]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/md.c
treewide: Fix function prototypes for module_param_call()
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 struct md_cluster_operations *md_cluster_ops;
88 EXPORT_SYMBOL(md_cluster_ops);
89 struct module *md_cluster_mod;
90 EXPORT_SYMBOL(md_cluster_mod);
91
92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
93 static struct workqueue_struct *md_wq;
94 static struct workqueue_struct *md_misc_wq;
95
96 static int remove_and_add_spares(struct mddev *mddev,
97 struct md_rdev *this);
98 static void mddev_detach(struct mddev *mddev);
99
100 /*
101 * Default number of read corrections we'll attempt on an rdev
102 * before ejecting it from the array. We divide the read error
103 * count by 2 for every hour elapsed between read errors.
104 */
105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
106 /*
107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
108 * is 1000 KB/sec, so the extra system load does not show up that much.
109 * Increase it if you want to have more _guaranteed_ speed. Note that
110 * the RAID driver will use the maximum available bandwidth if the IO
111 * subsystem is idle. There is also an 'absolute maximum' reconstruction
112 * speed limit - in case reconstruction slows down your system despite
113 * idle IO detection.
114 *
115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
116 * or /sys/block/mdX/md/sync_speed_{min,max}
117 */
118
119 static int sysctl_speed_limit_min = 1000;
120 static int sysctl_speed_limit_max = 200000;
121 static inline int speed_min(struct mddev *mddev)
122 {
123 return mddev->sync_speed_min ?
124 mddev->sync_speed_min : sysctl_speed_limit_min;
125 }
126
127 static inline int speed_max(struct mddev *mddev)
128 {
129 return mddev->sync_speed_max ?
130 mddev->sync_speed_max : sysctl_speed_limit_max;
131 }
132
133 static struct ctl_table_header *raid_table_header;
134
135 static struct ctl_table raid_table[] = {
136 {
137 .procname = "speed_limit_min",
138 .data = &sysctl_speed_limit_min,
139 .maxlen = sizeof(int),
140 .mode = S_IRUGO|S_IWUSR,
141 .proc_handler = proc_dointvec,
142 },
143 {
144 .procname = "speed_limit_max",
145 .data = &sysctl_speed_limit_max,
146 .maxlen = sizeof(int),
147 .mode = S_IRUGO|S_IWUSR,
148 .proc_handler = proc_dointvec,
149 },
150 { }
151 };
152
153 static struct ctl_table raid_dir_table[] = {
154 {
155 .procname = "raid",
156 .maxlen = 0,
157 .mode = S_IRUGO|S_IXUGO,
158 .child = raid_table,
159 },
160 { }
161 };
162
163 static struct ctl_table raid_root_table[] = {
164 {
165 .procname = "dev",
166 .maxlen = 0,
167 .mode = 0555,
168 .child = raid_dir_table,
169 },
170 { }
171 };
172
173 static const struct block_device_operations md_fops;
174
175 static int start_readonly;
176
177 /*
178 * The original mechanism for creating an md device is to create
179 * a device node in /dev and to open it. This causes races with device-close.
180 * The preferred method is to write to the "new_array" module parameter.
181 * This can avoid races.
182 * Setting create_on_open to false disables the original mechanism
183 * so all the races disappear.
184 */
185 static bool create_on_open = true;
186
187 /* bio_clone_mddev
188 * like bio_clone_bioset, but with a local bio set
189 */
190
191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
192 struct mddev *mddev)
193 {
194 struct bio *b;
195
196 if (!mddev || !mddev->bio_set)
197 return bio_alloc(gfp_mask, nr_iovecs);
198
199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
200 if (!b)
201 return NULL;
202 return b;
203 }
204 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
205
206 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
207 {
208 if (!mddev || !mddev->sync_set)
209 return bio_alloc(GFP_NOIO, 1);
210
211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set);
212 }
213
214 /*
215 * We have a system wide 'event count' that is incremented
216 * on any 'interesting' event, and readers of /proc/mdstat
217 * can use 'poll' or 'select' to find out when the event
218 * count increases.
219 *
220 * Events are:
221 * start array, stop array, error, add device, remove device,
222 * start build, activate spare
223 */
224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
225 static atomic_t md_event_count;
226 void md_new_event(struct mddev *mddev)
227 {
228 atomic_inc(&md_event_count);
229 wake_up(&md_event_waiters);
230 }
231 EXPORT_SYMBOL_GPL(md_new_event);
232
233 /*
234 * Enables to iterate over all existing md arrays
235 * all_mddevs_lock protects this list.
236 */
237 static LIST_HEAD(all_mddevs);
238 static DEFINE_SPINLOCK(all_mddevs_lock);
239
240 /*
241 * iterates through all used mddevs in the system.
242 * We take care to grab the all_mddevs_lock whenever navigating
243 * the list, and to always hold a refcount when unlocked.
244 * Any code which breaks out of this loop while own
245 * a reference to the current mddev and must mddev_put it.
246 */
247 #define for_each_mddev(_mddev,_tmp) \
248 \
249 for (({ spin_lock(&all_mddevs_lock); \
250 _tmp = all_mddevs.next; \
251 _mddev = NULL;}); \
252 ({ if (_tmp != &all_mddevs) \
253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
254 spin_unlock(&all_mddevs_lock); \
255 if (_mddev) mddev_put(_mddev); \
256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
257 _tmp != &all_mddevs;}); \
258 ({ spin_lock(&all_mddevs_lock); \
259 _tmp = _tmp->next;}) \
260 )
261
262 /* Rather than calling directly into the personality make_request function,
263 * IO requests come here first so that we can check if the device is
264 * being suspended pending a reconfiguration.
265 * We hold a refcount over the call to ->make_request. By the time that
266 * call has finished, the bio has been linked into some internal structure
267 * and so is visible to ->quiesce(), so we don't need the refcount any more.
268 */
269 void md_handle_request(struct mddev *mddev, struct bio *bio)
270 {
271 check_suspended:
272 rcu_read_lock();
273 if (mddev->suspended) {
274 DEFINE_WAIT(__wait);
275 for (;;) {
276 prepare_to_wait(&mddev->sb_wait, &__wait,
277 TASK_UNINTERRUPTIBLE);
278 if (!mddev->suspended)
279 break;
280 rcu_read_unlock();
281 schedule();
282 rcu_read_lock();
283 }
284 finish_wait(&mddev->sb_wait, &__wait);
285 }
286 atomic_inc(&mddev->active_io);
287 rcu_read_unlock();
288
289 if (!mddev->pers->make_request(mddev, bio)) {
290 atomic_dec(&mddev->active_io);
291 wake_up(&mddev->sb_wait);
292 goto check_suspended;
293 }
294
295 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
296 wake_up(&mddev->sb_wait);
297 }
298 EXPORT_SYMBOL(md_handle_request);
299
300 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
301 {
302 const int rw = bio_data_dir(bio);
303 struct mddev *mddev = q->queuedata;
304 unsigned int sectors;
305 int cpu;
306
307 blk_queue_split(q, &bio);
308
309 if (mddev == NULL || mddev->pers == NULL) {
310 bio_io_error(bio);
311 return BLK_QC_T_NONE;
312 }
313 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
314 if (bio_sectors(bio) != 0)
315 bio->bi_status = BLK_STS_IOERR;
316 bio_endio(bio);
317 return BLK_QC_T_NONE;
318 }
319
320 /*
321 * save the sectors now since our bio can
322 * go away inside make_request
323 */
324 sectors = bio_sectors(bio);
325 /* bio could be mergeable after passing to underlayer */
326 bio->bi_opf &= ~REQ_NOMERGE;
327
328 md_handle_request(mddev, bio);
329
330 cpu = part_stat_lock();
331 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
332 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
333 part_stat_unlock();
334
335 return BLK_QC_T_NONE;
336 }
337
338 /* mddev_suspend makes sure no new requests are submitted
339 * to the device, and that any requests that have been submitted
340 * are completely handled.
341 * Once mddev_detach() is called and completes, the module will be
342 * completely unused.
343 */
344 void mddev_suspend(struct mddev *mddev)
345 {
346 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
347 if (mddev->suspended++)
348 return;
349 synchronize_rcu();
350 wake_up(&mddev->sb_wait);
351 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
352 mddev->pers->quiesce(mddev, 1);
353
354 del_timer_sync(&mddev->safemode_timer);
355 }
356 EXPORT_SYMBOL_GPL(mddev_suspend);
357
358 void mddev_resume(struct mddev *mddev)
359 {
360 if (--mddev->suspended)
361 return;
362 wake_up(&mddev->sb_wait);
363 mddev->pers->quiesce(mddev, 0);
364
365 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
366 md_wakeup_thread(mddev->thread);
367 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
368 }
369 EXPORT_SYMBOL_GPL(mddev_resume);
370
371 int mddev_congested(struct mddev *mddev, int bits)
372 {
373 struct md_personality *pers = mddev->pers;
374 int ret = 0;
375
376 rcu_read_lock();
377 if (mddev->suspended)
378 ret = 1;
379 else if (pers && pers->congested)
380 ret = pers->congested(mddev, bits);
381 rcu_read_unlock();
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(mddev_congested);
385 static int md_congested(void *data, int bits)
386 {
387 struct mddev *mddev = data;
388 return mddev_congested(mddev, bits);
389 }
390
391 /*
392 * Generic flush handling for md
393 */
394
395 static void md_end_flush(struct bio *bio)
396 {
397 struct md_rdev *rdev = bio->bi_private;
398 struct mddev *mddev = rdev->mddev;
399
400 rdev_dec_pending(rdev, mddev);
401
402 if (atomic_dec_and_test(&mddev->flush_pending)) {
403 /* The pre-request flush has finished */
404 queue_work(md_wq, &mddev->flush_work);
405 }
406 bio_put(bio);
407 }
408
409 static void md_submit_flush_data(struct work_struct *ws);
410
411 static void submit_flushes(struct work_struct *ws)
412 {
413 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
414 struct md_rdev *rdev;
415
416 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
417 atomic_set(&mddev->flush_pending, 1);
418 rcu_read_lock();
419 rdev_for_each_rcu(rdev, mddev)
420 if (rdev->raid_disk >= 0 &&
421 !test_bit(Faulty, &rdev->flags)) {
422 /* Take two references, one is dropped
423 * when request finishes, one after
424 * we reclaim rcu_read_lock
425 */
426 struct bio *bi;
427 atomic_inc(&rdev->nr_pending);
428 atomic_inc(&rdev->nr_pending);
429 rcu_read_unlock();
430 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
431 bi->bi_end_io = md_end_flush;
432 bi->bi_private = rdev;
433 bio_set_dev(bi, rdev->bdev);
434 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
435 atomic_inc(&mddev->flush_pending);
436 submit_bio(bi);
437 rcu_read_lock();
438 rdev_dec_pending(rdev, mddev);
439 }
440 rcu_read_unlock();
441 if (atomic_dec_and_test(&mddev->flush_pending))
442 queue_work(md_wq, &mddev->flush_work);
443 }
444
445 static void md_submit_flush_data(struct work_struct *ws)
446 {
447 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
448 struct bio *bio = mddev->flush_bio;
449
450 /*
451 * must reset flush_bio before calling into md_handle_request to avoid a
452 * deadlock, because other bios passed md_handle_request suspend check
453 * could wait for this and below md_handle_request could wait for those
454 * bios because of suspend check
455 */
456 mddev->flush_bio = NULL;
457 wake_up(&mddev->sb_wait);
458
459 if (bio->bi_iter.bi_size == 0)
460 /* an empty barrier - all done */
461 bio_endio(bio);
462 else {
463 bio->bi_opf &= ~REQ_PREFLUSH;
464 md_handle_request(mddev, bio);
465 }
466 }
467
468 void md_flush_request(struct mddev *mddev, struct bio *bio)
469 {
470 spin_lock_irq(&mddev->lock);
471 wait_event_lock_irq(mddev->sb_wait,
472 !mddev->flush_bio,
473 mddev->lock);
474 mddev->flush_bio = bio;
475 spin_unlock_irq(&mddev->lock);
476
477 INIT_WORK(&mddev->flush_work, submit_flushes);
478 queue_work(md_wq, &mddev->flush_work);
479 }
480 EXPORT_SYMBOL(md_flush_request);
481
482 static inline struct mddev *mddev_get(struct mddev *mddev)
483 {
484 atomic_inc(&mddev->active);
485 return mddev;
486 }
487
488 static void mddev_delayed_delete(struct work_struct *ws);
489
490 static void mddev_put(struct mddev *mddev)
491 {
492 struct bio_set *bs = NULL, *sync_bs = NULL;
493
494 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
495 return;
496 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
497 mddev->ctime == 0 && !mddev->hold_active) {
498 /* Array is not configured at all, and not held active,
499 * so destroy it */
500 list_del_init(&mddev->all_mddevs);
501 bs = mddev->bio_set;
502 sync_bs = mddev->sync_set;
503 mddev->bio_set = NULL;
504 mddev->sync_set = NULL;
505 if (mddev->gendisk) {
506 /* We did a probe so need to clean up. Call
507 * queue_work inside the spinlock so that
508 * flush_workqueue() after mddev_find will
509 * succeed in waiting for the work to be done.
510 */
511 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
512 queue_work(md_misc_wq, &mddev->del_work);
513 } else
514 kfree(mddev);
515 }
516 spin_unlock(&all_mddevs_lock);
517 if (bs)
518 bioset_free(bs);
519 if (sync_bs)
520 bioset_free(sync_bs);
521 }
522
523 static void md_safemode_timeout(unsigned long data);
524
525 void mddev_init(struct mddev *mddev)
526 {
527 mutex_init(&mddev->open_mutex);
528 mutex_init(&mddev->reconfig_mutex);
529 mutex_init(&mddev->bitmap_info.mutex);
530 INIT_LIST_HEAD(&mddev->disks);
531 INIT_LIST_HEAD(&mddev->all_mddevs);
532 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
533 (unsigned long) mddev);
534 atomic_set(&mddev->active, 1);
535 atomic_set(&mddev->openers, 0);
536 atomic_set(&mddev->active_io, 0);
537 spin_lock_init(&mddev->lock);
538 atomic_set(&mddev->flush_pending, 0);
539 init_waitqueue_head(&mddev->sb_wait);
540 init_waitqueue_head(&mddev->recovery_wait);
541 mddev->reshape_position = MaxSector;
542 mddev->reshape_backwards = 0;
543 mddev->last_sync_action = "none";
544 mddev->resync_min = 0;
545 mddev->resync_max = MaxSector;
546 mddev->level = LEVEL_NONE;
547 }
548 EXPORT_SYMBOL_GPL(mddev_init);
549
550 static struct mddev *mddev_find(dev_t unit)
551 {
552 struct mddev *mddev, *new = NULL;
553
554 if (unit && MAJOR(unit) != MD_MAJOR)
555 unit &= ~((1<<MdpMinorShift)-1);
556
557 retry:
558 spin_lock(&all_mddevs_lock);
559
560 if (unit) {
561 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
562 if (mddev->unit == unit) {
563 mddev_get(mddev);
564 spin_unlock(&all_mddevs_lock);
565 kfree(new);
566 return mddev;
567 }
568
569 if (new) {
570 list_add(&new->all_mddevs, &all_mddevs);
571 spin_unlock(&all_mddevs_lock);
572 new->hold_active = UNTIL_IOCTL;
573 return new;
574 }
575 } else if (new) {
576 /* find an unused unit number */
577 static int next_minor = 512;
578 int start = next_minor;
579 int is_free = 0;
580 int dev = 0;
581 while (!is_free) {
582 dev = MKDEV(MD_MAJOR, next_minor);
583 next_minor++;
584 if (next_minor > MINORMASK)
585 next_minor = 0;
586 if (next_minor == start) {
587 /* Oh dear, all in use. */
588 spin_unlock(&all_mddevs_lock);
589 kfree(new);
590 return NULL;
591 }
592
593 is_free = 1;
594 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
595 if (mddev->unit == dev) {
596 is_free = 0;
597 break;
598 }
599 }
600 new->unit = dev;
601 new->md_minor = MINOR(dev);
602 new->hold_active = UNTIL_STOP;
603 list_add(&new->all_mddevs, &all_mddevs);
604 spin_unlock(&all_mddevs_lock);
605 return new;
606 }
607 spin_unlock(&all_mddevs_lock);
608
609 new = kzalloc(sizeof(*new), GFP_KERNEL);
610 if (!new)
611 return NULL;
612
613 new->unit = unit;
614 if (MAJOR(unit) == MD_MAJOR)
615 new->md_minor = MINOR(unit);
616 else
617 new->md_minor = MINOR(unit) >> MdpMinorShift;
618
619 mddev_init(new);
620
621 goto retry;
622 }
623
624 static struct attribute_group md_redundancy_group;
625
626 void mddev_unlock(struct mddev *mddev)
627 {
628 if (mddev->to_remove) {
629 /* These cannot be removed under reconfig_mutex as
630 * an access to the files will try to take reconfig_mutex
631 * while holding the file unremovable, which leads to
632 * a deadlock.
633 * So hold set sysfs_active while the remove in happeing,
634 * and anything else which might set ->to_remove or my
635 * otherwise change the sysfs namespace will fail with
636 * -EBUSY if sysfs_active is still set.
637 * We set sysfs_active under reconfig_mutex and elsewhere
638 * test it under the same mutex to ensure its correct value
639 * is seen.
640 */
641 struct attribute_group *to_remove = mddev->to_remove;
642 mddev->to_remove = NULL;
643 mddev->sysfs_active = 1;
644 mutex_unlock(&mddev->reconfig_mutex);
645
646 if (mddev->kobj.sd) {
647 if (to_remove != &md_redundancy_group)
648 sysfs_remove_group(&mddev->kobj, to_remove);
649 if (mddev->pers == NULL ||
650 mddev->pers->sync_request == NULL) {
651 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
652 if (mddev->sysfs_action)
653 sysfs_put(mddev->sysfs_action);
654 mddev->sysfs_action = NULL;
655 }
656 }
657 mddev->sysfs_active = 0;
658 } else
659 mutex_unlock(&mddev->reconfig_mutex);
660
661 /* As we've dropped the mutex we need a spinlock to
662 * make sure the thread doesn't disappear
663 */
664 spin_lock(&pers_lock);
665 md_wakeup_thread(mddev->thread);
666 spin_unlock(&pers_lock);
667 }
668 EXPORT_SYMBOL_GPL(mddev_unlock);
669
670 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
671 {
672 struct md_rdev *rdev;
673
674 rdev_for_each_rcu(rdev, mddev)
675 if (rdev->desc_nr == nr)
676 return rdev;
677
678 return NULL;
679 }
680 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
681
682 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
683 {
684 struct md_rdev *rdev;
685
686 rdev_for_each(rdev, mddev)
687 if (rdev->bdev->bd_dev == dev)
688 return rdev;
689
690 return NULL;
691 }
692
693 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
694 {
695 struct md_rdev *rdev;
696
697 rdev_for_each_rcu(rdev, mddev)
698 if (rdev->bdev->bd_dev == dev)
699 return rdev;
700
701 return NULL;
702 }
703
704 static struct md_personality *find_pers(int level, char *clevel)
705 {
706 struct md_personality *pers;
707 list_for_each_entry(pers, &pers_list, list) {
708 if (level != LEVEL_NONE && pers->level == level)
709 return pers;
710 if (strcmp(pers->name, clevel)==0)
711 return pers;
712 }
713 return NULL;
714 }
715
716 /* return the offset of the super block in 512byte sectors */
717 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
718 {
719 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
720 return MD_NEW_SIZE_SECTORS(num_sectors);
721 }
722
723 static int alloc_disk_sb(struct md_rdev *rdev)
724 {
725 rdev->sb_page = alloc_page(GFP_KERNEL);
726 if (!rdev->sb_page)
727 return -ENOMEM;
728 return 0;
729 }
730
731 void md_rdev_clear(struct md_rdev *rdev)
732 {
733 if (rdev->sb_page) {
734 put_page(rdev->sb_page);
735 rdev->sb_loaded = 0;
736 rdev->sb_page = NULL;
737 rdev->sb_start = 0;
738 rdev->sectors = 0;
739 }
740 if (rdev->bb_page) {
741 put_page(rdev->bb_page);
742 rdev->bb_page = NULL;
743 }
744 badblocks_exit(&rdev->badblocks);
745 }
746 EXPORT_SYMBOL_GPL(md_rdev_clear);
747
748 static void super_written(struct bio *bio)
749 {
750 struct md_rdev *rdev = bio->bi_private;
751 struct mddev *mddev = rdev->mddev;
752
753 if (bio->bi_status) {
754 pr_err("md: super_written gets error=%d\n", bio->bi_status);
755 md_error(mddev, rdev);
756 if (!test_bit(Faulty, &rdev->flags)
757 && (bio->bi_opf & MD_FAILFAST)) {
758 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
759 set_bit(LastDev, &rdev->flags);
760 }
761 } else
762 clear_bit(LastDev, &rdev->flags);
763
764 if (atomic_dec_and_test(&mddev->pending_writes))
765 wake_up(&mddev->sb_wait);
766 rdev_dec_pending(rdev, mddev);
767 bio_put(bio);
768 }
769
770 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
771 sector_t sector, int size, struct page *page)
772 {
773 /* write first size bytes of page to sector of rdev
774 * Increment mddev->pending_writes before returning
775 * and decrement it on completion, waking up sb_wait
776 * if zero is reached.
777 * If an error occurred, call md_error
778 */
779 struct bio *bio;
780 int ff = 0;
781
782 if (test_bit(Faulty, &rdev->flags))
783 return;
784
785 bio = md_bio_alloc_sync(mddev);
786
787 atomic_inc(&rdev->nr_pending);
788
789 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
790 bio->bi_iter.bi_sector = sector;
791 bio_add_page(bio, page, size, 0);
792 bio->bi_private = rdev;
793 bio->bi_end_io = super_written;
794
795 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
796 test_bit(FailFast, &rdev->flags) &&
797 !test_bit(LastDev, &rdev->flags))
798 ff = MD_FAILFAST;
799 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
800
801 atomic_inc(&mddev->pending_writes);
802 submit_bio(bio);
803 }
804
805 int md_super_wait(struct mddev *mddev)
806 {
807 /* wait for all superblock writes that were scheduled to complete */
808 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
809 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
810 return -EAGAIN;
811 return 0;
812 }
813
814 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
815 struct page *page, int op, int op_flags, bool metadata_op)
816 {
817 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
818 int ret;
819
820 if (metadata_op && rdev->meta_bdev)
821 bio_set_dev(bio, rdev->meta_bdev);
822 else
823 bio_set_dev(bio, rdev->bdev);
824 bio_set_op_attrs(bio, op, op_flags);
825 if (metadata_op)
826 bio->bi_iter.bi_sector = sector + rdev->sb_start;
827 else if (rdev->mddev->reshape_position != MaxSector &&
828 (rdev->mddev->reshape_backwards ==
829 (sector >= rdev->mddev->reshape_position)))
830 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
831 else
832 bio->bi_iter.bi_sector = sector + rdev->data_offset;
833 bio_add_page(bio, page, size, 0);
834
835 submit_bio_wait(bio);
836
837 ret = !bio->bi_status;
838 bio_put(bio);
839 return ret;
840 }
841 EXPORT_SYMBOL_GPL(sync_page_io);
842
843 static int read_disk_sb(struct md_rdev *rdev, int size)
844 {
845 char b[BDEVNAME_SIZE];
846
847 if (rdev->sb_loaded)
848 return 0;
849
850 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
851 goto fail;
852 rdev->sb_loaded = 1;
853 return 0;
854
855 fail:
856 pr_err("md: disabled device %s, could not read superblock.\n",
857 bdevname(rdev->bdev,b));
858 return -EINVAL;
859 }
860
861 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
862 {
863 return sb1->set_uuid0 == sb2->set_uuid0 &&
864 sb1->set_uuid1 == sb2->set_uuid1 &&
865 sb1->set_uuid2 == sb2->set_uuid2 &&
866 sb1->set_uuid3 == sb2->set_uuid3;
867 }
868
869 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870 {
871 int ret;
872 mdp_super_t *tmp1, *tmp2;
873
874 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
875 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
876
877 if (!tmp1 || !tmp2) {
878 ret = 0;
879 goto abort;
880 }
881
882 *tmp1 = *sb1;
883 *tmp2 = *sb2;
884
885 /*
886 * nr_disks is not constant
887 */
888 tmp1->nr_disks = 0;
889 tmp2->nr_disks = 0;
890
891 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
892 abort:
893 kfree(tmp1);
894 kfree(tmp2);
895 return ret;
896 }
897
898 static u32 md_csum_fold(u32 csum)
899 {
900 csum = (csum & 0xffff) + (csum >> 16);
901 return (csum & 0xffff) + (csum >> 16);
902 }
903
904 static unsigned int calc_sb_csum(mdp_super_t *sb)
905 {
906 u64 newcsum = 0;
907 u32 *sb32 = (u32*)sb;
908 int i;
909 unsigned int disk_csum, csum;
910
911 disk_csum = sb->sb_csum;
912 sb->sb_csum = 0;
913
914 for (i = 0; i < MD_SB_BYTES/4 ; i++)
915 newcsum += sb32[i];
916 csum = (newcsum & 0xffffffff) + (newcsum>>32);
917
918 #ifdef CONFIG_ALPHA
919 /* This used to use csum_partial, which was wrong for several
920 * reasons including that different results are returned on
921 * different architectures. It isn't critical that we get exactly
922 * the same return value as before (we always csum_fold before
923 * testing, and that removes any differences). However as we
924 * know that csum_partial always returned a 16bit value on
925 * alphas, do a fold to maximise conformity to previous behaviour.
926 */
927 sb->sb_csum = md_csum_fold(disk_csum);
928 #else
929 sb->sb_csum = disk_csum;
930 #endif
931 return csum;
932 }
933
934 /*
935 * Handle superblock details.
936 * We want to be able to handle multiple superblock formats
937 * so we have a common interface to them all, and an array of
938 * different handlers.
939 * We rely on user-space to write the initial superblock, and support
940 * reading and updating of superblocks.
941 * Interface methods are:
942 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
943 * loads and validates a superblock on dev.
944 * if refdev != NULL, compare superblocks on both devices
945 * Return:
946 * 0 - dev has a superblock that is compatible with refdev
947 * 1 - dev has a superblock that is compatible and newer than refdev
948 * so dev should be used as the refdev in future
949 * -EINVAL superblock incompatible or invalid
950 * -othererror e.g. -EIO
951 *
952 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
953 * Verify that dev is acceptable into mddev.
954 * The first time, mddev->raid_disks will be 0, and data from
955 * dev should be merged in. Subsequent calls check that dev
956 * is new enough. Return 0 or -EINVAL
957 *
958 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
959 * Update the superblock for rdev with data in mddev
960 * This does not write to disc.
961 *
962 */
963
964 struct super_type {
965 char *name;
966 struct module *owner;
967 int (*load_super)(struct md_rdev *rdev,
968 struct md_rdev *refdev,
969 int minor_version);
970 int (*validate_super)(struct mddev *mddev,
971 struct md_rdev *rdev);
972 void (*sync_super)(struct mddev *mddev,
973 struct md_rdev *rdev);
974 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
975 sector_t num_sectors);
976 int (*allow_new_offset)(struct md_rdev *rdev,
977 unsigned long long new_offset);
978 };
979
980 /*
981 * Check that the given mddev has no bitmap.
982 *
983 * This function is called from the run method of all personalities that do not
984 * support bitmaps. It prints an error message and returns non-zero if mddev
985 * has a bitmap. Otherwise, it returns 0.
986 *
987 */
988 int md_check_no_bitmap(struct mddev *mddev)
989 {
990 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
991 return 0;
992 pr_warn("%s: bitmaps are not supported for %s\n",
993 mdname(mddev), mddev->pers->name);
994 return 1;
995 }
996 EXPORT_SYMBOL(md_check_no_bitmap);
997
998 /*
999 * load_super for 0.90.0
1000 */
1001 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1002 {
1003 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1004 mdp_super_t *sb;
1005 int ret;
1006
1007 /*
1008 * Calculate the position of the superblock (512byte sectors),
1009 * it's at the end of the disk.
1010 *
1011 * It also happens to be a multiple of 4Kb.
1012 */
1013 rdev->sb_start = calc_dev_sboffset(rdev);
1014
1015 ret = read_disk_sb(rdev, MD_SB_BYTES);
1016 if (ret)
1017 return ret;
1018
1019 ret = -EINVAL;
1020
1021 bdevname(rdev->bdev, b);
1022 sb = page_address(rdev->sb_page);
1023
1024 if (sb->md_magic != MD_SB_MAGIC) {
1025 pr_warn("md: invalid raid superblock magic on %s\n", b);
1026 goto abort;
1027 }
1028
1029 if (sb->major_version != 0 ||
1030 sb->minor_version < 90 ||
1031 sb->minor_version > 91) {
1032 pr_warn("Bad version number %d.%d on %s\n",
1033 sb->major_version, sb->minor_version, b);
1034 goto abort;
1035 }
1036
1037 if (sb->raid_disks <= 0)
1038 goto abort;
1039
1040 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1041 pr_warn("md: invalid superblock checksum on %s\n", b);
1042 goto abort;
1043 }
1044
1045 rdev->preferred_minor = sb->md_minor;
1046 rdev->data_offset = 0;
1047 rdev->new_data_offset = 0;
1048 rdev->sb_size = MD_SB_BYTES;
1049 rdev->badblocks.shift = -1;
1050
1051 if (sb->level == LEVEL_MULTIPATH)
1052 rdev->desc_nr = -1;
1053 else
1054 rdev->desc_nr = sb->this_disk.number;
1055
1056 if (!refdev) {
1057 ret = 1;
1058 } else {
1059 __u64 ev1, ev2;
1060 mdp_super_t *refsb = page_address(refdev->sb_page);
1061 if (!md_uuid_equal(refsb, sb)) {
1062 pr_warn("md: %s has different UUID to %s\n",
1063 b, bdevname(refdev->bdev,b2));
1064 goto abort;
1065 }
1066 if (!md_sb_equal(refsb, sb)) {
1067 pr_warn("md: %s has same UUID but different superblock to %s\n",
1068 b, bdevname(refdev->bdev, b2));
1069 goto abort;
1070 }
1071 ev1 = md_event(sb);
1072 ev2 = md_event(refsb);
1073 if (ev1 > ev2)
1074 ret = 1;
1075 else
1076 ret = 0;
1077 }
1078 rdev->sectors = rdev->sb_start;
1079 /* Limit to 4TB as metadata cannot record more than that.
1080 * (not needed for Linear and RAID0 as metadata doesn't
1081 * record this size)
1082 */
1083 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1084 sb->level >= 1)
1085 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1086
1087 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1088 /* "this cannot possibly happen" ... */
1089 ret = -EINVAL;
1090
1091 abort:
1092 return ret;
1093 }
1094
1095 /*
1096 * validate_super for 0.90.0
1097 */
1098 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1099 {
1100 mdp_disk_t *desc;
1101 mdp_super_t *sb = page_address(rdev->sb_page);
1102 __u64 ev1 = md_event(sb);
1103
1104 rdev->raid_disk = -1;
1105 clear_bit(Faulty, &rdev->flags);
1106 clear_bit(In_sync, &rdev->flags);
1107 clear_bit(Bitmap_sync, &rdev->flags);
1108 clear_bit(WriteMostly, &rdev->flags);
1109
1110 if (mddev->raid_disks == 0) {
1111 mddev->major_version = 0;
1112 mddev->minor_version = sb->minor_version;
1113 mddev->patch_version = sb->patch_version;
1114 mddev->external = 0;
1115 mddev->chunk_sectors = sb->chunk_size >> 9;
1116 mddev->ctime = sb->ctime;
1117 mddev->utime = sb->utime;
1118 mddev->level = sb->level;
1119 mddev->clevel[0] = 0;
1120 mddev->layout = sb->layout;
1121 mddev->raid_disks = sb->raid_disks;
1122 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1123 mddev->events = ev1;
1124 mddev->bitmap_info.offset = 0;
1125 mddev->bitmap_info.space = 0;
1126 /* bitmap can use 60 K after the 4K superblocks */
1127 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1128 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1129 mddev->reshape_backwards = 0;
1130
1131 if (mddev->minor_version >= 91) {
1132 mddev->reshape_position = sb->reshape_position;
1133 mddev->delta_disks = sb->delta_disks;
1134 mddev->new_level = sb->new_level;
1135 mddev->new_layout = sb->new_layout;
1136 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1137 if (mddev->delta_disks < 0)
1138 mddev->reshape_backwards = 1;
1139 } else {
1140 mddev->reshape_position = MaxSector;
1141 mddev->delta_disks = 0;
1142 mddev->new_level = mddev->level;
1143 mddev->new_layout = mddev->layout;
1144 mddev->new_chunk_sectors = mddev->chunk_sectors;
1145 }
1146
1147 if (sb->state & (1<<MD_SB_CLEAN))
1148 mddev->recovery_cp = MaxSector;
1149 else {
1150 if (sb->events_hi == sb->cp_events_hi &&
1151 sb->events_lo == sb->cp_events_lo) {
1152 mddev->recovery_cp = sb->recovery_cp;
1153 } else
1154 mddev->recovery_cp = 0;
1155 }
1156
1157 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1158 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1159 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1160 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1161
1162 mddev->max_disks = MD_SB_DISKS;
1163
1164 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1165 mddev->bitmap_info.file == NULL) {
1166 mddev->bitmap_info.offset =
1167 mddev->bitmap_info.default_offset;
1168 mddev->bitmap_info.space =
1169 mddev->bitmap_info.default_space;
1170 }
1171
1172 } else if (mddev->pers == NULL) {
1173 /* Insist on good event counter while assembling, except
1174 * for spares (which don't need an event count) */
1175 ++ev1;
1176 if (sb->disks[rdev->desc_nr].state & (
1177 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1178 if (ev1 < mddev->events)
1179 return -EINVAL;
1180 } else if (mddev->bitmap) {
1181 /* if adding to array with a bitmap, then we can accept an
1182 * older device ... but not too old.
1183 */
1184 if (ev1 < mddev->bitmap->events_cleared)
1185 return 0;
1186 if (ev1 < mddev->events)
1187 set_bit(Bitmap_sync, &rdev->flags);
1188 } else {
1189 if (ev1 < mddev->events)
1190 /* just a hot-add of a new device, leave raid_disk at -1 */
1191 return 0;
1192 }
1193
1194 if (mddev->level != LEVEL_MULTIPATH) {
1195 desc = sb->disks + rdev->desc_nr;
1196
1197 if (desc->state & (1<<MD_DISK_FAULTY))
1198 set_bit(Faulty, &rdev->flags);
1199 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1200 desc->raid_disk < mddev->raid_disks */) {
1201 set_bit(In_sync, &rdev->flags);
1202 rdev->raid_disk = desc->raid_disk;
1203 rdev->saved_raid_disk = desc->raid_disk;
1204 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1205 /* active but not in sync implies recovery up to
1206 * reshape position. We don't know exactly where
1207 * that is, so set to zero for now */
1208 if (mddev->minor_version >= 91) {
1209 rdev->recovery_offset = 0;
1210 rdev->raid_disk = desc->raid_disk;
1211 }
1212 }
1213 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1214 set_bit(WriteMostly, &rdev->flags);
1215 if (desc->state & (1<<MD_DISK_FAILFAST))
1216 set_bit(FailFast, &rdev->flags);
1217 } else /* MULTIPATH are always insync */
1218 set_bit(In_sync, &rdev->flags);
1219 return 0;
1220 }
1221
1222 /*
1223 * sync_super for 0.90.0
1224 */
1225 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1226 {
1227 mdp_super_t *sb;
1228 struct md_rdev *rdev2;
1229 int next_spare = mddev->raid_disks;
1230
1231 /* make rdev->sb match mddev data..
1232 *
1233 * 1/ zero out disks
1234 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1235 * 3/ any empty disks < next_spare become removed
1236 *
1237 * disks[0] gets initialised to REMOVED because
1238 * we cannot be sure from other fields if it has
1239 * been initialised or not.
