]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/md.c
md: split mddev_find
[mirror_ubuntu-jammy-kernel.git] / drivers / md / md.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70
71 /* pers_list is a list of registered personalities protected
72 * by pers_lock.
73 * pers_lock does extra service to protect accesses to
74 * mddev->thread when the mutex cannot be held.
75 */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78
79 static struct kobj_type md_ktype;
80
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89
90 static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static struct ctl_table raid_dir_table[] = {
312 {
313 .procname = "raid",
314 .maxlen = 0,
315 .mode = S_IRUGO|S_IXUGO,
316 .child = raid_table,
317 },
318 { }
319 };
320
321 static struct ctl_table raid_root_table[] = {
322 {
323 .procname = "dev",
324 .maxlen = 0,
325 .mode = 0555,
326 .child = raid_dir_table,
327 },
328 { }
329 };
330
331 static int start_readonly;
332
333 /*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341 static bool create_on_open = true;
342
343 /*
344 * We have a system wide 'event count' that is incremented
345 * on any 'interesting' event, and readers of /proc/mdstat
346 * can use 'poll' or 'select' to find out when the event
347 * count increases.
348 *
349 * Events are:
350 * start array, stop array, error, add device, remove device,
351 * start build, activate spare
352 */
353 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
354 static atomic_t md_event_count;
355 void md_new_event(struct mddev *mddev)
356 {
357 atomic_inc(&md_event_count);
358 wake_up(&md_event_waiters);
359 }
360 EXPORT_SYMBOL_GPL(md_new_event);
361
362 /*
363 * Enables to iterate over all existing md arrays
364 * all_mddevs_lock protects this list.
365 */
366 static LIST_HEAD(all_mddevs);
367 static DEFINE_SPINLOCK(all_mddevs_lock);
368
369 /*
370 * iterates through all used mddevs in the system.
371 * We take care to grab the all_mddevs_lock whenever navigating
372 * the list, and to always hold a refcount when unlocked.
373 * Any code which breaks out of this loop while own
374 * a reference to the current mddev and must mddev_put it.
375 */
376 #define for_each_mddev(_mddev,_tmp) \
377 \
378 for (({ spin_lock(&all_mddevs_lock); \
379 _tmp = all_mddevs.next; \
380 _mddev = NULL;}); \
381 ({ if (_tmp != &all_mddevs) \
382 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
383 spin_unlock(&all_mddevs_lock); \
384 if (_mddev) mddev_put(_mddev); \
385 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
386 _tmp != &all_mddevs;}); \
387 ({ spin_lock(&all_mddevs_lock); \
388 _tmp = _tmp->next;}) \
389 )
390
391 /* Rather than calling directly into the personality make_request function,
392 * IO requests come here first so that we can check if the device is
393 * being suspended pending a reconfiguration.
394 * We hold a refcount over the call to ->make_request. By the time that
395 * call has finished, the bio has been linked into some internal structure
396 * and so is visible to ->quiesce(), so we don't need the refcount any more.
397 */
398 static bool is_suspended(struct mddev *mddev, struct bio *bio)
399 {
400 if (mddev->suspended)
401 return true;
402 if (bio_data_dir(bio) != WRITE)
403 return false;
404 if (mddev->suspend_lo >= mddev->suspend_hi)
405 return false;
406 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
407 return false;
408 if (bio_end_sector(bio) < mddev->suspend_lo)
409 return false;
410 return true;
411 }
412
413 void md_handle_request(struct mddev *mddev, struct bio *bio)
414 {
415 check_suspended:
416 rcu_read_lock();
417 if (is_suspended(mddev, bio)) {
418 DEFINE_WAIT(__wait);
419 for (;;) {
420 prepare_to_wait(&mddev->sb_wait, &__wait,
421 TASK_UNINTERRUPTIBLE);
422 if (!is_suspended(mddev, bio))
423 break;
424 rcu_read_unlock();
425 schedule();
426 rcu_read_lock();
427 }
428 finish_wait(&mddev->sb_wait, &__wait);
429 }
430 atomic_inc(&mddev->active_io);
431 rcu_read_unlock();
432
433 if (!mddev->pers->make_request(mddev, bio)) {
434 atomic_dec(&mddev->active_io);
435 wake_up(&mddev->sb_wait);
436 goto check_suspended;
437 }
438
439 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
440 wake_up(&mddev->sb_wait);
441 }
442 EXPORT_SYMBOL(md_handle_request);
443
444 struct md_io {
445 struct mddev *mddev;
446 bio_end_io_t *orig_bi_end_io;
447 void *orig_bi_private;
448 struct block_device *orig_bi_bdev;
449 unsigned long start_time;
450 };
451
452 static void md_end_io(struct bio *bio)
453 {
454 struct md_io *md_io = bio->bi_private;
455 struct mddev *mddev = md_io->mddev;
456
457 bio_end_io_acct_remapped(bio, md_io->start_time, md_io->orig_bi_bdev);
458
459 bio->bi_end_io = md_io->orig_bi_end_io;
460 bio->bi_private = md_io->orig_bi_private;
461
462 mempool_free(md_io, &mddev->md_io_pool);
463
464 if (bio->bi_end_io)
465 bio->bi_end_io(bio);
466 }
467
468 static blk_qc_t md_submit_bio(struct bio *bio)
469 {
470 const int rw = bio_data_dir(bio);
471 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
472
473 if (mddev == NULL || mddev->pers == NULL) {
474 bio_io_error(bio);
475 return BLK_QC_T_NONE;
476 }
477
478 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
479 bio_io_error(bio);
480 return BLK_QC_T_NONE;
481 }
482
483 blk_queue_split(&bio);
484
485 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
486 if (bio_sectors(bio) != 0)
487 bio->bi_status = BLK_STS_IOERR;
488 bio_endio(bio);
489 return BLK_QC_T_NONE;
490 }
491
492 if (bio->bi_end_io != md_end_io) {
493 struct md_io *md_io;
494
495 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO);
496 md_io->mddev = mddev;
497 md_io->orig_bi_end_io = bio->bi_end_io;
498 md_io->orig_bi_private = bio->bi_private;
499 md_io->orig_bi_bdev = bio->bi_bdev;
500
501 bio->bi_end_io = md_end_io;
502 bio->bi_private = md_io;
503
504 md_io->start_time = bio_start_io_acct(bio);
505 }
506
507 /* bio could be mergeable after passing to underlayer */
508 bio->bi_opf &= ~REQ_NOMERGE;
509
510 md_handle_request(mddev, bio);
511
512 return BLK_QC_T_NONE;
513 }
514
515 /* mddev_suspend makes sure no new requests are submitted
516 * to the device, and that any requests that have been submitted
517 * are completely handled.
