]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/md.c
Merge tag 'regulator-v4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-zesty-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62
63 /* pers_list is a list of registered personalities protected
64 * by pers_lock.
65 * pers_lock does extra service to protect accesses to
66 * mddev->thread when the mutex cannot be held.
67 */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79
80 static int remove_and_add_spares(struct mddev *mddev,
81 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83
84 /*
85 * Default number of read corrections we'll attempt on an rdev
86 * before ejecting it from the array. We divide the read error
87 * count by 2 for every hour elapsed between read errors.
88 */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92 * is 1000 KB/sec, so the extra system load does not show up that much.
93 * Increase it if you want to have more _guaranteed_ speed. Note that
94 * the RAID driver will use the maximum available bandwidth if the IO
95 * subsystem is idle. There is also an 'absolute maximum' reconstruction
96 * speed limit - in case reconstruction slows down your system despite
97 * idle IO detection.
98 *
99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100 * or /sys/block/mdX/md/sync_speed_{min,max}
101 */
102
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 return mddev->sync_speed_min ?
108 mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110
111 static inline int speed_max(struct mddev *mddev)
112 {
113 return mddev->sync_speed_max ?
114 mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116
117 static struct ctl_table_header *raid_table_header;
118
119 static struct ctl_table raid_table[] = {
120 {
121 .procname = "speed_limit_min",
122 .data = &sysctl_speed_limit_min,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 {
128 .procname = "speed_limit_max",
129 .data = &sysctl_speed_limit_max,
130 .maxlen = sizeof(int),
131 .mode = S_IRUGO|S_IWUSR,
132 .proc_handler = proc_dointvec,
133 },
134 { }
135 };
136
137 static struct ctl_table raid_dir_table[] = {
138 {
139 .procname = "raid",
140 .maxlen = 0,
141 .mode = S_IRUGO|S_IXUGO,
142 .child = raid_table,
143 },
144 { }
145 };
146
147 static struct ctl_table raid_root_table[] = {
148 {
149 .procname = "dev",
150 .maxlen = 0,
151 .mode = 0555,
152 .child = raid_dir_table,
153 },
154 { }
155 };
156
157 static const struct block_device_operations md_fops;
158
159 static int start_readonly;
160
161 /* bio_clone_mddev
162 * like bio_clone, but with a local bio set
163 */
164
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 struct mddev *mddev)
167 {
168 struct bio *b;
169
170 if (!mddev || !mddev->bio_set)
171 return bio_alloc(gfp_mask, nr_iovecs);
172
173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 if (!b)
175 return NULL;
176 return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 struct mddev *mddev)
182 {
183 if (!mddev || !mddev->bio_set)
184 return bio_clone(bio, gfp_mask);
185
186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189
190 /*
191 * We have a system wide 'event count' that is incremented
192 * on any 'interesting' event, and readers of /proc/mdstat
193 * can use 'poll' or 'select' to find out when the event
194 * count increases.
195 *
196 * Events are:
197 * start array, stop array, error, add device, remove device,
198 * start build, activate spare
199 */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 atomic_inc(&md_event_count);
205 wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208
209 /* Alternate version that can be called from interrupts
210 * when calling sysfs_notify isn't needed.
211 */
212 static void md_new_event_inintr(struct mddev *mddev)
213 {
214 atomic_inc(&md_event_count);
215 wake_up(&md_event_waiters);
216 }
217
218 /*
219 * Enables to iterate over all existing md arrays
220 * all_mddevs_lock protects this list.
221 */
222 static LIST_HEAD(all_mddevs);
223 static DEFINE_SPINLOCK(all_mddevs_lock);
224
225 /*
226 * iterates through all used mddevs in the system.
227 * We take care to grab the all_mddevs_lock whenever navigating
228 * the list, and to always hold a refcount when unlocked.
229 * Any code which breaks out of this loop while own
230 * a reference to the current mddev and must mddev_put it.
231 */
232 #define for_each_mddev(_mddev,_tmp) \
233 \
234 for (({ spin_lock(&all_mddevs_lock); \
235 _tmp = all_mddevs.next; \
236 _mddev = NULL;}); \
237 ({ if (_tmp != &all_mddevs) \
238 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
239 spin_unlock(&all_mddevs_lock); \
240 if (_mddev) mddev_put(_mddev); \
241 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
242 _tmp != &all_mddevs;}); \
243 ({ spin_lock(&all_mddevs_lock); \
244 _tmp = _tmp->next;}) \
245 )
246
247 /* Rather than calling directly into the personality make_request function,
248 * IO requests come here first so that we can check if the device is
249 * being suspended pending a reconfiguration.
250 * We hold a refcount over the call to ->make_request. By the time that
251 * call has finished, the bio has been linked into some internal structure
252 * and so is visible to ->quiesce(), so we don't need the refcount any more.
253 */
254 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
255 {
256 const int rw = bio_data_dir(bio);
257 struct mddev *mddev = q->queuedata;
258 unsigned int sectors;
259 int cpu;
260
261 blk_queue_split(q, &bio, q->bio_split);
262
263 if (mddev == NULL || mddev->pers == NULL
264 || !mddev->ready) {
265 bio_io_error(bio);
266 return BLK_QC_T_NONE;
267 }
268 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
269 if (bio_sectors(bio) != 0)
270 bio->bi_error = -EROFS;
271 bio_endio(bio);
272 return BLK_QC_T_NONE;
273 }
274 smp_rmb(); /* Ensure implications of 'active' are visible */
275 rcu_read_lock();
276 if (mddev->suspended) {
277 DEFINE_WAIT(__wait);
278 for (;;) {
279 prepare_to_wait(&mddev->sb_wait, &__wait,
280 TASK_UNINTERRUPTIBLE);
281 if (!mddev->suspended)
282 break;
283 rcu_read_unlock();
284 schedule();
285 rcu_read_lock();
286 }
287 finish_wait(&mddev->sb_wait, &__wait);
288 }
289 atomic_inc(&mddev->active_io);
290 rcu_read_unlock();
291
292 /*
293 * save the sectors now since our bio can
294 * go away inside make_request
295 */
296 sectors = bio_sectors(bio);
297 mddev->pers->make_request(mddev, bio);
298
299 cpu = part_stat_lock();
300 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
301 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
302 part_stat_unlock();
303
304 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
305 wake_up(&mddev->sb_wait);
306
307 return BLK_QC_T_NONE;
308 }
309
310 /* mddev_suspend makes sure no new requests are submitted
311 * to the device, and that any requests that have been submitted
312 * are completely handled.
313 * Once mddev_detach() is called and completes, the module will be
314 * completely unused.
315 */
316 void mddev_suspend(struct mddev *mddev)
317 {
318 if (mddev->suspended++)
319 return;
320 synchronize_rcu();
321 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
322 mddev->pers->quiesce(mddev, 1);
323
324 del_timer_sync(&mddev->safemode_timer);
325 }
326 EXPORT_SYMBOL_GPL(mddev_suspend);
327
328 void mddev_resume(struct mddev *mddev)
329 {
330 if (--mddev->suspended)
331 return;
332 wake_up(&mddev->sb_wait);
333 mddev->pers->quiesce(mddev, 0);
334
335 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
336 md_wakeup_thread(mddev->thread);
337 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
338 }
339 EXPORT_SYMBOL_GPL(mddev_resume);
340
341 int mddev_congested(struct mddev *mddev, int bits)
342 {
343 struct md_personality *pers = mddev->pers;
344 int ret = 0;
345
346 rcu_read_lock();
347 if (mddev->suspended)
348 ret = 1;
349 else if (pers && pers->congested)
350 ret = pers->congested(mddev, bits);
351 rcu_read_unlock();
352 return ret;
353 }
354 EXPORT_SYMBOL_GPL(mddev_congested);
355 static int md_congested(void *data, int bits)
356 {
357 struct mddev *mddev = data;
358 return mddev_congested(mddev, bits);
359 }
360
361 /*
362 * Generic flush handling for md
363 */
364
365 static void md_end_flush(struct bio *bio)
366 {
367 struct md_rdev *rdev = bio->bi_private;
368 struct mddev *mddev = rdev->mddev;
369
370 rdev_dec_pending(rdev, mddev);
371
372 if (atomic_dec_and_test(&mddev->flush_pending)) {
373 /* The pre-request flush has finished */
374 queue_work(md_wq, &mddev->flush_work);
375 }
376 bio_put(bio);
377 }
378
379 static void md_submit_flush_data(struct work_struct *ws);
380
381 static void submit_flushes(struct work_struct *ws)
382 {
383 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
384 struct md_rdev *rdev;
385
386 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
387 atomic_set(&mddev->flush_pending, 1);
388 rcu_read_lock();
389 rdev_for_each_rcu(rdev, mddev)
390 if (rdev->raid_disk >= 0 &&
391 !test_bit(Faulty, &rdev->flags)) {
392 /* Take two references, one is dropped
393 * when request finishes, one after
394 * we reclaim rcu_read_lock
395 */
396 struct bio *bi;
397 atomic_inc(&rdev->nr_pending);
398 atomic_inc(&rdev->nr_pending);
399 rcu_read_unlock();
400 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
401 bi->bi_end_io = md_end_flush;
402 bi->bi_private = rdev;
403 bi->bi_bdev = rdev->bdev;
404 atomic_inc(&mddev->flush_pending);
405 submit_bio(WRITE_FLUSH, bi);
406 rcu_read_lock();
407 rdev_dec_pending(rdev, mddev);
408 }
409 rcu_read_unlock();
410 if (atomic_dec_and_test(&mddev->flush_pending))
411 queue_work(md_wq, &mddev->flush_work);
412 }
413
414 static void md_submit_flush_data(struct work_struct *ws)
415 {
416 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
417 struct bio *bio = mddev->flush_bio;
418
419 if (bio->bi_iter.bi_size == 0)
420 /* an empty barrier - all done */
421 bio_endio(bio);
422 else {
423 bio->bi_rw &= ~REQ_FLUSH;
424 mddev->pers->make_request(mddev, bio);
425 }
426
427 mddev->flush_bio = NULL;
428 wake_up(&mddev->sb_wait);
429 }
430
431 void md_flush_request(struct mddev *mddev, struct bio *bio)
432 {
433 spin_lock_irq(&mddev->lock);
434 wait_event_lock_irq(mddev->sb_wait,
435 !mddev->flush_bio,
436 mddev->lock);
437 mddev->flush_bio = bio;
438 spin_unlock_irq(&mddev->lock);
439
440 INIT_WORK(&mddev->flush_work, submit_flushes);
441 queue_work(md_wq, &mddev->flush_work);
442 }
443 EXPORT_SYMBOL(md_flush_request);
444
445 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
446 {
447 struct mddev *mddev = cb->data;
448 md_wakeup_thread(mddev->thread);
449 kfree(cb);
450 }
451 EXPORT_SYMBOL(md_unplug);
452
453 static inline struct mddev *mddev_get(struct mddev *mddev)
454 {
455 atomic_inc(&mddev->active);
456 return mddev;
457 }
458
459 static void mddev_delayed_delete(struct work_struct *ws);
460
461 static void mddev_put(struct mddev *mddev)
462 {
463 struct bio_set *bs = NULL;
464
465 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
466 return;
467 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
468 mddev->ctime == 0 && !mddev->hold_active) {
469 /* Array is not configured at all, and not held active,
470 * so destroy it */
471 list_del_init(&mddev->all_mddevs);
472 bs = mddev->bio_set;
473 mddev->bio_set = NULL;
474 if (mddev->gendisk) {
475 /* We did a probe so need to clean up. Call
476 * queue_work inside the spinlock so that
477 * flush_workqueue() after mddev_find will
478 * succeed in waiting for the work to be done.
479 */
480 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
481 queue_work(md_misc_wq, &mddev->del_work);
482 } else
483 kfree(mddev);
484 }
485 spin_unlock(&all_mddevs_lock);
486 if (bs)
487 bioset_free(bs);
488 }
489
490 static void md_safemode_timeout(unsigned long data);
491
492 void mddev_init(struct mddev *mddev)
493 {
494 mutex_init(&mddev->open_mutex);
495 mutex_init(&mddev->reconfig_mutex);
496 mutex_init(&mddev->bitmap_info.mutex);
497 INIT_LIST_HEAD(&mddev->disks);
498 INIT_LIST_HEAD(&mddev->all_mddevs);
499 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
500 (unsigned long) mddev);
501 atomic_set(&mddev->active, 1);
502 atomic_set(&mddev->openers, 0);
503 atomic_set(&mddev->active_io, 0);
504 spin_lock_init(&mddev->lock);
505 atomic_set(&mddev->flush_pending, 0);
506 init_waitqueue_head(&mddev->sb_wait);
507 init_waitqueue_head(&mddev->recovery_wait);
508 mddev->reshape_position = MaxSector;
509 mddev->reshape_backwards = 0;
510 mddev->last_sync_action = "none";
511 mddev->resync_min = 0;
512 mddev->resync_max = MaxSector;
513 mddev->level = LEVEL_NONE;
514 }
515 EXPORT_SYMBOL_GPL(mddev_init);
516
517 static struct mddev *mddev_find(dev_t unit)
518 {
519 struct mddev *mddev, *new = NULL;
520
521 if (unit && MAJOR(unit) != MD_MAJOR)
522 unit &= ~((1<<MdpMinorShift)-1);
523
524 retry:
525 spin_lock(&all_mddevs_lock);
526
527 if (unit) {
528 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
529 if (mddev->unit == unit) {
530 mddev_get(mddev);
531 spin_unlock(&all_mddevs_lock);
532 kfree(new);
533 return mddev;
534 }
535
536 if (new) {
537 list_add(&new->all_mddevs, &all_mddevs);
538 spin_unlock(&all_mddevs_lock);
539 new->hold_active = UNTIL_IOCTL;
540 return new;
541 }
542 } else if (new) {
543 /* find an unused unit number */
544 static int next_minor = 512;
545 int start = next_minor;
546 int is_free = 0;
547 int dev = 0;
548 while (!is_free) {
549 dev = MKDEV(MD_MAJOR, next_minor);
550 next_minor++;
551 if (next_minor > MINORMASK)
552 next_minor = 0;
553 if (next_minor == start) {
554 /* Oh dear, all in use. */
555 spin_unlock(&all_mddevs_lock);
556 kfree(new);
557 return NULL;
558 }
559
560 is_free = 1;
561 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
562 if (mddev->unit == dev) {
563 is_free = 0;
564 break;
565 }
566 }
567 new->unit = dev;
568 new->md_minor = MINOR(dev);
569 new->hold_active = UNTIL_STOP;
570 list_add(&new->all_mddevs, &all_mddevs);
571 spin_unlock(&all_mddevs_lock);
572 return new;
573 }
574 spin_unlock(&all_mddevs_lock);
575
576 new = kzalloc(sizeof(*new), GFP_KERNEL);
577 if (!new)
578 return NULL;
579
580 new->unit = unit;
581 if (MAJOR(unit) == MD_MAJOR)
582 new->md_minor = MINOR(unit);
583 else
584 new->md_minor = MINOR(unit) >> MdpMinorShift;
585
586 mddev_init(new);
587
588 goto retry;
589 }
590
591 static struct attribute_group md_redundancy_group;
592
593 void mddev_unlock(struct mddev *mddev)
594 {
595 if (mddev->to_remove) {
596 /* These cannot be removed under reconfig_mutex as
597 * an access to the files will try to take reconfig_mutex
598 * while holding the file unremovable, which leads to
599 * a deadlock.
600 * So hold set sysfs_active while the remove in happeing,
601 * and anything else which might set ->to_remove or my
602 * otherwise change the sysfs namespace will fail with
603 * -EBUSY if sysfs_active is still set.
604 * We set sysfs_active under reconfig_mutex and elsewhere
605 * test it under the same mutex to ensure its correct value
606 * is seen.
607 */
608 struct attribute_group *to_remove = mddev->to_remove;
609 mddev->to_remove = NULL;
610 mddev->sysfs_active = 1;
611 mutex_unlock(&mddev->reconfig_mutex);
612
613 if (mddev->kobj.sd) {
614 if (to_remove != &md_redundancy_group)
615 sysfs_remove_group(&mddev->kobj, to_remove);
616 if (mddev->pers == NULL ||
617 mddev->pers->sync_request == NULL) {
618 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
619 if (mddev->sysfs_action)
620 sysfs_put(mddev->sysfs_action);
621 mddev->sysfs_action = NULL;
622 }
623 }
624 mddev->sysfs_active = 0;
625 } else
626 mutex_unlock(&mddev->reconfig_mutex);
627
628 /* As we've dropped the mutex we need a spinlock to
629 * make sure the thread doesn't disappear
630 */
631 spin_lock(&pers_lock);
632 md_wakeup_thread(mddev->thread);
633 spin_unlock(&pers_lock);
634 }
635 EXPORT_SYMBOL_GPL(mddev_unlock);
636
637 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
638 {
639 struct md_rdev *rdev;
640
641 rdev_for_each_rcu(rdev, mddev)
642 if (rdev->desc_nr == nr)
643 return rdev;
644
645 return NULL;
646 }
647 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
648
649 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
650 {
651 struct md_rdev *rdev;
652
653 rdev_for_each(rdev, mddev)
654 if (rdev->bdev->bd_dev == dev)
655 return rdev;
656
657 return NULL;
658 }
659
660 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
661 {
662 struct md_rdev *rdev;
663
664 rdev_for_each_rcu(rdev, mddev)
665 if (rdev->bdev->bd_dev == dev)
666 return rdev;
667
668 return NULL;
669 }
670
671 static struct md_personality *find_pers(int level, char *clevel)
672 {
673 struct md_personality *pers;
674 list_for_each_entry(pers, &pers_list, list) {
675 if (level != LEVEL_NONE && pers->level == level)
676 return pers;
677 if (strcmp(pers->name, clevel)==0)
678 return pers;
679 }
680 return NULL;
681 }
682
683 /* return the offset of the super block in 512byte sectors */
684 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
685 {
686 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
687 return MD_NEW_SIZE_SECTORS(num_sectors);
688 }
689
690 static int alloc_disk_sb(struct md_rdev *rdev)
691 {
692 rdev->sb_page = alloc_page(GFP_KERNEL);
693 if (!rdev->sb_page) {
694 printk(KERN_ALERT "md: out of memory.\n");
695 return -ENOMEM;
696 }
697
698 return 0;
699 }
700
701 void md_rdev_clear(struct md_rdev *rdev)
702 {
703 if (rdev->sb_page) {
704 put_page(rdev->sb_page);
705 rdev->sb_loaded = 0;
706 rdev->sb_page = NULL;
707 rdev->sb_start = 0;
708 rdev->sectors = 0;
709 }
710 if (rdev->bb_page) {
711 put_page(rdev->bb_page);
712 rdev->bb_page = NULL;
713 }
714 badblocks_exit(&rdev->badblocks);
715 }
716 EXPORT_SYMBOL_GPL(md_rdev_clear);
717
718 static void super_written(struct bio *bio)
719 {
720 struct md_rdev *rdev = bio->bi_private;
721 struct mddev *mddev = rdev->mddev;
722
723 if (bio->bi_error) {
724 printk("md: super_written gets error=%d\n", bio->bi_error);
725 md_error(mddev, rdev);
726 }
727
728 if (atomic_dec_and_test(&mddev->pending_writes))
729 wake_up(&mddev->sb_wait);
730 bio_put(bio);
731 }
732
733 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
734 sector_t sector, int size, struct page *page)
735 {
736 /* write first size bytes of page to sector of rdev
737 * Increment mddev->pending_writes before returning
738 * and decrement it on completion, waking up sb_wait
739 * if zero is reached.
740 * If an error occurred, call md_error
741 */
742 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
743
744 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
745 bio->bi_iter.bi_sector = sector;
746 bio_add_page(bio, page, size, 0);
747 bio->bi_private = rdev;
748 bio->bi_end_io = super_written;
749
750 atomic_inc(&mddev->pending_writes);
751 submit_bio(WRITE_FLUSH_FUA, bio);
752 }
753
754 void md_super_wait(struct mddev *mddev)
755 {
756 /* wait for all superblock writes that were scheduled to complete */
757 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
758 }
759
760 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
761 struct page *page, int rw, bool metadata_op)
762 {
763 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
764 int ret;
765
766 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
767 rdev->meta_bdev : rdev->bdev;
768 if (metadata_op)
769 bio->bi_iter.bi_sector = sector + rdev->sb_start;
770 else if (rdev->mddev->reshape_position != MaxSector &&
771 (rdev->mddev->reshape_backwards ==
772 (sector >= rdev->mddev->reshape_position)))
773 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
774 else
775 bio->bi_iter.bi_sector = sector + rdev->data_offset;
776 bio_add_page(bio, page, size, 0);
777 submit_bio_wait(rw, bio);
778
779 ret = !bio->bi_error;
780 bio_put(bio);
781 return ret;
782 }
783 EXPORT_SYMBOL_GPL(sync_page_io);
784
785 static int read_disk_sb(struct md_rdev *rdev, int size)
786 {
787 char b[BDEVNAME_SIZE];
788
789 if (rdev->sb_loaded)
790 return 0;
791
792 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
793 goto fail;
794 rdev->sb_loaded = 1;
795 return 0;
796
797 fail:
798 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
799 bdevname(rdev->bdev,b));
800 return -EINVAL;
801 }
802
803 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805 return sb1->set_uuid0 == sb2->set_uuid0 &&
806 sb1->set_uuid1 == sb2->set_uuid1 &&
807 sb1->set_uuid2 == sb2->set_uuid2 &&
808 sb1->set_uuid3 == sb2->set_uuid3;
809 }
810
811 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 int ret;
814 mdp_super_t *tmp1, *tmp2;
815
816 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
817 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
818
819 if (!tmp1 || !tmp2) {
820 ret = 0;
821 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
822 goto abort;
823 }
824
825 *tmp1 = *sb1;
826 *tmp2 = *sb2;
827
828 /*
829 * nr_disks is not constant
830 */
831 tmp1->nr_disks = 0;
832 tmp2->nr_disks = 0;
833
834 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
835 abort:
836 kfree(tmp1);
837 kfree(tmp2);
838 return ret;
839 }
840
841 static u32 md_csum_fold(u32 csum)
842 {
843 csum = (csum & 0xffff) + (csum >> 16);
844 return (csum & 0xffff) + (csum >> 16);
845 }
846
847 static unsigned int calc_sb_csum(mdp_super_t *sb)
848 {
849 u64 newcsum = 0;
850 u32 *sb32 = (u32*)sb;
851 int i;
852 unsigned int disk_csum, csum;
853
854 disk_csum = sb->sb_csum;
855 sb->sb_csum = 0;
856
857 for (i = 0; i < MD_SB_BYTES/4 ; i++)
858 newcsum += sb32[i];
859 csum = (newcsum & 0xffffffff) + (newcsum>>32);
860
861 #ifdef CONFIG_ALPHA
862 /* This used to use csum_partial, which was wrong for several
863 * reasons including that different results are returned on
864 * different architectures. It isn't critical that we get exactly
865 * the same return value as before (we always csum_fold before
866 * testing, and that removes any differences). However as we
867 * know that csum_partial always returned a 16bit value on
868 * alphas, do a fold to maximise conformity to previous behaviour.
869 */
870 sb->sb_csum = md_csum_fold(disk_csum);
871 #else
872 sb->sb_csum = disk_csum;
873 #endif
874 return csum;
875 }
876
877 /*
878 * Handle superblock details.
879 * We want to be able to handle multiple superblock formats
880 * so we have a common interface to them all, and an array of
881 * different handlers.
882 * We rely on user-space to write the initial superblock, and support
883 * reading and updating of superblocks.
884 * Interface methods are:
885 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
886 * loads and validates a superblock on dev.
887 * if refdev != NULL, compare superblocks on both devices
888 * Return:
889 * 0 - dev has a superblock that is compatible with refdev
890 * 1 - dev has a superblock that is compatible and newer than refdev
891 * so dev should be used as the refdev in future
892 * -EINVAL superblock incompatible or invalid
893 * -othererror e.g. -EIO
894 *
895 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
896 * Verify that dev is acceptable into mddev.
897 * The first time, mddev->raid_disks will be 0, and data from
898 * dev should be merged in. Subsequent calls check that dev
899 * is new enough. Return 0 or -EINVAL
900 *
901 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
902 * Update the superblock for rdev with data in mddev
903 * This does not write to disc.
904 *
905 */
906
907 struct super_type {
908 char *name;
909 struct module *owner;
910 int (*load_super)(struct md_rdev *rdev,
911 struct md_rdev *refdev,
912 int minor_version);
913 int (*validate_super)(struct mddev *mddev,
914 struct md_rdev *rdev);
915 void (*sync_super)(struct mddev *mddev,
916 struct md_rdev *rdev);
917 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
918 sector_t num_sectors);
919 int (*allow_new_offset)(struct md_rdev *rdev,
920 unsigned long long new_offset);
921 };
922
923 /*
924 * Check that the given mddev has no bitmap.
925 *
926 * This function is called from the run method of all personalities that do not
927 * support bitmaps. It prints an error message and returns non-zero if mddev
928 * has a bitmap. Otherwise, it returns 0.
929 *
930 */
931 int md_check_no_bitmap(struct mddev *mddev)
932 {
933 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
934 return 0;
935 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
936 mdname(mddev), mddev->pers->name);
937 return 1;
938 }
939 EXPORT_SYMBOL(md_check_no_bitmap);
940
941 /*
942 * load_super for 0.90.0
943 */
944 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
945 {
946 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
947 mdp_super_t *sb;
948 int ret;
949
950 /*
951 * Calculate the position of the superblock (512byte sectors),
952 * it's at the end of the disk.
953 *
954 * It also happens to be a multiple of 4Kb.
955 */
956 rdev->sb_start = calc_dev_sboffset(rdev);
957
958 ret = read_disk_sb(rdev, MD_SB_BYTES);
959 if (ret) return ret;
960
961 ret = -EINVAL;
962
963 bdevname(rdev->bdev, b);
964 sb = page_address(rdev->sb_page);
965
966 if (sb->md_magic != MD_SB_MAGIC) {
967 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
968 b);
969 goto abort;
970 }
971
972 if (sb->major_version != 0 ||
973 sb->minor_version < 90 ||
974 sb->minor_version > 91) {
975 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
976 sb->major_version, sb->minor_version,
977 b);
978 goto abort;
979 }
980
981 if (sb->raid_disks <= 0)
982 goto abort;
983
984 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
985 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
986 b);
987 goto abort;
988 }
989
990 rdev->preferred_minor = sb->md_minor;
991 rdev->data_offset = 0;
992 rdev->new_data_offset = 0;
993 rdev->sb_size = MD_SB_BYTES;
994 rdev->badblocks.shift = -1;
995
996 if (sb->level == LEVEL_MULTIPATH)
997 rdev->desc_nr = -1;
998 else
999 rdev->desc_nr = sb->this_disk.number;
1000
1001 if (!refdev) {
1002 ret = 1;
1003 } else {
1004 __u64 ev1, ev2;
1005 mdp_super_t *refsb = page_address(refdev->sb_page);
1006 if (!uuid_equal(refsb, sb)) {
1007 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1008 b, bdevname(refdev->bdev,b2));
1009 goto abort;
1010 }
1011 if (!sb_equal(refsb, sb)) {
1012 printk(KERN_WARNING "md: %s has same UUID"
1013 " but different superblock to %s\n",
1014 b, bdevname(refdev->bdev, b2));
1015 goto abort;
1016 }
1017 ev1 = md_event(sb);
1018 ev2 = md_event(refsb);
1019 if (ev1 > ev2)
1020 ret = 1;
1021 else
1022 ret = 0;
1023 }
1024 rdev->sectors = rdev->sb_start;
1025 /* Limit to 4TB as metadata cannot record more than that.
1026 * (not needed for Linear and RAID0 as metadata doesn't
1027 * record this size)
1028 */
1029 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1030 rdev->sectors = (2ULL << 32) - 2;
1031
1032 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1033 /* "this cannot possibly happen" ... */
1034 ret = -EINVAL;
1035
1036 abort:
1037 return ret;
1038 }
1039
1040 /*
1041 * validate_super for 0.90.0
1042 */
1043 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1044 {
1045 mdp_disk_t *desc;
1046 mdp_super_t *sb = page_address(rdev->sb_page);
1047 __u64 ev1 = md_event(sb);
1048
1049 rdev->raid_disk = -1;
1050 clear_bit(Faulty, &rdev->flags);
1051 clear_bit(In_sync, &rdev->flags);
1052 clear_bit(Bitmap_sync, &rdev->flags);
1053 clear_bit(WriteMostly, &rdev->flags);
1054
1055 if (mddev->raid_disks == 0) {
1056 mddev->major_version = 0;
1057 mddev->minor_version = sb->minor_version;
1058 mddev->patch_version = sb->patch_version;
1059 mddev->external = 0;
1060 mddev->chunk_sectors = sb->chunk_size >> 9;
1061 mddev->ctime = sb->ctime;
1062 mddev->utime = sb->utime;
1063 mddev->level = sb->level;
1064 mddev->clevel[0] = 0;
1065 mddev->layout = sb->layout;
1066 mddev->raid_disks = sb->raid_disks;
1067 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1068 mddev->events = ev1;
1069 mddev->bitmap_info.offset = 0;
1070 mddev->bitmap_info.space = 0;
1071 /* bitmap can use 60 K after the 4K superblocks */
1072 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1073 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1074 mddev->reshape_backwards = 0;
1075
1076 if (mddev->minor_version >= 91) {
1077 mddev->reshape_position = sb->reshape_position;
1078 mddev->delta_disks = sb->delta_disks;
1079 mddev->new_level = sb->new_level;
1080 mddev->new_layout = sb->new_layout;
1081 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1082 if (mddev->delta_disks < 0)
1083 mddev->reshape_backwards = 1;
1084 } else {
1085 mddev->reshape_position = MaxSector;
1086 mddev->delta_disks = 0;
1087 mddev->new_level = mddev->level;
1088 mddev->new_layout = mddev->layout;
1089 mddev->new_chunk_sectors = mddev->chunk_sectors;
1090 }
1091
1092 if (sb->state & (1<<MD_SB_CLEAN))
1093 mddev->recovery_cp = MaxSector;
1094 else {
1095 if (sb->events_hi == sb->cp_events_hi &&
1096 sb->events_lo == sb->cp_events_lo) {
1097 mddev->recovery_cp = sb->recovery_cp;
1098 } else
1099 mddev->recovery_cp = 0;
1100 }
1101
1102 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1103 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1104 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1105 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1106
1107 mddev->max_disks = MD_SB_DISKS;
1108
1109 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1110 mddev->bitmap_info.file == NULL) {
1111 mddev->bitmap_info.offset =
1112 mddev->bitmap_info.default_offset;
1113 mddev->bitmap_info.space =
1114 mddev->bitmap_info.default_space;
1115 }
1116
1117 } else if (mddev->pers == NULL) {
1118 /* Insist on good event counter while assembling, except
1119 * for spares (which don't need an event count) */
1120 ++ev1;
1121 if (sb->disks[rdev->desc_nr].state & (
1122 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1123 if (ev1 < mddev->events)
1124 return -EINVAL;
1125 } else if (mddev->bitmap) {
1126 /* if adding to array with a bitmap, then we can accept an
1127 * older device ... but not too old.
1128 */
1129 if (ev1 < mddev->bitmap->events_cleared)
1130 return 0;
1131 if (ev1 < mddev->events)
1132 set_bit(Bitmap_sync, &rdev->flags);
1133 } else {
1134 if (ev1 < mddev->events)
1135 /* just a hot-add of a new device, leave raid_disk at -1 */
1136 return 0;
1137 }
1138
1139 if (mddev->level != LEVEL_MULTIPATH) {
1140 desc = sb->disks + rdev->desc_nr;
1141
1142 if (desc->state & (1<<MD_DISK_FAULTY))
1143 set_bit(Faulty, &rdev->flags);
1144 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1145 desc->raid_disk < mddev->raid_disks */) {
1146 set_bit(In_sync, &rdev->flags);
1147 rdev->raid_disk = desc->raid_disk;
1148 rdev->saved_raid_disk = desc->raid_disk;
1149 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1150 /* active but not in sync implies recovery up to
1151 * reshape position. We don't know exactly where
1152 * that is, so set to zero for now */
1153 if (mddev->minor_version >= 91) {
1154 rdev->recovery_offset = 0;
1155 rdev->raid_disk = desc->raid_disk;
1156 }
1157 }
1158 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1159 set_bit(WriteMostly, &rdev->flags);
1160 } else /* MULTIPATH are always insync */
1161 set_bit(In_sync, &rdev->flags);
1162 return 0;
1163 }
1164
1165 /*
1166 * sync_super for 0.90.0
1167 */
1168 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1169 {
1170 mdp_super_t *sb;
1171 struct md_rdev *rdev2;
1172 int next_spare = mddev->raid_disks;
1173
1174 /* make rdev->sb match mddev data..
1175 *
1176 * 1/ zero out disks
1177 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1178 * 3/ any empty disks < next_spare become removed
1179 *
1180 * disks[0] gets initialised to REMOVED because
1181 * we cannot be sure from other fields if it has
1182 * been initialised or not.