1240 */
1241 int i;
1242 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1243
1244 rdev->sb_size = MD_SB_BYTES;
1245
1246 sb = page_address(rdev->sb_page);
1247
1248 memset(sb, 0, sizeof(*sb));
1249
1250 sb->md_magic = MD_SB_MAGIC;
1251 sb->major_version = mddev->major_version;
1252 sb->patch_version = mddev->patch_version;
1253 sb->gvalid_words = 0; /* ignored */
1254 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1255 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1256 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1257 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1258
1259 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1260 sb->level = mddev->level;
1261 sb->size = mddev->dev_sectors / 2;
1262 sb->raid_disks = mddev->raid_disks;
1263 sb->md_minor = mddev->md_minor;
1264 sb->not_persistent = 0;
1265 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1266 sb->state = 0;
1267 sb->events_hi = (mddev->events>>32);
1268 sb->events_lo = (u32)mddev->events;
1269
1270 if (mddev->reshape_position == MaxSector)
1271 sb->minor_version = 90;
1272 else {
1273 sb->minor_version = 91;
1274 sb->reshape_position = mddev->reshape_position;
1275 sb->new_level = mddev->new_level;
1276 sb->delta_disks = mddev->delta_disks;
1277 sb->new_layout = mddev->new_layout;
1278 sb->new_chunk = mddev->new_chunk_sectors << 9;
1279 }
1280 mddev->minor_version = sb->minor_version;
1281 if (mddev->in_sync)
1282 {
1283 sb->recovery_cp = mddev->recovery_cp;
1284 sb->cp_events_hi = (mddev->events>>32);
1285 sb->cp_events_lo = (u32)mddev->events;
1286 if (mddev->recovery_cp == MaxSector)
1287 sb->state = (1<< MD_SB_CLEAN);
1288 } else
1289 sb->recovery_cp = 0;
1290
1291 sb->layout = mddev->layout;
1292 sb->chunk_size = mddev->chunk_sectors << 9;
1293
1294 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1295 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1296
1297 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1298 rdev_for_each(rdev2, mddev) {
1299 mdp_disk_t *d;
1300 int desc_nr;
1301 int is_active = test_bit(In_sync, &rdev2->flags);
1302
1303 if (rdev2->raid_disk >= 0 &&
1304 sb->minor_version >= 91)
1305 /* we have nowhere to store the recovery_offset,
1306 * but if it is not below the reshape_position,
1307 * we can piggy-back on that.
1308 */
1309 is_active = 1;
1310 if (rdev2->raid_disk < 0 ||
1311 test_bit(Faulty, &rdev2->flags))
1312 is_active = 0;
1313 if (is_active)
1314 desc_nr = rdev2->raid_disk;
1315 else
1316 desc_nr = next_spare++;
1317 rdev2->desc_nr = desc_nr;
1318 d = &sb->disks[rdev2->desc_nr];
1319 nr_disks++;
1320 d->number = rdev2->desc_nr;
1321 d->major = MAJOR(rdev2->bdev->bd_dev);
1322 d->minor = MINOR(rdev2->bdev->bd_dev);
1323 if (is_active)
1324 d->raid_disk = rdev2->raid_disk;
1325 else
1326 d->raid_disk = rdev2->desc_nr; /* compatibility */
1327 if (test_bit(Faulty, &rdev2->flags))
1328 d->state = (1<<MD_DISK_FAULTY);
1329 else if (is_active) {
1330 d->state = (1<<MD_DISK_ACTIVE);
1331 if (test_bit(In_sync, &rdev2->flags))
1332 d->state |= (1<<MD_DISK_SYNC);
1333 active++;
1334 working++;
1335 } else {
1336 d->state = 0;
1337 spare++;
1338 working++;
1339 }
1340 if (test_bit(WriteMostly, &rdev2->flags))
1341 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1342 if (test_bit(FailFast, &rdev2->flags))
1343 d->state |= (1<<MD_DISK_FAILFAST);
1344 }
1345 /* now set the "removed" and "faulty" bits on any missing devices */
1346 for (i=0 ; i < mddev->raid_disks ; i++) {
1347 mdp_disk_t *d = &sb->disks[i];
1348 if (d->state == 0 && d->number == 0) {
1349 d->number = i;
1350 d->raid_disk = i;
1351 d->state = (1<<MD_DISK_REMOVED);
1352 d->state |= (1<<MD_DISK_FAULTY);
1353 failed++;
1354 }
1355 }
1356 sb->nr_disks = nr_disks;
1357 sb->active_disks = active;
1358 sb->working_disks = working;
1359 sb->failed_disks = failed;
1360 sb->spare_disks = spare;
1361
1362 sb->this_disk = sb->disks[rdev->desc_nr];
1363 sb->sb_csum = calc_sb_csum(sb);
1364 }
1365
1366 /*
1367 * rdev_size_change for 0.90.0
1368 */
1369 static unsigned long long
1370 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1371 {
1372 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1373 return 0; /* component must fit device */
1374 if (rdev->mddev->bitmap_info.offset)
1375 return 0; /* can't move bitmap */
1376 rdev->sb_start = calc_dev_sboffset(rdev);
1377 if (!num_sectors || num_sectors > rdev->sb_start)
1378 num_sectors = rdev->sb_start;
1379 /* Limit to 4TB as metadata cannot record more than that.
1380 * 4TB == 2^32 KB, or 2*2^32 sectors.
1381 */
1382 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1383 rdev->mddev->level >= 1)
1384 num_sectors = (sector_t)(2ULL << 32) - 2;
1385 do {
1386 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1387 rdev->sb_page);
1388 } while (md_super_wait(rdev->mddev) < 0);
1389 return num_sectors;
1390 }
1391
1392 static int
1393 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1394 {
1395 /* non-zero offset changes not possible with v0.90 */
1396 return new_offset == 0;
1397 }
1398
1399 /*
1400 * version 1 superblock
1401 */
1402
1403 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1404 {
1405 __le32 disk_csum;
1406 u32 csum;
1407 unsigned long long newcsum;
1408 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1409 __le32 *isuper = (__le32*)sb;
1410
1411 disk_csum = sb->sb_csum;
1412 sb->sb_csum = 0;
1413 newcsum = 0;
1414 for (; size >= 4; size -= 4)
1415 newcsum += le32_to_cpu(*isuper++);
1416
1417 if (size == 2)
1418 newcsum += le16_to_cpu(*(__le16*) isuper);
1419
1420 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1421 sb->sb_csum = disk_csum;
1422 return cpu_to_le32(csum);
1423 }
1424
1425 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1426 {
1427 struct mdp_superblock_1 *sb;
1428 int ret;
1429 sector_t sb_start;
1430 sector_t sectors;
1431 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1432 int bmask;
1433
1434 /*
1435 * Calculate the position of the superblock in 512byte sectors.
1436 * It is always aligned to a 4K boundary and
1437 * depeding on minor_version, it can be:
1438 * 0: At least 8K, but less than 12K, from end of device
1439 * 1: At start of device
1440 * 2: 4K from start of device.
1441 */
1442 switch(minor_version) {
1443 case 0:
1444 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1445 sb_start -= 8*2;
1446 sb_start &= ~(sector_t)(4*2-1);
1447 break;
1448 case 1:
1449 sb_start = 0;
1450 break;
1451 case 2:
1452 sb_start = 8;
1453 break;
1454 default:
1455 return -EINVAL;
1456 }
1457 rdev->sb_start = sb_start;
1458
1459 /* superblock is rarely larger than 1K, but it can be larger,
1460 * and it is safe to read 4k, so we do that
1461 */
1462 ret = read_disk_sb(rdev, 4096);
1463 if (ret) return ret;
1464
1465 sb = page_address(rdev->sb_page);
1466
1467 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1468 sb->major_version != cpu_to_le32(1) ||
1469 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1470 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1471 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1472 return -EINVAL;
1473
1474 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1475 pr_warn("md: invalid superblock checksum on %s\n",
1476 bdevname(rdev->bdev,b));
1477 return -EINVAL;
1478 }
1479 if (le64_to_cpu(sb->data_size) < 10) {
1480 pr_warn("md: data_size too small on %s\n",
1481 bdevname(rdev->bdev,b));
1482 return -EINVAL;
1483 }
1484 if (sb->pad0 ||
1485 sb->pad3[0] ||
1486 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1487 /* Some padding is non-zero, might be a new feature */
1488 return -EINVAL;
1489
1490 rdev->preferred_minor = 0xffff;
1491 rdev->data_offset = le64_to_cpu(sb->data_offset);
1492 rdev->new_data_offset = rdev->data_offset;
1493 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1494 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1495 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1496 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1497
1498 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1499 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1500 if (rdev->sb_size & bmask)
1501 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1502
1503 if (minor_version
1504 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1505 return -EINVAL;
1506 if (minor_version
1507 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1508 return -EINVAL;
1509
1510 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1511 rdev->desc_nr = -1;
1512 else
1513 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1514
1515 if (!rdev->bb_page) {
1516 rdev->bb_page = alloc_page(GFP_KERNEL);
1517 if (!rdev->bb_page)
1518 return -ENOMEM;
1519 }
1520 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1521 rdev->badblocks.count == 0) {
1522 /* need to load the bad block list.
1523 * Currently we limit it to one page.
1524 */
1525 s32 offset;
1526 sector_t bb_sector;
1527 u64 *bbp;
1528 int i;
1529 int sectors = le16_to_cpu(sb->bblog_size);
1530 if (sectors > (PAGE_SIZE / 512))
1531 return -EINVAL;
1532 offset = le32_to_cpu(sb->bblog_offset);
1533 if (offset == 0)
1534 return -EINVAL;
1535 bb_sector = (long long)offset;
1536 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1537 rdev->bb_page, REQ_OP_READ, 0, true))
1538 return -EIO;
1539 bbp = (u64 *)page_address(rdev->bb_page);
1540 rdev->badblocks.shift = sb->bblog_shift;
1541 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1542 u64 bb = le64_to_cpu(*bbp);
1543 int count = bb & (0x3ff);
1544 u64 sector = bb >> 10;
1545 sector <<= sb->bblog_shift;
1546 count <<= sb->bblog_shift;
1547 if (bb + 1 == 0)
1548 break;
1549 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1550 return -EINVAL;
1551 }
1552 } else if (sb->bblog_offset != 0)
1553 rdev->badblocks.shift = 0;
1554
1555 if ((le32_to_cpu(sb->feature_map) &
1556 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1557 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1558 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1559 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1560 }
1561
1562 if (!refdev) {
1563 ret = 1;
1564 } else {
1565 __u64 ev1, ev2;
1566 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1567
1568 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1569 sb->level != refsb->level ||
1570 sb->layout != refsb->layout ||
1571 sb->chunksize != refsb->chunksize) {
1572 pr_warn("md: %s has strangely different superblock to %s\n",
1573 bdevname(rdev->bdev,b),
1574 bdevname(refdev->bdev,b2));
1575 return -EINVAL;
1576 }
1577 ev1 = le64_to_cpu(sb->events);
1578 ev2 = le64_to_cpu(refsb->events);
1579
1580 if (ev1 > ev2)
1581 ret = 1;
1582 else
1583 ret = 0;
1584 }
1585 if (minor_version) {
1586 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1587 sectors -= rdev->data_offset;
1588 } else
1589 sectors = rdev->sb_start;
1590 if (sectors < le64_to_cpu(sb->data_size))
1591 return -EINVAL;
1592 rdev->sectors = le64_to_cpu(sb->data_size);
1593 return ret;
1594 }
1595
1596 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1599 __u64 ev1 = le64_to_cpu(sb->events);
1600
1601 rdev->raid_disk = -1;
1602 clear_bit(Faulty, &rdev->flags);
1603 clear_bit(In_sync, &rdev->flags);
1604 clear_bit(Bitmap_sync, &rdev->flags);
1605 clear_bit(WriteMostly, &rdev->flags);
1606
1607 if (mddev->raid_disks == 0) {
1608 mddev->major_version = 1;
1609 mddev->patch_version = 0;
1610 mddev->external = 0;
1611 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1612 mddev->ctime = le64_to_cpu(sb->ctime);
1613 mddev->utime = le64_to_cpu(sb->utime);
1614 mddev->level = le32_to_cpu(sb->level);
1615 mddev->clevel[0] = 0;
1616 mddev->layout = le32_to_cpu(sb->layout);
1617 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1618 mddev->dev_sectors = le64_to_cpu(sb->size);
1619 mddev->events = ev1;
1620 mddev->bitmap_info.offset = 0;
1621 mddev->bitmap_info.space = 0;
1622 /* Default location for bitmap is 1K after superblock
1623 * using 3K - total of 4K
1624 */
1625 mddev->bitmap_info.default_offset = 1024 >> 9;
1626 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1627 mddev->reshape_backwards = 0;
1628
1629 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1630 memcpy(mddev->uuid, sb->set_uuid, 16);
1631
1632 mddev->max_disks = (4096-256)/2;
1633
1634 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1635 mddev->bitmap_info.file == NULL) {
1636 mddev->bitmap_info.offset =
1637 (__s32)le32_to_cpu(sb->bitmap_offset);
1638 /* Metadata doesn't record how much space is available.
1639 * For 1.0, we assume we can use up to the superblock
1640 * if before, else to 4K beyond superblock.
1641 * For others, assume no change is possible.
1642 */
1643 if (mddev->minor_version > 0)
1644 mddev->bitmap_info.space = 0;
1645 else if (mddev->bitmap_info.offset > 0)
1646 mddev->bitmap_info.space =
1647 8 - mddev->bitmap_info.offset;
1648 else
1649 mddev->bitmap_info.space =
1650 -mddev->bitmap_info.offset;
1651 }
1652
1653 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1654 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1655 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1656 mddev->new_level = le32_to_cpu(sb->new_level);
1657 mddev->new_layout = le32_to_cpu(sb->new_layout);
1658 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1659 if (mddev->delta_disks < 0 ||
1660 (mddev->delta_disks == 0 &&
1661 (le32_to_cpu(sb->feature_map)
1662 & MD_FEATURE_RESHAPE_BACKWARDS)))
1663 mddev->reshape_backwards = 1;
1664 } else {
1665 mddev->reshape_position = MaxSector;
1666 mddev->delta_disks = 0;
1667 mddev->new_level = mddev->level;
1668 mddev->new_layout = mddev->layout;
1669 mddev->new_chunk_sectors = mddev->chunk_sectors;
1670 }
1671
1672 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1673 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1674
1675 if (le32_to_cpu(sb->feature_map) &
1676 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1677 if (le32_to_cpu(sb->feature_map) &
1678 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1679 return -EINVAL;
1680 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1681 (le32_to_cpu(sb->feature_map) &
1682 MD_FEATURE_MULTIPLE_PPLS))
1683 return -EINVAL;
1684 set_bit(MD_HAS_PPL, &mddev->flags);
1685 }
1686 } else if (mddev->pers == NULL) {
1687 /* Insist of good event counter while assembling, except for
1688 * spares (which don't need an event count) */
1689 ++ev1;
1690 if (rdev->desc_nr >= 0 &&
1691 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1692 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1693 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1694 if (ev1 < mddev->events)
1695 return -EINVAL;
1696 } else if (mddev->bitmap) {
1697 /* If adding to array with a bitmap, then we can accept an
1698 * older device, but not too old.
1699 */
1700 if (ev1 < mddev->bitmap->events_cleared)
1701 return 0;
1702 if (ev1 < mddev->events)
1703 set_bit(Bitmap_sync, &rdev->flags);
1704 } else {
1705 if (ev1 < mddev->events)
1706 /* just a hot-add of a new device, leave raid_disk at -1 */
1707 return 0;
1708 }
1709 if (mddev->level != LEVEL_MULTIPATH) {
1710 int role;
1711 if (rdev->desc_nr < 0 ||
1712 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1713 role = MD_DISK_ROLE_SPARE;
1714 rdev->desc_nr = -1;
1715 } else
1716 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1717 switch(role) {
1718 case MD_DISK_ROLE_SPARE: /* spare */
1719 break;
1720 case MD_DISK_ROLE_FAULTY: /* faulty */
1721 set_bit(Faulty, &rdev->flags);
1722 break;
1723 case MD_DISK_ROLE_JOURNAL: /* journal device */
1724 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1725 /* journal device without journal feature */
1726 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1727 return -EINVAL;
1728 }
1729 set_bit(Journal, &rdev->flags);
1730 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1731 rdev->raid_disk = 0;
1732 break;
1733 default:
1734 rdev->saved_raid_disk = role;
1735 if ((le32_to_cpu(sb->feature_map) &
1736 MD_FEATURE_RECOVERY_OFFSET)) {
1737 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1738 if (!(le32_to_cpu(sb->feature_map) &
1739 MD_FEATURE_RECOVERY_BITMAP))
1740 rdev->saved_raid_disk = -1;
1741 } else
1742 set_bit(In_sync, &rdev->flags);
1743 rdev->raid_disk = role;
1744 break;
1745 }
1746 if (sb->devflags & WriteMostly1)
1747 set_bit(WriteMostly, &rdev->flags);
1748 if (sb->devflags & FailFast1)
1749 set_bit(FailFast, &rdev->flags);
1750 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1751 set_bit(Replacement, &rdev->flags);
1752 } else /* MULTIPATH are always insync */
1753 set_bit(In_sync, &rdev->flags);
1754
1755 return 0;
1756 }
1757
1758 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1759 {
1760 struct mdp_superblock_1 *sb;
1761 struct md_rdev *rdev2;
1762 int max_dev, i;
1763 /* make rdev->sb match mddev and rdev data. */
1764
1765 sb = page_address(rdev->sb_page);
1766
1767 sb->feature_map = 0;
1768 sb->pad0 = 0;
1769 sb->recovery_offset = cpu_to_le64(0);
1770 memset(sb->pad3, 0, sizeof(sb->pad3));
1771
1772 sb->utime = cpu_to_le64((__u64)mddev->utime);
1773 sb->events = cpu_to_le64(mddev->events);
1774 if (mddev->in_sync)
1775 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1776 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1777 sb->resync_offset = cpu_to_le64(MaxSector);
1778 else
1779 sb->resync_offset = cpu_to_le64(0);
1780
1781 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1782
1783 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1784 sb->size = cpu_to_le64(mddev->dev_sectors);
1785 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1786 sb->level = cpu_to_le32(mddev->level);
1787 sb->layout = cpu_to_le32(mddev->layout);
1788 if (test_bit(FailFast, &rdev->flags))
1789 sb->devflags |= FailFast1;
1790 else
1791 sb->devflags &= ~FailFast1;
1792
1793 if (test_bit(WriteMostly, &rdev->flags))
1794 sb->devflags |= WriteMostly1;
1795 else
1796 sb->devflags &= ~WriteMostly1;
1797 sb->data_offset = cpu_to_le64(rdev->data_offset);
1798 sb->data_size = cpu_to_le64(rdev->sectors);
1799
1800 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1801 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1802 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1803 }
1804
1805 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1806 !test_bit(In_sync, &rdev->flags)) {
1807 sb->feature_map |=
1808 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1809 sb->recovery_offset =
1810 cpu_to_le64(rdev->recovery_offset);
1811 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1812 sb->feature_map |=
1813 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1814 }
1815 /* Note: recovery_offset and journal_tail share space */
1816 if (test_bit(Journal, &rdev->flags))
1817 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1818 if (test_bit(Replacement, &rdev->flags))
1819 sb->feature_map |=
1820 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1821
1822 if (mddev->reshape_position != MaxSector) {
1823 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1824 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1825 sb->new_layout = cpu_to_le32(mddev->new_layout);
1826 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1827 sb->new_level = cpu_to_le32(mddev->new_level);
1828 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1829 if (mddev->delta_disks == 0 &&
1830 mddev->reshape_backwards)
1831 sb->feature_map
1832 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1833 if (rdev->new_data_offset != rdev->data_offset) {
1834 sb->feature_map
1835 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1836 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1837 - rdev->data_offset));
1838 }
1839 }
1840
1841 if (mddev_is_clustered(mddev))
1842 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1843
1844 if (rdev->badblocks.count == 0)
1845 /* Nothing to do for bad blocks*/ ;
1846 else if (sb->bblog_offset == 0)
1847 /* Cannot record bad blocks on this device */
1848 md_error(mddev, rdev);
1849 else {
1850 struct badblocks *bb = &rdev->badblocks;
1851 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1852 u64 *p = bb->page;
1853 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1854 if (bb->changed) {
1855 unsigned seq;
1856
1857 retry:
1858 seq = read_seqbegin(&bb->lock);
1859
1860 memset(bbp, 0xff, PAGE_SIZE);
1861
1862 for (i = 0 ; i < bb->count ; i++) {
1863 u64 internal_bb = p[i];
1864 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1865 | BB_LEN(internal_bb));
1866 bbp[i] = cpu_to_le64(store_bb);
1867 }
1868 bb->changed = 0;
1869 if (read_seqretry(&bb->lock, seq))
1870 goto retry;
1871
1872 bb->sector = (rdev->sb_start +
1873 (int)le32_to_cpu(sb->bblog_offset));
1874 bb->size = le16_to_cpu(sb->bblog_size);
1875 }
1876 }
1877
1878 max_dev = 0;
1879 rdev_for_each(rdev2, mddev)
1880 if (rdev2->desc_nr+1 > max_dev)
1881 max_dev = rdev2->desc_nr+1;
1882
1883 if (max_dev > le32_to_cpu(sb->max_dev)) {
1884 int bmask;
1885 sb->max_dev = cpu_to_le32(max_dev);
1886 rdev->sb_size = max_dev * 2 + 256;
1887 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1888 if (rdev->sb_size & bmask)
1889 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1890 } else
1891 max_dev = le32_to_cpu(sb->max_dev);
1892
1893 for (i=0; i<max_dev;i++)
1894 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1895
1896 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1897 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1898
1899 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1900 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
1901 sb->feature_map |=
1902 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
1903 else
1904 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1905 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1906 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1907 }
1908
1909 rdev_for_each(rdev2, mddev) {
1910 i = rdev2->desc_nr;
1911 if (test_bit(Faulty, &rdev2->flags))
1912 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1913 else if (test_bit(In_sync, &rdev2->flags))
1914 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1915 else if (test_bit(Journal, &rdev2->flags))
1916 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1917 else if (rdev2->raid_disk >= 0)
1918 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1919 else
1920 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1921 }
1922
1923 sb->sb_csum = calc_sb_1_csum(sb);
1924 }
1925
1926 static unsigned long long
1927 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1928 {
1929 struct mdp_superblock_1 *sb;
1930 sector_t max_sectors;
1931 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1932 return 0; /* component must fit device */
1933 if (rdev->data_offset != rdev->new_data_offset)
1934 return 0; /* too confusing */
1935 if (rdev->sb_start < rdev->data_offset) {
1936 /* minor versions 1 and 2; superblock before data */
1937 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1938 max_sectors -= rdev->data_offset;
1939 if (!num_sectors || num_sectors > max_sectors)
1940 num_sectors = max_sectors;
1941 } else if (rdev->mddev->bitmap_info.offset) {
1942 /* minor version 0 with bitmap we can't move */
1943 return 0;
1944 } else {
1945 /* minor version 0; superblock after data */
1946 sector_t sb_start;
1947 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1948 sb_start &= ~(sector_t)(4*2 - 1);
1949 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1950 if (!num_sectors || num_sectors > max_sectors)
1951 num_sectors = max_sectors;
1952 rdev->sb_start = sb_start;
1953 }
1954 sb = page_address(rdev->sb_page);
1955 sb->data_size = cpu_to_le64(num_sectors);
1956 sb->super_offset = cpu_to_le64(rdev->sb_start);
1957 sb->sb_csum = calc_sb_1_csum(sb);
1958 do {
1959 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1960 rdev->sb_page);
1961 } while (md_super_wait(rdev->mddev) < 0);
1962 return num_sectors;
1963
1964 }
1965
1966 static int
1967 super_1_allow_new_offset(struct md_rdev *rdev,
1968 unsigned long long new_offset)
1969 {
1970 /* All necessary checks on new >= old have been done */
1971 struct bitmap *bitmap;
1972 if (new_offset >= rdev->data_offset)
1973 return 1;
1974
1975 /* with 1.0 metadata, there is no metadata to tread on
1976 * so we can always move back */
1977 if (rdev->mddev->minor_version == 0)
1978 return 1;
1979
1980 /* otherwise we must be sure not to step on
1981 * any metadata, so stay:
1982 * 36K beyond start of superblock
1983 * beyond end of badblocks
1984 * beyond write-intent bitmap
1985 */
1986 if (rdev->sb_start + (32+4)*2 > new_offset)
1987 return 0;
1988 bitmap = rdev->mddev->bitmap;
1989 if (bitmap && !rdev->mddev->bitmap_info.file &&
1990 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1991 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1992 return 0;
1993 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1994 return 0;
1995
1996 return 1;
1997 }
1998
1999 static struct super_type super_types[] = {
2000 [0] = {
2001 .name = "0.90.0",
2002 .owner = THIS_MODULE,
2003 .load_super = super_90_load,
2004 .validate_super = super_90_validate,
2005 .sync_super = super_90_sync,
2006 .rdev_size_change = super_90_rdev_size_change,
2007 .allow_new_offset = super_90_allow_new_offset,
2008 },
2009 [1] = {
2010 .name = "md-1",
2011 .owner = THIS_MODULE,
2012 .load_super = super_1_load,
2013 .validate_super = super_1_validate,
2014 .sync_super = super_1_sync,
2015 .rdev_size_change = super_1_rdev_size_change,
2016 .allow_new_offset = super_1_allow_new_offset,
2017 },
2018 };
2019
2020 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2021 {
2022 if (mddev->sync_super) {
2023 mddev->sync_super(mddev, rdev);
2024 return;
2025 }
2026
2027 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2028
2029 super_types[mddev->major_version].sync_super(mddev, rdev);
2030 }
2031
2032 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2033 {
2034 struct md_rdev *rdev, *rdev2;
2035
2036 rcu_read_lock();
2037 rdev_for_each_rcu(rdev, mddev1) {
2038 if (test_bit(Faulty, &rdev->flags) ||
2039 test_bit(Journal, &rdev->flags) ||
2040 rdev->raid_disk == -1)
2041 continue;
2042 rdev_for_each_rcu(rdev2, mddev2) {
2043 if (test_bit(Faulty, &rdev2->flags) ||
2044 test_bit(Journal, &rdev2->flags) ||
2045 rdev2->raid_disk == -1)
2046 continue;
2047 if (rdev->bdev->bd_contains ==
2048 rdev2->bdev->bd_contains) {
2049 rcu_read_unlock();
2050 return 1;
2051 }
2052 }
2053 }
2054 rcu_read_unlock();
2055 return 0;
2056 }
2057
2058 static LIST_HEAD(pending_raid_disks);
2059
2060 /*
2061 * Try to register data integrity profile for an mddev
2062 *
2063 * This is called when an array is started and after a disk has been kicked
2064 * from the array. It only succeeds if all working and active component devices
2065 * are integrity capable with matching profiles.
2066 */
2067 int md_integrity_register(struct mddev *mddev)
2068 {
2069 struct md_rdev *rdev, *reference = NULL;
2070
2071 if (list_empty(&mddev->disks))
2072 return 0; /* nothing to do */
2073 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2074 return 0; /* shouldn't register, or already is */
2075 rdev_for_each(rdev, mddev) {
2076 /* skip spares and non-functional disks */
2077 if (test_bit(Faulty, &rdev->flags))
2078 continue;
2079 if (rdev->raid_disk < 0)
2080 continue;
2081 if (!reference) {
2082 /* Use the first rdev as the reference */
2083 reference = rdev;
2084 continue;
2085 }
2086 /* does this rdev's profile match the reference profile? */
2087 if (blk_integrity_compare(reference->bdev->bd_disk,
2088 rdev->bdev->bd_disk) < 0)
2089 return -EINVAL;
2090 }
2091 if (!reference || !bdev_get_integrity(reference->bdev))
2092 return 0;
2093 /*
2094 * All component devices are integrity capable and have matching
2095 * profiles, register the common profile for the md device.
2096 */
2097 blk_integrity_register(mddev->gendisk,
2098 bdev_get_integrity(reference->bdev));
2099
2100 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2101 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2102 pr_err("md: failed to create integrity pool for %s\n",
2103 mdname(mddev));
2104 return -EINVAL;
2105 }
2106 return 0;
2107 }
2108 EXPORT_SYMBOL(md_integrity_register);
2109
2110 /*
2111 * Attempt to add an rdev, but only if it is consistent with the current
2112 * integrity profile
2113 */
2114 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2115 {
2116 struct blk_integrity *bi_rdev;
2117 struct blk_integrity *bi_mddev;
2118 char name[BDEVNAME_SIZE];
2119
2120 if (!mddev->gendisk)
2121 return 0;
2122
2123 bi_rdev = bdev_get_integrity(rdev->bdev);
2124 bi_mddev = blk_get_integrity(mddev->gendisk);
2125
2126 if (!bi_mddev) /* nothing to do */
2127 return 0;
2128
2129 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2130 pr_err("%s: incompatible integrity profile for %s\n",
2131 mdname(mddev), bdevname(rdev->bdev, name));
2132 return -ENXIO;
2133 }
2134
2135 return 0;
2136 }
2137 EXPORT_SYMBOL(md_integrity_add_rdev);
2138
2139 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2140 {
2141 char b[BDEVNAME_SIZE];
2142 struct kobject *ko;
2143 int err;
2144
2145 /* prevent duplicates */
2146 if (find_rdev(mddev, rdev->bdev->bd_dev))
2147 return -EEXIST;
2148
2149 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2150 mddev->pers)
2151 return -EROFS;
2152
2153 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2154 if (!test_bit(Journal, &rdev->flags) &&
2155 rdev->sectors &&
2156 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2157 if (mddev->pers) {
2158 /* Cannot change size, so fail
2159 * If mddev->level <= 0, then we don't care
2160 * about aligning sizes (e.g. linear)
2161 */
2162 if (mddev->level > 0)
2163 return -ENOSPC;
2164 } else
2165 mddev->dev_sectors = rdev->sectors;
2166 }
2167
2168 /* Verify rdev->desc_nr is unique.
2169 * If it is -1, assign a free number, else
2170 * check number is not in use
2171 */
2172 rcu_read_lock();
2173 if (rdev->desc_nr < 0) {
2174 int choice = 0;
2175 if (mddev->pers)
2176 choice = mddev->raid_disks;
2177 while (md_find_rdev_nr_rcu(mddev, choice))
2178 choice++;
2179 rdev->desc_nr = choice;
2180 } else {
2181 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2182 rcu_read_unlock();
2183 return -EBUSY;
2184 }
2185 }
2186 rcu_read_unlock();
2187 if (!test_bit(Journal, &rdev->flags) &&
2188 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2189 pr_warn("md: %s: array is limited to %d devices\n",
2190 mdname(mddev), mddev->max_disks);
2191 return -EBUSY;
2192 }
2193 bdevname(rdev->bdev,b);
2194 strreplace(b, '/', '!');
2195
2196 rdev->mddev = mddev;
2197 pr_debug("md: bind<%s>\n", b);
2198
2199 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2200 goto fail;
2201
2202 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2203 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2204 /* failure here is OK */;
2205 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2206
2207 list_add_rcu(&rdev->same_set, &mddev->disks);
2208 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2209
2210 /* May as well allow recovery to be retried once */
2211 mddev->recovery_disabled++;
2212
2213 return 0;
2214
2215 fail:
2216 pr_warn("md: failed to register dev-%s for %s\n",
2217 b, mdname(mddev));
2218 return err;
2219 }
2220
2221 static void md_delayed_delete(struct work_struct *ws)
2222 {
2223 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2224 kobject_del(&rdev->kobj);
2225 kobject_put(&rdev->kobj);
2226 }
2227
2228 static void unbind_rdev_from_array(struct md_rdev *rdev)
2229 {
2230 char b[BDEVNAME_SIZE];
2231
2232 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2233 list_del_rcu(&rdev->same_set);
2234 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2235 rdev->mddev = NULL;
2236 sysfs_remove_link(&rdev->kobj, "block");
2237 sysfs_put(rdev->sysfs_state);
2238 rdev->sysfs_state = NULL;
2239 rdev->badblocks.count = 0;
2240 /* We need to delay this, otherwise we can deadlock when
2241 * writing to 'remove' to "dev/state". We also need
2242 * to delay it due to rcu usage.
2243 */
2244 synchronize_rcu();
2245 INIT_WORK(&rdev->del_work, md_delayed_delete);
2246 kobject_get(&rdev->kobj);
2247 queue_work(md_misc_wq, &rdev->del_work);
2248 }
2249
2250 /*
2251 * prevent the device from being mounted, repartitioned or
2252 * otherwise reused by a RAID array (or any other kernel
2253 * subsystem), by bd_claiming the device.
2254 */
2255 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2256 {
2257 int err = 0;
2258 struct block_device *bdev;
2259 char b[BDEVNAME_SIZE];
2260
2261 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2262 shared ? (struct md_rdev *)lock_rdev : rdev);
2263 if (IS_ERR(bdev)) {
2264 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2265 return PTR_ERR(bdev);
2266 }
2267 rdev->bdev = bdev;
2268 return err;
2269 }
2270
2271 static void unlock_rdev(struct md_rdev *rdev)
2272 {
2273 struct block_device *bdev = rdev->bdev;
2274 rdev->bdev = NULL;
2275 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2276 }
2277
2278 void md_autodetect_dev(dev_t dev);
2279
2280 static void export_rdev(struct md_rdev *rdev)
2281 {
2282 char b[BDEVNAME_SIZE];
2283
2284 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2285 md_rdev_clear(rdev);
2286 #ifndef MODULE
2287 if (test_bit(AutoDetected, &rdev->flags))
2288 md_autodetect_dev(rdev->bdev->bd_dev);
2289 #endif
2290 unlock_rdev(rdev);
2291 kobject_put(&rdev->kobj);
2292 }
2293
2294 void md_kick_rdev_from_array(struct md_rdev *rdev)
2295 {
2296 unbind_rdev_from_array(rdev);
2297 export_rdev(rdev);
2298 }
2299 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2300
2301 static void export_array(struct mddev *mddev)
2302 {
2303 struct md_rdev *rdev;
2304
2305 while (!list_empty(&mddev->disks)) {
2306 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2307 same_set);
2308 md_kick_rdev_from_array(rdev);
2309 }
2310 mddev->raid_disks = 0;
2311 mddev->major_version = 0;
2312 }
2313
2314 static bool set_in_sync(struct mddev *mddev)
2315 {
2316 WARN_ON_ONCE(NR_CPUS != 1 && !spin_is_locked(&mddev->lock));
2317 if (!mddev->in_sync) {
2318 mddev->sync_checkers++;
2319 spin_unlock(&mddev->lock);
2320 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2321 spin_lock(&mddev->lock);
2322 if (!mddev->in_sync &&
2323 percpu_ref_is_zero(&mddev->writes_pending)) {
2324 mddev->in_sync = 1;
2325 /*
2326 * Ensure ->in_sync is visible before we clear
2327 * ->sync_checkers.