518 * Once mddev_detach() is called and completes, the module will be
519 * completely unused.
520 */
521 void mddev_suspend(struct mddev *mddev)
522 {
523 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
524 lockdep_assert_held(&mddev->reconfig_mutex);
525 if (mddev->suspended++)
526 return;
527 synchronize_rcu();
528 wake_up(&mddev->sb_wait);
529 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
530 smp_mb__after_atomic();
531 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
532 mddev->pers->quiesce(mddev, 1);
533 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
534 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
535
536 del_timer_sync(&mddev->safemode_timer);
537 /* restrict memory reclaim I/O during raid array is suspend */
538 mddev->noio_flag = memalloc_noio_save();
539 }
540 EXPORT_SYMBOL_GPL(mddev_suspend);
541
542 void mddev_resume(struct mddev *mddev)
543 {
544 /* entred the memalloc scope from mddev_suspend() */
545 memalloc_noio_restore(mddev->noio_flag);
546 lockdep_assert_held(&mddev->reconfig_mutex);
547 if (--mddev->suspended)
548 return;
549 wake_up(&mddev->sb_wait);
550 mddev->pers->quiesce(mddev, 0);
551
552 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
553 md_wakeup_thread(mddev->thread);
554 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
555 }
556 EXPORT_SYMBOL_GPL(mddev_resume);
557
558 /*
559 * Generic flush handling for md
560 */
561
562 static void md_end_flush(struct bio *bio)
563 {
564 struct md_rdev *rdev = bio->bi_private;
565 struct mddev *mddev = rdev->mddev;
566
567 rdev_dec_pending(rdev, mddev);
568
569 if (atomic_dec_and_test(&mddev->flush_pending)) {
570 /* The pre-request flush has finished */
571 queue_work(md_wq, &mddev->flush_work);
572 }
573 bio_put(bio);
574 }
575
576 static void md_submit_flush_data(struct work_struct *ws);
577
578 static void submit_flushes(struct work_struct *ws)
579 {
580 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
581 struct md_rdev *rdev;
582
583 mddev->start_flush = ktime_get_boottime();
584 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
585 atomic_set(&mddev->flush_pending, 1);
586 rcu_read_lock();
587 rdev_for_each_rcu(rdev, mddev)
588 if (rdev->raid_disk >= 0 &&
589 !test_bit(Faulty, &rdev->flags)) {
590 /* Take two references, one is dropped
591 * when request finishes, one after
592 * we reclaim rcu_read_lock
593 */
594 struct bio *bi;
595 atomic_inc(&rdev->nr_pending);
596 atomic_inc(&rdev->nr_pending);
597 rcu_read_unlock();
598 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
599 bi->bi_end_io = md_end_flush;
600 bi->bi_private = rdev;
601 bio_set_dev(bi, rdev->bdev);
602 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
603 atomic_inc(&mddev->flush_pending);
604 submit_bio(bi);
605 rcu_read_lock();
606 rdev_dec_pending(rdev, mddev);
607 }
608 rcu_read_unlock();
609 if (atomic_dec_and_test(&mddev->flush_pending))
610 queue_work(md_wq, &mddev->flush_work);
611 }
612
613 static void md_submit_flush_data(struct work_struct *ws)
614 {
615 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
616 struct bio *bio = mddev->flush_bio;
617
618 /*
619 * must reset flush_bio before calling into md_handle_request to avoid a
620 * deadlock, because other bios passed md_handle_request suspend check
621 * could wait for this and below md_handle_request could wait for those
622 * bios because of suspend check
623 */
624 spin_lock_irq(&mddev->lock);
625 mddev->prev_flush_start = mddev->start_flush;
626 mddev->flush_bio = NULL;
627 spin_unlock_irq(&mddev->lock);
628 wake_up(&mddev->sb_wait);
629
630 if (bio->bi_iter.bi_size == 0) {
631 /* an empty barrier - all done */
632 bio_endio(bio);
633 } else {
634 bio->bi_opf &= ~REQ_PREFLUSH;
635 md_handle_request(mddev, bio);
636 }
637 }
638
639 /*
640 * Manages consolidation of flushes and submitting any flushes needed for
641 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
642 * being finished in another context. Returns false if the flushing is
643 * complete but still needs the I/O portion of the bio to be processed.
644 */
645 bool md_flush_request(struct mddev *mddev, struct bio *bio)
646 {
647 ktime_t req_start = ktime_get_boottime();
648 spin_lock_irq(&mddev->lock);
649 /* flush requests wait until ongoing flush completes,
650 * hence coalescing all the pending requests.