1183 */
1184 int i;
1185 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1186
1187 rdev->sb_size = MD_SB_BYTES;
1188
1189 sb = page_address(rdev->sb_page);
1190
1191 memset(sb, 0, sizeof(*sb));
1192
1193 sb->md_magic = MD_SB_MAGIC;
1194 sb->major_version = mddev->major_version;
1195 sb->patch_version = mddev->patch_version;
1196 sb->gvalid_words = 0; /* ignored */
1197 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1198 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1199 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1200 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1201
1202 sb->ctime = mddev->ctime;
1203 sb->level = mddev->level;
1204 sb->size = mddev->dev_sectors / 2;
1205 sb->raid_disks = mddev->raid_disks;
1206 sb->md_minor = mddev->md_minor;
1207 sb->not_persistent = 0;
1208 sb->utime = mddev->utime;
1209 sb->state = 0;
1210 sb->events_hi = (mddev->events>>32);
1211 sb->events_lo = (u32)mddev->events;
1212
1213 if (mddev->reshape_position == MaxSector)
1214 sb->minor_version = 90;
1215 else {
1216 sb->minor_version = 91;
1217 sb->reshape_position = mddev->reshape_position;
1218 sb->new_level = mddev->new_level;
1219 sb->delta_disks = mddev->delta_disks;
1220 sb->new_layout = mddev->new_layout;
1221 sb->new_chunk = mddev->new_chunk_sectors << 9;
1222 }
1223 mddev->minor_version = sb->minor_version;
1224 if (mddev->in_sync)
1225 {
1226 sb->recovery_cp = mddev->recovery_cp;
1227 sb->cp_events_hi = (mddev->events>>32);
1228 sb->cp_events_lo = (u32)mddev->events;
1229 if (mddev->recovery_cp == MaxSector)
1230 sb->state = (1<< MD_SB_CLEAN);
1231 } else
1232 sb->recovery_cp = 0;
1233
1234 sb->layout = mddev->layout;
1235 sb->chunk_size = mddev->chunk_sectors << 9;
1236
1237 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1238 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1239
1240 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1241 rdev_for_each(rdev2, mddev) {
1242 mdp_disk_t *d;
1243 int desc_nr;
1244 int is_active = test_bit(In_sync, &rdev2->flags);
1245
1246 if (rdev2->raid_disk >= 0 &&
1247 sb->minor_version >= 91)
1248 /* we have nowhere to store the recovery_offset,
1249 * but if it is not below the reshape_position,
1250 * we can piggy-back on that.
1251 */
1252 is_active = 1;
1253 if (rdev2->raid_disk < 0 ||
1254 test_bit(Faulty, &rdev2->flags))
1255 is_active = 0;
1256 if (is_active)
1257 desc_nr = rdev2->raid_disk;
1258 else
1259 desc_nr = next_spare++;
1260 rdev2->desc_nr = desc_nr;
1261 d = &sb->disks[rdev2->desc_nr];
1262 nr_disks++;
1263 d->number = rdev2->desc_nr;
1264 d->major = MAJOR(rdev2->bdev->bd_dev);
1265 d->minor = MINOR(rdev2->bdev->bd_dev);
1266 if (is_active)
1267 d->raid_disk = rdev2->raid_disk;
1268 else
1269 d->raid_disk = rdev2->desc_nr; /* compatibility */
1270 if (test_bit(Faulty, &rdev2->flags))
1271 d->state = (1<<MD_DISK_FAULTY);
1272 else if (is_active) {
1273 d->state = (1<<MD_DISK_ACTIVE);
1274 if (test_bit(In_sync, &rdev2->flags))
1275 d->state |= (1<<MD_DISK_SYNC);
1276 active++;
1277 working++;
1278 } else {
1279 d->state = 0;
1280 spare++;
1281 working++;
1282 }
1283 if (test_bit(WriteMostly, &rdev2->flags))
1284 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1285 }
1286 /* now set the "removed" and "faulty" bits on any missing devices */
1287 for (i=0 ; i < mddev->raid_disks ; i++) {
1288 mdp_disk_t *d = &sb->disks[i];
1289 if (d->state == 0 && d->number == 0) {
1290 d->number = i;
1291 d->raid_disk = i;
1292 d->state = (1<<MD_DISK_REMOVED);
1293 d->state |= (1<<MD_DISK_FAULTY);
1294 failed++;
1295 }
1296 }
1297 sb->nr_disks = nr_disks;
1298 sb->active_disks = active;
1299 sb->working_disks = working;
1300 sb->failed_disks = failed;
1301 sb->spare_disks = spare;
1302
1303 sb->this_disk = sb->disks[rdev->desc_nr];
1304 sb->sb_csum = calc_sb_csum(sb);
1305 }
1306
1307 /*
1308 * rdev_size_change for 0.90.0
1309 */
1310 static unsigned long long
1311 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1312 {
1313 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1314 return 0; /* component must fit device */
1315 if (rdev->mddev->bitmap_info.offset)
1316 return 0; /* can't move bitmap */
1317 rdev->sb_start = calc_dev_sboffset(rdev);
1318 if (!num_sectors || num_sectors > rdev->sb_start)
1319 num_sectors = rdev->sb_start;
1320 /* Limit to 4TB as metadata cannot record more than that.
1321 * 4TB == 2^32 KB, or 2*2^32 sectors.
1322 */
1323 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1324 num_sectors = (2ULL << 32) - 2;
1325 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1326 rdev->sb_page);
1327 md_super_wait(rdev->mddev);
1328 return num_sectors;
1329 }
1330
1331 static int
1332 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1333 {
1334 /* non-zero offset changes not possible with v0.90 */
1335 return new_offset == 0;
1336 }
1337
1338 /*
1339 * version 1 superblock
1340 */
1341
1342 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1343 {
1344 __le32 disk_csum;
1345 u32 csum;
1346 unsigned long long newcsum;
1347 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1348 __le32 *isuper = (__le32*)sb;
1349
1350 disk_csum = sb->sb_csum;
1351 sb->sb_csum = 0;
1352 newcsum = 0;
1353 for (; size >= 4; size -= 4)
1354 newcsum += le32_to_cpu(*isuper++);
1355
1356 if (size == 2)
1357 newcsum += le16_to_cpu(*(__le16*) isuper);
1358
1359 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1360 sb->sb_csum = disk_csum;
1361 return cpu_to_le32(csum);
1362 }
1363
1364 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1365 {
1366 struct mdp_superblock_1 *sb;
1367 int ret;
1368 sector_t sb_start;
1369 sector_t sectors;
1370 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1371 int bmask;
1372
1373 /*
1374 * Calculate the position of the superblock in 512byte sectors.
1375 * It is always aligned to a 4K boundary and
1376 * depeding on minor_version, it can be:
1377 * 0: At least 8K, but less than 12K, from end of device
1378 * 1: At start of device
1379 * 2: 4K from start of device.
1380 */
1381 switch(minor_version) {
1382 case 0:
1383 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1384 sb_start -= 8*2;
1385 sb_start &= ~(sector_t)(4*2-1);
1386 break;
1387 case 1:
1388 sb_start = 0;
1389 break;
1390 case 2:
1391 sb_start = 8;
1392 break;
1393 default:
1394 return -EINVAL;
1395 }
1396 rdev->sb_start = sb_start;
1397
1398 /* superblock is rarely larger than 1K, but it can be larger,
1399 * and it is safe to read 4k, so we do that
1400 */
1401 ret = read_disk_sb(rdev, 4096);
1402 if (ret) return ret;
1403
1404 sb = page_address(rdev->sb_page);
1405
1406 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1407 sb->major_version != cpu_to_le32(1) ||
1408 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1409 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1410 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1411 return -EINVAL;
1412
1413 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1414 printk("md: invalid superblock checksum on %s\n",
1415 bdevname(rdev->bdev,b));
1416 return -EINVAL;
1417 }
1418 if (le64_to_cpu(sb->data_size) < 10) {
1419 printk("md: data_size too small on %s\n",
1420 bdevname(rdev->bdev,b));
1421 return -EINVAL;
1422 }
1423 if (sb->pad0 ||
1424 sb->pad3[0] ||
1425 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1426 /* Some padding is non-zero, might be a new feature */
1427 return -EINVAL;
1428
1429 rdev->preferred_minor = 0xffff;
1430 rdev->data_offset = le64_to_cpu(sb->data_offset);
1431 rdev->new_data_offset = rdev->data_offset;
1432 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1433 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1434 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1435 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1436
1437 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1438 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1439 if (rdev->sb_size & bmask)
1440 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1441
1442 if (minor_version
1443 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1444 return -EINVAL;
1445 if (minor_version
1446 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1447 return -EINVAL;
1448
1449 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1450 rdev->desc_nr = -1;
1451 else
1452 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1453
1454 if (!rdev->bb_page) {
1455 rdev->bb_page = alloc_page(GFP_KERNEL);
1456 if (!rdev->bb_page)
1457 return -ENOMEM;
1458 }
1459 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1460 rdev->badblocks.count == 0) {
1461 /* need to load the bad block list.
1462 * Currently we limit it to one page.
1463 */
1464 s32 offset;
1465 sector_t bb_sector;
1466 u64 *bbp;
1467 int i;
1468 int sectors = le16_to_cpu(sb->bblog_size);
1469 if (sectors > (PAGE_SIZE / 512))
1470 return -EINVAL;
1471 offset = le32_to_cpu(sb->bblog_offset);
1472 if (offset == 0)
1473 return -EINVAL;
1474 bb_sector = (long long)offset;
1475 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1476 rdev->bb_page, READ, true))
1477 return -EIO;
1478 bbp = (u64 *)page_address(rdev->bb_page);
1479 rdev->badblocks.shift = sb->bblog_shift;
1480 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1481 u64 bb = le64_to_cpu(*bbp);
1482 int count = bb & (0x3ff);
1483 u64 sector = bb >> 10;
1484 sector <<= sb->bblog_shift;
1485 count <<= sb->bblog_shift;
1486 if (bb + 1 == 0)
1487 break;
1488 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1489 return -EINVAL;
1490 }
1491 } else if (sb->bblog_offset != 0)
1492 rdev->badblocks.shift = 0;
1493
1494 if (!refdev) {
1495 ret = 1;
1496 } else {
1497 __u64 ev1, ev2;
1498 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499
1500 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501 sb->level != refsb->level ||
1502 sb->layout != refsb->layout ||
1503 sb->chunksize != refsb->chunksize) {
1504 printk(KERN_WARNING "md: %s has strangely different"
1505 " superblock to %s\n",
1506 bdevname(rdev->bdev,b),
1507 bdevname(refdev->bdev,b2));
1508 return -EINVAL;
1509 }
1510 ev1 = le64_to_cpu(sb->events);
1511 ev2 = le64_to_cpu(refsb->events);
1512
1513 if (ev1 > ev2)
1514 ret = 1;
1515 else
1516 ret = 0;
1517 }
1518 if (minor_version) {
1519 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520 sectors -= rdev->data_offset;
1521 } else
1522 sectors = rdev->sb_start;
1523 if (sectors < le64_to_cpu(sb->data_size))
1524 return -EINVAL;
1525 rdev->sectors = le64_to_cpu(sb->data_size);
1526 return ret;
1527 }
1528
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532 __u64 ev1 = le64_to_cpu(sb->events);
1533
1534 rdev->raid_disk = -1;
1535 clear_bit(Faulty, &rdev->flags);
1536 clear_bit(In_sync, &rdev->flags);
1537 clear_bit(Bitmap_sync, &rdev->flags);
1538 clear_bit(WriteMostly, &rdev->flags);
1539
1540 if (mddev->raid_disks == 0) {
1541 mddev->major_version = 1;
1542 mddev->patch_version = 0;
1543 mddev->external = 0;
1544 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547 mddev->level = le32_to_cpu(sb->level);
1548 mddev->clevel[0] = 0;
1549 mddev->layout = le32_to_cpu(sb->layout);
1550 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551 mddev->dev_sectors = le64_to_cpu(sb->size);
1552 mddev->events = ev1;
1553 mddev->bitmap_info.offset = 0;
1554 mddev->bitmap_info.space = 0;
1555 /* Default location for bitmap is 1K after superblock
1556 * using 3K - total of 4K
1557 */
1558 mddev->bitmap_info.default_offset = 1024 >> 9;
1559 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560 mddev->reshape_backwards = 0;
1561
1562 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563 memcpy(mddev->uuid, sb->set_uuid, 16);
1564
1565 mddev->max_disks = (4096-256)/2;
1566
1567 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568 mddev->bitmap_info.file == NULL) {
1569 mddev->bitmap_info.offset =
1570 (__s32)le32_to_cpu(sb->bitmap_offset);
1571 /* Metadata doesn't record how much space is available.
1572 * For 1.0, we assume we can use up to the superblock
1573 * if before, else to 4K beyond superblock.
1574 * For others, assume no change is possible.
1575 */
1576 if (mddev->minor_version > 0)
1577 mddev->bitmap_info.space = 0;
1578 else if (mddev->bitmap_info.offset > 0)
1579 mddev->bitmap_info.space =
1580 8 - mddev->bitmap_info.offset;
1581 else
1582 mddev->bitmap_info.space =
1583 -mddev->bitmap_info.offset;
1584 }
1585
1586 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589 mddev->new_level = le32_to_cpu(sb->new_level);
1590 mddev->new_layout = le32_to_cpu(sb->new_layout);
1591 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592 if (mddev->delta_disks < 0 ||
1593 (mddev->delta_disks == 0 &&
1594 (le32_to_cpu(sb->feature_map)
1595 & MD_FEATURE_RESHAPE_BACKWARDS)))
1596 mddev->reshape_backwards = 1;
1597 } else {
1598 mddev->reshape_position = MaxSector;
1599 mddev->delta_disks = 0;
1600 mddev->new_level = mddev->level;
1601 mddev->new_layout = mddev->layout;
1602 mddev->new_chunk_sectors = mddev->chunk_sectors;
1603 }
1604
1605 } else if (mddev->pers == NULL) {
1606 /* Insist of good event counter while assembling, except for
1607 * spares (which don't need an event count) */
1608 ++ev1;
1609 if (rdev->desc_nr >= 0 &&
1610 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1612 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1613 if (ev1 < mddev->events)
1614 return -EINVAL;
1615 } else if (mddev->bitmap) {
1616 /* If adding to array with a bitmap, then we can accept an
1617 * older device, but not too old.
1618 */
1619 if (ev1 < mddev->bitmap->events_cleared)
1620 return 0;
1621 if (ev1 < mddev->events)
1622 set_bit(Bitmap_sync, &rdev->flags);
1623 } else {
1624 if (ev1 < mddev->events)
1625 /* just a hot-add of a new device, leave raid_disk at -1 */
1626 return 0;
1627 }
1628 if (mddev->level != LEVEL_MULTIPATH) {
1629 int role;
1630 if (rdev->desc_nr < 0 ||
1631 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1632 role = MD_DISK_ROLE_SPARE;
1633 rdev->desc_nr = -1;
1634 } else
1635 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1636 switch(role) {
1637 case MD_DISK_ROLE_SPARE: /* spare */
1638 break;
1639 case MD_DISK_ROLE_FAULTY: /* faulty */
1640 set_bit(Faulty, &rdev->flags);
1641 break;
1642 case MD_DISK_ROLE_JOURNAL: /* journal device */
1643 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1644 /* journal device without journal feature */
1645 printk(KERN_WARNING
1646 "md: journal device provided without journal feature, ignoring the device\n");
1647 return -EINVAL;
1648 }
1649 set_bit(Journal, &rdev->flags);
1650 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1651 if (mddev->recovery_cp == MaxSector)
1652 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1653 rdev->raid_disk = 0;
1654 break;
1655 default:
1656 rdev->saved_raid_disk = role;
1657 if ((le32_to_cpu(sb->feature_map) &
1658 MD_FEATURE_RECOVERY_OFFSET)) {
1659 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1660 if (!(le32_to_cpu(sb->feature_map) &
1661 MD_FEATURE_RECOVERY_BITMAP))
1662 rdev->saved_raid_disk = -1;
1663 } else
1664 set_bit(In_sync, &rdev->flags);
1665 rdev->raid_disk = role;
1666 break;
1667 }
1668 if (sb->devflags & WriteMostly1)
1669 set_bit(WriteMostly, &rdev->flags);
1670 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1671 set_bit(Replacement, &rdev->flags);
1672 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1673 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1674 } else /* MULTIPATH are always insync */
1675 set_bit(In_sync, &rdev->flags);
1676
1677 return 0;
1678 }
1679
1680 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 struct mdp_superblock_1 *sb;
1683 struct md_rdev *rdev2;
1684 int max_dev, i;
1685 /* make rdev->sb match mddev and rdev data. */
1686
1687 sb = page_address(rdev->sb_page);
1688
1689 sb->feature_map = 0;
1690 sb->pad0 = 0;
1691 sb->recovery_offset = cpu_to_le64(0);
1692 memset(sb->pad3, 0, sizeof(sb->pad3));
1693
1694 sb->utime = cpu_to_le64((__u64)mddev->utime);
1695 sb->events = cpu_to_le64(mddev->events);
1696 if (mddev->in_sync)
1697 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1698 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1699 sb->resync_offset = cpu_to_le64(MaxSector);
1700 else
1701 sb->resync_offset = cpu_to_le64(0);
1702
1703 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 sb->size = cpu_to_le64(mddev->dev_sectors);
1707 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 sb->level = cpu_to_le32(mddev->level);
1709 sb->layout = cpu_to_le32(mddev->layout);
1710
1711 if (test_bit(WriteMostly, &rdev->flags))
1712 sb->devflags |= WriteMostly1;
1713 else
1714 sb->devflags &= ~WriteMostly1;
1715 sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 }
1722
1723 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1724 !test_bit(In_sync, &rdev->flags)) {
1725 sb->feature_map |=
1726 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 sb->recovery_offset =
1728 cpu_to_le64(rdev->recovery_offset);
1729 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 sb->feature_map |=
1731 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 }
1733 /* Note: recovery_offset and journal_tail share space */
1734 if (test_bit(Journal, &rdev->flags))
1735 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1736 if (test_bit(Replacement, &rdev->flags))
1737 sb->feature_map |=
1738 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1739
1740 if (mddev->reshape_position != MaxSector) {
1741 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1742 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1743 sb->new_layout = cpu_to_le32(mddev->new_layout);
1744 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1745 sb->new_level = cpu_to_le32(mddev->new_level);
1746 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1747 if (mddev->delta_disks == 0 &&
1748 mddev->reshape_backwards)
1749 sb->feature_map
1750 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1751 if (rdev->new_data_offset != rdev->data_offset) {
1752 sb->feature_map
1753 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1754 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1755 - rdev->data_offset));
1756 }
1757 }
1758
1759 if (mddev_is_clustered(mddev))
1760 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1761
1762 if (rdev->badblocks.count == 0)
1763 /* Nothing to do for bad blocks*/ ;
1764 else if (sb->bblog_offset == 0)
1765 /* Cannot record bad blocks on this device */
1766 md_error(mddev, rdev);
1767 else {
1768 struct badblocks *bb = &rdev->badblocks;
1769 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1770 u64 *p = bb->page;
1771 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1772 if (bb->changed) {
1773 unsigned seq;
1774
1775 retry:
1776 seq = read_seqbegin(&bb->lock);
1777
1778 memset(bbp, 0xff, PAGE_SIZE);
1779
1780 for (i = 0 ; i < bb->count ; i++) {
1781 u64 internal_bb = p[i];
1782 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1783 | BB_LEN(internal_bb));
1784 bbp[i] = cpu_to_le64(store_bb);
1785 }
1786 bb->changed = 0;
1787 if (read_seqretry(&bb->lock, seq))
1788 goto retry;
1789
1790 bb->sector = (rdev->sb_start +
1791 (int)le32_to_cpu(sb->bblog_offset));
1792 bb->size = le16_to_cpu(sb->bblog_size);
1793 }
1794 }
1795
1796 max_dev = 0;
1797 rdev_for_each(rdev2, mddev)
1798 if (rdev2->desc_nr+1 > max_dev)
1799 max_dev = rdev2->desc_nr+1;
1800
1801 if (max_dev > le32_to_cpu(sb->max_dev)) {
1802 int bmask;
1803 sb->max_dev = cpu_to_le32(max_dev);
1804 rdev->sb_size = max_dev * 2 + 256;
1805 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1806 if (rdev->sb_size & bmask)
1807 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1808 } else
1809 max_dev = le32_to_cpu(sb->max_dev);
1810
1811 for (i=0; i<max_dev;i++)
1812 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1813
1814 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1815 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1816
1817 rdev_for_each(rdev2, mddev) {
1818 i = rdev2->desc_nr;
1819 if (test_bit(Faulty, &rdev2->flags))
1820 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1821 else if (test_bit(In_sync, &rdev2->flags))
1822 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823 else if (test_bit(Journal, &rdev2->flags))
1824 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1825 else if (rdev2->raid_disk >= 0)
1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827 else
1828 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1829 }
1830
1831 sb->sb_csum = calc_sb_1_csum(sb);
1832 }
1833
1834 static unsigned long long
1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1836 {
1837 struct mdp_superblock_1 *sb;
1838 sector_t max_sectors;
1839 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1840 return 0; /* component must fit device */
1841 if (rdev->data_offset != rdev->new_data_offset)
1842 return 0; /* too confusing */
1843 if (rdev->sb_start < rdev->data_offset) {
1844 /* minor versions 1 and 2; superblock before data */
1845 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1846 max_sectors -= rdev->data_offset;
1847 if (!num_sectors || num_sectors > max_sectors)
1848 num_sectors = max_sectors;
1849 } else if (rdev->mddev->bitmap_info.offset) {
1850 /* minor version 0 with bitmap we can't move */
1851 return 0;
1852 } else {
1853 /* minor version 0; superblock after data */
1854 sector_t sb_start;
1855 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1856 sb_start &= ~(sector_t)(4*2 - 1);
1857 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1858 if (!num_sectors || num_sectors > max_sectors)
1859 num_sectors = max_sectors;
1860 rdev->sb_start = sb_start;
1861 }
1862 sb = page_address(rdev->sb_page);
1863 sb->data_size = cpu_to_le64(num_sectors);
1864 sb->super_offset = rdev->sb_start;
1865 sb->sb_csum = calc_sb_1_csum(sb);
1866 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1867 rdev->sb_page);
1868 md_super_wait(rdev->mddev);
1869 return num_sectors;
1870
1871 }
1872
1873 static int
1874 super_1_allow_new_offset(struct md_rdev *rdev,
1875 unsigned long long new_offset)
1876 {
1877 /* All necessary checks on new >= old have been done */
1878 struct bitmap *bitmap;
1879 if (new_offset >= rdev->data_offset)
1880 return 1;
1881
1882 /* with 1.0 metadata, there is no metadata to tread on
1883 * so we can always move back */
1884 if (rdev->mddev->minor_version == 0)
1885 return 1;
1886
1887 /* otherwise we must be sure not to step on
1888 * any metadata, so stay:
1889 * 36K beyond start of superblock
1890 * beyond end of badblocks
1891 * beyond write-intent bitmap
1892 */
1893 if (rdev->sb_start + (32+4)*2 > new_offset)
1894 return 0;
1895 bitmap = rdev->mddev->bitmap;
1896 if (bitmap && !rdev->mddev->bitmap_info.file &&
1897 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1898 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1899 return 0;
1900 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1901 return 0;
1902
1903 return 1;
1904 }
1905
1906 static struct super_type super_types[] = {
1907 [0] = {
1908 .name = "0.90.0",
1909 .owner = THIS_MODULE,
1910 .load_super = super_90_load,
1911 .validate_super = super_90_validate,
1912 .sync_super = super_90_sync,
1913 .rdev_size_change = super_90_rdev_size_change,
1914 .allow_new_offset = super_90_allow_new_offset,
1915 },
1916 [1] = {
1917 .name = "md-1",
1918 .owner = THIS_MODULE,
1919 .load_super = super_1_load,
1920 .validate_super = super_1_validate,
1921 .sync_super = super_1_sync,
1922 .rdev_size_change = super_1_rdev_size_change,
1923 .allow_new_offset = super_1_allow_new_offset,
1924 },
1925 };
1926
1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1928 {
1929 if (mddev->sync_super) {
1930 mddev->sync_super(mddev, rdev);
1931 return;
1932 }
1933
1934 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1935
1936 super_types[mddev->major_version].sync_super(mddev, rdev);
1937 }
1938
1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1940 {
1941 struct md_rdev *rdev, *rdev2;
1942
1943 rcu_read_lock();
1944 rdev_for_each_rcu(rdev, mddev1) {
1945 if (test_bit(Faulty, &rdev->flags) ||
1946 test_bit(Journal, &rdev->flags) ||
1947 rdev->raid_disk == -1)
1948 continue;
1949 rdev_for_each_rcu(rdev2, mddev2) {
1950 if (test_bit(Faulty, &rdev2->flags) ||
1951 test_bit(Journal, &rdev2->flags) ||
1952 rdev2->raid_disk == -1)
1953 continue;
1954 if (rdev->bdev->bd_contains ==
1955 rdev2->bdev->bd_contains) {
1956 rcu_read_unlock();
1957 return 1;
1958 }
1959 }
1960 }
1961 rcu_read_unlock();
1962 return 0;
1963 }
1964
1965 static LIST_HEAD(pending_raid_disks);
1966
1967 /*
1968 * Try to register data integrity profile for an mddev
1969 *
1970 * This is called when an array is started and after a disk has been kicked
1971 * from the array. It only succeeds if all working and active component devices
1972 * are integrity capable with matching profiles.
1973 */
1974 int md_integrity_register(struct mddev *mddev)
1975 {
1976 struct md_rdev *rdev, *reference = NULL;
1977
1978 if (list_empty(&mddev->disks))
1979 return 0; /* nothing to do */
1980 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1981 return 0; /* shouldn't register, or already is */
1982 rdev_for_each(rdev, mddev) {
1983 /* skip spares and non-functional disks */
1984 if (test_bit(Faulty, &rdev->flags))
1985 continue;
1986 if (rdev->raid_disk < 0)
1987 continue;
1988 if (!reference) {
1989 /* Use the first rdev as the reference */
1990 reference = rdev;
1991 continue;
1992 }
1993 /* does this rdev's profile match the reference profile? */
1994 if (blk_integrity_compare(reference->bdev->bd_disk,
1995 rdev->bdev->bd_disk) < 0)
1996 return -EINVAL;
1997 }
1998 if (!reference || !bdev_get_integrity(reference->bdev))
1999 return 0;
2000 /*
2001 * All component devices are integrity capable and have matching
2002 * profiles, register the common profile for the md device.
2003 */
2004 blk_integrity_register(mddev->gendisk,
2005 bdev_get_integrity(reference->bdev));
2006
2007 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2008 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2009 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2010 mdname(mddev));
2011 return -EINVAL;
2012 }
2013 return 0;
2014 }
2015 EXPORT_SYMBOL(md_integrity_register);
2016
2017 /* Disable data integrity if non-capable/non-matching disk is being added */
2018 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2019 {
2020 struct blk_integrity *bi_rdev;
2021 struct blk_integrity *bi_mddev;
2022
2023 if (!mddev->gendisk)
2024 return;
2025
2026 bi_rdev = bdev_get_integrity(rdev->bdev);
2027 bi_mddev = blk_get_integrity(mddev->gendisk);
2028
2029 if (!bi_mddev) /* nothing to do */
2030 return;
2031 if (rdev->raid_disk < 0) /* skip spares */
2032 return;
2033 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2034 rdev->bdev->bd_disk) >= 0)
2035 return;
2036 WARN_ON_ONCE(!mddev->suspended);
2037 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2038 blk_integrity_unregister(mddev->gendisk);
2039 }
2040 EXPORT_SYMBOL(md_integrity_add_rdev);
2041
2042 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2043 {
2044 char b[BDEVNAME_SIZE];
2045 struct kobject *ko;
2046 int err;
2047
2048 /* prevent duplicates */
2049 if (find_rdev(mddev, rdev->bdev->bd_dev))
2050 return -EEXIST;
2051
2052 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2053 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2054 rdev->sectors < mddev->dev_sectors)) {
2055 if (mddev->pers) {
2056 /* Cannot change size, so fail
2057 * If mddev->level <= 0, then we don't care
2058 * about aligning sizes (e.g. linear)
2059 */
2060 if (mddev->level > 0)
2061 return -ENOSPC;
2062 } else
2063 mddev->dev_sectors = rdev->sectors;
2064 }
2065
2066 /* Verify rdev->desc_nr is unique.
2067 * If it is -1, assign a free number, else
2068 * check number is not in use
2069 */
2070 rcu_read_lock();
2071 if (rdev->desc_nr < 0) {
2072 int choice = 0;
2073 if (mddev->pers)
2074 choice = mddev->raid_disks;
2075 while (md_find_rdev_nr_rcu(mddev, choice))
2076 choice++;
2077 rdev->desc_nr = choice;
2078 } else {
2079 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2080 rcu_read_unlock();
2081 return -EBUSY;
2082 }
2083 }
2084 rcu_read_unlock();
2085 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2086 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2087 mdname(mddev), mddev->max_disks);
2088 return -EBUSY;
2089 }
2090 bdevname(rdev->bdev,b);
2091 strreplace(b, '/', '!');
2092
2093 rdev->mddev = mddev;
2094 printk(KERN_INFO "md: bind<%s>\n", b);
2095
2096 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2097 goto fail;
2098
2099 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2100 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2101 /* failure here is OK */;
2102 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2103
2104 list_add_rcu(&rdev->same_set, &mddev->disks);
2105 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2106
2107 /* May as well allow recovery to be retried once */
2108 mddev->recovery_disabled++;
2109
2110 return 0;
2111
2112 fail:
2113 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2114 b, mdname(mddev));
2115 return err;
2116 }
2117
2118 static void md_delayed_delete(struct work_struct *ws)
2119 {
2120 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2121 kobject_del(&rdev->kobj);
2122 kobject_put(&rdev->kobj);
2123 }
2124
2125 static void unbind_rdev_from_array(struct md_rdev *rdev)
2126 {
2127 char b[BDEVNAME_SIZE];
2128
2129 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2130 list_del_rcu(&rdev->same_set);
2131 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2132 rdev->mddev = NULL;
2133 sysfs_remove_link(&rdev->kobj, "block");
2134 sysfs_put(rdev->sysfs_state);
2135 rdev->sysfs_state = NULL;
2136 rdev->badblocks.count = 0;
2137 /* We need to delay this, otherwise we can deadlock when
2138 * writing to 'remove' to "dev/state". We also need
2139 * to delay it due to rcu usage.
2140 */
2141 synchronize_rcu();
2142 INIT_WORK(&rdev->del_work, md_delayed_delete);
2143 kobject_get(&rdev->kobj);
2144 queue_work(md_misc_wq, &rdev->del_work);
2145 }
2146
2147 /*
2148 * prevent the device from being mounted, repartitioned or
2149 * otherwise reused by a RAID array (or any other kernel
2150 * subsystem), by bd_claiming the device.
2151 */
2152 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2153 {
2154 int err = 0;
2155 struct block_device *bdev;
2156 char b[BDEVNAME_SIZE];
2157
2158 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2159 shared ? (struct md_rdev *)lock_rdev : rdev);
2160 if (IS_ERR(bdev)) {
2161 printk(KERN_ERR "md: could not open %s.\n",
2162 __bdevname(dev, b));
2163 return PTR_ERR(bdev);
2164 }
2165 rdev->bdev = bdev;
2166 return err;
2167 }
2168
2169 static void unlock_rdev(struct md_rdev *rdev)
2170 {
2171 struct block_device *bdev = rdev->bdev;
2172 rdev->bdev = NULL;
2173 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2174 }
2175
2176 void md_autodetect_dev(dev_t dev);
2177
2178 static void export_rdev(struct md_rdev *rdev)
2179 {
2180 char b[BDEVNAME_SIZE];
2181
2182 printk(KERN_INFO "md: export_rdev(%s)\n",
2183 bdevname(rdev->bdev,b));
2184 md_rdev_clear(rdev);
2185 #ifndef MODULE
2186 if (test_bit(AutoDetected, &rdev->flags))
2187 md_autodetect_dev(rdev->bdev->bd_dev);
2188 #endif
2189 unlock_rdev(rdev);
2190 kobject_put(&rdev->kobj);
2191 }
2192
2193 void md_kick_rdev_from_array(struct md_rdev *rdev)
2194 {
2195 unbind_rdev_from_array(rdev);
2196 export_rdev(rdev);
2197 }
2198 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2199
2200 static void export_array(struct mddev *mddev)
2201 {
2202 struct md_rdev *rdev;
2203
2204 while (!list_empty(&mddev->disks)) {
2205 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2206 same_set);
2207 md_kick_rdev_from_array(rdev);
2208 }
2209 mddev->raid_disks = 0;
2210 mddev->major_version = 0;
2211 }
2212
2213 static void sync_sbs(struct mddev *mddev, int nospares)
2214 {
2215 /* Update each superblock (in-memory image), but
2216 * if we are allowed to, skip spares which already
2217 * have the right event counter, or have one earlier
2218 * (which would mean they aren't being marked as dirty
2219 * with the rest of the array)
2220 */
2221 struct md_rdev *rdev;
2222 rdev_for_each(rdev, mddev) {
2223 if (rdev->sb_events == mddev->events ||
2224 (nospares &&
2225 rdev->raid_disk < 0 &&
2226 rdev->sb_events+1 == mddev->events)) {
2227 /* Don't update this superblock */
2228 rdev->sb_loaded = 2;
2229 } else {
2230 sync_super(mddev, rdev);
2231 rdev->sb_loaded = 1;
2232 }
2233 }
2234 }
2235
2236 static bool does_sb_need_changing(struct mddev *mddev)
2237 {
2238 struct md_rdev *rdev;
2239 struct mdp_superblock_1 *sb;
2240 int role;
2241
2242 /* Find a good rdev */
2243 rdev_for_each(rdev, mddev)
2244 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2245 break;
2246
2247 /* No good device found. */
2248 if (!rdev)
2249 return false;
2250
2251 sb = page_address(rdev->sb_page);
2252 /* Check if a device has become faulty or a spare become active */
2253 rdev_for_each(rdev, mddev) {
2254 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2255 /* Device activated? */
2256 if (role == 0xffff && rdev->raid_disk >=0 &&
2257 !test_bit(Faulty, &rdev->flags))
2258 return true;
2259 /* Device turned faulty? */
2260 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2261 return true;
2262 }
2263
2264 /* Check if any mddev parameters have changed */
2265 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2266 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2267 (mddev->layout != le64_to_cpu(sb->layout)) ||
2268 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2269 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2270 return true;
2271
2272 return false;
2273 }
2274
2275 void md_update_sb(struct mddev *mddev, int force_change)
2276 {
2277 struct md_rdev *rdev;
2278 int sync_req;
2279 int nospares = 0;
2280 int any_badblocks_changed = 0;
2281 int ret = -1;
2282
2283 if (mddev->ro) {
2284 if (force_change)
2285 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2286 return;
2287 }
2288
2289 if (mddev_is_clustered(mddev)) {
2290 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2291 force_change = 1;
2292 ret = md_cluster_ops->metadata_update_start(mddev);
2293 /* Has someone else has updated the sb */
2294 if (!does_sb_need_changing(mddev)) {
2295 if (ret == 0)
2296 md_cluster_ops->metadata_update_cancel(mddev);
2297 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2298 return;
2299 }
2300 }
2301 repeat:
2302 /* First make sure individual recovery_offsets are correct */
2303 rdev_for_each(rdev, mddev) {
2304 if (rdev->raid_disk >= 0 &&
2305 mddev->delta_disks >= 0 &&
2306 !test_bit(Journal, &rdev->flags) &&
2307 !test_bit(In_sync, &rdev->flags) &&
2308 mddev->curr_resync_completed > rdev->recovery_offset)
2309 rdev->recovery_offset = mddev->curr_resync_completed;
2310
2311 }
2312 if (!mddev->persistent) {
2313 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2314 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2315 if (!mddev->external) {
2316 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2317 rdev_for_each(rdev, mddev) {
2318 if (rdev->badblocks.changed) {
2319 rdev->badblocks.changed = 0;
2320 ack_all_badblocks(&rdev->badblocks);
2321 md_error(mddev, rdev);
2322 }
2323 clear_bit(Blocked, &rdev->flags);
2324 clear_bit(BlockedBadBlocks, &rdev->flags);
2325 wake_up(&rdev->blocked_wait);
2326 }
2327 }
2328 wake_up(&mddev->sb_wait);
2329 return;
2330 }
2331
2332 spin_lock(&mddev->lock);
2333
2334 mddev->utime = get_seconds();
2335
2336 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2337 force_change = 1;
2338 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2339 /* just a clean<-> dirty transition, possibly leave spares alone,
2340 * though if events isn't the right even/odd, we will have to do
2341 * spares after all
2342 */
2343 nospares = 1;
2344 if (force_change)
2345 nospares = 0;
2346 if (mddev->degraded)
2347 /* If the array is degraded, then skipping spares is both
2348 * dangerous and fairly pointless.