2328 */
2329 smp_mb();
2330 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2331 sysfs_notify_dirent_safe(mddev->sysfs_state);
2332 }
2333 if (--mddev->sync_checkers == 0)
2334 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2335 }
2336 if (mddev->safemode == 1)
2337 mddev->safemode = 0;
2338 return mddev->in_sync;
2339 }
2340
2341 static void sync_sbs(struct mddev *mddev, int nospares)
2342 {
2343 /* Update each superblock (in-memory image), but
2344 * if we are allowed to, skip spares which already
2345 * have the right event counter, or have one earlier
2346 * (which would mean they aren't being marked as dirty
2347 * with the rest of the array)
2348 */
2349 struct md_rdev *rdev;
2350 rdev_for_each(rdev, mddev) {
2351 if (rdev->sb_events == mddev->events ||
2352 (nospares &&
2353 rdev->raid_disk < 0 &&
2354 rdev->sb_events+1 == mddev->events)) {
2355 /* Don't update this superblock */
2356 rdev->sb_loaded = 2;
2357 } else {
2358 sync_super(mddev, rdev);
2359 rdev->sb_loaded = 1;
2360 }
2361 }
2362 }
2363
2364 static bool does_sb_need_changing(struct mddev *mddev)
2365 {
2366 struct md_rdev *rdev;
2367 struct mdp_superblock_1 *sb;
2368 int role;
2369
2370 /* Find a good rdev */
2371 rdev_for_each(rdev, mddev)
2372 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2373 break;
2374
2375 /* No good device found. */
2376 if (!rdev)
2377 return false;
2378
2379 sb = page_address(rdev->sb_page);
2380 /* Check if a device has become faulty or a spare become active */
2381 rdev_for_each(rdev, mddev) {
2382 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2383 /* Device activated? */
2384 if (role == 0xffff && rdev->raid_disk >=0 &&
2385 !test_bit(Faulty, &rdev->flags))
2386 return true;
2387 /* Device turned faulty? */
2388 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2389 return true;
2390 }
2391
2392 /* Check if any mddev parameters have changed */
2393 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2394 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2395 (mddev->layout != le32_to_cpu(sb->layout)) ||
2396 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2397 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2398 return true;
2399
2400 return false;
2401 }
2402
2403 void md_update_sb(struct mddev *mddev, int force_change)
2404 {
2405 struct md_rdev *rdev;
2406 int sync_req;
2407 int nospares = 0;
2408 int any_badblocks_changed = 0;
2409 int ret = -1;
2410
2411 if (mddev->ro) {
2412 if (force_change)
2413 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2414 return;
2415 }
2416
2417 repeat:
2418 if (mddev_is_clustered(mddev)) {
2419 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2420 force_change = 1;
2421 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2422 nospares = 1;
2423 ret = md_cluster_ops->metadata_update_start(mddev);
2424 /* Has someone else has updated the sb */
2425 if (!does_sb_need_changing(mddev)) {
2426 if (ret == 0)
2427 md_cluster_ops->metadata_update_cancel(mddev);
2428 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2429 BIT(MD_SB_CHANGE_DEVS) |
2430 BIT(MD_SB_CHANGE_CLEAN));
2431 return;
2432 }
2433 }
2434
2435 /* First make sure individual recovery_offsets are correct */
2436 rdev_for_each(rdev, mddev) {
2437 if (rdev->raid_disk >= 0 &&
2438 mddev->delta_disks >= 0 &&
2439 !test_bit(Journal, &rdev->flags) &&
2440 !test_bit(In_sync, &rdev->flags) &&
2441 mddev->curr_resync_completed > rdev->recovery_offset)
2442 rdev->recovery_offset = mddev->curr_resync_completed;
2443
2444 }
2445 if (!mddev->persistent) {
2446 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2447 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2448 if (!mddev->external) {
2449 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2450 rdev_for_each(rdev, mddev) {
2451 if (rdev->badblocks.changed) {
2452 rdev->badblocks.changed = 0;
2453 ack_all_badblocks(&rdev->badblocks);
2454 md_error(mddev, rdev);
2455 }
2456 clear_bit(Blocked, &rdev->flags);
2457 clear_bit(BlockedBadBlocks, &rdev->flags);
2458 wake_up(&rdev->blocked_wait);
2459 }
2460 }
2461 wake_up(&mddev->sb_wait);
2462 return;
2463 }
2464
2465 spin_lock(&mddev->lock);
2466
2467 mddev->utime = ktime_get_real_seconds();
2468
2469 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2470 force_change = 1;
2471 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2472 /* just a clean<-> dirty transition, possibly leave spares alone,
2473 * though if events isn't the right even/odd, we will have to do
2474 * spares after all
2475 */
2476 nospares = 1;
2477 if (force_change)
2478 nospares = 0;
2479 if (mddev->degraded)
2480 /* If the array is degraded, then skipping spares is both
2481 * dangerous and fairly pointless.
2482 * Dangerous because a device that was removed from the array
2483 * might have a event_count that still looks up-to-date,
2484 * so it can be re-added without a resync.
2485 * Pointless because if there are any spares to skip,
2486 * then a recovery will happen and soon that array won't
2487 * be degraded any more and the spare can go back to sleep then.
2488 */
2489 nospares = 0;
2490
2491 sync_req = mddev->in_sync;
2492
2493 /* If this is just a dirty<->clean transition, and the array is clean
2494 * and 'events' is odd, we can roll back to the previous clean state */
2495 if (nospares
2496 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2497 && mddev->can_decrease_events
2498 && mddev->events != 1) {
2499 mddev->events--;
2500 mddev->can_decrease_events = 0;
2501 } else {
2502 /* otherwise we have to go forward and ... */
2503 mddev->events ++;
2504 mddev->can_decrease_events = nospares;
2505 }
2506
2507 /*
2508 * This 64-bit counter should never wrap.
2509 * Either we are in around ~1 trillion A.C., assuming
2510 * 1 reboot per second, or we have a bug...
2511 */
2512 WARN_ON(mddev->events == 0);
2513
2514 rdev_for_each(rdev, mddev) {
2515 if (rdev->badblocks.changed)
2516 any_badblocks_changed++;
2517 if (test_bit(Faulty, &rdev->flags))
2518 set_bit(FaultRecorded, &rdev->flags);
2519 }
2520
2521 sync_sbs(mddev, nospares);
2522 spin_unlock(&mddev->lock);
2523
2524 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2525 mdname(mddev), mddev->in_sync);
2526
2527 if (mddev->queue)
2528 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2529 rewrite:
2530 bitmap_update_sb(mddev->bitmap);
2531 rdev_for_each(rdev, mddev) {
2532 char b[BDEVNAME_SIZE];
2533
2534 if (rdev->sb_loaded != 1)
2535 continue; /* no noise on spare devices */
2536
2537 if (!test_bit(Faulty, &rdev->flags)) {
2538 md_super_write(mddev,rdev,
2539 rdev->sb_start, rdev->sb_size,
2540 rdev->sb_page);
2541 pr_debug("md: (write) %s's sb offset: %llu\n",
2542 bdevname(rdev->bdev, b),
2543 (unsigned long long)rdev->sb_start);
2544 rdev->sb_events = mddev->events;
2545 if (rdev->badblocks.size) {
2546 md_super_write(mddev, rdev,
2547 rdev->badblocks.sector,
2548 rdev->badblocks.size << 9,
2549 rdev->bb_page);
2550 rdev->badblocks.size = 0;
2551 }
2552
2553 } else
2554 pr_debug("md: %s (skipping faulty)\n",
2555 bdevname(rdev->bdev, b));
2556
2557 if (mddev->level == LEVEL_MULTIPATH)
2558 /* only need to write one superblock... */
2559 break;
2560 }
2561 if (md_super_wait(mddev) < 0)
2562 goto rewrite;
2563 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2564
2565 if (mddev_is_clustered(mddev) && ret == 0)
2566 md_cluster_ops->metadata_update_finish(mddev);
2567
2568 if (mddev->in_sync != sync_req ||
2569 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2570 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2571 /* have to write it out again */
2572 goto repeat;
2573 wake_up(&mddev->sb_wait);
2574 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2575 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2576
2577 rdev_for_each(rdev, mddev) {
2578 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2579 clear_bit(Blocked, &rdev->flags);
2580
2581 if (any_badblocks_changed)
2582 ack_all_badblocks(&rdev->badblocks);
2583 clear_bit(BlockedBadBlocks, &rdev->flags);
2584 wake_up(&rdev->blocked_wait);
2585 }
2586 }
2587 EXPORT_SYMBOL(md_update_sb);
2588
2589 static int add_bound_rdev(struct md_rdev *rdev)
2590 {
2591 struct mddev *mddev = rdev->mddev;
2592 int err = 0;
2593 bool add_journal = test_bit(Journal, &rdev->flags);
2594
2595 if (!mddev->pers->hot_remove_disk || add_journal) {
2596 /* If there is hot_add_disk but no hot_remove_disk
2597 * then added disks for geometry changes,
2598 * and should be added immediately.
2599 */
2600 super_types[mddev->major_version].
2601 validate_super(mddev, rdev);
2602 if (add_journal)
2603 mddev_suspend(mddev);
2604 err = mddev->pers->hot_add_disk(mddev, rdev);
2605 if (add_journal)
2606 mddev_resume(mddev);
2607 if (err) {
2608 md_kick_rdev_from_array(rdev);
2609 return err;
2610 }
2611 }
2612 sysfs_notify_dirent_safe(rdev->sysfs_state);
2613
2614 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2615 if (mddev->degraded)
2616 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2617 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2618 md_new_event(mddev);
2619 md_wakeup_thread(mddev->thread);
2620 return 0;
2621 }
2622
2623 /* words written to sysfs files may, or may not, be \n terminated.
2624 * We want to accept with case. For this we use cmd_match.
2625 */
2626 static int cmd_match(const char *cmd, const char *str)
2627 {
2628 /* See if cmd, written into a sysfs file, matches
2629 * str. They must either be the same, or cmd can
2630 * have a trailing newline
2631 */
2632 while (*cmd && *str && *cmd == *str) {
2633 cmd++;
2634 str++;
2635 }
2636 if (*cmd == '\n')
2637 cmd++;
2638 if (*str || *cmd)
2639 return 0;
2640 return 1;
2641 }
2642
2643 struct rdev_sysfs_entry {
2644 struct attribute attr;
2645 ssize_t (*show)(struct md_rdev *, char *);
2646 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2647 };
2648
2649 static ssize_t
2650 state_show(struct md_rdev *rdev, char *page)
2651 {
2652 char *sep = ",";
2653 size_t len = 0;
2654 unsigned long flags = ACCESS_ONCE(rdev->flags);
2655
2656 if (test_bit(Faulty, &flags) ||
2657 (!test_bit(ExternalBbl, &flags) &&
2658 rdev->badblocks.unacked_exist))
2659 len += sprintf(page+len, "faulty%s", sep);
2660 if (test_bit(In_sync, &flags))
2661 len += sprintf(page+len, "in_sync%s", sep);
2662 if (test_bit(Journal, &flags))
2663 len += sprintf(page+len, "journal%s", sep);
2664 if (test_bit(WriteMostly, &flags))
2665 len += sprintf(page+len, "write_mostly%s", sep);
2666 if (test_bit(Blocked, &flags) ||
2667 (rdev->badblocks.unacked_exist
2668 && !test_bit(Faulty, &flags)))
2669 len += sprintf(page+len, "blocked%s", sep);
2670 if (!test_bit(Faulty, &flags) &&
2671 !test_bit(Journal, &flags) &&
2672 !test_bit(In_sync, &flags))
2673 len += sprintf(page+len, "spare%s", sep);
2674 if (test_bit(WriteErrorSeen, &flags))
2675 len += sprintf(page+len, "write_error%s", sep);
2676 if (test_bit(WantReplacement, &flags))
2677 len += sprintf(page+len, "want_replacement%s", sep);
2678 if (test_bit(Replacement, &flags))
2679 len += sprintf(page+len, "replacement%s", sep);
2680 if (test_bit(ExternalBbl, &flags))
2681 len += sprintf(page+len, "external_bbl%s", sep);
2682 if (test_bit(FailFast, &flags))
2683 len += sprintf(page+len, "failfast%s", sep);
2684
2685 if (len)
2686 len -= strlen(sep);
2687
2688 return len+sprintf(page+len, "\n");
2689 }
2690
2691 static ssize_t
2692 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2693 {
2694 /* can write
2695 * faulty - simulates an error
2696 * remove - disconnects the device
2697 * writemostly - sets write_mostly
2698 * -writemostly - clears write_mostly
2699 * blocked - sets the Blocked flags
2700 * -blocked - clears the Blocked and possibly simulates an error
2701 * insync - sets Insync providing device isn't active
2702 * -insync - clear Insync for a device with a slot assigned,
2703 * so that it gets rebuilt based on bitmap
2704 * write_error - sets WriteErrorSeen
2705 * -write_error - clears WriteErrorSeen
2706 * {,-}failfast - set/clear FailFast
2707 */
2708 int err = -EINVAL;
2709 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2710 md_error(rdev->mddev, rdev);
2711 if (test_bit(Faulty, &rdev->flags))
2712 err = 0;
2713 else
2714 err = -EBUSY;
2715 } else if (cmd_match(buf, "remove")) {
2716 if (rdev->mddev->pers) {
2717 clear_bit(Blocked, &rdev->flags);
2718 remove_and_add_spares(rdev->mddev, rdev);
2719 }
2720 if (rdev->raid_disk >= 0)
2721 err = -EBUSY;
2722 else {
2723 struct mddev *mddev = rdev->mddev;
2724 err = 0;
2725 if (mddev_is_clustered(mddev))
2726 err = md_cluster_ops->remove_disk(mddev, rdev);
2727
2728 if (err == 0) {
2729 md_kick_rdev_from_array(rdev);
2730 if (mddev->pers) {
2731 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2732 md_wakeup_thread(mddev->thread);
2733 }
2734 md_new_event(mddev);
2735 }
2736 }
2737 } else if (cmd_match(buf, "writemostly")) {
2738 set_bit(WriteMostly, &rdev->flags);
2739 err = 0;
2740 } else if (cmd_match(buf, "-writemostly")) {
2741 clear_bit(WriteMostly, &rdev->flags);
2742 err = 0;
2743 } else if (cmd_match(buf, "blocked")) {
2744 set_bit(Blocked, &rdev->flags);
2745 err = 0;
2746 } else if (cmd_match(buf, "-blocked")) {
2747 if (!test_bit(Faulty, &rdev->flags) &&
2748 !test_bit(ExternalBbl, &rdev->flags) &&
2749 rdev->badblocks.unacked_exist) {
2750 /* metadata handler doesn't understand badblocks,
2751 * so we need to fail the device
2752 */
2753 md_error(rdev->mddev, rdev);
2754 }
2755 clear_bit(Blocked, &rdev->flags);
2756 clear_bit(BlockedBadBlocks, &rdev->flags);
2757 wake_up(&rdev->blocked_wait);
2758 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2759 md_wakeup_thread(rdev->mddev->thread);
2760
2761 err = 0;
2762 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2763 set_bit(In_sync, &rdev->flags);
2764 err = 0;
2765 } else if (cmd_match(buf, "failfast")) {
2766 set_bit(FailFast, &rdev->flags);
2767 err = 0;
2768 } else if (cmd_match(buf, "-failfast")) {
2769 clear_bit(FailFast, &rdev->flags);
2770 err = 0;
2771 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2772 !test_bit(Journal, &rdev->flags)) {
2773 if (rdev->mddev->pers == NULL) {
2774 clear_bit(In_sync, &rdev->flags);
2775 rdev->saved_raid_disk = rdev->raid_disk;
2776 rdev->raid_disk = -1;
2777 err = 0;
2778 }
2779 } else if (cmd_match(buf, "write_error")) {
2780 set_bit(WriteErrorSeen, &rdev->flags);
2781 err = 0;
2782 } else if (cmd_match(buf, "-write_error")) {
2783 clear_bit(WriteErrorSeen, &rdev->flags);
2784 err = 0;
2785 } else if (cmd_match(buf, "want_replacement")) {
2786 /* Any non-spare device that is not a replacement can
2787 * become want_replacement at any time, but we then need to
2788 * check if recovery is needed.
2789 */
2790 if (rdev->raid_disk >= 0 &&
2791 !test_bit(Journal, &rdev->flags) &&
2792 !test_bit(Replacement, &rdev->flags))
2793 set_bit(WantReplacement, &rdev->flags);
2794 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2795 md_wakeup_thread(rdev->mddev->thread);
2796 err = 0;
2797 } else if (cmd_match(buf, "-want_replacement")) {
2798 /* Clearing 'want_replacement' is always allowed.
2799 * Once replacements starts it is too late though.
2800 */
2801 err = 0;
2802 clear_bit(WantReplacement, &rdev->flags);
2803 } else if (cmd_match(buf, "replacement")) {
2804 /* Can only set a device as a replacement when array has not
2805 * yet been started. Once running, replacement is automatic
2806 * from spares, or by assigning 'slot'.
2807 */
2808 if (rdev->mddev->pers)
2809 err = -EBUSY;
2810 else {
2811 set_bit(Replacement, &rdev->flags);
2812 err = 0;
2813 }
2814 } else if (cmd_match(buf, "-replacement")) {
2815 /* Similarly, can only clear Replacement before start */
2816 if (rdev->mddev->pers)
2817 err = -EBUSY;
2818 else {
2819 clear_bit(Replacement, &rdev->flags);
2820 err = 0;
2821 }
2822 } else if (cmd_match(buf, "re-add")) {
2823 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2824 /* clear_bit is performed _after_ all the devices
2825 * have their local Faulty bit cleared. If any writes
2826 * happen in the meantime in the local node, they
2827 * will land in the local bitmap, which will be synced
2828 * by this node eventually
2829 */
2830 if (!mddev_is_clustered(rdev->mddev) ||
2831 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2832 clear_bit(Faulty, &rdev->flags);
2833 err = add_bound_rdev(rdev);
2834 }
2835 } else
2836 err = -EBUSY;
2837 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2838 set_bit(ExternalBbl, &rdev->flags);
2839 rdev->badblocks.shift = 0;
2840 err = 0;
2841 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2842 clear_bit(ExternalBbl, &rdev->flags);
2843 err = 0;
2844 }
2845 if (!err)
2846 sysfs_notify_dirent_safe(rdev->sysfs_state);
2847 return err ? err : len;
2848 }
2849 static struct rdev_sysfs_entry rdev_state =
2850 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2851
2852 static ssize_t
2853 errors_show(struct md_rdev *rdev, char *page)
2854 {
2855 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2856 }
2857
2858 static ssize_t
2859 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2860 {
2861 unsigned int n;
2862 int rv;
2863
2864 rv = kstrtouint(buf, 10, &n);
2865 if (rv < 0)
2866 return rv;
2867 atomic_set(&rdev->corrected_errors, n);
2868 return len;
2869 }
2870 static struct rdev_sysfs_entry rdev_errors =
2871 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2872
2873 static ssize_t
2874 slot_show(struct md_rdev *rdev, char *page)
2875 {
2876 if (test_bit(Journal, &rdev->flags))
2877 return sprintf(page, "journal\n");
2878 else if (rdev->raid_disk < 0)
2879 return sprintf(page, "none\n");
2880 else
2881 return sprintf(page, "%d\n", rdev->raid_disk);
2882 }
2883
2884 static ssize_t
2885 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2886 {
2887 int slot;
2888 int err;
2889
2890 if (test_bit(Journal, &rdev->flags))
2891 return -EBUSY;
2892 if (strncmp(buf, "none", 4)==0)
2893 slot = -1;
2894 else {
2895 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2896 if (err < 0)
2897 return err;
2898 }
2899 if (rdev->mddev->pers && slot == -1) {
2900 /* Setting 'slot' on an active array requires also
2901 * updating the 'rd%d' link, and communicating
2902 * with the personality with ->hot_*_disk.
2903 * For now we only support removing
2904 * failed/spare devices. This normally happens automatically,
2905 * but not when the metadata is externally managed.
2906 */
2907 if (rdev->raid_disk == -1)
2908 return -EEXIST;
2909 /* personality does all needed checks */
2910 if (rdev->mddev->pers->hot_remove_disk == NULL)
2911 return -EINVAL;
2912 clear_bit(Blocked, &rdev->flags);
2913 remove_and_add_spares(rdev->mddev, rdev);
2914 if (rdev->raid_disk >= 0)
2915 return -EBUSY;
2916 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2917 md_wakeup_thread(rdev->mddev->thread);
2918 } else if (rdev->mddev->pers) {
2919 /* Activating a spare .. or possibly reactivating
2920 * if we ever get bitmaps working here.
2921 */
2922 int err;
2923
2924 if (rdev->raid_disk != -1)
2925 return -EBUSY;
2926
2927 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2928 return -EBUSY;
2929
2930 if (rdev->mddev->pers->hot_add_disk == NULL)
2931 return -EINVAL;
2932
2933 if (slot >= rdev->mddev->raid_disks &&
2934 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2935 return -ENOSPC;
2936
2937 rdev->raid_disk = slot;
2938 if (test_bit(In_sync, &rdev->flags))
2939 rdev->saved_raid_disk = slot;
2940 else
2941 rdev->saved_raid_disk = -1;
2942 clear_bit(In_sync, &rdev->flags);
2943 clear_bit(Bitmap_sync, &rdev->flags);
2944 err = rdev->mddev->pers->
2945 hot_add_disk(rdev->mddev, rdev);
2946 if (err) {
2947 rdev->raid_disk = -1;
2948 return err;
2949 } else
2950 sysfs_notify_dirent_safe(rdev->sysfs_state);
2951 if (sysfs_link_rdev(rdev->mddev, rdev))
2952 /* failure here is OK */;
2953 /* don't wakeup anyone, leave that to userspace. */
2954 } else {
2955 if (slot >= rdev->mddev->raid_disks &&
2956 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2957 return -ENOSPC;
2958 rdev->raid_disk = slot;
2959 /* assume it is working */
2960 clear_bit(Faulty, &rdev->flags);
2961 clear_bit(WriteMostly, &rdev->flags);
2962 set_bit(In_sync, &rdev->flags);
2963 sysfs_notify_dirent_safe(rdev->sysfs_state);
2964 }
2965 return len;
2966 }
2967
2968 static struct rdev_sysfs_entry rdev_slot =
2969 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2970
2971 static ssize_t
2972 offset_show(struct md_rdev *rdev, char *page)
2973 {
2974 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2975 }
2976
2977 static ssize_t
2978 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2979 {
2980 unsigned long long offset;
2981 if (kstrtoull(buf, 10, &offset) < 0)
2982 return -EINVAL;
2983 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2984 return -EBUSY;
2985 if (rdev->sectors && rdev->mddev->external)
2986 /* Must set offset before size, so overlap checks
2987 * can be sane */
2988 return -EBUSY;
2989 rdev->data_offset = offset;
2990 rdev->new_data_offset = offset;
2991 return len;
2992 }
2993
2994 static struct rdev_sysfs_entry rdev_offset =
2995 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2996
2997 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2998 {
2999 return sprintf(page, "%llu\n",
3000 (unsigned long long)rdev->new_data_offset);
3001 }
3002
3003 static ssize_t new_offset_store(struct md_rdev *rdev,
3004 const char *buf, size_t len)
3005 {
3006 unsigned long long new_offset;
3007 struct mddev *mddev = rdev->mddev;
3008
3009 if (kstrtoull(buf, 10, &new_offset) < 0)
3010 return -EINVAL;
3011
3012 if (mddev->sync_thread ||
3013 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3014 return -EBUSY;
3015 if (new_offset == rdev->data_offset)
3016 /* reset is always permitted */
3017 ;
3018 else if (new_offset > rdev->data_offset) {
3019 /* must not push array size beyond rdev_sectors */
3020 if (new_offset - rdev->data_offset
3021 + mddev->dev_sectors > rdev->sectors)
3022 return -E2BIG;
3023 }
3024 /* Metadata worries about other space details. */
3025
3026 /* decreasing the offset is inconsistent with a backwards
3027 * reshape.
3028 */
3029 if (new_offset < rdev->data_offset &&
3030 mddev->reshape_backwards)
3031 return -EINVAL;
3032 /* Increasing offset is inconsistent with forwards
3033 * reshape. reshape_direction should be set to
3034 * 'backwards' first.
3035 */
3036 if (new_offset > rdev->data_offset &&
3037 !mddev->reshape_backwards)
3038 return -EINVAL;
3039
3040 if (mddev->pers && mddev->persistent &&
3041 !super_types[mddev->major_version]
3042 .allow_new_offset(rdev, new_offset))
3043 return -E2BIG;
3044 rdev->new_data_offset = new_offset;
3045 if (new_offset > rdev->data_offset)
3046 mddev->reshape_backwards = 1;
3047 else if (new_offset < rdev->data_offset)
3048 mddev->reshape_backwards = 0;
3049
3050 return len;
3051 }
3052 static struct rdev_sysfs_entry rdev_new_offset =
3053 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3054
3055 static ssize_t
3056 rdev_size_show(struct md_rdev *rdev, char *page)
3057 {
3058 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3059 }
3060
3061 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3062 {
3063 /* check if two start/length pairs overlap */
3064 if (s1+l1 <= s2)
3065 return 0;
3066 if (s2+l2 <= s1)
3067 return 0;
3068 return 1;
3069 }
3070
3071 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3072 {
3073 unsigned long long blocks;
3074 sector_t new;
3075
3076 if (kstrtoull(buf, 10, &blocks) < 0)
3077 return -EINVAL;
3078
3079 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3080 return -EINVAL; /* sector conversion overflow */
3081
3082 new = blocks * 2;
3083 if (new != blocks * 2)
3084 return -EINVAL; /* unsigned long long to sector_t overflow */
3085
3086 *sectors = new;
3087 return 0;
3088 }
3089
3090 static ssize_t
3091 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3092 {
3093 struct mddev *my_mddev = rdev->mddev;
3094 sector_t oldsectors = rdev->sectors;
3095 sector_t sectors;
3096
3097 if (test_bit(Journal, &rdev->flags))
3098 return -EBUSY;
3099 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3100 return -EINVAL;
3101 if (rdev->data_offset != rdev->new_data_offset)
3102 return -EINVAL; /* too confusing */
3103 if (my_mddev->pers && rdev->raid_disk >= 0) {
3104 if (my_mddev->persistent) {
3105 sectors = super_types[my_mddev->major_version].
3106 rdev_size_change(rdev, sectors);
3107 if (!sectors)
3108 return -EBUSY;
3109 } else if (!sectors)
3110 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3111 rdev->data_offset;
3112 if (!my_mddev->pers->resize)
3113 /* Cannot change size for RAID0 or Linear etc */
3114 return -EINVAL;
3115 }
3116 if (sectors < my_mddev->dev_sectors)
3117 return -EINVAL; /* component must fit device */
3118
3119 rdev->sectors = sectors;
3120 if (sectors > oldsectors && my_mddev->external) {
3121 /* Need to check that all other rdevs with the same
3122 * ->bdev do not overlap. 'rcu' is sufficient to walk
3123 * the rdev lists safely.
3124 * This check does not provide a hard guarantee, it
3125 * just helps avoid dangerous mistakes.
3126 */
3127 struct mddev *mddev;
3128 int overlap = 0;
3129 struct list_head *tmp;
3130
3131 rcu_read_lock();
3132 for_each_mddev(mddev, tmp) {
3133 struct md_rdev *rdev2;
3134
3135 rdev_for_each(rdev2, mddev)
3136 if (rdev->bdev == rdev2->bdev &&
3137 rdev != rdev2 &&
3138 overlaps(rdev->data_offset, rdev->sectors,
3139 rdev2->data_offset,
3140 rdev2->sectors)) {
3141 overlap = 1;
3142 break;
3143 }
3144 if (overlap) {
3145 mddev_put(mddev);
3146 break;
3147 }
3148 }
3149 rcu_read_unlock();
3150 if (overlap) {
3151 /* Someone else could have slipped in a size
3152 * change here, but doing so is just silly.
3153 * We put oldsectors back because we *know* it is
3154 * safe, and trust userspace not to race with
3155 * itself
3156 */
3157 rdev->sectors = oldsectors;
3158 return -EBUSY;
3159 }
3160 }
3161 return len;
3162 }
3163
3164 static struct rdev_sysfs_entry rdev_size =
3165 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3166
3167 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3168 {
3169 unsigned long long recovery_start = rdev->recovery_offset;
3170
3171 if (test_bit(In_sync, &rdev->flags) ||
3172 recovery_start == MaxSector)
3173 return sprintf(page, "none\n");
3174
3175 return sprintf(page, "%llu\n", recovery_start);
3176 }
3177
3178 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3179 {
3180 unsigned long long recovery_start;
3181
3182 if (cmd_match(buf, "none"))
3183 recovery_start = MaxSector;
3184 else if (kstrtoull(buf, 10, &recovery_start))
3185 return -EINVAL;
3186
3187 if (rdev->mddev->pers &&
3188 rdev->raid_disk >= 0)
3189 return -EBUSY;
3190
3191 rdev->recovery_offset = recovery_start;
3192 if (recovery_start == MaxSector)
3193 set_bit(In_sync, &rdev->flags);
3194 else
3195 clear_bit(In_sync, &rdev->flags);
3196 return len;
3197 }
3198
3199 static struct rdev_sysfs_entry rdev_recovery_start =
3200 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3201
3202 /* sysfs access to bad-blocks list.
3203 * We present two files.
3204 * 'bad-blocks' lists sector numbers and lengths of ranges that
3205 * are recorded as bad. The list is truncated to fit within
3206 * the one-page limit of sysfs.
3207 * Writing "sector length" to this file adds an acknowledged
3208 * bad block list.
3209 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3210 * been acknowledged. Writing to this file adds bad blocks
3211 * without acknowledging them. This is largely for testing.
3212 */
3213 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3214 {
3215 return badblocks_show(&rdev->badblocks, page, 0);
3216 }
3217 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3218 {
3219 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3220 /* Maybe that ack was all we needed */
3221 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3222 wake_up(&rdev->blocked_wait);
3223 return rv;
3224 }
3225 static struct rdev_sysfs_entry rdev_bad_blocks =
3226 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3227
3228 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3229 {
3230 return badblocks_show(&rdev->badblocks, page, 1);
3231 }
3232 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3233 {
3234 return badblocks_store(&rdev->badblocks, page, len, 1);
3235 }
3236 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3237 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3238
3239 static ssize_t
3240 ppl_sector_show(struct md_rdev *rdev, char *page)
3241 {
3242 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3243 }
3244
3245 static ssize_t
3246 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3247 {
3248 unsigned long long sector;
3249
3250 if (kstrtoull(buf, 10, &sector) < 0)
3251 return -EINVAL;
3252 if (sector != (sector_t)sector)
3253 return -EINVAL;
3254
3255 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3256 rdev->raid_disk >= 0)
3257 return -EBUSY;
3258
3259 if (rdev->mddev->persistent) {
3260 if (rdev->mddev->major_version == 0)
3261 return -EINVAL;
3262 if ((sector > rdev->sb_start &&
3263 sector - rdev->sb_start > S16_MAX) ||
3264 (sector < rdev->sb_start &&
3265 rdev->sb_start - sector > -S16_MIN))
3266 return -EINVAL;
3267 rdev->ppl.offset = sector - rdev->sb_start;
3268 } else if (!rdev->mddev->external) {
3269 return -EBUSY;
3270 }
3271 rdev->ppl.sector = sector;
3272 return len;
3273 }
3274
3275 static struct rdev_sysfs_entry rdev_ppl_sector =
3276 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3277
3278 static ssize_t
3279 ppl_size_show(struct md_rdev *rdev, char *page)
3280 {
3281 return sprintf(page, "%u\n", rdev->ppl.size);
3282 }
3283
3284 static ssize_t
3285 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3286 {
3287 unsigned int size;
3288
3289 if (kstrtouint(buf, 10, &size) < 0)
3290 return -EINVAL;
3291
3292 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3293 rdev->raid_disk >= 0)
3294 return -EBUSY;
3295
3296 if (rdev->mddev->persistent) {
3297 if (rdev->mddev->major_version == 0)
3298 return -EINVAL;
3299 if (size > U16_MAX)
3300 return -EINVAL;
3301 } else if (!rdev->mddev->external) {
3302 return -EBUSY;
3303 }
3304 rdev->ppl.size = size;
3305 return len;
3306 }
3307
3308 static struct rdev_sysfs_entry rdev_ppl_size =
3309 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3310
3311 static struct attribute *rdev_default_attrs[] = {
3312 &rdev_state.attr,
3313 &rdev_errors.attr,
3314 &rdev_slot.attr,
3315 &rdev_offset.attr,
3316 &rdev_new_offset.attr,
3317 &rdev_size.attr,
3318 &rdev_recovery_start.attr,
3319 &rdev_bad_blocks.attr,
3320 &rdev_unack_bad_blocks.attr,
3321 &rdev_ppl_sector.attr,
3322 &rdev_ppl_size.attr,
3323 NULL,
3324 };
3325 static ssize_t
3326 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3327 {
3328 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3329 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3330
3331 if (!entry->show)
3332 return -EIO;
3333 if (!rdev->mddev)
3334 return -EBUSY;
3335 return entry->show(rdev, page);
3336 }
3337
3338 static ssize_t
3339 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3340 const char *page, size_t length)
3341 {
3342 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3343 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3344 ssize_t rv;
3345 struct mddev *mddev = rdev->mddev;
3346
3347 if (!entry->store)
3348 return -EIO;
3349 if (!capable(CAP_SYS_ADMIN))
3350 return -EACCES;
3351 rv = mddev ? mddev_lock(mddev): -EBUSY;
3352 if (!rv) {
3353 if (rdev->mddev == NULL)
3354 rv = -EBUSY;
3355 else
3356 rv = entry->store(rdev, page, length);
3357 mddev_unlock(mddev);
3358 }
3359 return rv;
3360 }
3361
3362 static void rdev_free(struct kobject *ko)
3363 {
3364 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3365 kfree(rdev);
3366 }
3367 static const struct sysfs_ops rdev_sysfs_ops = {
3368 .show = rdev_attr_show,
3369 .store = rdev_attr_store,
3370 };
3371 static struct kobj_type rdev_ktype = {
3372 .release = rdev_free,
3373 .sysfs_ops = &rdev_sysfs_ops,
3374 .default_attrs = rdev_default_attrs,
3375 };
3376
3377 int md_rdev_init(struct md_rdev *rdev)
3378 {
3379 rdev->desc_nr = -1;
3380 rdev->saved_raid_disk = -1;
3381 rdev->raid_disk = -1;
3382 rdev->flags = 0;
3383 rdev->data_offset = 0;
3384 rdev->new_data_offset = 0;
3385 rdev->sb_events = 0;
3386 rdev->last_read_error = 0;
3387 rdev->sb_loaded = 0;
3388 rdev->bb_page = NULL;
3389 atomic_set(&rdev->nr_pending, 0);
3390 atomic_set(&rdev->read_errors, 0);
3391 atomic_set(&rdev->corrected_errors, 0);
3392
3393 INIT_LIST_HEAD(&rdev->same_set);
3394 init_waitqueue_head(&rdev->blocked_wait);
3395
3396 /* Add space to store bad block list.
3397 * This reserves the space even on arrays where it cannot
3398 * be used - I wonder if that matters
3399 */
3400 return badblocks_init(&rdev->badblocks, 0);
3401 }
3402 EXPORT_SYMBOL_GPL(md_rdev_init);
3403 /*
3404 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3405 *
3406 * mark the device faulty if:
3407 *
3408 * - the device is nonexistent (zero size)
3409 * - the device has no valid superblock
3410 *
3411 * a faulty rdev _never_ has rdev->sb set.
3412 */
3413 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3414 {
3415 char b[BDEVNAME_SIZE];
3416 int err;
3417 struct md_rdev *rdev;
3418 sector_t size;
3419
3420 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3421 if (!rdev)
3422 return ERR_PTR(-ENOMEM);
3423
3424 err = md_rdev_init(rdev);
3425 if (err)
3426 goto abort_free;
3427 err = alloc_disk_sb(rdev);
3428 if (err)
3429 goto abort_free;
3430
3431 err = lock_rdev(rdev, newdev, super_format == -2);
3432 if (err)
3433 goto abort_free;
3434
3435 kobject_init(&rdev->kobj, &rdev_ktype);
3436
3437 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3438 if (!size) {
3439 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3440 bdevname(rdev->bdev,b));
3441 err = -EINVAL;
3442 goto abort_free;
3443 }
3444
3445 if (super_format >= 0) {
3446 err = super_types[super_format].
3447 load_super(rdev, NULL, super_minor);
3448 if (err == -EINVAL) {
3449 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3450 bdevname(rdev->bdev,b),
3451 super_format, super_minor);
3452 goto abort_free;
3453 }
3454 if (err < 0) {
3455 pr_warn("md: could not read %s's sb, not importing!\n",
3456 bdevname(rdev->bdev,b));
3457 goto abort_free;
3458 }
3459 }
3460
3461 return rdev;
3462
3463 abort_free:
3464 if (rdev->bdev)
3465 unlock_rdev(rdev);
3466 md_rdev_clear(rdev);
3467 kfree(rdev);
3468 return ERR_PTR(err);
3469 }
3470
3471 /*
3472 * Check a full RAID array for plausibility
3473 */
3474
3475 static void analyze_sbs(struct mddev *mddev)
3476 {
3477 int i;
3478 struct md_rdev *rdev, *freshest, *tmp;
3479 char b[BDEVNAME_SIZE];
3480
3481 freshest = NULL;
3482 rdev_for_each_safe(rdev, tmp, mddev)
3483 switch (super_types[mddev->major_version].