651 */
652 wait_event_lock_irq(mddev->sb_wait,
653 !mddev->flush_bio ||
654 ktime_before(req_start, mddev->prev_flush_start),
655 mddev->lock);
656 /* new request after previous flush is completed */
657 if (ktime_after(req_start, mddev->prev_flush_start)) {
658 WARN_ON(mddev->flush_bio);
659 mddev->flush_bio = bio;
660 bio = NULL;
661 }
662 spin_unlock_irq(&mddev->lock);
663
664 if (!bio) {
665 INIT_WORK(&mddev->flush_work, submit_flushes);
666 queue_work(md_wq, &mddev->flush_work);
667 } else {
668 /* flush was performed for some other bio while we waited. */
669 if (bio->bi_iter.bi_size == 0)
670 /* an empty barrier - all done */
671 bio_endio(bio);
672 else {
673 bio->bi_opf &= ~REQ_PREFLUSH;
674 return false;
675 }
676 }
677 return true;
678 }
679 EXPORT_SYMBOL(md_flush_request);
680
681 static inline struct mddev *mddev_get(struct mddev *mddev)
682 {
683 atomic_inc(&mddev->active);
684 return mddev;
685 }
686
687 static void mddev_delayed_delete(struct work_struct *ws);
688
689 static void mddev_put(struct mddev *mddev)
690 {
691 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
692 return;
693 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
694 mddev->ctime == 0 && !mddev->hold_active) {
695 /* Array is not configured at all, and not held active,
696 * so destroy it */
697 list_del_init(&mddev->all_mddevs);
698
699 /*
700 * Call queue_work inside the spinlock so that
701 * flush_workqueue() after mddev_find will succeed in waiting
702 * for the work to be done.
703 */
704 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
705 queue_work(md_misc_wq, &mddev->del_work);
706 }
707 spin_unlock(&all_mddevs_lock);
708 }
709
710 static void md_safemode_timeout(struct timer_list *t);
711
712 void mddev_init(struct mddev *mddev)
713 {
714 kobject_init(&mddev->kobj, &md_ktype);
715 mutex_init(&mddev->open_mutex);
716 mutex_init(&mddev->reconfig_mutex);
717 mutex_init(&mddev->bitmap_info.mutex);
718 INIT_LIST_HEAD(&mddev->disks);
719 INIT_LIST_HEAD(&mddev->all_mddevs);
720 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
721 atomic_set(&mddev->active, 1);
722 atomic_set(&mddev->openers, 0);
723 atomic_set(&mddev->active_io, 0);
724 spin_lock_init(&mddev->lock);
725 atomic_set(&mddev->flush_pending, 0);
726 init_waitqueue_head(&mddev->sb_wait);
727 init_waitqueue_head(&mddev->recovery_wait);
728 mddev->reshape_position = MaxSector;
729 mddev->reshape_backwards = 0;
730 mddev->last_sync_action = "none";
731 mddev->resync_min = 0;
732 mddev->resync_max = MaxSector;
733 mddev->level = LEVEL_NONE;
734 }
735 EXPORT_SYMBOL_GPL(mddev_init);
736
737 static struct mddev *mddev_find_locked(dev_t unit)
738 {
739 struct mddev *mddev;
740
741 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
742 if (mddev->unit == unit)
743 return mddev;
744
745 return NULL;
746 }
747
748 static struct mddev *mddev_find(dev_t unit)
749 {
750 struct mddev *mddev;
751
752 if (MAJOR(unit) != MD_MAJOR)
753 unit &= ~((1 << MdpMinorShift) - 1);
754
755 spin_lock(&all_mddevs_lock);
756 mddev = mddev_find_locked(unit);
757 if (mddev)
758 mddev_get(mddev);
759 spin_unlock(&all_mddevs_lock);
760
761 return mddev;
762 }
763
764 static struct mddev *mddev_find_or_alloc(dev_t unit)
765 {
766 struct mddev *mddev, *new = NULL;
767
768 if (unit && MAJOR(unit) != MD_MAJOR)
769 unit &= ~((1<<MdpMinorShift)-1);
770
771 retry:
772 spin_lock(&all_mddevs_lock);
773
774 if (unit) {
775 mddev = mddev_find_locked(unit);
776 if (mddev) {
777 mddev_get(mddev);
778 spin_unlock(&all_mddevs_lock);
779 kfree(new);
780 return mddev;
781 }
782
783 if (new) {
784 list_add(&new->all_mddevs, &all_mddevs);
785 spin_unlock(&all_mddevs_lock);
786 new->hold_active = UNTIL_IOCTL;
787 return new;
788 }
789 } else if (new) {
790 /* find an unused unit number */
791 static int next_minor = 512;
792 int start = next_minor;
793 int is_free = 0;
794 int dev = 0;
795 while (!is_free) {
796 dev = MKDEV(MD_MAJOR, next_minor);
797 next_minor++;
798 if (next_minor > MINORMASK)
799 next_minor = 0;
800 if (next_minor == start) {
801 /* Oh dear, all in use. */
802 spin_unlock(&all_mddevs_lock);
803 kfree(new);
804 return NULL;
805 }
806
807 is_free = !mddev_find_locked(dev);
808 }
809 new->unit = dev;
810 new->md_minor = MINOR(dev);
811 new->hold_active = UNTIL_STOP;
812 list_add(&new->all_mddevs, &all_mddevs);
813 spin_unlock(&all_mddevs_lock);
814 return new;
815 }
816 spin_unlock(&all_mddevs_lock);
817
818 new = kzalloc(sizeof(*new), GFP_KERNEL);
819 if (!new)
820 return NULL;
821
822 new->unit = unit;
823 if (MAJOR(unit) == MD_MAJOR)
824 new->md_minor = MINOR(unit);
825 else
826 new->md_minor = MINOR(unit) >> MdpMinorShift;
827
828 mddev_init(new);
829
830 goto retry;
831 }
832
833 static struct attribute_group md_redundancy_group;
834
835 void mddev_unlock(struct mddev *mddev)
836 {
837 if (mddev->to_remove) {
838 /* These cannot be removed under reconfig_mutex as
839 * an access to the files will try to take reconfig_mutex
840 * while holding the file unremovable, which leads to
841 * a deadlock.
842 * So hold set sysfs_active while the remove in happeing,
843 * and anything else which might set ->to_remove or my
844 * otherwise change the sysfs namespace will fail with
845 * -EBUSY if sysfs_active is still set.
