5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5865 {
5866 char b[BDEVNAME_SIZE];
5867 struct md_rdev *rdev;
5868
5869 rdev = find_rdev(mddev, dev);
5870 if (!rdev)
5871 return -ENXIO;
5872
5873 clear_bit(Blocked, &rdev->flags);
5874 remove_and_add_spares(mddev, rdev);
5875
5876 if (rdev->raid_disk >= 0)
5877 goto busy;
5878
5879 kick_rdev_from_array(rdev);
5880 md_update_sb(mddev, 1);
5881 md_new_event(mddev);
5882
5883 return 0;
5884 busy:
5885 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5886 bdevname(rdev->bdev,b), mdname(mddev));
5887 return -EBUSY;
5888 }
5889
5890 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5891 {
5892 char b[BDEVNAME_SIZE];
5893 int err;
5894 struct md_rdev *rdev;
5895
5896 if (!mddev->pers)
5897 return -ENODEV;
5898
5899 if (mddev->major_version != 0) {
5900 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5901 " version-0 superblocks.\n",
5902 mdname(mddev));
5903 return -EINVAL;
5904 }
5905 if (!mddev->pers->hot_add_disk) {
5906 printk(KERN_WARNING
5907 "%s: personality does not support diskops!\n",
5908 mdname(mddev));
5909 return -EINVAL;
5910 }
5911
5912 rdev = md_import_device(dev, -1, 0);
5913 if (IS_ERR(rdev)) {
5914 printk(KERN_WARNING
5915 "md: error, md_import_device() returned %ld\n",
5916 PTR_ERR(rdev));
5917 return -EINVAL;
5918 }
5919
5920 if (mddev->persistent)
5921 rdev->sb_start = calc_dev_sboffset(rdev);
5922 else
5923 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5924
5925 rdev->sectors = rdev->sb_start;
5926
5927 if (test_bit(Faulty, &rdev->flags)) {
5928 printk(KERN_WARNING
5929 "md: can not hot-add faulty %s disk to %s!\n",
5930 bdevname(rdev->bdev,b), mdname(mddev));
5931 err = -EINVAL;
5932 goto abort_export;
5933 }
5934 clear_bit(In_sync, &rdev->flags);
5935 rdev->desc_nr = -1;
5936 rdev->saved_raid_disk = -1;
5937 err = bind_rdev_to_array(rdev, mddev);
5938 if (err)
5939 goto abort_export;
5940
5941 /*
5942 * The rest should better be atomic, we can have disk failures
5943 * noticed in interrupt contexts ...
5944 */
5945
5946 rdev->raid_disk = -1;
5947
5948 md_update_sb(mddev, 1);
5949
5950 /*
5951 * Kick recovery, maybe this spare has to be added to the
5952 * array immediately.
5953 */
5954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5955 md_wakeup_thread(mddev->thread);
5956 md_new_event(mddev);
5957 return 0;
5958
5959 abort_export:
5960 export_rdev(rdev);
5961 return err;
5962 }
5963
5964 static int set_bitmap_file(struct mddev *mddev, int fd)
5965 {
5966 int err;
5967
5968 if (mddev->pers) {
5969 if (!mddev->pers->quiesce)
5970 return -EBUSY;
5971 if (mddev->recovery || mddev->sync_thread)
5972 return -EBUSY;
5973 /* we should be able to change the bitmap.. */
5974 }
5975
5976
5977 if (fd >= 0) {
5978 if (mddev->bitmap)
5979 return -EEXIST; /* cannot add when bitmap is present */
5980 mddev->bitmap_info.file = fget(fd);
5981
5982 if (mddev->bitmap_info.file == NULL) {
5983 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5984 mdname(mddev));
5985 return -EBADF;
5986 }
5987
5988 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5989 if (err) {
5990 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5991 mdname(mddev));
5992 fput(mddev->bitmap_info.file);
5993 mddev->bitmap_info.file = NULL;
5994 return err;
5995 }
5996 mddev->bitmap_info.offset = 0; /* file overrides offset */
5997 } else if (mddev->bitmap == NULL)
5998 return -ENOENT; /* cannot remove what isn't there */
5999 err = 0;
6000 if (mddev->pers) {
6001 mddev->pers->quiesce(mddev, 1);
6002 if (fd >= 0) {
6003 err = bitmap_create(mddev);
6004 if (!err)
6005 err = bitmap_load(mddev);
6006 }
6007 if (fd < 0 || err) {
6008 bitmap_destroy(mddev);
6009 fd = -1; /* make sure to put the file */
6010 }
6011 mddev->pers->quiesce(mddev, 0);
6012 }
6013 if (fd < 0) {
6014 if (mddev->bitmap_info.file) {
6015 restore_bitmap_write_access(mddev->bitmap_info.file);
6016 fput(mddev->bitmap_info.file);
6017 }
6018 mddev->bitmap_info.file = NULL;
6019 }
6020
6021 return err;
6022 }
6023
6024 /*
6025 * set_array_info is used two different ways
6026 * The original usage is when creating a new array.
6027 * In this usage, raid_disks is > 0 and it together with
6028 * level, size, not_persistent,layout,chunksize determine the
6029 * shape of the array.
6030 * This will always create an array with a type-0.90.0 superblock.
6031 * The newer usage is when assembling an array.
6032 * In this case raid_disks will be 0, and the major_version field is
6033 * use to determine which style super-blocks are to be found on the devices.
6034 * The minor and patch _version numbers are also kept incase the
6035 * super_block handler wishes to interpret them.
6036 */
6037 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6038 {
6039
6040 if (info->raid_disks == 0) {
6041 /* just setting version number for superblock loading */
6042 if (info->major_version < 0 ||
6043 info->major_version >= ARRAY_SIZE(super_types) ||
6044 super_types[info->major_version].name == NULL) {
6045 /* maybe try to auto-load a module? */
6046 printk(KERN_INFO
6047 "md: superblock version %d not known\n",
6048 info->major_version);
6049 return -EINVAL;
6050 }
6051 mddev->major_version = info->major_version;
6052 mddev->minor_version = info->minor_version;
6053 mddev->patch_version = info->patch_version;
6054 mddev->persistent = !info->not_persistent;
6055 /* ensure mddev_put doesn't delete this now that there
6056 * is some minimal configuration.
6057 */
6058 mddev->ctime = get_seconds();
6059 return 0;
6060 }
6061 mddev->major_version = MD_MAJOR_VERSION;
6062 mddev->minor_version = MD_MINOR_VERSION;
6063 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6064 mddev->ctime = get_seconds();
6065
6066 mddev->level = info->level;
6067 mddev->clevel[0] = 0;
6068 mddev->dev_sectors = 2 * (sector_t)info->size;
6069 mddev->raid_disks = info->raid_disks;
6070 /* don't set md_minor, it is determined by which /dev/md* was
6071 * openned
6072 */
6073 if (info->state & (1<<MD_SB_CLEAN))
6074 mddev->recovery_cp = MaxSector;
6075 else
6076 mddev->recovery_cp = 0;
6077 mddev->persistent = ! info->not_persistent;
6078 mddev->external = 0;
6079
6080 mddev->layout = info->layout;
6081 mddev->chunk_sectors = info->chunk_size >> 9;
6082
6083 mddev->max_disks = MD_SB_DISKS;
6084
6085 if (mddev->persistent)
6086 mddev->flags = 0;
6087 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6088
6089 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6090 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6091 mddev->bitmap_info.offset = 0;
6092
6093 mddev->reshape_position = MaxSector;
6094
6095 /*
6096 * Generate a 128 bit UUID
6097 */
6098 get_random_bytes(mddev->uuid, 16);
6099
6100 mddev->new_level = mddev->level;
6101 mddev->new_chunk_sectors = mddev->chunk_sectors;
6102 mddev->new_layout = mddev->layout;
6103 mddev->delta_disks = 0;
6104 mddev->reshape_backwards = 0;
6105
6106 return 0;
6107 }
6108
6109 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6110 {
6111 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6112
6113 if (mddev->external_size)
6114 return;
6115
6116 mddev->array_sectors = array_sectors;
6117 }
6118 EXPORT_SYMBOL(md_set_array_sectors);
6119
6120 static int update_size(struct mddev *mddev, sector_t num_sectors)
6121 {
6122 struct md_rdev *rdev;
6123 int rv;
6124 int fit = (num_sectors == 0);
6125
6126 if (mddev->pers->resize == NULL)
6127 return -EINVAL;
6128 /* The "num_sectors" is the number of sectors of each device that
6129 * is used. This can only make sense for arrays with redundancy.
6130 * linear and raid0 always use whatever space is available. We can only
6131 * consider changing this number if no resync or reconstruction is
6132 * happening, and if the new size is acceptable. It must fit before the
6133 * sb_start or, if that is <data_offset, it must fit before the size
6134 * of each device. If num_sectors is zero, we find the largest size
6135 * that fits.
6136 */
6137 if (mddev->sync_thread)
6138 return -EBUSY;
6139
6140 rdev_for_each(rdev, mddev) {
6141 sector_t avail = rdev->sectors;
6142
6143 if (fit && (num_sectors == 0 || num_sectors > avail))
6144 num_sectors = avail;
6145 if (avail < num_sectors)
6146 return -ENOSPC;
6147 }
6148 rv = mddev->pers->resize(mddev, num_sectors);
6149 if (!rv)
6150 revalidate_disk(mddev->gendisk);
6151 return rv;
6152 }
6153
6154 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6155 {
6156 int rv;
6157 struct md_rdev *rdev;
6158 /* change the number of raid disks */
6159 if (mddev->pers->check_reshape == NULL)
6160 return -EINVAL;
6161 if (raid_disks <= 0 ||
6162 (mddev->max_disks && raid_disks >= mddev->max_disks))
6163 return -EINVAL;
6164 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6165 return -EBUSY;
6166
6167 rdev_for_each(rdev, mddev) {
6168 if (mddev->raid_disks < raid_disks &&
6169 rdev->data_offset < rdev->new_data_offset)
6170 return -EINVAL;
6171 if (mddev->raid_disks > raid_disks &&
6172 rdev->data_offset > rdev->new_data_offset)
6173 return -EINVAL;
6174 }
6175
6176 mddev->delta_disks = raid_disks - mddev->raid_disks;
6177 if (mddev->delta_disks < 0)
6178 mddev->reshape_backwards = 1;
6179 else if (mddev->delta_disks > 0)
6180 mddev->reshape_backwards = 0;
6181
6182 rv = mddev->pers->check_reshape(mddev);
6183 if (rv < 0) {
6184 mddev->delta_disks = 0;
6185 mddev->reshape_backwards = 0;
6186 }
6187 return rv;
6188 }
6189
6190
6191 /*
6192 * update_array_info is used to change the configuration of an
6193 * on-line array.
6194 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6195 * fields in the info are checked against the array.
6196 * Any differences that cannot be handled will cause an error.
6197 * Normally, only one change can be managed at a time.