2349 * Dangerous because a device that was removed from the array
2350 * might have a event_count that still looks up-to-date,
2351 * so it can be re-added without a resync.
2352 * Pointless because if there are any spares to skip,
2353 * then a recovery will happen and soon that array won't
2354 * be degraded any more and the spare can go back to sleep then.
2355 */
2356 nospares = 0;
2357
2358 sync_req = mddev->in_sync;
2359
2360 /* If this is just a dirty<->clean transition, and the array is clean
2361 * and 'events' is odd, we can roll back to the previous clean state */
2362 if (nospares
2363 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2364 && mddev->can_decrease_events
2365 && mddev->events != 1) {
2366 mddev->events--;
2367 mddev->can_decrease_events = 0;
2368 } else {
2369 /* otherwise we have to go forward and ... */
2370 mddev->events ++;
2371 mddev->can_decrease_events = nospares;
2372 }
2373
2374 /*
2375 * This 64-bit counter should never wrap.
2376 * Either we are in around ~1 trillion A.C., assuming
2377 * 1 reboot per second, or we have a bug...
2378 */
2379 WARN_ON(mddev->events == 0);
2380
2381 rdev_for_each(rdev, mddev) {
2382 if (rdev->badblocks.changed)
2383 any_badblocks_changed++;
2384 if (test_bit(Faulty, &rdev->flags))
2385 set_bit(FaultRecorded, &rdev->flags);
2386 }
2387
2388 sync_sbs(mddev, nospares);
2389 spin_unlock(&mddev->lock);
2390
2391 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2392 mdname(mddev), mddev->in_sync);
2393
2394 bitmap_update_sb(mddev->bitmap);
2395 rdev_for_each(rdev, mddev) {
2396 char b[BDEVNAME_SIZE];
2397
2398 if (rdev->sb_loaded != 1)
2399 continue; /* no noise on spare devices */
2400
2401 if (!test_bit(Faulty, &rdev->flags)) {
2402 md_super_write(mddev,rdev,
2403 rdev->sb_start, rdev->sb_size,
2404 rdev->sb_page);
2405 pr_debug("md: (write) %s's sb offset: %llu\n",
2406 bdevname(rdev->bdev, b),
2407 (unsigned long long)rdev->sb_start);
2408 rdev->sb_events = mddev->events;
2409 if (rdev->badblocks.size) {
2410 md_super_write(mddev, rdev,
2411 rdev->badblocks.sector,
2412 rdev->badblocks.size << 9,
2413 rdev->bb_page);
2414 rdev->badblocks.size = 0;
2415 }
2416
2417 } else
2418 pr_debug("md: %s (skipping faulty)\n",
2419 bdevname(rdev->bdev, b));
2420
2421 if (mddev->level == LEVEL_MULTIPATH)
2422 /* only need to write one superblock... */
2423 break;
2424 }
2425 md_super_wait(mddev);
2426 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2427
2428 spin_lock(&mddev->lock);
2429 if (mddev->in_sync != sync_req ||
2430 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2431 /* have to write it out again */
2432 spin_unlock(&mddev->lock);
2433 goto repeat;
2434 }
2435 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2436 spin_unlock(&mddev->lock);
2437 wake_up(&mddev->sb_wait);
2438 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2439 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2440
2441 rdev_for_each(rdev, mddev) {
2442 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2443 clear_bit(Blocked, &rdev->flags);
2444
2445 if (any_badblocks_changed)
2446 ack_all_badblocks(&rdev->badblocks);
2447 clear_bit(BlockedBadBlocks, &rdev->flags);
2448 wake_up(&rdev->blocked_wait);
2449 }
2450
2451 if (mddev_is_clustered(mddev) && ret == 0)
2452 md_cluster_ops->metadata_update_finish(mddev);
2453 }
2454 EXPORT_SYMBOL(md_update_sb);
2455
2456 static int add_bound_rdev(struct md_rdev *rdev)
2457 {
2458 struct mddev *mddev = rdev->mddev;
2459 int err = 0;
2460
2461 if (!mddev->pers->hot_remove_disk) {
2462 /* If there is hot_add_disk but no hot_remove_disk
2463 * then added disks for geometry changes,
2464 * and should be added immediately.
2465 */
2466 super_types[mddev->major_version].
2467 validate_super(mddev, rdev);
2468 err = mddev->pers->hot_add_disk(mddev, rdev);
2469 if (err) {
2470 unbind_rdev_from_array(rdev);
2471 export_rdev(rdev);
2472 return err;
2473 }
2474 }
2475 sysfs_notify_dirent_safe(rdev->sysfs_state);
2476
2477 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2478 if (mddev->degraded)
2479 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2480 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2481 md_new_event(mddev);
2482 md_wakeup_thread(mddev->thread);
2483 return 0;
2484 }
2485
2486 /* words written to sysfs files may, or may not, be \n terminated.
2487 * We want to accept with case. For this we use cmd_match.
2488 */
2489 static int cmd_match(const char *cmd, const char *str)
2490 {
2491 /* See if cmd, written into a sysfs file, matches
2492 * str. They must either be the same, or cmd can
2493 * have a trailing newline
2494 */
2495 while (*cmd && *str && *cmd == *str) {
2496 cmd++;
2497 str++;
2498 }
2499 if (*cmd == '\n')
2500 cmd++;
2501 if (*str || *cmd)
2502 return 0;
2503 return 1;
2504 }
2505
2506 struct rdev_sysfs_entry {
2507 struct attribute attr;
2508 ssize_t (*show)(struct md_rdev *, char *);
2509 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2510 };
2511
2512 static ssize_t
2513 state_show(struct md_rdev *rdev, char *page)
2514 {
2515 char *sep = "";
2516 size_t len = 0;
2517 unsigned long flags = ACCESS_ONCE(rdev->flags);
2518
2519 if (test_bit(Faulty, &flags) ||
2520 rdev->badblocks.unacked_exist) {
2521 len+= sprintf(page+len, "%sfaulty",sep);
2522 sep = ",";
2523 }
2524 if (test_bit(In_sync, &flags)) {
2525 len += sprintf(page+len, "%sin_sync",sep);
2526 sep = ",";
2527 }
2528 if (test_bit(Journal, &flags)) {
2529 len += sprintf(page+len, "%sjournal",sep);
2530 sep = ",";
2531 }
2532 if (test_bit(WriteMostly, &flags)) {
2533 len += sprintf(page+len, "%swrite_mostly",sep);
2534 sep = ",";
2535 }
2536 if (test_bit(Blocked, &flags) ||
2537 (rdev->badblocks.unacked_exist
2538 && !test_bit(Faulty, &flags))) {
2539 len += sprintf(page+len, "%sblocked", sep);
2540 sep = ",";
2541 }
2542 if (!test_bit(Faulty, &flags) &&
2543 !test_bit(Journal, &flags) &&
2544 !test_bit(In_sync, &flags)) {
2545 len += sprintf(page+len, "%sspare", sep);
2546 sep = ",";
2547 }
2548 if (test_bit(WriteErrorSeen, &flags)) {
2549 len += sprintf(page+len, "%swrite_error", sep);
2550 sep = ",";
2551 }
2552 if (test_bit(WantReplacement, &flags)) {
2553 len += sprintf(page+len, "%swant_replacement", sep);
2554 sep = ",";
2555 }
2556 if (test_bit(Replacement, &flags)) {
2557 len += sprintf(page+len, "%sreplacement", sep);
2558 sep = ",";
2559 }
2560
2561 return len+sprintf(page+len, "\n");
2562 }
2563
2564 static ssize_t
2565 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2566 {
2567 /* can write
2568 * faulty - simulates an error
2569 * remove - disconnects the device
2570 * writemostly - sets write_mostly
2571 * -writemostly - clears write_mostly
2572 * blocked - sets the Blocked flags
2573 * -blocked - clears the Blocked and possibly simulates an error
2574 * insync - sets Insync providing device isn't active
2575 * -insync - clear Insync for a device with a slot assigned,
2576 * so that it gets rebuilt based on bitmap
2577 * write_error - sets WriteErrorSeen
2578 * -write_error - clears WriteErrorSeen
2579 */
2580 int err = -EINVAL;
2581 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2582 md_error(rdev->mddev, rdev);
2583 if (test_bit(Faulty, &rdev->flags))
2584 err = 0;
2585 else
2586 err = -EBUSY;
2587 } else if (cmd_match(buf, "remove")) {
2588 if (rdev->raid_disk >= 0)
2589 err = -EBUSY;
2590 else {
2591 struct mddev *mddev = rdev->mddev;
2592 err = 0;
2593 if (mddev_is_clustered(mddev))
2594 err = md_cluster_ops->remove_disk(mddev, rdev);
2595
2596 if (err == 0) {
2597 md_kick_rdev_from_array(rdev);
2598 if (mddev->pers)
2599 md_update_sb(mddev, 1);
2600 md_new_event(mddev);
2601 }
2602 }
2603 } else if (cmd_match(buf, "writemostly")) {
2604 set_bit(WriteMostly, &rdev->flags);
2605 err = 0;
2606 } else if (cmd_match(buf, "-writemostly")) {
2607 clear_bit(WriteMostly, &rdev->flags);
2608 err = 0;
2609 } else if (cmd_match(buf, "blocked")) {
2610 set_bit(Blocked, &rdev->flags);
2611 err = 0;
2612 } else if (cmd_match(buf, "-blocked")) {
2613 if (!test_bit(Faulty, &rdev->flags) &&
2614 rdev->badblocks.unacked_exist) {
2615 /* metadata handler doesn't understand badblocks,
2616 * so we need to fail the device
2617 */
2618 md_error(rdev->mddev, rdev);
2619 }
2620 clear_bit(Blocked, &rdev->flags);
2621 clear_bit(BlockedBadBlocks, &rdev->flags);
2622 wake_up(&rdev->blocked_wait);
2623 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2624 md_wakeup_thread(rdev->mddev->thread);
2625
2626 err = 0;
2627 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2628 set_bit(In_sync, &rdev->flags);
2629 err = 0;
2630 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2631 !test_bit(Journal, &rdev->flags)) {
2632 if (rdev->mddev->pers == NULL) {
2633 clear_bit(In_sync, &rdev->flags);
2634 rdev->saved_raid_disk = rdev->raid_disk;
2635 rdev->raid_disk = -1;
2636 err = 0;
2637 }
2638 } else if (cmd_match(buf, "write_error")) {
2639 set_bit(WriteErrorSeen, &rdev->flags);
2640 err = 0;
2641 } else if (cmd_match(buf, "-write_error")) {
2642 clear_bit(WriteErrorSeen, &rdev->flags);
2643 err = 0;
2644 } else if (cmd_match(buf, "want_replacement")) {
2645 /* Any non-spare device that is not a replacement can
2646 * become want_replacement at any time, but we then need to
2647 * check if recovery is needed.
2648 */
2649 if (rdev->raid_disk >= 0 &&
2650 !test_bit(Journal, &rdev->flags) &&
2651 !test_bit(Replacement, &rdev->flags))
2652 set_bit(WantReplacement, &rdev->flags);
2653 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654 md_wakeup_thread(rdev->mddev->thread);
2655 err = 0;
2656 } else if (cmd_match(buf, "-want_replacement")) {
2657 /* Clearing 'want_replacement' is always allowed.
2658 * Once replacements starts it is too late though.
2659 */
2660 err = 0;
2661 clear_bit(WantReplacement, &rdev->flags);
2662 } else if (cmd_match(buf, "replacement")) {
2663 /* Can only set a device as a replacement when array has not
2664 * yet been started. Once running, replacement is automatic
2665 * from spares, or by assigning 'slot'.
2666 */
2667 if (rdev->mddev->pers)
2668 err = -EBUSY;
2669 else {
2670 set_bit(Replacement, &rdev->flags);
2671 err = 0;
2672 }
2673 } else if (cmd_match(buf, "-replacement")) {
2674 /* Similarly, can only clear Replacement before start */
2675 if (rdev->mddev->pers)
2676 err = -EBUSY;
2677 else {
2678 clear_bit(Replacement, &rdev->flags);
2679 err = 0;
2680 }
2681 } else if (cmd_match(buf, "re-add")) {
2682 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2683 /* clear_bit is performed _after_ all the devices
2684 * have their local Faulty bit cleared. If any writes
2685 * happen in the meantime in the local node, they
2686 * will land in the local bitmap, which will be synced
2687 * by this node eventually
2688 */
2689 if (!mddev_is_clustered(rdev->mddev) ||
2690 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2691 clear_bit(Faulty, &rdev->flags);
2692 err = add_bound_rdev(rdev);
2693 }
2694 } else
2695 err = -EBUSY;
2696 }
2697 if (!err)
2698 sysfs_notify_dirent_safe(rdev->sysfs_state);
2699 return err ? err : len;
2700 }
2701 static struct rdev_sysfs_entry rdev_state =
2702 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2703
2704 static ssize_t
2705 errors_show(struct md_rdev *rdev, char *page)
2706 {
2707 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2708 }
2709
2710 static ssize_t
2711 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2712 {
2713 unsigned int n;
2714 int rv;
2715
2716 rv = kstrtouint(buf, 10, &n);
2717 if (rv < 0)
2718 return rv;
2719 atomic_set(&rdev->corrected_errors, n);
2720 return len;
2721 }
2722 static struct rdev_sysfs_entry rdev_errors =
2723 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2724
2725 static ssize_t
2726 slot_show(struct md_rdev *rdev, char *page)
2727 {
2728 if (test_bit(Journal, &rdev->flags))
2729 return sprintf(page, "journal\n");
2730 else if (rdev->raid_disk < 0)
2731 return sprintf(page, "none\n");
2732 else
2733 return sprintf(page, "%d\n", rdev->raid_disk);
2734 }
2735
2736 static ssize_t
2737 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2738 {
2739 int slot;
2740 int err;
2741
2742 if (test_bit(Journal, &rdev->flags))
2743 return -EBUSY;
2744 if (strncmp(buf, "none", 4)==0)
2745 slot = -1;
2746 else {
2747 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2748 if (err < 0)
2749 return err;
2750 }
2751 if (rdev->mddev->pers && slot == -1) {
2752 /* Setting 'slot' on an active array requires also
2753 * updating the 'rd%d' link, and communicating
2754 * with the personality with ->hot_*_disk.
2755 * For now we only support removing
2756 * failed/spare devices. This normally happens automatically,
2757 * but not when the metadata is externally managed.
2758 */
2759 if (rdev->raid_disk == -1)
2760 return -EEXIST;
2761 /* personality does all needed checks */
2762 if (rdev->mddev->pers->hot_remove_disk == NULL)
2763 return -EINVAL;
2764 clear_bit(Blocked, &rdev->flags);
2765 remove_and_add_spares(rdev->mddev, rdev);
2766 if (rdev->raid_disk >= 0)
2767 return -EBUSY;
2768 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2769 md_wakeup_thread(rdev->mddev->thread);
2770 } else if (rdev->mddev->pers) {
2771 /* Activating a spare .. or possibly reactivating
2772 * if we ever get bitmaps working here.
2773 */
2774 int err;
2775
2776 if (rdev->raid_disk != -1)
2777 return -EBUSY;
2778
2779 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2780 return -EBUSY;
2781
2782 if (rdev->mddev->pers->hot_add_disk == NULL)
2783 return -EINVAL;
2784
2785 if (slot >= rdev->mddev->raid_disks &&
2786 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2787 return -ENOSPC;
2788
2789 rdev->raid_disk = slot;
2790 if (test_bit(In_sync, &rdev->flags))
2791 rdev->saved_raid_disk = slot;
2792 else
2793 rdev->saved_raid_disk = -1;
2794 clear_bit(In_sync, &rdev->flags);
2795 clear_bit(Bitmap_sync, &rdev->flags);
2796 err = rdev->mddev->pers->
2797 hot_add_disk(rdev->mddev, rdev);
2798 if (err) {
2799 rdev->raid_disk = -1;
2800 return err;
2801 } else
2802 sysfs_notify_dirent_safe(rdev->sysfs_state);
2803 if (sysfs_link_rdev(rdev->mddev, rdev))
2804 /* failure here is OK */;
2805 /* don't wakeup anyone, leave that to userspace. */
2806 } else {
2807 if (slot >= rdev->mddev->raid_disks &&
2808 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2809 return -ENOSPC;
2810 rdev->raid_disk = slot;
2811 /* assume it is working */
2812 clear_bit(Faulty, &rdev->flags);
2813 clear_bit(WriteMostly, &rdev->flags);
2814 set_bit(In_sync, &rdev->flags);
2815 sysfs_notify_dirent_safe(rdev->sysfs_state);
2816 }
2817 return len;
2818 }
2819
2820 static struct rdev_sysfs_entry rdev_slot =
2821 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2822
2823 static ssize_t
2824 offset_show(struct md_rdev *rdev, char *page)
2825 {
2826 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2827 }
2828
2829 static ssize_t
2830 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2831 {
2832 unsigned long long offset;
2833 if (kstrtoull(buf, 10, &offset) < 0)
2834 return -EINVAL;
2835 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2836 return -EBUSY;
2837 if (rdev->sectors && rdev->mddev->external)
2838 /* Must set offset before size, so overlap checks
2839 * can be sane */
2840 return -EBUSY;
2841 rdev->data_offset = offset;
2842 rdev->new_data_offset = offset;
2843 return len;
2844 }
2845
2846 static struct rdev_sysfs_entry rdev_offset =
2847 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2848
2849 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2850 {
2851 return sprintf(page, "%llu\n",
2852 (unsigned long long)rdev->new_data_offset);
2853 }
2854
2855 static ssize_t new_offset_store(struct md_rdev *rdev,
2856 const char *buf, size_t len)
2857 {
2858 unsigned long long new_offset;
2859 struct mddev *mddev = rdev->mddev;
2860
2861 if (kstrtoull(buf, 10, &new_offset) < 0)
2862 return -EINVAL;
2863
2864 if (mddev->sync_thread ||
2865 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2866 return -EBUSY;
2867 if (new_offset == rdev->data_offset)
2868 /* reset is always permitted */
2869 ;
2870 else if (new_offset > rdev->data_offset) {
2871 /* must not push array size beyond rdev_sectors */
2872 if (new_offset - rdev->data_offset
2873 + mddev->dev_sectors > rdev->sectors)
2874 return -E2BIG;
2875 }
2876 /* Metadata worries about other space details. */
2877
2878 /* decreasing the offset is inconsistent with a backwards
2879 * reshape.
2880 */
2881 if (new_offset < rdev->data_offset &&
2882 mddev->reshape_backwards)
2883 return -EINVAL;
2884 /* Increasing offset is inconsistent with forwards
2885 * reshape. reshape_direction should be set to
2886 * 'backwards' first.
2887 */
2888 if (new_offset > rdev->data_offset &&
2889 !mddev->reshape_backwards)
2890 return -EINVAL;
2891
2892 if (mddev->pers && mddev->persistent &&
2893 !super_types[mddev->major_version]
2894 .allow_new_offset(rdev, new_offset))
2895 return -E2BIG;
2896 rdev->new_data_offset = new_offset;
2897 if (new_offset > rdev->data_offset)
2898 mddev->reshape_backwards = 1;
2899 else if (new_offset < rdev->data_offset)
2900 mddev->reshape_backwards = 0;
2901
2902 return len;
2903 }
2904 static struct rdev_sysfs_entry rdev_new_offset =
2905 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2906
2907 static ssize_t
2908 rdev_size_show(struct md_rdev *rdev, char *page)
2909 {
2910 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2911 }
2912
2913 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2914 {
2915 /* check if two start/length pairs overlap */
2916 if (s1+l1 <= s2)
2917 return 0;
2918 if (s2+l2 <= s1)
2919 return 0;
2920 return 1;
2921 }
2922
2923 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2924 {
2925 unsigned long long blocks;
2926 sector_t new;
2927
2928 if (kstrtoull(buf, 10, &blocks) < 0)
2929 return -EINVAL;
2930
2931 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2932 return -EINVAL; /* sector conversion overflow */
2933
2934 new = blocks * 2;
2935 if (new != blocks * 2)
2936 return -EINVAL; /* unsigned long long to sector_t overflow */
2937
2938 *sectors = new;
2939 return 0;
2940 }
2941
2942 static ssize_t
2943 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2944 {
2945 struct mddev *my_mddev = rdev->mddev;
2946 sector_t oldsectors = rdev->sectors;
2947 sector_t sectors;
2948
2949 if (test_bit(Journal, &rdev->flags))
2950 return -EBUSY;
2951 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2952 return -EINVAL;
2953 if (rdev->data_offset != rdev->new_data_offset)
2954 return -EINVAL; /* too confusing */
2955 if (my_mddev->pers && rdev->raid_disk >= 0) {
2956 if (my_mddev->persistent) {
2957 sectors = super_types[my_mddev->major_version].
2958 rdev_size_change(rdev, sectors);
2959 if (!sectors)
2960 return -EBUSY;
2961 } else if (!sectors)
2962 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2963 rdev->data_offset;
2964 if (!my_mddev->pers->resize)
2965 /* Cannot change size for RAID0 or Linear etc */
2966 return -EINVAL;
2967 }
2968 if (sectors < my_mddev->dev_sectors)
2969 return -EINVAL; /* component must fit device */
2970
2971 rdev->sectors = sectors;
2972 if (sectors > oldsectors && my_mddev->external) {
2973 /* Need to check that all other rdevs with the same
2974 * ->bdev do not overlap. 'rcu' is sufficient to walk
2975 * the rdev lists safely.
2976 * This check does not provide a hard guarantee, it
2977 * just helps avoid dangerous mistakes.
2978 */
2979 struct mddev *mddev;
2980 int overlap = 0;
2981 struct list_head *tmp;
2982
2983 rcu_read_lock();
2984 for_each_mddev(mddev, tmp) {
2985 struct md_rdev *rdev2;
2986
2987 rdev_for_each(rdev2, mddev)
2988 if (rdev->bdev == rdev2->bdev &&
2989 rdev != rdev2 &&
2990 overlaps(rdev->data_offset, rdev->sectors,
2991 rdev2->data_offset,
2992 rdev2->sectors)) {
2993 overlap = 1;
2994 break;
2995 }
2996 if (overlap) {
2997 mddev_put(mddev);
2998 break;
2999 }
3000 }
3001 rcu_read_unlock();
3002 if (overlap) {
3003 /* Someone else could have slipped in a size
3004 * change here, but doing so is just silly.
3005 * We put oldsectors back because we *know* it is
3006 * safe, and trust userspace not to race with
3007 * itself
3008 */
3009 rdev->sectors = oldsectors;
3010 return -EBUSY;
3011 }
3012 }
3013 return len;
3014 }
3015
3016 static struct rdev_sysfs_entry rdev_size =
3017 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3018
3019 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3020 {
3021 unsigned long long recovery_start = rdev->recovery_offset;
3022
3023 if (test_bit(In_sync, &rdev->flags) ||
3024 recovery_start == MaxSector)
3025 return sprintf(page, "none\n");
3026
3027 return sprintf(page, "%llu\n", recovery_start);
3028 }
3029
3030 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3031 {
3032 unsigned long long recovery_start;
3033
3034 if (cmd_match(buf, "none"))
3035 recovery_start = MaxSector;
3036 else if (kstrtoull(buf, 10, &recovery_start))
3037 return -EINVAL;
3038
3039 if (rdev->mddev->pers &&
3040 rdev->raid_disk >= 0)
3041 return -EBUSY;
3042
3043 rdev->recovery_offset = recovery_start;
3044 if (recovery_start == MaxSector)
3045 set_bit(In_sync, &rdev->flags);
3046 else
3047 clear_bit(In_sync, &rdev->flags);
3048 return len;
3049 }
3050
3051 static struct rdev_sysfs_entry rdev_recovery_start =
3052 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3053
3054 /* sysfs access to bad-blocks list.
3055 * We present two files.
3056 * 'bad-blocks' lists sector numbers and lengths of ranges that
3057 * are recorded as bad. The list is truncated to fit within
3058 * the one-page limit of sysfs.
3059 * Writing "sector length" to this file adds an acknowledged
3060 * bad block list.
3061 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3062 * been acknowledged. Writing to this file adds bad blocks
3063 * without acknowledging them. This is largely for testing.
3064 */
3065 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3066 {
3067 return badblocks_show(&rdev->badblocks, page, 0);
3068 }
3069 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3070 {
3071 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3072 /* Maybe that ack was all we needed */
3073 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3074 wake_up(&rdev->blocked_wait);
3075 return rv;
3076 }
3077 static struct rdev_sysfs_entry rdev_bad_blocks =
3078 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3079
3080 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3081 {
3082 return badblocks_show(&rdev->badblocks, page, 1);
3083 }
3084 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3085 {
3086 return badblocks_store(&rdev->badblocks, page, len, 1);
3087 }
3088 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3089 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3090
3091 static struct attribute *rdev_default_attrs[] = {
3092 &rdev_state.attr,
3093 &rdev_errors.attr,
3094 &rdev_slot.attr,
3095 &rdev_offset.attr,
3096 &rdev_new_offset.attr,
3097 &rdev_size.attr,
3098 &rdev_recovery_start.attr,
3099 &rdev_bad_blocks.attr,
3100 &rdev_unack_bad_blocks.attr,
3101 NULL,
3102 };
3103 static ssize_t
3104 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3105 {
3106 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3107 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3108
3109 if (!entry->show)
3110 return -EIO;
3111 if (!rdev->mddev)
3112 return -EBUSY;
3113 return entry->show(rdev, page);
3114 }
3115
3116 static ssize_t
3117 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3118 const char *page, size_t length)
3119 {
3120 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3121 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3122 ssize_t rv;
3123 struct mddev *mddev = rdev->mddev;
3124
3125 if (!entry->store)
3126 return -EIO;
3127 if (!capable(CAP_SYS_ADMIN))
3128 return -EACCES;
3129 rv = mddev ? mddev_lock(mddev): -EBUSY;
3130 if (!rv) {
3131 if (rdev->mddev == NULL)
3132 rv = -EBUSY;
3133 else
3134 rv = entry->store(rdev, page, length);
3135 mddev_unlock(mddev);
3136 }
3137 return rv;
3138 }
3139
3140 static void rdev_free(struct kobject *ko)
3141 {
3142 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3143 kfree(rdev);
3144 }
3145 static const struct sysfs_ops rdev_sysfs_ops = {
3146 .show = rdev_attr_show,
3147 .store = rdev_attr_store,
3148 };
3149 static struct kobj_type rdev_ktype = {
3150 .release = rdev_free,
3151 .sysfs_ops = &rdev_sysfs_ops,
3152 .default_attrs = rdev_default_attrs,
3153 };
3154
3155 int md_rdev_init(struct md_rdev *rdev)
3156 {
3157 rdev->desc_nr = -1;
3158 rdev->saved_raid_disk = -1;
3159 rdev->raid_disk = -1;
3160 rdev->flags = 0;
3161 rdev->data_offset = 0;
3162 rdev->new_data_offset = 0;
3163 rdev->sb_events = 0;
3164 rdev->last_read_error.tv_sec = 0;
3165 rdev->last_read_error.tv_nsec = 0;
3166 rdev->sb_loaded = 0;
3167 rdev->bb_page = NULL;
3168 atomic_set(&rdev->nr_pending, 0);
3169 atomic_set(&rdev->read_errors, 0);
3170 atomic_set(&rdev->corrected_errors, 0);
3171
3172 INIT_LIST_HEAD(&rdev->same_set);
3173 init_waitqueue_head(&rdev->blocked_wait);
3174
3175 /* Add space to store bad block list.
3176 * This reserves the space even on arrays where it cannot
3177 * be used - I wonder if that matters
3178 */
3179 return badblocks_init(&rdev->badblocks, 0);
3180 }
3181 EXPORT_SYMBOL_GPL(md_rdev_init);
3182 /*
3183 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3184 *
3185 * mark the device faulty if:
3186 *
3187 * - the device is nonexistent (zero size)
3188 * - the device has no valid superblock
3189 *
3190 * a faulty rdev _never_ has rdev->sb set.
3191 */
3192 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3193 {
3194 char b[BDEVNAME_SIZE];
3195 int err;
3196 struct md_rdev *rdev;
3197 sector_t size;
3198
3199 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3200 if (!rdev) {
3201 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3202 return ERR_PTR(-ENOMEM);
3203 }
3204
3205 err = md_rdev_init(rdev);
3206 if (err)
3207 goto abort_free;
3208 err = alloc_disk_sb(rdev);
3209 if (err)
3210 goto abort_free;
3211
3212 err = lock_rdev(rdev, newdev, super_format == -2);
3213 if (err)
3214 goto abort_free;
3215
3216 kobject_init(&rdev->kobj, &rdev_ktype);
3217
3218 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3219 if (!size) {
3220 printk(KERN_WARNING
3221 "md: %s has zero or unknown size, marking faulty!\n",
3222 bdevname(rdev->bdev,b));
3223 err = -EINVAL;
3224 goto abort_free;
3225 }
3226
3227 if (super_format >= 0) {
3228 err = super_types[super_format].
3229 load_super(rdev, NULL, super_minor);
3230 if (err == -EINVAL) {
3231 printk(KERN_WARNING
3232 "md: %s does not have a valid v%d.%d "
3233 "superblock, not importing!\n",
3234 bdevname(rdev->bdev,b),
3235 super_format, super_minor);
3236 goto abort_free;
3237 }
3238 if (err < 0) {
3239 printk(KERN_WARNING
3240 "md: could not read %s's sb, not importing!\n",
3241 bdevname(rdev->bdev,b));
3242 goto abort_free;
3243 }
3244 }
3245
3246 return rdev;
3247
3248 abort_free:
3249 if (rdev->bdev)
3250 unlock_rdev(rdev);
3251 md_rdev_clear(rdev);
3252 kfree(rdev);
3253 return ERR_PTR(err);
3254 }
3255
3256 /*
3257 * Check a full RAID array for plausibility
3258 */
3259
3260 static void analyze_sbs(struct mddev *mddev)
3261 {
3262 int i;
3263 struct md_rdev *rdev, *freshest, *tmp;
3264 char b[BDEVNAME_SIZE];
3265
3266 freshest = NULL;
3267 rdev_for_each_safe(rdev, tmp, mddev)
3268 switch (super_types[mddev->major_version].
3269 load_super(rdev, freshest, mddev->minor_version)) {
3270 case 1:
3271 freshest = rdev;
3272 break;
3273 case 0:
3274 break;
3275 default:
3276 printk( KERN_ERR \
3277 "md: fatal superblock inconsistency in %s"
3278 " -- removing from array\n",
3279 bdevname(rdev->bdev,b));
3280 md_kick_rdev_from_array(rdev);
3281 }
3282
3283 super_types[mddev->major_version].
3284 validate_super(mddev, freshest);
3285
3286 i = 0;
3287 rdev_for_each_safe(rdev, tmp, mddev) {
3288 if (mddev->max_disks &&
3289 (rdev->desc_nr >= mddev->max_disks ||
3290 i > mddev->max_disks)) {
3291 printk(KERN_WARNING
3292 "md: %s: %s: only %d devices permitted\n",
3293 mdname(mddev), bdevname(rdev->bdev, b),
3294 mddev->max_disks);
3295 md_kick_rdev_from_array(rdev);
3296 continue;
3297 }
3298 if (rdev != freshest) {
3299 if (super_types[mddev->major_version].
3300 validate_super(mddev, rdev)) {
3301 printk(KERN_WARNING "md: kicking non-fresh %s"
3302 " from array!\n",
3303 bdevname(rdev->bdev,b));
3304 md_kick_rdev_from_array(rdev);
3305 continue;
3306 }
3307 }
3308 if (mddev->level == LEVEL_MULTIPATH) {
3309 rdev->desc_nr = i++;
3310 rdev->raid_disk = rdev->desc_nr;
3311 set_bit(In_sync, &rdev->flags);
3312 } else if (rdev->raid_disk >=
3313 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3314 !test_bit(Journal, &rdev->flags)) {
3315 rdev->raid_disk = -1;
3316 clear_bit(In_sync, &rdev->flags);
3317 }
3318 }
3319 }
3320
3321 /* Read a fixed-point number.