846 * We set sysfs_active under reconfig_mutex and elsewhere
847 * test it under the same mutex to ensure its correct value
848 * is seen.
849 */
850 struct attribute_group *to_remove = mddev->to_remove;
851 mddev->to_remove = NULL;
852 mddev->sysfs_active = 1;
853 mutex_unlock(&mddev->reconfig_mutex);
854
855 if (mddev->kobj.sd) {
856 if (to_remove != &md_redundancy_group)
857 sysfs_remove_group(&mddev->kobj, to_remove);
858 if (mddev->pers == NULL ||
859 mddev->pers->sync_request == NULL) {
860 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
861 if (mddev->sysfs_action)
862 sysfs_put(mddev->sysfs_action);
863 if (mddev->sysfs_completed)
864 sysfs_put(mddev->sysfs_completed);
865 if (mddev->sysfs_degraded)
866 sysfs_put(mddev->sysfs_degraded);
867 mddev->sysfs_action = NULL;
868 mddev->sysfs_completed = NULL;
869 mddev->sysfs_degraded = NULL;
870 }
871 }
872 mddev->sysfs_active = 0;
873 } else
874 mutex_unlock(&mddev->reconfig_mutex);
875
876 /* As we've dropped the mutex we need a spinlock to
877 * make sure the thread doesn't disappear
878 */
879 spin_lock(&pers_lock);
880 md_wakeup_thread(mddev->thread);
881 wake_up(&mddev->sb_wait);
882 spin_unlock(&pers_lock);
883 }
884 EXPORT_SYMBOL_GPL(mddev_unlock);
885
886 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
887 {
888 struct md_rdev *rdev;
889
890 rdev_for_each_rcu(rdev, mddev)
891 if (rdev->desc_nr == nr)
892 return rdev;
893
894 return NULL;
895 }
896 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
897
898 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
899 {
900 struct md_rdev *rdev;
901
902 rdev_for_each(rdev, mddev)
903 if (rdev->bdev->bd_dev == dev)
904 return rdev;
905
906 return NULL;
907 }
908
909 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
910 {
911 struct md_rdev *rdev;
912
913 rdev_for_each_rcu(rdev, mddev)
914 if (rdev->bdev->bd_dev == dev)
915 return rdev;
916
917 return NULL;
918 }
919 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
920
921 static struct md_personality *find_pers(int level, char *clevel)
922 {
923 struct md_personality *pers;
924 list_for_each_entry(pers, &pers_list, list) {
925 if (level != LEVEL_NONE && pers->level == level)
926 return pers;
927 if (strcmp(pers->name, clevel)==0)
928 return pers;
929 }
930 return NULL;
931 }
932
933 /* return the offset of the super block in 512byte sectors */
934 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
935 {
936 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
937 return MD_NEW_SIZE_SECTORS(num_sectors);
938 }
939
940 static int alloc_disk_sb(struct md_rdev *rdev)
941 {
942 rdev->sb_page = alloc_page(GFP_KERNEL);
943 if (!rdev->sb_page)
944 return -ENOMEM;
945 return 0;
946 }
947
948 void md_rdev_clear(struct md_rdev *rdev)
949 {
950 if (rdev->sb_page) {
951 put_page(rdev->sb_page);
952 rdev->sb_loaded = 0;
953 rdev->sb_page = NULL;
954 rdev->sb_start = 0;
955 rdev->sectors = 0;
956 }
957 if (rdev->bb_page) {
958 put_page(rdev->bb_page);
959 rdev->bb_page = NULL;
960 }
961 badblocks_exit(&rdev->badblocks);
962 }
963 EXPORT_SYMBOL_GPL(md_rdev_clear);
964
965 static void super_written(struct bio *bio)
966 {
967 struct md_rdev *rdev = bio->bi_private;
968 struct mddev *mddev = rdev->mddev;
969
970 if (bio->bi_status) {
971 pr_err("md: %s gets error=%d\n", __func__,
972 blk_status_to_errno(bio->bi_status));
973 md_error(mddev, rdev);
974 if (!test_bit(Faulty, &rdev->flags)
975 && (bio->bi_opf & MD_FAILFAST)) {
976 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
977 set_bit(LastDev, &rdev->flags);
978 }
979 } else
980 clear_bit(LastDev, &rdev->flags);
981
982 if (atomic_dec_and_test(&mddev->pending_writes))
983 wake_up(&mddev->sb_wait);
984 rdev_dec_pending(rdev, mddev);
985 bio_put(bio);
986 }
987
988 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
989 sector_t sector, int size, struct page *page)
990 {
991 /* write first size bytes of page to sector of rdev
992 * Increment mddev->pending_writes before returning
993 * and decrement it on completion, waking up sb_wait
994 * if zero is reached.