6198 */
6199 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6200 {
6201 int rv = 0;
6202 int cnt = 0;
6203 int state = 0;
6204
6205 /* calculate expected state,ignoring low bits */
6206 if (mddev->bitmap && mddev->bitmap_info.offset)
6207 state |= (1 << MD_SB_BITMAP_PRESENT);
6208
6209 if (mddev->major_version != info->major_version ||
6210 mddev->minor_version != info->minor_version ||
6211 /* mddev->patch_version != info->patch_version || */
6212 mddev->ctime != info->ctime ||
6213 mddev->level != info->level ||
6214 /* mddev->layout != info->layout || */
6215 !mddev->persistent != info->not_persistent||
6216 mddev->chunk_sectors != info->chunk_size >> 9 ||
6217 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6218 ((state^info->state) & 0xfffffe00)
6219 )
6220 return -EINVAL;
6221 /* Check there is only one change */
6222 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6223 cnt++;
6224 if (mddev->raid_disks != info->raid_disks)
6225 cnt++;
6226 if (mddev->layout != info->layout)
6227 cnt++;
6228 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6229 cnt++;
6230 if (cnt == 0)
6231 return 0;
6232 if (cnt > 1)
6233 return -EINVAL;
6234
6235 if (mddev->layout != info->layout) {
6236 /* Change layout
6237 * we don't need to do anything at the md level, the
6238 * personality will take care of it all.
6239 */
6240 if (mddev->pers->check_reshape == NULL)
6241 return -EINVAL;
6242 else {
6243 mddev->new_layout = info->layout;
6244 rv = mddev->pers->check_reshape(mddev);
6245 if (rv)
6246 mddev->new_layout = mddev->layout;
6247 return rv;
6248 }
6249 }
6250 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6251 rv = update_size(mddev, (sector_t)info->size * 2);
6252
6253 if (mddev->raid_disks != info->raid_disks)
6254 rv = update_raid_disks(mddev, info->raid_disks);
6255
6256 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6257 if (mddev->pers->quiesce == NULL)
6258 return -EINVAL;
6259 if (mddev->recovery || mddev->sync_thread)
6260 return -EBUSY;
6261 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6262 /* add the bitmap */
6263 if (mddev->bitmap)
6264 return -EEXIST;
6265 if (mddev->bitmap_info.default_offset == 0)
6266 return -EINVAL;
6267 mddev->bitmap_info.offset =
6268 mddev->bitmap_info.default_offset;
6269 mddev->bitmap_info.space =
6270 mddev->bitmap_info.default_space;
6271 mddev->pers->quiesce(mddev, 1);
6272 rv = bitmap_create(mddev);
6273 if (!rv)
6274 rv = bitmap_load(mddev);
6275 if (rv)
6276 bitmap_destroy(mddev);
6277 mddev->pers->quiesce(mddev, 0);
6278 } else {
6279 /* remove the bitmap */
6280 if (!mddev->bitmap)
6281 return -ENOENT;
6282 if (mddev->bitmap->storage.file)
6283 return -EINVAL;
6284 mddev->pers->quiesce(mddev, 1);
6285 bitmap_destroy(mddev);
6286 mddev->pers->quiesce(mddev, 0);
6287 mddev->bitmap_info.offset = 0;
6288 }
6289 }
6290 md_update_sb(mddev, 1);
6291 return rv;
6292 }
6293
6294 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6295 {
6296 struct md_rdev *rdev;
6297 int err = 0;
6298
6299 if (mddev->pers == NULL)
6300 return -ENODEV;
6301
6302 rcu_read_lock();
6303 rdev = find_rdev_rcu(mddev, dev);
6304 if (!rdev)
6305 err = -ENODEV;
6306 else {
6307 md_error(mddev, rdev);
6308 if (!test_bit(Faulty, &rdev->flags))
6309 err = -EBUSY;
6310 }
6311 rcu_read_unlock();
6312 return err;
6313 }
6314
6315 /*
6316 * We have a problem here : there is no easy way to give a CHS
6317 * virtual geometry. We currently pretend that we have a 2 heads
6318 * 4 sectors (with a BIG number of cylinders...). This drives
6319 * dosfs just mad... ;-)
6320 */
6321 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6322 {
6323 struct mddev *mddev = bdev->bd_disk->private_data;
6324
6325 geo->heads = 2;
6326 geo->sectors = 4;
6327 geo->cylinders = mddev->array_sectors / 8;
6328 return 0;
6329 }
6330
6331 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6332 unsigned int cmd, unsigned long arg)
6333 {
6334 int err = 0;
6335 void __user *argp = (void __user *)arg;
6336 struct mddev *mddev = NULL;
6337 int ro;
6338
6339 switch (cmd) {
6340 case RAID_VERSION:
6341 case GET_ARRAY_INFO:
6342 case GET_DISK_INFO:
6343 break;
6344 default:
6345 if (!capable(CAP_SYS_ADMIN))
6346 return -EACCES;
6347 }
6348
6349 /*
6350 * Commands dealing with the RAID driver but not any
6351 * particular array:
6352 */
6353 switch (cmd) {
6354 case RAID_VERSION:
6355 err = get_version(argp);
6356 goto done;
6357
6358 case PRINT_RAID_DEBUG:
6359 err = 0;
6360 md_print_devices();
6361 goto done;
6362
6363 #ifndef MODULE
6364 case RAID_AUTORUN:
6365 err = 0;
6366 autostart_arrays(arg);
6367 goto done;
6368 #endif
6369 default:;
6370 }
6371
6372 /*
6373 * Commands creating/starting a new array:
6374 */
6375
6376 mddev = bdev->bd_disk->private_data;
6377
6378 if (!mddev) {
6379 BUG();
6380 goto abort;
6381 }
6382
6383 /* Some actions do not requires the mutex */
6384 switch (cmd) {
6385 case GET_ARRAY_INFO:
6386 if (!mddev->raid_disks && !mddev->external)
6387 err = -ENODEV;
6388 else
6389 err = get_array_info(mddev, argp);
6390 goto abort;
6391
6392 case GET_DISK_INFO:
6393 if (!mddev->raid_disks && !mddev->external)
6394 err = -ENODEV;
6395 else
6396 err = get_disk_info(mddev, argp);
6397 goto abort;
6398
6399 case SET_DISK_FAULTY:
6400 err = set_disk_faulty(mddev, new_decode_dev(arg));
6401 goto abort;
6402 }
6403
6404 if (cmd == ADD_NEW_DISK)
6405 /* need to ensure md_delayed_delete() has completed */
6406 flush_workqueue(md_misc_wq);
6407
6408 if (cmd == HOT_REMOVE_DISK)
6409 /* need to ensure recovery thread has run */
6410 wait_event_interruptible_timeout(mddev->sb_wait,
6411 !test_bit(MD_RECOVERY_NEEDED,
6412 &mddev->flags),
6413 msecs_to_jiffies(5000));
6414 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6415 /* Need to flush page cache, and ensure no-one else opens
6416 * and writes
6417 */
6418 mutex_lock(&mddev->open_mutex);
6419 if (atomic_read(&mddev->openers) > 1) {
6420 mutex_unlock(&mddev->open_mutex);
6421 err = -EBUSY;
6422 goto abort;
6423 }
6424 set_bit(MD_STILL_CLOSED, &mddev->flags);
6425 mutex_unlock(&mddev->open_mutex);
6426 sync_blockdev(bdev);
6427 }
6428 err = mddev_lock(mddev);
6429 if (err) {
6430 printk(KERN_INFO
6431 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6432 err, cmd);
6433 goto abort;
6434 }
6435
6436 if (cmd == SET_ARRAY_INFO) {
6437 mdu_array_info_t info;
6438 if (!arg)
6439 memset(&info, 0, sizeof(info));
6440 else if (copy_from_user(&info, argp, sizeof(info))) {
6441 err = -EFAULT;
6442 goto abort_unlock;
6443 }
6444 if (mddev->pers) {
6445 err = update_array_info(mddev, &info);
6446 if (err) {
6447 printk(KERN_WARNING "md: couldn't update"
6448 " array info. %d\n", err);
6449 goto abort_unlock;
6450 }
6451 goto done_unlock;
6452 }
6453 if (!list_empty(&mddev->disks)) {
6454 printk(KERN_WARNING
6455 "md: array %s already has disks!\n",
6456 mdname(mddev));
6457 err = -EBUSY;
6458 goto abort_unlock;
6459 }
6460 if (mddev->raid_disks) {
6461 printk(KERN_WARNING
6462 "md: array %s already initialised!\n",
6463 mdname(mddev));
6464 err = -EBUSY;
6465 goto abort_unlock;
6466 }
6467 err = set_array_info(mddev, &info);
6468 if (err) {
6469 printk(KERN_WARNING "md: couldn't set"
6470 " array info. %d\n", err);
6471 goto abort_unlock;
6472 }
6473 goto done_unlock;
6474 }
6475
6476 /*
6477 * Commands querying/configuring an existing array:
6478 */
6479 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6480 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6481 if ((!mddev->raid_disks && !mddev->external)
6482 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6483 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6484 && cmd != GET_BITMAP_FILE) {
6485 err = -ENODEV;
6486 goto abort_unlock;
6487 }
6488
6489 /*
6490 * Commands even a read-only array can execute:
6491 */
6492 switch (cmd) {
6493 case GET_BITMAP_FILE:
6494 err = get_bitmap_file(mddev, argp);
6495 goto done_unlock;
6496
6497 case RESTART_ARRAY_RW:
6498 err = restart_array(mddev);
6499 goto done_unlock;
6500
6501 case STOP_ARRAY:
6502 err = do_md_stop(mddev, 0, bdev);
6503 goto done_unlock;
6504
6505 case STOP_ARRAY_RO:
6506 err = md_set_readonly(mddev, bdev);
6507 goto done_unlock;
6508
6509 case HOT_REMOVE_DISK:
6510 err = hot_remove_disk(mddev, new_decode_dev(arg));
6511 goto done_unlock;
6512
6513 case ADD_NEW_DISK:
6514 /* We can support ADD_NEW_DISK on read-only arrays
6515 * on if we are re-adding a preexisting device.
6516 * So require mddev->pers and MD_DISK_SYNC.
6517 */
6518 if (mddev->pers) {
6519 mdu_disk_info_t info;
6520 if (copy_from_user(&info, argp, sizeof(info)))
6521 err = -EFAULT;
6522 else if (!(info.state & (1<<MD_DISK_SYNC)))
6523 /* Need to clear read-only for this */
6524 break;
6525 else
6526 err = add_new_disk(mddev, &info);
6527 goto done_unlock;
6528 }
6529 break;
6530
6531 case BLKROSET:
6532 if (get_user(ro, (int __user *)(arg))) {
6533 err = -EFAULT;
6534 goto done_unlock;
6535 }
6536 err = -EINVAL;
6537
6538 /* if the bdev is going readonly the value of mddev->ro
6539 * does not matter, no writes are coming
6540 */
6541 if (ro)
6542 goto done_unlock;
6543
6544 /* are we are already prepared for writes? */
6545 if (mddev->ro != 1)
6546 goto done_unlock;
6547
6548 /* transitioning to readauto need only happen for
6549 * arrays that call md_write_start
6550 */
6551 if (mddev->pers) {
6552 err = restart_array(mddev);
6553 if (err == 0) {
6554 mddev->ro = 2;
6555 set_disk_ro(mddev->gendisk, 0);
6556 }
6557 }
6558 goto done_unlock;
6559 }
6560
6561 /*
6562 * The remaining ioctls are changing the state of the
6563 * superblock, so we do not allow them on read-only arrays.