3322 * Numbers in sysfs attributes should be in "standard" units where
3323 * possible, so time should be in seconds.
3324 * However we internally use a a much smaller unit such as
3325 * milliseconds or jiffies.
3326 * This function takes a decimal number with a possible fractional
3327 * component, and produces an integer which is the result of
3328 * multiplying that number by 10^'scale'.
3329 * all without any floating-point arithmetic.
3330 */
3331 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3332 {
3333 unsigned long result = 0;
3334 long decimals = -1;
3335 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3336 if (*cp == '.')
3337 decimals = 0;
3338 else if (decimals < scale) {
3339 unsigned int value;
3340 value = *cp - '0';
3341 result = result * 10 + value;
3342 if (decimals >= 0)
3343 decimals++;
3344 }
3345 cp++;
3346 }
3347 if (*cp == '\n')
3348 cp++;
3349 if (*cp)
3350 return -EINVAL;
3351 if (decimals < 0)
3352 decimals = 0;
3353 while (decimals < scale) {
3354 result *= 10;
3355 decimals ++;
3356 }
3357 *res = result;
3358 return 0;
3359 }
3360
3361 static ssize_t
3362 safe_delay_show(struct mddev *mddev, char *page)
3363 {
3364 int msec = (mddev->safemode_delay*1000)/HZ;
3365 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3366 }
3367 static ssize_t
3368 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3369 {
3370 unsigned long msec;
3371
3372 if (mddev_is_clustered(mddev)) {
3373 pr_info("md: Safemode is disabled for clustered mode\n");
3374 return -EINVAL;
3375 }
3376
3377 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3378 return -EINVAL;
3379 if (msec == 0)
3380 mddev->safemode_delay = 0;
3381 else {
3382 unsigned long old_delay = mddev->safemode_delay;
3383 unsigned long new_delay = (msec*HZ)/1000;
3384
3385 if (new_delay == 0)
3386 new_delay = 1;
3387 mddev->safemode_delay = new_delay;
3388 if (new_delay < old_delay || old_delay == 0)
3389 mod_timer(&mddev->safemode_timer, jiffies+1);
3390 }
3391 return len;
3392 }
3393 static struct md_sysfs_entry md_safe_delay =
3394 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3395
3396 static ssize_t
3397 level_show(struct mddev *mddev, char *page)
3398 {
3399 struct md_personality *p;
3400 int ret;
3401 spin_lock(&mddev->lock);
3402 p = mddev->pers;
3403 if (p)
3404 ret = sprintf(page, "%s\n", p->name);
3405 else if (mddev->clevel[0])
3406 ret = sprintf(page, "%s\n", mddev->clevel);
3407 else if (mddev->level != LEVEL_NONE)
3408 ret = sprintf(page, "%d\n", mddev->level);
3409 else
3410 ret = 0;
3411 spin_unlock(&mddev->lock);
3412 return ret;
3413 }
3414
3415 static ssize_t
3416 level_store(struct mddev *mddev, const char *buf, size_t len)
3417 {
3418 char clevel[16];
3419 ssize_t rv;
3420 size_t slen = len;
3421 struct md_personality *pers, *oldpers;
3422 long level;
3423 void *priv, *oldpriv;
3424 struct md_rdev *rdev;
3425
3426 if (slen == 0 || slen >= sizeof(clevel))
3427 return -EINVAL;
3428
3429 rv = mddev_lock(mddev);
3430 if (rv)
3431 return rv;
3432
3433 if (mddev->pers == NULL) {
3434 strncpy(mddev->clevel, buf, slen);
3435 if (mddev->clevel[slen-1] == '\n')
3436 slen--;
3437 mddev->clevel[slen] = 0;
3438 mddev->level = LEVEL_NONE;
3439 rv = len;
3440 goto out_unlock;
3441 }
3442 rv = -EROFS;
3443 if (mddev->ro)
3444 goto out_unlock;
3445
3446 /* request to change the personality. Need to ensure:
3447 * - array is not engaged in resync/recovery/reshape
3448 * - old personality can be suspended
3449 * - new personality will access other array.
3450 */
3451
3452 rv = -EBUSY;
3453 if (mddev->sync_thread ||
3454 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3455 mddev->reshape_position != MaxSector ||
3456 mddev->sysfs_active)
3457 goto out_unlock;
3458
3459 rv = -EINVAL;
3460 if (!mddev->pers->quiesce) {
3461 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3462 mdname(mddev), mddev->pers->name);
3463 goto out_unlock;
3464 }
3465
3466 /* Now find the new personality */
3467 strncpy(clevel, buf, slen);
3468 if (clevel[slen-1] == '\n')
3469 slen--;
3470 clevel[slen] = 0;
3471 if (kstrtol(clevel, 10, &level))
3472 level = LEVEL_NONE;
3473
3474 if (request_module("md-%s", clevel) != 0)
3475 request_module("md-level-%s", clevel);
3476 spin_lock(&pers_lock);
3477 pers = find_pers(level, clevel);
3478 if (!pers || !try_module_get(pers->owner)) {
3479 spin_unlock(&pers_lock);
3480 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3481 rv = -EINVAL;
3482 goto out_unlock;
3483 }
3484 spin_unlock(&pers_lock);
3485
3486 if (pers == mddev->pers) {
3487 /* Nothing to do! */
3488 module_put(pers->owner);
3489 rv = len;
3490 goto out_unlock;
3491 }
3492 if (!pers->takeover) {
3493 module_put(pers->owner);
3494 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3495 mdname(mddev), clevel);
3496 rv = -EINVAL;
3497 goto out_unlock;
3498 }
3499
3500 rdev_for_each(rdev, mddev)
3501 rdev->new_raid_disk = rdev->raid_disk;
3502
3503 /* ->takeover must set new_* and/or delta_disks
3504 * if it succeeds, and may set them when it fails.
3505 */
3506 priv = pers->takeover(mddev);
3507 if (IS_ERR(priv)) {
3508 mddev->new_level = mddev->level;
3509 mddev->new_layout = mddev->layout;
3510 mddev->new_chunk_sectors = mddev->chunk_sectors;
3511 mddev->raid_disks -= mddev->delta_disks;
3512 mddev->delta_disks = 0;
3513 mddev->reshape_backwards = 0;
3514 module_put(pers->owner);
3515 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3516 mdname(mddev), clevel);
3517 rv = PTR_ERR(priv);
3518 goto out_unlock;
3519 }
3520
3521 /* Looks like we have a winner */
3522 mddev_suspend(mddev);
3523 mddev_detach(mddev);
3524
3525 spin_lock(&mddev->lock);
3526 oldpers = mddev->pers;
3527 oldpriv = mddev->private;
3528 mddev->pers = pers;
3529 mddev->private = priv;
3530 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3531 mddev->level = mddev->new_level;
3532 mddev->layout = mddev->new_layout;
3533 mddev->chunk_sectors = mddev->new_chunk_sectors;
3534 mddev->delta_disks = 0;
3535 mddev->reshape_backwards = 0;
3536 mddev->degraded = 0;
3537 spin_unlock(&mddev->lock);
3538
3539 if (oldpers->sync_request == NULL &&
3540 mddev->external) {
3541 /* We are converting from a no-redundancy array
3542 * to a redundancy array and metadata is managed
3543 * externally so we need to be sure that writes
3544 * won't block due to a need to transition
3545 * clean->dirty
3546 * until external management is started.
3547 */
3548 mddev->in_sync = 0;
3549 mddev->safemode_delay = 0;
3550 mddev->safemode = 0;
3551 }
3552
3553 oldpers->free(mddev, oldpriv);
3554
3555 if (oldpers->sync_request == NULL &&
3556 pers->sync_request != NULL) {
3557 /* need to add the md_redundancy_group */
3558 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3559 printk(KERN_WARNING
3560 "md: cannot register extra attributes for %s\n",
3561 mdname(mddev));
3562 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3563 }
3564 if (oldpers->sync_request != NULL &&
3565 pers->sync_request == NULL) {
3566 /* need to remove the md_redundancy_group */
3567 if (mddev->to_remove == NULL)
3568 mddev->to_remove = &md_redundancy_group;
3569 }
3570
3571 rdev_for_each(rdev, mddev) {
3572 if (rdev->raid_disk < 0)
3573 continue;
3574 if (rdev->new_raid_disk >= mddev->raid_disks)
3575 rdev->new_raid_disk = -1;
3576 if (rdev->new_raid_disk == rdev->raid_disk)
3577 continue;
3578 sysfs_unlink_rdev(mddev, rdev);
3579 }
3580 rdev_for_each(rdev, mddev) {
3581 if (rdev->raid_disk < 0)
3582 continue;
3583 if (rdev->new_raid_disk == rdev->raid_disk)
3584 continue;
3585 rdev->raid_disk = rdev->new_raid_disk;
3586 if (rdev->raid_disk < 0)
3587 clear_bit(In_sync, &rdev->flags);
3588 else {
3589 if (sysfs_link_rdev(mddev, rdev))
3590 printk(KERN_WARNING "md: cannot register rd%d"
3591 " for %s after level change\n",
3592 rdev->raid_disk, mdname(mddev));
3593 }
3594 }
3595
3596 if (pers->sync_request == NULL) {
3597 /* this is now an array without redundancy, so
3598 * it must always be in_sync
3599 */
3600 mddev->in_sync = 1;
3601 del_timer_sync(&mddev->safemode_timer);
3602 }
3603 blk_set_stacking_limits(&mddev->queue->limits);
3604 pers->run(mddev);
3605 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3606 mddev_resume(mddev);
3607 if (!mddev->thread)
3608 md_update_sb(mddev, 1);
3609 sysfs_notify(&mddev->kobj, NULL, "level");
3610 md_new_event(mddev);
3611 rv = len;
3612 out_unlock:
3613 mddev_unlock(mddev);
3614 return rv;
3615 }
3616
3617 static struct md_sysfs_entry md_level =
3618 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3619
3620 static ssize_t
3621 layout_show(struct mddev *mddev, char *page)
3622 {
3623 /* just a number, not meaningful for all levels */
3624 if (mddev->reshape_position != MaxSector &&
3625 mddev->layout != mddev->new_layout)
3626 return sprintf(page, "%d (%d)\n",
3627 mddev->new_layout, mddev->layout);
3628 return sprintf(page, "%d\n", mddev->layout);
3629 }
3630
3631 static ssize_t
3632 layout_store(struct mddev *mddev, const char *buf, size_t len)
3633 {
3634 unsigned int n;
3635 int err;
3636
3637 err = kstrtouint(buf, 10, &n);
3638 if (err < 0)
3639 return err;
3640 err = mddev_lock(mddev);
3641 if (err)
3642 return err;
3643
3644 if (mddev->pers) {
3645 if (mddev->pers->check_reshape == NULL)
3646 err = -EBUSY;
3647 else if (mddev->ro)
3648 err = -EROFS;
3649 else {
3650 mddev->new_layout = n;
3651 err = mddev->pers->check_reshape(mddev);
3652 if (err)
3653 mddev->new_layout = mddev->layout;
3654 }
3655 } else {
3656 mddev->new_layout = n;
3657 if (mddev->reshape_position == MaxSector)
3658 mddev->layout = n;
3659 }
3660 mddev_unlock(mddev);
3661 return err ?: len;
3662 }
3663 static struct md_sysfs_entry md_layout =
3664 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3665
3666 static ssize_t
3667 raid_disks_show(struct mddev *mddev, char *page)
3668 {
3669 if (mddev->raid_disks == 0)
3670 return 0;
3671 if (mddev->reshape_position != MaxSector &&
3672 mddev->delta_disks != 0)
3673 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3674 mddev->raid_disks - mddev->delta_disks);
3675 return sprintf(page, "%d\n", mddev->raid_disks);
3676 }
3677
3678 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3679
3680 static ssize_t
3681 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3682 {
3683 unsigned int n;
3684 int err;
3685
3686 err = kstrtouint(buf, 10, &n);
3687 if (err < 0)
3688 return err;
3689
3690 err = mddev_lock(mddev);
3691 if (err)
3692 return err;
3693 if (mddev->pers)
3694 err = update_raid_disks(mddev, n);
3695 else if (mddev->reshape_position != MaxSector) {
3696 struct md_rdev *rdev;
3697 int olddisks = mddev->raid_disks - mddev->delta_disks;
3698
3699 err = -EINVAL;
3700 rdev_for_each(rdev, mddev) {
3701 if (olddisks < n &&
3702 rdev->data_offset < rdev->new_data_offset)
3703 goto out_unlock;
3704 if (olddisks > n &&
3705 rdev->data_offset > rdev->new_data_offset)
3706 goto out_unlock;
3707 }
3708 err = 0;
3709 mddev->delta_disks = n - olddisks;
3710 mddev->raid_disks = n;
3711 mddev->reshape_backwards = (mddev->delta_disks < 0);
3712 } else
3713 mddev->raid_disks = n;
3714 out_unlock:
3715 mddev_unlock(mddev);
3716 return err ? err : len;
3717 }
3718 static struct md_sysfs_entry md_raid_disks =
3719 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3720
3721 static ssize_t
3722 chunk_size_show(struct mddev *mddev, char *page)
3723 {
3724 if (mddev->reshape_position != MaxSector &&
3725 mddev->chunk_sectors != mddev->new_chunk_sectors)
3726 return sprintf(page, "%d (%d)\n",
3727 mddev->new_chunk_sectors << 9,
3728 mddev->chunk_sectors << 9);
3729 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3730 }
3731
3732 static ssize_t
3733 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3734 {
3735 unsigned long n;
3736 int err;
3737
3738 err = kstrtoul(buf, 10, &n);
3739 if (err < 0)
3740 return err;
3741
3742 err = mddev_lock(mddev);
3743 if (err)
3744 return err;
3745 if (mddev->pers) {
3746 if (mddev->pers->check_reshape == NULL)
3747 err = -EBUSY;
3748 else if (mddev->ro)
3749 err = -EROFS;
3750 else {
3751 mddev->new_chunk_sectors = n >> 9;
3752 err = mddev->pers->check_reshape(mddev);
3753 if (err)
3754 mddev->new_chunk_sectors = mddev->chunk_sectors;
3755 }
3756 } else {
3757 mddev->new_chunk_sectors = n >> 9;
3758 if (mddev->reshape_position == MaxSector)
3759 mddev->chunk_sectors = n >> 9;
3760 }
3761 mddev_unlock(mddev);
3762 return err ?: len;
3763 }
3764 static struct md_sysfs_entry md_chunk_size =
3765 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3766
3767 static ssize_t
3768 resync_start_show(struct mddev *mddev, char *page)
3769 {
3770 if (mddev->recovery_cp == MaxSector)
3771 return sprintf(page, "none\n");
3772 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3773 }
3774
3775 static ssize_t
3776 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3777 {
3778 unsigned long long n;
3779 int err;
3780
3781 if (cmd_match(buf, "none"))
3782 n = MaxSector;
3783 else {
3784 err = kstrtoull(buf, 10, &n);
3785 if (err < 0)
3786 return err;
3787 if (n != (sector_t)n)
3788 return -EINVAL;
3789 }
3790
3791 err = mddev_lock(mddev);
3792 if (err)
3793 return err;
3794 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3795 err = -EBUSY;
3796
3797 if (!err) {
3798 mddev->recovery_cp = n;
3799 if (mddev->pers)
3800 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3801 }
3802 mddev_unlock(mddev);
3803 return err ?: len;
3804 }
3805 static struct md_sysfs_entry md_resync_start =
3806 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3807 resync_start_show, resync_start_store);
3808
3809 /*
3810 * The array state can be:
3811 *
3812 * clear
3813 * No devices, no size, no level
3814 * Equivalent to STOP_ARRAY ioctl
3815 * inactive
3816 * May have some settings, but array is not active
3817 * all IO results in error
3818 * When written, doesn't tear down array, but just stops it
3819 * suspended (not supported yet)
3820 * All IO requests will block. The array can be reconfigured.
3821 * Writing this, if accepted, will block until array is quiescent
3822 * readonly
3823 * no resync can happen. no superblocks get written.
3824 * write requests fail
3825 * read-auto
3826 * like readonly, but behaves like 'clean' on a write request.
3827 *
3828 * clean - no pending writes, but otherwise active.
3829 * When written to inactive array, starts without resync
3830 * If a write request arrives then
3831 * if metadata is known, mark 'dirty' and switch to 'active'.
3832 * if not known, block and switch to write-pending
3833 * If written to an active array that has pending writes, then fails.
3834 * active
3835 * fully active: IO and resync can be happening.
3836 * When written to inactive array, starts with resync
3837 *
3838 * write-pending
3839 * clean, but writes are blocked waiting for 'active' to be written.
3840 *
3841 * active-idle
3842 * like active, but no writes have been seen for a while (100msec).
3843 *
3844 */
3845 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3846 write_pending, active_idle, bad_word};
3847 static char *array_states[] = {
3848 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3849 "write-pending", "active-idle", NULL };
3850
3851 static int match_word(const char *word, char **list)
3852 {
3853 int n;
3854 for (n=0; list[n]; n++)
3855 if (cmd_match(word, list[n]))
3856 break;
3857 return n;
3858 }
3859
3860 static ssize_t
3861 array_state_show(struct mddev *mddev, char *page)
3862 {
3863 enum array_state st = inactive;
3864
3865 if (mddev->pers)
3866 switch(mddev->ro) {
3867 case 1:
3868 st = readonly;
3869 break;
3870 case 2:
3871 st = read_auto;
3872 break;
3873 case 0:
3874 if (mddev->in_sync)
3875 st = clean;
3876 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3877 st = write_pending;
3878 else if (mddev->safemode)
3879 st = active_idle;
3880 else
3881 st = active;
3882 }
3883 else {
3884 if (list_empty(&mddev->disks) &&
3885 mddev->raid_disks == 0 &&
3886 mddev->dev_sectors == 0)
3887 st = clear;
3888 else
3889 st = inactive;
3890 }
3891 return sprintf(page, "%s\n", array_states[st]);
3892 }
3893
3894 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3895 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3896 static int do_md_run(struct mddev *mddev);
3897 static int restart_array(struct mddev *mddev);
3898
3899 static ssize_t
3900 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3901 {
3902 int err;
3903 enum array_state st = match_word(buf, array_states);
3904
3905 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3906 /* don't take reconfig_mutex when toggling between
3907 * clean and active
3908 */
3909 spin_lock(&mddev->lock);
3910 if (st == active) {
3911 restart_array(mddev);
3912 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3913 wake_up(&mddev->sb_wait);
3914 err = 0;
3915 } else /* st == clean */ {
3916 restart_array(mddev);
3917 if (atomic_read(&mddev->writes_pending) == 0) {
3918 if (mddev->in_sync == 0) {
3919 mddev->in_sync = 1;
3920 if (mddev->safemode == 1)
3921 mddev->safemode = 0;
3922 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3923 }
3924 err = 0;
3925 } else
3926 err = -EBUSY;
3927 }
3928 spin_unlock(&mddev->lock);
3929 return err ?: len;
3930 }
3931 err = mddev_lock(mddev);
3932 if (err)
3933 return err;
3934 err = -EINVAL;
3935 switch(st) {
3936 case bad_word:
3937 break;
3938 case clear:
3939 /* stopping an active array */
3940 err = do_md_stop(mddev, 0, NULL);
3941 break;
3942 case inactive:
3943 /* stopping an active array */
3944 if (mddev->pers)
3945 err = do_md_stop(mddev, 2, NULL);
3946 else
3947 err = 0; /* already inactive */
3948 break;
3949 case suspended:
3950 break; /* not supported yet */
3951 case readonly:
3952 if (mddev->pers)
3953 err = md_set_readonly(mddev, NULL);
3954 else {
3955 mddev->ro = 1;
3956 set_disk_ro(mddev->gendisk, 1);
3957 err = do_md_run(mddev);
3958 }
3959 break;
3960 case read_auto:
3961 if (mddev->pers) {
3962 if (mddev->ro == 0)
3963 err = md_set_readonly(mddev, NULL);
3964 else if (mddev->ro == 1)
3965 err = restart_array(mddev);
3966 if (err == 0) {
3967 mddev->ro = 2;
3968 set_disk_ro(mddev->gendisk, 0);
3969 }
3970 } else {
3971 mddev->ro = 2;
3972 err = do_md_run(mddev);
3973 }
3974 break;
3975 case clean:
3976 if (mddev->pers) {
3977 err = restart_array(mddev);
3978 if (err)
3979 break;
3980 spin_lock(&mddev->lock);
3981 if (atomic_read(&mddev->writes_pending) == 0) {
3982 if (mddev->in_sync == 0) {
3983 mddev->in_sync = 1;
3984 if (mddev->safemode == 1)
3985 mddev->safemode = 0;
3986 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3987 }
3988 err = 0;
3989 } else
3990 err = -EBUSY;
3991 spin_unlock(&mddev->lock);
3992 } else
3993 err = -EINVAL;
3994 break;
3995 case active:
3996 if (mddev->pers) {
3997 err = restart_array(mddev);
3998 if (err)
3999 break;
4000 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4001 wake_up(&mddev->sb_wait);
4002 err = 0;
4003 } else {
4004 mddev->ro = 0;
4005 set_disk_ro(mddev->gendisk, 0);
4006 err = do_md_run(mddev);
4007 }
4008 break;
4009 case write_pending:
4010 case active_idle:
4011 /* these cannot be set */
4012 break;
4013 }
4014
4015 if (!err) {
4016 if (mddev->hold_active == UNTIL_IOCTL)
4017 mddev->hold_active = 0;
4018 sysfs_notify_dirent_safe(mddev->sysfs_state);
4019 }
4020 mddev_unlock(mddev);
4021 return err ?: len;
4022 }
4023 static struct md_sysfs_entry md_array_state =
4024 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4025
4026 static ssize_t
4027 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4028 return sprintf(page, "%d\n",
4029 atomic_read(&mddev->max_corr_read_errors));
4030 }
4031
4032 static ssize_t
4033 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4034 {
4035 unsigned int n;
4036 int rv;
4037
4038 rv = kstrtouint(buf, 10, &n);
4039 if (rv < 0)
4040 return rv;
4041 atomic_set(&mddev->max_corr_read_errors, n);
4042 return len;
4043 }
4044
4045 static struct md_sysfs_entry max_corr_read_errors =
4046 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4047 max_corrected_read_errors_store);
4048
4049 static ssize_t
4050 null_show(struct mddev *mddev, char *page)
4051 {
4052 return -EINVAL;
4053 }
4054
4055 static ssize_t
4056 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4057 {
4058 /* buf must be %d:%d\n? giving major and minor numbers */
4059 /* The new device is added to the array.
4060 * If the array has a persistent superblock, we read the
4061 * superblock to initialise info and check validity.
4062 * Otherwise, only checking done is that in bind_rdev_to_array,
4063 * which mainly checks size.
4064 */
4065 char *e;
4066 int major = simple_strtoul(buf, &e, 10);
4067 int minor;
4068 dev_t dev;
4069 struct md_rdev *rdev;
4070 int err;
4071
4072 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4073 return -EINVAL;
4074 minor = simple_strtoul(e+1, &e, 10);
4075 if (*e && *e != '\n')
4076 return -EINVAL;
4077 dev = MKDEV(major, minor);
4078 if (major != MAJOR(dev) ||
4079 minor != MINOR(dev))
4080 return -EOVERFLOW;
4081
4082 flush_workqueue(md_misc_wq);
4083
4084 err = mddev_lock(mddev);
4085 if (err)
4086 return err;
4087 if (mddev->persistent) {
4088 rdev = md_import_device(dev, mddev->major_version,
4089 mddev->minor_version);
4090 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4091 struct md_rdev *rdev0
4092 = list_entry(mddev->disks.next,
4093 struct md_rdev, same_set);
4094 err = super_types[mddev->major_version]
4095 .load_super(rdev, rdev0, mddev->minor_version);
4096 if (err < 0)
4097 goto out;
4098 }
4099 } else if (mddev->external)
4100 rdev = md_import_device(dev, -2, -1);
4101 else
4102 rdev = md_import_device(dev, -1, -1);
4103
4104 if (IS_ERR(rdev)) {
4105 mddev_unlock(mddev);
4106 return PTR_ERR(rdev);
4107 }
4108 err = bind_rdev_to_array(rdev, mddev);
4109 out:
4110 if (err)
4111 export_rdev(rdev);
4112 mddev_unlock(mddev);
4113 return err ? err : len;
4114 }
4115
4116 static struct md_sysfs_entry md_new_device =
4117 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4118
4119 static ssize_t
4120 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4121 {
4122 char *end;
4123 unsigned long chunk, end_chunk;
4124 int err;
4125
4126 err = mddev_lock(mddev);
4127 if (err)
4128 return err;
4129 if (!mddev->bitmap)
4130 goto out;
4131 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4132 while (*buf) {
4133 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4134 if (buf == end) break;
4135 if (*end == '-') { /* range */
4136 buf = end + 1;
4137 end_chunk = simple_strtoul(buf, &end, 0);
4138 if (buf == end) break;
4139 }
4140 if (*end && !isspace(*end)) break;
4141 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4142 buf = skip_spaces(end);
4143 }
4144 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4145 out:
4146 mddev_unlock(mddev);
4147 return len;
4148 }
4149
4150 static struct md_sysfs_entry md_bitmap =
4151 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4152
4153 static ssize_t
4154 size_show(struct mddev *mddev, char *page)
4155 {
4156 return sprintf(page, "%llu\n",
4157 (unsigned long long)mddev->dev_sectors / 2);
4158 }
4159
4160 static int update_size(struct mddev *mddev, sector_t num_sectors);
4161
4162 static ssize_t
4163 size_store(struct mddev *mddev, const char *buf, size_t len)
4164 {
4165 /* If array is inactive, we can reduce the component size, but
4166 * not increase it (except from 0).
4167 * If array is active, we can try an on-line resize
4168 */
4169 sector_t sectors;
4170 int err = strict_blocks_to_sectors(buf, &sectors);
4171
4172 if (err < 0)
4173 return err;
4174 err = mddev_lock(mddev);
4175 if (err)
4176 return err;
4177 if (mddev->pers) {
4178 err = update_size(mddev, sectors);
4179 md_update_sb(mddev, 1);
4180 } else {
4181 if (mddev->dev_sectors == 0 ||
4182 mddev->dev_sectors > sectors)
4183 mddev->dev_sectors = sectors;
4184 else
4185 err = -ENOSPC;
4186 }
4187 mddev_unlock(mddev);
4188 return err ? err : len;
4189 }
4190
4191 static struct md_sysfs_entry md_size =
4192 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4193
4194 /* Metadata version.
4195 * This is one of
4196 * 'none' for arrays with no metadata (good luck...)
4197 * 'external' for arrays with externally managed metadata,
4198 * or N.M for internally known formats
4199 */
4200 static ssize_t
4201 metadata_show(struct mddev *mddev, char *page)
4202 {
4203 if (mddev->persistent)
4204 return sprintf(page, "%d.%d\n",
4205 mddev->major_version, mddev->minor_version);
4206 else if (mddev->external)
4207 return sprintf(page, "external:%s\n", mddev->metadata_type);
4208 else
4209 return sprintf(page, "none\n");
4210 }
4211
4212 static ssize_t
4213 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4214 {
4215 int major, minor;
4216 char *e;
4217 int err;
4218 /* Changing the details of 'external' metadata is
4219 * always permitted. Otherwise there must be
4220 * no devices attached to the array.
4221 */
4222
4223 err = mddev_lock(mddev);
4224 if (err)
4225 return err;
4226 err = -EBUSY;
4227 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4228 ;
4229 else if (!list_empty(&mddev->disks))
4230 goto out_unlock;
4231
4232 err = 0;
4233 if (cmd_match(buf, "none")) {
4234 mddev->persistent = 0;
4235 mddev->external = 0;
4236 mddev->major_version = 0;
4237 mddev->minor_version = 90;
4238 goto out_unlock;
4239 }
4240 if (strncmp(buf, "external:", 9) == 0) {
4241 size_t namelen = len-9;
4242 if (namelen >= sizeof(mddev->metadata_type))
4243 namelen = sizeof(mddev->metadata_type)-1;
4244 strncpy(mddev->metadata_type, buf+9, namelen);
4245 mddev->metadata_type[namelen] = 0;
4246 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4247 mddev->metadata_type[--namelen] = 0;
4248 mddev->persistent = 0;
4249 mddev->external = 1;
4250 mddev->major_version = 0;
4251 mddev->minor_version = 90;
4252 goto out_unlock;
4253 }
4254 major = simple_strtoul(buf, &e, 10);
4255 err = -EINVAL;
4256 if (e==buf || *e != '.')