995 * If an error occurred, call md_error
996 */
997 struct bio *bio;
998 int ff = 0;
999
1000 if (!page)
1001 return;
1002
1003 if (test_bit(Faulty, &rdev->flags))
1004 return;
1005
1006 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
1007
1008 atomic_inc(&rdev->nr_pending);
1009
1010 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
1011 bio->bi_iter.bi_sector = sector;
1012 bio_add_page(bio, page, size, 0);
1013 bio->bi_private = rdev;
1014 bio->bi_end_io = super_written;
1015
1016 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
1017 test_bit(FailFast, &rdev->flags) &&
1018 !test_bit(LastDev, &rdev->flags))
1019 ff = MD_FAILFAST;
1020 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
1021
1022 atomic_inc(&mddev->pending_writes);
1023 submit_bio(bio);
1024 }
1025
1026 int md_super_wait(struct mddev *mddev)
1027 {
1028 /* wait for all superblock writes that were scheduled to complete */
1029 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1030 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1031 return -EAGAIN;
1032 return 0;
1033 }
1034
1035 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1036 struct page *page, int op, int op_flags, bool metadata_op)
1037 {
1038 struct bio bio;
1039 struct bio_vec bvec;
1040
1041 bio_init(&bio, &bvec, 1);
1042
1043 if (metadata_op && rdev->meta_bdev)
1044 bio_set_dev(&bio, rdev->meta_bdev);
1045 else
1046 bio_set_dev(&bio, rdev->bdev);
1047 bio.bi_opf = op | op_flags;
1048 if (metadata_op)
1049 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1050 else if (rdev->mddev->reshape_position != MaxSector &&
1051 (rdev->mddev->reshape_backwards ==
1052 (sector >= rdev->mddev->reshape_position)))
1053 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1054 else
1055 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1056 bio_add_page(&bio, page, size, 0);
1057
1058 submit_bio_wait(&bio);
1059
1060 return !bio.bi_status;
1061 }
1062 EXPORT_SYMBOL_GPL(sync_page_io);
1063
1064 static int read_disk_sb(struct md_rdev *rdev, int size)
1065 {
1066 char b[BDEVNAME_SIZE];
1067
1068 if (rdev->sb_loaded)
1069 return 0;
1070
1071 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1072 goto fail;
1073 rdev->sb_loaded = 1;
1074 return 0;
1075
1076 fail:
1077 pr_err("md: disabled device %s, could not read superblock.\n",
1078 bdevname(rdev->bdev,b));
1079 return -EINVAL;
1080 }
1081
1082 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1083 {
1084 return sb1->set_uuid0 == sb2->set_uuid0 &&
1085 sb1->set_uuid1 == sb2->set_uuid1 &&
1086 sb1->set_uuid2 == sb2->set_uuid2 &&
1087 sb1->set_uuid3 == sb2->set_uuid3;
1088 }
1089
1090 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1091 {
1092 int ret;
1093 mdp_super_t *tmp1, *tmp2;
1094
1095 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1096 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1097
1098 if (!tmp1 || !tmp2) {
1099 ret = 0;
1100 goto abort;
1101 }
1102
1103 *tmp1 = *sb1;
1104 *tmp2 = *sb2;
1105
1106 /*
1107 * nr_disks is not constant
1108 */
1109 tmp1->nr_disks = 0;
1110 tmp2->nr_disks = 0;
1111
1112 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1113 abort:
1114 kfree(tmp1);
1115 kfree(tmp2);
1116 return ret;
1117 }
1118
1119 static u32 md_csum_fold(u32 csum)
1120 {
1121 csum = (csum & 0xffff) + (csum >> 16);
1122 return (csum & 0xffff) + (csum >> 16);
1123 }
1124
1125 static unsigned int calc_sb_csum(mdp_super_t *sb)
1126 {
1127 u64 newcsum = 0;
1128 u32 *sb32 = (u32*)sb;
1129 int i;
1130 unsigned int disk_csum, csum;
1131
1132 disk_csum = sb->sb_csum;
1133 sb->sb_csum = 0;
1134
1135 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1136 newcsum += sb32[i];
1137 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1138
1139 #ifdef CONFIG_ALPHA
1140 /* This used to use csum_partial, which was wrong for several
1141 * reasons including that different results are returned on
1142 * different architectures. It isn't critical that we get exactly
1143 * the same return value as before (we always csum_fold before
1144 * testing, and that removes any differences). However as we
1145 * know that csum_partial always returned a 16bit value on
1146 * alphas, do a fold to maximise conformity to previous behaviour.
1147 */
1148 sb->sb_csum = md_csum_fold(disk_csum);
1149 #else
1150 sb->sb_csum = disk_csum;
1151 #endif
1152 return csum;
1153 }
1154
1155 /*
1156 * Handle superblock details.
1157 * We want to be able to handle multiple superblock formats
1158 * so we have a common interface to them all, and an array of
1159 * different handlers.
1160 * We rely on user-space to write the initial superblock, and support
1161 * reading and updating of superblocks.
1162 * Interface methods are:
1163 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1164 * loads and validates a superblock on dev.
1165 * if refdev != NULL, compare superblocks on both devices
1166 * Return:
1167 * 0 - dev has a superblock that is compatible with refdev
1168 * 1 - dev has a superblock that is compatible and newer than refdev
1169 * so dev should be used as the refdev in future
1170 * -EINVAL superblock incompatible or invalid
1171 * -othererror e.g. -EIO
1172 *
1173 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1174 * Verify that dev is acceptable into mddev.
1175 * The first time, mddev->raid_disks will be 0, and data from
1176 * dev should be merged in. Subsequent calls check that dev
1177 * is new enough. Return 0 or -EINVAL
1178 *
1179 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1180 * Update the superblock for rdev with data in mddev
1181 * This does not write to disc.
1182 *
1183 */
1184
1185 struct super_type {
1186 char *name;
1187 struct module *owner;
1188 int (*load_super)(struct md_rdev *rdev,
1189 struct md_rdev *refdev,
1190 int minor_version);
1191 int (*validate_super)(struct mddev *mddev,
1192 struct md_rdev *rdev);
1193 void (*sync_super)(struct mddev *mddev,
1194 struct md_rdev *rdev);
1195 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1196 sector_t num_sectors);
1197 int (*allow_new_offset)(struct md_rdev *rdev,
1198 unsigned long long new_offset);
1199 };
1200
1201 /*
1202 * Check that the given mddev has no bitmap.
1203 *
1204 * This function is called from the run method of all personalities that do not
1205 * support bitmaps. It prints an error message and returns non-zero if mddev
1206 * has a bitmap. Otherwise, it returns 0.
1207 *
1208 */
1209 int md_check_no_bitmap(struct mddev *mddev)
1210 {
1211 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1212 return 0;
1213 pr_warn("%s: bitmaps are not supported for %s\n",
1214 mdname(mddev), mddev->pers->name);
1215 return 1;
1216 }
1217 EXPORT_SYMBOL(md_check_no_bitmap);
1218
1219 /*
1220 * load_super for 0.90.0
1221 */
1222 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1223 {
1224 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1225 mdp_super_t *sb;
1226 int ret;
1227 bool spare_disk = true;
1228
1229 /*
1230 * Calculate the position of the superblock (512byte sectors),
1231 * it's at the end of the disk.