6564 * However non-MD ioctls (e.g. get-size) will still come through
6565 * here and hit the 'default' below, so only disallow
6566 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6567 */
6568 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6569 if (mddev->ro == 2) {
6570 mddev->ro = 0;
6571 sysfs_notify_dirent_safe(mddev->sysfs_state);
6572 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6573 /* mddev_unlock will wake thread */
6574 /* If a device failed while we were read-only, we
6575 * need to make sure the metadata is updated now.
6576 */
6577 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6578 mddev_unlock(mddev);
6579 wait_event(mddev->sb_wait,
6580 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6581 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6582 mddev_lock_nointr(mddev);
6583 }
6584 } else {
6585 err = -EROFS;
6586 goto abort_unlock;
6587 }
6588 }
6589
6590 switch (cmd) {
6591 case ADD_NEW_DISK:
6592 {
6593 mdu_disk_info_t info;
6594 if (copy_from_user(&info, argp, sizeof(info)))
6595 err = -EFAULT;
6596 else
6597 err = add_new_disk(mddev, &info);
6598 goto done_unlock;
6599 }
6600
6601 case HOT_ADD_DISK:
6602 err = hot_add_disk(mddev, new_decode_dev(arg));
6603 goto done_unlock;
6604
6605 case RUN_ARRAY:
6606 err = do_md_run(mddev);
6607 goto done_unlock;
6608
6609 case SET_BITMAP_FILE:
6610 err = set_bitmap_file(mddev, (int)arg);
6611 goto done_unlock;
6612
6613 default:
6614 err = -EINVAL;
6615 goto abort_unlock;
6616 }
6617
6618 done_unlock:
6619 abort_unlock:
6620 if (mddev->hold_active == UNTIL_IOCTL &&
6621 err != -EINVAL)
6622 mddev->hold_active = 0;
6623 mddev_unlock(mddev);
6624
6625 return err;
6626 done:
6627 if (err)
6628 MD_BUG();
6629 abort:
6630 return err;
6631 }
6632 #ifdef CONFIG_COMPAT
6633 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6634 unsigned int cmd, unsigned long arg)
6635 {
6636 switch (cmd) {
6637 case HOT_REMOVE_DISK:
6638 case HOT_ADD_DISK:
6639 case SET_DISK_FAULTY:
6640 case SET_BITMAP_FILE:
6641 /* These take in integer arg, do not convert */
6642 break;
6643 default:
6644 arg = (unsigned long)compat_ptr(arg);
6645 break;
6646 }
6647
6648 return md_ioctl(bdev, mode, cmd, arg);
6649 }
6650 #endif /* CONFIG_COMPAT */
6651
6652 static int md_open(struct block_device *bdev, fmode_t mode)
6653 {
6654 /*
6655 * Succeed if we can lock the mddev, which confirms that
6656 * it isn't being stopped right now.
6657 */
6658 struct mddev *mddev = mddev_find(bdev->bd_dev);
6659 int err;
6660
6661 if (!mddev)
6662 return -ENODEV;
6663
6664 if (mddev->gendisk != bdev->bd_disk) {
6665 /* we are racing with mddev_put which is discarding this
6666 * bd_disk.
6667 */
6668 mddev_put(mddev);
6669 /* Wait until bdev->bd_disk is definitely gone */
6670 flush_workqueue(md_misc_wq);
6671 /* Then retry the open from the top */
6672 return -ERESTARTSYS;
6673 }
6674 BUG_ON(mddev != bdev->bd_disk->private_data);
6675
6676 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6677 goto out;
6678
6679 err = 0;
6680 atomic_inc(&mddev->openers);
6681 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6682 mutex_unlock(&mddev->open_mutex);
6683
6684 check_disk_change(bdev);
6685 out:
6686 return err;
6687 }
6688
6689 static void md_release(struct gendisk *disk, fmode_t mode)
6690 {
6691 struct mddev *mddev = disk->private_data;
6692
6693 BUG_ON(!mddev);
6694 atomic_dec(&mddev->openers);
6695 mddev_put(mddev);
6696 }
6697
6698 static int md_media_changed(struct gendisk *disk)
6699 {
6700 struct mddev *mddev = disk->private_data;
6701
6702 return mddev->changed;
6703 }
6704
6705 static int md_revalidate(struct gendisk *disk)
6706 {
6707 struct mddev *mddev = disk->private_data;
6708
6709 mddev->changed = 0;
6710 return 0;
6711 }
6712 static const struct block_device_operations md_fops =
6713 {
6714 .owner = THIS_MODULE,
6715 .open = md_open,
6716 .release = md_release,
6717 .ioctl = md_ioctl,
6718 #ifdef CONFIG_COMPAT
6719 .compat_ioctl = md_compat_ioctl,
6720 #endif
6721 .getgeo = md_getgeo,
6722 .media_changed = md_media_changed,
6723 .revalidate_disk= md_revalidate,
6724 };
6725
6726 static int md_thread(void * arg)
6727 {
6728 struct md_thread *thread = arg;
6729
6730 /*
6731 * md_thread is a 'system-thread', it's priority should be very
6732 * high. We avoid resource deadlocks individually in each
6733 * raid personality. (RAID5 does preallocation) We also use RR and
6734 * the very same RT priority as kswapd, thus we will never get
6735 * into a priority inversion deadlock.
6736 *
6737 * we definitely have to have equal or higher priority than
6738 * bdflush, otherwise bdflush will deadlock if there are too
6739 * many dirty RAID5 blocks.
6740 */
6741
6742 allow_signal(SIGKILL);
6743 while (!kthread_should_stop()) {
6744
6745 /* We need to wait INTERRUPTIBLE so that
6746 * we don't add to the load-average.
6747 * That means we need to be sure no signals are
6748 * pending
6749 */
6750 if (signal_pending(current))
6751 flush_signals(current);
6752
6753 wait_event_interruptible_timeout
6754 (thread->wqueue,
6755 test_bit(THREAD_WAKEUP, &thread->flags)
6756 || kthread_should_stop(),
6757 thread->timeout);
6758
6759 clear_bit(THREAD_WAKEUP, &thread->flags);
6760 if (!kthread_should_stop())
6761 thread->run(thread);
6762 }
6763
6764 return 0;
6765 }
6766
6767 void md_wakeup_thread(struct md_thread *thread)
6768 {
6769 if (thread) {
6770 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6771 set_bit(THREAD_WAKEUP, &thread->flags);
6772 wake_up(&thread->wqueue);
6773 }
6774 }
6775
6776 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6777 struct mddev *mddev, const char *name)
6778 {
6779 struct md_thread *thread;
6780
6781 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6782 if (!thread)
6783 return NULL;
6784
6785 init_waitqueue_head(&thread->wqueue);
6786
6787 thread->run = run;
6788 thread->mddev = mddev;
6789 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6790 thread->tsk = kthread_run(md_thread, thread,
6791 "%s_%s",
6792 mdname(thread->mddev),
6793 name);
6794 if (IS_ERR(thread->tsk)) {
6795 kfree(thread);
6796 return NULL;
6797 }
6798 return thread;
6799 }
6800
6801 void md_unregister_thread(struct md_thread **threadp)
6802 {
6803 struct md_thread *thread = *threadp;
6804 if (!thread)
6805 return;
6806 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6807 /* Locking ensures that mddev_unlock does not wake_up a
6808 * non-existent thread
6809 */
6810 spin_lock(&pers_lock);
6811 *threadp = NULL;
6812 spin_unlock(&pers_lock);
6813
6814 kthread_stop(thread->tsk);
6815 kfree(thread);
6816 }
6817
6818 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6819 {
6820 if (!mddev) {
6821 MD_BUG();
6822 return;
6823 }
6824
6825 if (!rdev || test_bit(Faulty, &rdev->flags))
6826 return;
6827
6828 if (!mddev->pers || !mddev->pers->error_handler)
6829 return;
6830 mddev->pers->error_handler(mddev,rdev);
6831 if (mddev->degraded)
6832 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6833 sysfs_notify_dirent_safe(rdev->sysfs_state);
6834 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6836 md_wakeup_thread(mddev->thread);
6837 if (mddev->event_work.func)
6838 queue_work(md_misc_wq, &mddev->event_work);
6839 md_new_event_inintr(mddev);
6840 }
6841
6842 /* seq_file implementation /proc/mdstat */
6843
6844 static void status_unused(struct seq_file *seq)
6845 {
6846 int i = 0;
6847 struct md_rdev *rdev;
6848
6849 seq_printf(seq, "unused devices: ");
6850
6851 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6852 char b[BDEVNAME_SIZE];
6853 i++;
6854 seq_printf(seq, "%s ",
6855 bdevname(rdev->bdev,b));
6856 }
6857 if (!i)
6858 seq_printf(seq, "<none>");
6859
6860 seq_printf(seq, "\n");
6861 }
6862
6863
6864 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6865 {
6866 sector_t max_sectors, resync, res;
6867 unsigned long dt, db;
6868 sector_t rt;
6869 int scale;
6870 unsigned int per_milli;
6871
6872 if (mddev->curr_resync <= 3)
6873 resync = 0;
6874 else
6875 resync = mddev->curr_resync
6876 - atomic_read(&mddev->recovery_active);
6877
6878 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6879 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6880 max_sectors = mddev->resync_max_sectors;
6881 else
6882 max_sectors = mddev->dev_sectors;
6883
6884 /*
6885 * Should not happen.
6886 */
6887 if (!max_sectors) {
6888 MD_BUG();
6889 return;
6890 }
6891 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6892 * in a sector_t, and (max_sectors>>scale) will fit in a
6893 * u32, as those are the requirements for sector_div.
6894 * Thus 'scale' must be at least 10
6895 */
6896 scale = 10;
6897 if (sizeof(sector_t) > sizeof(unsigned long)) {
6898 while ( max_sectors/2 > (1ULL<<(scale+32)))
6899 scale++;
6900 }
6901 res = (resync>>scale)*1000;
6902 sector_div(res, (u32)((max_sectors>>scale)+1));
6903
6904 per_milli = res;
6905 {
6906 int i, x = per_milli/50, y = 20-x;
6907 seq_printf(seq, "[");
6908 for (i = 0; i < x; i++)
6909 seq_printf(seq, "=");
6910 seq_printf(seq, ">");
6911 for (i = 0; i < y; i++)
6912 seq_printf(seq, ".");
6913 seq_printf(seq, "] ");
6914 }
6915 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6916 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6917 "reshape" :
6918 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6919 "check" :
6920 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6921 "resync" : "recovery"))),
6922 per_milli/10, per_milli % 10,
6923 (unsigned long long) resync/2,
6924 (unsigned long long) max_sectors/2);
6925
6926 /*
6927 * dt: time from mark until now
6928 * db: blocks written from mark until now
6929 * rt: remaining time
6930 *
6931 * rt is a sector_t, so could be 32bit or 64bit.