3484 load_super(rdev, freshest, mddev->minor_version)) {
3485 case 1:
3486 freshest = rdev;
3487 break;
3488 case 0:
3489 break;
3490 default:
3491 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3492 bdevname(rdev->bdev,b));
3493 md_kick_rdev_from_array(rdev);
3494 }
3495
3496 super_types[mddev->major_version].
3497 validate_super(mddev, freshest);
3498
3499 i = 0;
3500 rdev_for_each_safe(rdev, tmp, mddev) {
3501 if (mddev->max_disks &&
3502 (rdev->desc_nr >= mddev->max_disks ||
3503 i > mddev->max_disks)) {
3504 pr_warn("md: %s: %s: only %d devices permitted\n",
3505 mdname(mddev), bdevname(rdev->bdev, b),
3506 mddev->max_disks);
3507 md_kick_rdev_from_array(rdev);
3508 continue;
3509 }
3510 if (rdev != freshest) {
3511 if (super_types[mddev->major_version].
3512 validate_super(mddev, rdev)) {
3513 pr_warn("md: kicking non-fresh %s from array!\n",
3514 bdevname(rdev->bdev,b));
3515 md_kick_rdev_from_array(rdev);
3516 continue;
3517 }
3518 }
3519 if (mddev->level == LEVEL_MULTIPATH) {
3520 rdev->desc_nr = i++;
3521 rdev->raid_disk = rdev->desc_nr;
3522 set_bit(In_sync, &rdev->flags);
3523 } else if (rdev->raid_disk >=
3524 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3525 !test_bit(Journal, &rdev->flags)) {
3526 rdev->raid_disk = -1;
3527 clear_bit(In_sync, &rdev->flags);
3528 }
3529 }
3530 }
3531
3532 /* Read a fixed-point number.
3533 * Numbers in sysfs attributes should be in "standard" units where
3534 * possible, so time should be in seconds.
3535 * However we internally use a a much smaller unit such as
3536 * milliseconds or jiffies.
3537 * This function takes a decimal number with a possible fractional
3538 * component, and produces an integer which is the result of
3539 * multiplying that number by 10^'scale'.
3540 * all without any floating-point arithmetic.
3541 */
3542 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3543 {
3544 unsigned long result = 0;
3545 long decimals = -1;
3546 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3547 if (*cp == '.')
3548 decimals = 0;
3549 else if (decimals < scale) {
3550 unsigned int value;
3551 value = *cp - '0';
3552 result = result * 10 + value;
3553 if (decimals >= 0)
3554 decimals++;
3555 }
3556 cp++;
3557 }
3558 if (*cp == '\n')
3559 cp++;
3560 if (*cp)
3561 return -EINVAL;
3562 if (decimals < 0)
3563 decimals = 0;
3564 while (decimals < scale) {
3565 result *= 10;
3566 decimals ++;
3567 }
3568 *res = result;
3569 return 0;
3570 }
3571
3572 static ssize_t
3573 safe_delay_show(struct mddev *mddev, char *page)
3574 {
3575 int msec = (mddev->safemode_delay*1000)/HZ;
3576 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3577 }
3578 static ssize_t
3579 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3580 {
3581 unsigned long msec;
3582
3583 if (mddev_is_clustered(mddev)) {
3584 pr_warn("md: Safemode is disabled for clustered mode\n");
3585 return -EINVAL;
3586 }
3587
3588 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3589 return -EINVAL;
3590 if (msec == 0)
3591 mddev->safemode_delay = 0;
3592 else {
3593 unsigned long old_delay = mddev->safemode_delay;
3594 unsigned long new_delay = (msec*HZ)/1000;
3595
3596 if (new_delay == 0)
3597 new_delay = 1;
3598 mddev->safemode_delay = new_delay;
3599 if (new_delay < old_delay || old_delay == 0)
3600 mod_timer(&mddev->safemode_timer, jiffies+1);
3601 }
3602 return len;
3603 }
3604 static struct md_sysfs_entry md_safe_delay =
3605 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3606
3607 static ssize_t
3608 level_show(struct mddev *mddev, char *page)
3609 {
3610 struct md_personality *p;
3611 int ret;
3612 spin_lock(&mddev->lock);
3613 p = mddev->pers;
3614 if (p)
3615 ret = sprintf(page, "%s\n", p->name);
3616 else if (mddev->clevel[0])
3617 ret = sprintf(page, "%s\n", mddev->clevel);
3618 else if (mddev->level != LEVEL_NONE)
3619 ret = sprintf(page, "%d\n", mddev->level);
3620 else
3621 ret = 0;
3622 spin_unlock(&mddev->lock);
3623 return ret;
3624 }
3625
3626 static ssize_t
3627 level_store(struct mddev *mddev, const char *buf, size_t len)
3628 {
3629 char clevel[16];
3630 ssize_t rv;
3631 size_t slen = len;
3632 struct md_personality *pers, *oldpers;
3633 long level;
3634 void *priv, *oldpriv;
3635 struct md_rdev *rdev;
3636
3637 if (slen == 0 || slen >= sizeof(clevel))
3638 return -EINVAL;
3639
3640 rv = mddev_lock(mddev);
3641 if (rv)
3642 return rv;
3643
3644 if (mddev->pers == NULL) {
3645 strncpy(mddev->clevel, buf, slen);
3646 if (mddev->clevel[slen-1] == '\n')
3647 slen--;
3648 mddev->clevel[slen] = 0;
3649 mddev->level = LEVEL_NONE;
3650 rv = len;
3651 goto out_unlock;
3652 }
3653 rv = -EROFS;
3654 if (mddev->ro)
3655 goto out_unlock;
3656
3657 /* request to change the personality. Need to ensure:
3658 * - array is not engaged in resync/recovery/reshape
3659 * - old personality can be suspended
3660 * - new personality will access other array.
3661 */
3662
3663 rv = -EBUSY;
3664 if (mddev->sync_thread ||
3665 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3666 mddev->reshape_position != MaxSector ||
3667 mddev->sysfs_active)
3668 goto out_unlock;
3669
3670 rv = -EINVAL;
3671 if (!mddev->pers->quiesce) {
3672 pr_warn("md: %s: %s does not support online personality change\n",
3673 mdname(mddev), mddev->pers->name);
3674 goto out_unlock;
3675 }
3676
3677 /* Now find the new personality */
3678 strncpy(clevel, buf, slen);
3679 if (clevel[slen-1] == '\n')
3680 slen--;
3681 clevel[slen] = 0;
3682 if (kstrtol(clevel, 10, &level))
3683 level = LEVEL_NONE;
3684
3685 if (request_module("md-%s", clevel) != 0)
3686 request_module("md-level-%s", clevel);
3687 spin_lock(&pers_lock);
3688 pers = find_pers(level, clevel);
3689 if (!pers || !try_module_get(pers->owner)) {
3690 spin_unlock(&pers_lock);
3691 pr_warn("md: personality %s not loaded\n", clevel);
3692 rv = -EINVAL;
3693 goto out_unlock;
3694 }
3695 spin_unlock(&pers_lock);
3696
3697 if (pers == mddev->pers) {
3698 /* Nothing to do! */
3699 module_put(pers->owner);
3700 rv = len;
3701 goto out_unlock;
3702 }
3703 if (!pers->takeover) {
3704 module_put(pers->owner);
3705 pr_warn("md: %s: %s does not support personality takeover\n",
3706 mdname(mddev), clevel);
3707 rv = -EINVAL;
3708 goto out_unlock;
3709 }
3710
3711 rdev_for_each(rdev, mddev)
3712 rdev->new_raid_disk = rdev->raid_disk;
3713
3714 /* ->takeover must set new_* and/or delta_disks
3715 * if it succeeds, and may set them when it fails.
3716 */
3717 priv = pers->takeover(mddev);
3718 if (IS_ERR(priv)) {
3719 mddev->new_level = mddev->level;
3720 mddev->new_layout = mddev->layout;
3721 mddev->new_chunk_sectors = mddev->chunk_sectors;
3722 mddev->raid_disks -= mddev->delta_disks;
3723 mddev->delta_disks = 0;
3724 mddev->reshape_backwards = 0;
3725 module_put(pers->owner);
3726 pr_warn("md: %s: %s would not accept array\n",
3727 mdname(mddev), clevel);
3728 rv = PTR_ERR(priv);
3729 goto out_unlock;
3730 }
3731
3732 /* Looks like we have a winner */
3733 mddev_suspend(mddev);
3734 mddev_detach(mddev);
3735
3736 spin_lock(&mddev->lock);
3737 oldpers = mddev->pers;
3738 oldpriv = mddev->private;
3739 mddev->pers = pers;
3740 mddev->private = priv;
3741 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3742 mddev->level = mddev->new_level;
3743 mddev->layout = mddev->new_layout;
3744 mddev->chunk_sectors = mddev->new_chunk_sectors;
3745 mddev->delta_disks = 0;
3746 mddev->reshape_backwards = 0;
3747 mddev->degraded = 0;
3748 spin_unlock(&mddev->lock);
3749
3750 if (oldpers->sync_request == NULL &&
3751 mddev->external) {
3752 /* We are converting from a no-redundancy array
3753 * to a redundancy array and metadata is managed
3754 * externally so we need to be sure that writes
3755 * won't block due to a need to transition
3756 * clean->dirty
3757 * until external management is started.
3758 */
3759 mddev->in_sync = 0;
3760 mddev->safemode_delay = 0;
3761 mddev->safemode = 0;
3762 }
3763
3764 oldpers->free(mddev, oldpriv);
3765
3766 if (oldpers->sync_request == NULL &&
3767 pers->sync_request != NULL) {
3768 /* need to add the md_redundancy_group */
3769 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3770 pr_warn("md: cannot register extra attributes for %s\n",
3771 mdname(mddev));
3772 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3773 }
3774 if (oldpers->sync_request != NULL &&
3775 pers->sync_request == NULL) {
3776 /* need to remove the md_redundancy_group */
3777 if (mddev->to_remove == NULL)
3778 mddev->to_remove = &md_redundancy_group;
3779 }
3780
3781 module_put(oldpers->owner);
3782
3783 rdev_for_each(rdev, mddev) {
3784 if (rdev->raid_disk < 0)
3785 continue;
3786 if (rdev->new_raid_disk >= mddev->raid_disks)
3787 rdev->new_raid_disk = -1;
3788 if (rdev->new_raid_disk == rdev->raid_disk)
3789 continue;
3790 sysfs_unlink_rdev(mddev, rdev);
3791 }
3792 rdev_for_each(rdev, mddev) {
3793 if (rdev->raid_disk < 0)
3794 continue;
3795 if (rdev->new_raid_disk == rdev->raid_disk)
3796 continue;
3797 rdev->raid_disk = rdev->new_raid_disk;
3798 if (rdev->raid_disk < 0)
3799 clear_bit(In_sync, &rdev->flags);
3800 else {
3801 if (sysfs_link_rdev(mddev, rdev))
3802 pr_warn("md: cannot register rd%d for %s after level change\n",
3803 rdev->raid_disk, mdname(mddev));
3804 }
3805 }
3806
3807 if (pers->sync_request == NULL) {
3808 /* this is now an array without redundancy, so
3809 * it must always be in_sync
3810 */
3811 mddev->in_sync = 1;
3812 del_timer_sync(&mddev->safemode_timer);
3813 }
3814 blk_set_stacking_limits(&mddev->queue->limits);
3815 pers->run(mddev);
3816 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3817 mddev_resume(mddev);
3818 if (!mddev->thread)
3819 md_update_sb(mddev, 1);
3820 sysfs_notify(&mddev->kobj, NULL, "level");
3821 md_new_event(mddev);
3822 rv = len;
3823 out_unlock:
3824 mddev_unlock(mddev);
3825 return rv;
3826 }
3827
3828 static struct md_sysfs_entry md_level =
3829 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3830
3831 static ssize_t
3832 layout_show(struct mddev *mddev, char *page)
3833 {
3834 /* just a number, not meaningful for all levels */
3835 if (mddev->reshape_position != MaxSector &&
3836 mddev->layout != mddev->new_layout)
3837 return sprintf(page, "%d (%d)\n",
3838 mddev->new_layout, mddev->layout);
3839 return sprintf(page, "%d\n", mddev->layout);
3840 }
3841
3842 static ssize_t
3843 layout_store(struct mddev *mddev, const char *buf, size_t len)
3844 {
3845 unsigned int n;
3846 int err;
3847
3848 err = kstrtouint(buf, 10, &n);
3849 if (err < 0)
3850 return err;
3851 err = mddev_lock(mddev);
3852 if (err)
3853 return err;
3854
3855 if (mddev->pers) {
3856 if (mddev->pers->check_reshape == NULL)
3857 err = -EBUSY;
3858 else if (mddev->ro)
3859 err = -EROFS;
3860 else {
3861 mddev->new_layout = n;
3862 err = mddev->pers->check_reshape(mddev);
3863 if (err)
3864 mddev->new_layout = mddev->layout;
3865 }
3866 } else {
3867 mddev->new_layout = n;
3868 if (mddev->reshape_position == MaxSector)
3869 mddev->layout = n;
3870 }
3871 mddev_unlock(mddev);
3872 return err ?: len;
3873 }
3874 static struct md_sysfs_entry md_layout =
3875 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3876
3877 static ssize_t
3878 raid_disks_show(struct mddev *mddev, char *page)
3879 {
3880 if (mddev->raid_disks == 0)
3881 return 0;
3882 if (mddev->reshape_position != MaxSector &&
3883 mddev->delta_disks != 0)
3884 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3885 mddev->raid_disks - mddev->delta_disks);
3886 return sprintf(page, "%d\n", mddev->raid_disks);
3887 }
3888
3889 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3890
3891 static ssize_t
3892 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3893 {
3894 unsigned int n;
3895 int err;
3896
3897 err = kstrtouint(buf, 10, &n);
3898 if (err < 0)
3899 return err;
3900
3901 err = mddev_lock(mddev);
3902 if (err)
3903 return err;
3904 if (mddev->pers)
3905 err = update_raid_disks(mddev, n);
3906 else if (mddev->reshape_position != MaxSector) {
3907 struct md_rdev *rdev;
3908 int olddisks = mddev->raid_disks - mddev->delta_disks;
3909
3910 err = -EINVAL;
3911 rdev_for_each(rdev, mddev) {
3912 if (olddisks < n &&
3913 rdev->data_offset < rdev->new_data_offset)
3914 goto out_unlock;
3915 if (olddisks > n &&
3916 rdev->data_offset > rdev->new_data_offset)
3917 goto out_unlock;
3918 }
3919 err = 0;
3920 mddev->delta_disks = n - olddisks;
3921 mddev->raid_disks = n;
3922 mddev->reshape_backwards = (mddev->delta_disks < 0);
3923 } else
3924 mddev->raid_disks = n;
3925 out_unlock:
3926 mddev_unlock(mddev);
3927 return err ? err : len;
3928 }
3929 static struct md_sysfs_entry md_raid_disks =
3930 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3931
3932 static ssize_t
3933 chunk_size_show(struct mddev *mddev, char *page)
3934 {
3935 if (mddev->reshape_position != MaxSector &&
3936 mddev->chunk_sectors != mddev->new_chunk_sectors)
3937 return sprintf(page, "%d (%d)\n",
3938 mddev->new_chunk_sectors << 9,
3939 mddev->chunk_sectors << 9);
3940 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3941 }
3942
3943 static ssize_t
3944 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3945 {
3946 unsigned long n;
3947 int err;
3948
3949 err = kstrtoul(buf, 10, &n);
3950 if (err < 0)
3951 return err;
3952
3953 err = mddev_lock(mddev);
3954 if (err)
3955 return err;
3956 if (mddev->pers) {
3957 if (mddev->pers->check_reshape == NULL)
3958 err = -EBUSY;
3959 else if (mddev->ro)
3960 err = -EROFS;
3961 else {
3962 mddev->new_chunk_sectors = n >> 9;
3963 err = mddev->pers->check_reshape(mddev);
3964 if (err)
3965 mddev->new_chunk_sectors = mddev->chunk_sectors;
3966 }
3967 } else {
3968 mddev->new_chunk_sectors = n >> 9;
3969 if (mddev->reshape_position == MaxSector)
3970 mddev->chunk_sectors = n >> 9;
3971 }
3972 mddev_unlock(mddev);
3973 return err ?: len;
3974 }
3975 static struct md_sysfs_entry md_chunk_size =
3976 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3977
3978 static ssize_t
3979 resync_start_show(struct mddev *mddev, char *page)
3980 {
3981 if (mddev->recovery_cp == MaxSector)
3982 return sprintf(page, "none\n");
3983 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3984 }
3985
3986 static ssize_t
3987 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3988 {
3989 unsigned long long n;
3990 int err;
3991
3992 if (cmd_match(buf, "none"))
3993 n = MaxSector;
3994 else {
3995 err = kstrtoull(buf, 10, &n);
3996 if (err < 0)
3997 return err;
3998 if (n != (sector_t)n)
3999 return -EINVAL;
4000 }
4001
4002 err = mddev_lock(mddev);
4003 if (err)
4004 return err;
4005 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4006 err = -EBUSY;
4007
4008 if (!err) {
4009 mddev->recovery_cp = n;
4010 if (mddev->pers)
4011 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4012 }
4013 mddev_unlock(mddev);
4014 return err ?: len;
4015 }
4016 static struct md_sysfs_entry md_resync_start =
4017 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4018 resync_start_show, resync_start_store);
4019
4020 /*
4021 * The array state can be:
4022 *
4023 * clear
4024 * No devices, no size, no level
4025 * Equivalent to STOP_ARRAY ioctl
4026 * inactive
4027 * May have some settings, but array is not active
4028 * all IO results in error
4029 * When written, doesn't tear down array, but just stops it
4030 * suspended (not supported yet)
4031 * All IO requests will block. The array can be reconfigured.
4032 * Writing this, if accepted, will block until array is quiescent
4033 * readonly
4034 * no resync can happen. no superblocks get written.
4035 * write requests fail
4036 * read-auto
4037 * like readonly, but behaves like 'clean' on a write request.
4038 *
4039 * clean - no pending writes, but otherwise active.
4040 * When written to inactive array, starts without resync
4041 * If a write request arrives then
4042 * if metadata is known, mark 'dirty' and switch to 'active'.
4043 * if not known, block and switch to write-pending
4044 * If written to an active array that has pending writes, then fails.
4045 * active
4046 * fully active: IO and resync can be happening.
4047 * When written to inactive array, starts with resync
4048 *
4049 * write-pending
4050 * clean, but writes are blocked waiting for 'active' to be written.
4051 *
4052 * active-idle
4053 * like active, but no writes have been seen for a while (100msec).
4054 *
4055 */
4056 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4057 write_pending, active_idle, bad_word};
4058 static char *array_states[] = {
4059 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4060 "write-pending", "active-idle", NULL };
4061
4062 static int match_word(const char *word, char **list)
4063 {
4064 int n;
4065 for (n=0; list[n]; n++)
4066 if (cmd_match(word, list[n]))
4067 break;
4068 return n;
4069 }
4070
4071 static ssize_t
4072 array_state_show(struct mddev *mddev, char *page)
4073 {
4074 enum array_state st = inactive;
4075
4076 if (mddev->pers)
4077 switch(mddev->ro) {
4078 case 1:
4079 st = readonly;
4080 break;
4081 case 2:
4082 st = read_auto;
4083 break;
4084 case 0:
4085 spin_lock(&mddev->lock);
4086 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4087 st = write_pending;
4088 else if (mddev->in_sync)
4089 st = clean;
4090 else if (mddev->safemode)
4091 st = active_idle;
4092 else
4093 st = active;
4094 spin_unlock(&mddev->lock);
4095 }
4096 else {
4097 if (list_empty(&mddev->disks) &&
4098 mddev->raid_disks == 0 &&
4099 mddev->dev_sectors == 0)
4100 st = clear;
4101 else
4102 st = inactive;
4103 }
4104 return sprintf(page, "%s\n", array_states[st]);
4105 }
4106
4107 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4108 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4109 static int do_md_run(struct mddev *mddev);
4110 static int restart_array(struct mddev *mddev);
4111
4112 static ssize_t
4113 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4114 {
4115 int err = 0;
4116 enum array_state st = match_word(buf, array_states);
4117
4118 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4119 /* don't take reconfig_mutex when toggling between
4120 * clean and active
4121 */
4122 spin_lock(&mddev->lock);
4123 if (st == active) {
4124 restart_array(mddev);
4125 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4126 md_wakeup_thread(mddev->thread);
4127 wake_up(&mddev->sb_wait);
4128 } else /* st == clean */ {
4129 restart_array(mddev);
4130 if (!set_in_sync(mddev))
4131 err = -EBUSY;
4132 }
4133 if (!err)
4134 sysfs_notify_dirent_safe(mddev->sysfs_state);
4135 spin_unlock(&mddev->lock);
4136 return err ?: len;
4137 }
4138 err = mddev_lock(mddev);
4139 if (err)
4140 return err;
4141 err = -EINVAL;
4142 switch(st) {
4143 case bad_word:
4144 break;
4145 case clear:
4146 /* stopping an active array */
4147 err = do_md_stop(mddev, 0, NULL);
4148 break;
4149 case inactive:
4150 /* stopping an active array */
4151 if (mddev->pers)
4152 err = do_md_stop(mddev, 2, NULL);
4153 else
4154 err = 0; /* already inactive */
4155 break;
4156 case suspended:
4157 break; /* not supported yet */
4158 case readonly:
4159 if (mddev->pers)
4160 err = md_set_readonly(mddev, NULL);
4161 else {
4162 mddev->ro = 1;
4163 set_disk_ro(mddev->gendisk, 1);
4164 err = do_md_run(mddev);
4165 }
4166 break;
4167 case read_auto:
4168 if (mddev->pers) {
4169 if (mddev->ro == 0)
4170 err = md_set_readonly(mddev, NULL);
4171 else if (mddev->ro == 1)
4172 err = restart_array(mddev);
4173 if (err == 0) {
4174 mddev->ro = 2;
4175 set_disk_ro(mddev->gendisk, 0);
4176 }
4177 } else {
4178 mddev->ro = 2;
4179 err = do_md_run(mddev);
4180 }
4181 break;
4182 case clean:
4183 if (mddev->pers) {
4184 err = restart_array(mddev);
4185 if (err)
4186 break;
4187 spin_lock(&mddev->lock);
4188 if (!set_in_sync(mddev))
4189 err = -EBUSY;
4190 spin_unlock(&mddev->lock);
4191 } else
4192 err = -EINVAL;
4193 break;
4194 case active:
4195 if (mddev->pers) {
4196 err = restart_array(mddev);
4197 if (err)
4198 break;
4199 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4200 wake_up(&mddev->sb_wait);
4201 err = 0;
4202 } else {
4203 mddev->ro = 0;
4204 set_disk_ro(mddev->gendisk, 0);
4205 err = do_md_run(mddev);
4206 }
4207 break;
4208 case write_pending:
4209 case active_idle:
4210 /* these cannot be set */
4211 break;
4212 }
4213
4214 if (!err) {
4215 if (mddev->hold_active == UNTIL_IOCTL)
4216 mddev->hold_active = 0;
4217 sysfs_notify_dirent_safe(mddev->sysfs_state);
4218 }
4219 mddev_unlock(mddev);
4220 return err ?: len;
4221 }
4222 static struct md_sysfs_entry md_array_state =
4223 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4224
4225 static ssize_t
4226 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4227 return sprintf(page, "%d\n",
4228 atomic_read(&mddev->max_corr_read_errors));
4229 }
4230
4231 static ssize_t
4232 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4233 {
4234 unsigned int n;
4235 int rv;
4236
4237 rv = kstrtouint(buf, 10, &n);
4238 if (rv < 0)
4239 return rv;
4240 atomic_set(&mddev->max_corr_read_errors, n);
4241 return len;
4242 }
4243
4244 static struct md_sysfs_entry max_corr_read_errors =
4245 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4246 max_corrected_read_errors_store);
4247
4248 static ssize_t
4249 null_show(struct mddev *mddev, char *page)
4250 {
4251 return -EINVAL;
4252 }
4253
4254 static ssize_t
4255 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4256 {
4257 /* buf must be %d:%d\n? giving major and minor numbers */
4258 /* The new device is added to the array.
4259 * If the array has a persistent superblock, we read the
4260 * superblock to initialise info and check validity.
4261 * Otherwise, only checking done is that in bind_rdev_to_array,
4262 * which mainly checks size.
4263 */
4264 char *e;
4265 int major = simple_strtoul(buf, &e, 10);
4266 int minor;
4267 dev_t dev;
4268 struct md_rdev *rdev;
4269 int err;
4270
4271 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4272 return -EINVAL;
4273 minor = simple_strtoul(e+1, &e, 10);
4274 if (*e && *e != '\n')
4275 return -EINVAL;
4276 dev = MKDEV(major, minor);
4277 if (major != MAJOR(dev) ||
4278 minor != MINOR(dev))
4279 return -EOVERFLOW;
4280
4281 flush_workqueue(md_misc_wq);
4282
4283 err = mddev_lock(mddev);
4284 if (err)
4285 return err;
4286 if (mddev->persistent) {
4287 rdev = md_import_device(dev, mddev->major_version,
4288 mddev->minor_version);
4289 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4290 struct md_rdev *rdev0
4291 = list_entry(mddev->disks.next,
4292 struct md_rdev, same_set);
4293 err = super_types[mddev->major_version]
4294 .load_super(rdev, rdev0, mddev->minor_version);
4295 if (err < 0)
4296 goto out;
4297 }
4298 } else if (mddev->external)
4299 rdev = md_import_device(dev, -2, -1);
4300 else
4301 rdev = md_import_device(dev, -1, -1);
4302
4303 if (IS_ERR(rdev)) {
4304 mddev_unlock(mddev);
4305 return PTR_ERR(rdev);
4306 }
4307 err = bind_rdev_to_array(rdev, mddev);
4308 out:
4309 if (err)
4310 export_rdev(rdev);
4311 mddev_unlock(mddev);
4312 if (!err)
4313 md_new_event(mddev);
4314 return err ? err : len;
4315 }
4316
4317 static struct md_sysfs_entry md_new_device =
4318 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4319
4320 static ssize_t
4321 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4322 {
4323 char *end;
4324 unsigned long chunk, end_chunk;
4325 int err;
4326
4327 err = mddev_lock(mddev);
4328 if (err)
4329 return err;
4330 if (!mddev->bitmap)
4331 goto out;
4332 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4333 while (*buf) {
4334 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4335 if (buf == end) break;
4336 if (*end == '-') { /* range */
4337 buf = end + 1;
4338 end_chunk = simple_strtoul(buf, &end, 0);
4339 if (buf == end) break;
4340 }
4341 if (*end && !isspace(*end)) break;
4342 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4343 buf = skip_spaces(end);
4344 }
4345 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4346 out:
4347 mddev_unlock(mddev);
4348 return len;
4349 }
4350
4351 static struct md_sysfs_entry md_bitmap =
4352 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4353
4354 static ssize_t
4355 size_show(struct mddev *mddev, char *page)
4356 {
4357 return sprintf(page, "%llu\n",
4358 (unsigned long long)mddev->dev_sectors / 2);
4359 }
4360
4361 static int update_size(struct mddev *mddev, sector_t num_sectors);
4362
4363 static ssize_t
4364 size_store(struct mddev *mddev, const char *buf, size_t len)
4365 {
4366 /* If array is inactive, we can reduce the component size, but
4367 * not increase it (except from 0).
4368 * If array is active, we can try an on-line resize
4369 */
4370 sector_t sectors;
4371 int err = strict_blocks_to_sectors(buf, &sectors);
4372
4373 if (err < 0)
4374 return err;
4375 err = mddev_lock(mddev);
4376 if (err)
4377 return err;
4378 if (mddev->pers) {
4379 err = update_size(mddev, sectors);
4380 if (err == 0)
4381 md_update_sb(mddev, 1);
4382 } else {
4383 if (mddev->dev_sectors == 0 ||
4384 mddev->dev_sectors > sectors)
4385 mddev->dev_sectors = sectors;
4386 else
4387 err = -ENOSPC;
4388 }
4389 mddev_unlock(mddev);
4390 return err ? err : len;
4391 }
4392
4393 static struct md_sysfs_entry md_size =
4394 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4395
4396 /* Metadata version.
4397 * This is one of
4398 * 'none' for arrays with no metadata (good luck...)
4399 * 'external' for arrays with externally managed metadata,
4400 * or N.M for internally known formats
4401 */
4402 static ssize_t
4403 metadata_show(struct mddev *mddev, char *page)
4404 {
4405 if (mddev->persistent)
4406 return sprintf(page, "%d.%d\n",
4407 mddev->major_version, mddev->minor_version);
4408 else if (mddev->external)
4409 return sprintf(page, "external:%s\n", mddev->metadata_type);
4410 else
4411 return sprintf(page, "none\n");
4412 }
4413
4414 static ssize_t
4415 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4416 {
4417 int major, minor;
4418 char *e;
4419 int err;
4420 /* Changing the details of 'external' metadata is
4421 * always permitted. Otherwise there must be
4422 * no devices attached to the array.
4423 */
4424
4425 err = mddev_lock(mddev);
4426 if (err)
4427 return err;
4428 err = -EBUSY;
4429 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4430 ;
4431 else if (!list_empty(&mddev->disks))
4432 goto out_unlock;
4433
4434 err = 0;
4435 if (cmd_match(buf, "none")) {
4436 mddev->persistent = 0;
4437 mddev->external = 0;
4438 mddev->major_version = 0;
4439 mddev->minor_version = 90;
4440 goto out_unlock;
4441 }
4442 if (strncmp(buf, "external:", 9) == 0) {
4443 size_t namelen = len-9;
4444 if (namelen >= sizeof(mddev->metadata_type))
4445 namelen = sizeof(mddev->metadata_type)-1;
4446 strncpy(mddev->metadata_type, buf+9, namelen);
4447 mddev->metadata_type[namelen] = 0;
4448 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4449 mddev->metadata_type[--namelen] = 0;
4450 mddev->persistent = 0;
4451 mddev->external = 1;
4452 mddev->major_version = 0;
4453 mddev->minor_version = 90;
4454 goto out_unlock;
4455 }
4456 major = simple_strtoul(buf, &e, 10);
4457 err = -EINVAL;
4458 if (e==buf || *e != '.')