1232 *
1233 * It also happens to be a multiple of 4Kb.
1234 */
1235 rdev->sb_start = calc_dev_sboffset(rdev);
1236
1237 ret = read_disk_sb(rdev, MD_SB_BYTES);
1238 if (ret)
1239 return ret;
1240
1241 ret = -EINVAL;
1242
1243 bdevname(rdev->bdev, b);
1244 sb = page_address(rdev->sb_page);
1245
1246 if (sb->md_magic != MD_SB_MAGIC) {
1247 pr_warn("md: invalid raid superblock magic on %s\n", b);
1248 goto abort;
1249 }
1250
1251 if (sb->major_version != 0 ||
1252 sb->minor_version < 90 ||
1253 sb->minor_version > 91) {
1254 pr_warn("Bad version number %d.%d on %s\n",
1255 sb->major_version, sb->minor_version, b);
1256 goto abort;
1257 }
1258
1259 if (sb->raid_disks <= 0)
1260 goto abort;
1261
1262 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1263 pr_warn("md: invalid superblock checksum on %s\n", b);
1264 goto abort;
1265 }
1266
1267 rdev->preferred_minor = sb->md_minor;
1268 rdev->data_offset = 0;
1269 rdev->new_data_offset = 0;
1270 rdev->sb_size = MD_SB_BYTES;
1271 rdev->badblocks.shift = -1;
1272
1273 if (sb->level == LEVEL_MULTIPATH)
1274 rdev->desc_nr = -1;
1275 else
1276 rdev->desc_nr = sb->this_disk.number;
1277
1278 /* not spare disk, or LEVEL_MULTIPATH */
1279 if (sb->level == LEVEL_MULTIPATH ||
1280 (rdev->desc_nr >= 0 &&
1281 rdev->desc_nr < MD_SB_DISKS &&
1282 sb->disks[rdev->desc_nr].state &
1283 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1284 spare_disk = false;
1285
1286 if (!refdev) {
1287 if (!spare_disk)
1288 ret = 1;
1289 else
1290 ret = 0;
1291 } else {
1292 __u64 ev1, ev2;
1293 mdp_super_t *refsb = page_address(refdev->sb_page);
1294 if (!md_uuid_equal(refsb, sb)) {
1295 pr_warn("md: %s has different UUID to %s\n",
1296 b, bdevname(refdev->bdev,b2));
1297 goto abort;
1298 }
1299 if (!md_sb_equal(refsb, sb)) {
1300 pr_warn("md: %s has same UUID but different superblock to %s\n",
1301 b, bdevname(refdev->bdev, b2));
1302 goto abort;
1303 }
1304 ev1 = md_event(sb);
1305 ev2 = md_event(refsb);
1306
1307 if (!spare_disk && ev1 > ev2)
1308 ret = 1;
1309 else
1310 ret = 0;
1311 }
1312 rdev->sectors = rdev->sb_start;
1313 /* Limit to 4TB as metadata cannot record more than that.
1314 * (not needed for Linear and RAID0 as metadata doesn't
1315 * record this size)
1316 */
1317 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1318 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1319
1320 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1321 /* "this cannot possibly happen" ... */
1322 ret = -EINVAL;
1323
1324 abort:
1325 return ret;
1326 }
1327
1328 /*
1329 * validate_super for 0.90.0
1330 */
1331 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1332 {
1333 mdp_disk_t *desc;
1334 mdp_super_t *sb = page_address(rdev->sb_page);
1335 __u64 ev1 = md_event(sb);
1336
1337 rdev->raid_disk = -1;
1338 clear_bit(Faulty, &rdev->flags);
1339 clear_bit(In_sync, &rdev->flags);
1340 clear_bit(Bitmap_sync, &rdev->flags);
1341 clear_bit(WriteMostly, &rdev->flags);
1342
1343 if (mddev->raid_disks == 0) {
1344 mddev->major_version = 0;
1345 mddev->minor_version = sb->minor_version;
1346 mddev->patch_version = sb->patch_version;
1347 mddev->external = 0;
1348 mddev->chunk_sectors = sb->chunk_size >> 9;
1349 mddev->ctime = sb->ctime;
1350 mddev->utime = sb->utime;
1351 mddev->level = sb->level;
1352 mddev->clevel[0] = 0;
1353 mddev->layout = sb->layout;
1354 mddev->raid_disks = sb->raid_disks;
1355 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1356 mddev->events = ev1;
1357 mddev->bitmap_info.offset = 0;
1358 mddev->bitmap_info.space = 0;
1359 /* bitmap can use 60 K after the 4K superblocks */
1360 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1361 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1362 mddev->reshape_backwards = 0;
1363
1364 if (mddev->minor_version >= 91) {
1365 mddev->reshape_position = sb->reshape_position;
1366 mddev->delta_disks = sb->delta_disks;
1367 mddev->new_level = sb->new_level;
1368 mddev->new_layout = sb->new_layout;
1369 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1370 if (mddev->delta_disks < 0)
1371 mddev->reshape_backwards = 1;
1372 } else {
1373 mddev->reshape_position = MaxSector;
1374 mddev->delta_disks = 0;
1375 mddev->new_level = mddev->level;
1376 mddev->new_layout = mddev->layout;
1377 mddev->new_chunk_sectors = mddev->chunk_sectors;
1378 }
1379 if (mddev->level == 0)
1380 mddev->layout = -1;
1381
1382 if (sb->state & (1<<MD_SB_CLEAN))
1383 mddev->recovery_cp = MaxSector;
1384 else {
1385 if (sb->events_hi == sb->cp_events_hi &&
1386 sb->events_lo == sb->cp_events_lo) {
1387 mddev->recovery_cp = sb->recovery_cp;
1388 } else
1389 mddev->recovery_cp = 0;
1390 }
1391
1392 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1393 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1394 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1395 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1396
1397 mddev->max_disks = MD_SB_DISKS;
1398
1399 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1400 mddev->bitmap_info.file == NULL) {
1401 mddev->bitmap_info.offset =
1402 mddev->bitmap_info.default_offset;
1403 mddev->bitmap_info.space =
1404 mddev->bitmap_info.default_space;
1405 }
1406
1407 } else if (mddev->pers == NULL) {
1408 /* Insist on good event counter while assembling, except
1409 * for spares (which don't need an event count) */
1410 ++ev1;
1411 if (sb->disks[rdev->desc_nr].state & (
1412 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1413 if (ev1 < mddev->events)
1414 return -EINVAL;
1415 } else if (mddev->bitmap) {
1416 /* if adding to array with a bitmap, then we can accept an
1417 * older device ... but not too old.