6932 * So we divide before multiply in case it is 32bit and close
6933 * to the limit.
6934 * We scale the divisor (db) by 32 to avoid losing precision
6935 * near the end of resync when the number of remaining sectors
6936 * is close to 'db'.
6937 * We then divide rt by 32 after multiplying by db to compensate.
6938 * The '+1' avoids division by zero if db is very small.
6939 */
6940 dt = ((jiffies - mddev->resync_mark) / HZ);
6941 if (!dt) dt++;
6942 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6943 - mddev->resync_mark_cnt;
6944
6945 rt = max_sectors - resync; /* number of remaining sectors */
6946 sector_div(rt, db/32+1);
6947 rt *= dt;
6948 rt >>= 5;
6949
6950 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6951 ((unsigned long)rt % 60)/6);
6952
6953 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6954 }
6955
6956 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6957 {
6958 struct list_head *tmp;
6959 loff_t l = *pos;
6960 struct mddev *mddev;
6961
6962 if (l >= 0x10000)
6963 return NULL;
6964 if (!l--)
6965 /* header */
6966 return (void*)1;
6967
6968 spin_lock(&all_mddevs_lock);
6969 list_for_each(tmp,&all_mddevs)
6970 if (!l--) {
6971 mddev = list_entry(tmp, struct mddev, all_mddevs);
6972 mddev_get(mddev);
6973 spin_unlock(&all_mddevs_lock);
6974 return mddev;
6975 }
6976 spin_unlock(&all_mddevs_lock);
6977 if (!l--)
6978 return (void*)2;/* tail */
6979 return NULL;
6980 }
6981
6982 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6983 {
6984 struct list_head *tmp;
6985 struct mddev *next_mddev, *mddev = v;
6986
6987 ++*pos;
6988 if (v == (void*)2)
6989 return NULL;
6990
6991 spin_lock(&all_mddevs_lock);
6992 if (v == (void*)1)
6993 tmp = all_mddevs.next;
6994 else
6995 tmp = mddev->all_mddevs.next;
6996 if (tmp != &all_mddevs)
6997 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6998 else {
6999 next_mddev = (void*)2;
7000 *pos = 0x10000;
7001 }
7002 spin_unlock(&all_mddevs_lock);
7003
7004 if (v != (void*)1)
7005 mddev_put(mddev);
7006 return next_mddev;
7007
7008 }
7009
7010 static void md_seq_stop(struct seq_file *seq, void *v)
7011 {
7012 struct mddev *mddev = v;
7013
7014 if (mddev && v != (void*)1 && v != (void*)2)
7015 mddev_put(mddev);
7016 }
7017
7018 static int md_seq_show(struct seq_file *seq, void *v)
7019 {
7020 struct mddev *mddev = v;
7021 sector_t sectors;
7022 struct md_rdev *rdev;
7023
7024 if (v == (void*)1) {
7025 struct md_personality *pers;
7026 seq_printf(seq, "Personalities : ");
7027 spin_lock(&pers_lock);
7028 list_for_each_entry(pers, &pers_list, list)
7029 seq_printf(seq, "[%s] ", pers->name);
7030
7031 spin_unlock(&pers_lock);
7032 seq_printf(seq, "\n");
7033 seq->poll_event = atomic_read(&md_event_count);
7034 return 0;
7035 }
7036 if (v == (void*)2) {
7037 status_unused(seq);
7038 return 0;
7039 }
7040
7041 if (mddev_lock(mddev) < 0)
7042 return -EINTR;
7043
7044 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7045 seq_printf(seq, "%s : %sactive", mdname(mddev),
7046 mddev->pers ? "" : "in");
7047 if (mddev->pers) {
7048 if (mddev->ro==1)
7049 seq_printf(seq, " (read-only)");
7050 if (mddev->ro==2)
7051 seq_printf(seq, " (auto-read-only)");
7052 seq_printf(seq, " %s", mddev->pers->name);
7053 }
7054
7055 sectors = 0;
7056 rdev_for_each(rdev, mddev) {
7057 char b[BDEVNAME_SIZE];
7058 seq_printf(seq, " %s[%d]",
7059 bdevname(rdev->bdev,b), rdev->desc_nr);
7060 if (test_bit(WriteMostly, &rdev->flags))
7061 seq_printf(seq, "(W)");
7062 if (test_bit(Faulty, &rdev->flags)) {
7063 seq_printf(seq, "(F)");
7064 continue;
7065 }
7066 if (rdev->raid_disk < 0)
7067 seq_printf(seq, "(S)"); /* spare */
7068 if (test_bit(Replacement, &rdev->flags))
7069 seq_printf(seq, "(R)");
7070 sectors += rdev->sectors;
7071 }
7072
7073 if (!list_empty(&mddev->disks)) {
7074 if (mddev->pers)
7075 seq_printf(seq, "\n %llu blocks",
7076 (unsigned long long)
7077 mddev->array_sectors / 2);
7078 else
7079 seq_printf(seq, "\n %llu blocks",
7080 (unsigned long long)sectors / 2);
7081 }
7082 if (mddev->persistent) {
7083 if (mddev->major_version != 0 ||
7084 mddev->minor_version != 90) {
7085 seq_printf(seq," super %d.%d",
7086 mddev->major_version,
7087 mddev->minor_version);
7088 }
7089 } else if (mddev->external)
7090 seq_printf(seq, " super external:%s",
7091 mddev->metadata_type);
7092 else
7093 seq_printf(seq, " super non-persistent");
7094
7095 if (mddev->pers) {
7096 mddev->pers->status(seq, mddev);
7097 seq_printf(seq, "\n ");
7098 if (mddev->pers->sync_request) {
7099 if (mddev->curr_resync > 2) {
7100 status_resync(seq, mddev);
7101 seq_printf(seq, "\n ");
7102 } else if (mddev->curr_resync >= 1)
7103 seq_printf(seq, "\tresync=DELAYED\n ");
7104 else if (mddev->recovery_cp < MaxSector)
7105 seq_printf(seq, "\tresync=PENDING\n ");
7106 }
7107 } else
7108 seq_printf(seq, "\n ");
7109
7110 bitmap_status(seq, mddev->bitmap);
7111
7112 seq_printf(seq, "\n");
7113 }
7114 mddev_unlock(mddev);
7115
7116 return 0;
7117 }
7118
7119 static const struct seq_operations md_seq_ops = {
7120 .start = md_seq_start,
7121 .next = md_seq_next,
7122 .stop = md_seq_stop,
7123 .show = md_seq_show,
7124 };
7125
7126 static int md_seq_open(struct inode *inode, struct file *file)
7127 {
7128 struct seq_file *seq;
7129 int error;
7130
7131 error = seq_open(file, &md_seq_ops);
7132 if (error)
7133 return error;
7134
7135 seq = file->private_data;
7136 seq->poll_event = atomic_read(&md_event_count);
7137 return error;
7138 }
7139
7140 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7141 {
7142 struct seq_file *seq = filp->private_data;
7143 int mask;
7144
7145 poll_wait(filp, &md_event_waiters, wait);
7146
7147 /* always allow read */
7148 mask = POLLIN | POLLRDNORM;
7149
7150 if (seq->poll_event != atomic_read(&md_event_count))
7151 mask |= POLLERR | POLLPRI;
7152 return mask;
7153 }
7154
7155 static const struct file_operations md_seq_fops = {
7156 .owner = THIS_MODULE,
7157 .open = md_seq_open,
7158 .read = seq_read,
7159 .llseek = seq_lseek,
7160 .release = seq_release_private,
7161 .poll = mdstat_poll,
7162 };
7163
7164 int register_md_personality(struct md_personality *p)
7165 {
7166 spin_lock(&pers_lock);
7167 list_add_tail(&p->list, &pers_list);
7168 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7169 spin_unlock(&pers_lock);
7170 return 0;
7171 }
7172
7173 int unregister_md_personality(struct md_personality *p)
7174 {
7175 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7176 spin_lock(&pers_lock);
7177 list_del_init(&p->list);
7178 spin_unlock(&pers_lock);
7179 return 0;
7180 }
7181
7182 static int is_mddev_idle(struct mddev *mddev, int init)
7183 {
7184 struct md_rdev * rdev;
7185 int idle;
7186 int curr_events;
7187
7188 idle = 1;
7189 rcu_read_lock();
7190 rdev_for_each_rcu(rdev, mddev) {
7191 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7192 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7193 (int)part_stat_read(&disk->part0, sectors[1]) -
7194 atomic_read(&disk->sync_io);
7195 /* sync IO will cause sync_io to increase before the disk_stats
7196 * as sync_io is counted when a request starts, and
7197 * disk_stats is counted when it completes.
7198 * So resync activity will cause curr_events to be smaller than
7199 * when there was no such activity.
7200 * non-sync IO will cause disk_stat to increase without
7201 * increasing sync_io so curr_events will (eventually)
7202 * be larger than it was before. Once it becomes
7203 * substantially larger, the test below will cause
7204 * the array to appear non-idle, and resync will slow
7205 * down.
7206 * If there is a lot of outstanding resync activity when
7207 * we set last_event to curr_events, then all that activity
7208 * completing might cause the array to appear non-idle
7209 * and resync will be slowed down even though there might
7210 * not have been non-resync activity. This will only
7211 * happen once though. 'last_events' will soon reflect
7212 * the state where there is little or no outstanding
7213 * resync requests, and further resync activity will
7214 * always make curr_events less than last_events.
7215 *
7216 */
7217 if (init || curr_events - rdev->last_events > 64) {
7218 rdev->last_events = curr_events;
7219 idle = 0;
7220 }
7221 }
7222 rcu_read_unlock();
7223 return idle;
7224 }
7225
7226 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7227 {
7228 /* another "blocks" (512byte) blocks have been synced */
7229 atomic_sub(blocks, &mddev->recovery_active);
7230 wake_up(&mddev->recovery_wait);
7231 if (!ok) {
7232 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7233 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7234 md_wakeup_thread(mddev->thread);
7235 // stop recovery, signal do_sync ....
7236 }
7237 }
7238
7239
7240 /* md_write_start(mddev, bi)
7241 * If we need to update some array metadata (e.g. 'active' flag
7242 * in superblock) before writing, schedule a superblock update
7243 * and wait for it to complete.