4459 goto out_unlock;
4460 buf = e+1;
4461 minor = simple_strtoul(buf, &e, 10);
4462 if (e==buf || (*e && *e != '\n') )
4463 goto out_unlock;
4464 err = -ENOENT;
4465 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4466 goto out_unlock;
4467 mddev->major_version = major;
4468 mddev->minor_version = minor;
4469 mddev->persistent = 1;
4470 mddev->external = 0;
4471 err = 0;
4472 out_unlock:
4473 mddev_unlock(mddev);
4474 return err ?: len;
4475 }
4476
4477 static struct md_sysfs_entry md_metadata =
4478 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4479
4480 static ssize_t
4481 action_show(struct mddev *mddev, char *page)
4482 {
4483 char *type = "idle";
4484 unsigned long recovery = mddev->recovery;
4485 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4486 type = "frozen";
4487 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4488 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4489 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4490 type = "reshape";
4491 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4492 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4493 type = "resync";
4494 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4495 type = "check";
4496 else
4497 type = "repair";
4498 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4499 type = "recover";
4500 else if (mddev->reshape_position != MaxSector)
4501 type = "reshape";
4502 }
4503 return sprintf(page, "%s\n", type);
4504 }
4505
4506 static ssize_t
4507 action_store(struct mddev *mddev, const char *page, size_t len)
4508 {
4509 if (!mddev->pers || !mddev->pers->sync_request)
4510 return -EINVAL;
4511
4512
4513 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4514 if (cmd_match(page, "frozen"))
4515 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4516 else
4517 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4518 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4519 mddev_lock(mddev) == 0) {
4520 flush_workqueue(md_misc_wq);
4521 if (mddev->sync_thread) {
4522 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4523 md_reap_sync_thread(mddev);
4524 }
4525 mddev_unlock(mddev);
4526 }
4527 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4528 return -EBUSY;
4529 else if (cmd_match(page, "resync"))
4530 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4531 else if (cmd_match(page, "recover")) {
4532 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4533 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4534 } else if (cmd_match(page, "reshape")) {
4535 int err;
4536 if (mddev->pers->start_reshape == NULL)
4537 return -EINVAL;
4538 err = mddev_lock(mddev);
4539 if (!err) {
4540 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4541 err = -EBUSY;
4542 else {
4543 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4544 err = mddev->pers->start_reshape(mddev);
4545 }
4546 mddev_unlock(mddev);
4547 }
4548 if (err)
4549 return err;
4550 sysfs_notify(&mddev->kobj, NULL, "degraded");
4551 } else {
4552 if (cmd_match(page, "check"))
4553 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4554 else if (!cmd_match(page, "repair"))
4555 return -EINVAL;
4556 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4557 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4558 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4559 }
4560 if (mddev->ro == 2) {
4561 /* A write to sync_action is enough to justify
4562 * canceling read-auto mode
4563 */
4564 mddev->ro = 0;
4565 md_wakeup_thread(mddev->sync_thread);
4566 }
4567 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4568 md_wakeup_thread(mddev->thread);
4569 sysfs_notify_dirent_safe(mddev->sysfs_action);
4570 return len;
4571 }
4572
4573 static struct md_sysfs_entry md_scan_mode =
4574 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4575
4576 static ssize_t
4577 last_sync_action_show(struct mddev *mddev, char *page)
4578 {
4579 return sprintf(page, "%s\n", mddev->last_sync_action);
4580 }
4581
4582 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4583
4584 static ssize_t
4585 mismatch_cnt_show(struct mddev *mddev, char *page)
4586 {
4587 return sprintf(page, "%llu\n",
4588 (unsigned long long)
4589 atomic64_read(&mddev->resync_mismatches));
4590 }
4591
4592 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4593
4594 static ssize_t
4595 sync_min_show(struct mddev *mddev, char *page)
4596 {
4597 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4598 mddev->sync_speed_min ? "local": "system");
4599 }
4600
4601 static ssize_t
4602 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4603 {
4604 unsigned int min;
4605 int rv;
4606
4607 if (strncmp(buf, "system", 6)==0) {
4608 min = 0;
4609 } else {
4610 rv = kstrtouint(buf, 10, &min);
4611 if (rv < 0)
4612 return rv;
4613 if (min == 0)
4614 return -EINVAL;
4615 }
4616 mddev->sync_speed_min = min;
4617 return len;
4618 }
4619
4620 static struct md_sysfs_entry md_sync_min =
4621 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4622
4623 static ssize_t
4624 sync_max_show(struct mddev *mddev, char *page)
4625 {
4626 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4627 mddev->sync_speed_max ? "local": "system");
4628 }
4629
4630 static ssize_t
4631 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633 unsigned int max;
4634 int rv;
4635
4636 if (strncmp(buf, "system", 6)==0) {
4637 max = 0;
4638 } else {
4639 rv = kstrtouint(buf, 10, &max);
4640 if (rv < 0)
4641 return rv;
4642 if (max == 0)
4643 return -EINVAL;
4644 }
4645 mddev->sync_speed_max = max;
4646 return len;
4647 }
4648
4649 static struct md_sysfs_entry md_sync_max =
4650 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4651
4652 static ssize_t
4653 degraded_show(struct mddev *mddev, char *page)
4654 {
4655 return sprintf(page, "%d\n", mddev->degraded);
4656 }
4657 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4658
4659 static ssize_t
4660 sync_force_parallel_show(struct mddev *mddev, char *page)
4661 {
4662 return sprintf(page, "%d\n", mddev->parallel_resync);
4663 }
4664
4665 static ssize_t
4666 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4667 {
4668 long n;
4669
4670 if (kstrtol(buf, 10, &n))
4671 return -EINVAL;
4672
4673 if (n != 0 && n != 1)
4674 return -EINVAL;
4675
4676 mddev->parallel_resync = n;
4677
4678 if (mddev->sync_thread)
4679 wake_up(&resync_wait);
4680
4681 return len;
4682 }
4683
4684 /* force parallel resync, even with shared block devices */
4685 static struct md_sysfs_entry md_sync_force_parallel =
4686 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4687 sync_force_parallel_show, sync_force_parallel_store);
4688
4689 static ssize_t
4690 sync_speed_show(struct mddev *mddev, char *page)
4691 {
4692 unsigned long resync, dt, db;
4693 if (mddev->curr_resync == 0)
4694 return sprintf(page, "none\n");
4695 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4696 dt = (jiffies - mddev->resync_mark) / HZ;
4697 if (!dt) dt++;
4698 db = resync - mddev->resync_mark_cnt;
4699 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4700 }
4701
4702 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4703
4704 static ssize_t
4705 sync_completed_show(struct mddev *mddev, char *page)
4706 {
4707 unsigned long long max_sectors, resync;
4708
4709 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4710 return sprintf(page, "none\n");
4711
4712 if (mddev->curr_resync == 1 ||
4713 mddev->curr_resync == 2)
4714 return sprintf(page, "delayed\n");
4715
4716 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4717 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4718 max_sectors = mddev->resync_max_sectors;
4719 else
4720 max_sectors = mddev->dev_sectors;
4721
4722 resync = mddev->curr_resync_completed;
4723 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4724 }
4725
4726 static struct md_sysfs_entry md_sync_completed =
4727 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4728
4729 static ssize_t
4730 min_sync_show(struct mddev *mddev, char *page)
4731 {
4732 return sprintf(page, "%llu\n",
4733 (unsigned long long)mddev->resync_min);
4734 }
4735 static ssize_t
4736 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4737 {
4738 unsigned long long min;
4739 int err;
4740
4741 if (kstrtoull(buf, 10, &min))
4742 return -EINVAL;
4743
4744 spin_lock(&mddev->lock);
4745 err = -EINVAL;
4746 if (min > mddev->resync_max)
4747 goto out_unlock;
4748
4749 err = -EBUSY;
4750 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4751 goto out_unlock;
4752
4753 /* Round down to multiple of 4K for safety */
4754 mddev->resync_min = round_down(min, 8);
4755 err = 0;
4756
4757 out_unlock:
4758 spin_unlock(&mddev->lock);
4759 return err ?: len;
4760 }
4761
4762 static struct md_sysfs_entry md_min_sync =
4763 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4764
4765 static ssize_t
4766 max_sync_show(struct mddev *mddev, char *page)
4767 {
4768 if (mddev->resync_max == MaxSector)
4769 return sprintf(page, "max\n");
4770 else
4771 return sprintf(page, "%llu\n",
4772 (unsigned long long)mddev->resync_max);
4773 }
4774 static ssize_t
4775 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4776 {
4777 int err;
4778 spin_lock(&mddev->lock);
4779 if (strncmp(buf, "max", 3) == 0)
4780 mddev->resync_max = MaxSector;
4781 else {
4782 unsigned long long max;
4783 int chunk;
4784
4785 err = -EINVAL;
4786 if (kstrtoull(buf, 10, &max))
4787 goto out_unlock;
4788 if (max < mddev->resync_min)
4789 goto out_unlock;
4790
4791 err = -EBUSY;
4792 if (max < mddev->resync_max &&
4793 mddev->ro == 0 &&
4794 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4795 goto out_unlock;
4796
4797 /* Must be a multiple of chunk_size */
4798 chunk = mddev->chunk_sectors;
4799 if (chunk) {
4800 sector_t temp = max;
4801
4802 err = -EINVAL;
4803 if (sector_div(temp, chunk))
4804 goto out_unlock;
4805 }
4806 mddev->resync_max = max;
4807 }
4808 wake_up(&mddev->recovery_wait);
4809 err = 0;
4810 out_unlock:
4811 spin_unlock(&mddev->lock);
4812 return err ?: len;
4813 }
4814
4815 static struct md_sysfs_entry md_max_sync =
4816 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4817
4818 static ssize_t
4819 suspend_lo_show(struct mddev *mddev, char *page)
4820 {
4821 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4822 }
4823
4824 static ssize_t
4825 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4826 {
4827 unsigned long long old, new;
4828 int err;
4829
4830 err = kstrtoull(buf, 10, &new);
4831 if (err < 0)
4832 return err;
4833 if (new != (sector_t)new)
4834 return -EINVAL;
4835
4836 err = mddev_lock(mddev);
4837 if (err)
4838 return err;
4839 err = -EINVAL;
4840 if (mddev->pers == NULL ||
4841 mddev->pers->quiesce == NULL)
4842 goto unlock;
4843 old = mddev->suspend_lo;
4844 mddev->suspend_lo = new;
4845 if (new >= old)
4846 /* Shrinking suspended region */
4847 mddev->pers->quiesce(mddev, 2);
4848 else {
4849 /* Expanding suspended region - need to wait */
4850 mddev->pers->quiesce(mddev, 1);
4851 mddev->pers->quiesce(mddev, 0);
4852 }
4853 err = 0;
4854 unlock:
4855 mddev_unlock(mddev);
4856 return err ?: len;
4857 }
4858 static struct md_sysfs_entry md_suspend_lo =
4859 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4860
4861 static ssize_t
4862 suspend_hi_show(struct mddev *mddev, char *page)
4863 {
4864 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4865 }
4866
4867 static ssize_t
4868 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4869 {
4870 unsigned long long old, new;
4871 int err;
4872
4873 err = kstrtoull(buf, 10, &new);
4874 if (err < 0)
4875 return err;
4876 if (new != (sector_t)new)
4877 return -EINVAL;
4878
4879 err = mddev_lock(mddev);
4880 if (err)
4881 return err;
4882 err = -EINVAL;
4883 if (mddev->pers == NULL ||
4884 mddev->pers->quiesce == NULL)
4885 goto unlock;
4886 old = mddev->suspend_hi;
4887 mddev->suspend_hi = new;
4888 if (new <= old)
4889 /* Shrinking suspended region */
4890 mddev->pers->quiesce(mddev, 2);
4891 else {
4892 /* Expanding suspended region - need to wait */
4893 mddev->pers->quiesce(mddev, 1);
4894 mddev->pers->quiesce(mddev, 0);
4895 }
4896 err = 0;
4897 unlock:
4898 mddev_unlock(mddev);
4899 return err ?: len;
4900 }
4901 static struct md_sysfs_entry md_suspend_hi =
4902 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4903
4904 static ssize_t
4905 reshape_position_show(struct mddev *mddev, char *page)
4906 {
4907 if (mddev->reshape_position != MaxSector)
4908 return sprintf(page, "%llu\n",
4909 (unsigned long long)mddev->reshape_position);
4910 strcpy(page, "none\n");
4911 return 5;
4912 }
4913
4914 static ssize_t
4915 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4916 {
4917 struct md_rdev *rdev;
4918 unsigned long long new;
4919 int err;
4920
4921 err = kstrtoull(buf, 10, &new);
4922 if (err < 0)
4923 return err;
4924 if (new != (sector_t)new)
4925 return -EINVAL;
4926 err = mddev_lock(mddev);
4927 if (err)
4928 return err;
4929 err = -EBUSY;
4930 if (mddev->pers)
4931 goto unlock;
4932 mddev->reshape_position = new;
4933 mddev->delta_disks = 0;
4934 mddev->reshape_backwards = 0;
4935 mddev->new_level = mddev->level;
4936 mddev->new_layout = mddev->layout;
4937 mddev->new_chunk_sectors = mddev->chunk_sectors;
4938 rdev_for_each(rdev, mddev)
4939 rdev->new_data_offset = rdev->data_offset;
4940 err = 0;
4941 unlock:
4942 mddev_unlock(mddev);
4943 return err ?: len;
4944 }
4945
4946 static struct md_sysfs_entry md_reshape_position =
4947 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4948 reshape_position_store);
4949
4950 static ssize_t
4951 reshape_direction_show(struct mddev *mddev, char *page)
4952 {
4953 return sprintf(page, "%s\n",
4954 mddev->reshape_backwards ? "backwards" : "forwards");
4955 }
4956
4957 static ssize_t
4958 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4959 {
4960 int backwards = 0;
4961 int err;
4962
4963 if (cmd_match(buf, "forwards"))
4964 backwards = 0;
4965 else if (cmd_match(buf, "backwards"))
4966 backwards = 1;
4967 else
4968 return -EINVAL;
4969 if (mddev->reshape_backwards == backwards)
4970 return len;
4971
4972 err = mddev_lock(mddev);
4973 if (err)
4974 return err;
4975 /* check if we are allowed to change */
4976 if (mddev->delta_disks)
4977 err = -EBUSY;
4978 else if (mddev->persistent &&
4979 mddev->major_version == 0)
4980 err = -EINVAL;
4981 else
4982 mddev->reshape_backwards = backwards;
4983 mddev_unlock(mddev);
4984 return err ?: len;
4985 }
4986
4987 static struct md_sysfs_entry md_reshape_direction =
4988 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4989 reshape_direction_store);
4990
4991 static ssize_t
4992 array_size_show(struct mddev *mddev, char *page)
4993 {
4994 if (mddev->external_size)
4995 return sprintf(page, "%llu\n",
4996 (unsigned long long)mddev->array_sectors/2);
4997 else
4998 return sprintf(page, "default\n");
4999 }
5000
5001 static ssize_t
5002 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5003 {
5004 sector_t sectors;
5005 int err;
5006
5007 err = mddev_lock(mddev);
5008 if (err)
5009 return err;
5010
5011 /* cluster raid doesn't support change array_sectors */
5012 if (mddev_is_clustered(mddev)) {
5013 mddev_unlock(mddev);
5014 return -EINVAL;
5015 }
5016
5017 if (strncmp(buf, "default", 7) == 0) {
5018 if (mddev->pers)
5019 sectors = mddev->pers->size(mddev, 0, 0);
5020 else
5021 sectors = mddev->array_sectors;
5022
5023 mddev->external_size = 0;
5024 } else {
5025 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5026 err = -EINVAL;
5027 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5028 err = -E2BIG;
5029 else
5030 mddev->external_size = 1;
5031 }
5032
5033 if (!err) {
5034 mddev->array_sectors = sectors;
5035 if (mddev->pers) {
5036 set_capacity(mddev->gendisk, mddev->array_sectors);
5037 revalidate_disk(mddev->gendisk);
5038 }
5039 }
5040 mddev_unlock(mddev);
5041 return err ?: len;
5042 }
5043
5044 static struct md_sysfs_entry md_array_size =
5045 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5046 array_size_store);
5047
5048 static ssize_t
5049 consistency_policy_show(struct mddev *mddev, char *page)
5050 {
5051 int ret;
5052
5053 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5054 ret = sprintf(page, "journal\n");
5055 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5056 ret = sprintf(page, "ppl\n");
5057 } else if (mddev->bitmap) {
5058 ret = sprintf(page, "bitmap\n");
5059 } else if (mddev->pers) {
5060 if (mddev->pers->sync_request)
5061 ret = sprintf(page, "resync\n");
5062 else
5063 ret = sprintf(page, "none\n");
5064 } else {
5065 ret = sprintf(page, "unknown\n");
5066 }
5067
5068 return ret;
5069 }
5070
5071 static ssize_t
5072 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5073 {
5074 int err = 0;
5075
5076 if (mddev->pers) {
5077 if (mddev->pers->change_consistency_policy)
5078 err = mddev->pers->change_consistency_policy(mddev, buf);
5079 else
5080 err = -EBUSY;
5081 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5082 set_bit(MD_HAS_PPL, &mddev->flags);
5083 } else {
5084 err = -EINVAL;
5085 }
5086
5087 return err ? err : len;
5088 }
5089
5090 static struct md_sysfs_entry md_consistency_policy =
5091 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5092 consistency_policy_store);
5093
5094 static struct attribute *md_default_attrs[] = {
5095 &md_level.attr,
5096 &md_layout.attr,
5097 &md_raid_disks.attr,
5098 &md_chunk_size.attr,
5099 &md_size.attr,
5100 &md_resync_start.attr,
5101 &md_metadata.attr,
5102 &md_new_device.attr,
5103 &md_safe_delay.attr,
5104 &md_array_state.attr,
5105 &md_reshape_position.attr,
5106 &md_reshape_direction.attr,
5107 &md_array_size.attr,
5108 &max_corr_read_errors.attr,
5109 &md_consistency_policy.attr,
5110 NULL,
5111 };
5112
5113 static struct attribute *md_redundancy_attrs[] = {
5114 &md_scan_mode.attr,
5115 &md_last_scan_mode.attr,
5116 &md_mismatches.attr,
5117 &md_sync_min.attr,
5118 &md_sync_max.attr,
5119 &md_sync_speed.attr,
5120 &md_sync_force_parallel.attr,
5121 &md_sync_completed.attr,
5122 &md_min_sync.attr,
5123 &md_max_sync.attr,
5124 &md_suspend_lo.attr,
5125 &md_suspend_hi.attr,
5126 &md_bitmap.attr,
5127 &md_degraded.attr,
5128 NULL,
5129 };
5130 static struct attribute_group md_redundancy_group = {
5131 .name = NULL,
5132 .attrs = md_redundancy_attrs,
5133 };
5134
5135 static ssize_t
5136 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5137 {
5138 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5139 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5140 ssize_t rv;
5141
5142 if (!entry->show)
5143 return -EIO;
5144 spin_lock(&all_mddevs_lock);
5145 if (list_empty(&mddev->all_mddevs)) {
5146 spin_unlock(&all_mddevs_lock);
5147 return -EBUSY;
5148 }
5149 mddev_get(mddev);
5150 spin_unlock(&all_mddevs_lock);
5151
5152 rv = entry->show(mddev, page);
5153 mddev_put(mddev);
5154 return rv;
5155 }
5156
5157 static ssize_t
5158 md_attr_store(struct kobject *kobj, struct attribute *attr,
5159 const char *page, size_t length)
5160 {
5161 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5162 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5163 ssize_t rv;
5164
5165 if (!entry->store)
5166 return -EIO;
5167 if (!capable(CAP_SYS_ADMIN))
5168 return -EACCES;
5169 spin_lock(&all_mddevs_lock);
5170 if (list_empty(&mddev->all_mddevs)) {
5171 spin_unlock(&all_mddevs_lock);
5172 return -EBUSY;
5173 }
5174 mddev_get(mddev);
5175 spin_unlock(&all_mddevs_lock);
5176 rv = entry->store(mddev, page, length);
5177 mddev_put(mddev);
5178 return rv;
5179 }
5180
5181 static void md_free(struct kobject *ko)
5182 {
5183 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5184
5185 if (mddev->sysfs_state)
5186 sysfs_put(mddev->sysfs_state);
5187
5188 if (mddev->queue)
5189 blk_cleanup_queue(mddev->queue);
5190 if (mddev->gendisk) {
5191 del_gendisk(mddev->gendisk);
5192 put_disk(mddev->gendisk);
5193 }
5194 percpu_ref_exit(&mddev->writes_pending);
5195
5196 kfree(mddev);
5197 }
5198
5199 static const struct sysfs_ops md_sysfs_ops = {
5200 .show = md_attr_show,
5201 .store = md_attr_store,
5202 };
5203 static struct kobj_type md_ktype = {
5204 .release = md_free,
5205 .sysfs_ops = &md_sysfs_ops,
5206 .default_attrs = md_default_attrs,
5207 };
5208
5209 int mdp_major = 0;
5210
5211 static void mddev_delayed_delete(struct work_struct *ws)
5212 {
5213 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5214
5215 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5216 kobject_del(&mddev->kobj);
5217 kobject_put(&mddev->kobj);
5218 }
5219
5220 static void no_op(struct percpu_ref *r) {}
5221
5222 int mddev_init_writes_pending(struct mddev *mddev)
5223 {
5224 if (mddev->writes_pending.percpu_count_ptr)
5225 return 0;
5226 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5227 return -ENOMEM;
5228 /* We want to start with the refcount at zero */
5229 percpu_ref_put(&mddev->writes_pending);
5230 return 0;
5231 }
5232 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5233
5234 static int md_alloc(dev_t dev, char *name)
5235 {
5236 /*
5237 * If dev is zero, name is the name of a device to allocate with
5238 * an arbitrary minor number. It will be "md_???"
5239 * If dev is non-zero it must be a device number with a MAJOR of
5240 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5241 * the device is being created by opening a node in /dev.
5242 * If "name" is not NULL, the device is being created by
5243 * writing to /sys/module/md_mod/parameters/new_array.
5244 */
5245 static DEFINE_MUTEX(disks_mutex);
5246 struct mddev *mddev = mddev_find(dev);
5247 struct gendisk *disk;
5248 int partitioned;
5249 int shift;
5250 int unit;
5251 int error;
5252
5253 if (!mddev)
5254 return -ENODEV;
5255
5256 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5257 shift = partitioned ? MdpMinorShift : 0;
5258 unit = MINOR(mddev->unit) >> shift;
5259
5260 /* wait for any previous instance of this device to be
5261 * completely removed (mddev_delayed_delete).
5262 */
5263 flush_workqueue(md_misc_wq);
5264
5265 mutex_lock(&disks_mutex);
5266 error = -EEXIST;
5267 if (mddev->gendisk)
5268 goto abort;
5269
5270 if (name && !dev) {
5271 /* Need to ensure that 'name' is not a duplicate.
5272 */
5273 struct mddev *mddev2;
5274 spin_lock(&all_mddevs_lock);
5275
5276 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5277 if (mddev2->gendisk &&
5278 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5279 spin_unlock(&all_mddevs_lock);
5280 goto abort;
5281 }
5282 spin_unlock(&all_mddevs_lock);
5283 }
5284 if (name && dev)
5285 /*
5286 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5287 */
5288 mddev->hold_active = UNTIL_STOP;
5289
5290 error = -ENOMEM;
5291 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5292 if (!mddev->queue)
5293 goto abort;
5294 mddev->queue->queuedata = mddev;
5295
5296 blk_queue_make_request(mddev->queue, md_make_request);
5297 blk_set_stacking_limits(&mddev->queue->limits);
5298
5299 disk = alloc_disk(1 << shift);
5300 if (!disk) {
5301 blk_cleanup_queue(mddev->queue);
5302 mddev->queue = NULL;
5303 goto abort;
5304 }
5305 disk->major = MAJOR(mddev->unit);
5306 disk->first_minor = unit << shift;
5307 if (name)
5308 strcpy(disk->disk_name, name);
5309 else if (partitioned)
5310 sprintf(disk->disk_name, "md_d%d", unit);
5311 else
5312 sprintf(disk->disk_name, "md%d", unit);
5313 disk->fops = &md_fops;
5314 disk->private_data = mddev;
5315 disk->queue = mddev->queue;
5316 blk_queue_write_cache(mddev->queue, true, true);
5317 /* Allow extended partitions. This makes the
5318 * 'mdp' device redundant, but we can't really
5319 * remove it now.
5320 */
5321 disk->flags |= GENHD_FL_EXT_DEVT;
5322 mddev->gendisk = disk;
5323 /* As soon as we call add_disk(), another thread could get
5324 * through to md_open, so make sure it doesn't get too far
5325 */
5326 mutex_lock(&mddev->open_mutex);
5327 add_disk(disk);
5328
5329 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5330 &disk_to_dev(disk)->kobj, "%s", "md");
5331 if (error) {
5332 /* This isn't possible, but as kobject_init_and_add is marked
5333 * __must_check, we must do something with the result
5334 */
5335 pr_debug("md: cannot register %s/md - name in use\n",
5336 disk->disk_name);
5337 error = 0;
5338 }
5339 if (mddev->kobj.sd &&
5340 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5341 pr_debug("pointless warning\n");
5342 mutex_unlock(&mddev->open_mutex);
5343 abort:
5344 mutex_unlock(&disks_mutex);
5345 if (!error && mddev->kobj.sd) {
5346 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5347 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5348 }
5349 mddev_put(mddev);
5350 return error;
5351 }
5352
5353 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5354 {
5355 if (create_on_open)
5356 md_alloc(dev, NULL);
5357 return NULL;
5358 }
5359
5360 static int add_named_array(const char *val, const struct kernel_param *kp)
5361 {
5362 /*
5363 * val must be "md_*" or "mdNNN".
5364 * For "md_*" we allocate an array with a large free minor number, and
5365 * set the name to val. val must not already be an active name.
5366 * For "mdNNN" we allocate an array with the minor number NNN
5367 * which must not already be in use.
5368 */
5369 int len = strlen(val);
5370 char buf[DISK_NAME_LEN];
5371 unsigned long devnum;
5372
5373 while (len && val[len-1] == '\n')
5374 len--;
5375 if (len >= DISK_NAME_LEN)
5376 return -E2BIG;
5377 strlcpy(buf, val, len+1);
5378 if (strncmp(buf, "md_", 3) == 0)
5379 return md_alloc(0, buf);
5380 if (strncmp(buf, "md", 2) == 0 &&
5381 isdigit(buf[2]) &&
5382 kstrtoul(buf+2, 10, &devnum) == 0 &&
5383 devnum <= MINORMASK)
5384 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5385
5386 return -EINVAL;
5387 }
5388
5389 static void md_safemode_timeout(unsigned long data)
5390 {
5391 struct mddev *mddev = (struct mddev *) data;
5392
5393 mddev->safemode = 1;
5394 if (mddev->external)
5395 sysfs_notify_dirent_safe(mddev->sysfs_state);
5396
5397 md_wakeup_thread(mddev->thread);
5398 }
5399
5400 static int start_dirty_degraded;
5401
5402 int md_run(struct mddev *mddev)
5403 {
5404 int err;
5405 struct md_rdev *rdev;
5406 struct md_personality *pers;
5407
5408 if (list_empty(&mddev->disks))
5409 /* cannot run an array with no devices.. */
5410 return -EINVAL;
5411
5412 if (mddev->pers)
5413 return -EBUSY;
5414 /* Cannot run until previous stop completes properly */
5415 if (mddev->sysfs_active)
5416 return -EBUSY;
5417
5418 /*
5419 * Analyze all RAID superblock(s)
5420 */
5421 if (!mddev->raid_disks) {
5422 if (!mddev->persistent)
5423 return -EINVAL;
5424 analyze_sbs(mddev);
5425 }
5426
5427 if (mddev->level != LEVEL_NONE)
5428 request_module("md-level-%d", mddev->level);
5429 else if (mddev->clevel[0])
5430 request_module("md-%s", mddev->clevel);
5431
5432 /*
5433 * Drop all container device buffers, from now on
5434 * the only valid external interface is through the md
5435 * device.
5436 */
5437 rdev_for_each(rdev, mddev) {
5438 if (test_bit(Faulty, &rdev->flags))
5439 continue;
5440 sync_blockdev(rdev->bdev);
5441 invalidate_bdev(rdev->bdev);
5442 if (mddev->ro != 1 &&
5443 (bdev_read_only(rdev->bdev) ||
5444 bdev_read_only(rdev->meta_bdev))) {
5445 mddev->ro = 1;
5446 if (mddev->gendisk)
5447 set_disk_ro(mddev->gendisk, 1);
5448 }
5449
5450 /* perform some consistency tests on the device.
5451 * We don't want the data to overlap the metadata,
5452 * Internal Bitmap issues have been handled elsewhere.
5453 */
5454 if (rdev->meta_bdev) {
5455 /* Nothing to check */;
5456 } else if (rdev->data_offset < rdev->sb_start) {
5457 if (mddev->dev_sectors &&
5458 rdev->data_offset + mddev->dev_sectors
5459 > rdev->sb_start) {
5460 pr_warn("md: %s: data overlaps metadata\n",
5461 mdname(mddev));
5462 return -EINVAL;
5463 }
5464 } else {
5465 if (rdev->sb_start + rdev->sb_size/512
5466 > rdev->data_offset) {
5467 pr_warn("md: %s: metadata overlaps data\n",
5468 mdname(mddev));
5469 return -EINVAL;
5470 }
5471 }
5472 sysfs_notify_dirent_safe(rdev->sysfs_state);
5473 }
5474
5475 if (mddev->bio_set == NULL) {
5476 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5477 if (!mddev->bio_set)
5478 return -ENOMEM;
5479 }
5480 if (mddev->sync_set == NULL) {
5481 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5482 if (!mddev->sync_set)
5483 return -ENOMEM;
5484 }
5485
5486 spin_lock(&pers_lock);
5487 pers = find_pers(mddev->level, mddev->clevel);
5488 if (!pers || !try_module_get(pers->owner)) {
5489 spin_unlock(&pers_lock);
5490 if (mddev->level != LEVEL_NONE)
5491 pr_warn("md: personality for level %d is not loaded!\n",
5492 mddev->level);
5493 else
5494 pr_warn("md: personality for level %s is not loaded!\n",
5495 mddev->clevel);
5496 return -EINVAL;
5497 }
5498 spin_unlock(&pers_lock);
5499 if (mddev->level != pers->level) {
5500 mddev->level = pers->level;
5501 mddev->new_level = pers->level;
5502 }
5503 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5504
5505 if (mddev->reshape_position != MaxSector &&
5506 pers->start_reshape == NULL) {
5507 /* This personality cannot handle reshaping... */
5508 module_put(pers->owner);
5509 return -EINVAL;
5510 }
5511
5512 if (pers->sync_request) {
5513 /* Warn if this is a potentially silly
5514 * configuration.
5515 */
5516 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5517 struct md_rdev *rdev2;
5518 int warned = 0;
5519
5520 rdev_for_each(rdev, mddev)
5521 rdev_for_each(rdev2, mddev) {
5522 if (rdev < rdev2 &&
5523 rdev->bdev->bd_contains ==
5524 rdev2->bdev->bd_contains) {
5525 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5526 mdname(mddev),
5527 bdevname(rdev->bdev,b),
5528 bdevname(rdev2->bdev,b2));
5529 warned = 1;
5530 }
5531 }
5532
5533 if (warned)
5534 pr_warn("True protection against single-disk failure might be compromised.\n");
5535 }
5536
5537 mddev->recovery = 0;
5538 /* may be over-ridden by personality */
5539 mddev->resync_max_sectors = mddev->dev_sectors;
5540
5541 mddev->ok_start_degraded = start_dirty_degraded;
5542
5543 if (start_readonly && mddev->ro == 0)
5544 mddev->ro = 2; /* read-only, but switch on first write */
5545
5546 /*
5547 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes
5548 * up mddev->thread. It is important to initialize critical
5549 * resources for mddev->thread BEFORE calling pers->run().
5550 */
5551 err = pers->run(mddev);
5552 if (err)
5553 pr_warn("md: pers->run() failed ...\n");
5554 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5555 WARN_ONCE(!mddev->external_size,
5556 "%s: default size too small, but 'external_size' not in effect?\n",
5557 __func__);
5558 pr_warn("md: invalid array_size %llu > default size %llu\n",
5559 (unsigned long long)mddev->array_sectors / 2,
5560 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5561 err = -EINVAL;
5562 }
5563 if (err == 0 && pers->sync_request &&
5564 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5565 struct bitmap *bitmap;
5566
5567 bitmap = bitmap_create(mddev, -1);
5568 if (IS_ERR(bitmap)) {
5569 err = PTR_ERR(bitmap);
5570 pr_warn("%s: failed to create bitmap (%d)\n",
5571 mdname(mddev), err);
5572 } else
5573 mddev->bitmap = bitmap;
5574
5575 }
5576 if (err) {
5577 mddev_detach(mddev);
5578 if (mddev->private)
5579 pers->free(mddev, mddev->private);
5580 mddev->private = NULL;
5581 module_put(pers->owner);
5582 bitmap_destroy(mddev);
5583 return err;
5584 }
5585 if (mddev->queue) {
5586 bool nonrot = true;
5587
5588 rdev_for_each(rdev, mddev) {
5589 if (rdev->raid_disk >= 0 &&
5590 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5591 nonrot = false;
5592 break;
5593 }
5594 }
5595 if (mddev->degraded)
5596 nonrot = false;
5597 if (nonrot)
5598 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5599 else
5600 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5601 mddev->queue->backing_dev_info->congested_data = mddev;
5602 mddev->queue->backing_dev_info->congested_fn = md_congested;
5603 }
5604 if (pers->sync_request) {
5605 if (mddev->kobj.sd &&
5606 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5607 pr_warn("md: cannot register extra attributes for %s\n",
5608 mdname(mddev));
5609 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5610 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5611 mddev->ro = 0;
5612
5613 atomic_set(&mddev->max_corr_read_errors,
5614 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5615 mddev->safemode = 0;
5616 if (mddev_is_clustered(mddev))
5617 mddev->safemode_delay = 0;
5618 else
5619 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5620 mddev->in_sync = 1;
5621 smp_wmb();
5622 spin_lock(&mddev->lock);
5623 mddev->pers = pers;
5624 spin_unlock(&mddev->lock);
5625 rdev_for_each(rdev, mddev)
5626 if (rdev->raid_disk >= 0)
5627 if (sysfs_link_rdev(mddev, rdev))
5628 /* failure here is OK */;
5629
5630 if (mddev->degraded && !mddev->ro)
5631 /* This ensures that recovering status is reported immediately
5632 * via sysfs - until a lack of spares is confirmed.
5633 */
5634 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5635 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5636
5637 if (mddev->sb_flags)
5638 md_update_sb(mddev, 0);
5639
5640 md_new_event(mddev);
5641 sysfs_notify_dirent_safe(mddev->sysfs_state);
5642 sysfs_notify_dirent_safe(mddev->sysfs_action);
5643 sysfs_notify(&mddev->kobj, NULL, "degraded");
5644 return 0;
5645 }
5646 EXPORT_SYMBOL_GPL(md_run);
5647
5648 static int do_md_run(struct mddev *mddev)
5649 {
5650 int err;
5651
5652 err = md_run(mddev);
5653 if (err)
5654 goto out;
5655 err = bitmap_load(mddev);
5656 if (err) {
5657 bitmap_destroy(mddev);
5658 goto out;
5659 }
5660
5661 if (mddev_is_clustered(mddev))
5662 md_allow_write(mddev);
5663
5664 md_wakeup_thread(mddev->thread);
5665 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5666
5667 set_capacity(mddev->gendisk, mddev->array_sectors);
5668 revalidate_disk(mddev->gendisk);
5669 mddev->changed = 1;
5670 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5671 out:
5672 return err;
5673 }
5674
5675 static int restart_array(struct mddev *mddev)
5676 {
5677 struct gendisk *disk = mddev->gendisk;
5678 struct md_rdev *rdev;
5679 bool has_journal = false;
5680 bool has_readonly = false;
5681
5682 /* Complain if it has no devices */
5683 if (list_empty(&mddev->disks))
5684 return -ENXIO;
5685 if (!mddev->pers)
5686 return -EINVAL;
5687 if (!mddev->ro)
5688 return -EBUSY;
5689
5690 rcu_read_lock();
5691 rdev_for_each_rcu(rdev, mddev) {
5692 if (test_bit(Journal, &rdev->flags) &&
5693 !test_bit(Faulty, &rdev->flags))
5694 has_journal = true;
5695 if (bdev_read_only(rdev->bdev))
5696 has_readonly = true;
5697 }
5698 rcu_read_unlock();
5699 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5700 /* Don't restart rw with journal missing/faulty */
5701 return -EINVAL;
5702 if (has_readonly)
5703 return -EROFS;
5704
5705 mddev->safemode = 0;
5706 mddev->ro = 0;
5707 set_disk_ro(disk, 0);
5708 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5709 /* Kick recovery or resync if necessary */
5710 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5711 md_wakeup_thread(mddev->thread);
5712 md_wakeup_thread(mddev->sync_thread);
5713 sysfs_notify_dirent_safe(mddev->sysfs_state);
5714 return 0;
5715 }
5716
5717 static void md_clean(struct mddev *mddev)
5718 {
5719 mddev->array_sectors = 0;
5720 mddev->external_size = 0;
5721 mddev->dev_sectors = 0;
5722 mddev->raid_disks = 0;
5723 mddev->recovery_cp = 0;
5724 mddev->resync_min = 0;
5725 mddev->resync_max = MaxSector;
5726 mddev->reshape_position = MaxSector;
5727 mddev->external = 0;
5728 mddev->persistent = 0;
5729 mddev->level = LEVEL_NONE;
5730 mddev->clevel[0] = 0;
5731 mddev->flags = 0;
5732 mddev->sb_flags = 0;
5733 mddev->ro = 0;
5734 mddev->metadata_type[0] = 0;
5735 mddev->chunk_sectors = 0;
5736 mddev->ctime = mddev->utime = 0;
5737 mddev->layout = 0;
5738 mddev->max_disks = 0;
5739 mddev->events = 0;
5740 mddev->can_decrease_events = 0;
5741 mddev->delta_disks = 0;
5742 mddev->reshape_backwards = 0;
5743 mddev->new_level = LEVEL_NONE;
5744 mddev->new_layout = 0;
5745 mddev->new_chunk_sectors = 0;
5746 mddev->curr_resync = 0;
5747 atomic64_set(&mddev->resync_mismatches, 0);
5748 mddev->suspend_lo = mddev->suspend_hi = 0;
5749 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5750 mddev->recovery = 0;
5751 mddev->in_sync = 0;
5752 mddev->changed = 0;
5753 mddev->degraded = 0;
5754 mddev->safemode = 0;
5755 mddev->private = NULL;
5756 mddev->cluster_info = NULL;
5757 mddev->bitmap_info.offset = 0;
5758 mddev->bitmap_info.default_offset = 0;
5759 mddev->bitmap_info.default_space = 0;
5760 mddev->bitmap_info.chunksize = 0;
5761 mddev->bitmap_info.daemon_sleep = 0;
5762 mddev->bitmap_info.max_write_behind = 0;
5763 mddev->bitmap_info.nodes = 0;
5764 }
5765
5766 static void __md_stop_writes(struct mddev *mddev)
5767 {
5768 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5769 flush_workqueue(md_misc_wq);
5770 if (mddev->sync_thread) {
5771 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5772 md_reap_sync_thread(mddev);
5773 }
5774
5775 del_timer_sync(&mddev->safemode_timer);
5776
5777 if (mddev->pers && mddev->pers->quiesce) {
5778 mddev->pers->quiesce(mddev, 1);
5779 mddev->pers->quiesce(mddev, 0);
5780 }
5781 bitmap_flush(mddev);
5782
5783 if (mddev->ro == 0 &&
5784 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5785 mddev->sb_flags)) {
5786 /* mark array as shutdown cleanly */
5787 if (!mddev_is_clustered(mddev))
5788 mddev->in_sync = 1;
5789 md_update_sb(mddev, 1);
5790 }
5791 }
5792
5793 void md_stop_writes(struct mddev *mddev)
5794 {
5795 mddev_lock_nointr(mddev);
5796 __md_stop_writes(mddev);
5797 mddev_unlock(mddev);
5798 }
5799 EXPORT_SYMBOL_GPL(md_stop_writes);
5800
5801 static void mddev_detach(struct mddev *mddev)
5802 {
5803 bitmap_wait_behind_writes(mddev);
5804 if (mddev->pers && mddev->pers->quiesce) {
5805 mddev->pers->quiesce(mddev, 1);
5806 mddev->pers->quiesce(mddev, 0);
5807 }
5808 md_unregister_thread(&mddev->thread);
5809 if (mddev->queue)
5810 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5811 }
5812
5813 static void __md_stop(struct mddev *mddev)
5814 {
5815 struct md_personality *pers = mddev->pers;
5816 bitmap_destroy(mddev);
5817 mddev_detach(mddev);
5818 /* Ensure ->event_work is done */
5819 flush_workqueue(md_misc_wq);
5820 spin_lock(&mddev->lock);
5821 mddev->pers = NULL;
5822 spin_unlock(&mddev->lock);
5823 pers->free(mddev, mddev->private);
5824 mddev->private = NULL;
5825 if (pers->sync_request && mddev->to_remove == NULL)
5826 mddev->to_remove = &md_redundancy_group;
5827 module_put(pers->owner);
5828 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5829 }
5830
5831 void md_stop(struct mddev *mddev)
5832 {
5833 /* stop the array and free an attached data structures.