4257 goto out_unlock;
4258 buf = e+1;
4259 minor = simple_strtoul(buf, &e, 10);
4260 if (e==buf || (*e && *e != '\n') )
4261 goto out_unlock;
4262 err = -ENOENT;
4263 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4264 goto out_unlock;
4265 mddev->major_version = major;
4266 mddev->minor_version = minor;
4267 mddev->persistent = 1;
4268 mddev->external = 0;
4269 err = 0;
4270 out_unlock:
4271 mddev_unlock(mddev);
4272 return err ?: len;
4273 }
4274
4275 static struct md_sysfs_entry md_metadata =
4276 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4277
4278 static ssize_t
4279 action_show(struct mddev *mddev, char *page)
4280 {
4281 char *type = "idle";
4282 unsigned long recovery = mddev->recovery;
4283 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4284 type = "frozen";
4285 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4286 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4287 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4288 type = "reshape";
4289 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4290 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4291 type = "resync";
4292 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4293 type = "check";
4294 else
4295 type = "repair";
4296 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4297 type = "recover";
4298 else if (mddev->reshape_position != MaxSector)
4299 type = "reshape";
4300 }
4301 return sprintf(page, "%s\n", type);
4302 }
4303
4304 static ssize_t
4305 action_store(struct mddev *mddev, const char *page, size_t len)
4306 {
4307 if (!mddev->pers || !mddev->pers->sync_request)
4308 return -EINVAL;
4309
4310
4311 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4312 if (cmd_match(page, "frozen"))
4313 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4314 else
4315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4316 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4317 mddev_lock(mddev) == 0) {
4318 flush_workqueue(md_misc_wq);
4319 if (mddev->sync_thread) {
4320 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4321 md_reap_sync_thread(mddev);
4322 }
4323 mddev_unlock(mddev);
4324 }
4325 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4326 return -EBUSY;
4327 else if (cmd_match(page, "resync"))
4328 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4329 else if (cmd_match(page, "recover")) {
4330 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4331 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4332 } else if (cmd_match(page, "reshape")) {
4333 int err;
4334 if (mddev->pers->start_reshape == NULL)
4335 return -EINVAL;
4336 err = mddev_lock(mddev);
4337 if (!err) {
4338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4339 err = -EBUSY;
4340 else {
4341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4342 err = mddev->pers->start_reshape(mddev);
4343 }
4344 mddev_unlock(mddev);
4345 }
4346 if (err)
4347 return err;
4348 sysfs_notify(&mddev->kobj, NULL, "degraded");
4349 } else {
4350 if (cmd_match(page, "check"))
4351 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4352 else if (!cmd_match(page, "repair"))
4353 return -EINVAL;
4354 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4355 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4356 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4357 }
4358 if (mddev->ro == 2) {
4359 /* A write to sync_action is enough to justify
4360 * canceling read-auto mode
4361 */
4362 mddev->ro = 0;
4363 md_wakeup_thread(mddev->sync_thread);
4364 }
4365 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4366 md_wakeup_thread(mddev->thread);
4367 sysfs_notify_dirent_safe(mddev->sysfs_action);
4368 return len;
4369 }
4370
4371 static struct md_sysfs_entry md_scan_mode =
4372 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4373
4374 static ssize_t
4375 last_sync_action_show(struct mddev *mddev, char *page)
4376 {
4377 return sprintf(page, "%s\n", mddev->last_sync_action);
4378 }
4379
4380 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4381
4382 static ssize_t
4383 mismatch_cnt_show(struct mddev *mddev, char *page)
4384 {
4385 return sprintf(page, "%llu\n",
4386 (unsigned long long)
4387 atomic64_read(&mddev->resync_mismatches));
4388 }
4389
4390 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4391
4392 static ssize_t
4393 sync_min_show(struct mddev *mddev, char *page)
4394 {
4395 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4396 mddev->sync_speed_min ? "local": "system");
4397 }
4398
4399 static ssize_t
4400 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4401 {
4402 unsigned int min;
4403 int rv;
4404
4405 if (strncmp(buf, "system", 6)==0) {
4406 min = 0;
4407 } else {
4408 rv = kstrtouint(buf, 10, &min);
4409 if (rv < 0)
4410 return rv;
4411 if (min == 0)
4412 return -EINVAL;
4413 }
4414 mddev->sync_speed_min = min;
4415 return len;
4416 }
4417
4418 static struct md_sysfs_entry md_sync_min =
4419 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4420
4421 static ssize_t
4422 sync_max_show(struct mddev *mddev, char *page)
4423 {
4424 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4425 mddev->sync_speed_max ? "local": "system");
4426 }
4427
4428 static ssize_t
4429 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4430 {
4431 unsigned int max;
4432 int rv;
4433
4434 if (strncmp(buf, "system", 6)==0) {
4435 max = 0;
4436 } else {
4437 rv = kstrtouint(buf, 10, &max);
4438 if (rv < 0)
4439 return rv;
4440 if (max == 0)
4441 return -EINVAL;
4442 }
4443 mddev->sync_speed_max = max;
4444 return len;
4445 }
4446
4447 static struct md_sysfs_entry md_sync_max =
4448 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4449
4450 static ssize_t
4451 degraded_show(struct mddev *mddev, char *page)
4452 {
4453 return sprintf(page, "%d\n", mddev->degraded);
4454 }
4455 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4456
4457 static ssize_t
4458 sync_force_parallel_show(struct mddev *mddev, char *page)
4459 {
4460 return sprintf(page, "%d\n", mddev->parallel_resync);
4461 }
4462
4463 static ssize_t
4464 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4465 {
4466 long n;
4467
4468 if (kstrtol(buf, 10, &n))
4469 return -EINVAL;
4470
4471 if (n != 0 && n != 1)
4472 return -EINVAL;
4473
4474 mddev->parallel_resync = n;
4475
4476 if (mddev->sync_thread)
4477 wake_up(&resync_wait);
4478
4479 return len;
4480 }
4481
4482 /* force parallel resync, even with shared block devices */
4483 static struct md_sysfs_entry md_sync_force_parallel =
4484 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4485 sync_force_parallel_show, sync_force_parallel_store);
4486
4487 static ssize_t
4488 sync_speed_show(struct mddev *mddev, char *page)
4489 {
4490 unsigned long resync, dt, db;
4491 if (mddev->curr_resync == 0)
4492 return sprintf(page, "none\n");
4493 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4494 dt = (jiffies - mddev->resync_mark) / HZ;
4495 if (!dt) dt++;
4496 db = resync - mddev->resync_mark_cnt;
4497 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4498 }
4499
4500 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4501
4502 static ssize_t
4503 sync_completed_show(struct mddev *mddev, char *page)
4504 {
4505 unsigned long long max_sectors, resync;
4506
4507 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4508 return sprintf(page, "none\n");
4509
4510 if (mddev->curr_resync == 1 ||
4511 mddev->curr_resync == 2)
4512 return sprintf(page, "delayed\n");
4513
4514 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4515 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4516 max_sectors = mddev->resync_max_sectors;
4517 else
4518 max_sectors = mddev->dev_sectors;
4519
4520 resync = mddev->curr_resync_completed;
4521 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4522 }
4523
4524 static struct md_sysfs_entry md_sync_completed =
4525 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4526
4527 static ssize_t
4528 min_sync_show(struct mddev *mddev, char *page)
4529 {
4530 return sprintf(page, "%llu\n",
4531 (unsigned long long)mddev->resync_min);
4532 }
4533 static ssize_t
4534 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4535 {
4536 unsigned long long min;
4537 int err;
4538
4539 if (kstrtoull(buf, 10, &min))
4540 return -EINVAL;
4541
4542 spin_lock(&mddev->lock);
4543 err = -EINVAL;
4544 if (min > mddev->resync_max)
4545 goto out_unlock;
4546
4547 err = -EBUSY;
4548 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4549 goto out_unlock;
4550
4551 /* Round down to multiple of 4K for safety */
4552 mddev->resync_min = round_down(min, 8);
4553 err = 0;
4554
4555 out_unlock:
4556 spin_unlock(&mddev->lock);
4557 return err ?: len;
4558 }
4559
4560 static struct md_sysfs_entry md_min_sync =
4561 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4562
4563 static ssize_t
4564 max_sync_show(struct mddev *mddev, char *page)
4565 {
4566 if (mddev->resync_max == MaxSector)
4567 return sprintf(page, "max\n");
4568 else
4569 return sprintf(page, "%llu\n",
4570 (unsigned long long)mddev->resync_max);
4571 }
4572 static ssize_t
4573 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4574 {
4575 int err;
4576 spin_lock(&mddev->lock);
4577 if (strncmp(buf, "max", 3) == 0)
4578 mddev->resync_max = MaxSector;
4579 else {
4580 unsigned long long max;
4581 int chunk;
4582
4583 err = -EINVAL;
4584 if (kstrtoull(buf, 10, &max))
4585 goto out_unlock;
4586 if (max < mddev->resync_min)
4587 goto out_unlock;
4588
4589 err = -EBUSY;
4590 if (max < mddev->resync_max &&
4591 mddev->ro == 0 &&
4592 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4593 goto out_unlock;
4594
4595 /* Must be a multiple of chunk_size */
4596 chunk = mddev->chunk_sectors;
4597 if (chunk) {
4598 sector_t temp = max;
4599
4600 err = -EINVAL;
4601 if (sector_div(temp, chunk))
4602 goto out_unlock;
4603 }
4604 mddev->resync_max = max;
4605 }
4606 wake_up(&mddev->recovery_wait);
4607 err = 0;
4608 out_unlock:
4609 spin_unlock(&mddev->lock);
4610 return err ?: len;
4611 }
4612
4613 static struct md_sysfs_entry md_max_sync =
4614 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4615
4616 static ssize_t
4617 suspend_lo_show(struct mddev *mddev, char *page)
4618 {
4619 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4620 }
4621
4622 static ssize_t
4623 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4624 {
4625 unsigned long long old, new;
4626 int err;
4627
4628 err = kstrtoull(buf, 10, &new);
4629 if (err < 0)
4630 return err;
4631 if (new != (sector_t)new)
4632 return -EINVAL;
4633
4634 err = mddev_lock(mddev);
4635 if (err)
4636 return err;
4637 err = -EINVAL;
4638 if (mddev->pers == NULL ||
4639 mddev->pers->quiesce == NULL)
4640 goto unlock;
4641 old = mddev->suspend_lo;
4642 mddev->suspend_lo = new;
4643 if (new >= old)
4644 /* Shrinking suspended region */
4645 mddev->pers->quiesce(mddev, 2);
4646 else {
4647 /* Expanding suspended region - need to wait */
4648 mddev->pers->quiesce(mddev, 1);
4649 mddev->pers->quiesce(mddev, 0);
4650 }
4651 err = 0;
4652 unlock:
4653 mddev_unlock(mddev);
4654 return err ?: len;
4655 }
4656 static struct md_sysfs_entry md_suspend_lo =
4657 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4658
4659 static ssize_t
4660 suspend_hi_show(struct mddev *mddev, char *page)
4661 {
4662 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4663 }
4664
4665 static ssize_t
4666 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4667 {
4668 unsigned long long old, new;
4669 int err;
4670
4671 err = kstrtoull(buf, 10, &new);
4672 if (err < 0)
4673 return err;
4674 if (new != (sector_t)new)
4675 return -EINVAL;
4676
4677 err = mddev_lock(mddev);
4678 if (err)
4679 return err;
4680 err = -EINVAL;
4681 if (mddev->pers == NULL ||
4682 mddev->pers->quiesce == NULL)
4683 goto unlock;
4684 old = mddev->suspend_hi;
4685 mddev->suspend_hi = new;
4686 if (new <= old)
4687 /* Shrinking suspended region */
4688 mddev->pers->quiesce(mddev, 2);
4689 else {
4690 /* Expanding suspended region - need to wait */
4691 mddev->pers->quiesce(mddev, 1);
4692 mddev->pers->quiesce(mddev, 0);
4693 }
4694 err = 0;
4695 unlock:
4696 mddev_unlock(mddev);
4697 return err ?: len;
4698 }
4699 static struct md_sysfs_entry md_suspend_hi =
4700 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4701
4702 static ssize_t
4703 reshape_position_show(struct mddev *mddev, char *page)
4704 {
4705 if (mddev->reshape_position != MaxSector)
4706 return sprintf(page, "%llu\n",
4707 (unsigned long long)mddev->reshape_position);
4708 strcpy(page, "none\n");
4709 return 5;
4710 }
4711
4712 static ssize_t
4713 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4714 {
4715 struct md_rdev *rdev;
4716 unsigned long long new;
4717 int err;
4718
4719 err = kstrtoull(buf, 10, &new);
4720 if (err < 0)
4721 return err;
4722 if (new != (sector_t)new)
4723 return -EINVAL;
4724 err = mddev_lock(mddev);
4725 if (err)
4726 return err;
4727 err = -EBUSY;
4728 if (mddev->pers)
4729 goto unlock;
4730 mddev->reshape_position = new;
4731 mddev->delta_disks = 0;
4732 mddev->reshape_backwards = 0;
4733 mddev->new_level = mddev->level;
4734 mddev->new_layout = mddev->layout;
4735 mddev->new_chunk_sectors = mddev->chunk_sectors;
4736 rdev_for_each(rdev, mddev)
4737 rdev->new_data_offset = rdev->data_offset;
4738 err = 0;
4739 unlock:
4740 mddev_unlock(mddev);
4741 return err ?: len;
4742 }
4743
4744 static struct md_sysfs_entry md_reshape_position =
4745 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4746 reshape_position_store);
4747
4748 static ssize_t
4749 reshape_direction_show(struct mddev *mddev, char *page)
4750 {
4751 return sprintf(page, "%s\n",
4752 mddev->reshape_backwards ? "backwards" : "forwards");
4753 }
4754
4755 static ssize_t
4756 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4757 {
4758 int backwards = 0;
4759 int err;
4760
4761 if (cmd_match(buf, "forwards"))
4762 backwards = 0;
4763 else if (cmd_match(buf, "backwards"))
4764 backwards = 1;
4765 else
4766 return -EINVAL;
4767 if (mddev->reshape_backwards == backwards)
4768 return len;
4769
4770 err = mddev_lock(mddev);
4771 if (err)
4772 return err;
4773 /* check if we are allowed to change */
4774 if (mddev->delta_disks)
4775 err = -EBUSY;
4776 else if (mddev->persistent &&
4777 mddev->major_version == 0)
4778 err = -EINVAL;
4779 else
4780 mddev->reshape_backwards = backwards;
4781 mddev_unlock(mddev);
4782 return err ?: len;
4783 }
4784
4785 static struct md_sysfs_entry md_reshape_direction =
4786 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4787 reshape_direction_store);
4788
4789 static ssize_t
4790 array_size_show(struct mddev *mddev, char *page)
4791 {
4792 if (mddev->external_size)
4793 return sprintf(page, "%llu\n",
4794 (unsigned long long)mddev->array_sectors/2);
4795 else
4796 return sprintf(page, "default\n");
4797 }
4798
4799 static ssize_t
4800 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4801 {
4802 sector_t sectors;
4803 int err;
4804
4805 err = mddev_lock(mddev);
4806 if (err)
4807 return err;
4808
4809 if (strncmp(buf, "default", 7) == 0) {
4810 if (mddev->pers)
4811 sectors = mddev->pers->size(mddev, 0, 0);
4812 else
4813 sectors = mddev->array_sectors;
4814
4815 mddev->external_size = 0;
4816 } else {
4817 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4818 err = -EINVAL;
4819 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4820 err = -E2BIG;
4821 else
4822 mddev->external_size = 1;
4823 }
4824
4825 if (!err) {
4826 mddev->array_sectors = sectors;
4827 if (mddev->pers) {
4828 set_capacity(mddev->gendisk, mddev->array_sectors);
4829 revalidate_disk(mddev->gendisk);
4830 }
4831 }
4832 mddev_unlock(mddev);
4833 return err ?: len;
4834 }
4835
4836 static struct md_sysfs_entry md_array_size =
4837 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4838 array_size_store);
4839
4840 static struct attribute *md_default_attrs[] = {
4841 &md_level.attr,
4842 &md_layout.attr,
4843 &md_raid_disks.attr,
4844 &md_chunk_size.attr,
4845 &md_size.attr,
4846 &md_resync_start.attr,
4847 &md_metadata.attr,
4848 &md_new_device.attr,
4849 &md_safe_delay.attr,
4850 &md_array_state.attr,
4851 &md_reshape_position.attr,
4852 &md_reshape_direction.attr,
4853 &md_array_size.attr,
4854 &max_corr_read_errors.attr,
4855 NULL,
4856 };
4857
4858 static struct attribute *md_redundancy_attrs[] = {
4859 &md_scan_mode.attr,
4860 &md_last_scan_mode.attr,
4861 &md_mismatches.attr,
4862 &md_sync_min.attr,
4863 &md_sync_max.attr,
4864 &md_sync_speed.attr,
4865 &md_sync_force_parallel.attr,
4866 &md_sync_completed.attr,
4867 &md_min_sync.attr,
4868 &md_max_sync.attr,
4869 &md_suspend_lo.attr,
4870 &md_suspend_hi.attr,
4871 &md_bitmap.attr,
4872 &md_degraded.attr,
4873 NULL,
4874 };
4875 static struct attribute_group md_redundancy_group = {
4876 .name = NULL,
4877 .attrs = md_redundancy_attrs,
4878 };
4879
4880 static ssize_t
4881 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4882 {
4883 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4884 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4885 ssize_t rv;
4886
4887 if (!entry->show)
4888 return -EIO;
4889 spin_lock(&all_mddevs_lock);
4890 if (list_empty(&mddev->all_mddevs)) {
4891 spin_unlock(&all_mddevs_lock);
4892 return -EBUSY;
4893 }
4894 mddev_get(mddev);
4895 spin_unlock(&all_mddevs_lock);
4896
4897 rv = entry->show(mddev, page);
4898 mddev_put(mddev);
4899 return rv;
4900 }
4901
4902 static ssize_t
4903 md_attr_store(struct kobject *kobj, struct attribute *attr,
4904 const char *page, size_t length)
4905 {
4906 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4907 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4908 ssize_t rv;
4909
4910 if (!entry->store)
4911 return -EIO;
4912 if (!capable(CAP_SYS_ADMIN))
4913 return -EACCES;
4914 spin_lock(&all_mddevs_lock);
4915 if (list_empty(&mddev->all_mddevs)) {
4916 spin_unlock(&all_mddevs_lock);
4917 return -EBUSY;
4918 }
4919 mddev_get(mddev);
4920 spin_unlock(&all_mddevs_lock);
4921 rv = entry->store(mddev, page, length);
4922 mddev_put(mddev);
4923 return rv;
4924 }
4925
4926 static void md_free(struct kobject *ko)
4927 {
4928 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4929
4930 if (mddev->sysfs_state)
4931 sysfs_put(mddev->sysfs_state);
4932
4933 if (mddev->queue)
4934 blk_cleanup_queue(mddev->queue);
4935 if (mddev->gendisk) {
4936 del_gendisk(mddev->gendisk);
4937 put_disk(mddev->gendisk);
4938 }
4939
4940 kfree(mddev);
4941 }
4942
4943 static const struct sysfs_ops md_sysfs_ops = {
4944 .show = md_attr_show,
4945 .store = md_attr_store,
4946 };
4947 static struct kobj_type md_ktype = {
4948 .release = md_free,
4949 .sysfs_ops = &md_sysfs_ops,
4950 .default_attrs = md_default_attrs,
4951 };
4952
4953 int mdp_major = 0;
4954
4955 static void mddev_delayed_delete(struct work_struct *ws)
4956 {
4957 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4958
4959 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4960 kobject_del(&mddev->kobj);
4961 kobject_put(&mddev->kobj);
4962 }
4963
4964 static int md_alloc(dev_t dev, char *name)
4965 {
4966 static DEFINE_MUTEX(disks_mutex);
4967 struct mddev *mddev = mddev_find(dev);
4968 struct gendisk *disk;
4969 int partitioned;
4970 int shift;
4971 int unit;
4972 int error;
4973
4974 if (!mddev)
4975 return -ENODEV;
4976
4977 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4978 shift = partitioned ? MdpMinorShift : 0;
4979 unit = MINOR(mddev->unit) >> shift;
4980
4981 /* wait for any previous instance of this device to be
4982 * completely removed (mddev_delayed_delete).
4983 */
4984 flush_workqueue(md_misc_wq);
4985
4986 mutex_lock(&disks_mutex);
4987 error = -EEXIST;
4988 if (mddev->gendisk)
4989 goto abort;
4990
4991 if (name) {
4992 /* Need to ensure that 'name' is not a duplicate.
4993 */
4994 struct mddev *mddev2;
4995 spin_lock(&all_mddevs_lock);
4996
4997 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4998 if (mddev2->gendisk &&
4999 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5000 spin_unlock(&all_mddevs_lock);
5001 goto abort;
5002 }
5003 spin_unlock(&all_mddevs_lock);
5004 }
5005
5006 error = -ENOMEM;
5007 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5008 if (!mddev->queue)
5009 goto abort;
5010 mddev->queue->queuedata = mddev;
5011
5012 blk_queue_make_request(mddev->queue, md_make_request);
5013 blk_set_stacking_limits(&mddev->queue->limits);
5014
5015 disk = alloc_disk(1 << shift);
5016 if (!disk) {
5017 blk_cleanup_queue(mddev->queue);
5018 mddev->queue = NULL;
5019 goto abort;
5020 }
5021 disk->major = MAJOR(mddev->unit);
5022 disk->first_minor = unit << shift;
5023 if (name)
5024 strcpy(disk->disk_name, name);
5025 else if (partitioned)
5026 sprintf(disk->disk_name, "md_d%d", unit);
5027 else
5028 sprintf(disk->disk_name, "md%d", unit);
5029 disk->fops = &md_fops;
5030 disk->private_data = mddev;
5031 disk->queue = mddev->queue;
5032 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5033 /* Allow extended partitions. This makes the
5034 * 'mdp' device redundant, but we can't really
5035 * remove it now.
5036 */
5037 disk->flags |= GENHD_FL_EXT_DEVT;
5038 mddev->gendisk = disk;
5039 /* As soon as we call add_disk(), another thread could get
5040 * through to md_open, so make sure it doesn't get too far
5041 */
5042 mutex_lock(&mddev->open_mutex);
5043 add_disk(disk);
5044
5045 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5046 &disk_to_dev(disk)->kobj, "%s", "md");
5047 if (error) {
5048 /* This isn't possible, but as kobject_init_and_add is marked
5049 * __must_check, we must do something with the result
5050 */
5051 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5052 disk->disk_name);
5053 error = 0;
5054 }
5055 if (mddev->kobj.sd &&
5056 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5057 printk(KERN_DEBUG "pointless warning\n");
5058 mutex_unlock(&mddev->open_mutex);
5059 abort:
5060 mutex_unlock(&disks_mutex);
5061 if (!error && mddev->kobj.sd) {
5062 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5063 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5064 }
5065 mddev_put(mddev);
5066 return error;
5067 }
5068
5069 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5070 {
5071 md_alloc(dev, NULL);
5072 return NULL;
5073 }
5074
5075 static int add_named_array(const char *val, struct kernel_param *kp)
5076 {
5077 /* val must be "md_*" where * is not all digits.
5078 * We allocate an array with a large free minor number, and
5079 * set the name to val. val must not already be an active name.
5080 */
5081 int len = strlen(val);
5082 char buf[DISK_NAME_LEN];
5083
5084 while (len && val[len-1] == '\n')
5085 len--;
5086 if (len >= DISK_NAME_LEN)
5087 return -E2BIG;
5088 strlcpy(buf, val, len+1);
5089 if (strncmp(buf, "md_", 3) != 0)
5090 return -EINVAL;
5091 return md_alloc(0, buf);
5092 }
5093
5094 static void md_safemode_timeout(unsigned long data)
5095 {
5096 struct mddev *mddev = (struct mddev *) data;
5097
5098 if (!atomic_read(&mddev->writes_pending)) {
5099 mddev->safemode = 1;
5100 if (mddev->external)
5101 sysfs_notify_dirent_safe(mddev->sysfs_state);
5102 }
5103 md_wakeup_thread(mddev->thread);
5104 }
5105
5106 static int start_dirty_degraded;
5107
5108 int md_run(struct mddev *mddev)
5109 {
5110 int err;
5111 struct md_rdev *rdev;
5112 struct md_personality *pers;
5113
5114 if (list_empty(&mddev->disks))
5115 /* cannot run an array with no devices.. */
5116 return -EINVAL;
5117
5118 if (mddev->pers)
5119 return -EBUSY;
5120 /* Cannot run until previous stop completes properly */
5121 if (mddev->sysfs_active)
5122 return -EBUSY;
5123
5124 /*
5125 * Analyze all RAID superblock(s)
5126 */
5127 if (!mddev->raid_disks) {
5128 if (!mddev->persistent)
5129 return -EINVAL;
5130 analyze_sbs(mddev);
5131 }
5132
5133 if (mddev->level != LEVEL_NONE)
5134 request_module("md-level-%d", mddev->level);
5135 else if (mddev->clevel[0])
5136 request_module("md-%s", mddev->clevel);
5137
5138 /*
5139 * Drop all container device buffers, from now on
5140 * the only valid external interface is through the md
5141 * device.
5142 */
5143 rdev_for_each(rdev, mddev) {
5144 if (test_bit(Faulty, &rdev->flags))
5145 continue;
5146 sync_blockdev(rdev->bdev);
5147 invalidate_bdev(rdev->bdev);
5148
5149 /* perform some consistency tests on the device.
5150 * We don't want the data to overlap the metadata,
5151 * Internal Bitmap issues have been handled elsewhere.
5152 */
5153 if (rdev->meta_bdev) {
5154 /* Nothing to check */;
5155 } else if (rdev->data_offset < rdev->sb_start) {
5156 if (mddev->dev_sectors &&
5157 rdev->data_offset + mddev->dev_sectors
5158 > rdev->sb_start) {
5159 printk("md: %s: data overlaps metadata\n",
5160 mdname(mddev));
5161 return -EINVAL;
5162 }
5163 } else {
5164 if (rdev->sb_start + rdev->sb_size/512
5165 > rdev->data_offset) {
5166 printk("md: %s: metadata overlaps data\n",
5167 mdname(mddev));
5168 return -EINVAL;
5169 }
5170 }
5171 sysfs_notify_dirent_safe(rdev->sysfs_state);
5172 }
5173
5174 if (mddev->bio_set == NULL)
5175 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5176
5177 spin_lock(&pers_lock);
5178 pers = find_pers(mddev->level, mddev->clevel);
5179 if (!pers || !try_module_get(pers->owner)) {
5180 spin_unlock(&pers_lock);
5181 if (mddev->level != LEVEL_NONE)
5182 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5183 mddev->level);
5184 else
5185 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5186 mddev->clevel);
5187 return -EINVAL;
5188 }
5189 spin_unlock(&pers_lock);
5190 if (mddev->level != pers->level) {
5191 mddev->level = pers->level;
5192 mddev->new_level = pers->level;
5193 }
5194 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5195
5196 if (mddev->reshape_position != MaxSector &&
5197 pers->start_reshape == NULL) {
5198 /* This personality cannot handle reshaping... */
5199 module_put(pers->owner);
5200 return -EINVAL;
5201 }
5202
5203 if (pers->sync_request) {
5204 /* Warn if this is a potentially silly
5205 * configuration.
5206 */
5207 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5208 struct md_rdev *rdev2;
5209 int warned = 0;
5210
5211 rdev_for_each(rdev, mddev)
5212 rdev_for_each(rdev2, mddev) {
5213 if (rdev < rdev2 &&
5214 rdev->bdev->bd_contains ==
5215 rdev2->bdev->bd_contains) {
5216 printk(KERN_WARNING
5217 "%s: WARNING: %s appears to be"
5218 " on the same physical disk as"
5219 " %s.\n",
5220 mdname(mddev),
5221 bdevname(rdev->bdev,b),
5222 bdevname(rdev2->bdev,b2));
5223 warned = 1;
5224 }
5225 }
5226
5227 if (warned)
5228 printk(KERN_WARNING
5229 "True protection against single-disk"
5230 " failure might be compromised.\n");
5231 }
5232
5233 mddev->recovery = 0;
5234 /* may be over-ridden by personality */
5235 mddev->resync_max_sectors = mddev->dev_sectors;
5236
5237 mddev->ok_start_degraded = start_dirty_degraded;
5238
5239 if (start_readonly && mddev->ro == 0)
5240 mddev->ro = 2; /* read-only, but switch on first write */
5241
5242 err = pers->run(mddev);
5243 if (err)
5244 printk(KERN_ERR "md: pers->run() failed ...\n");
5245 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5246 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5247 " but 'external_size' not in effect?\n", __func__);
5248 printk(KERN_ERR
5249 "md: invalid array_size %llu > default size %llu\n",
5250 (unsigned long long)mddev->array_sectors / 2,
5251 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5252 err = -EINVAL;
5253 }
5254 if (err == 0 && pers->sync_request &&
5255 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5256 struct bitmap *bitmap;
5257
5258 bitmap = bitmap_create(mddev, -1);
5259 if (IS_ERR(bitmap)) {
5260 err = PTR_ERR(bitmap);
5261 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5262 mdname(mddev), err);
5263 } else
5264 mddev->bitmap = bitmap;
5265
5266 }
5267 if (err) {
5268 mddev_detach(mddev);
5269 if (mddev->private)
5270 pers->free(mddev, mddev->private);
5271 mddev->private = NULL;
5272 module_put(pers->owner);
5273 bitmap_destroy(mddev);
5274 return err;
5275 }
5276 if (mddev->queue) {
5277 mddev->queue->backing_dev_info.congested_data = mddev;
5278 mddev->queue->backing_dev_info.congested_fn = md_congested;
5279 }
5280 if (pers->sync_request) {
5281 if (mddev->kobj.sd &&
5282 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5283 printk(KERN_WARNING
5284 "md: cannot register extra attributes for %s\n",
5285 mdname(mddev));
5286 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5287 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5288 mddev->ro = 0;
5289
5290 atomic_set(&mddev->writes_pending,0);
5291 atomic_set(&mddev->max_corr_read_errors,
5292 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5293 mddev->safemode = 0;
5294 if (mddev_is_clustered(mddev))
5295 mddev->safemode_delay = 0;
5296 else
5297 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5298 mddev->in_sync = 1;
5299 smp_wmb();
5300 spin_lock(&mddev->lock);
5301 mddev->pers = pers;
5302 mddev->ready = 1;
5303 spin_unlock(&mddev->lock);
5304 rdev_for_each(rdev, mddev)
5305 if (rdev->raid_disk >= 0)
5306 if (sysfs_link_rdev(mddev, rdev))
5307 /* failure here is OK */;
5308
5309 if (mddev->degraded && !mddev->ro)
5310 /* This ensures that recovering status is reported immediately
5311 * via sysfs - until a lack of spares is confirmed.
5312 */
5313 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5314 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5315
5316 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5317 md_update_sb(mddev, 0);
5318
5319 md_new_event(mddev);
5320 sysfs_notify_dirent_safe(mddev->sysfs_state);
5321 sysfs_notify_dirent_safe(mddev->sysfs_action);
5322 sysfs_notify(&mddev->kobj, NULL, "degraded");
5323 return 0;
5324 }
5325 EXPORT_SYMBOL_GPL(md_run);
5326
5327 static int do_md_run(struct mddev *mddev)
5328 {
5329 int err;
5330
5331 err = md_run(mddev);
5332 if (err)
5333 goto out;
5334 err = bitmap_load(mddev);
5335 if (err) {
5336 bitmap_destroy(mddev);
5337 goto out;
5338 }
5339
5340 if (mddev_is_clustered(mddev))
5341 md_allow_write(mddev);
5342
5343 md_wakeup_thread(mddev->thread);
5344 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5345
5346 set_capacity(mddev->gendisk, mddev->array_sectors);
5347 revalidate_disk(mddev->gendisk);
5348 mddev->changed = 1;
5349 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5350 out:
5351 return err;
5352 }
5353
5354 static int restart_array(struct mddev *mddev)
5355 {
5356 struct gendisk *disk = mddev->gendisk;
5357
5358 /* Complain if it has no devices */
5359 if (list_empty(&mddev->disks))
5360 return -ENXIO;
5361 if (!mddev->pers)
5362 return -EINVAL;
5363 if (!mddev->ro)
5364 return -EBUSY;
5365 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5366 struct md_rdev *rdev;
5367 bool has_journal = false;
5368
5369 rcu_read_lock();
5370 rdev_for_each_rcu(rdev, mddev) {
5371 if (test_bit(Journal, &rdev->flags) &&
5372 !test_bit(Faulty, &rdev->flags)) {
5373 has_journal = true;
5374 break;
5375 }
5376 }
5377 rcu_read_unlock();
5378
5379 /* Don't restart rw with journal missing/faulty */
5380 if (!has_journal)
5381 return -EINVAL;
5382 }
5383
5384 mddev->safemode = 0;
5385 mddev->ro = 0;
5386 set_disk_ro(disk, 0);
5387 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5388 mdname(mddev));
5389 /* Kick recovery or resync if necessary */
5390 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5391 md_wakeup_thread(mddev->thread);
5392 md_wakeup_thread(mddev->sync_thread);
5393 sysfs_notify_dirent_safe(mddev->sysfs_state);
5394 return 0;
5395 }
5396
5397 static void md_clean(struct mddev *mddev)
5398 {
5399 mddev->array_sectors = 0;
5400 mddev->external_size = 0;
5401 mddev->dev_sectors = 0;
5402 mddev->raid_disks = 0;
5403 mddev->recovery_cp = 0;
5404 mddev->resync_min = 0;
5405 mddev->resync_max = MaxSector;
5406 mddev->reshape_position = MaxSector;
5407 mddev->external = 0;
5408 mddev->persistent = 0;
5409 mddev->level = LEVEL_NONE;
5410 mddev->clevel[0] = 0;
5411 mddev->flags = 0;
5412 mddev->ro = 0;
5413 mddev->metadata_type[0] = 0;
5414 mddev->chunk_sectors = 0;
5415 mddev->ctime = mddev->utime = 0;
5416 mddev->layout = 0;
5417 mddev->max_disks = 0;
5418 mddev->events = 0;
5419 mddev->can_decrease_events = 0;
5420 mddev->delta_disks = 0;
5421 mddev->reshape_backwards = 0;
5422 mddev->new_level = LEVEL_NONE;
5423 mddev->new_layout = 0;
5424 mddev->new_chunk_sectors = 0;
5425 mddev->curr_resync = 0;
5426 atomic64_set(&mddev->resync_mismatches, 0);
5427 mddev->suspend_lo = mddev->suspend_hi = 0;
5428 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5429 mddev->recovery = 0;
5430 mddev->in_sync = 0;
5431 mddev->changed = 0;
5432 mddev->degraded = 0;
5433 mddev->safemode = 0;
5434 mddev->private = NULL;
5435 mddev->bitmap_info.offset = 0;
5436 mddev->bitmap_info.default_offset = 0;
5437 mddev->bitmap_info.default_space = 0;
5438 mddev->bitmap_info.chunksize = 0;
5439 mddev->bitmap_info.daemon_sleep = 0;
5440 mddev->bitmap_info.max_write_behind = 0;
5441 }
5442
5443 static void __md_stop_writes(struct mddev *mddev)
5444 {
5445 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5446 flush_workqueue(md_misc_wq);
5447 if (mddev->sync_thread) {
5448 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5449 md_reap_sync_thread(mddev);
5450 }
5451
5452 del_timer_sync(&mddev->safemode_timer);
5453
5454 bitmap_flush(mddev);
5455 md_super_wait(mddev);
5456
5457 if (mddev->ro == 0 &&
5458 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5459 (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5460 /* mark array as shutdown cleanly */
5461 if (!mddev_is_clustered(mddev))
5462 mddev->in_sync = 1;
5463 md_update_sb(mddev, 1);
5464 }
5465 }
5466
5467 void md_stop_writes(struct mddev *mddev)
5468 {
5469 mddev_lock_nointr(mddev);
5470 __md_stop_writes(mddev);
5471 mddev_unlock(mddev);
5472 }
5473 EXPORT_SYMBOL_GPL(md_stop_writes);
5474
5475 static void mddev_detach(struct mddev *mddev)
5476 {
5477 struct bitmap *bitmap = mddev->bitmap;
5478 /* wait for behind writes to complete */
5479 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5480 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5481 mdname(mddev));
5482 /* need to kick something here to make sure I/O goes? */
5483 wait_event(bitmap->behind_wait,
5484 atomic_read(&bitmap->behind_writes) == 0);
5485 }
5486 if (mddev->pers && mddev->pers->quiesce) {
5487 mddev->pers->quiesce(mddev, 1);
5488 mddev->pers->quiesce(mddev, 0);
5489 }
5490 md_unregister_thread(&mddev->thread);
5491 if (mddev->queue)
5492 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5493 }
5494
5495 static void __md_stop(struct mddev *mddev)
5496 {
5497 struct md_personality *pers = mddev->pers;
5498 mddev_detach(mddev);
5499 /* Ensure ->event_work is done */
5500 flush_workqueue(md_misc_wq);
5501 spin_lock(&mddev->lock);
5502 mddev->ready = 0;
5503 mddev->pers = NULL;
5504 spin_unlock(&mddev->lock);
5505 pers->free(mddev, mddev->private);
5506 mddev->private = NULL;
5507 if (pers->sync_request && mddev->to_remove == NULL)
5508 mddev->to_remove = &md_redundancy_group;
5509 module_put(pers->owner);
5510 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5511 }
5512
5513 void md_stop(struct mddev *mddev)
5514 {
5515 /* stop the array and free an attached data structures.