7244 */
7245 void md_write_start(struct mddev *mddev, struct bio *bi)
7246 {
7247 int did_change = 0;
7248 if (bio_data_dir(bi) != WRITE)
7249 return;
7250
7251 BUG_ON(mddev->ro == 1);
7252 if (mddev->ro == 2) {
7253 /* need to switch to read/write */
7254 mddev->ro = 0;
7255 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7256 md_wakeup_thread(mddev->thread);
7257 md_wakeup_thread(mddev->sync_thread);
7258 did_change = 1;
7259 }
7260 atomic_inc(&mddev->writes_pending);
7261 if (mddev->safemode == 1)
7262 mddev->safemode = 0;
7263 if (mddev->in_sync) {
7264 spin_lock_irq(&mddev->write_lock);
7265 if (mddev->in_sync) {
7266 mddev->in_sync = 0;
7267 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7268 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7269 md_wakeup_thread(mddev->thread);
7270 did_change = 1;
7271 }
7272 spin_unlock_irq(&mddev->write_lock);
7273 }
7274 if (did_change)
7275 sysfs_notify_dirent_safe(mddev->sysfs_state);
7276 wait_event(mddev->sb_wait,
7277 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7278 }
7279
7280 void md_write_end(struct mddev *mddev)
7281 {
7282 if (atomic_dec_and_test(&mddev->writes_pending)) {
7283 if (mddev->safemode == 2)
7284 md_wakeup_thread(mddev->thread);
7285 else if (mddev->safemode_delay)
7286 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7287 }
7288 }
7289
7290 /* md_allow_write(mddev)
7291 * Calling this ensures that the array is marked 'active' so that writes
7292 * may proceed without blocking. It is important to call this before
7293 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7294 * Must be called with mddev_lock held.
7295 *
7296 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7297 * is dropped, so return -EAGAIN after notifying userspace.
7298 */
7299 int md_allow_write(struct mddev *mddev)
7300 {
7301 if (!mddev->pers)
7302 return 0;
7303 if (mddev->ro)
7304 return 0;
7305 if (!mddev->pers->sync_request)
7306 return 0;
7307
7308 spin_lock_irq(&mddev->write_lock);
7309 if (mddev->in_sync) {
7310 mddev->in_sync = 0;
7311 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7312 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7313 if (mddev->safemode_delay &&
7314 mddev->safemode == 0)
7315 mddev->safemode = 1;
7316 spin_unlock_irq(&mddev->write_lock);
7317 md_update_sb(mddev, 0);
7318 sysfs_notify_dirent_safe(mddev->sysfs_state);
7319 } else
7320 spin_unlock_irq(&mddev->write_lock);
7321
7322 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7323 return -EAGAIN;
7324 else
7325 return 0;
7326 }
7327 EXPORT_SYMBOL_GPL(md_allow_write);
7328
7329 #define SYNC_MARKS 10
7330 #define SYNC_MARK_STEP (3*HZ)
7331 #define UPDATE_FREQUENCY (5*60*HZ)
7332 void md_do_sync(struct md_thread *thread)
7333 {
7334 struct mddev *mddev = thread->mddev;
7335 struct mddev *mddev2;
7336 unsigned int currspeed = 0,
7337 window;
7338 sector_t max_sectors,j, io_sectors;
7339 unsigned long mark[SYNC_MARKS];
7340 unsigned long update_time;
7341 sector_t mark_cnt[SYNC_MARKS];
7342 int last_mark,m;
7343 struct list_head *tmp;
7344 sector_t last_check;
7345 int skipped = 0;
7346 struct md_rdev *rdev;
7347 char *desc, *action = NULL;
7348 struct blk_plug plug;
7349
7350 /* just incase thread restarts... */
7351 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7352 return;
7353 if (mddev->ro) /* never try to sync a read-only array */
7354 return;
7355
7356 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7357 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7358 desc = "data-check";
7359 action = "check";
7360 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7361 desc = "requested-resync";
7362 action = "repair";
7363 } else
7364 desc = "resync";
7365 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7366 desc = "reshape";
7367 else
7368 desc = "recovery";
7369
7370 mddev->last_sync_action = action ?: desc;
7371
7372 /* we overload curr_resync somewhat here.
7373 * 0 == not engaged in resync at all
7374 * 2 == checking that there is no conflict with another sync
7375 * 1 == like 2, but have yielded to allow conflicting resync to
7376 * commense
7377 * other == active in resync - this many blocks
7378 *
7379 * Before starting a resync we must have set curr_resync to
7380 * 2, and then checked that every "conflicting" array has curr_resync
7381 * less than ours. When we find one that is the same or higher
7382 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7383 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7384 * This will mean we have to start checking from the beginning again.
7385 *
7386 */
7387
7388 do {
7389 mddev->curr_resync = 2;
7390
7391 try_again:
7392 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7393 goto skip;
7394 for_each_mddev(mddev2, tmp) {
7395 if (mddev2 == mddev)
7396 continue;
7397 if (!mddev->parallel_resync
7398 && mddev2->curr_resync
7399 && match_mddev_units(mddev, mddev2)) {
7400 DEFINE_WAIT(wq);
7401 if (mddev < mddev2 && mddev->curr_resync == 2) {
7402 /* arbitrarily yield */
7403 mddev->curr_resync = 1;
7404 wake_up(&resync_wait);
7405 }
7406 if (mddev > mddev2 && mddev->curr_resync == 1)
7407 /* no need to wait here, we can wait the next
7408 * time 'round when curr_resync == 2
7409 */
7410 continue;
7411 /* We need to wait 'interruptible' so as not to
7412 * contribute to the load average, and not to
7413 * be caught by 'softlockup'
7414 */
7415 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7416 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7417 mddev2->curr_resync >= mddev->curr_resync) {
7418 printk(KERN_INFO "md: delaying %s of %s"
7419 " until %s has finished (they"
7420 " share one or more physical units)\n",
7421 desc, mdname(mddev), mdname(mddev2));
7422 mddev_put(mddev2);
7423 if (signal_pending(current))
7424 flush_signals(current);
7425 schedule();
7426 finish_wait(&resync_wait, &wq);
7427 goto try_again;
7428 }
7429 finish_wait(&resync_wait, &wq);
7430 }
7431 }
7432 } while (mddev->curr_resync < 2);
7433
7434 j = 0;
7435 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7436 /* resync follows the size requested by the personality,
7437 * which defaults to physical size, but can be virtual size
7438 */
7439 max_sectors = mddev->resync_max_sectors;
7440 atomic64_set(&mddev->resync_mismatches, 0);
7441 /* we don't use the checkpoint if there's a bitmap */
7442 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7443 j = mddev->resync_min;
7444 else if (!mddev->bitmap)
7445 j = mddev->recovery_cp;
7446
7447 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7448 max_sectors = mddev->resync_max_sectors;
7449 else {
7450 /* recovery follows the physical size of devices */
7451 max_sectors = mddev->dev_sectors;
7452 j = MaxSector;
7453 rcu_read_lock();
7454 rdev_for_each_rcu(rdev, mddev)
7455 if (rdev->raid_disk >= 0 &&
7456 !test_bit(Faulty, &rdev->flags) &&
7457 !test_bit(In_sync, &rdev->flags) &&
7458 rdev->recovery_offset < j)
7459 j = rdev->recovery_offset;
7460 rcu_read_unlock();
7461 }
7462
7463 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7464 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7465 " %d KB/sec/disk.\n", speed_min(mddev));
7466 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7467 "(but not more than %d KB/sec) for %s.\n",
7468 speed_max(mddev), desc);
7469
7470 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7471
7472 io_sectors = 0;
7473 for (m = 0; m < SYNC_MARKS; m++) {
7474 mark[m] = jiffies;
7475 mark_cnt[m] = io_sectors;
7476 }
7477 last_mark = 0;
7478 mddev->resync_mark = mark[last_mark];
7479 mddev->resync_mark_cnt = mark_cnt[last_mark];
7480
7481 /*
7482 * Tune reconstruction:
7483 */
7484 window = 32*(PAGE_SIZE/512);
7485 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7486 window/2, (unsigned long long)max_sectors/2);
7487
7488 atomic_set(&mddev->recovery_active, 0);
7489 last_check = 0;
7490
7491 if (j>2) {
7492 printk(KERN_INFO
7493 "md: resuming %s of %s from checkpoint.\n",
7494 desc, mdname(mddev));
7495 mddev->curr_resync = j;
7496 } else
7497 mddev->curr_resync = 3; /* no longer delayed */
7498 mddev->curr_resync_completed = j;
7499 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7500 md_new_event(mddev);
7501 update_time = jiffies;
7502
7503 blk_start_plug(&plug);
7504 while (j < max_sectors) {
7505 sector_t sectors;
7506
7507 skipped = 0;
7508
7509 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7510 ((mddev->curr_resync > mddev->curr_resync_completed &&
7511 (mddev->curr_resync - mddev->curr_resync_completed)
7512 > (max_sectors >> 4)) ||
7513 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7514 (j - mddev->curr_resync_completed)*2
7515 >= mddev->resync_max - mddev->curr_resync_completed
7516 )) {
7517 /* time to update curr_resync_completed */
7518 wait_event(mddev->recovery_wait,
7519 atomic_read(&mddev->recovery_active) == 0);
7520 mddev->curr_resync_completed = j;
7521 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7522 j > mddev->recovery_cp)
7523 mddev->recovery_cp = j;
7524 update_time = jiffies;
7525 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7526 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7527 }
7528
7529 while (j >= mddev->resync_max &&
7530 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7531 /* As this condition is controlled by user-space,
7532 * we can block indefinitely, so use '_interruptible'
7533 * to avoid triggering warnings.
7534 */
7535 flush_signals(current); /* just in case */
7536 wait_event_interruptible(mddev->recovery_wait,
7537 mddev->resync_max > j
7538 || test_bit(MD_RECOVERY_INTR,
7539 &mddev->recovery));
7540 }
7541
7542 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7543 break;
7544
7545 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7546 currspeed < speed_min(mddev));
7547 if (sectors == 0) {
7548 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7549 break;
7550 }
7551
7552 if (!skipped) { /* actual IO requested */
7553 io_sectors += sectors;
7554 atomic_add(sectors, &mddev->recovery_active);
7555 }
7556
7557 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7558 break;
7559
7560 j += sectors;
7561 if (j > 2)
7562 mddev->curr_resync = j;
7563 mddev->curr_mark_cnt = io_sectors;
7564 if (last_check == 0)
7565 /* this is the earliest that rebuild will be
7566 * visible in /proc/mdstat
7567 */
7568 md_new_event(mddev);
7569
7570 if (last_check + window > io_sectors || j == max_sectors)
7571 continue;
7572
7573 last_check = io_sectors;
7574 repeat:
7575 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7576 /* step marks */
7577 int next = (last_mark+1) % SYNC_MARKS;
7578
7579 mddev->resync_mark = mark[next];
7580 mddev->resync_mark_cnt = mark_cnt[next];
7581 mark[next] = jiffies;
7582 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7583 last_mark = next;
7584 }
7585
7586 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7587 break;
7588
7589 /*
7590 * this loop exits only if either when we are slower than
7591 * the 'hard' speed limit, or the system was IO-idle for
7592 * a jiffy.