1418 */
1419 if (ev1 < mddev->bitmap->events_cleared)
1420 return 0;
1421 if (ev1 < mddev->events)
1422 set_bit(Bitmap_sync, &rdev->flags);
1423 } else {
1424 if (ev1 < mddev->events)
1425 /* just a hot-add of a new device, leave raid_disk at -1 */
1426 return 0;
1427 }
1428
1429 if (mddev->level != LEVEL_MULTIPATH) {
1430 desc = sb->disks + rdev->desc_nr;
1431
1432 if (desc->state & (1<<MD_DISK_FAULTY))
1433 set_bit(Faulty, &rdev->flags);
1434 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1435 desc->raid_disk < mddev->raid_disks */) {
1436 set_bit(In_sync, &rdev->flags);
1437 rdev->raid_disk = desc->raid_disk;
1438 rdev->saved_raid_disk = desc->raid_disk;
1439 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1440 /* active but not in sync implies recovery up to
1441 * reshape position. We don't know exactly where
1442 * that is, so set to zero for now */
1443 if (mddev->minor_version >= 91) {
1444 rdev->recovery_offset = 0;
1445 rdev->raid_disk = desc->raid_disk;
1446 }
1447 }
1448 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1449 set_bit(WriteMostly, &rdev->flags);
1450 if (desc->state & (1<<MD_DISK_FAILFAST))
1451 set_bit(FailFast, &rdev->flags);
1452 } else /* MULTIPATH are always insync */
1453 set_bit(In_sync, &rdev->flags);
1454 return 0;
1455 }
1456
1457 /*
1458 * sync_super for 0.90.0
1459 */
1460 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1461 {
1462 mdp_super_t *sb;
1463 struct md_rdev *rdev2;
1464 int next_spare = mddev->raid_disks;
1465
1466 /* make rdev->sb match mddev data..
1467 *
1468 * 1/ zero out disks
1469 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1470 * 3/ any empty disks < next_spare become removed
1471 *
1472 * disks[0] gets initialised to REMOVED because
1473 * we cannot be sure from other fields if it has
1474 * been initialised or not.
1475 */
1476 int i;
1477 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1478
1479 rdev->sb_size = MD_SB_BYTES;
1480
1481 sb = page_address(rdev->sb_page);
1482
1483 memset(sb, 0, sizeof(*sb));
1484
1485 sb->md_magic = MD_SB_MAGIC;
1486 sb->major_version = mddev->major_version;
1487 sb->patch_version = mddev->patch_version;
1488 sb->gvalid_words = 0; /* ignored */
1489 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1490 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1491 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1492 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1493
1494 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1495 sb->level = mddev->level;
1496 sb->size = mddev->dev_sectors / 2;
1497 sb->raid_disks = mddev->raid_disks;
1498 sb->md_minor = mddev->md_minor;
1499 sb->not_persistent = 0;
1500 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1501 sb->state = 0;
1502 sb->events_hi = (mddev->events>>32);
1503 sb->events_lo = (u32)mddev->events;
1504
1505 if (mddev->reshape_position == MaxSector)
1506 sb->minor_version = 90;
1507 else {
1508 sb->minor_version = 91;
1509 sb->reshape_position = mddev->reshape_position;
1510 sb->new_level = mddev->new_level;
1511 sb->delta_disks = mddev->delta_disks;
1512 sb->new_layout = mddev->new_layout;
1513 sb->new_chunk = mddev->new_chunk_sectors << 9;
1514 }
1515 mddev->minor_version = sb->minor_version;
1516 if (mddev->in_sync)
1517 {
1518 sb->recovery_cp = mddev->recovery_cp;
1519 sb->cp_events_hi = (mddev->events>>32);
1520 sb->cp_events_lo = (u32)mddev->events;
1521 if (mddev->recovery_cp == MaxSector)
1522 sb->state = (1<< MD_SB_CLEAN);
1523 } else
1524 sb->recovery_cp = 0;
1525
1526 sb->layout = mddev->layout;
1527 sb->chunk_size = mddev->chunk_sectors << 9;
1528
1529 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1530 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1531
1532 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1533 rdev_for_each(rdev2, mddev) {
1534 mdp_disk_t *d;
1535 int desc_nr;
1536 int is_active = test_bit(In_sync, &rdev2->flags);
1537
1538 if (rdev2->raid_disk >= 0 &&
1539 sb->minor_version >= 91)
1540 /* we have nowhere to store the recovery_offset,
1541 * but if it is not below the reshape_position,
1542 * we can piggy-back on that.