5516 * This is called from dm-raid
5517 */
5518 __md_stop(mddev);
5519 bitmap_destroy(mddev);
5520 if (mddev->bio_set)
5521 bioset_free(mddev->bio_set);
5522 }
5523
5524 EXPORT_SYMBOL_GPL(md_stop);
5525
5526 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5527 {
5528 int err = 0;
5529 int did_freeze = 0;
5530
5531 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5532 did_freeze = 1;
5533 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5534 md_wakeup_thread(mddev->thread);
5535 }
5536 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5537 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5538 if (mddev->sync_thread)
5539 /* Thread might be blocked waiting for metadata update
5540 * which will now never happen */
5541 wake_up_process(mddev->sync_thread->tsk);
5542
5543 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5544 return -EBUSY;
5545 mddev_unlock(mddev);
5546 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5547 &mddev->recovery));
5548 wait_event(mddev->sb_wait,
5549 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5550 mddev_lock_nointr(mddev);
5551
5552 mutex_lock(&mddev->open_mutex);
5553 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5554 mddev->sync_thread ||
5555 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5556 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5557 printk("md: %s still in use.\n",mdname(mddev));
5558 if (did_freeze) {
5559 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5560 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5561 md_wakeup_thread(mddev->thread);
5562 }
5563 err = -EBUSY;
5564 goto out;
5565 }
5566 if (mddev->pers) {
5567 __md_stop_writes(mddev);
5568
5569 err = -ENXIO;
5570 if (mddev->ro==1)
5571 goto out;
5572 mddev->ro = 1;
5573 set_disk_ro(mddev->gendisk, 1);
5574 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5575 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5576 md_wakeup_thread(mddev->thread);
5577 sysfs_notify_dirent_safe(mddev->sysfs_state);
5578 err = 0;
5579 }
5580 out:
5581 mutex_unlock(&mddev->open_mutex);
5582 return err;
5583 }
5584
5585 /* mode:
5586 * 0 - completely stop and dis-assemble array
5587 * 2 - stop but do not disassemble array
5588 */
5589 static int do_md_stop(struct mddev *mddev, int mode,
5590 struct block_device *bdev)
5591 {
5592 struct gendisk *disk = mddev->gendisk;
5593 struct md_rdev *rdev;
5594 int did_freeze = 0;
5595
5596 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5597 did_freeze = 1;
5598 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5599 md_wakeup_thread(mddev->thread);
5600 }
5601 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5602 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5603 if (mddev->sync_thread)
5604 /* Thread might be blocked waiting for metadata update
5605 * which will now never happen */
5606 wake_up_process(mddev->sync_thread->tsk);
5607
5608 mddev_unlock(mddev);
5609 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5610 !test_bit(MD_RECOVERY_RUNNING,
5611 &mddev->recovery)));
5612 mddev_lock_nointr(mddev);
5613
5614 mutex_lock(&mddev->open_mutex);
5615 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5616 mddev->sysfs_active ||
5617 mddev->sync_thread ||
5618 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5619 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5620 printk("md: %s still in use.\n",mdname(mddev));
5621 mutex_unlock(&mddev->open_mutex);
5622 if (did_freeze) {
5623 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5624 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5625 md_wakeup_thread(mddev->thread);
5626 }
5627 return -EBUSY;
5628 }
5629 if (mddev->pers) {
5630 if (mddev->ro)
5631 set_disk_ro(disk, 0);
5632
5633 __md_stop_writes(mddev);
5634 __md_stop(mddev);
5635 mddev->queue->backing_dev_info.congested_fn = NULL;
5636
5637 /* tell userspace to handle 'inactive' */
5638 sysfs_notify_dirent_safe(mddev->sysfs_state);
5639
5640 rdev_for_each(rdev, mddev)
5641 if (rdev->raid_disk >= 0)
5642 sysfs_unlink_rdev(mddev, rdev);
5643
5644 set_capacity(disk, 0);
5645 mutex_unlock(&mddev->open_mutex);
5646 mddev->changed = 1;
5647 revalidate_disk(disk);
5648
5649 if (mddev->ro)
5650 mddev->ro = 0;
5651 } else
5652 mutex_unlock(&mddev->open_mutex);
5653 /*
5654 * Free resources if final stop
5655 */
5656 if (mode == 0) {
5657 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5658
5659 bitmap_destroy(mddev);
5660 if (mddev->bitmap_info.file) {
5661 struct file *f = mddev->bitmap_info.file;
5662 spin_lock(&mddev->lock);
5663 mddev->bitmap_info.file = NULL;
5664 spin_unlock(&mddev->lock);
5665 fput(f);
5666 }
5667 mddev->bitmap_info.offset = 0;
5668
5669 export_array(mddev);
5670
5671 md_clean(mddev);
5672 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5673 if (mddev->hold_active == UNTIL_STOP)
5674 mddev->hold_active = 0;
5675 }
5676 md_new_event(mddev);
5677 sysfs_notify_dirent_safe(mddev->sysfs_state);
5678 return 0;
5679 }
5680
5681 #ifndef MODULE
5682 static void autorun_array(struct mddev *mddev)
5683 {
5684 struct md_rdev *rdev;
5685 int err;
5686
5687 if (list_empty(&mddev->disks))
5688 return;
5689
5690 printk(KERN_INFO "md: running: ");
5691
5692 rdev_for_each(rdev, mddev) {
5693 char b[BDEVNAME_SIZE];
5694 printk("<%s>", bdevname(rdev->bdev,b));
5695 }
5696 printk("\n");
5697
5698 err = do_md_run(mddev);
5699 if (err) {
5700 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5701 do_md_stop(mddev, 0, NULL);
5702 }
5703 }
5704
5705 /*
5706 * lets try to run arrays based on all disks that have arrived
5707 * until now. (those are in pending_raid_disks)
5708 *
5709 * the method: pick the first pending disk, collect all disks with
5710 * the same UUID, remove all from the pending list and put them into
5711 * the 'same_array' list. Then order this list based on superblock
5712 * update time (freshest comes first), kick out 'old' disks and
5713 * compare superblocks. If everything's fine then run it.
5714 *
5715 * If "unit" is allocated, then bump its reference count
5716 */
5717 static void autorun_devices(int part)
5718 {
5719 struct md_rdev *rdev0, *rdev, *tmp;
5720 struct mddev *mddev;
5721 char b[BDEVNAME_SIZE];
5722
5723 printk(KERN_INFO "md: autorun ...\n");
5724 while (!list_empty(&pending_raid_disks)) {
5725 int unit;
5726 dev_t dev;
5727 LIST_HEAD(candidates);
5728 rdev0 = list_entry(pending_raid_disks.next,
5729 struct md_rdev, same_set);
5730
5731 printk(KERN_INFO "md: considering %s ...\n",
5732 bdevname(rdev0->bdev,b));
5733 INIT_LIST_HEAD(&candidates);
5734 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5735 if (super_90_load(rdev, rdev0, 0) >= 0) {
5736 printk(KERN_INFO "md: adding %s ...\n",
5737 bdevname(rdev->bdev,b));
5738 list_move(&rdev->same_set, &candidates);
5739 }
5740 /*
5741 * now we have a set of devices, with all of them having
5742 * mostly sane superblocks. It's time to allocate the
5743 * mddev.
5744 */
5745 if (part) {
5746 dev = MKDEV(mdp_major,
5747 rdev0->preferred_minor << MdpMinorShift);
5748 unit = MINOR(dev) >> MdpMinorShift;
5749 } else {
5750 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5751 unit = MINOR(dev);
5752 }
5753 if (rdev0->preferred_minor != unit) {
5754 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5755 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5756 break;
5757 }
5758
5759 md_probe(dev, NULL, NULL);
5760 mddev = mddev_find(dev);
5761 if (!mddev || !mddev->gendisk) {
5762 if (mddev)
5763 mddev_put(mddev);
5764 printk(KERN_ERR
5765 "md: cannot allocate memory for md drive.\n");
5766 break;
5767 }
5768 if (mddev_lock(mddev))
5769 printk(KERN_WARNING "md: %s locked, cannot run\n",
5770 mdname(mddev));
5771 else if (mddev->raid_disks || mddev->major_version
5772 || !list_empty(&mddev->disks)) {
5773 printk(KERN_WARNING
5774 "md: %s already running, cannot run %s\n",
5775 mdname(mddev), bdevname(rdev0->bdev,b));
5776 mddev_unlock(mddev);
5777 } else {
5778 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5779 mddev->persistent = 1;
5780 rdev_for_each_list(rdev, tmp, &candidates) {
5781 list_del_init(&rdev->same_set);
5782 if (bind_rdev_to_array(rdev, mddev))
5783 export_rdev(rdev);
5784 }
5785 autorun_array(mddev);
5786 mddev_unlock(mddev);
5787 }
5788 /* on success, candidates will be empty, on error
5789 * it won't...
5790 */
5791 rdev_for_each_list(rdev, tmp, &candidates) {
5792 list_del_init(&rdev->same_set);
5793 export_rdev(rdev);
5794 }
5795 mddev_put(mddev);
5796 }
5797 printk(KERN_INFO "md: ... autorun DONE.\n");
5798 }
5799 #endif /* !MODULE */
5800
5801 static int get_version(void __user *arg)
5802 {
5803 mdu_version_t ver;
5804
5805 ver.major = MD_MAJOR_VERSION;
5806 ver.minor = MD_MINOR_VERSION;
5807 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5808
5809 if (copy_to_user(arg, &ver, sizeof(ver)))
5810 return -EFAULT;
5811
5812 return 0;
5813 }
5814
5815 static int get_array_info(struct mddev *mddev, void __user *arg)
5816 {
5817 mdu_array_info_t info;
5818 int nr,working,insync,failed,spare;
5819 struct md_rdev *rdev;
5820
5821 nr = working = insync = failed = spare = 0;
5822 rcu_read_lock();
5823 rdev_for_each_rcu(rdev, mddev) {
5824 nr++;
5825 if (test_bit(Faulty, &rdev->flags))
5826 failed++;
5827 else {
5828 working++;
5829 if (test_bit(In_sync, &rdev->flags))
5830 insync++;
5831 else
5832 spare++;
5833 }
5834 }
5835 rcu_read_unlock();
5836
5837 info.major_version = mddev->major_version;
5838 info.minor_version = mddev->minor_version;
5839 info.patch_version = MD_PATCHLEVEL_VERSION;
5840 info.ctime = mddev->ctime;
5841 info.level = mddev->level;
5842 info.size = mddev->dev_sectors / 2;
5843 if (info.size != mddev->dev_sectors / 2) /* overflow */
5844 info.size = -1;
5845 info.nr_disks = nr;
5846 info.raid_disks = mddev->raid_disks;
5847 info.md_minor = mddev->md_minor;
5848 info.not_persistent= !mddev->persistent;
5849
5850 info.utime = mddev->utime;
5851 info.state = 0;
5852 if (mddev->in_sync)
5853 info.state = (1<<MD_SB_CLEAN);
5854 if (mddev->bitmap && mddev->bitmap_info.offset)
5855 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5856 if (mddev_is_clustered(mddev))
5857 info.state |= (1<<MD_SB_CLUSTERED);
5858 info.active_disks = insync;
5859 info.working_disks = working;
5860 info.failed_disks = failed;
5861 info.spare_disks = spare;
5862
5863 info.layout = mddev->layout;
5864 info.chunk_size = mddev->chunk_sectors << 9;
5865
5866 if (copy_to_user(arg, &info, sizeof(info)))
5867 return -EFAULT;
5868
5869 return 0;
5870 }
5871
5872 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5873 {
5874 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5875 char *ptr;
5876 int err;
5877
5878 file = kzalloc(sizeof(*file), GFP_NOIO);
5879 if (!file)
5880 return -ENOMEM;
5881
5882 err = 0;
5883 spin_lock(&mddev->lock);
5884 /* bitmap enabled */
5885 if (mddev->bitmap_info.file) {
5886 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5887 sizeof(file->pathname));
5888 if (IS_ERR(ptr))
5889 err = PTR_ERR(ptr);
5890 else
5891 memmove(file->pathname, ptr,
5892 sizeof(file->pathname)-(ptr-file->pathname));
5893 }
5894 spin_unlock(&mddev->lock);
5895
5896 if (err == 0 &&
5897 copy_to_user(arg, file, sizeof(*file)))
5898 err = -EFAULT;
5899
5900 kfree(file);
5901 return err;
5902 }
5903
5904 static int get_disk_info(struct mddev *mddev, void __user * arg)
5905 {
5906 mdu_disk_info_t info;
5907 struct md_rdev *rdev;
5908
5909 if (copy_from_user(&info, arg, sizeof(info)))
5910 return -EFAULT;
5911
5912 rcu_read_lock();
5913 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5914 if (rdev) {
5915 info.major = MAJOR(rdev->bdev->bd_dev);
5916 info.minor = MINOR(rdev->bdev->bd_dev);
5917 info.raid_disk = rdev->raid_disk;
5918 info.state = 0;
5919 if (test_bit(Faulty, &rdev->flags))
5920 info.state |= (1<<MD_DISK_FAULTY);
5921 else if (test_bit(In_sync, &rdev->flags)) {
5922 info.state |= (1<<MD_DISK_ACTIVE);
5923 info.state |= (1<<MD_DISK_SYNC);
5924 }
5925 if (test_bit(Journal, &rdev->flags))
5926 info.state |= (1<<MD_DISK_JOURNAL);
5927 if (test_bit(WriteMostly, &rdev->flags))
5928 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5929 } else {
5930 info.major = info.minor = 0;
5931 info.raid_disk = -1;
5932 info.state = (1<<MD_DISK_REMOVED);
5933 }
5934 rcu_read_unlock();
5935
5936 if (copy_to_user(arg, &info, sizeof(info)))
5937 return -EFAULT;
5938
5939 return 0;
5940 }
5941
5942 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5943 {
5944 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5945 struct md_rdev *rdev;
5946 dev_t dev = MKDEV(info->major,info->minor);
5947
5948 if (mddev_is_clustered(mddev) &&
5949 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5950 pr_err("%s: Cannot add to clustered mddev.\n",
5951 mdname(mddev));
5952 return -EINVAL;
5953 }
5954
5955 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5956 return -EOVERFLOW;
5957
5958 if (!mddev->raid_disks) {
5959 int err;
5960 /* expecting a device which has a superblock */
5961 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5962 if (IS_ERR(rdev)) {
5963 printk(KERN_WARNING
5964 "md: md_import_device returned %ld\n",
5965 PTR_ERR(rdev));
5966 return PTR_ERR(rdev);
5967 }
5968 if (!list_empty(&mddev->disks)) {
5969 struct md_rdev *rdev0
5970 = list_entry(mddev->disks.next,
5971 struct md_rdev, same_set);
5972 err = super_types[mddev->major_version]
5973 .load_super(rdev, rdev0, mddev->minor_version);
5974 if (err < 0) {
5975 printk(KERN_WARNING
5976 "md: %s has different UUID to %s\n",
5977 bdevname(rdev->bdev,b),
5978 bdevname(rdev0->bdev,b2));
5979 export_rdev(rdev);
5980 return -EINVAL;
5981 }
5982 }
5983 err = bind_rdev_to_array(rdev, mddev);
5984 if (err)
5985 export_rdev(rdev);
5986 return err;
5987 }
5988
5989 /*
5990 * add_new_disk can be used once the array is assembled
5991 * to add "hot spares". They must already have a superblock
5992 * written
5993 */
5994 if (mddev->pers) {
5995 int err;
5996 if (!mddev->pers->hot_add_disk) {
5997 printk(KERN_WARNING
5998 "%s: personality does not support diskops!\n",
5999 mdname(mddev));
6000 return -EINVAL;
6001 }
6002 if (mddev->persistent)
6003 rdev = md_import_device(dev, mddev->major_version,
6004 mddev->minor_version);
6005 else
6006 rdev = md_import_device(dev, -1, -1);
6007 if (IS_ERR(rdev)) {
6008 printk(KERN_WARNING
6009 "md: md_import_device returned %ld\n",
6010 PTR_ERR(rdev));
6011 return PTR_ERR(rdev);
6012 }
6013 /* set saved_raid_disk if appropriate */
6014 if (!mddev->persistent) {
6015 if (info->state & (1<<MD_DISK_SYNC) &&
6016 info->raid_disk < mddev->raid_disks) {
6017 rdev->raid_disk = info->raid_disk;
6018 set_bit(In_sync, &rdev->flags);
6019 clear_bit(Bitmap_sync, &rdev->flags);
6020 } else
6021 rdev->raid_disk = -1;
6022 rdev->saved_raid_disk = rdev->raid_disk;
6023 } else
6024 super_types[mddev->major_version].
6025 validate_super(mddev, rdev);
6026 if ((info->state & (1<<MD_DISK_SYNC)) &&
6027 rdev->raid_disk != info->raid_disk) {
6028 /* This was a hot-add request, but events doesn't
6029 * match, so reject it.
6030 */
6031 export_rdev(rdev);
6032 return -EINVAL;
6033 }
6034
6035 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6036 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6037 set_bit(WriteMostly, &rdev->flags);
6038 else
6039 clear_bit(WriteMostly, &rdev->flags);
6040
6041 if (info->state & (1<<MD_DISK_JOURNAL))
6042 set_bit(Journal, &rdev->flags);
6043 /*
6044 * check whether the device shows up in other nodes
6045 */
6046 if (mddev_is_clustered(mddev)) {
6047 if (info->state & (1 << MD_DISK_CANDIDATE))
6048 set_bit(Candidate, &rdev->flags);
6049 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6050 /* --add initiated by this node */
6051 err = md_cluster_ops->add_new_disk(mddev, rdev);
6052 if (err) {
6053 export_rdev(rdev);
6054 return err;
6055 }
6056 }
6057 }
6058
6059 rdev->raid_disk = -1;
6060 err = bind_rdev_to_array(rdev, mddev);
6061
6062 if (err)
6063 export_rdev(rdev);
6064
6065 if (mddev_is_clustered(mddev)) {
6066 if (info->state & (1 << MD_DISK_CANDIDATE))
6067 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6068 else {
6069 if (err)
6070 md_cluster_ops->add_new_disk_cancel(mddev);
6071 else
6072 err = add_bound_rdev(rdev);
6073 }
6074
6075 } else if (!err)
6076 err = add_bound_rdev(rdev);
6077
6078 return err;
6079 }
6080
6081 /* otherwise, add_new_disk is only allowed
6082 * for major_version==0 superblocks
6083 */
6084 if (mddev->major_version != 0) {
6085 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6086 mdname(mddev));
6087 return -EINVAL;
6088 }
6089
6090 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6091 int err;
6092 rdev = md_import_device(dev, -1, 0);
6093 if (IS_ERR(rdev)) {
6094 printk(KERN_WARNING
6095 "md: error, md_import_device() returned %ld\n",
6096 PTR_ERR(rdev));
6097 return PTR_ERR(rdev);
6098 }
6099 rdev->desc_nr = info->number;
6100 if (info->raid_disk < mddev->raid_disks)
6101 rdev->raid_disk = info->raid_disk;
6102 else
6103 rdev->raid_disk = -1;
6104
6105 if (rdev->raid_disk < mddev->raid_disks)
6106 if (info->state & (1<<MD_DISK_SYNC))
6107 set_bit(In_sync, &rdev->flags);
6108
6109 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6110 set_bit(WriteMostly, &rdev->flags);
6111
6112 if (!mddev->persistent) {
6113 printk(KERN_INFO "md: nonpersistent superblock ...\n");
6114 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6115 } else
6116 rdev->sb_start = calc_dev_sboffset(rdev);
6117 rdev->sectors = rdev->sb_start;
6118
6119 err = bind_rdev_to_array(rdev, mddev);
6120 if (err) {
6121 export_rdev(rdev);
6122 return err;
6123 }
6124 }
6125
6126 return 0;
6127 }
6128
6129 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6130 {
6131 char b[BDEVNAME_SIZE];
6132 struct md_rdev *rdev;
6133 int ret = -1;
6134
6135 rdev = find_rdev(mddev, dev);
6136 if (!rdev)
6137 return -ENXIO;
6138
6139 if (mddev_is_clustered(mddev))
6140 ret = md_cluster_ops->metadata_update_start(mddev);
6141
6142 if (rdev->raid_disk < 0)
6143 goto kick_rdev;
6144
6145 clear_bit(Blocked, &rdev->flags);
6146 remove_and_add_spares(mddev, rdev);
6147
6148 if (rdev->raid_disk >= 0)
6149 goto busy;
6150
6151 kick_rdev:
6152 if (mddev_is_clustered(mddev) && ret == 0)
6153 md_cluster_ops->remove_disk(mddev, rdev);
6154
6155 md_kick_rdev_from_array(rdev);
6156 md_update_sb(mddev, 1);
6157 md_new_event(mddev);
6158
6159 return 0;
6160 busy:
6161 if (mddev_is_clustered(mddev) && ret == 0)
6162 md_cluster_ops->metadata_update_cancel(mddev);
6163
6164 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6165 bdevname(rdev->bdev,b), mdname(mddev));
6166 return -EBUSY;
6167 }
6168
6169 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6170 {
6171 char b[BDEVNAME_SIZE];
6172 int err;
6173 struct md_rdev *rdev;
6174
6175 if (!mddev->pers)
6176 return -ENODEV;
6177
6178 if (mddev->major_version != 0) {
6179 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6180 " version-0 superblocks.\n",
6181 mdname(mddev));
6182 return -EINVAL;
6183 }
6184 if (!mddev->pers->hot_add_disk) {
6185 printk(KERN_WARNING
6186 "%s: personality does not support diskops!\n",
6187 mdname(mddev));
6188 return -EINVAL;
6189 }
6190
6191 rdev = md_import_device(dev, -1, 0);
6192 if (IS_ERR(rdev)) {
6193 printk(KERN_WARNING
6194 "md: error, md_import_device() returned %ld\n",
6195 PTR_ERR(rdev));
6196 return -EINVAL;
6197 }
6198
6199 if (mddev->persistent)
6200 rdev->sb_start = calc_dev_sboffset(rdev);
6201 else
6202 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6203
6204 rdev->sectors = rdev->sb_start;
6205
6206 if (test_bit(Faulty, &rdev->flags)) {
6207 printk(KERN_WARNING
6208 "md: can not hot-add faulty %s disk to %s!\n",
6209 bdevname(rdev->bdev,b), mdname(mddev));
6210 err = -EINVAL;
6211 goto abort_export;
6212 }
6213
6214 clear_bit(In_sync, &rdev->flags);
6215 rdev->desc_nr = -1;
6216 rdev->saved_raid_disk = -1;
6217 err = bind_rdev_to_array(rdev, mddev);
6218 if (err)
6219 goto abort_export;
6220
6221 /*
6222 * The rest should better be atomic, we can have disk failures
6223 * noticed in interrupt contexts ...
6224 */
6225
6226 rdev->raid_disk = -1;
6227
6228 md_update_sb(mddev, 1);
6229 /*
6230 * Kick recovery, maybe this spare has to be added to the
6231 * array immediately.
6232 */
6233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6234 md_wakeup_thread(mddev->thread);
6235 md_new_event(mddev);
6236 return 0;
6237
6238 abort_export:
6239 export_rdev(rdev);
6240 return err;
6241 }
6242
6243 static int set_bitmap_file(struct mddev *mddev, int fd)
6244 {
6245 int err = 0;
6246
6247 if (mddev->pers) {
6248 if (!mddev->pers->quiesce || !mddev->thread)
6249 return -EBUSY;
6250 if (mddev->recovery || mddev->sync_thread)
6251 return -EBUSY;
6252 /* we should be able to change the bitmap.. */
6253 }
6254
6255 if (fd >= 0) {
6256 struct inode *inode;
6257 struct file *f;
6258
6259 if (mddev->bitmap || mddev->bitmap_info.file)
6260 return -EEXIST; /* cannot add when bitmap is present */
6261 f = fget(fd);
6262
6263 if (f == NULL) {
6264 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6265 mdname(mddev));
6266 return -EBADF;
6267 }
6268
6269 inode = f->f_mapping->host;
6270 if (!S_ISREG(inode->i_mode)) {
6271 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6272 mdname(mddev));
6273 err = -EBADF;
6274 } else if (!(f->f_mode & FMODE_WRITE)) {
6275 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6276 mdname(mddev));
6277 err = -EBADF;
6278 } else if (atomic_read(&inode->i_writecount) != 1) {
6279 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6280 mdname(mddev));
6281 err = -EBUSY;
6282 }
6283 if (err) {
6284 fput(f);
6285 return err;
6286 }
6287 mddev->bitmap_info.file = f;
6288 mddev->bitmap_info.offset = 0; /* file overrides offset */
6289 } else if (mddev->bitmap == NULL)
6290 return -ENOENT; /* cannot remove what isn't there */
6291 err = 0;
6292 if (mddev->pers) {
6293 mddev->pers->quiesce(mddev, 1);
6294 if (fd >= 0) {
6295 struct bitmap *bitmap;
6296
6297 bitmap = bitmap_create(mddev, -1);
6298 if (!IS_ERR(bitmap)) {
6299 mddev->bitmap = bitmap;
6300 err = bitmap_load(mddev);
6301 } else
6302 err = PTR_ERR(bitmap);
6303 }
6304 if (fd < 0 || err) {
6305 bitmap_destroy(mddev);
6306 fd = -1; /* make sure to put the file */
6307 }
6308 mddev->pers->quiesce(mddev, 0);
6309 }
6310 if (fd < 0) {
6311 struct file *f = mddev->bitmap_info.file;
6312 if (f) {
6313 spin_lock(&mddev->lock);
6314 mddev->bitmap_info.file = NULL;
6315 spin_unlock(&mddev->lock);
6316 fput(f);
6317 }
6318 }
6319
6320 return err;
6321 }
6322
6323 /*
6324 * set_array_info is used two different ways
6325 * The original usage is when creating a new array.
6326 * In this usage, raid_disks is > 0 and it together with
6327 * level, size, not_persistent,layout,chunksize determine the
6328 * shape of the array.
6329 * This will always create an array with a type-0.90.0 superblock.
6330 * The newer usage is when assembling an array.
6331 * In this case raid_disks will be 0, and the major_version field is
6332 * use to determine which style super-blocks are to be found on the devices.
6333 * The minor and patch _version numbers are also kept incase the
6334 * super_block handler wishes to interpret them.
6335 */
6336 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6337 {
6338
6339 if (info->raid_disks == 0) {
6340 /* just setting version number for superblock loading */
6341 if (info->major_version < 0 ||
6342 info->major_version >= ARRAY_SIZE(super_types) ||
6343 super_types[info->major_version].name == NULL) {
6344 /* maybe try to auto-load a module? */
6345 printk(KERN_INFO
6346 "md: superblock version %d not known\n",
6347 info->major_version);
6348 return -EINVAL;
6349 }
6350 mddev->major_version = info->major_version;
6351 mddev->minor_version = info->minor_version;
6352 mddev->patch_version = info->patch_version;
6353 mddev->persistent = !info->not_persistent;
6354 /* ensure mddev_put doesn't delete this now that there
6355 * is some minimal configuration.
6356 */
6357 mddev->ctime = get_seconds();
6358 return 0;
6359 }
6360 mddev->major_version = MD_MAJOR_VERSION;
6361 mddev->minor_version = MD_MINOR_VERSION;
6362 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6363 mddev->ctime = get_seconds();
6364
6365 mddev->level = info->level;
6366 mddev->clevel[0] = 0;
6367 mddev->dev_sectors = 2 * (sector_t)info->size;
6368 mddev->raid_disks = info->raid_disks;
6369 /* don't set md_minor, it is determined by which /dev/md* was
6370 * openned
6371 */
6372 if (info->state & (1<<MD_SB_CLEAN))
6373 mddev->recovery_cp = MaxSector;
6374 else
6375 mddev->recovery_cp = 0;
6376 mddev->persistent = ! info->not_persistent;
6377 mddev->external = 0;
6378
6379 mddev->layout = info->layout;
6380 mddev->chunk_sectors = info->chunk_size >> 9;
6381
6382 mddev->max_disks = MD_SB_DISKS;
6383
6384 if (mddev->persistent)
6385 mddev->flags = 0;
6386 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6387
6388 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6389 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6390 mddev->bitmap_info.offset = 0;
6391
6392 mddev->reshape_position = MaxSector;
6393
6394 /*
6395 * Generate a 128 bit UUID
6396 */
6397 get_random_bytes(mddev->uuid, 16);
6398
6399 mddev->new_level = mddev->level;
6400 mddev->new_chunk_sectors = mddev->chunk_sectors;
6401 mddev->new_layout = mddev->layout;
6402 mddev->delta_disks = 0;
6403 mddev->reshape_backwards = 0;
6404
6405 return 0;
6406 }
6407
6408 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6409 {
6410 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6411
6412 if (mddev->external_size)
6413 return;
6414
6415 mddev->array_sectors = array_sectors;
6416 }
6417 EXPORT_SYMBOL(md_set_array_sectors);
6418
6419 static int update_size(struct mddev *mddev, sector_t num_sectors)
6420 {
6421 struct md_rdev *rdev;
6422 int rv;
6423 int fit = (num_sectors == 0);
6424
6425 if (mddev->pers->resize == NULL)
6426 return -EINVAL;
6427 /* The "num_sectors" is the number of sectors of each device that
6428 * is used. This can only make sense for arrays with redundancy.
6429 * linear and raid0 always use whatever space is available. We can only
6430 * consider changing this number if no resync or reconstruction is
6431 * happening, and if the new size is acceptable. It must fit before the
6432 * sb_start or, if that is <data_offset, it must fit before the size
6433 * of each device. If num_sectors is zero, we find the largest size
6434 * that fits.
6435 */
6436 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6437 mddev->sync_thread)
6438 return -EBUSY;
6439 if (mddev->ro)
6440 return -EROFS;
6441
6442 rdev_for_each(rdev, mddev) {
6443 sector_t avail = rdev->sectors;
6444
6445 if (fit && (num_sectors == 0 || num_sectors > avail))
6446 num_sectors = avail;
6447 if (avail < num_sectors)
6448 return -ENOSPC;
6449 }
6450 rv = mddev->pers->resize(mddev, num_sectors);
6451 if (!rv)
6452 revalidate_disk(mddev->gendisk);
6453 return rv;
6454 }
6455
6456 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6457 {
6458 int rv;
6459 struct md_rdev *rdev;
6460 /* change the number of raid disks */
6461 if (mddev->pers->check_reshape == NULL)
6462 return -EINVAL;
6463 if (mddev->ro)
6464 return -EROFS;
6465 if (raid_disks <= 0 ||
6466 (mddev->max_disks && raid_disks >= mddev->max_disks))
6467 return -EINVAL;
6468 if (mddev->sync_thread ||
6469 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6470 mddev->reshape_position != MaxSector)
6471 return -EBUSY;
6472
6473 rdev_for_each(rdev, mddev) {
6474 if (mddev->raid_disks < raid_disks &&
6475 rdev->data_offset < rdev->new_data_offset)
6476 return -EINVAL;
6477 if (mddev->raid_disks > raid_disks &&
6478 rdev->data_offset > rdev->new_data_offset)
6479 return -EINVAL;
6480 }
6481
6482 mddev->delta_disks = raid_disks - mddev->raid_disks;
6483 if (mddev->delta_disks < 0)
6484 mddev->reshape_backwards = 1;
6485 else if (mddev->delta_disks > 0)
6486 mddev->reshape_backwards = 0;
6487
6488 rv = mddev->pers->check_reshape(mddev);
6489 if (rv < 0) {
6490 mddev->delta_disks = 0;
6491 mddev->reshape_backwards = 0;
6492 }
6493 return rv;
6494 }
6495
6496 /*
6497 * update_array_info is used to change the configuration of an
6498 * on-line array.
6499 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6500 * fields in the info are checked against the array.
6501 * Any differences that cannot be handled will cause an error.
6502 * Normally, only one change can be managed at a time.
6503 */
6504 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6505 {
6506 int rv = 0;
6507 int cnt = 0;
6508 int state = 0;
6509
6510 /* calculate expected state,ignoring low bits */
6511 if (mddev->bitmap && mddev->bitmap_info.offset)
6512 state |= (1 << MD_SB_BITMAP_PRESENT);
6513
6514 if (mddev->major_version != info->major_version ||
6515 mddev->minor_version != info->minor_version ||
6516 /* mddev->patch_version != info->patch_version || */
6517 mddev->ctime != info->ctime ||
6518 mddev->level != info->level ||
6519 /* mddev->layout != info->layout || */
6520 mddev->persistent != !info->not_persistent ||
6521 mddev->chunk_sectors != info->chunk_size >> 9 ||
6522 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6523 ((state^info->state) & 0xfffffe00)
6524 )
6525 return -EINVAL;
6526 /* Check there is only one change */
6527 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6528 cnt++;
6529 if (mddev->raid_disks != info->raid_disks)
6530 cnt++;
6531 if (mddev->layout != info->layout)
6532 cnt++;
6533 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6534 cnt++;
6535 if (cnt == 0)
6536 return 0;
6537 if (cnt > 1)
6538 return -EINVAL;
6539
6540 if (mddev->layout != info->layout) {
6541 /* Change layout
6542 * we don't need to do anything at the md level, the
6543 * personality will take care of it all.