7593 * the system might be non-idle CPU-wise, but we only care
7594 * about not overloading the IO subsystem. (things like an
7595 * e2fsck being done on the RAID array should execute fast)
7596 */
7597 cond_resched();
7598
7599 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7600 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7601
7602 if (currspeed > speed_min(mddev)) {
7603 if ((currspeed > speed_max(mddev)) ||
7604 !is_mddev_idle(mddev, 0)) {
7605 msleep(500);
7606 goto repeat;
7607 }
7608 }
7609 }
7610 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7611 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7612 ? "interrupted" : "done");
7613 /*
7614 * this also signals 'finished resyncing' to md_stop
7615 */
7616 blk_finish_plug(&plug);
7617 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7618
7619 /* tell personality that we are finished */
7620 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7621
7622 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7623 mddev->curr_resync > 2) {
7624 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7625 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7626 if (mddev->curr_resync >= mddev->recovery_cp) {
7627 printk(KERN_INFO
7628 "md: checkpointing %s of %s.\n",
7629 desc, mdname(mddev));
7630 if (test_bit(MD_RECOVERY_ERROR,
7631 &mddev->recovery))
7632 mddev->recovery_cp =
7633 mddev->curr_resync_completed;
7634 else
7635 mddev->recovery_cp =
7636 mddev->curr_resync;
7637 }
7638 } else
7639 mddev->recovery_cp = MaxSector;
7640 } else {
7641 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7642 mddev->curr_resync = MaxSector;
7643 rcu_read_lock();
7644 rdev_for_each_rcu(rdev, mddev)
7645 if (rdev->raid_disk >= 0 &&
7646 mddev->delta_disks >= 0 &&
7647 !test_bit(Faulty, &rdev->flags) &&
7648 !test_bit(In_sync, &rdev->flags) &&
7649 rdev->recovery_offset < mddev->curr_resync)
7650 rdev->recovery_offset = mddev->curr_resync;
7651 rcu_read_unlock();
7652 }
7653 }
7654 skip:
7655 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7656
7657 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7658 /* We completed so min/max setting can be forgotten if used. */
7659 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7660 mddev->resync_min = 0;
7661 mddev->resync_max = MaxSector;
7662 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7663 mddev->resync_min = mddev->curr_resync_completed;
7664 mddev->curr_resync = 0;
7665 wake_up(&resync_wait);
7666 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7667 md_wakeup_thread(mddev->thread);
7668 return;
7669 }
7670 EXPORT_SYMBOL_GPL(md_do_sync);
7671
7672 static int remove_and_add_spares(struct mddev *mddev,
7673 struct md_rdev *this)
7674 {
7675 struct md_rdev *rdev;
7676 int spares = 0;
7677 int removed = 0;
7678
7679 rdev_for_each(rdev, mddev)
7680 if ((this == NULL || rdev == this) &&
7681 rdev->raid_disk >= 0 &&
7682 !test_bit(Blocked, &rdev->flags) &&
7683 (test_bit(Faulty, &rdev->flags) ||
7684 ! test_bit(In_sync, &rdev->flags)) &&
7685 atomic_read(&rdev->nr_pending)==0) {
7686 if (mddev->pers->hot_remove_disk(
7687 mddev, rdev) == 0) {
7688 sysfs_unlink_rdev(mddev, rdev);
7689 rdev->raid_disk = -1;
7690 removed++;
7691 }
7692 }
7693 if (removed && mddev->kobj.sd)
7694 sysfs_notify(&mddev->kobj, NULL, "degraded");
7695
7696 if (this)
7697 goto no_add;
7698
7699 rdev_for_each(rdev, mddev) {
7700 if (rdev->raid_disk >= 0 &&
7701 !test_bit(In_sync, &rdev->flags) &&
7702 !test_bit(Faulty, &rdev->flags))
7703 spares++;
7704 if (rdev->raid_disk >= 0)
7705 continue;
7706 if (test_bit(Faulty, &rdev->flags))
7707 continue;
7708 if (mddev->ro &&
7709 rdev->saved_raid_disk < 0)
7710 continue;
7711
7712 rdev->recovery_offset = 0;
7713 if (mddev->pers->
7714 hot_add_disk(mddev, rdev) == 0) {
7715 if (sysfs_link_rdev(mddev, rdev))
7716 /* failure here is OK */;
7717 spares++;
7718 md_new_event(mddev);
7719 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7720 }
7721 }
7722 no_add:
7723 if (removed)
7724 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7725 return spares;
7726 }
7727
7728 /*
7729 * This routine is regularly called by all per-raid-array threads to
7730 * deal with generic issues like resync and super-block update.
7731 * Raid personalities that don't have a thread (linear/raid0) do not
7732 * need this as they never do any recovery or update the superblock.
7733 *
7734 * It does not do any resync itself, but rather "forks" off other threads
7735 * to do that as needed.
7736 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7737 * "->recovery" and create a thread at ->sync_thread.
7738 * When the thread finishes it sets MD_RECOVERY_DONE
7739 * and wakeups up this thread which will reap the thread and finish up.
7740 * This thread also removes any faulty devices (with nr_pending == 0).
7741 *
7742 * The overall approach is:
7743 * 1/ if the superblock needs updating, update it.
7744 * 2/ If a recovery thread is running, don't do anything else.
7745 * 3/ If recovery has finished, clean up, possibly marking spares active.
7746 * 4/ If there are any faulty devices, remove them.
7747 * 5/ If array is degraded, try to add spares devices
7748 * 6/ If array has spares or is not in-sync, start a resync thread.
7749 */
7750 void md_check_recovery(struct mddev *mddev)
7751 {
7752 if (mddev->suspended)
7753 return;
7754
7755 if (mddev->bitmap)
7756 bitmap_daemon_work(mddev);
7757
7758 if (signal_pending(current)) {
7759 if (mddev->pers->sync_request && !mddev->external) {
7760 printk(KERN_INFO "md: %s in immediate safe mode\n",
7761 mdname(mddev));
7762 mddev->safemode = 2;
7763 }
7764 flush_signals(current);
7765 }
7766
7767 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7768 return;
7769 if ( ! (
7770 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7771 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7772 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7773 (mddev->external == 0 && mddev->safemode == 1) ||
7774 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7775 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7776 ))
7777 return;
7778
7779 if (mddev_trylock(mddev)) {
7780 int spares = 0;
7781
7782 if (mddev->ro) {
7783 /* On a read-only array we can:
7784 * - remove failed devices
7785 * - add already-in_sync devices if the array itself
7786 * is in-sync.
7787 * As we only add devices that are already in-sync,
7788 * we can activate the spares immediately.
7789 */
7790 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7791 remove_and_add_spares(mddev, NULL);
7792 mddev->pers->spare_active(mddev);
7793 goto unlock;
7794 }
7795
7796 if (!mddev->external) {
7797 int did_change = 0;
7798 spin_lock_irq(&mddev->write_lock);
7799 if (mddev->safemode &&
7800 !atomic_read(&mddev->writes_pending) &&
7801 !mddev->in_sync &&
7802 mddev->recovery_cp == MaxSector) {
7803 mddev->in_sync = 1;
7804 did_change = 1;
7805 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7806 }
7807 if (mddev->safemode == 1)
7808 mddev->safemode = 0;
7809 spin_unlock_irq(&mddev->write_lock);
7810 if (did_change)
7811 sysfs_notify_dirent_safe(mddev->sysfs_state);
7812 }
7813
7814 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7815 md_update_sb(mddev, 0);
7816
7817 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7818 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7819 /* resync/recovery still happening */
7820 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7821 goto unlock;
7822 }
7823 if (mddev->sync_thread) {
7824 md_reap_sync_thread(mddev);
7825 goto unlock;
7826 }
7827 /* Set RUNNING before clearing NEEDED to avoid
7828 * any transients in the value of "sync_action".
7829 */
7830 mddev->curr_resync_completed = 0;
7831 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7832 /* Clear some bits that don't mean anything, but
7833 * might be left set
7834 */
7835 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7836 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7837
7838 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7839 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7840 goto unlock;
7841 /* no recovery is running.
7842 * remove any failed drives, then
7843 * add spares if possible.
7844 * Spares are also removed and re-added, to allow
7845 * the personality to fail the re-add.
7846 */
7847
7848 if (mddev->reshape_position != MaxSector) {
7849 if (mddev->pers->check_reshape == NULL ||
7850 mddev->pers->check_reshape(mddev) != 0)
7851 /* Cannot proceed */
7852 goto unlock;
7853 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7854 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7855 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7856 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7857 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7858 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7859 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7860 } else if (mddev->recovery_cp < MaxSector) {
7861 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7862 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7863 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7864 /* nothing to be done ... */
7865 goto unlock;
7866
7867 if (mddev->pers->sync_request) {
7868 if (spares) {
7869 /* We are adding a device or devices to an array
7870 * which has the bitmap stored on all devices.
7871 * So make sure all bitmap pages get written
7872 */
7873 bitmap_write_all(mddev->bitmap);
7874 }
7875 mddev->sync_thread = md_register_thread(md_do_sync,
7876 mddev,
7877 "resync");
7878 if (!mddev->sync_thread) {
7879 printk(KERN_ERR "%s: could not start resync"
7880 " thread...\n",
7881 mdname(mddev));
7882 /* leave the spares where they are, it shouldn't hurt */
7883 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7884 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7885 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7886 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7887 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7888 } else
7889 md_wakeup_thread(mddev->sync_thread);
7890 sysfs_notify_dirent_safe(mddev->sysfs_action);
7891 md_new_event(mddev);
7892 }
7893 unlock:
7894 wake_up(&mddev->sb_wait);
7895
7896 if (!mddev->sync_thread) {
7897 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7898 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7899 &mddev->recovery))
7900 if (mddev->sysfs_action)
7901 sysfs_notify_dirent_safe(mddev->sysfs_action);
7902 }
7903 mddev_unlock(mddev);
7904 }
7905 }
7906
7907 void md_reap_sync_thread(struct mddev *mddev)
7908 {
7909 struct md_rdev *rdev;
7910
7911 /* resync has finished, collect result */
7912 md_unregister_thread(&mddev->sync_thread);
7913 wake_up(&resync_wait);
7914 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7915 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7916 /* success...*/
7917 /* activate any spares */
7918 if (mddev->pers->spare_active(mddev)) {
7919 sysfs_notify(&mddev->kobj, NULL,
7920 "degraded");
7921 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7922 }
7923 }
7924 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7925 mddev->pers->finish_reshape)
7926 mddev->pers->finish_reshape(mddev);
7927
7928 /* If array is no-longer degraded, then any saved_raid_disk
7929 * information must be scrapped. Also if any device is now
7930 * In_sync we must scrape the saved_raid_disk for that device
7931 * do the superblock for an incrementally recovered device
7932 * written out.
7933 */
7934 rdev_for_each(rdev, mddev)
7935 if (!mddev->degraded ||
7936 test_bit(In_sync, &rdev->flags))
7937 rdev->saved_raid_disk = -1;
7938
7939 md_update_sb(mddev, 1);
7940 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7941 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7942 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7943 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7944 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7945 /* flag recovery needed just to double check */
7946 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7947 sysfs_notify_dirent_safe(mddev->sysfs_action);
7948 md_new_event(mddev);
7949 if (mddev->event_work.func)
7950 queue_work(md_misc_wq, &mddev->event_work);
7951 }
7952
7953 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7954 {
7955 sysfs_notify_dirent_safe(rdev->sysfs_state);
7956 wait_event_timeout(rdev->blocked_wait,
7957 !test_bit(Blocked, &rdev->flags) &&
7958 !test_bit(BlockedBadBlocks, &rdev->flags),
7959 msecs_to_jiffies(5000));
7960 rdev_dec_pending(rdev, mddev);
7961 }
7962 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7963
7964 void md_finish_reshape(struct mddev *mddev)
7965 {
7966 /* called be personality module when reshape completes. */
7967 struct md_rdev *rdev;
7968
7969 rdev_for_each(rdev, mddev) {
7970 if (rdev->data_offset > rdev->new_data_offset)
7971 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7972 else
7973 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7974 rdev->data_offset = rdev->new_data_offset;
7975 }
7976 }
7977 EXPORT_SYMBOL(md_finish_reshape);
7978
7979 /* Bad block management.