5834 * This is called from dm-raid
5835 */
5836 __md_stop(mddev);
5837 if (mddev->bio_set)
5838 bioset_free(mddev->bio_set);
5839 }
5840
5841 EXPORT_SYMBOL_GPL(md_stop);
5842
5843 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5844 {
5845 int err = 0;
5846 int did_freeze = 0;
5847
5848 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5849 did_freeze = 1;
5850 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5851 md_wakeup_thread(mddev->thread);
5852 }
5853 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5854 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5855 if (mddev->sync_thread)
5856 /* Thread might be blocked waiting for metadata update
5857 * which will now never happen */
5858 wake_up_process(mddev->sync_thread->tsk);
5859
5860 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5861 return -EBUSY;
5862 mddev_unlock(mddev);
5863 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5864 &mddev->recovery));
5865 wait_event(mddev->sb_wait,
5866 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5867 mddev_lock_nointr(mddev);
5868
5869 mutex_lock(&mddev->open_mutex);
5870 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5871 mddev->sync_thread ||
5872 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5873 pr_warn("md: %s still in use.\n",mdname(mddev));
5874 if (did_freeze) {
5875 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5876 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5877 md_wakeup_thread(mddev->thread);
5878 }
5879 err = -EBUSY;
5880 goto out;
5881 }
5882 if (mddev->pers) {
5883 __md_stop_writes(mddev);
5884
5885 err = -ENXIO;
5886 if (mddev->ro==1)
5887 goto out;
5888 mddev->ro = 1;
5889 set_disk_ro(mddev->gendisk, 1);
5890 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5892 md_wakeup_thread(mddev->thread);
5893 sysfs_notify_dirent_safe(mddev->sysfs_state);
5894 err = 0;
5895 }
5896 out:
5897 mutex_unlock(&mddev->open_mutex);
5898 return err;
5899 }
5900
5901 /* mode:
5902 * 0 - completely stop and dis-assemble array
5903 * 2 - stop but do not disassemble array
5904 */
5905 static int do_md_stop(struct mddev *mddev, int mode,
5906 struct block_device *bdev)
5907 {
5908 struct gendisk *disk = mddev->gendisk;
5909 struct md_rdev *rdev;
5910 int did_freeze = 0;
5911
5912 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5913 did_freeze = 1;
5914 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5915 md_wakeup_thread(mddev->thread);
5916 }
5917 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5918 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5919 if (mddev->sync_thread)
5920 /* Thread might be blocked waiting for metadata update
5921 * which will now never happen */
5922 wake_up_process(mddev->sync_thread->tsk);
5923
5924 mddev_unlock(mddev);
5925 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5926 !test_bit(MD_RECOVERY_RUNNING,
5927 &mddev->recovery)));
5928 mddev_lock_nointr(mddev);
5929
5930 mutex_lock(&mddev->open_mutex);
5931 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5932 mddev->sysfs_active ||
5933 mddev->sync_thread ||
5934 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5935 pr_warn("md: %s still in use.\n",mdname(mddev));
5936 mutex_unlock(&mddev->open_mutex);
5937 if (did_freeze) {
5938 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5939 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5940 md_wakeup_thread(mddev->thread);
5941 }
5942 return -EBUSY;
5943 }
5944 if (mddev->pers) {
5945 if (mddev->ro)
5946 set_disk_ro(disk, 0);
5947
5948 __md_stop_writes(mddev);
5949 __md_stop(mddev);
5950 mddev->queue->backing_dev_info->congested_fn = NULL;
5951
5952 /* tell userspace to handle 'inactive' */
5953 sysfs_notify_dirent_safe(mddev->sysfs_state);
5954
5955 rdev_for_each(rdev, mddev)
5956 if (rdev->raid_disk >= 0)
5957 sysfs_unlink_rdev(mddev, rdev);
5958
5959 set_capacity(disk, 0);
5960 mutex_unlock(&mddev->open_mutex);
5961 mddev->changed = 1;
5962 revalidate_disk(disk);
5963
5964 if (mddev->ro)
5965 mddev->ro = 0;
5966 } else
5967 mutex_unlock(&mddev->open_mutex);
5968 /*
5969 * Free resources if final stop
5970 */
5971 if (mode == 0) {
5972 pr_info("md: %s stopped.\n", mdname(mddev));
5973
5974 if (mddev->bitmap_info.file) {
5975 struct file *f = mddev->bitmap_info.file;
5976 spin_lock(&mddev->lock);
5977 mddev->bitmap_info.file = NULL;
5978 spin_unlock(&mddev->lock);
5979 fput(f);
5980 }
5981 mddev->bitmap_info.offset = 0;
5982
5983 export_array(mddev);
5984
5985 md_clean(mddev);
5986 if (mddev->hold_active == UNTIL_STOP)
5987 mddev->hold_active = 0;
5988 }
5989 md_new_event(mddev);
5990 sysfs_notify_dirent_safe(mddev->sysfs_state);
5991 return 0;
5992 }
5993
5994 #ifndef MODULE
5995 static void autorun_array(struct mddev *mddev)
5996 {
5997 struct md_rdev *rdev;
5998 int err;
5999
6000 if (list_empty(&mddev->disks))
6001 return;
6002
6003 pr_info("md: running: ");
6004
6005 rdev_for_each(rdev, mddev) {
6006 char b[BDEVNAME_SIZE];
6007 pr_cont("<%s>", bdevname(rdev->bdev,b));
6008 }
6009 pr_cont("\n");
6010
6011 err = do_md_run(mddev);
6012 if (err) {
6013 pr_warn("md: do_md_run() returned %d\n", err);
6014 do_md_stop(mddev, 0, NULL);
6015 }
6016 }
6017
6018 /*
6019 * lets try to run arrays based on all disks that have arrived
6020 * until now. (those are in pending_raid_disks)
6021 *
6022 * the method: pick the first pending disk, collect all disks with
6023 * the same UUID, remove all from the pending list and put them into
6024 * the 'same_array' list. Then order this list based on superblock
6025 * update time (freshest comes first), kick out 'old' disks and
6026 * compare superblocks. If everything's fine then run it.
6027 *
6028 * If "unit" is allocated, then bump its reference count
6029 */
6030 static void autorun_devices(int part)
6031 {
6032 struct md_rdev *rdev0, *rdev, *tmp;
6033 struct mddev *mddev;
6034 char b[BDEVNAME_SIZE];
6035
6036 pr_info("md: autorun ...\n");
6037 while (!list_empty(&pending_raid_disks)) {
6038 int unit;
6039 dev_t dev;
6040 LIST_HEAD(candidates);
6041 rdev0 = list_entry(pending_raid_disks.next,
6042 struct md_rdev, same_set);
6043
6044 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6045 INIT_LIST_HEAD(&candidates);
6046 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6047 if (super_90_load(rdev, rdev0, 0) >= 0) {
6048 pr_debug("md: adding %s ...\n",
6049 bdevname(rdev->bdev,b));
6050 list_move(&rdev->same_set, &candidates);
6051 }
6052 /*
6053 * now we have a set of devices, with all of them having
6054 * mostly sane superblocks. It's time to allocate the
6055 * mddev.
6056 */
6057 if (part) {
6058 dev = MKDEV(mdp_major,
6059 rdev0->preferred_minor << MdpMinorShift);
6060 unit = MINOR(dev) >> MdpMinorShift;
6061 } else {
6062 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6063 unit = MINOR(dev);
6064 }
6065 if (rdev0->preferred_minor != unit) {
6066 pr_warn("md: unit number in %s is bad: %d\n",
6067 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6068 break;
6069 }
6070
6071 md_probe(dev, NULL, NULL);
6072 mddev = mddev_find(dev);
6073 if (!mddev || !mddev->gendisk) {
6074 if (mddev)
6075 mddev_put(mddev);
6076 break;
6077 }
6078 if (mddev_lock(mddev))
6079 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6080 else if (mddev->raid_disks || mddev->major_version
6081 || !list_empty(&mddev->disks)) {
6082 pr_warn("md: %s already running, cannot run %s\n",
6083 mdname(mddev), bdevname(rdev0->bdev,b));
6084 mddev_unlock(mddev);
6085 } else {
6086 pr_debug("md: created %s\n", mdname(mddev));
6087 mddev->persistent = 1;
6088 rdev_for_each_list(rdev, tmp, &candidates) {
6089 list_del_init(&rdev->same_set);
6090 if (bind_rdev_to_array(rdev, mddev))
6091 export_rdev(rdev);
6092 }
6093 autorun_array(mddev);
6094 mddev_unlock(mddev);
6095 }
6096 /* on success, candidates will be empty, on error
6097 * it won't...
6098 */
6099 rdev_for_each_list(rdev, tmp, &candidates) {
6100 list_del_init(&rdev->same_set);
6101 export_rdev(rdev);
6102 }
6103 mddev_put(mddev);
6104 }
6105 pr_info("md: ... autorun DONE.\n");
6106 }
6107 #endif /* !MODULE */
6108
6109 static int get_version(void __user *arg)
6110 {
6111 mdu_version_t ver;
6112
6113 ver.major = MD_MAJOR_VERSION;
6114 ver.minor = MD_MINOR_VERSION;
6115 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6116
6117 if (copy_to_user(arg, &ver, sizeof(ver)))
6118 return -EFAULT;
6119
6120 return 0;
6121 }
6122
6123 static int get_array_info(struct mddev *mddev, void __user *arg)
6124 {
6125 mdu_array_info_t info;
6126 int nr,working,insync,failed,spare;
6127 struct md_rdev *rdev;
6128
6129 nr = working = insync = failed = spare = 0;
6130 rcu_read_lock();
6131 rdev_for_each_rcu(rdev, mddev) {
6132 nr++;
6133 if (test_bit(Faulty, &rdev->flags))
6134 failed++;
6135 else {
6136 working++;
6137 if (test_bit(In_sync, &rdev->flags))
6138 insync++;
6139 else if (test_bit(Journal, &rdev->flags))
6140 /* TODO: add journal count to md_u.h */
6141 ;
6142 else
6143 spare++;
6144 }
6145 }
6146 rcu_read_unlock();
6147
6148 info.major_version = mddev->major_version;
6149 info.minor_version = mddev->minor_version;
6150 info.patch_version = MD_PATCHLEVEL_VERSION;
6151 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6152 info.level = mddev->level;
6153 info.size = mddev->dev_sectors / 2;
6154 if (info.size != mddev->dev_sectors / 2) /* overflow */
6155 info.size = -1;
6156 info.nr_disks = nr;
6157 info.raid_disks = mddev->raid_disks;
6158 info.md_minor = mddev->md_minor;
6159 info.not_persistent= !mddev->persistent;
6160
6161 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6162 info.state = 0;
6163 if (mddev->in_sync)
6164 info.state = (1<<MD_SB_CLEAN);
6165 if (mddev->bitmap && mddev->bitmap_info.offset)
6166 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6167 if (mddev_is_clustered(mddev))
6168 info.state |= (1<<MD_SB_CLUSTERED);
6169 info.active_disks = insync;
6170 info.working_disks = working;
6171 info.failed_disks = failed;
6172 info.spare_disks = spare;
6173
6174 info.layout = mddev->layout;
6175 info.chunk_size = mddev->chunk_sectors << 9;
6176
6177 if (copy_to_user(arg, &info, sizeof(info)))
6178 return -EFAULT;
6179
6180 return 0;
6181 }
6182
6183 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6184 {
6185 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6186 char *ptr;
6187 int err;
6188
6189 file = kzalloc(sizeof(*file), GFP_NOIO);
6190 if (!file)
6191 return -ENOMEM;
6192
6193 err = 0;
6194 spin_lock(&mddev->lock);
6195 /* bitmap enabled */
6196 if (mddev->bitmap_info.file) {
6197 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6198 sizeof(file->pathname));
6199 if (IS_ERR(ptr))
6200 err = PTR_ERR(ptr);
6201 else
6202 memmove(file->pathname, ptr,
6203 sizeof(file->pathname)-(ptr-file->pathname));
6204 }
6205 spin_unlock(&mddev->lock);
6206
6207 if (err == 0 &&
6208 copy_to_user(arg, file, sizeof(*file)))
6209 err = -EFAULT;
6210
6211 kfree(file);
6212 return err;
6213 }
6214
6215 static int get_disk_info(struct mddev *mddev, void __user * arg)
6216 {
6217 mdu_disk_info_t info;
6218 struct md_rdev *rdev;
6219
6220 if (copy_from_user(&info, arg, sizeof(info)))
6221 return -EFAULT;
6222
6223 rcu_read_lock();
6224 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6225 if (rdev) {
6226 info.major = MAJOR(rdev->bdev->bd_dev);
6227 info.minor = MINOR(rdev->bdev->bd_dev);
6228 info.raid_disk = rdev->raid_disk;
6229 info.state = 0;
6230 if (test_bit(Faulty, &rdev->flags))
6231 info.state |= (1<<MD_DISK_FAULTY);
6232 else if (test_bit(In_sync, &rdev->flags)) {
6233 info.state |= (1<<MD_DISK_ACTIVE);
6234 info.state |= (1<<MD_DISK_SYNC);
6235 }
6236 if (test_bit(Journal, &rdev->flags))
6237 info.state |= (1<<MD_DISK_JOURNAL);
6238 if (test_bit(WriteMostly, &rdev->flags))
6239 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6240 if (test_bit(FailFast, &rdev->flags))
6241 info.state |= (1<<MD_DISK_FAILFAST);
6242 } else {
6243 info.major = info.minor = 0;
6244 info.raid_disk = -1;
6245 info.state = (1<<MD_DISK_REMOVED);
6246 }
6247 rcu_read_unlock();
6248
6249 if (copy_to_user(arg, &info, sizeof(info)))
6250 return -EFAULT;
6251
6252 return 0;
6253 }
6254
6255 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6256 {
6257 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6258 struct md_rdev *rdev;
6259 dev_t dev = MKDEV(info->major,info->minor);
6260
6261 if (mddev_is_clustered(mddev) &&
6262 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6263 pr_warn("%s: Cannot add to clustered mddev.\n",
6264 mdname(mddev));
6265 return -EINVAL;
6266 }
6267
6268 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6269 return -EOVERFLOW;
6270
6271 if (!mddev->raid_disks) {
6272 int err;
6273 /* expecting a device which has a superblock */
6274 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6275 if (IS_ERR(rdev)) {
6276 pr_warn("md: md_import_device returned %ld\n",
6277 PTR_ERR(rdev));
6278 return PTR_ERR(rdev);
6279 }
6280 if (!list_empty(&mddev->disks)) {
6281 struct md_rdev *rdev0
6282 = list_entry(mddev->disks.next,
6283 struct md_rdev, same_set);
6284 err = super_types[mddev->major_version]
6285 .load_super(rdev, rdev0, mddev->minor_version);
6286 if (err < 0) {
6287 pr_warn("md: %s has different UUID to %s\n",
6288 bdevname(rdev->bdev,b),
6289 bdevname(rdev0->bdev,b2));
6290 export_rdev(rdev);
6291 return -EINVAL;
6292 }
6293 }
6294 err = bind_rdev_to_array(rdev, mddev);
6295 if (err)
6296 export_rdev(rdev);
6297 return err;
6298 }
6299
6300 /*
6301 * add_new_disk can be used once the array is assembled
6302 * to add "hot spares". They must already have a superblock
6303 * written
6304 */
6305 if (mddev->pers) {
6306 int err;
6307 if (!mddev->pers->hot_add_disk) {
6308 pr_warn("%s: personality does not support diskops!\n",
6309 mdname(mddev));
6310 return -EINVAL;
6311 }
6312 if (mddev->persistent)
6313 rdev = md_import_device(dev, mddev->major_version,
6314 mddev->minor_version);
6315 else
6316 rdev = md_import_device(dev, -1, -1);
6317 if (IS_ERR(rdev)) {
6318 pr_warn("md: md_import_device returned %ld\n",
6319 PTR_ERR(rdev));
6320 return PTR_ERR(rdev);
6321 }
6322 /* set saved_raid_disk if appropriate */
6323 if (!mddev->persistent) {
6324 if (info->state & (1<<MD_DISK_SYNC) &&
6325 info->raid_disk < mddev->raid_disks) {
6326 rdev->raid_disk = info->raid_disk;
6327 set_bit(In_sync, &rdev->flags);
6328 clear_bit(Bitmap_sync, &rdev->flags);
6329 } else
6330 rdev->raid_disk = -1;
6331 rdev->saved_raid_disk = rdev->raid_disk;
6332 } else
6333 super_types[mddev->major_version].
6334 validate_super(mddev, rdev);
6335 if ((info->state & (1<<MD_DISK_SYNC)) &&
6336 rdev->raid_disk != info->raid_disk) {
6337 /* This was a hot-add request, but events doesn't
6338 * match, so reject it.
6339 */
6340 export_rdev(rdev);
6341 return -EINVAL;
6342 }
6343
6344 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6345 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6346 set_bit(WriteMostly, &rdev->flags);
6347 else
6348 clear_bit(WriteMostly, &rdev->flags);
6349 if (info->state & (1<<MD_DISK_FAILFAST))
6350 set_bit(FailFast, &rdev->flags);
6351 else
6352 clear_bit(FailFast, &rdev->flags);
6353
6354 if (info->state & (1<<MD_DISK_JOURNAL)) {
6355 struct md_rdev *rdev2;
6356 bool has_journal = false;
6357
6358 /* make sure no existing journal disk */
6359 rdev_for_each(rdev2, mddev) {
6360 if (test_bit(Journal, &rdev2->flags)) {
6361 has_journal = true;
6362 break;
6363 }
6364 }
6365 if (has_journal) {
6366 export_rdev(rdev);
6367 return -EBUSY;
6368 }
6369 set_bit(Journal, &rdev->flags);
6370 }
6371 /*
6372 * check whether the device shows up in other nodes
6373 */
6374 if (mddev_is_clustered(mddev)) {
6375 if (info->state & (1 << MD_DISK_CANDIDATE))
6376 set_bit(Candidate, &rdev->flags);
6377 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6378 /* --add initiated by this node */
6379 err = md_cluster_ops->add_new_disk(mddev, rdev);
6380 if (err) {
6381 export_rdev(rdev);
6382 return err;
6383 }
6384 }
6385 }
6386
6387 rdev->raid_disk = -1;
6388 err = bind_rdev_to_array(rdev, mddev);
6389
6390 if (err)
6391 export_rdev(rdev);
6392
6393 if (mddev_is_clustered(mddev)) {
6394 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6395 if (!err) {
6396 err = md_cluster_ops->new_disk_ack(mddev,
6397 err == 0);
6398 if (err)
6399 md_kick_rdev_from_array(rdev);
6400 }
6401 } else {
6402 if (err)
6403 md_cluster_ops->add_new_disk_cancel(mddev);
6404 else
6405 err = add_bound_rdev(rdev);
6406 }
6407
6408 } else if (!err)
6409 err = add_bound_rdev(rdev);
6410
6411 return err;
6412 }
6413
6414 /* otherwise, add_new_disk is only allowed
6415 * for major_version==0 superblocks
6416 */
6417 if (mddev->major_version != 0) {
6418 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6419 return -EINVAL;
6420 }
6421
6422 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6423 int err;
6424 rdev = md_import_device(dev, -1, 0);
6425 if (IS_ERR(rdev)) {
6426 pr_warn("md: error, md_import_device() returned %ld\n",
6427 PTR_ERR(rdev));
6428 return PTR_ERR(rdev);
6429 }
6430 rdev->desc_nr = info->number;
6431 if (info->raid_disk < mddev->raid_disks)
6432 rdev->raid_disk = info->raid_disk;
6433 else
6434 rdev->raid_disk = -1;
6435
6436 if (rdev->raid_disk < mddev->raid_disks)
6437 if (info->state & (1<<MD_DISK_SYNC))
6438 set_bit(In_sync, &rdev->flags);
6439
6440 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6441 set_bit(WriteMostly, &rdev->flags);
6442 if (info->state & (1<<MD_DISK_FAILFAST))
6443 set_bit(FailFast, &rdev->flags);
6444
6445 if (!mddev->persistent) {
6446 pr_debug("md: nonpersistent superblock ...\n");
6447 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6448 } else
6449 rdev->sb_start = calc_dev_sboffset(rdev);
6450 rdev->sectors = rdev->sb_start;
6451
6452 err = bind_rdev_to_array(rdev, mddev);
6453 if (err) {
6454 export_rdev(rdev);
6455 return err;
6456 }
6457 }
6458
6459 return 0;
6460 }
6461
6462 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6463 {
6464 char b[BDEVNAME_SIZE];
6465 struct md_rdev *rdev;
6466
6467 rdev = find_rdev(mddev, dev);
6468 if (!rdev)
6469 return -ENXIO;
6470
6471 if (rdev->raid_disk < 0)
6472 goto kick_rdev;
6473
6474 clear_bit(Blocked, &rdev->flags);
6475 remove_and_add_spares(mddev, rdev);
6476
6477 if (rdev->raid_disk >= 0)
6478 goto busy;
6479
6480 kick_rdev:
6481 if (mddev_is_clustered(mddev))
6482 md_cluster_ops->remove_disk(mddev, rdev);
6483
6484 md_kick_rdev_from_array(rdev);
6485 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6486 if (mddev->thread)
6487 md_wakeup_thread(mddev->thread);
6488 else
6489 md_update_sb(mddev, 1);
6490 md_new_event(mddev);
6491
6492 return 0;
6493 busy:
6494 pr_debug("md: cannot remove active disk %s from %s ...\n",
6495 bdevname(rdev->bdev,b), mdname(mddev));
6496 return -EBUSY;
6497 }
6498
6499 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6500 {
6501 char b[BDEVNAME_SIZE];
6502 int err;
6503 struct md_rdev *rdev;
6504
6505 if (!mddev->pers)
6506 return -ENODEV;
6507
6508 if (mddev->major_version != 0) {
6509 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6510 mdname(mddev));
6511 return -EINVAL;
6512 }
6513 if (!mddev->pers->hot_add_disk) {
6514 pr_warn("%s: personality does not support diskops!\n",
6515 mdname(mddev));
6516 return -EINVAL;
6517 }
6518
6519 rdev = md_import_device(dev, -1, 0);
6520 if (IS_ERR(rdev)) {
6521 pr_warn("md: error, md_import_device() returned %ld\n",
6522 PTR_ERR(rdev));
6523 return -EINVAL;
6524 }
6525
6526 if (mddev->persistent)
6527 rdev->sb_start = calc_dev_sboffset(rdev);
6528 else
6529 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6530
6531 rdev->sectors = rdev->sb_start;
6532
6533 if (test_bit(Faulty, &rdev->flags)) {
6534 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6535 bdevname(rdev->bdev,b), mdname(mddev));
6536 err = -EINVAL;
6537 goto abort_export;
6538 }
6539
6540 clear_bit(In_sync, &rdev->flags);
6541 rdev->desc_nr = -1;
6542 rdev->saved_raid_disk = -1;
6543 err = bind_rdev_to_array(rdev, mddev);
6544 if (err)
6545 goto abort_export;
6546
6547 /*
6548 * The rest should better be atomic, we can have disk failures
6549 * noticed in interrupt contexts ...
6550 */
6551
6552 rdev->raid_disk = -1;
6553
6554 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6555 if (!mddev->thread)
6556 md_update_sb(mddev, 1);
6557 /*
6558 * Kick recovery, maybe this spare has to be added to the
6559 * array immediately.
6560 */
6561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6562 md_wakeup_thread(mddev->thread);
6563 md_new_event(mddev);
6564 return 0;
6565
6566 abort_export:
6567 export_rdev(rdev);
6568 return err;
6569 }
6570
6571 static int set_bitmap_file(struct mddev *mddev, int fd)
6572 {
6573 int err = 0;
6574
6575 if (mddev->pers) {
6576 if (!mddev->pers->quiesce || !mddev->thread)
6577 return -EBUSY;
6578 if (mddev->recovery || mddev->sync_thread)
6579 return -EBUSY;
6580 /* we should be able to change the bitmap.. */
6581 }
6582
6583 if (fd >= 0) {
6584 struct inode *inode;
6585 struct file *f;
6586
6587 if (mddev->bitmap || mddev->bitmap_info.file)
6588 return -EEXIST; /* cannot add when bitmap is present */
6589 f = fget(fd);
6590
6591 if (f == NULL) {
6592 pr_warn("%s: error: failed to get bitmap file\n",
6593 mdname(mddev));
6594 return -EBADF;
6595 }
6596
6597 inode = f->f_mapping->host;
6598 if (!S_ISREG(inode->i_mode)) {
6599 pr_warn("%s: error: bitmap file must be a regular file\n",
6600 mdname(mddev));
6601 err = -EBADF;
6602 } else if (!(f->f_mode & FMODE_WRITE)) {
6603 pr_warn("%s: error: bitmap file must open for write\n",
6604 mdname(mddev));
6605 err = -EBADF;
6606 } else if (atomic_read(&inode->i_writecount) != 1) {
6607 pr_warn("%s: error: bitmap file is already in use\n",
6608 mdname(mddev));
6609 err = -EBUSY;
6610 }
6611 if (err) {
6612 fput(f);
6613 return err;
6614 }
6615 mddev->bitmap_info.file = f;
6616 mddev->bitmap_info.offset = 0; /* file overrides offset */
6617 } else if (mddev->bitmap == NULL)
6618 return -ENOENT; /* cannot remove what isn't there */
6619 err = 0;
6620 if (mddev->pers) {
6621 mddev->pers->quiesce(mddev, 1);
6622 if (fd >= 0) {
6623 struct bitmap *bitmap;
6624
6625 bitmap = bitmap_create(mddev, -1);
6626 if (!IS_ERR(bitmap)) {
6627 mddev->bitmap = bitmap;
6628 err = bitmap_load(mddev);
6629 } else
6630 err = PTR_ERR(bitmap);
6631 }
6632 if (fd < 0 || err) {
6633 bitmap_destroy(mddev);
6634 fd = -1; /* make sure to put the file */
6635 }
6636 mddev->pers->quiesce(mddev, 0);
6637 }
6638 if (fd < 0) {
6639 struct file *f = mddev->bitmap_info.file;
6640 if (f) {
6641 spin_lock(&mddev->lock);
6642 mddev->bitmap_info.file = NULL;
6643 spin_unlock(&mddev->lock);
6644 fput(f);
6645 }
6646 }
6647
6648 return err;
6649 }
6650
6651 /*
6652 * set_array_info is used two different ways
6653 * The original usage is when creating a new array.
6654 * In this usage, raid_disks is > 0 and it together with
6655 * level, size, not_persistent,layout,chunksize determine the
6656 * shape of the array.
6657 * This will always create an array with a type-0.90.0 superblock.
6658 * The newer usage is when assembling an array.
6659 * In this case raid_disks will be 0, and the major_version field is
6660 * use to determine which style super-blocks are to be found on the devices.
6661 * The minor and patch _version numbers are also kept incase the
6662 * super_block handler wishes to interpret them.
6663 */
6664 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6665 {
6666
6667 if (info->raid_disks == 0) {
6668 /* just setting version number for superblock loading */
6669 if (info->major_version < 0 ||
6670 info->major_version >= ARRAY_SIZE(super_types) ||
6671 super_types[info->major_version].name == NULL) {
6672 /* maybe try to auto-load a module? */
6673 pr_warn("md: superblock version %d not known\n",
6674 info->major_version);
6675 return -EINVAL;
6676 }
6677 mddev->major_version = info->major_version;
6678 mddev->minor_version = info->minor_version;
6679 mddev->patch_version = info->patch_version;
6680 mddev->persistent = !info->not_persistent;
6681 /* ensure mddev_put doesn't delete this now that there
6682 * is some minimal configuration.
6683 */
6684 mddev->ctime = ktime_get_real_seconds();
6685 return 0;
6686 }
6687 mddev->major_version = MD_MAJOR_VERSION;
6688 mddev->minor_version = MD_MINOR_VERSION;
6689 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6690 mddev->ctime = ktime_get_real_seconds();
6691
6692 mddev->level = info->level;
6693 mddev->clevel[0] = 0;
6694 mddev->dev_sectors = 2 * (sector_t)info->size;
6695 mddev->raid_disks = info->raid_disks;
6696 /* don't set md_minor, it is determined by which /dev/md* was
6697 * openned
6698 */
6699 if (info->state & (1<<MD_SB_CLEAN))
6700 mddev->recovery_cp = MaxSector;
6701 else
6702 mddev->recovery_cp = 0;
6703 mddev->persistent = ! info->not_persistent;
6704 mddev->external = 0;
6705
6706 mddev->layout = info->layout;
6707 mddev->chunk_sectors = info->chunk_size >> 9;
6708
6709 if (mddev->persistent) {
6710 mddev->max_disks = MD_SB_DISKS;
6711 mddev->flags = 0;
6712 mddev->sb_flags = 0;
6713 }
6714 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6715
6716 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6717 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6718 mddev->bitmap_info.offset = 0;
6719
6720 mddev->reshape_position = MaxSector;
6721
6722 /*
6723 * Generate a 128 bit UUID
6724 */
6725 get_random_bytes(mddev->uuid, 16);
6726
6727 mddev->new_level = mddev->level;
6728 mddev->new_chunk_sectors = mddev->chunk_sectors;
6729 mddev->new_layout = mddev->layout;
6730 mddev->delta_disks = 0;
6731 mddev->reshape_backwards = 0;
6732
6733 return 0;
6734 }
6735
6736 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6737 {
6738 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6739
6740 if (mddev->external_size)
6741 return;
6742
6743 mddev->array_sectors = array_sectors;
6744 }
6745 EXPORT_SYMBOL(md_set_array_sectors);
6746
6747 static int update_size(struct mddev *mddev, sector_t num_sectors)
6748 {
6749 struct md_rdev *rdev;
6750 int rv;
6751 int fit = (num_sectors == 0);
6752 sector_t old_dev_sectors = mddev->dev_sectors;
6753
6754 if (mddev->pers->resize == NULL)
6755 return -EINVAL;
6756 /* The "num_sectors" is the number of sectors of each device that
6757 * is used. This can only make sense for arrays with redundancy.
6758 * linear and raid0 always use whatever space is available. We can only
6759 * consider changing this number if no resync or reconstruction is
6760 * happening, and if the new size is acceptable. It must fit before the
6761 * sb_start or, if that is <data_offset, it must fit before the size
6762 * of each device. If num_sectors is zero, we find the largest size
6763 * that fits.
6764 */
6765 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6766 mddev->sync_thread)
6767 return -EBUSY;
6768 if (mddev->ro)
6769 return -EROFS;
6770
6771 rdev_for_each(rdev, mddev) {
6772 sector_t avail = rdev->sectors;
6773
6774 if (fit && (num_sectors == 0 || num_sectors > avail))
6775 num_sectors = avail;
6776 if (avail < num_sectors)
6777 return -ENOSPC;
6778 }
6779 rv = mddev->pers->resize(mddev, num_sectors);
6780 if (!rv) {
6781 if (mddev_is_clustered(mddev))
6782 md_cluster_ops->update_size(mddev, old_dev_sectors);
6783 else if (mddev->queue) {
6784 set_capacity(mddev->gendisk, mddev->array_sectors);
6785 revalidate_disk(mddev->gendisk);
6786 }
6787 }
6788 return rv;
6789 }
6790
6791 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6792 {
6793 int rv;
6794 struct md_rdev *rdev;
6795 /* change the number of raid disks */
6796 if (mddev->pers->check_reshape == NULL)
6797 return -EINVAL;
6798 if (mddev->ro)
6799 return -EROFS;
6800 if (raid_disks <= 0 ||
6801 (mddev->max_disks && raid_disks >= mddev->max_disks))
6802 return -EINVAL;
6803 if (mddev->sync_thread ||
6804 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6805 mddev->reshape_position != MaxSector)
6806 return -EBUSY;
6807
6808 rdev_for_each(rdev, mddev) {
6809 if (mddev->raid_disks < raid_disks &&
6810 rdev->data_offset < rdev->new_data_offset)
6811 return -EINVAL;
6812 if (mddev->raid_disks > raid_disks &&
6813 rdev->data_offset > rdev->new_data_offset)
6814 return -EINVAL;
6815 }
6816
6817 mddev->delta_disks = raid_disks - mddev->raid_disks;
6818 if (mddev->delta_disks < 0)
6819 mddev->reshape_backwards = 1;
6820 else if (mddev->delta_disks > 0)
6821 mddev->reshape_backwards = 0;
6822
6823 rv = mddev->pers->check_reshape(mddev);
6824 if (rv < 0) {
6825 mddev->delta_disks = 0;
6826 mddev->reshape_backwards = 0;
6827 }
6828 return rv;
6829 }
6830
6831 /*
6832 * update_array_info is used to change the configuration of an
6833 * on-line array.
6834 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6835 * fields in the info are checked against the array.
6836 * Any differences that cannot be handled will cause an error.
6837 * Normally, only one change can be managed at a time.
6838 */
6839 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6840 {
6841 int rv = 0;
6842 int cnt = 0;
6843 int state = 0;
6844
6845 /* calculate expected state,ignoring low bits */
6846 if (mddev->bitmap && mddev->bitmap_info.offset)
6847 state |= (1 << MD_SB_BITMAP_PRESENT);
6848
6849 if (mddev->major_version != info->major_version ||
6850 mddev->minor_version != info->minor_version ||
6851 /* mddev->patch_version != info->patch_version || */
6852 mddev->ctime != info->ctime ||
6853 mddev->level != info->level ||
6854 /* mddev->layout != info->layout || */
6855 mddev->persistent != !info->not_persistent ||
6856 mddev->chunk_sectors != info->chunk_size >> 9 ||
6857 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6858 ((state^info->state) & 0xfffffe00)
6859 )
6860 return -EINVAL;
6861 /* Check there is only one change */
6862 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6863 cnt++;
6864 if (mddev->raid_disks != info->raid_disks)
6865 cnt++;
6866 if (mddev->layout != info->layout)
6867 cnt++;
6868 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6869 cnt++;
6870 if (cnt == 0)
6871 return 0;
6872 if (cnt > 1)
6873 return -EINVAL;
6874
6875 if (mddev->layout != info->layout) {
6876 /* Change layout
6877 * we don't need to do anything at the md level, the
6878 * personality will take care of it all.