6544 */
6545 if (mddev->pers->check_reshape == NULL)
6546 return -EINVAL;
6547 else {
6548 mddev->new_layout = info->layout;
6549 rv = mddev->pers->check_reshape(mddev);
6550 if (rv)
6551 mddev->new_layout = mddev->layout;
6552 return rv;
6553 }
6554 }
6555 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6556 rv = update_size(mddev, (sector_t)info->size * 2);
6557
6558 if (mddev->raid_disks != info->raid_disks)
6559 rv = update_raid_disks(mddev, info->raid_disks);
6560
6561 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6562 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6563 rv = -EINVAL;
6564 goto err;
6565 }
6566 if (mddev->recovery || mddev->sync_thread) {
6567 rv = -EBUSY;
6568 goto err;
6569 }
6570 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6571 struct bitmap *bitmap;
6572 /* add the bitmap */
6573 if (mddev->bitmap) {
6574 rv = -EEXIST;
6575 goto err;
6576 }
6577 if (mddev->bitmap_info.default_offset == 0) {
6578 rv = -EINVAL;
6579 goto err;
6580 }
6581 mddev->bitmap_info.offset =
6582 mddev->bitmap_info.default_offset;
6583 mddev->bitmap_info.space =
6584 mddev->bitmap_info.default_space;
6585 mddev->pers->quiesce(mddev, 1);
6586 bitmap = bitmap_create(mddev, -1);
6587 if (!IS_ERR(bitmap)) {
6588 mddev->bitmap = bitmap;
6589 rv = bitmap_load(mddev);
6590 } else
6591 rv = PTR_ERR(bitmap);
6592 if (rv)
6593 bitmap_destroy(mddev);
6594 mddev->pers->quiesce(mddev, 0);
6595 } else {
6596 /* remove the bitmap */
6597 if (!mddev->bitmap) {
6598 rv = -ENOENT;
6599 goto err;
6600 }
6601 if (mddev->bitmap->storage.file) {
6602 rv = -EINVAL;
6603 goto err;
6604 }
6605 mddev->pers->quiesce(mddev, 1);
6606 bitmap_destroy(mddev);
6607 mddev->pers->quiesce(mddev, 0);
6608 mddev->bitmap_info.offset = 0;
6609 }
6610 }
6611 md_update_sb(mddev, 1);
6612 return rv;
6613 err:
6614 return rv;
6615 }
6616
6617 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6618 {
6619 struct md_rdev *rdev;
6620 int err = 0;
6621
6622 if (mddev->pers == NULL)
6623 return -ENODEV;
6624
6625 rcu_read_lock();
6626 rdev = find_rdev_rcu(mddev, dev);
6627 if (!rdev)
6628 err = -ENODEV;
6629 else {
6630 md_error(mddev, rdev);
6631 if (!test_bit(Faulty, &rdev->flags))
6632 err = -EBUSY;
6633 }
6634 rcu_read_unlock();
6635 return err;
6636 }
6637
6638 /*
6639 * We have a problem here : there is no easy way to give a CHS
6640 * virtual geometry. We currently pretend that we have a 2 heads
6641 * 4 sectors (with a BIG number of cylinders...). This drives
6642 * dosfs just mad... ;-)
6643 */
6644 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6645 {
6646 struct mddev *mddev = bdev->bd_disk->private_data;
6647
6648 geo->heads = 2;
6649 geo->sectors = 4;
6650 geo->cylinders = mddev->array_sectors / 8;
6651 return 0;
6652 }
6653
6654 static inline bool md_ioctl_valid(unsigned int cmd)
6655 {
6656 switch (cmd) {
6657 case ADD_NEW_DISK:
6658 case BLKROSET:
6659 case GET_ARRAY_INFO:
6660 case GET_BITMAP_FILE:
6661 case GET_DISK_INFO:
6662 case HOT_ADD_DISK:
6663 case HOT_REMOVE_DISK:
6664 case RAID_AUTORUN:
6665 case RAID_VERSION:
6666 case RESTART_ARRAY_RW:
6667 case RUN_ARRAY:
6668 case SET_ARRAY_INFO:
6669 case SET_BITMAP_FILE:
6670 case SET_DISK_FAULTY:
6671 case STOP_ARRAY:
6672 case STOP_ARRAY_RO:
6673 case CLUSTERED_DISK_NACK:
6674 return true;
6675 default:
6676 return false;
6677 }
6678 }
6679
6680 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6681 unsigned int cmd, unsigned long arg)
6682 {
6683 int err = 0;
6684 void __user *argp = (void __user *)arg;
6685 struct mddev *mddev = NULL;
6686 int ro;
6687
6688 if (!md_ioctl_valid(cmd))
6689 return -ENOTTY;
6690
6691 switch (cmd) {
6692 case RAID_VERSION:
6693 case GET_ARRAY_INFO:
6694 case GET_DISK_INFO:
6695 break;
6696 default:
6697 if (!capable(CAP_SYS_ADMIN))
6698 return -EACCES;
6699 }
6700
6701 /*
6702 * Commands dealing with the RAID driver but not any
6703 * particular array:
6704 */
6705 switch (cmd) {
6706 case RAID_VERSION:
6707 err = get_version(argp);
6708 goto out;
6709
6710 #ifndef MODULE
6711 case RAID_AUTORUN:
6712 err = 0;
6713 autostart_arrays(arg);
6714 goto out;
6715 #endif
6716 default:;
6717 }
6718
6719 /*
6720 * Commands creating/starting a new array:
6721 */
6722
6723 mddev = bdev->bd_disk->private_data;
6724
6725 if (!mddev) {
6726 BUG();
6727 goto out;
6728 }
6729
6730 /* Some actions do not requires the mutex */
6731 switch (cmd) {
6732 case GET_ARRAY_INFO:
6733 if (!mddev->raid_disks && !mddev->external)
6734 err = -ENODEV;
6735 else
6736 err = get_array_info(mddev, argp);
6737 goto out;
6738
6739 case GET_DISK_INFO:
6740 if (!mddev->raid_disks && !mddev->external)
6741 err = -ENODEV;
6742 else
6743 err = get_disk_info(mddev, argp);
6744 goto out;
6745
6746 case SET_DISK_FAULTY:
6747 err = set_disk_faulty(mddev, new_decode_dev(arg));
6748 goto out;
6749
6750 case GET_BITMAP_FILE:
6751 err = get_bitmap_file(mddev, argp);
6752 goto out;
6753
6754 }
6755
6756 if (cmd == ADD_NEW_DISK)
6757 /* need to ensure md_delayed_delete() has completed */
6758 flush_workqueue(md_misc_wq);
6759
6760 if (cmd == HOT_REMOVE_DISK)
6761 /* need to ensure recovery thread has run */
6762 wait_event_interruptible_timeout(mddev->sb_wait,
6763 !test_bit(MD_RECOVERY_NEEDED,
6764 &mddev->flags),
6765 msecs_to_jiffies(5000));
6766 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6767 /* Need to flush page cache, and ensure no-one else opens
6768 * and writes
6769 */
6770 mutex_lock(&mddev->open_mutex);
6771 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6772 mutex_unlock(&mddev->open_mutex);
6773 err = -EBUSY;
6774 goto out;
6775 }
6776 set_bit(MD_STILL_CLOSED, &mddev->flags);
6777 mutex_unlock(&mddev->open_mutex);
6778 sync_blockdev(bdev);
6779 }
6780 err = mddev_lock(mddev);
6781 if (err) {
6782 printk(KERN_INFO
6783 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6784 err, cmd);
6785 goto out;
6786 }
6787
6788 if (cmd == SET_ARRAY_INFO) {
6789 mdu_array_info_t info;
6790 if (!arg)
6791 memset(&info, 0, sizeof(info));
6792 else if (copy_from_user(&info, argp, sizeof(info))) {
6793 err = -EFAULT;
6794 goto unlock;
6795 }
6796 if (mddev->pers) {
6797 err = update_array_info(mddev, &info);
6798 if (err) {
6799 printk(KERN_WARNING "md: couldn't update"
6800 " array info. %d\n", err);
6801 goto unlock;
6802 }
6803 goto unlock;
6804 }
6805 if (!list_empty(&mddev->disks)) {
6806 printk(KERN_WARNING
6807 "md: array %s already has disks!\n",
6808 mdname(mddev));
6809 err = -EBUSY;
6810 goto unlock;
6811 }
6812 if (mddev->raid_disks) {
6813 printk(KERN_WARNING
6814 "md: array %s already initialised!\n",
6815 mdname(mddev));
6816 err = -EBUSY;
6817 goto unlock;
6818 }
6819 err = set_array_info(mddev, &info);
6820 if (err) {
6821 printk(KERN_WARNING "md: couldn't set"
6822 " array info. %d\n", err);
6823 goto unlock;
6824 }
6825 goto unlock;
6826 }
6827
6828 /*
6829 * Commands querying/configuring an existing array:
6830 */
6831 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6832 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6833 if ((!mddev->raid_disks && !mddev->external)
6834 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6835 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6836 && cmd != GET_BITMAP_FILE) {
6837 err = -ENODEV;
6838 goto unlock;
6839 }
6840
6841 /*
6842 * Commands even a read-only array can execute:
6843 */
6844 switch (cmd) {
6845 case RESTART_ARRAY_RW:
6846 err = restart_array(mddev);
6847 goto unlock;
6848
6849 case STOP_ARRAY:
6850 err = do_md_stop(mddev, 0, bdev);
6851 goto unlock;
6852
6853 case STOP_ARRAY_RO:
6854 err = md_set_readonly(mddev, bdev);
6855 goto unlock;
6856
6857 case HOT_REMOVE_DISK:
6858 err = hot_remove_disk(mddev, new_decode_dev(arg));
6859 goto unlock;
6860
6861 case ADD_NEW_DISK:
6862 /* We can support ADD_NEW_DISK on read-only arrays
6863 * on if we are re-adding a preexisting device.
6864 * So require mddev->pers and MD_DISK_SYNC.
6865 */
6866 if (mddev->pers) {
6867 mdu_disk_info_t info;
6868 if (copy_from_user(&info, argp, sizeof(info)))
6869 err = -EFAULT;
6870 else if (!(info.state & (1<<MD_DISK_SYNC)))
6871 /* Need to clear read-only for this */
6872 break;
6873 else
6874 err = add_new_disk(mddev, &info);
6875 goto unlock;
6876 }
6877 break;
6878
6879 case BLKROSET:
6880 if (get_user(ro, (int __user *)(arg))) {
6881 err = -EFAULT;
6882 goto unlock;
6883 }
6884 err = -EINVAL;
6885
6886 /* if the bdev is going readonly the value of mddev->ro
6887 * does not matter, no writes are coming
6888 */
6889 if (ro)
6890 goto unlock;
6891
6892 /* are we are already prepared for writes? */
6893 if (mddev->ro != 1)
6894 goto unlock;
6895
6896 /* transitioning to readauto need only happen for
6897 * arrays that call md_write_start
6898 */
6899 if (mddev->pers) {
6900 err = restart_array(mddev);
6901 if (err == 0) {
6902 mddev->ro = 2;
6903 set_disk_ro(mddev->gendisk, 0);
6904 }
6905 }
6906 goto unlock;
6907 }
6908
6909 /*
6910 * The remaining ioctls are changing the state of the
6911 * superblock, so we do not allow them on read-only arrays.
6912 */
6913 if (mddev->ro && mddev->pers) {
6914 if (mddev->ro == 2) {
6915 mddev->ro = 0;
6916 sysfs_notify_dirent_safe(mddev->sysfs_state);
6917 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6918 /* mddev_unlock will wake thread */
6919 /* If a device failed while we were read-only, we
6920 * need to make sure the metadata is updated now.
6921 */
6922 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6923 mddev_unlock(mddev);
6924 wait_event(mddev->sb_wait,
6925 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6926 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6927 mddev_lock_nointr(mddev);
6928 }
6929 } else {
6930 err = -EROFS;
6931 goto unlock;
6932 }
6933 }
6934
6935 switch (cmd) {
6936 case ADD_NEW_DISK:
6937 {
6938 mdu_disk_info_t info;
6939 if (copy_from_user(&info, argp, sizeof(info)))
6940 err = -EFAULT;
6941 else
6942 err = add_new_disk(mddev, &info);
6943 goto unlock;
6944 }
6945
6946 case CLUSTERED_DISK_NACK:
6947 if (mddev_is_clustered(mddev))
6948 md_cluster_ops->new_disk_ack(mddev, false);
6949 else
6950 err = -EINVAL;
6951 goto unlock;
6952
6953 case HOT_ADD_DISK:
6954 err = hot_add_disk(mddev, new_decode_dev(arg));
6955 goto unlock;
6956
6957 case RUN_ARRAY:
6958 err = do_md_run(mddev);
6959 goto unlock;
6960
6961 case SET_BITMAP_FILE:
6962 err = set_bitmap_file(mddev, (int)arg);
6963 goto unlock;
6964
6965 default:
6966 err = -EINVAL;
6967 goto unlock;
6968 }
6969
6970 unlock:
6971 if (mddev->hold_active == UNTIL_IOCTL &&
6972 err != -EINVAL)
6973 mddev->hold_active = 0;
6974 mddev_unlock(mddev);
6975 out:
6976 return err;
6977 }
6978 #ifdef CONFIG_COMPAT
6979 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6980 unsigned int cmd, unsigned long arg)
6981 {
6982 switch (cmd) {
6983 case HOT_REMOVE_DISK:
6984 case HOT_ADD_DISK:
6985 case SET_DISK_FAULTY:
6986 case SET_BITMAP_FILE:
6987 /* These take in integer arg, do not convert */
6988 break;
6989 default:
6990 arg = (unsigned long)compat_ptr(arg);
6991 break;
6992 }
6993
6994 return md_ioctl(bdev, mode, cmd, arg);
6995 }
6996 #endif /* CONFIG_COMPAT */
6997
6998 static int md_open(struct block_device *bdev, fmode_t mode)
6999 {
7000 /*
7001 * Succeed if we can lock the mddev, which confirms that
7002 * it isn't being stopped right now.
7003 */
7004 struct mddev *mddev = mddev_find(bdev->bd_dev);
7005 int err;
7006
7007 if (!mddev)
7008 return -ENODEV;
7009
7010 if (mddev->gendisk != bdev->bd_disk) {
7011 /* we are racing with mddev_put which is discarding this
7012 * bd_disk.
7013 */
7014 mddev_put(mddev);
7015 /* Wait until bdev->bd_disk is definitely gone */
7016 flush_workqueue(md_misc_wq);
7017 /* Then retry the open from the top */
7018 return -ERESTARTSYS;
7019 }
7020 BUG_ON(mddev != bdev->bd_disk->private_data);
7021
7022 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7023 goto out;
7024
7025 err = 0;
7026 atomic_inc(&mddev->openers);
7027 clear_bit(MD_STILL_CLOSED, &mddev->flags);
7028 mutex_unlock(&mddev->open_mutex);
7029
7030 check_disk_change(bdev);
7031 out:
7032 return err;
7033 }
7034
7035 static void md_release(struct gendisk *disk, fmode_t mode)
7036 {
7037 struct mddev *mddev = disk->private_data;
7038
7039 BUG_ON(!mddev);
7040 atomic_dec(&mddev->openers);
7041 mddev_put(mddev);
7042 }
7043
7044 static int md_media_changed(struct gendisk *disk)
7045 {
7046 struct mddev *mddev = disk->private_data;
7047
7048 return mddev->changed;
7049 }
7050
7051 static int md_revalidate(struct gendisk *disk)
7052 {
7053 struct mddev *mddev = disk->private_data;
7054
7055 mddev->changed = 0;
7056 return 0;
7057 }
7058 static const struct block_device_operations md_fops =
7059 {
7060 .owner = THIS_MODULE,
7061 .open = md_open,
7062 .release = md_release,
7063 .ioctl = md_ioctl,
7064 #ifdef CONFIG_COMPAT
7065 .compat_ioctl = md_compat_ioctl,
7066 #endif
7067 .getgeo = md_getgeo,
7068 .media_changed = md_media_changed,
7069 .revalidate_disk= md_revalidate,
7070 };
7071
7072 static int md_thread(void *arg)
7073 {
7074 struct md_thread *thread = arg;
7075
7076 /*
7077 * md_thread is a 'system-thread', it's priority should be very
7078 * high. We avoid resource deadlocks individually in each
7079 * raid personality. (RAID5 does preallocation) We also use RR and
7080 * the very same RT priority as kswapd, thus we will never get
7081 * into a priority inversion deadlock.
7082 *
7083 * we definitely have to have equal or higher priority than
7084 * bdflush, otherwise bdflush will deadlock if there are too
7085 * many dirty RAID5 blocks.
7086 */
7087
7088 allow_signal(SIGKILL);
7089 while (!kthread_should_stop()) {
7090
7091 /* We need to wait INTERRUPTIBLE so that
7092 * we don't add to the load-average.
7093 * That means we need to be sure no signals are
7094 * pending
7095 */
7096 if (signal_pending(current))
7097 flush_signals(current);
7098
7099 wait_event_interruptible_timeout
7100 (thread->wqueue,
7101 test_bit(THREAD_WAKEUP, &thread->flags)
7102 || kthread_should_stop(),
7103 thread->timeout);
7104
7105 clear_bit(THREAD_WAKEUP, &thread->flags);
7106 if (!kthread_should_stop())
7107 thread->run(thread);
7108 }
7109
7110 return 0;
7111 }
7112
7113 void md_wakeup_thread(struct md_thread *thread)
7114 {
7115 if (thread) {
7116 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7117 set_bit(THREAD_WAKEUP, &thread->flags);
7118 wake_up(&thread->wqueue);
7119 }
7120 }
7121 EXPORT_SYMBOL(md_wakeup_thread);
7122
7123 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7124 struct mddev *mddev, const char *name)
7125 {
7126 struct md_thread *thread;
7127
7128 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7129 if (!thread)
7130 return NULL;
7131
7132 init_waitqueue_head(&thread->wqueue);
7133
7134 thread->run = run;
7135 thread->mddev = mddev;
7136 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7137 thread->tsk = kthread_run(md_thread, thread,
7138 "%s_%s",
7139 mdname(thread->mddev),
7140 name);
7141 if (IS_ERR(thread->tsk)) {
7142 kfree(thread);
7143 return NULL;
7144 }
7145 return thread;
7146 }
7147 EXPORT_SYMBOL(md_register_thread);
7148
7149 void md_unregister_thread(struct md_thread **threadp)
7150 {
7151 struct md_thread *thread = *threadp;
7152 if (!thread)
7153 return;
7154 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7155 /* Locking ensures that mddev_unlock does not wake_up a
7156 * non-existent thread
7157 */
7158 spin_lock(&pers_lock);
7159 *threadp = NULL;
7160 spin_unlock(&pers_lock);
7161
7162 kthread_stop(thread->tsk);
7163 kfree(thread);
7164 }
7165 EXPORT_SYMBOL(md_unregister_thread);
7166
7167 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7168 {
7169 if (!rdev || test_bit(Faulty, &rdev->flags))
7170 return;
7171
7172 if (!mddev->pers || !mddev->pers->error_handler)
7173 return;
7174 mddev->pers->error_handler(mddev,rdev);
7175 if (mddev->degraded)
7176 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7177 sysfs_notify_dirent_safe(rdev->sysfs_state);
7178 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7179 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7180 md_wakeup_thread(mddev->thread);
7181 if (mddev->event_work.func)
7182 queue_work(md_misc_wq, &mddev->event_work);
7183 md_new_event_inintr(mddev);
7184 }
7185 EXPORT_SYMBOL(md_error);
7186
7187 /* seq_file implementation /proc/mdstat */
7188
7189 static void status_unused(struct seq_file *seq)
7190 {
7191 int i = 0;
7192 struct md_rdev *rdev;
7193
7194 seq_printf(seq, "unused devices: ");
7195
7196 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7197 char b[BDEVNAME_SIZE];
7198 i++;
7199 seq_printf(seq, "%s ",
7200 bdevname(rdev->bdev,b));
7201 }
7202 if (!i)
7203 seq_printf(seq, "<none>");
7204
7205 seq_printf(seq, "\n");
7206 }
7207
7208 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7209 {
7210 sector_t max_sectors, resync, res;
7211 unsigned long dt, db;
7212 sector_t rt;
7213 int scale;
7214 unsigned int per_milli;
7215
7216 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7217 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7218 max_sectors = mddev->resync_max_sectors;
7219 else
7220 max_sectors = mddev->dev_sectors;
7221
7222 resync = mddev->curr_resync;
7223 if (resync <= 3) {
7224 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7225 /* Still cleaning up */
7226 resync = max_sectors;
7227 } else
7228 resync -= atomic_read(&mddev->recovery_active);
7229
7230 if (resync == 0) {
7231 if (mddev->recovery_cp < MaxSector) {
7232 seq_printf(seq, "\tresync=PENDING");
7233 return 1;
7234 }
7235 return 0;
7236 }
7237 if (resync < 3) {
7238 seq_printf(seq, "\tresync=DELAYED");
7239 return 1;
7240 }
7241
7242 WARN_ON(max_sectors == 0);
7243 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7244 * in a sector_t, and (max_sectors>>scale) will fit in a
7245 * u32, as those are the requirements for sector_div.
7246 * Thus 'scale' must be at least 10
7247 */
7248 scale = 10;
7249 if (sizeof(sector_t) > sizeof(unsigned long)) {
7250 while ( max_sectors/2 > (1ULL<<(scale+32)))
7251 scale++;
7252 }
7253 res = (resync>>scale)*1000;
7254 sector_div(res, (u32)((max_sectors>>scale)+1));
7255
7256 per_milli = res;
7257 {
7258 int i, x = per_milli/50, y = 20-x;
7259 seq_printf(seq, "[");
7260 for (i = 0; i < x; i++)
7261 seq_printf(seq, "=");
7262 seq_printf(seq, ">");
7263 for (i = 0; i < y; i++)
7264 seq_printf(seq, ".");
7265 seq_printf(seq, "] ");
7266 }
7267 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7268 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7269 "reshape" :
7270 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7271 "check" :
7272 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7273 "resync" : "recovery"))),
7274 per_milli/10, per_milli % 10,
7275 (unsigned long long) resync/2,
7276 (unsigned long long) max_sectors/2);
7277
7278 /*
7279 * dt: time from mark until now
7280 * db: blocks written from mark until now
7281 * rt: remaining time
7282 *
7283 * rt is a sector_t, so could be 32bit or 64bit.
7284 * So we divide before multiply in case it is 32bit and close
7285 * to the limit.
7286 * We scale the divisor (db) by 32 to avoid losing precision
7287 * near the end of resync when the number of remaining sectors
7288 * is close to 'db'.
7289 * We then divide rt by 32 after multiplying by db to compensate.
7290 * The '+1' avoids division by zero if db is very small.
7291 */
7292 dt = ((jiffies - mddev->resync_mark) / HZ);
7293 if (!dt) dt++;
7294 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7295 - mddev->resync_mark_cnt;
7296
7297 rt = max_sectors - resync; /* number of remaining sectors */
7298 sector_div(rt, db/32+1);
7299 rt *= dt;
7300 rt >>= 5;
7301
7302 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7303 ((unsigned long)rt % 60)/6);
7304
7305 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7306 return 1;
7307 }
7308
7309 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7310 {
7311 struct list_head *tmp;
7312 loff_t l = *pos;
7313 struct mddev *mddev;
7314
7315 if (l >= 0x10000)
7316 return NULL;
7317 if (!l--)
7318 /* header */
7319 return (void*)1;
7320
7321 spin_lock(&all_mddevs_lock);
7322 list_for_each(tmp,&all_mddevs)
7323 if (!l--) {
7324 mddev = list_entry(tmp, struct mddev, all_mddevs);
7325 mddev_get(mddev);
7326 spin_unlock(&all_mddevs_lock);
7327 return mddev;
7328 }
7329 spin_unlock(&all_mddevs_lock);
7330 if (!l--)
7331 return (void*)2;/* tail */
7332 return NULL;
7333 }
7334
7335 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7336 {
7337 struct list_head *tmp;
7338 struct mddev *next_mddev, *mddev = v;
7339
7340 ++*pos;
7341 if (v == (void*)2)
7342 return NULL;
7343
7344 spin_lock(&all_mddevs_lock);
7345 if (v == (void*)1)
7346 tmp = all_mddevs.next;
7347 else
7348 tmp = mddev->all_mddevs.next;
7349 if (tmp != &all_mddevs)
7350 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7351 else {
7352 next_mddev = (void*)2;
7353 *pos = 0x10000;
7354 }
7355 spin_unlock(&all_mddevs_lock);
7356
7357 if (v != (void*)1)
7358 mddev_put(mddev);
7359 return next_mddev;
7360
7361 }
7362
7363 static void md_seq_stop(struct seq_file *seq, void *v)
7364 {
7365 struct mddev *mddev = v;
7366
7367 if (mddev && v != (void*)1 && v != (void*)2)
7368 mddev_put(mddev);
7369 }
7370
7371 static int md_seq_show(struct seq_file *seq, void *v)
7372 {
7373 struct mddev *mddev = v;
7374 sector_t sectors;
7375 struct md_rdev *rdev;
7376
7377 if (v == (void*)1) {
7378 struct md_personality *pers;
7379 seq_printf(seq, "Personalities : ");
7380 spin_lock(&pers_lock);
7381 list_for_each_entry(pers, &pers_list, list)
7382 seq_printf(seq, "[%s] ", pers->name);
7383
7384 spin_unlock(&pers_lock);
7385 seq_printf(seq, "\n");
7386 seq->poll_event = atomic_read(&md_event_count);
7387 return 0;
7388 }
7389 if (v == (void*)2) {
7390 status_unused(seq);
7391 return 0;
7392 }
7393
7394 spin_lock(&mddev->lock);
7395 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7396 seq_printf(seq, "%s : %sactive", mdname(mddev),
7397 mddev->pers ? "" : "in");
7398 if (mddev->pers) {
7399 if (mddev->ro==1)
7400 seq_printf(seq, " (read-only)");
7401 if (mddev->ro==2)
7402 seq_printf(seq, " (auto-read-only)");
7403 seq_printf(seq, " %s", mddev->pers->name);
7404 }
7405
7406 sectors = 0;
7407 rcu_read_lock();
7408 rdev_for_each_rcu(rdev, mddev) {
7409 char b[BDEVNAME_SIZE];
7410 seq_printf(seq, " %s[%d]",
7411 bdevname(rdev->bdev,b), rdev->desc_nr);
7412 if (test_bit(WriteMostly, &rdev->flags))
7413 seq_printf(seq, "(W)");
7414 if (test_bit(Journal, &rdev->flags))
7415 seq_printf(seq, "(J)");
7416 if (test_bit(Faulty, &rdev->flags)) {
7417 seq_printf(seq, "(F)");
7418 continue;
7419 }
7420 if (rdev->raid_disk < 0)
7421 seq_printf(seq, "(S)"); /* spare */
7422 if (test_bit(Replacement, &rdev->flags))
7423 seq_printf(seq, "(R)");
7424 sectors += rdev->sectors;
7425 }
7426 rcu_read_unlock();
7427
7428 if (!list_empty(&mddev->disks)) {
7429 if (mddev->pers)
7430 seq_printf(seq, "\n %llu blocks",
7431 (unsigned long long)
7432 mddev->array_sectors / 2);
7433 else
7434 seq_printf(seq, "\n %llu blocks",
7435 (unsigned long long)sectors / 2);
7436 }
7437 if (mddev->persistent) {
7438 if (mddev->major_version != 0 ||
7439 mddev->minor_version != 90) {
7440 seq_printf(seq," super %d.%d",
7441 mddev->major_version,
7442 mddev->minor_version);
7443 }
7444 } else if (mddev->external)
7445 seq_printf(seq, " super external:%s",
7446 mddev->metadata_type);
7447 else
7448 seq_printf(seq, " super non-persistent");
7449
7450 if (mddev->pers) {
7451 mddev->pers->status(seq, mddev);
7452 seq_printf(seq, "\n ");
7453 if (mddev->pers->sync_request) {
7454 if (status_resync(seq, mddev))
7455 seq_printf(seq, "\n ");
7456 }
7457 } else
7458 seq_printf(seq, "\n ");
7459
7460 bitmap_status(seq, mddev->bitmap);
7461
7462 seq_printf(seq, "\n");
7463 }
7464 spin_unlock(&mddev->lock);
7465
7466 return 0;
7467 }
7468
7469 static const struct seq_operations md_seq_ops = {
7470 .start = md_seq_start,
7471 .next = md_seq_next,
7472 .stop = md_seq_stop,
7473 .show = md_seq_show,
7474 };
7475
7476 static int md_seq_open(struct inode *inode, struct file *file)
7477 {
7478 struct seq_file *seq;
7479 int error;
7480
7481 error = seq_open(file, &md_seq_ops);
7482 if (error)
7483 return error;
7484
7485 seq = file->private_data;
7486 seq->poll_event = atomic_read(&md_event_count);
7487 return error;
7488 }
7489
7490 static int md_unloading;
7491 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7492 {
7493 struct seq_file *seq = filp->private_data;
7494 int mask;
7495
7496 if (md_unloading)
7497 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7498 poll_wait(filp, &md_event_waiters, wait);
7499
7500 /* always allow read */
7501 mask = POLLIN | POLLRDNORM;
7502
7503 if (seq->poll_event != atomic_read(&md_event_count))
7504 mask |= POLLERR | POLLPRI;
7505 return mask;
7506 }
7507
7508 static const struct file_operations md_seq_fops = {
7509 .owner = THIS_MODULE,
7510 .open = md_seq_open,
7511 .read = seq_read,
7512 .llseek = seq_lseek,
7513 .release = seq_release_private,
7514 .poll = mdstat_poll,
7515 };
7516
7517 int register_md_personality(struct md_personality *p)
7518 {
7519 printk(KERN_INFO "md: %s personality registered for level %d\n",
7520 p->name, p->level);
7521 spin_lock(&pers_lock);
7522 list_add_tail(&p->list, &pers_list);
7523 spin_unlock(&pers_lock);
7524 return 0;
7525 }
7526 EXPORT_SYMBOL(register_md_personality);
7527
7528 int unregister_md_personality(struct md_personality *p)
7529 {
7530 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7531 spin_lock(&pers_lock);
7532 list_del_init(&p->list);
7533 spin_unlock(&pers_lock);
7534 return 0;
7535 }
7536 EXPORT_SYMBOL(unregister_md_personality);
7537
7538 int register_md_cluster_operations(struct md_cluster_operations *ops,
7539 struct module *module)
7540 {
7541 int ret = 0;
7542 spin_lock(&pers_lock);
7543 if (md_cluster_ops != NULL)
7544 ret = -EALREADY;
7545 else {
7546 md_cluster_ops = ops;
7547 md_cluster_mod = module;
7548 }
7549 spin_unlock(&pers_lock);
7550 return ret;
7551 }
7552 EXPORT_SYMBOL(register_md_cluster_operations);
7553
7554 int unregister_md_cluster_operations(void)
7555 {
7556 spin_lock(&pers_lock);
7557 md_cluster_ops = NULL;
7558 spin_unlock(&pers_lock);
7559 return 0;
7560 }
7561 EXPORT_SYMBOL(unregister_md_cluster_operations);
7562
7563 int md_setup_cluster(struct mddev *mddev, int nodes)
7564 {
7565 int err;
7566
7567 err = request_module("md-cluster");
7568 if (err) {
7569 pr_err("md-cluster module not found.\n");
7570 return -ENOENT;
7571 }
7572
7573 spin_lock(&pers_lock);
7574 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7575 spin_unlock(&pers_lock);
7576 return -ENOENT;
7577 }
7578 spin_unlock(&pers_lock);
7579
7580 return md_cluster_ops->join(mddev, nodes);
7581 }
7582
7583 void md_cluster_stop(struct mddev *mddev)
7584 {
7585 if (!md_cluster_ops)
7586 return;
7587 md_cluster_ops->leave(mddev);
7588 module_put(md_cluster_mod);
7589 }
7590
7591 static int is_mddev_idle(struct mddev *mddev, int init)
7592 {
7593 struct md_rdev *rdev;
7594 int idle;
7595 int curr_events;
7596
7597 idle = 1;
7598 rcu_read_lock();
7599 rdev_for_each_rcu(rdev, mddev) {
7600 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7601 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7602 (int)part_stat_read(&disk->part0, sectors[1]) -
7603 atomic_read(&disk->sync_io);
7604 /* sync IO will cause sync_io to increase before the disk_stats
7605 * as sync_io is counted when a request starts, and
7606 * disk_stats is counted when it completes.
7607 * So resync activity will cause curr_events to be smaller than
7608 * when there was no such activity.
7609 * non-sync IO will cause disk_stat to increase without
7610 * increasing sync_io so curr_events will (eventually)
7611 * be larger than it was before. Once it becomes
7612 * substantially larger, the test below will cause
7613 * the array to appear non-idle, and resync will slow
7614 * down.
7615 * If there is a lot of outstanding resync activity when
7616 * we set last_event to curr_events, then all that activity
7617 * completing might cause the array to appear non-idle
7618 * and resync will be slowed down even though there might
7619 * not have been non-resync activity. This will only
7620 * happen once though. 'last_events' will soon reflect
7621 * the state where there is little or no outstanding
7622 * resync requests, and further resync activity will
7623 * always make curr_events less than last_events.
7624 *
7625 */
7626 if (init || curr_events - rdev->last_events > 64) {
7627 rdev->last_events = curr_events;
7628 idle = 0;
7629 }
7630 }
7631 rcu_read_unlock();
7632 return idle;
7633 }
7634
7635 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7636 {
7637 /* another "blocks" (512byte) blocks have been synced */
7638 atomic_sub(blocks, &mddev->recovery_active);
7639 wake_up(&mddev->recovery_wait);
7640 if (!ok) {
7641 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7642 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7643 md_wakeup_thread(mddev->thread);
7644 // stop recovery, signal do_sync ....
7645 }
7646 }
7647 EXPORT_SYMBOL(md_done_sync);
7648
7649 /* md_write_start(mddev, bi)
7650 * If we need to update some array metadata (e.g. 'active' flag
7651 * in superblock) before writing, schedule a superblock update
7652 * and wait for it to complete.
7653 */
7654 void md_write_start(struct mddev *mddev, struct bio *bi)
7655 {
7656 int did_change = 0;
7657 if (bio_data_dir(bi) != WRITE)
7658 return;
7659
7660 BUG_ON(mddev->ro == 1);
7661 if (mddev->ro == 2) {
7662 /* need to switch to read/write */
7663 mddev->ro = 0;
7664 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7665 md_wakeup_thread(mddev->thread);
7666 md_wakeup_thread(mddev->sync_thread);
7667 did_change = 1;
7668 }
7669 atomic_inc(&mddev->writes_pending);
7670 if (mddev->safemode == 1)
7671 mddev->safemode = 0;
7672 if (mddev->in_sync) {
7673 spin_lock(&mddev->lock);
7674 if (mddev->in_sync) {
7675 mddev->in_sync = 0;
7676 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7677 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7678 md_wakeup_thread(mddev->thread);
7679 did_change = 1;
7680 }
7681 spin_unlock(&mddev->lock);
7682 }
7683 if (did_change)
7684 sysfs_notify_dirent_safe(mddev->sysfs_state);
7685 wait_event(mddev->sb_wait,
7686 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7687 }
7688 EXPORT_SYMBOL(md_write_start);
7689
7690 void md_write_end(struct mddev *mddev)
7691 {
7692 if (atomic_dec_and_test(&mddev->writes_pending)) {
7693 if (mddev->safemode == 2)
7694 md_wakeup_thread(mddev->thread);
7695 else if (mddev->safemode_delay)
7696 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7697 }
7698 }
7699 EXPORT_SYMBOL(md_write_end);
7700
7701 /* md_allow_write(mddev)
7702 * Calling this ensures that the array is marked 'active' so that writes
7703 * may proceed without blocking. It is important to call this before
7704 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7705 * Must be called with mddev_lock held.
7706 *
7707 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7708 * is dropped, so return -EAGAIN after notifying userspace.