7980 * We can record which blocks on each device are 'bad' and so just
7981 * fail those blocks, or that stripe, rather than the whole device.
7982 * Entries in the bad-block table are 64bits wide. This comprises:
7983 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7984 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7985 * A 'shift' can be set so that larger blocks are tracked and
7986 * consequently larger devices can be covered.
7987 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7988 *
7989 * Locking of the bad-block table uses a seqlock so md_is_badblock
7990 * might need to retry if it is very unlucky.
7991 * We will sometimes want to check for bad blocks in a bi_end_io function,
7992 * so we use the write_seqlock_irq variant.
7993 *
7994 * When looking for a bad block we specify a range and want to
7995 * know if any block in the range is bad. So we binary-search
7996 * to the last range that starts at-or-before the given endpoint,
7997 * (or "before the sector after the target range")
7998 * then see if it ends after the given start.
7999 * We return
8000 * 0 if there are no known bad blocks in the range
8001 * 1 if there are known bad block which are all acknowledged
8002 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8003 * plus the start/length of the first bad section we overlap.
8004 */
8005 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8006 sector_t *first_bad, int *bad_sectors)
8007 {
8008 int hi;
8009 int lo;
8010 u64 *p = bb->page;
8011 int rv;
8012 sector_t target = s + sectors;
8013 unsigned seq;
8014
8015 if (bb->shift > 0) {
8016 /* round the start down, and the end up */
8017 s >>= bb->shift;
8018 target += (1<<bb->shift) - 1;
8019 target >>= bb->shift;
8020 sectors = target - s;
8021 }
8022 /* 'target' is now the first block after the bad range */
8023
8024 retry:
8025 seq = read_seqbegin(&bb->lock);
8026 lo = 0;
8027 rv = 0;
8028 hi = bb->count;
8029
8030 /* Binary search between lo and hi for 'target'
8031 * i.e. for the last range that starts before 'target'
8032 */
8033 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8034 * are known not to be the last range before target.
8035 * VARIANT: hi-lo is the number of possible
8036 * ranges, and decreases until it reaches 1
8037 */
8038 while (hi - lo > 1) {
8039 int mid = (lo + hi) / 2;
8040 sector_t a = BB_OFFSET(p[mid]);
8041 if (a < target)
8042 /* This could still be the one, earlier ranges
8043 * could not. */
8044 lo = mid;
8045 else
8046 /* This and later ranges are definitely out. */
8047 hi = mid;
8048 }
8049 /* 'lo' might be the last that started before target, but 'hi' isn't */
8050 if (hi > lo) {
8051 /* need to check all range that end after 's' to see if
8052 * any are unacknowledged.
8053 */
8054 while (lo >= 0 &&
8055 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8056 if (BB_OFFSET(p[lo]) < target) {
8057 /* starts before the end, and finishes after
8058 * the start, so they must overlap
8059 */
8060 if (rv != -1 && BB_ACK(p[lo]))
8061 rv = 1;
8062 else
8063 rv = -1;
8064 *first_bad = BB_OFFSET(p[lo]);
8065 *bad_sectors = BB_LEN(p[lo]);
8066 }
8067 lo--;
8068 }
8069 }
8070
8071 if (read_seqretry(&bb->lock, seq))
8072 goto retry;
8073
8074 return rv;
8075 }
8076 EXPORT_SYMBOL_GPL(md_is_badblock);
8077
8078 /*
8079 * Add a range of bad blocks to the table.
8080 * This might extend the table, or might contract it
8081 * if two adjacent ranges can be merged.
8082 * We binary-search to find the 'insertion' point, then
8083 * decide how best to handle it.
8084 */
8085 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8086 int acknowledged)
8087 {
8088 u64 *p;
8089 int lo, hi;
8090 int rv = 1;
8091 unsigned long flags;
8092
8093 if (bb->shift < 0)
8094 /* badblocks are disabled */
8095 return 0;
8096
8097 if (bb->shift) {
8098 /* round the start down, and the end up */
8099 sector_t next = s + sectors;
8100 s >>= bb->shift;
8101 next += (1<<bb->shift) - 1;
8102 next >>= bb->shift;
8103 sectors = next - s;
8104 }
8105
8106 write_seqlock_irqsave(&bb->lock, flags);
8107
8108 p = bb->page;
8109 lo = 0;
8110 hi = bb->count;
8111 /* Find the last range that starts at-or-before 's' */
8112 while (hi - lo > 1) {
8113 int mid = (lo + hi) / 2;
8114 sector_t a = BB_OFFSET(p[mid]);
8115 if (a <= s)
8116 lo = mid;
8117 else
8118 hi = mid;
8119 }
8120 if (hi > lo && BB_OFFSET(p[lo]) > s)
8121 hi = lo;
8122
8123 if (hi > lo) {
8124 /* we found a range that might merge with the start
8125 * of our new range
8126 */
8127 sector_t a = BB_OFFSET(p[lo]);
8128 sector_t e = a + BB_LEN(p[lo]);
8129 int ack = BB_ACK(p[lo]);
8130 if (e >= s) {
8131 /* Yes, we can merge with a previous range */
8132 if (s == a && s + sectors >= e)
8133 /* new range covers old */
8134 ack = acknowledged;
8135 else
8136 ack = ack && acknowledged;
8137
8138 if (e < s + sectors)
8139 e = s + sectors;
8140 if (e - a <= BB_MAX_LEN) {
8141 p[lo] = BB_MAKE(a, e-a, ack);
8142 s = e;
8143 } else {
8144 /* does not all fit in one range,
8145 * make p[lo] maximal
8146 */
8147 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8148 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8149 s = a + BB_MAX_LEN;
8150 }
8151 sectors = e - s;
8152 }
8153 }
8154 if (sectors && hi < bb->count) {
8155 /* 'hi' points to the first range that starts after 's'.
8156 * Maybe we can merge with the start of that range */
8157 sector_t a = BB_OFFSET(p[hi]);
8158 sector_t e = a + BB_LEN(p[hi]);
8159 int ack = BB_ACK(p[hi]);
8160 if (a <= s + sectors) {
8161 /* merging is possible */
8162 if (e <= s + sectors) {
8163 /* full overlap */
8164 e = s + sectors;
8165 ack = acknowledged;
8166 } else
8167 ack = ack && acknowledged;
8168
8169 a = s;
8170 if (e - a <= BB_MAX_LEN) {
8171 p[hi] = BB_MAKE(a, e-a, ack);
8172 s = e;
8173 } else {
8174 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8175 s = a + BB_MAX_LEN;
8176 }
8177 sectors = e - s;
8178 lo = hi;
8179 hi++;
8180 }
8181 }
8182 if (sectors == 0 && hi < bb->count) {
8183 /* we might be able to combine lo and hi */
8184 /* Note: 's' is at the end of 'lo' */
8185 sector_t a = BB_OFFSET(p[hi]);
8186 int lolen = BB_LEN(p[lo]);
8187 int hilen = BB_LEN(p[hi]);
8188 int newlen = lolen + hilen - (s - a);
8189 if (s >= a && newlen < BB_MAX_LEN) {
8190 /* yes, we can combine them */
8191 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8192 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8193 memmove(p + hi, p + hi + 1,
8194 (bb->count - hi - 1) * 8);
8195 bb->count--;
8196 }
8197 }
8198 while (sectors) {
8199 /* didn't merge (it all).
8200 * Need to add a range just before 'hi' */
8201 if (bb->count >= MD_MAX_BADBLOCKS) {
8202 /* No room for more */
8203 rv = 0;
8204 break;
8205 } else {
8206 int this_sectors = sectors;
8207 memmove(p + hi + 1, p + hi,
8208 (bb->count - hi) * 8);
8209 bb->count++;
8210
8211 if (this_sectors > BB_MAX_LEN)
8212 this_sectors = BB_MAX_LEN;
8213 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8214 sectors -= this_sectors;
8215 s += this_sectors;
8216 }
8217 }
8218
8219 bb->changed = 1;
8220 if (!acknowledged)
8221 bb->unacked_exist = 1;
8222 write_sequnlock_irqrestore(&bb->lock, flags);
8223
8224 return rv;
8225 }
8226
8227 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8228 int is_new)
8229 {
8230 int rv;
8231 if (is_new)
8232 s += rdev->new_data_offset;
8233 else
8234 s += rdev->data_offset;
8235 rv = md_set_badblocks(&rdev->badblocks,
8236 s, sectors, 0);
8237 if (rv) {
8238 /* Make sure they get written out promptly */
8239 sysfs_notify_dirent_safe(rdev->sysfs_state);
8240 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8241 md_wakeup_thread(rdev->mddev->thread);
8242 }
8243 return rv;
8244 }
8245 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8246
8247 /*
8248 * Remove a range of bad blocks from the table.
8249 * This may involve extending the table if we spilt a region,
8250 * but it must not fail. So if the table becomes full, we just
8251 * drop the remove request.
8252 */
8253 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8254 {
8255 u64 *p;
8256 int lo, hi;
8257 sector_t target = s + sectors;
8258 int rv = 0;
8259
8260 if (bb->shift > 0) {
8261 /* When clearing we round the start up and the end down.
8262 * This should not matter as the shift should align with
8263 * the block size and no rounding should ever be needed.
8264 * However it is better the think a block is bad when it
8265 * isn't than to think a block is not bad when it is.
8266 */
8267 s += (1<<bb->shift) - 1;
8268 s >>= bb->shift;
8269 target >>= bb->shift;
8270 sectors = target - s;
8271 }
8272
8273 write_seqlock_irq(&bb->lock);
8274
8275 p = bb->page;
8276 lo = 0;
8277 hi = bb->count;
8278 /* Find the last range that starts before 'target' */
8279 while (hi - lo > 1) {
8280 int mid = (lo + hi) / 2;
8281 sector_t a = BB_OFFSET(p[mid]);
8282 if (a < target)
8283 lo = mid;
8284 else
8285 hi = mid;
8286 }
8287 if (hi > lo) {
8288 /* p[lo] is the last range that could overlap the
8289 * current range. Earlier ranges could also overlap,
8290 * but only this one can overlap the end of the range.