6879 */
6880 if (mddev->pers->check_reshape == NULL)
6881 return -EINVAL;
6882 else {
6883 mddev->new_layout = info->layout;
6884 rv = mddev->pers->check_reshape(mddev);
6885 if (rv)
6886 mddev->new_layout = mddev->layout;
6887 return rv;
6888 }
6889 }
6890 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6891 rv = update_size(mddev, (sector_t)info->size * 2);
6892
6893 if (mddev->raid_disks != info->raid_disks)
6894 rv = update_raid_disks(mddev, info->raid_disks);
6895
6896 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6897 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6898 rv = -EINVAL;
6899 goto err;
6900 }
6901 if (mddev->recovery || mddev->sync_thread) {
6902 rv = -EBUSY;
6903 goto err;
6904 }
6905 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6906 struct bitmap *bitmap;
6907 /* add the bitmap */
6908 if (mddev->bitmap) {
6909 rv = -EEXIST;
6910 goto err;
6911 }
6912 if (mddev->bitmap_info.default_offset == 0) {
6913 rv = -EINVAL;
6914 goto err;
6915 }
6916 mddev->bitmap_info.offset =
6917 mddev->bitmap_info.default_offset;
6918 mddev->bitmap_info.space =
6919 mddev->bitmap_info.default_space;
6920 mddev->pers->quiesce(mddev, 1);
6921 bitmap = bitmap_create(mddev, -1);
6922 if (!IS_ERR(bitmap)) {
6923 mddev->bitmap = bitmap;
6924 rv = bitmap_load(mddev);
6925 } else
6926 rv = PTR_ERR(bitmap);
6927 if (rv)
6928 bitmap_destroy(mddev);
6929 mddev->pers->quiesce(mddev, 0);
6930 } else {
6931 /* remove the bitmap */
6932 if (!mddev->bitmap) {
6933 rv = -ENOENT;
6934 goto err;
6935 }
6936 if (mddev->bitmap->storage.file) {
6937 rv = -EINVAL;
6938 goto err;
6939 }
6940 if (mddev->bitmap_info.nodes) {
6941 /* hold PW on all the bitmap lock */
6942 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6943 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6944 rv = -EPERM;
6945 md_cluster_ops->unlock_all_bitmaps(mddev);
6946 goto err;
6947 }
6948
6949 mddev->bitmap_info.nodes = 0;
6950 md_cluster_ops->leave(mddev);
6951 }
6952 mddev->pers->quiesce(mddev, 1);
6953 bitmap_destroy(mddev);
6954 mddev->pers->quiesce(mddev, 0);
6955 mddev->bitmap_info.offset = 0;
6956 }
6957 }
6958 md_update_sb(mddev, 1);
6959 return rv;
6960 err:
6961 return rv;
6962 }
6963
6964 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6965 {
6966 struct md_rdev *rdev;
6967 int err = 0;
6968
6969 if (mddev->pers == NULL)
6970 return -ENODEV;
6971
6972 rcu_read_lock();
6973 rdev = find_rdev_rcu(mddev, dev);
6974 if (!rdev)
6975 err = -ENODEV;
6976 else {
6977 md_error(mddev, rdev);
6978 if (!test_bit(Faulty, &rdev->flags))
6979 err = -EBUSY;
6980 }
6981 rcu_read_unlock();
6982 return err;
6983 }
6984
6985 /*
6986 * We have a problem here : there is no easy way to give a CHS
6987 * virtual geometry. We currently pretend that we have a 2 heads
6988 * 4 sectors (with a BIG number of cylinders...). This drives
6989 * dosfs just mad... ;-)
6990 */
6991 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6992 {
6993 struct mddev *mddev = bdev->bd_disk->private_data;
6994
6995 geo->heads = 2;
6996 geo->sectors = 4;
6997 geo->cylinders = mddev->array_sectors / 8;
6998 return 0;
6999 }
7000
7001 static inline bool md_ioctl_valid(unsigned int cmd)
7002 {
7003 switch (cmd) {
7004 case ADD_NEW_DISK:
7005 case BLKROSET:
7006 case GET_ARRAY_INFO:
7007 case GET_BITMAP_FILE:
7008 case GET_DISK_INFO:
7009 case HOT_ADD_DISK:
7010 case HOT_REMOVE_DISK:
7011 case RAID_AUTORUN:
7012 case RAID_VERSION:
7013 case RESTART_ARRAY_RW:
7014 case RUN_ARRAY:
7015 case SET_ARRAY_INFO:
7016 case SET_BITMAP_FILE:
7017 case SET_DISK_FAULTY:
7018 case STOP_ARRAY:
7019 case STOP_ARRAY_RO:
7020 case CLUSTERED_DISK_NACK:
7021 return true;
7022 default:
7023 return false;
7024 }
7025 }
7026
7027 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7028 unsigned int cmd, unsigned long arg)
7029 {
7030 int err = 0;
7031 void __user *argp = (void __user *)arg;
7032 struct mddev *mddev = NULL;
7033 int ro;
7034 bool did_set_md_closing = false;
7035
7036 if (!md_ioctl_valid(cmd))
7037 return -ENOTTY;
7038
7039 switch (cmd) {
7040 case RAID_VERSION:
7041 case GET_ARRAY_INFO:
7042 case GET_DISK_INFO:
7043 break;
7044 default:
7045 if (!capable(CAP_SYS_ADMIN))
7046 return -EACCES;
7047 }
7048
7049 /*
7050 * Commands dealing with the RAID driver but not any
7051 * particular array:
7052 */
7053 switch (cmd) {
7054 case RAID_VERSION:
7055 err = get_version(argp);
7056 goto out;
7057
7058 #ifndef MODULE
7059 case RAID_AUTORUN:
7060 err = 0;
7061 autostart_arrays(arg);
7062 goto out;
7063 #endif
7064 default:;
7065 }
7066
7067 /*
7068 * Commands creating/starting a new array:
7069 */
7070
7071 mddev = bdev->bd_disk->private_data;
7072
7073 if (!mddev) {
7074 BUG();
7075 goto out;
7076 }
7077
7078 /* Some actions do not requires the mutex */
7079 switch (cmd) {
7080 case GET_ARRAY_INFO:
7081 if (!mddev->raid_disks && !mddev->external)
7082 err = -ENODEV;
7083 else
7084 err = get_array_info(mddev, argp);
7085 goto out;
7086
7087 case GET_DISK_INFO:
7088 if (!mddev->raid_disks && !mddev->external)
7089 err = -ENODEV;
7090 else
7091 err = get_disk_info(mddev, argp);
7092 goto out;
7093
7094 case SET_DISK_FAULTY:
7095 err = set_disk_faulty(mddev, new_decode_dev(arg));
7096 goto out;
7097
7098 case GET_BITMAP_FILE:
7099 err = get_bitmap_file(mddev, argp);
7100 goto out;
7101
7102 }
7103
7104 if (cmd == ADD_NEW_DISK)
7105 /* need to ensure md_delayed_delete() has completed */
7106 flush_workqueue(md_misc_wq);
7107
7108 if (cmd == HOT_REMOVE_DISK)
7109 /* need to ensure recovery thread has run */
7110 wait_event_interruptible_timeout(mddev->sb_wait,
7111 !test_bit(MD_RECOVERY_NEEDED,
7112 &mddev->recovery),
7113 msecs_to_jiffies(5000));
7114 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7115 /* Need to flush page cache, and ensure no-one else opens
7116 * and writes
7117 */
7118 mutex_lock(&mddev->open_mutex);
7119 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7120 mutex_unlock(&mddev->open_mutex);
7121 err = -EBUSY;
7122 goto out;
7123 }
7124 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7125 set_bit(MD_CLOSING, &mddev->flags);
7126 did_set_md_closing = true;
7127 mutex_unlock(&mddev->open_mutex);
7128 sync_blockdev(bdev);
7129 }
7130 err = mddev_lock(mddev);
7131 if (err) {
7132 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7133 err, cmd);
7134 goto out;
7135 }
7136
7137 if (cmd == SET_ARRAY_INFO) {
7138 mdu_array_info_t info;
7139 if (!arg)
7140 memset(&info, 0, sizeof(info));
7141 else if (copy_from_user(&info, argp, sizeof(info))) {
7142 err = -EFAULT;
7143 goto unlock;
7144 }
7145 if (mddev->pers) {
7146 err = update_array_info(mddev, &info);
7147 if (err) {
7148 pr_warn("md: couldn't update array info. %d\n", err);
7149 goto unlock;
7150 }
7151 goto unlock;
7152 }
7153 if (!list_empty(&mddev->disks)) {
7154 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7155 err = -EBUSY;
7156 goto unlock;
7157 }
7158 if (mddev->raid_disks) {
7159 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7160 err = -EBUSY;
7161 goto unlock;
7162 }
7163 err = set_array_info(mddev, &info);
7164 if (err) {
7165 pr_warn("md: couldn't set array info. %d\n", err);
7166 goto unlock;
7167 }
7168 goto unlock;
7169 }
7170
7171 /*
7172 * Commands querying/configuring an existing array:
7173 */
7174 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7175 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7176 if ((!mddev->raid_disks && !mddev->external)
7177 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7178 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7179 && cmd != GET_BITMAP_FILE) {
7180 err = -ENODEV;
7181 goto unlock;
7182 }
7183
7184 /*
7185 * Commands even a read-only array can execute:
7186 */
7187 switch (cmd) {
7188 case RESTART_ARRAY_RW:
7189 err = restart_array(mddev);
7190 goto unlock;
7191
7192 case STOP_ARRAY:
7193 err = do_md_stop(mddev, 0, bdev);
7194 goto unlock;
7195
7196 case STOP_ARRAY_RO:
7197 err = md_set_readonly(mddev, bdev);
7198 goto unlock;
7199
7200 case HOT_REMOVE_DISK:
7201 err = hot_remove_disk(mddev, new_decode_dev(arg));
7202 goto unlock;
7203
7204 case ADD_NEW_DISK:
7205 /* We can support ADD_NEW_DISK on read-only arrays
7206 * only if we are re-adding a preexisting device.
7207 * So require mddev->pers and MD_DISK_SYNC.
7208 */
7209 if (mddev->pers) {
7210 mdu_disk_info_t info;
7211 if (copy_from_user(&info, argp, sizeof(info)))
7212 err = -EFAULT;
7213 else if (!(info.state & (1<<MD_DISK_SYNC)))
7214 /* Need to clear read-only for this */
7215 break;
7216 else
7217 err = add_new_disk(mddev, &info);
7218 goto unlock;
7219 }
7220 break;
7221
7222 case BLKROSET:
7223 if (get_user(ro, (int __user *)(arg))) {
7224 err = -EFAULT;
7225 goto unlock;
7226 }
7227 err = -EINVAL;
7228
7229 /* if the bdev is going readonly the value of mddev->ro
7230 * does not matter, no writes are coming
7231 */
7232 if (ro)
7233 goto unlock;
7234
7235 /* are we are already prepared for writes? */
7236 if (mddev->ro != 1)
7237 goto unlock;
7238
7239 /* transitioning to readauto need only happen for
7240 * arrays that call md_write_start
7241 */
7242 if (mddev->pers) {
7243 err = restart_array(mddev);
7244 if (err == 0) {
7245 mddev->ro = 2;
7246 set_disk_ro(mddev->gendisk, 0);
7247 }
7248 }
7249 goto unlock;
7250 }
7251
7252 /*
7253 * The remaining ioctls are changing the state of the
7254 * superblock, so we do not allow them on read-only arrays.
7255 */
7256 if (mddev->ro && mddev->pers) {
7257 if (mddev->ro == 2) {
7258 mddev->ro = 0;
7259 sysfs_notify_dirent_safe(mddev->sysfs_state);
7260 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7261 /* mddev_unlock will wake thread */
7262 /* If a device failed while we were read-only, we
7263 * need to make sure the metadata is updated now.
7264 */
7265 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7266 mddev_unlock(mddev);
7267 wait_event(mddev->sb_wait,
7268 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7269 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7270 mddev_lock_nointr(mddev);
7271 }
7272 } else {
7273 err = -EROFS;
7274 goto unlock;
7275 }
7276 }
7277
7278 switch (cmd) {
7279 case ADD_NEW_DISK:
7280 {
7281 mdu_disk_info_t info;
7282 if (copy_from_user(&info, argp, sizeof(info)))
7283 err = -EFAULT;
7284 else
7285 err = add_new_disk(mddev, &info);
7286 goto unlock;
7287 }
7288
7289 case CLUSTERED_DISK_NACK:
7290 if (mddev_is_clustered(mddev))
7291 md_cluster_ops->new_disk_ack(mddev, false);
7292 else
7293 err = -EINVAL;
7294 goto unlock;
7295
7296 case HOT_ADD_DISK:
7297 err = hot_add_disk(mddev, new_decode_dev(arg));
7298 goto unlock;
7299
7300 case RUN_ARRAY:
7301 err = do_md_run(mddev);
7302 goto unlock;
7303
7304 case SET_BITMAP_FILE:
7305 err = set_bitmap_file(mddev, (int)arg);
7306 goto unlock;
7307
7308 default:
7309 err = -EINVAL;
7310 goto unlock;
7311 }
7312
7313 unlock:
7314 if (mddev->hold_active == UNTIL_IOCTL &&
7315 err != -EINVAL)
7316 mddev->hold_active = 0;
7317 mddev_unlock(mddev);
7318 out:
7319 if(did_set_md_closing)
7320 clear_bit(MD_CLOSING, &mddev->flags);
7321 return err;
7322 }
7323 #ifdef CONFIG_COMPAT
7324 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7325 unsigned int cmd, unsigned long arg)
7326 {
7327 switch (cmd) {
7328 case HOT_REMOVE_DISK:
7329 case HOT_ADD_DISK:
7330 case SET_DISK_FAULTY:
7331 case SET_BITMAP_FILE:
7332 /* These take in integer arg, do not convert */
7333 break;
7334 default:
7335 arg = (unsigned long)compat_ptr(arg);
7336 break;
7337 }
7338
7339 return md_ioctl(bdev, mode, cmd, arg);
7340 }
7341 #endif /* CONFIG_COMPAT */
7342
7343 static int md_open(struct block_device *bdev, fmode_t mode)
7344 {
7345 /*
7346 * Succeed if we can lock the mddev, which confirms that
7347 * it isn't being stopped right now.
7348 */
7349 struct mddev *mddev = mddev_find(bdev->bd_dev);
7350 int err;
7351
7352 if (!mddev)
7353 return -ENODEV;
7354
7355 if (mddev->gendisk != bdev->bd_disk) {
7356 /* we are racing with mddev_put which is discarding this
7357 * bd_disk.
7358 */
7359 mddev_put(mddev);
7360 /* Wait until bdev->bd_disk is definitely gone */
7361 flush_workqueue(md_misc_wq);
7362 /* Then retry the open from the top */
7363 return -ERESTARTSYS;
7364 }
7365 BUG_ON(mddev != bdev->bd_disk->private_data);
7366
7367 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7368 goto out;
7369
7370 if (test_bit(MD_CLOSING, &mddev->flags)) {
7371 mutex_unlock(&mddev->open_mutex);
7372 err = -ENODEV;
7373 goto out;
7374 }
7375
7376 err = 0;
7377 atomic_inc(&mddev->openers);
7378 mutex_unlock(&mddev->open_mutex);
7379
7380 check_disk_change(bdev);
7381 out:
7382 if (err)
7383 mddev_put(mddev);
7384 return err;
7385 }
7386
7387 static void md_release(struct gendisk *disk, fmode_t mode)
7388 {
7389 struct mddev *mddev = disk->private_data;
7390
7391 BUG_ON(!mddev);
7392 atomic_dec(&mddev->openers);
7393 mddev_put(mddev);
7394 }
7395
7396 static int md_media_changed(struct gendisk *disk)
7397 {
7398 struct mddev *mddev = disk->private_data;
7399
7400 return mddev->changed;
7401 }
7402
7403 static int md_revalidate(struct gendisk *disk)
7404 {
7405 struct mddev *mddev = disk->private_data;
7406
7407 mddev->changed = 0;
7408 return 0;
7409 }
7410 static const struct block_device_operations md_fops =
7411 {
7412 .owner = THIS_MODULE,
7413 .open = md_open,
7414 .release = md_release,
7415 .ioctl = md_ioctl,
7416 #ifdef CONFIG_COMPAT
7417 .compat_ioctl = md_compat_ioctl,
7418 #endif
7419 .getgeo = md_getgeo,
7420 .media_changed = md_media_changed,
7421 .revalidate_disk= md_revalidate,
7422 };
7423
7424 static int md_thread(void *arg)
7425 {
7426 struct md_thread *thread = arg;
7427
7428 /*
7429 * md_thread is a 'system-thread', it's priority should be very
7430 * high. We avoid resource deadlocks individually in each
7431 * raid personality. (RAID5 does preallocation) We also use RR and
7432 * the very same RT priority as kswapd, thus we will never get
7433 * into a priority inversion deadlock.
7434 *
7435 * we definitely have to have equal or higher priority than
7436 * bdflush, otherwise bdflush will deadlock if there are too
7437 * many dirty RAID5 blocks.
7438 */
7439
7440 allow_signal(SIGKILL);
7441 while (!kthread_should_stop()) {
7442
7443 /* We need to wait INTERRUPTIBLE so that
7444 * we don't add to the load-average.
7445 * That means we need to be sure no signals are
7446 * pending
7447 */
7448 if (signal_pending(current))
7449 flush_signals(current);
7450
7451 wait_event_interruptible_timeout
7452 (thread->wqueue,
7453 test_bit(THREAD_WAKEUP, &thread->flags)
7454 || kthread_should_stop() || kthread_should_park(),
7455 thread->timeout);
7456
7457 clear_bit(THREAD_WAKEUP, &thread->flags);
7458 if (kthread_should_park())
7459 kthread_parkme();
7460 if (!kthread_should_stop())
7461 thread->run(thread);
7462 }
7463
7464 return 0;
7465 }
7466
7467 void md_wakeup_thread(struct md_thread *thread)
7468 {
7469 if (thread) {
7470 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7471 if (!test_and_set_bit(THREAD_WAKEUP, &thread->flags))
7472 wake_up(&thread->wqueue);
7473 }
7474 }
7475 EXPORT_SYMBOL(md_wakeup_thread);
7476
7477 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7478 struct mddev *mddev, const char *name)
7479 {
7480 struct md_thread *thread;
7481
7482 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7483 if (!thread)
7484 return NULL;
7485
7486 init_waitqueue_head(&thread->wqueue);
7487
7488 thread->run = run;
7489 thread->mddev = mddev;
7490 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7491 thread->tsk = kthread_run(md_thread, thread,
7492 "%s_%s",
7493 mdname(thread->mddev),
7494 name);
7495 if (IS_ERR(thread->tsk)) {
7496 kfree(thread);
7497 return NULL;
7498 }
7499 return thread;
7500 }
7501 EXPORT_SYMBOL(md_register_thread);
7502
7503 void md_unregister_thread(struct md_thread **threadp)
7504 {
7505 struct md_thread *thread = *threadp;
7506 if (!thread)
7507 return;
7508 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7509 /* Locking ensures that mddev_unlock does not wake_up a
7510 * non-existent thread
7511 */
7512 spin_lock(&pers_lock);
7513 *threadp = NULL;
7514 spin_unlock(&pers_lock);
7515
7516 kthread_stop(thread->tsk);
7517 kfree(thread);
7518 }
7519 EXPORT_SYMBOL(md_unregister_thread);
7520
7521 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7522 {
7523 if (!rdev || test_bit(Faulty, &rdev->flags))
7524 return;
7525
7526 if (!mddev->pers || !mddev->pers->error_handler)
7527 return;
7528 mddev->pers->error_handler(mddev,rdev);
7529 if (mddev->degraded)
7530 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7531 sysfs_notify_dirent_safe(rdev->sysfs_state);
7532 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7533 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7534 md_wakeup_thread(mddev->thread);
7535 if (mddev->event_work.func)
7536 queue_work(md_misc_wq, &mddev->event_work);
7537 md_new_event(mddev);
7538 }
7539 EXPORT_SYMBOL(md_error);
7540
7541 /* seq_file implementation /proc/mdstat */
7542
7543 static void status_unused(struct seq_file *seq)
7544 {
7545 int i = 0;
7546 struct md_rdev *rdev;
7547
7548 seq_printf(seq, "unused devices: ");
7549
7550 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7551 char b[BDEVNAME_SIZE];
7552 i++;
7553 seq_printf(seq, "%s ",
7554 bdevname(rdev->bdev,b));
7555 }
7556 if (!i)
7557 seq_printf(seq, "<none>");
7558
7559 seq_printf(seq, "\n");
7560 }
7561
7562 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7563 {
7564 sector_t max_sectors, resync, res;
7565 unsigned long dt, db;
7566 sector_t rt;
7567 int scale;
7568 unsigned int per_milli;
7569
7570 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7571 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7572 max_sectors = mddev->resync_max_sectors;
7573 else
7574 max_sectors = mddev->dev_sectors;
7575
7576 resync = mddev->curr_resync;
7577 if (resync <= 3) {
7578 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7579 /* Still cleaning up */
7580 resync = max_sectors;
7581 } else
7582 resync -= atomic_read(&mddev->recovery_active);
7583
7584 if (resync == 0) {
7585 if (mddev->recovery_cp < MaxSector) {
7586 seq_printf(seq, "\tresync=PENDING");
7587 return 1;
7588 }
7589 return 0;
7590 }
7591 if (resync < 3) {
7592 seq_printf(seq, "\tresync=DELAYED");
7593 return 1;
7594 }
7595
7596 WARN_ON(max_sectors == 0);
7597 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7598 * in a sector_t, and (max_sectors>>scale) will fit in a
7599 * u32, as those are the requirements for sector_div.
7600 * Thus 'scale' must be at least 10
7601 */
7602 scale = 10;
7603 if (sizeof(sector_t) > sizeof(unsigned long)) {
7604 while ( max_sectors/2 > (1ULL<<(scale+32)))
7605 scale++;
7606 }
7607 res = (resync>>scale)*1000;
7608 sector_div(res, (u32)((max_sectors>>scale)+1));
7609
7610 per_milli = res;
7611 {
7612 int i, x = per_milli/50, y = 20-x;
7613 seq_printf(seq, "[");
7614 for (i = 0; i < x; i++)
7615 seq_printf(seq, "=");
7616 seq_printf(seq, ">");
7617 for (i = 0; i < y; i++)
7618 seq_printf(seq, ".");
7619 seq_printf(seq, "] ");
7620 }
7621 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7622 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7623 "reshape" :
7624 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7625 "check" :
7626 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7627 "resync" : "recovery"))),
7628 per_milli/10, per_milli % 10,
7629 (unsigned long long) resync/2,
7630 (unsigned long long) max_sectors/2);
7631
7632 /*
7633 * dt: time from mark until now
7634 * db: blocks written from mark until now
7635 * rt: remaining time
7636 *
7637 * rt is a sector_t, so could be 32bit or 64bit.
7638 * So we divide before multiply in case it is 32bit and close
7639 * to the limit.
7640 * We scale the divisor (db) by 32 to avoid losing precision
7641 * near the end of resync when the number of remaining sectors
7642 * is close to 'db'.
7643 * We then divide rt by 32 after multiplying by db to compensate.
7644 * The '+1' avoids division by zero if db is very small.
7645 */
7646 dt = ((jiffies - mddev->resync_mark) / HZ);
7647 if (!dt) dt++;
7648 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7649 - mddev->resync_mark_cnt;
7650
7651 rt = max_sectors - resync; /* number of remaining sectors */
7652 sector_div(rt, db/32+1);
7653 rt *= dt;
7654 rt >>= 5;
7655
7656 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7657 ((unsigned long)rt % 60)/6);
7658
7659 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7660 return 1;
7661 }
7662
7663 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7664 {
7665 struct list_head *tmp;
7666 loff_t l = *pos;
7667 struct mddev *mddev;
7668
7669 if (l >= 0x10000)
7670 return NULL;
7671 if (!l--)
7672 /* header */
7673 return (void*)1;
7674
7675 spin_lock(&all_mddevs_lock);
7676 list_for_each(tmp,&all_mddevs)
7677 if (!l--) {
7678 mddev = list_entry(tmp, struct mddev, all_mddevs);
7679 mddev_get(mddev);
7680 spin_unlock(&all_mddevs_lock);
7681 return mddev;
7682 }
7683 spin_unlock(&all_mddevs_lock);
7684 if (!l--)
7685 return (void*)2;/* tail */
7686 return NULL;
7687 }
7688
7689 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7690 {
7691 struct list_head *tmp;
7692 struct mddev *next_mddev, *mddev = v;
7693
7694 ++*pos;
7695 if (v == (void*)2)
7696 return NULL;
7697
7698 spin_lock(&all_mddevs_lock);
7699 if (v == (void*)1)
7700 tmp = all_mddevs.next;
7701 else
7702 tmp = mddev->all_mddevs.next;
7703 if (tmp != &all_mddevs)
7704 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7705 else {
7706 next_mddev = (void*)2;
7707 *pos = 0x10000;
7708 }
7709 spin_unlock(&all_mddevs_lock);
7710
7711 if (v != (void*)1)
7712 mddev_put(mddev);
7713 return next_mddev;
7714
7715 }
7716
7717 static void md_seq_stop(struct seq_file *seq, void *v)
7718 {
7719 struct mddev *mddev = v;
7720
7721 if (mddev && v != (void*)1 && v != (void*)2)
7722 mddev_put(mddev);
7723 }
7724
7725 static int md_seq_show(struct seq_file *seq, void *v)
7726 {
7727 struct mddev *mddev = v;
7728 sector_t sectors;
7729 struct md_rdev *rdev;
7730
7731 if (v == (void*)1) {
7732 struct md_personality *pers;
7733 seq_printf(seq, "Personalities : ");
7734 spin_lock(&pers_lock);
7735 list_for_each_entry(pers, &pers_list, list)
7736 seq_printf(seq, "[%s] ", pers->name);
7737
7738 spin_unlock(&pers_lock);
7739 seq_printf(seq, "\n");
7740 seq->poll_event = atomic_read(&md_event_count);
7741 return 0;
7742 }
7743 if (v == (void*)2) {
7744 status_unused(seq);
7745 return 0;
7746 }
7747
7748 spin_lock(&mddev->lock);
7749 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7750 seq_printf(seq, "%s : %sactive", mdname(mddev),
7751 mddev->pers ? "" : "in");
7752 if (mddev->pers) {
7753 if (mddev->ro==1)
7754 seq_printf(seq, " (read-only)");
7755 if (mddev->ro==2)
7756 seq_printf(seq, " (auto-read-only)");
7757 seq_printf(seq, " %s", mddev->pers->name);
7758 }
7759
7760 sectors = 0;
7761 rcu_read_lock();
7762 rdev_for_each_rcu(rdev, mddev) {
7763 char b[BDEVNAME_SIZE];
7764 seq_printf(seq, " %s[%d]",
7765 bdevname(rdev->bdev,b), rdev->desc_nr);
7766 if (test_bit(WriteMostly, &rdev->flags))
7767 seq_printf(seq, "(W)");
7768 if (test_bit(Journal, &rdev->flags))
7769 seq_printf(seq, "(J)");
7770 if (test_bit(Faulty, &rdev->flags)) {
7771 seq_printf(seq, "(F)");
7772 continue;
7773 }
7774 if (rdev->raid_disk < 0)
7775 seq_printf(seq, "(S)"); /* spare */
7776 if (test_bit(Replacement, &rdev->flags))
7777 seq_printf(seq, "(R)");
7778 sectors += rdev->sectors;
7779 }
7780 rcu_read_unlock();
7781
7782 if (!list_empty(&mddev->disks)) {
7783 if (mddev->pers)
7784 seq_printf(seq, "\n %llu blocks",
7785 (unsigned long long)
7786 mddev->array_sectors / 2);
7787 else
7788 seq_printf(seq, "\n %llu blocks",
7789 (unsigned long long)sectors / 2);
7790 }
7791 if (mddev->persistent) {
7792 if (mddev->major_version != 0 ||
7793 mddev->minor_version != 90) {
7794 seq_printf(seq," super %d.%d",
7795 mddev->major_version,
7796 mddev->minor_version);
7797 }
7798 } else if (mddev->external)
7799 seq_printf(seq, " super external:%s",
7800 mddev->metadata_type);
7801 else
7802 seq_printf(seq, " super non-persistent");
7803
7804 if (mddev->pers) {
7805 mddev->pers->status(seq, mddev);
7806 seq_printf(seq, "\n ");
7807 if (mddev->pers->sync_request) {
7808 if (status_resync(seq, mddev))
7809 seq_printf(seq, "\n ");
7810 }
7811 } else
7812 seq_printf(seq, "\n ");
7813
7814 bitmap_status(seq, mddev->bitmap);
7815
7816 seq_printf(seq, "\n");
7817 }
7818 spin_unlock(&mddev->lock);
7819
7820 return 0;
7821 }
7822
7823 static const struct seq_operations md_seq_ops = {
7824 .start = md_seq_start,
7825 .next = md_seq_next,
7826 .stop = md_seq_stop,
7827 .show = md_seq_show,
7828 };
7829
7830 static int md_seq_open(struct inode *inode, struct file *file)
7831 {
7832 struct seq_file *seq;
7833 int error;
7834
7835 error = seq_open(file, &md_seq_ops);
7836 if (error)
7837 return error;
7838
7839 seq = file->private_data;
7840 seq->poll_event = atomic_read(&md_event_count);
7841 return error;
7842 }
7843
7844 static int md_unloading;
7845 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7846 {
7847 struct seq_file *seq = filp->private_data;
7848 int mask;
7849
7850 if (md_unloading)
7851 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7852 poll_wait(filp, &md_event_waiters, wait);
7853
7854 /* always allow read */
7855 mask = POLLIN | POLLRDNORM;
7856
7857 if (seq->poll_event != atomic_read(&md_event_count))
7858 mask |= POLLERR | POLLPRI;
7859 return mask;
7860 }
7861
7862 static const struct file_operations md_seq_fops = {
7863 .owner = THIS_MODULE,
7864 .open = md_seq_open,
7865 .read = seq_read,
7866 .llseek = seq_lseek,
7867 .release = seq_release,
7868 .poll = mdstat_poll,
7869 };
7870
7871 int register_md_personality(struct md_personality *p)
7872 {
7873 pr_debug("md: %s personality registered for level %d\n",
7874 p->name, p->level);
7875 spin_lock(&pers_lock);
7876 list_add_tail(&p->list, &pers_list);
7877 spin_unlock(&pers_lock);
7878 return 0;
7879 }
7880 EXPORT_SYMBOL(register_md_personality);
7881
7882 int unregister_md_personality(struct md_personality *p)
7883 {
7884 pr_debug("md: %s personality unregistered\n", p->name);
7885 spin_lock(&pers_lock);
7886 list_del_init(&p->list);
7887 spin_unlock(&pers_lock);
7888 return 0;
7889 }
7890 EXPORT_SYMBOL(unregister_md_personality);
7891
7892 int register_md_cluster_operations(struct md_cluster_operations *ops,
7893 struct module *module)
7894 {
7895 int ret = 0;
7896 spin_lock(&pers_lock);
7897 if (md_cluster_ops != NULL)
7898 ret = -EALREADY;
7899 else {
7900 md_cluster_ops = ops;
7901 md_cluster_mod = module;
7902 }
7903 spin_unlock(&pers_lock);
7904 return ret;
7905 }
7906 EXPORT_SYMBOL(register_md_cluster_operations);
7907
7908 int unregister_md_cluster_operations(void)
7909 {
7910 spin_lock(&pers_lock);
7911 md_cluster_ops = NULL;
7912 spin_unlock(&pers_lock);
7913 return 0;
7914 }
7915 EXPORT_SYMBOL(unregister_md_cluster_operations);
7916
7917 int md_setup_cluster(struct mddev *mddev, int nodes)
7918 {
7919 if (!md_cluster_ops)
7920 request_module("md-cluster");
7921 spin_lock(&pers_lock);
7922 /* ensure module won't be unloaded */
7923 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7924 pr_warn("can't find md-cluster module or get it's reference.\n");
7925 spin_unlock(&pers_lock);
7926 return -ENOENT;
7927 }
7928 spin_unlock(&pers_lock);
7929
7930 return md_cluster_ops->join(mddev, nodes);
7931 }
7932
7933 void md_cluster_stop(struct mddev *mddev)
7934 {
7935 if (!md_cluster_ops)
7936 return;
7937 md_cluster_ops->leave(mddev);
7938 module_put(md_cluster_mod);
7939 }
7940
7941 static int is_mddev_idle(struct mddev *mddev, int init)
7942 {
7943 struct md_rdev *rdev;
7944 int idle;
7945 int curr_events;
7946
7947 idle = 1;
7948 rcu_read_lock();
7949 rdev_for_each_rcu(rdev, mddev) {
7950 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7951 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7952 (int)part_stat_read(&disk->part0, sectors[1]) -
7953 atomic_read(&disk->sync_io);
7954 /* sync IO will cause sync_io to increase before the disk_stats
7955 * as sync_io is counted when a request starts, and
7956 * disk_stats is counted when it completes.
7957 * So resync activity will cause curr_events to be smaller than
7958 * when there was no such activity.
7959 * non-sync IO will cause disk_stat to increase without
7960 * increasing sync_io so curr_events will (eventually)
7961 * be larger than it was before. Once it becomes
7962 * substantially larger, the test below will cause
7963 * the array to appear non-idle, and resync will slow
7964 * down.
7965 * If there is a lot of outstanding resync activity when
7966 * we set last_event to curr_events, then all that activity
7967 * completing might cause the array to appear non-idle
7968 * and resync will be slowed down even though there might
7969 * not have been non-resync activity. This will only
7970 * happen once though. 'last_events' will soon reflect
7971 * the state where there is little or no outstanding
7972 * resync requests, and further resync activity will
7973 * always make curr_events less than last_events.
7974 *
7975 */
7976 if (init || curr_events - rdev->last_events > 64) {
7977 rdev->last_events = curr_events;
7978 idle = 0;
7979 }
7980 }
7981 rcu_read_unlock();
7982 return idle;
7983 }
7984
7985 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7986 {
7987 /* another "blocks" (512byte) blocks have been synced */
7988 atomic_sub(blocks, &mddev->recovery_active);
7989 wake_up(&mddev->recovery_wait);
7990 if (!ok) {
7991 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7992 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7993 md_wakeup_thread(mddev->thread);
7994 // stop recovery, signal do_sync ....
7995 }
7996 }
7997 EXPORT_SYMBOL(md_done_sync);
7998
7999 /* md_write_start(mddev, bi)
8000 * If we need to update some array metadata (e.g. 'active' flag
8001 * in superblock) before writing, schedule a superblock update
8002 * and wait for it to complete.
8003 * A return value of 'false' means that the write wasn't recorded
8004 * and cannot proceed as the array is being suspend.
8005 */
8006 bool md_write_start(struct mddev *mddev, struct bio *bi)
8007 {
8008 int did_change = 0;
8009 if (bio_data_dir(bi) != WRITE)
8010 return true;
8011
8012 BUG_ON(mddev->ro == 1);
8013 if (mddev->ro == 2) {
8014 /* need to switch to read/write */
8015 mddev->ro = 0;
8016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8017 md_wakeup_thread(mddev->thread);
8018 md_wakeup_thread(mddev->sync_thread);
8019 did_change = 1;
8020 }
8021 rcu_read_lock();
8022 percpu_ref_get(&mddev->writes_pending);
8023 smp_mb(); /* Match smp_mb in set_in_sync() */
8024 if (mddev->safemode == 1)
8025 mddev->safemode = 0;
8026 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8027 if (mddev->in_sync || mddev->sync_checkers) {
8028 spin_lock(&mddev->lock);
8029 if (mddev->in_sync) {
8030 mddev->in_sync = 0;
8031 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8032 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8033 md_wakeup_thread(mddev->thread);
8034 did_change = 1;
8035 }
8036 spin_unlock(&mddev->lock);
8037 }
8038 rcu_read_unlock();
8039 if (did_change)
8040 sysfs_notify_dirent_safe(mddev->sysfs_state);
8041 wait_event(mddev->sb_wait,
8042 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && !mddev->suspended);
8043 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8044 percpu_ref_put(&mddev->writes_pending);
8045 return false;
8046 }
8047 return true;
8048 }
8049 EXPORT_SYMBOL(md_write_start);
8050
8051 /* md_write_inc can only be called when md_write_start() has
8052 * already been called at least once of the current request.
8053 * It increments the counter and is useful when a single request
8054 * is split into several parts. Each part causes an increment and
8055 * so needs a matching md_write_end().
8056 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8057 * a spinlocked region.
8058 */
8059 void md_write_inc(struct mddev *mddev, struct bio *bi)
8060 {
8061 if (bio_data_dir(bi) != WRITE)
8062 return;
8063 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8064 percpu_ref_get(&mddev->writes_pending);
8065 }
8066 EXPORT_SYMBOL(md_write_inc);
8067
8068 void md_write_end(struct mddev *mddev)
8069 {
8070 percpu_ref_put(&mddev->writes_pending);
8071
8072 if (mddev->safemode == 2)
8073 md_wakeup_thread(mddev->thread);
8074 else if (mddev->safemode_delay)
8075 /* The roundup() ensures this only performs locking once
8076 * every ->safemode_delay jiffies
8077 */
8078 mod_timer(&mddev->safemode_timer,
8079 roundup(jiffies, mddev->safemode_delay) +
8080 mddev->safemode_delay);
8081 }
8082
8083 EXPORT_SYMBOL(md_write_end);
8084
8085 /* md_allow_write(mddev)
8086 * Calling this ensures that the array is marked 'active' so that writes
8087 * may proceed without blocking. It is important to call this before
8088 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8089 * Must be called with mddev_lock held.