7709 */
7710 int md_allow_write(struct mddev *mddev)
7711 {
7712 if (!mddev->pers)
7713 return 0;
7714 if (mddev->ro)
7715 return 0;
7716 if (!mddev->pers->sync_request)
7717 return 0;
7718
7719 spin_lock(&mddev->lock);
7720 if (mddev->in_sync) {
7721 mddev->in_sync = 0;
7722 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7723 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7724 if (mddev->safemode_delay &&
7725 mddev->safemode == 0)
7726 mddev->safemode = 1;
7727 spin_unlock(&mddev->lock);
7728 md_update_sb(mddev, 0);
7729 sysfs_notify_dirent_safe(mddev->sysfs_state);
7730 } else
7731 spin_unlock(&mddev->lock);
7732
7733 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7734 return -EAGAIN;
7735 else
7736 return 0;
7737 }
7738 EXPORT_SYMBOL_GPL(md_allow_write);
7739
7740 #define SYNC_MARKS 10
7741 #define SYNC_MARK_STEP (3*HZ)
7742 #define UPDATE_FREQUENCY (5*60*HZ)
7743 void md_do_sync(struct md_thread *thread)
7744 {
7745 struct mddev *mddev = thread->mddev;
7746 struct mddev *mddev2;
7747 unsigned int currspeed = 0,
7748 window;
7749 sector_t max_sectors,j, io_sectors, recovery_done;
7750 unsigned long mark[SYNC_MARKS];
7751 unsigned long update_time;
7752 sector_t mark_cnt[SYNC_MARKS];
7753 int last_mark,m;
7754 struct list_head *tmp;
7755 sector_t last_check;
7756 int skipped = 0;
7757 struct md_rdev *rdev;
7758 char *desc, *action = NULL;
7759 struct blk_plug plug;
7760 bool cluster_resync_finished = false;
7761
7762 /* just incase thread restarts... */
7763 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7764 return;
7765 if (mddev->ro) {/* never try to sync a read-only array */
7766 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7767 return;
7768 }
7769
7770 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7771 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7772 desc = "data-check";
7773 action = "check";
7774 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7775 desc = "requested-resync";
7776 action = "repair";
7777 } else
7778 desc = "resync";
7779 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7780 desc = "reshape";
7781 else
7782 desc = "recovery";
7783
7784 mddev->last_sync_action = action ?: desc;
7785
7786 /* we overload curr_resync somewhat here.
7787 * 0 == not engaged in resync at all
7788 * 2 == checking that there is no conflict with another sync
7789 * 1 == like 2, but have yielded to allow conflicting resync to
7790 * commense
7791 * other == active in resync - this many blocks
7792 *
7793 * Before starting a resync we must have set curr_resync to
7794 * 2, and then checked that every "conflicting" array has curr_resync
7795 * less than ours. When we find one that is the same or higher
7796 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7797 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7798 * This will mean we have to start checking from the beginning again.
7799 *
7800 */
7801
7802 do {
7803 mddev->curr_resync = 2;
7804
7805 try_again:
7806 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7807 goto skip;
7808 for_each_mddev(mddev2, tmp) {
7809 if (mddev2 == mddev)
7810 continue;
7811 if (!mddev->parallel_resync
7812 && mddev2->curr_resync
7813 && match_mddev_units(mddev, mddev2)) {
7814 DEFINE_WAIT(wq);
7815 if (mddev < mddev2 && mddev->curr_resync == 2) {
7816 /* arbitrarily yield */
7817 mddev->curr_resync = 1;
7818 wake_up(&resync_wait);
7819 }
7820 if (mddev > mddev2 && mddev->curr_resync == 1)
7821 /* no need to wait here, we can wait the next
7822 * time 'round when curr_resync == 2
7823 */
7824 continue;
7825 /* We need to wait 'interruptible' so as not to
7826 * contribute to the load average, and not to
7827 * be caught by 'softlockup'
7828 */
7829 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7830 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7831 mddev2->curr_resync >= mddev->curr_resync) {
7832 printk(KERN_INFO "md: delaying %s of %s"
7833 " until %s has finished (they"
7834 " share one or more physical units)\n",
7835 desc, mdname(mddev), mdname(mddev2));
7836 mddev_put(mddev2);
7837 if (signal_pending(current))
7838 flush_signals(current);
7839 schedule();
7840 finish_wait(&resync_wait, &wq);
7841 goto try_again;
7842 }
7843 finish_wait(&resync_wait, &wq);
7844 }
7845 }
7846 } while (mddev->curr_resync < 2);
7847
7848 j = 0;
7849 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7850 /* resync follows the size requested by the personality,
7851 * which defaults to physical size, but can be virtual size
7852 */
7853 max_sectors = mddev->resync_max_sectors;
7854 atomic64_set(&mddev->resync_mismatches, 0);
7855 /* we don't use the checkpoint if there's a bitmap */
7856 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7857 j = mddev->resync_min;
7858 else if (!mddev->bitmap)
7859 j = mddev->recovery_cp;
7860
7861 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7862 max_sectors = mddev->resync_max_sectors;
7863 else {
7864 /* recovery follows the physical size of devices */
7865 max_sectors = mddev->dev_sectors;
7866 j = MaxSector;
7867 rcu_read_lock();
7868 rdev_for_each_rcu(rdev, mddev)
7869 if (rdev->raid_disk >= 0 &&
7870 !test_bit(Journal, &rdev->flags) &&
7871 !test_bit(Faulty, &rdev->flags) &&
7872 !test_bit(In_sync, &rdev->flags) &&
7873 rdev->recovery_offset < j)
7874 j = rdev->recovery_offset;
7875 rcu_read_unlock();
7876
7877 /* If there is a bitmap, we need to make sure all
7878 * writes that started before we added a spare
7879 * complete before we start doing a recovery.
7880 * Otherwise the write might complete and (via
7881 * bitmap_endwrite) set a bit in the bitmap after the
7882 * recovery has checked that bit and skipped that
7883 * region.
7884 */
7885 if (mddev->bitmap) {
7886 mddev->pers->quiesce(mddev, 1);
7887 mddev->pers->quiesce(mddev, 0);
7888 }
7889 }
7890
7891 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7892 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7893 " %d KB/sec/disk.\n", speed_min(mddev));
7894 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7895 "(but not more than %d KB/sec) for %s.\n",
7896 speed_max(mddev), desc);
7897
7898 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7899
7900 io_sectors = 0;
7901 for (m = 0; m < SYNC_MARKS; m++) {
7902 mark[m] = jiffies;
7903 mark_cnt[m] = io_sectors;
7904 }
7905 last_mark = 0;
7906 mddev->resync_mark = mark[last_mark];
7907 mddev->resync_mark_cnt = mark_cnt[last_mark];
7908
7909 /*
7910 * Tune reconstruction:
7911 */
7912 window = 32*(PAGE_SIZE/512);
7913 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7914 window/2, (unsigned long long)max_sectors/2);
7915
7916 atomic_set(&mddev->recovery_active, 0);
7917 last_check = 0;
7918
7919 if (j>2) {
7920 printk(KERN_INFO
7921 "md: resuming %s of %s from checkpoint.\n",
7922 desc, mdname(mddev));
7923 mddev->curr_resync = j;
7924 } else
7925 mddev->curr_resync = 3; /* no longer delayed */
7926 mddev->curr_resync_completed = j;
7927 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7928 md_new_event(mddev);
7929 update_time = jiffies;
7930
7931 blk_start_plug(&plug);
7932 while (j < max_sectors) {
7933 sector_t sectors;
7934
7935 skipped = 0;
7936
7937 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7938 ((mddev->curr_resync > mddev->curr_resync_completed &&
7939 (mddev->curr_resync - mddev->curr_resync_completed)
7940 > (max_sectors >> 4)) ||
7941 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7942 (j - mddev->curr_resync_completed)*2
7943 >= mddev->resync_max - mddev->curr_resync_completed ||
7944 mddev->curr_resync_completed > mddev->resync_max
7945 )) {
7946 /* time to update curr_resync_completed */
7947 wait_event(mddev->recovery_wait,
7948 atomic_read(&mddev->recovery_active) == 0);
7949 mddev->curr_resync_completed = j;
7950 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7951 j > mddev->recovery_cp)
7952 mddev->recovery_cp = j;
7953 update_time = jiffies;
7954 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7955 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7956 }
7957
7958 while (j >= mddev->resync_max &&
7959 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7960 /* As this condition is controlled by user-space,
7961 * we can block indefinitely, so use '_interruptible'
7962 * to avoid triggering warnings.
7963 */
7964 flush_signals(current); /* just in case */
7965 wait_event_interruptible(mddev->recovery_wait,
7966 mddev->resync_max > j
7967 || test_bit(MD_RECOVERY_INTR,
7968 &mddev->recovery));
7969 }
7970
7971 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7972 break;
7973
7974 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7975 if (sectors == 0) {
7976 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7977 break;
7978 }
7979
7980 if (!skipped) { /* actual IO requested */
7981 io_sectors += sectors;
7982 atomic_add(sectors, &mddev->recovery_active);
7983 }
7984
7985 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7986 break;
7987
7988 j += sectors;
7989 if (j > max_sectors)
7990 /* when skipping, extra large numbers can be returned. */
7991 j = max_sectors;
7992 if (j > 2)
7993 mddev->curr_resync = j;
7994 mddev->curr_mark_cnt = io_sectors;
7995 if (last_check == 0)
7996 /* this is the earliest that rebuild will be
7997 * visible in /proc/mdstat
7998 */
7999 md_new_event(mddev);
8000
8001 if (last_check + window > io_sectors || j == max_sectors)
8002 continue;
8003
8004 last_check = io_sectors;
8005 repeat:
8006 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8007 /* step marks */
8008 int next = (last_mark+1) % SYNC_MARKS;
8009
8010 mddev->resync_mark = mark[next];
8011 mddev->resync_mark_cnt = mark_cnt[next];
8012 mark[next] = jiffies;
8013 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8014 last_mark = next;
8015 }
8016
8017 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8018 break;
8019
8020 /*
8021 * this loop exits only if either when we are slower than
8022 * the 'hard' speed limit, or the system was IO-idle for
8023 * a jiffy.
8024 * the system might be non-idle CPU-wise, but we only care
8025 * about not overloading the IO subsystem. (things like an
8026 * e2fsck being done on the RAID array should execute fast)
8027 */
8028 cond_resched();
8029
8030 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8031 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8032 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8033
8034 if (currspeed > speed_min(mddev)) {
8035 if (currspeed > speed_max(mddev)) {
8036 msleep(500);
8037 goto repeat;
8038 }
8039 if (!is_mddev_idle(mddev, 0)) {
8040 /*
8041 * Give other IO more of a chance.
8042 * The faster the devices, the less we wait.
8043 */
8044 wait_event(mddev->recovery_wait,
8045 !atomic_read(&mddev->recovery_active));
8046 }
8047 }
8048 }
8049 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8050 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8051 ? "interrupted" : "done");
8052 /*
8053 * this also signals 'finished resyncing' to md_stop
8054 */
8055 blk_finish_plug(&plug);
8056 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8057
8058 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8059 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8060 mddev->curr_resync > 2) {
8061 mddev->curr_resync_completed = mddev->curr_resync;
8062 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8063 }
8064 /* tell personality and other nodes that we are finished */
8065 if (mddev_is_clustered(mddev)) {
8066 md_cluster_ops->resync_finish(mddev);
8067 cluster_resync_finished = true;
8068 }
8069 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8070
8071 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8072 mddev->curr_resync > 2) {
8073 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8074 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8075 if (mddev->curr_resync >= mddev->recovery_cp) {
8076 printk(KERN_INFO
8077 "md: checkpointing %s of %s.\n",
8078 desc, mdname(mddev));
8079 if (test_bit(MD_RECOVERY_ERROR,
8080 &mddev->recovery))
8081 mddev->recovery_cp =
8082 mddev->curr_resync_completed;
8083 else
8084 mddev->recovery_cp =
8085 mddev->curr_resync;
8086 }
8087 } else
8088 mddev->recovery_cp = MaxSector;
8089 } else {
8090 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8091 mddev->curr_resync = MaxSector;
8092 rcu_read_lock();
8093 rdev_for_each_rcu(rdev, mddev)
8094 if (rdev->raid_disk >= 0 &&
8095 mddev->delta_disks >= 0 &&
8096 !test_bit(Journal, &rdev->flags) &&
8097 !test_bit(Faulty, &rdev->flags) &&
8098 !test_bit(In_sync, &rdev->flags) &&
8099 rdev->recovery_offset < mddev->curr_resync)
8100 rdev->recovery_offset = mddev->curr_resync;
8101 rcu_read_unlock();
8102 }
8103 }
8104 skip:
8105 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8106
8107 if (mddev_is_clustered(mddev) &&
8108 test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8109 !cluster_resync_finished)
8110 md_cluster_ops->resync_finish(mddev);
8111
8112 spin_lock(&mddev->lock);
8113 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8114 /* We completed so min/max setting can be forgotten if used. */
8115 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8116 mddev->resync_min = 0;
8117 mddev->resync_max = MaxSector;
8118 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8119 mddev->resync_min = mddev->curr_resync_completed;
8120 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8121 mddev->curr_resync = 0;
8122 spin_unlock(&mddev->lock);
8123
8124 wake_up(&resync_wait);
8125 md_wakeup_thread(mddev->thread);
8126 return;
8127 }
8128 EXPORT_SYMBOL_GPL(md_do_sync);
8129
8130 static int remove_and_add_spares(struct mddev *mddev,
8131 struct md_rdev *this)
8132 {
8133 struct md_rdev *rdev;
8134 int spares = 0;
8135 int removed = 0;
8136
8137 rdev_for_each(rdev, mddev)
8138 if ((this == NULL || rdev == this) &&
8139 rdev->raid_disk >= 0 &&
8140 !test_bit(Blocked, &rdev->flags) &&
8141 (test_bit(Faulty, &rdev->flags) ||
8142 (!test_bit(In_sync, &rdev->flags) &&
8143 !test_bit(Journal, &rdev->flags))) &&
8144 atomic_read(&rdev->nr_pending)==0) {
8145 if (mddev->pers->hot_remove_disk(
8146 mddev, rdev) == 0) {
8147 sysfs_unlink_rdev(mddev, rdev);
8148 rdev->raid_disk = -1;
8149 removed++;
8150 }
8151 }
8152 if (removed && mddev->kobj.sd)
8153 sysfs_notify(&mddev->kobj, NULL, "degraded");
8154
8155 if (this && removed)
8156 goto no_add;
8157
8158 rdev_for_each(rdev, mddev) {
8159 if (this && this != rdev)
8160 continue;
8161 if (test_bit(Candidate, &rdev->flags))
8162 continue;
8163 if (rdev->raid_disk >= 0 &&
8164 !test_bit(In_sync, &rdev->flags) &&
8165 !test_bit(Journal, &rdev->flags) &&
8166 !test_bit(Faulty, &rdev->flags))
8167 spares++;
8168 if (rdev->raid_disk >= 0)
8169 continue;
8170 if (test_bit(Faulty, &rdev->flags))
8171 continue;
8172 if (test_bit(Journal, &rdev->flags))
8173 continue;
8174 if (mddev->ro &&
8175 ! (rdev->saved_raid_disk >= 0 &&
8176 !test_bit(Bitmap_sync, &rdev->flags)))
8177 continue;
8178
8179 rdev->recovery_offset = 0;
8180 if (mddev->pers->
8181 hot_add_disk(mddev, rdev) == 0) {
8182 if (sysfs_link_rdev(mddev, rdev))
8183 /* failure here is OK */;
8184 spares++;
8185 md_new_event(mddev);
8186 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8187 }
8188 }
8189 no_add:
8190 if (removed)
8191 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8192 return spares;
8193 }
8194
8195 static void md_start_sync(struct work_struct *ws)
8196 {
8197 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8198 int ret = 0;
8199
8200 if (mddev_is_clustered(mddev)) {
8201 ret = md_cluster_ops->resync_start(mddev);
8202 if (ret) {
8203 mddev->sync_thread = NULL;
8204 goto out;
8205 }
8206 }
8207
8208 mddev->sync_thread = md_register_thread(md_do_sync,
8209 mddev,
8210 "resync");
8211 out:
8212 if (!mddev->sync_thread) {
8213 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8214 printk(KERN_ERR "%s: could not start resync"
8215 " thread...\n",
8216 mdname(mddev));
8217 /* leave the spares where they are, it shouldn't hurt */
8218 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8219 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8220 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8221 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8222 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8223 wake_up(&resync_wait);
8224 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8225 &mddev->recovery))
8226 if (mddev->sysfs_action)
8227 sysfs_notify_dirent_safe(mddev->sysfs_action);
8228 } else
8229 md_wakeup_thread(mddev->sync_thread);
8230 sysfs_notify_dirent_safe(mddev->sysfs_action);
8231 md_new_event(mddev);
8232 }
8233
8234 /*
8235 * This routine is regularly called by all per-raid-array threads to
8236 * deal with generic issues like resync and super-block update.
8237 * Raid personalities that don't have a thread (linear/raid0) do not
8238 * need this as they never do any recovery or update the superblock.
8239 *
8240 * It does not do any resync itself, but rather "forks" off other threads
8241 * to do that as needed.
8242 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8243 * "->recovery" and create a thread at ->sync_thread.
8244 * When the thread finishes it sets MD_RECOVERY_DONE
8245 * and wakeups up this thread which will reap the thread and finish up.
8246 * This thread also removes any faulty devices (with nr_pending == 0).
8247 *
8248 * The overall approach is:
8249 * 1/ if the superblock needs updating, update it.
8250 * 2/ If a recovery thread is running, don't do anything else.
8251 * 3/ If recovery has finished, clean up, possibly marking spares active.
8252 * 4/ If there are any faulty devices, remove them.
8253 * 5/ If array is degraded, try to add spares devices
8254 * 6/ If array has spares or is not in-sync, start a resync thread.
8255 */
8256 void md_check_recovery(struct mddev *mddev)
8257 {
8258 if (mddev->suspended)
8259 return;
8260
8261 if (mddev->bitmap)
8262 bitmap_daemon_work(mddev);
8263
8264 if (signal_pending(current)) {
8265 if (mddev->pers->sync_request && !mddev->external) {
8266 printk(KERN_INFO "md: %s in immediate safe mode\n",
8267 mdname(mddev));
8268 mddev->safemode = 2;
8269 }
8270 flush_signals(current);
8271 }
8272
8273 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8274 return;
8275 if ( ! (
8276 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8277 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8278 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8279 (mddev->external == 0 && mddev->safemode == 1) ||
8280 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8281 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8282 ))
8283 return;
8284
8285 if (mddev_trylock(mddev)) {
8286 int spares = 0;
8287
8288 if (mddev->ro) {
8289 struct md_rdev *rdev;
8290 if (!mddev->external && mddev->in_sync)
8291 /* 'Blocked' flag not needed as failed devices
8292 * will be recorded if array switched to read/write.
8293 * Leaving it set will prevent the device
8294 * from being removed.
8295 */
8296 rdev_for_each(rdev, mddev)
8297 clear_bit(Blocked, &rdev->flags);
8298 /* On a read-only array we can:
8299 * - remove failed devices
8300 * - add already-in_sync devices if the array itself
8301 * is in-sync.
8302 * As we only add devices that are already in-sync,
8303 * we can activate the spares immediately.
8304 */
8305 remove_and_add_spares(mddev, NULL);
8306 /* There is no thread, but we need to call
8307 * ->spare_active and clear saved_raid_disk
8308 */
8309 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8310 md_reap_sync_thread(mddev);
8311 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8312 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8313 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8314 goto unlock;
8315 }
8316
8317 if (!mddev->external) {
8318 int did_change = 0;
8319 spin_lock(&mddev->lock);
8320 if (mddev->safemode &&
8321 !atomic_read(&mddev->writes_pending) &&
8322 !mddev->in_sync &&
8323 mddev->recovery_cp == MaxSector) {
8324 mddev->in_sync = 1;
8325 did_change = 1;
8326 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8327 }
8328 if (mddev->safemode == 1)
8329 mddev->safemode = 0;
8330 spin_unlock(&mddev->lock);
8331 if (did_change)
8332 sysfs_notify_dirent_safe(mddev->sysfs_state);
8333 }
8334
8335 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8336 md_update_sb(mddev, 0);
8337
8338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8339 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8340 /* resync/recovery still happening */
8341 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8342 goto unlock;
8343 }
8344 if (mddev->sync_thread) {
8345 md_reap_sync_thread(mddev);
8346 goto unlock;
8347 }
8348 /* Set RUNNING before clearing NEEDED to avoid
8349 * any transients in the value of "sync_action".
8350 */
8351 mddev->curr_resync_completed = 0;
8352 spin_lock(&mddev->lock);
8353 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8354 spin_unlock(&mddev->lock);
8355 /* Clear some bits that don't mean anything, but
8356 * might be left set
8357 */
8358 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8359 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8360
8361 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8362 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8363 goto not_running;
8364 /* no recovery is running.
8365 * remove any failed drives, then
8366 * add spares if possible.
8367 * Spares are also removed and re-added, to allow
8368 * the personality to fail the re-add.
8369 */
8370
8371 if (mddev->reshape_position != MaxSector) {
8372 if (mddev->pers->check_reshape == NULL ||
8373 mddev->pers->check_reshape(mddev) != 0)
8374 /* Cannot proceed */
8375 goto not_running;
8376 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8377 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8378 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8379 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8380 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8381 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8382 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8383 } else if (mddev->recovery_cp < MaxSector) {
8384 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8385 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8386 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8387 /* nothing to be done ... */
8388 goto not_running;
8389
8390 if (mddev->pers->sync_request) {
8391 if (spares) {
8392 /* We are adding a device or devices to an array
8393 * which has the bitmap stored on all devices.
8394 * So make sure all bitmap pages get written
8395 */
8396 bitmap_write_all(mddev->bitmap);
8397 }
8398 INIT_WORK(&mddev->del_work, md_start_sync);
8399 queue_work(md_misc_wq, &mddev->del_work);
8400 goto unlock;
8401 }
8402 not_running:
8403 if (!mddev->sync_thread) {
8404 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8405 wake_up(&resync_wait);
8406 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8407 &mddev->recovery))
8408 if (mddev->sysfs_action)
8409 sysfs_notify_dirent_safe(mddev->sysfs_action);
8410 }
8411 unlock:
8412 wake_up(&mddev->sb_wait);
8413 mddev_unlock(mddev);
8414 }
8415 }
8416 EXPORT_SYMBOL(md_check_recovery);
8417
8418 void md_reap_sync_thread(struct mddev *mddev)
8419 {
8420 struct md_rdev *rdev;
8421
8422 /* resync has finished, collect result */
8423 md_unregister_thread(&mddev->sync_thread);
8424 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8425 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8426 /* success...*/
8427 /* activate any spares */
8428 if (mddev->pers->spare_active(mddev)) {
8429 sysfs_notify(&mddev->kobj, NULL,
8430 "degraded");
8431 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8432 }
8433 }
8434 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8435 mddev->pers->finish_reshape)
8436 mddev->pers->finish_reshape(mddev);
8437
8438 /* If array is no-longer degraded, then any saved_raid_disk
8439 * information must be scrapped.
8440 */
8441 if (!mddev->degraded)
8442 rdev_for_each(rdev, mddev)
8443 rdev->saved_raid_disk = -1;
8444
8445 md_update_sb(mddev, 1);
8446 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8447 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8448 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8449 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8450 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8451 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8452 wake_up(&resync_wait);
8453 /* flag recovery needed just to double check */
8454 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8455 sysfs_notify_dirent_safe(mddev->sysfs_action);
8456 md_new_event(mddev);
8457 if (mddev->event_work.func)
8458 queue_work(md_misc_wq, &mddev->event_work);
8459 }
8460 EXPORT_SYMBOL(md_reap_sync_thread);
8461
8462 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8463 {
8464 sysfs_notify_dirent_safe(rdev->sysfs_state);
8465 wait_event_timeout(rdev->blocked_wait,
8466 !test_bit(Blocked, &rdev->flags) &&
8467 !test_bit(BlockedBadBlocks, &rdev->flags),
8468 msecs_to_jiffies(5000));
8469 rdev_dec_pending(rdev, mddev);
8470 }
8471 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8472
8473 void md_finish_reshape(struct mddev *mddev)
8474 {
8475 /* called be personality module when reshape completes. */
8476 struct md_rdev *rdev;
8477
8478 rdev_for_each(rdev, mddev) {
8479 if (rdev->data_offset > rdev->new_data_offset)
8480 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8481 else
8482 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8483 rdev->data_offset = rdev->new_data_offset;
8484 }
8485 }
8486 EXPORT_SYMBOL(md_finish_reshape);
8487
8488 /* Bad block management */
8489
8490 /* Returns 1 on success, 0 on failure */
8491 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8492 int is_new)
8493 {
8494 int rv;
8495 if (is_new)
8496 s += rdev->new_data_offset;
8497 else
8498 s += rdev->data_offset;
8499 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8500 if (rv == 0) {
8501 /* Make sure they get written out promptly */
8502 sysfs_notify_dirent_safe(rdev->sysfs_state);
8503 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8504 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8505 md_wakeup_thread(rdev->mddev->thread);
8506 return 1;
8507 } else
8508 return 0;
8509 }
8510 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8511
8512 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8513 int is_new)
8514 {
8515 if (is_new)
8516 s += rdev->new_data_offset;
8517 else
8518 s += rdev->data_offset;
8519 return badblocks_clear(&rdev->badblocks,
8520 s, sectors);
8521 }
8522 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8523
8524 static int md_notify_reboot(struct notifier_block *this,
8525 unsigned long code, void *x)
8526 {
8527 struct list_head *tmp;
8528 struct mddev *mddev;
8529 int need_delay = 0;
8530
8531 for_each_mddev(mddev, tmp) {
8532 if (mddev_trylock(mddev)) {
8533 if (mddev->pers)
8534 __md_stop_writes(mddev);
8535 if (mddev->persistent)
8536 mddev->safemode = 2;
8537 mddev_unlock(mddev);
8538 }
8539 need_delay = 1;
8540 }
8541 /*
8542 * certain more exotic SCSI devices are known to be
8543 * volatile wrt too early system reboots. While the
8544 * right place to handle this issue is the given
8545 * driver, we do want to have a safe RAID driver ...
8546 */
8547 if (need_delay)
8548 mdelay(1000*1);
8549
8550 return NOTIFY_DONE;
8551 }
8552
8553 static struct notifier_block md_notifier = {
8554 .notifier_call = md_notify_reboot,
8555 .next = NULL,
8556 .priority = INT_MAX, /* before any real devices */
8557 };
8558
8559 static void md_geninit(void)
8560 {
8561 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8562
8563 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8564 }
8565
8566 static int __init md_init(void)
8567 {
8568 int ret = -ENOMEM;
8569
8570 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8571 if (!md_wq)
8572 goto err_wq;
8573
8574 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8575 if (!md_misc_wq)
8576 goto err_misc_wq;
8577
8578 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8579 goto err_md;
8580
8581 if ((ret = register_blkdev(0, "mdp")) < 0)
8582 goto err_mdp;
8583 mdp_major = ret;
8584
8585 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8586 md_probe, NULL, NULL);
8587 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8588 md_probe, NULL, NULL);
8589
8590 register_reboot_notifier(&md_notifier);
8591 raid_table_header = register_sysctl_table(raid_root_table);
8592
8593 md_geninit();
8594 return 0;
8595
8596 err_mdp:
8597 unregister_blkdev(MD_MAJOR, "md");
8598 err_md:
8599 destroy_workqueue(md_misc_wq);
8600 err_misc_wq:
8601 destroy_workqueue(md_wq);
8602 err_wq:
8603 return ret;
8604 }
8605
8606 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8607 {
8608 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8609 struct md_rdev *rdev2;
8610 int role, ret;
8611 char b[BDEVNAME_SIZE];
8612
8613 /* Check for change of roles in the active devices */
8614 rdev_for_each(rdev2, mddev) {
8615 if (test_bit(Faulty, &rdev2->flags))
8616 continue;
8617
8618 /* Check if the roles changed */
8619 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8620
8621 if (test_bit(Candidate, &rdev2->flags)) {
8622 if (role == 0xfffe) {
8623 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8624 md_kick_rdev_from_array(rdev2);
8625 continue;
8626 }
8627 else
8628 clear_bit(Candidate, &rdev2->flags);
8629 }
8630
8631 if (role != rdev2->raid_disk) {
8632 /* got activated */
8633 if (rdev2->raid_disk == -1 && role != 0xffff) {
8634 rdev2->saved_raid_disk = role;
8635 ret = remove_and_add_spares(mddev, rdev2);
8636 pr_info("Activated spare: %s\n",
8637 bdevname(rdev2->bdev,b));
8638 continue;
8639 }
8640 /* device faulty
8641 * We just want to do the minimum to mark the disk
8642 * as faulty. The recovery is performed by the
8643 * one who initiated the error.
8644 */
8645 if ((role == 0xfffe) || (role == 0xfffd)) {
8646 md_error(mddev, rdev2);
8647 clear_bit(Blocked, &rdev2->flags);
8648 }
8649 }
8650 }
8651
8652 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8653 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8654
8655 /* Finally set the event to be up to date */
8656 mddev->events = le64_to_cpu(sb->events);
8657 }
8658
8659 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8660 {
8661 int err;
8662 struct page *swapout = rdev->sb_page;
8663 struct mdp_superblock_1 *sb;
8664
8665 /* Store the sb page of the rdev in the swapout temporary
8666 * variable in case we err in the future
8667 */
8668 rdev->sb_page = NULL;
8669 alloc_disk_sb(rdev);
8670 ClearPageUptodate(rdev->sb_page);
8671 rdev->sb_loaded = 0;
8672 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8673
8674 if (err < 0) {
8675 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8676 __func__, __LINE__, rdev->desc_nr, err);
8677 put_page(rdev->sb_page);
8678 rdev->sb_page = swapout;
8679 rdev->sb_loaded = 1;
8680 return err;
8681 }
8682
8683 sb = page_address(rdev->sb_page);
8684 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8685 * is not set
8686 */
8687
8688 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8689 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8690
8691 /* The other node finished recovery, call spare_active to set
8692 * device In_sync and mddev->degraded
8693 */
8694 if (rdev->recovery_offset == MaxSector &&
8695 !test_bit(In_sync, &rdev->flags) &&
8696 mddev->pers->spare_active(mddev))
8697 sysfs_notify(&mddev->kobj, NULL, "degraded");
8698
8699 put_page(swapout);
8700 return 0;
8701 }
8702
8703 void md_reload_sb(struct mddev *mddev, int nr)
8704 {
8705 struct md_rdev *rdev;
8706 int err;
8707
8708 /* Find the rdev */
8709 rdev_for_each_rcu(rdev, mddev) {
8710 if (rdev->desc_nr == nr)
8711 break;
8712 }
8713
8714 if (!rdev || rdev->desc_nr != nr) {
8715 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8716 return;
8717 }
8718
8719 err = read_rdev(mddev, rdev);
8720 if (err < 0)
8721 return;
8722
8723 check_sb_changes(mddev, rdev);
8724
8725 /* Read all rdev's to update recovery_offset */
8726 rdev_for_each_rcu(rdev, mddev)
8727 read_rdev(mddev, rdev);
8728 }
8729 EXPORT_SYMBOL(md_reload_sb);
8730
8731 #ifndef MODULE
8732
8733 /*
8734 * Searches all registered partitions for autorun RAID arrays
8735 * at boot time.
8736 */
8737
8738 static LIST_HEAD(all_detected_devices);
8739 struct detected_devices_node {
8740 struct list_head list;
8741 dev_t dev;
8742 };
8743
8744 void md_autodetect_dev(dev_t dev)
8745 {
8746 struct detected_devices_node *node_detected_dev;
8747
8748 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8749 if (node_detected_dev) {
8750 node_detected_dev->dev = dev;
8751 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8752 } else {
8753 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8754 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8755 }
8756 }
8757
8758 static void autostart_arrays(int part)
8759 {
8760 struct md_rdev *rdev;
8761 struct detected_devices_node *node_detected_dev;
8762 dev_t dev;
8763 int i_scanned, i_passed;
8764
8765 i_scanned = 0;
8766 i_passed = 0;
8767
8768 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8769
8770 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8771 i_scanned++;
8772 node_detected_dev = list_entry(all_detected_devices.next,
8773 struct detected_devices_node, list);
8774 list_del(&node_detected_dev->list);
8775 dev = node_detected_dev->dev;
8776 kfree(node_detected_dev);
8777 rdev = md_import_device(dev,0, 90);
8778 if (IS_ERR(rdev))
8779 continue;
8780
8781 if (test_bit(Faulty, &rdev->flags))
8782 continue;
8783
8784 set_bit(AutoDetected, &rdev->flags);
8785 list_add(&rdev->same_set, &pending_raid_disks);
8786 i_passed++;
8787 }
8788
8789 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8790 i_scanned, i_passed);
8791
8792 autorun_devices(part);
8793 }
8794
8795 #endif /* !MODULE */
8796
8797 static __exit void md_exit(void)
8798 {
8799 struct mddev *mddev;
8800 struct list_head *tmp;
8801 int delay = 1;
8802
8803 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8804 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8805
8806 unregister_blkdev(MD_MAJOR,"md");
8807 unregister_blkdev(mdp_major, "mdp");
8808 unregister_reboot_notifier(&md_notifier);
8809 unregister_sysctl_table(raid_table_header);
8810
8811 /* We cannot unload the modules while some process is
8812 * waiting for us in select() or poll() - wake them up
8813 */
8814 md_unloading = 1;
8815 while (waitqueue_active(&md_event_waiters)) {
8816 /* not safe to leave yet */
8817 wake_up(&md_event_waiters);
8818 msleep(delay);
8819 delay += delay;
8820 }
8821 remove_proc_entry("mdstat", NULL);
8822
8823 for_each_mddev(mddev, tmp) {
8824 export_array(mddev);
8825 mddev->hold_active = 0;
8826 }
8827 destroy_workqueue(md_misc_wq);
8828 destroy_workqueue(md_wq);
8829 }
8830
8831 subsys_initcall(md_init);
8832 module_exit(md_exit)
8833
8834 static int get_ro(char *buffer, struct kernel_param *kp)
8835 {
8836 return sprintf(buffer, "%d", start_readonly);
8837 }
8838 static int set_ro(const char *val, struct kernel_param *kp)
8839 {
8840 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8841 }
8842
8843 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8844 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8845 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8846
8847 MODULE_LICENSE("GPL");
8848 MODULE_DESCRIPTION("MD RAID framework");
8849 MODULE_ALIAS("md");
8850 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);