8291 */
8292 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8293 /* Partial overlap, leave the tail of this range */
8294 int ack = BB_ACK(p[lo]);
8295 sector_t a = BB_OFFSET(p[lo]);
8296 sector_t end = a + BB_LEN(p[lo]);
8297
8298 if (a < s) {
8299 /* we need to split this range */
8300 if (bb->count >= MD_MAX_BADBLOCKS) {
8301 rv = 0;
8302 goto out;
8303 }
8304 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8305 bb->count++;
8306 p[lo] = BB_MAKE(a, s-a, ack);
8307 lo++;
8308 }
8309 p[lo] = BB_MAKE(target, end - target, ack);
8310 /* there is no longer an overlap */
8311 hi = lo;
8312 lo--;
8313 }
8314 while (lo >= 0 &&
8315 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8316 /* This range does overlap */
8317 if (BB_OFFSET(p[lo]) < s) {
8318 /* Keep the early parts of this range. */
8319 int ack = BB_ACK(p[lo]);
8320 sector_t start = BB_OFFSET(p[lo]);
8321 p[lo] = BB_MAKE(start, s - start, ack);
8322 /* now low doesn't overlap, so.. */
8323 break;
8324 }
8325 lo--;
8326 }
8327 /* 'lo' is strictly before, 'hi' is strictly after,
8328 * anything between needs to be discarded
8329 */
8330 if (hi - lo > 1) {
8331 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8332 bb->count -= (hi - lo - 1);
8333 }
8334 }
8335
8336 bb->changed = 1;
8337 out:
8338 write_sequnlock_irq(&bb->lock);
8339 return rv;
8340 }
8341
8342 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8343 int is_new)
8344 {
8345 if (is_new)
8346 s += rdev->new_data_offset;
8347 else
8348 s += rdev->data_offset;
8349 return md_clear_badblocks(&rdev->badblocks,
8350 s, sectors);
8351 }
8352 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8353
8354 /*
8355 * Acknowledge all bad blocks in a list.
8356 * This only succeeds if ->changed is clear. It is used by
8357 * in-kernel metadata updates
8358 */
8359 void md_ack_all_badblocks(struct badblocks *bb)
8360 {
8361 if (bb->page == NULL || bb->changed)
8362 /* no point even trying */
8363 return;
8364 write_seqlock_irq(&bb->lock);
8365
8366 if (bb->changed == 0 && bb->unacked_exist) {
8367 u64 *p = bb->page;
8368 int i;
8369 for (i = 0; i < bb->count ; i++) {
8370 if (!BB_ACK(p[i])) {
8371 sector_t start = BB_OFFSET(p[i]);
8372 int len = BB_LEN(p[i]);
8373 p[i] = BB_MAKE(start, len, 1);
8374 }
8375 }
8376 bb->unacked_exist = 0;
8377 }
8378 write_sequnlock_irq(&bb->lock);
8379 }
8380 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8381
8382 /* sysfs access to bad-blocks list.
8383 * We present two files.
8384 * 'bad-blocks' lists sector numbers and lengths of ranges that
8385 * are recorded as bad. The list is truncated to fit within
8386 * the one-page limit of sysfs.
8387 * Writing "sector length" to this file adds an acknowledged
8388 * bad block list.
8389 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8390 * been acknowledged. Writing to this file adds bad blocks
8391 * without acknowledging them. This is largely for testing.
8392 */
8393
8394 static ssize_t
8395 badblocks_show(struct badblocks *bb, char *page, int unack)
8396 {
8397 size_t len;
8398 int i;
8399 u64 *p = bb->page;
8400 unsigned seq;
8401
8402 if (bb->shift < 0)
8403 return 0;
8404
8405 retry:
8406 seq = read_seqbegin(&bb->lock);
8407
8408 len = 0;
8409 i = 0;
8410
8411 while (len < PAGE_SIZE && i < bb->count) {
8412 sector_t s = BB_OFFSET(p[i]);
8413 unsigned int length = BB_LEN(p[i]);
8414 int ack = BB_ACK(p[i]);
8415 i++;
8416
8417 if (unack && ack)
8418 continue;
8419
8420 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8421 (unsigned long long)s << bb->shift,
8422 length << bb->shift);
8423 }
8424 if (unack && len == 0)
8425 bb->unacked_exist = 0;
8426
8427 if (read_seqretry(&bb->lock, seq))
8428 goto retry;
8429
8430 return len;
8431 }
8432
8433 #define DO_DEBUG 1
8434
8435 static ssize_t
8436 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8437 {
8438 unsigned long long sector;
8439 int length;
8440 char newline;
8441 #ifdef DO_DEBUG
8442 /* Allow clearing via sysfs *only* for testing/debugging.
8443 * Normally only a successful write may clear a badblock
8444 */
8445 int clear = 0;
8446 if (page[0] == '-') {
8447 clear = 1;
8448 page++;
8449 }
8450 #endif /* DO_DEBUG */
8451
8452 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8453 case 3:
8454 if (newline != '\n')
8455 return -EINVAL;
8456 case 2:
8457 if (length <= 0)
8458 return -EINVAL;
8459 break;
8460 default:
8461 return -EINVAL;
8462 }
8463
8464 #ifdef DO_DEBUG
8465 if (clear) {
8466 md_clear_badblocks(bb, sector, length);
8467 return len;
8468 }
8469 #endif /* DO_DEBUG */
8470 if (md_set_badblocks(bb, sector, length, !unack))
8471 return len;
8472 else
8473 return -ENOSPC;
8474 }
8475
8476 static int md_notify_reboot(struct notifier_block *this,
8477 unsigned long code, void *x)
8478 {
8479 struct list_head *tmp;
8480 struct mddev *mddev;
8481 int need_delay = 0;
8482
8483 for_each_mddev(mddev, tmp) {
8484 if (mddev_trylock(mddev)) {
8485 if (mddev->pers)
8486 __md_stop_writes(mddev);
8487 mddev->safemode = 2;
8488 mddev_unlock(mddev);
8489 }
8490 need_delay = 1;
8491 }
8492 /*
8493 * certain more exotic SCSI devices are known to be
8494 * volatile wrt too early system reboots. While the
8495 * right place to handle this issue is the given
8496 * driver, we do want to have a safe RAID driver ...
8497 */
8498 if (need_delay)
8499 mdelay(1000*1);
8500
8501 return NOTIFY_DONE;
8502 }
8503
8504 static struct notifier_block md_notifier = {
8505 .notifier_call = md_notify_reboot,
8506 .next = NULL,
8507 .priority = INT_MAX, /* before any real devices */
8508 };
8509
8510 static void md_geninit(void)
8511 {
8512 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8513
8514 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8515 }
8516
8517 static int __init md_init(void)
8518 {
8519 int ret = -ENOMEM;
8520
8521 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8522 if (!md_wq)
8523 goto err_wq;
8524
8525 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8526 if (!md_misc_wq)
8527 goto err_misc_wq;
8528
8529 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8530 goto err_md;
8531
8532 if ((ret = register_blkdev(0, "mdp")) < 0)
8533 goto err_mdp;
8534 mdp_major = ret;
8535
8536 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8537 md_probe, NULL, NULL);
8538 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8539 md_probe, NULL, NULL);
8540
8541 register_reboot_notifier(&md_notifier);
8542 raid_table_header = register_sysctl_table(raid_root_table);
8543
8544 md_geninit();
8545 return 0;
8546
8547 err_mdp:
8548 unregister_blkdev(MD_MAJOR, "md");
8549 err_md:
8550 destroy_workqueue(md_misc_wq);
8551 err_misc_wq:
8552 destroy_workqueue(md_wq);
8553 err_wq:
8554 return ret;
8555 }
8556
8557 #ifndef MODULE
8558
8559 /*
8560 * Searches all registered partitions for autorun RAID arrays
8561 * at boot time.
8562 */
8563
8564 static LIST_HEAD(all_detected_devices);
8565 struct detected_devices_node {
8566 struct list_head list;
8567 dev_t dev;
8568 };
8569
8570 void md_autodetect_dev(dev_t dev)
8571 {
8572 struct detected_devices_node *node_detected_dev;
8573
8574 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8575 if (node_detected_dev) {
8576 node_detected_dev->dev = dev;
8577 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8578 } else {
8579 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8580 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8581 }
8582 }
8583
8584
8585 static void autostart_arrays(int part)
8586 {
8587 struct md_rdev *rdev;
8588 struct detected_devices_node *node_detected_dev;
8589 dev_t dev;
8590 int i_scanned, i_passed;
8591
8592 i_scanned = 0;
8593 i_passed = 0;
8594
8595 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8596
8597 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8598 i_scanned++;
8599 node_detected_dev = list_entry(all_detected_devices.next,
8600 struct detected_devices_node, list);
8601 list_del(&node_detected_dev->list);
8602 dev = node_detected_dev->dev;
8603 kfree(node_detected_dev);
8604 rdev = md_import_device(dev,0, 90);
8605 if (IS_ERR(rdev))
8606 continue;
8607
8608 if (test_bit(Faulty, &rdev->flags)) {
8609 MD_BUG();
8610 continue;
8611 }
8612 set_bit(AutoDetected, &rdev->flags);
8613 list_add(&rdev->same_set, &pending_raid_disks);
8614 i_passed++;
8615 }
8616
8617 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8618 i_scanned, i_passed);
8619
8620 autorun_devices(part);
8621 }
8622
8623 #endif /* !MODULE */
8624
8625 static __exit void md_exit(void)
8626 {
8627 struct mddev *mddev;
8628 struct list_head *tmp;
8629
8630 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8631 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8632
8633 unregister_blkdev(MD_MAJOR,"md");
8634 unregister_blkdev(mdp_major, "mdp");
8635 unregister_reboot_notifier(&md_notifier);
8636 unregister_sysctl_table(raid_table_header);
8637 remove_proc_entry("mdstat", NULL);
8638 for_each_mddev(mddev, tmp) {
8639 export_array(mddev);
8640 mddev->hold_active = 0;
8641 }
8642 destroy_workqueue(md_misc_wq);
8643 destroy_workqueue(md_wq);
8644 }
8645
8646 subsys_initcall(md_init);
8647 module_exit(md_exit)
8648
8649 static int get_ro(char *buffer, struct kernel_param *kp)
8650 {
8651 return sprintf(buffer, "%d", start_readonly);
8652 }
8653 static int set_ro(const char *val, struct kernel_param *kp)
8654 {
8655 char *e;
8656 int num = simple_strtoul(val, &e, 10);
8657 if (*val && (*e == '\0' || *e == '\n')) {
8658 start_readonly = num;
8659 return 0;
8660 }
8661 return -EINVAL;
8662 }
8663
8664 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8665 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8666
8667 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8668
8669 EXPORT_SYMBOL(register_md_personality);
8670 EXPORT_SYMBOL(unregister_md_personality);
8671 EXPORT_SYMBOL(md_error);
8672 EXPORT_SYMBOL(md_done_sync);
8673 EXPORT_SYMBOL(md_write_start);
8674 EXPORT_SYMBOL(md_write_end);
8675 EXPORT_SYMBOL(md_register_thread);
8676 EXPORT_SYMBOL(md_unregister_thread);
8677 EXPORT_SYMBOL(md_wakeup_thread);
8678 EXPORT_SYMBOL(md_check_recovery);
8679 EXPORT_SYMBOL(md_reap_sync_thread);
8680 MODULE_LICENSE("GPL");
8681 MODULE_DESCRIPTION("MD RAID framework");
8682 MODULE_ALIAS("md");
8683 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);