8090 */
8091 void md_allow_write(struct mddev *mddev)
8092 {
8093 if (!mddev->pers)
8094 return;
8095 if (mddev->ro)
8096 return;
8097 if (!mddev->pers->sync_request)
8098 return;
8099
8100 spin_lock(&mddev->lock);
8101 if (mddev->in_sync) {
8102 mddev->in_sync = 0;
8103 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8104 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8105 if (mddev->safemode_delay &&
8106 mddev->safemode == 0)
8107 mddev->safemode = 1;
8108 spin_unlock(&mddev->lock);
8109 md_update_sb(mddev, 0);
8110 sysfs_notify_dirent_safe(mddev->sysfs_state);
8111 /* wait for the dirty state to be recorded in the metadata */
8112 wait_event(mddev->sb_wait,
8113 !test_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags) &&
8114 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8115 } else
8116 spin_unlock(&mddev->lock);
8117 }
8118 EXPORT_SYMBOL_GPL(md_allow_write);
8119
8120 #define SYNC_MARKS 10
8121 #define SYNC_MARK_STEP (3*HZ)
8122 #define UPDATE_FREQUENCY (5*60*HZ)
8123 void md_do_sync(struct md_thread *thread)
8124 {
8125 struct mddev *mddev = thread->mddev;
8126 struct mddev *mddev2;
8127 unsigned int currspeed = 0,
8128 window;
8129 sector_t max_sectors,j, io_sectors, recovery_done;
8130 unsigned long mark[SYNC_MARKS];
8131 unsigned long update_time;
8132 sector_t mark_cnt[SYNC_MARKS];
8133 int last_mark,m;
8134 struct list_head *tmp;
8135 sector_t last_check;
8136 int skipped = 0;
8137 struct md_rdev *rdev;
8138 char *desc, *action = NULL;
8139 struct blk_plug plug;
8140 int ret;
8141
8142 /* just incase thread restarts... */
8143 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8144 return;
8145 if (mddev->ro) {/* never try to sync a read-only array */
8146 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8147 return;
8148 }
8149
8150 if (mddev_is_clustered(mddev)) {
8151 ret = md_cluster_ops->resync_start(mddev);
8152 if (ret)
8153 goto skip;
8154
8155 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8156 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8157 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8158 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8159 && ((unsigned long long)mddev->curr_resync_completed
8160 < (unsigned long long)mddev->resync_max_sectors))
8161 goto skip;
8162 }
8163
8164 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8165 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8166 desc = "data-check";
8167 action = "check";
8168 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8169 desc = "requested-resync";
8170 action = "repair";
8171 } else
8172 desc = "resync";
8173 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8174 desc = "reshape";
8175 else
8176 desc = "recovery";
8177
8178 mddev->last_sync_action = action ?: desc;
8179
8180 /* we overload curr_resync somewhat here.
8181 * 0 == not engaged in resync at all
8182 * 2 == checking that there is no conflict with another sync
8183 * 1 == like 2, but have yielded to allow conflicting resync to
8184 * commense
8185 * other == active in resync - this many blocks
8186 *
8187 * Before starting a resync we must have set curr_resync to
8188 * 2, and then checked that every "conflicting" array has curr_resync
8189 * less than ours. When we find one that is the same or higher
8190 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8191 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8192 * This will mean we have to start checking from the beginning again.
8193 *
8194 */
8195
8196 do {
8197 int mddev2_minor = -1;
8198 mddev->curr_resync = 2;
8199
8200 try_again:
8201 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8202 goto skip;
8203 for_each_mddev(mddev2, tmp) {
8204 if (mddev2 == mddev)
8205 continue;
8206 if (!mddev->parallel_resync
8207 && mddev2->curr_resync
8208 && match_mddev_units(mddev, mddev2)) {
8209 DEFINE_WAIT(wq);
8210 if (mddev < mddev2 && mddev->curr_resync == 2) {
8211 /* arbitrarily yield */
8212 mddev->curr_resync = 1;
8213 wake_up(&resync_wait);
8214 }
8215 if (mddev > mddev2 && mddev->curr_resync == 1)
8216 /* no need to wait here, we can wait the next
8217 * time 'round when curr_resync == 2
8218 */
8219 continue;
8220 /* We need to wait 'interruptible' so as not to
8221 * contribute to the load average, and not to
8222 * be caught by 'softlockup'
8223 */
8224 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8225 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8226 mddev2->curr_resync >= mddev->curr_resync) {
8227 if (mddev2_minor != mddev2->md_minor) {
8228 mddev2_minor = mddev2->md_minor;
8229 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8230 desc, mdname(mddev),
8231 mdname(mddev2));
8232 }
8233 mddev_put(mddev2);
8234 if (signal_pending(current))
8235 flush_signals(current);
8236 schedule();
8237 finish_wait(&resync_wait, &wq);
8238 goto try_again;
8239 }
8240 finish_wait(&resync_wait, &wq);
8241 }
8242 }
8243 } while (mddev->curr_resync < 2);
8244
8245 j = 0;
8246 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8247 /* resync follows the size requested by the personality,
8248 * which defaults to physical size, but can be virtual size
8249 */
8250 max_sectors = mddev->resync_max_sectors;
8251 atomic64_set(&mddev->resync_mismatches, 0);
8252 /* we don't use the checkpoint if there's a bitmap */
8253 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8254 j = mddev->resync_min;
8255 else if (!mddev->bitmap)
8256 j = mddev->recovery_cp;
8257
8258 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8259 max_sectors = mddev->resync_max_sectors;
8260 else {
8261 /* recovery follows the physical size of devices */
8262 max_sectors = mddev->dev_sectors;
8263 j = MaxSector;
8264 rcu_read_lock();
8265 rdev_for_each_rcu(rdev, mddev)
8266 if (rdev->raid_disk >= 0 &&
8267 !test_bit(Journal, &rdev->flags) &&
8268 !test_bit(Faulty, &rdev->flags) &&
8269 !test_bit(In_sync, &rdev->flags) &&
8270 rdev->recovery_offset < j)
8271 j = rdev->recovery_offset;
8272 rcu_read_unlock();
8273
8274 /* If there is a bitmap, we need to make sure all
8275 * writes that started before we added a spare
8276 * complete before we start doing a recovery.
8277 * Otherwise the write might complete and (via
8278 * bitmap_endwrite) set a bit in the bitmap after the
8279 * recovery has checked that bit and skipped that
8280 * region.
8281 */
8282 if (mddev->bitmap) {
8283 mddev->pers->quiesce(mddev, 1);
8284 mddev->pers->quiesce(mddev, 0);
8285 }
8286 }
8287
8288 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8289 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8290 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8291 speed_max(mddev), desc);
8292
8293 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8294
8295 io_sectors = 0;
8296 for (m = 0; m < SYNC_MARKS; m++) {
8297 mark[m] = jiffies;
8298 mark_cnt[m] = io_sectors;
8299 }
8300 last_mark = 0;
8301 mddev->resync_mark = mark[last_mark];
8302 mddev->resync_mark_cnt = mark_cnt[last_mark];
8303
8304 /*
8305 * Tune reconstruction:
8306 */
8307 window = 32*(PAGE_SIZE/512);
8308 pr_debug("md: using %dk window, over a total of %lluk.\n",
8309 window/2, (unsigned long long)max_sectors/2);
8310
8311 atomic_set(&mddev->recovery_active, 0);
8312 last_check = 0;
8313
8314 if (j>2) {
8315 pr_debug("md: resuming %s of %s from checkpoint.\n",
8316 desc, mdname(mddev));
8317 mddev->curr_resync = j;
8318 } else
8319 mddev->curr_resync = 3; /* no longer delayed */
8320 mddev->curr_resync_completed = j;
8321 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8322 md_new_event(mddev);
8323 update_time = jiffies;
8324
8325 blk_start_plug(&plug);
8326 while (j < max_sectors) {
8327 sector_t sectors;
8328
8329 skipped = 0;
8330
8331 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8332 ((mddev->curr_resync > mddev->curr_resync_completed &&
8333 (mddev->curr_resync - mddev->curr_resync_completed)
8334 > (max_sectors >> 4)) ||
8335 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8336 (j - mddev->curr_resync_completed)*2
8337 >= mddev->resync_max - mddev->curr_resync_completed ||
8338 mddev->curr_resync_completed > mddev->resync_max
8339 )) {
8340 /* time to update curr_resync_completed */
8341 wait_event(mddev->recovery_wait,
8342 atomic_read(&mddev->recovery_active) == 0);
8343 mddev->curr_resync_completed = j;
8344 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8345 j > mddev->recovery_cp)
8346 mddev->recovery_cp = j;
8347 update_time = jiffies;
8348 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8349 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8350 }
8351
8352 while (j >= mddev->resync_max &&
8353 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8354 /* As this condition is controlled by user-space,
8355 * we can block indefinitely, so use '_interruptible'
8356 * to avoid triggering warnings.
8357 */
8358 flush_signals(current); /* just in case */
8359 wait_event_interruptible(mddev->recovery_wait,
8360 mddev->resync_max > j
8361 || test_bit(MD_RECOVERY_INTR,
8362 &mddev->recovery));
8363 }
8364
8365 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8366 break;
8367
8368 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8369 if (sectors == 0) {
8370 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8371 break;
8372 }
8373
8374 if (!skipped) { /* actual IO requested */
8375 io_sectors += sectors;
8376 atomic_add(sectors, &mddev->recovery_active);
8377 }
8378
8379 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8380 break;
8381
8382 j += sectors;
8383 if (j > max_sectors)
8384 /* when skipping, extra large numbers can be returned. */
8385 j = max_sectors;
8386 if (j > 2)
8387 mddev->curr_resync = j;
8388 mddev->curr_mark_cnt = io_sectors;
8389 if (last_check == 0)
8390 /* this is the earliest that rebuild will be
8391 * visible in /proc/mdstat
8392 */
8393 md_new_event(mddev);
8394
8395 if (last_check + window > io_sectors || j == max_sectors)
8396 continue;
8397
8398 last_check = io_sectors;
8399 repeat:
8400 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8401 /* step marks */
8402 int next = (last_mark+1) % SYNC_MARKS;
8403
8404 mddev->resync_mark = mark[next];
8405 mddev->resync_mark_cnt = mark_cnt[next];
8406 mark[next] = jiffies;
8407 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8408 last_mark = next;
8409 }
8410
8411 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8412 break;
8413
8414 /*
8415 * this loop exits only if either when we are slower than
8416 * the 'hard' speed limit, or the system was IO-idle for
8417 * a jiffy.
8418 * the system might be non-idle CPU-wise, but we only care
8419 * about not overloading the IO subsystem. (things like an
8420 * e2fsck being done on the RAID array should execute fast)
8421 */
8422 cond_resched();
8423
8424 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8425 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8426 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8427
8428 if (currspeed > speed_min(mddev)) {
8429 if (currspeed > speed_max(mddev)) {
8430 msleep(500);
8431 goto repeat;
8432 }
8433 if (!is_mddev_idle(mddev, 0)) {
8434 /*
8435 * Give other IO more of a chance.
8436 * The faster the devices, the less we wait.
8437 */
8438 wait_event(mddev->recovery_wait,
8439 !atomic_read(&mddev->recovery_active));
8440 }
8441 }
8442 }
8443 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8444 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8445 ? "interrupted" : "done");
8446 /*
8447 * this also signals 'finished resyncing' to md_stop
8448 */
8449 blk_finish_plug(&plug);
8450 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8451
8452 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8453 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8454 mddev->curr_resync > 3) {
8455 mddev->curr_resync_completed = mddev->curr_resync;
8456 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8457 }
8458 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8459
8460 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8461 mddev->curr_resync > 3) {
8462 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8463 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8464 if (mddev->curr_resync >= mddev->recovery_cp) {
8465 pr_debug("md: checkpointing %s of %s.\n",
8466 desc, mdname(mddev));
8467 if (test_bit(MD_RECOVERY_ERROR,
8468 &mddev->recovery))
8469 mddev->recovery_cp =
8470 mddev->curr_resync_completed;
8471 else
8472 mddev->recovery_cp =
8473 mddev->curr_resync;
8474 }
8475 } else
8476 mddev->recovery_cp = MaxSector;
8477 } else {
8478 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8479 mddev->curr_resync = MaxSector;
8480 rcu_read_lock();
8481 rdev_for_each_rcu(rdev, mddev)
8482 if (rdev->raid_disk >= 0 &&
8483 mddev->delta_disks >= 0 &&
8484 !test_bit(Journal, &rdev->flags) &&
8485 !test_bit(Faulty, &rdev->flags) &&
8486 !test_bit(In_sync, &rdev->flags) &&
8487 rdev->recovery_offset < mddev->curr_resync)
8488 rdev->recovery_offset = mddev->curr_resync;
8489 rcu_read_unlock();
8490 }
8491 }
8492 skip:
8493 /* set CHANGE_PENDING here since maybe another update is needed,
8494 * so other nodes are informed. It should be harmless for normal
8495 * raid */
8496 set_mask_bits(&mddev->sb_flags, 0,
8497 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8498
8499 spin_lock(&mddev->lock);
8500 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8501 /* We completed so min/max setting can be forgotten if used. */
8502 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8503 mddev->resync_min = 0;
8504 mddev->resync_max = MaxSector;
8505 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8506 mddev->resync_min = mddev->curr_resync_completed;
8507 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8508 mddev->curr_resync = 0;
8509 spin_unlock(&mddev->lock);
8510
8511 wake_up(&resync_wait);
8512 md_wakeup_thread(mddev->thread);
8513 return;
8514 }
8515 EXPORT_SYMBOL_GPL(md_do_sync);
8516
8517 static int remove_and_add_spares(struct mddev *mddev,
8518 struct md_rdev *this)
8519 {
8520 struct md_rdev *rdev;
8521 int spares = 0;
8522 int removed = 0;
8523 bool remove_some = false;
8524
8525 rdev_for_each(rdev, mddev) {
8526 if ((this == NULL || rdev == this) &&
8527 rdev->raid_disk >= 0 &&
8528 !test_bit(Blocked, &rdev->flags) &&
8529 test_bit(Faulty, &rdev->flags) &&
8530 atomic_read(&rdev->nr_pending)==0) {
8531 /* Faulty non-Blocked devices with nr_pending == 0
8532 * never get nr_pending incremented,
8533 * never get Faulty cleared, and never get Blocked set.
8534 * So we can synchronize_rcu now rather than once per device
8535 */
8536 remove_some = true;
8537 set_bit(RemoveSynchronized, &rdev->flags);
8538 }
8539 }
8540
8541 if (remove_some)
8542 synchronize_rcu();
8543 rdev_for_each(rdev, mddev) {
8544 if ((this == NULL || rdev == this) &&
8545 rdev->raid_disk >= 0 &&
8546 !test_bit(Blocked, &rdev->flags) &&
8547 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8548 (!test_bit(In_sync, &rdev->flags) &&
8549 !test_bit(Journal, &rdev->flags))) &&
8550 atomic_read(&rdev->nr_pending)==0)) {
8551 if (mddev->pers->hot_remove_disk(
8552 mddev, rdev) == 0) {
8553 sysfs_unlink_rdev(mddev, rdev);
8554 rdev->raid_disk = -1;
8555 removed++;
8556 }
8557 }
8558 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8559 clear_bit(RemoveSynchronized, &rdev->flags);
8560 }
8561
8562 if (removed && mddev->kobj.sd)
8563 sysfs_notify(&mddev->kobj, NULL, "degraded");
8564
8565 if (this && removed)
8566 goto no_add;
8567
8568 rdev_for_each(rdev, mddev) {
8569 if (this && this != rdev)
8570 continue;
8571 if (test_bit(Candidate, &rdev->flags))
8572 continue;
8573 if (rdev->raid_disk >= 0 &&
8574 !test_bit(In_sync, &rdev->flags) &&
8575 !test_bit(Journal, &rdev->flags) &&
8576 !test_bit(Faulty, &rdev->flags))
8577 spares++;
8578 if (rdev->raid_disk >= 0)
8579 continue;
8580 if (test_bit(Faulty, &rdev->flags))
8581 continue;
8582 if (!test_bit(Journal, &rdev->flags)) {
8583 if (mddev->ro &&
8584 ! (rdev->saved_raid_disk >= 0 &&
8585 !test_bit(Bitmap_sync, &rdev->flags)))
8586 continue;
8587
8588 rdev->recovery_offset = 0;
8589 }
8590 if (mddev->pers->
8591 hot_add_disk(mddev, rdev) == 0) {
8592 if (sysfs_link_rdev(mddev, rdev))
8593 /* failure here is OK */;
8594 if (!test_bit(Journal, &rdev->flags))
8595 spares++;
8596 md_new_event(mddev);
8597 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8598 }
8599 }
8600 no_add:
8601 if (removed)
8602 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8603 return spares;
8604 }
8605
8606 static void md_start_sync(struct work_struct *ws)
8607 {
8608 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8609
8610 mddev->sync_thread = md_register_thread(md_do_sync,
8611 mddev,
8612 "resync");
8613 if (!mddev->sync_thread) {
8614 pr_warn("%s: could not start resync thread...\n",
8615 mdname(mddev));
8616 /* leave the spares where they are, it shouldn't hurt */
8617 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8618 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8619 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8620 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8621 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8622 wake_up(&resync_wait);
8623 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8624 &mddev->recovery))
8625 if (mddev->sysfs_action)
8626 sysfs_notify_dirent_safe(mddev->sysfs_action);
8627 } else
8628 md_wakeup_thread(mddev->sync_thread);
8629 sysfs_notify_dirent_safe(mddev->sysfs_action);
8630 md_new_event(mddev);
8631 }
8632
8633 /*
8634 * This routine is regularly called by all per-raid-array threads to
8635 * deal with generic issues like resync and super-block update.
8636 * Raid personalities that don't have a thread (linear/raid0) do not
8637 * need this as they never do any recovery or update the superblock.
8638 *
8639 * It does not do any resync itself, but rather "forks" off other threads
8640 * to do that as needed.
8641 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8642 * "->recovery" and create a thread at ->sync_thread.
8643 * When the thread finishes it sets MD_RECOVERY_DONE
8644 * and wakeups up this thread which will reap the thread and finish up.
8645 * This thread also removes any faulty devices (with nr_pending == 0).
8646 *
8647 * The overall approach is:
8648 * 1/ if the superblock needs updating, update it.
8649 * 2/ If a recovery thread is running, don't do anything else.
8650 * 3/ If recovery has finished, clean up, possibly marking spares active.
8651 * 4/ If there are any faulty devices, remove them.
8652 * 5/ If array is degraded, try to add spares devices
8653 * 6/ If array has spares or is not in-sync, start a resync thread.
8654 */
8655 void md_check_recovery(struct mddev *mddev)
8656 {
8657 if (mddev->suspended)
8658 return;
8659
8660 if (mddev->bitmap)
8661 bitmap_daemon_work(mddev);
8662
8663 if (signal_pending(current)) {
8664 if (mddev->pers->sync_request && !mddev->external) {
8665 pr_debug("md: %s in immediate safe mode\n",
8666 mdname(mddev));
8667 mddev->safemode = 2;
8668 }
8669 flush_signals(current);
8670 }
8671
8672 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8673 return;
8674 if ( ! (
8675 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8676 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8677 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8678 (mddev->external == 0 && mddev->safemode == 1) ||
8679 (mddev->safemode == 2
8680 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8681 ))
8682 return;
8683
8684 if (mddev_trylock(mddev)) {
8685 int spares = 0;
8686
8687 if (!mddev->external && mddev->safemode == 1)
8688 mddev->safemode = 0;
8689
8690 if (mddev->ro) {
8691 struct md_rdev *rdev;
8692 if (!mddev->external && mddev->in_sync)
8693 /* 'Blocked' flag not needed as failed devices
8694 * will be recorded if array switched to read/write.
8695 * Leaving it set will prevent the device
8696 * from being removed.
8697 */
8698 rdev_for_each(rdev, mddev)
8699 clear_bit(Blocked, &rdev->flags);
8700 /* On a read-only array we can:
8701 * - remove failed devices
8702 * - add already-in_sync devices if the array itself
8703 * is in-sync.
8704 * As we only add devices that are already in-sync,
8705 * we can activate the spares immediately.
8706 */
8707 remove_and_add_spares(mddev, NULL);
8708 /* There is no thread, but we need to call
8709 * ->spare_active and clear saved_raid_disk
8710 */
8711 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8712 md_reap_sync_thread(mddev);
8713 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8714 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8715 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8716 goto unlock;
8717 }
8718
8719 if (mddev_is_clustered(mddev)) {
8720 struct md_rdev *rdev;
8721 /* kick the device if another node issued a
8722 * remove disk.
8723 */
8724 rdev_for_each(rdev, mddev) {
8725 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8726 rdev->raid_disk < 0)
8727 md_kick_rdev_from_array(rdev);
8728 }
8729 }
8730
8731 if (!mddev->external && !mddev->in_sync) {
8732 spin_lock(&mddev->lock);
8733 set_in_sync(mddev);
8734 spin_unlock(&mddev->lock);
8735 }
8736
8737 if (mddev->sb_flags)
8738 md_update_sb(mddev, 0);
8739
8740 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8741 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8742 /* resync/recovery still happening */
8743 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8744 goto unlock;
8745 }
8746 if (mddev->sync_thread) {
8747 md_reap_sync_thread(mddev);
8748 goto unlock;
8749 }
8750 /* Set RUNNING before clearing NEEDED to avoid
8751 * any transients in the value of "sync_action".
8752 */
8753 mddev->curr_resync_completed = 0;
8754 spin_lock(&mddev->lock);
8755 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8756 spin_unlock(&mddev->lock);
8757 /* Clear some bits that don't mean anything, but
8758 * might be left set
8759 */
8760 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8761 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8762
8763 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8764 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8765 goto not_running;
8766 /* no recovery is running.
8767 * remove any failed drives, then
8768 * add spares if possible.
8769 * Spares are also removed and re-added, to allow
8770 * the personality to fail the re-add.
8771 */
8772
8773 if (mddev->reshape_position != MaxSector) {
8774 if (mddev->pers->check_reshape == NULL ||
8775 mddev->pers->check_reshape(mddev) != 0)
8776 /* Cannot proceed */
8777 goto not_running;
8778 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8779 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8780 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8781 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8782 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8783 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8784 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8785 } else if (mddev->recovery_cp < MaxSector) {
8786 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8787 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8788 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8789 /* nothing to be done ... */
8790 goto not_running;
8791
8792 if (mddev->pers->sync_request) {
8793 if (spares) {
8794 /* We are adding a device or devices to an array
8795 * which has the bitmap stored on all devices.
8796 * So make sure all bitmap pages get written
8797 */
8798 bitmap_write_all(mddev->bitmap);
8799 }
8800 INIT_WORK(&mddev->del_work, md_start_sync);
8801 queue_work(md_misc_wq, &mddev->del_work);
8802 goto unlock;
8803 }
8804 not_running:
8805 if (!mddev->sync_thread) {
8806 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8807 wake_up(&resync_wait);
8808 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8809 &mddev->recovery))
8810 if (mddev->sysfs_action)
8811 sysfs_notify_dirent_safe(mddev->sysfs_action);
8812 }
8813 unlock:
8814 wake_up(&mddev->sb_wait);
8815 mddev_unlock(mddev);
8816 }
8817 }
8818 EXPORT_SYMBOL(md_check_recovery);
8819
8820 void md_reap_sync_thread(struct mddev *mddev)
8821 {
8822 struct md_rdev *rdev;
8823
8824 /* resync has finished, collect result */
8825 md_unregister_thread(&mddev->sync_thread);
8826 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8827 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8828 /* success...*/
8829 /* activate any spares */
8830 if (mddev->pers->spare_active(mddev)) {
8831 sysfs_notify(&mddev->kobj, NULL,
8832 "degraded");
8833 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8834 }
8835 }
8836 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8837 mddev->pers->finish_reshape)
8838 mddev->pers->finish_reshape(mddev);
8839
8840 /* If array is no-longer degraded, then any saved_raid_disk
8841 * information must be scrapped.
8842 */
8843 if (!mddev->degraded)
8844 rdev_for_each(rdev, mddev)
8845 rdev->saved_raid_disk = -1;
8846
8847 md_update_sb(mddev, 1);
8848 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8849 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8850 * clustered raid */
8851 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8852 md_cluster_ops->resync_finish(mddev);
8853 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8854 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8855 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8856 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8857 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8858 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8859 wake_up(&resync_wait);
8860 /* flag recovery needed just to double check */
8861 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8862 sysfs_notify_dirent_safe(mddev->sysfs_action);
8863 md_new_event(mddev);
8864 if (mddev->event_work.func)
8865 queue_work(md_misc_wq, &mddev->event_work);
8866 }
8867 EXPORT_SYMBOL(md_reap_sync_thread);
8868
8869 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8870 {
8871 sysfs_notify_dirent_safe(rdev->sysfs_state);
8872 wait_event_timeout(rdev->blocked_wait,
8873 !test_bit(Blocked, &rdev->flags) &&
8874 !test_bit(BlockedBadBlocks, &rdev->flags),
8875 msecs_to_jiffies(5000));
8876 rdev_dec_pending(rdev, mddev);
8877 }
8878 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8879
8880 void md_finish_reshape(struct mddev *mddev)
8881 {
8882 /* called be personality module when reshape completes. */
8883 struct md_rdev *rdev;
8884
8885 rdev_for_each(rdev, mddev) {
8886 if (rdev->data_offset > rdev->new_data_offset)
8887 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8888 else
8889 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8890 rdev->data_offset = rdev->new_data_offset;
8891 }
8892 }
8893 EXPORT_SYMBOL(md_finish_reshape);
8894
8895 /* Bad block management */
8896
8897 /* Returns 1 on success, 0 on failure */
8898 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8899 int is_new)
8900 {
8901 struct mddev *mddev = rdev->mddev;
8902 int rv;
8903 if (is_new)
8904 s += rdev->new_data_offset;
8905 else
8906 s += rdev->data_offset;
8907 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8908 if (rv == 0) {
8909 /* Make sure they get written out promptly */
8910 if (test_bit(ExternalBbl, &rdev->flags))
8911 sysfs_notify(&rdev->kobj, NULL,
8912 "unacknowledged_bad_blocks");
8913 sysfs_notify_dirent_safe(rdev->sysfs_state);
8914 set_mask_bits(&mddev->sb_flags, 0,
8915 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
8916 md_wakeup_thread(rdev->mddev->thread);
8917 return 1;
8918 } else
8919 return 0;
8920 }
8921 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8922
8923 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8924 int is_new)
8925 {
8926 int rv;
8927 if (is_new)
8928 s += rdev->new_data_offset;
8929 else
8930 s += rdev->data_offset;
8931 rv = badblocks_clear(&rdev->badblocks, s, sectors);
8932 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
8933 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
8934 return rv;
8935 }
8936 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8937
8938 static int md_notify_reboot(struct notifier_block *this,
8939 unsigned long code, void *x)
8940 {
8941 struct list_head *tmp;
8942 struct mddev *mddev;
8943 int need_delay = 0;
8944
8945 for_each_mddev(mddev, tmp) {
8946 if (mddev_trylock(mddev)) {
8947 if (mddev->pers)
8948 __md_stop_writes(mddev);
8949 if (mddev->persistent)
8950 mddev->safemode = 2;
8951 mddev_unlock(mddev);
8952 }
8953 need_delay = 1;
8954 }
8955 /*
8956 * certain more exotic SCSI devices are known to be
8957 * volatile wrt too early system reboots. While the
8958 * right place to handle this issue is the given
8959 * driver, we do want to have a safe RAID driver ...
8960 */
8961 if (need_delay)
8962 mdelay(1000*1);
8963
8964 return NOTIFY_DONE;
8965 }
8966
8967 static struct notifier_block md_notifier = {
8968 .notifier_call = md_notify_reboot,
8969 .next = NULL,
8970 .priority = INT_MAX, /* before any real devices */
8971 };
8972
8973 static void md_geninit(void)
8974 {
8975 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8976
8977 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8978 }
8979
8980 static int __init md_init(void)
8981 {
8982 int ret = -ENOMEM;
8983
8984 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8985 if (!md_wq)
8986 goto err_wq;
8987
8988 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8989 if (!md_misc_wq)
8990 goto err_misc_wq;
8991
8992 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8993 goto err_md;
8994
8995 if ((ret = register_blkdev(0, "mdp")) < 0)
8996 goto err_mdp;
8997 mdp_major = ret;
8998
8999 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9000 md_probe, NULL, NULL);
9001 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9002 md_probe, NULL, NULL);
9003
9004 register_reboot_notifier(&md_notifier);
9005 raid_table_header = register_sysctl_table(raid_root_table);
9006
9007 md_geninit();
9008 return 0;
9009
9010 err_mdp:
9011 unregister_blkdev(MD_MAJOR, "md");
9012 err_md:
9013 destroy_workqueue(md_misc_wq);
9014 err_misc_wq:
9015 destroy_workqueue(md_wq);
9016 err_wq:
9017 return ret;
9018 }
9019
9020 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9021 {
9022 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9023 struct md_rdev *rdev2;
9024 int role, ret;
9025 char b[BDEVNAME_SIZE];
9026
9027 /*
9028 * If size is changed in another node then we need to
9029 * do resize as well.
9030 */
9031 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9032 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9033 if (ret)
9034 pr_info("md-cluster: resize failed\n");
9035 else
9036 bitmap_update_sb(mddev->bitmap);
9037 }
9038
9039 /* Check for change of roles in the active devices */
9040 rdev_for_each(rdev2, mddev) {
9041 if (test_bit(Faulty, &rdev2->flags))
9042 continue;
9043
9044 /* Check if the roles changed */
9045 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9046
9047 if (test_bit(Candidate, &rdev2->flags)) {
9048 if (role == 0xfffe) {
9049 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9050 md_kick_rdev_from_array(rdev2);
9051 continue;
9052 }
9053 else
9054 clear_bit(Candidate, &rdev2->flags);
9055 }
9056
9057 if (role != rdev2->raid_disk) {
9058 /* got activated */
9059 if (rdev2->raid_disk == -1 && role != 0xffff) {
9060 rdev2->saved_raid_disk = role;
9061 ret = remove_and_add_spares(mddev, rdev2);
9062 pr_info("Activated spare: %s\n",
9063 bdevname(rdev2->bdev,b));
9064 /* wakeup mddev->thread here, so array could
9065 * perform resync with the new activated disk */
9066 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9067 md_wakeup_thread(mddev->thread);
9068
9069 }
9070 /* device faulty
9071 * We just want to do the minimum to mark the disk
9072 * as faulty. The recovery is performed by the
9073 * one who initiated the error.
9074 */
9075 if ((role == 0xfffe) || (role == 0xfffd)) {
9076 md_error(mddev, rdev2);
9077 clear_bit(Blocked, &rdev2->flags);
9078 }
9079 }
9080 }
9081
9082 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9083 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9084
9085 /* Finally set the event to be up to date */
9086 mddev->events = le64_to_cpu(sb->events);
9087 }
9088
9089 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9090 {
9091 int err;
9092 struct page *swapout = rdev->sb_page;
9093 struct mdp_superblock_1 *sb;
9094
9095 /* Store the sb page of the rdev in the swapout temporary
9096 * variable in case we err in the future
9097 */
9098 rdev->sb_page = NULL;
9099 err = alloc_disk_sb(rdev);
9100 if (err == 0) {
9101 ClearPageUptodate(rdev->sb_page);
9102 rdev->sb_loaded = 0;
9103 err = super_types[mddev->major_version].
9104 load_super(rdev, NULL, mddev->minor_version);
9105 }
9106 if (err < 0) {
9107 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9108 __func__, __LINE__, rdev->desc_nr, err);
9109 if (rdev->sb_page)
9110 put_page(rdev->sb_page);
9111 rdev->sb_page = swapout;
9112 rdev->sb_loaded = 1;
9113 return err;
9114 }
9115
9116 sb = page_address(rdev->sb_page);
9117 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9118 * is not set
9119 */
9120
9121 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9122 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9123
9124 /* The other node finished recovery, call spare_active to set
9125 * device In_sync and mddev->degraded
9126 */
9127 if (rdev->recovery_offset == MaxSector &&
9128 !test_bit(In_sync, &rdev->flags) &&
9129 mddev->pers->spare_active(mddev))
9130 sysfs_notify(&mddev->kobj, NULL, "degraded");
9131
9132 put_page(swapout);
9133 return 0;
9134 }
9135
9136 void md_reload_sb(struct mddev *mddev, int nr)
9137 {
9138 struct md_rdev *rdev;
9139 int err;
9140
9141 /* Find the rdev */
9142 rdev_for_each_rcu(rdev, mddev) {
9143 if (rdev->desc_nr == nr)
9144 break;
9145 }
9146
9147 if (!rdev || rdev->desc_nr != nr) {
9148 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9149 return;
9150 }
9151
9152 err = read_rdev(mddev, rdev);
9153 if (err < 0)
9154 return;
9155
9156 check_sb_changes(mddev, rdev);
9157
9158 /* Read all rdev's to update recovery_offset */
9159 rdev_for_each_rcu(rdev, mddev)
9160 read_rdev(mddev, rdev);
9161 }
9162 EXPORT_SYMBOL(md_reload_sb);
9163
9164 #ifndef MODULE
9165
9166 /*
9167 * Searches all registered partitions for autorun RAID arrays
9168 * at boot time.
9169 */
9170
9171 static DEFINE_MUTEX(detected_devices_mutex);
9172 static LIST_HEAD(all_detected_devices);
9173 struct detected_devices_node {
9174 struct list_head list;
9175 dev_t dev;
9176 };
9177
9178 void md_autodetect_dev(dev_t dev)
9179 {
9180 struct detected_devices_node *node_detected_dev;
9181
9182 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9183 if (node_detected_dev) {
9184 node_detected_dev->dev = dev;
9185 mutex_lock(&detected_devices_mutex);
9186 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9187 mutex_unlock(&detected_devices_mutex);
9188 }
9189 }
9190
9191 static void autostart_arrays(int part)
9192 {
9193 struct md_rdev *rdev;
9194 struct detected_devices_node *node_detected_dev;
9195 dev_t dev;
9196 int i_scanned, i_passed;
9197
9198 i_scanned = 0;
9199 i_passed = 0;
9200
9201 pr_info("md: Autodetecting RAID arrays.\n");
9202
9203 mutex_lock(&detected_devices_mutex);
9204 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9205 i_scanned++;
9206 node_detected_dev = list_entry(all_detected_devices.next,
9207 struct detected_devices_node, list);
9208 list_del(&node_detected_dev->list);
9209 dev = node_detected_dev->dev;
9210 kfree(node_detected_dev);
9211 mutex_unlock(&detected_devices_mutex);
9212 rdev = md_import_device(dev,0, 90);
9213 mutex_lock(&detected_devices_mutex);
9214 if (IS_ERR(rdev))
9215 continue;
9216
9217 if (test_bit(Faulty, &rdev->flags))
9218 continue;
9219
9220 set_bit(AutoDetected, &rdev->flags);
9221 list_add(&rdev->same_set, &pending_raid_disks);
9222 i_passed++;
9223 }
9224 mutex_unlock(&detected_devices_mutex);
9225
9226 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9227
9228 autorun_devices(part);
9229 }
9230
9231 #endif /* !MODULE */
9232
9233 static __exit void md_exit(void)
9234 {
9235 struct mddev *mddev;
9236 struct list_head *tmp;
9237 int delay = 1;
9238
9239 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9240 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9241
9242 unregister_blkdev(MD_MAJOR,"md");
9243 unregister_blkdev(mdp_major, "mdp");
9244 unregister_reboot_notifier(&md_notifier);
9245 unregister_sysctl_table(raid_table_header);
9246
9247 /* We cannot unload the modules while some process is
9248 * waiting for us in select() or poll() - wake them up
9249 */
9250 md_unloading = 1;
9251 while (waitqueue_active(&md_event_waiters)) {
9252 /* not safe to leave yet */
9253 wake_up(&md_event_waiters);
9254 msleep(delay);
9255 delay += delay;
9256 }
9257 remove_proc_entry("mdstat", NULL);
9258
9259 for_each_mddev(mddev, tmp) {
9260 export_array(mddev);
9261 mddev->ctime = 0;
9262 mddev->hold_active = 0;
9263 /*
9264 * for_each_mddev() will call mddev_put() at the end of each
9265 * iteration. As the mddev is now fully clear, this will
9266 * schedule the mddev for destruction by a workqueue, and the
9267 * destroy_workqueue() below will wait for that to complete.
9268 */
9269 }
9270 destroy_workqueue(md_misc_wq);
9271 destroy_workqueue(md_wq);
9272 }
9273
9274 subsys_initcall(md_init);
9275 module_exit(md_exit)
9276
9277 static int get_ro(char *buffer, const struct kernel_param *kp)
9278 {
9279 return sprintf(buffer, "%d", start_readonly);
9280 }
9281 static int set_ro(const char *val, const struct kernel_param *kp)
9282 {
9283 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9284 }
9285
9286 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9287 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9288 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9289 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9290
9291 MODULE_LICENSE("GPL");
9292 MODULE_DESCRIPTION("MD RAID framework");
9293 MODULE_ALIAS("md");
9294 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);