1543 */
1544 is_active = 1;
1545 if (rdev2->raid_disk < 0 ||
1546 test_bit(Faulty, &rdev2->flags))
1547 is_active = 0;
1548 if (is_active)
1549 desc_nr = rdev2->raid_disk;
1550 else
1551 desc_nr = next_spare++;
1552 rdev2->desc_nr = desc_nr;
1553 d = &sb->disks[rdev2->desc_nr];
1554 nr_disks++;
1555 d->number = rdev2->desc_nr;
1556 d->major = MAJOR(rdev2->bdev->bd_dev);
1557 d->minor = MINOR(rdev2->bdev->bd_dev);
1558 if (is_active)
1559 d->raid_disk = rdev2->raid_disk;
1560 else
1561 d->raid_disk = rdev2->desc_nr; /* compatibility */
1562 if (test_bit(Faulty, &rdev2->flags))
1563 d->state = (1<<MD_DISK_FAULTY);
1564 else if (is_active) {
1565 d->state = (1<<MD_DISK_ACTIVE);
1566 if (test_bit(In_sync, &rdev2->flags))
1567 d->state |= (1<<MD_DISK_SYNC);
1568 active++;
1569 working++;
1570 } else {
1571 d->state = 0;
1572 spare++;
1573 working++;
1574 }
1575 if (test_bit(WriteMostly, &rdev2->flags))
1576 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1577 if (test_bit(FailFast, &rdev2->flags))
1578 d->state |= (1<<MD_DISK_FAILFAST);
1579 }
1580 /* now set the "removed" and "faulty" bits on any missing devices */
1581 for (i=0 ; i < mddev->raid_disks ; i++) {
1582 mdp_disk_t *d = &sb->disks[i];
1583 if (d->state == 0 && d->number == 0) {
1584 d->number = i;
1585 d->raid_disk = i;
1586 d->state = (1<<MD_DISK_REMOVED);
1587 d->state |= (1<<MD_DISK_FAULTY);
1588 failed++;
1589 }
1590 }
1591 sb->nr_disks = nr_disks;
1592 sb->active_disks = active;
1593 sb->working_disks = working;
1594 sb->failed_disks = failed;
1595 sb->spare_disks = spare;
1596
1597 sb->this_disk = sb->disks[rdev->desc_nr];
1598 sb->sb_csum = calc_sb_csum(sb);
1599 }
1600
1601 /*
1602 * rdev_size_change for 0.90.0
1603 */
1604 static unsigned long long
1605 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1606 {
1607 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1608 return 0; /* component must fit device */
1609 if (rdev->mddev->bitmap_info.offset)
1610 return 0; /* can't move bitmap */
1611 rdev->sb_start = calc_dev_sboffset(rdev);
1612 if (!num_sectors || num_sectors > rdev->sb_start)
1613 num_sectors = rdev->sb_start;
1614 /* Limit to 4TB as metadata cannot record more than that.
1615 * 4TB == 2^32 KB, or 2*2^32 sectors.
1616 */
1617 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1618 num_sectors = (sector_t)(2ULL << 32) - 2;
1619 do {
1620 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1621 rdev->sb_page);
1622 } while (md_super_wait(rdev->mddev) < 0);
1623 return num_sectors;
1624 }
1625
1626 static int
1627 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1628 {
1629 /* non-zero offset changes not possible with v0.90 */
1630 return new_offset == 0;
1631 }
1632
1633 /*
1634 * version 1 superblock
1635 */
1636
1637 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1638 {
1639 __le32 disk_csum;
1640 u32 csum;
1641 unsigned long long newcsum;
1642 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1643 __le32 *isuper = (__le32*)sb;
1644
1645 disk_csum = sb->sb_csum;
1646 sb->sb_csum = 0;
1647 newcsum = 0;
1648 for (; size >= 4; size -= 4)
1649 newcsum += le32_to_cpu(*isuper++);
1650
1651 if (size == 2)
1652 newcsum += le16_to_cpu(*(__le16*) isuper);
1653
1654 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1655 sb->sb_csum = disk_csum;
1656 return cpu_to_le32(csum);
1657 }
1658
1659 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1660 {
1661 struct mdp_superblock_1 *sb;
1662 int ret;
1663 sector_t sb_start;
1664 sector_t sectors;
1665 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1666 int bmask;
1667 bool spare_disk = true;
1668
1669 /*
1670 * Calculate the position of the superblock in 512byte sectors.
1671 * It is always aligned to a 4K boundary and
1672 * depeding on minor_version, it can be:
1673 * 0: At least 8K, but less than 12K, from end of device
1674 * 1: At start of device
1675 * 2: 4K from start of device.
1676 */
1677 switch(minor_version) {
1678 case 0:
1679 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1680 sb_start -= 8*2;
1681 sb_start &= ~(sector_t)(4*2-1);
1682 break;
1683 case 1:
1684 sb_start = 0;
1685 break;
1686 case 2:
1687 sb_start = 8;
1688 break;
1689 default:
1690 return -EINVAL;
1691 }
1692 rdev->sb_start = sb_start;
1693
1694 /* superblock is rarely larger than 1K, but it can be larger,
1695 * and it is safe to read 4k, so we do that
1696 */
1697 ret = read_disk_sb(rdev, 4096);
1698 if (ret) return ret;
1699
1700 sb = page_address(rdev->sb_page);
1701
1702 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1703 sb->major_version != cpu_to_le32(1) ||
1704 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1705 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1706 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1707 return -EINVAL;
1708
1709 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1710 pr_warn("md: invalid superblock checksum on %s\n",
1711 bdevname(rdev->bdev,b));
1712 return -EINVAL;
1713 }
1714 if (le64_to_cpu(sb->data_size) < 10) {
1715 pr_warn("md: data_size too small on %s\n",
1716 bdevname(rdev->bdev,b));
1717 return -EINVAL;
1718 }
1719 if (sb->pad0 ||
1720 sb->pad3[0] ||
1721 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1722 /* Some padding is non-zero, might be a new feature */
1723 return -EINVAL;
1724
1725 rdev->preferred_minor = 0xffff;
1726 rdev->data_offset = le64_to_cpu(sb->data_offset);
1727 rdev->new_data_offset = rdev->data_offset;
1728 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1729 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1730 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1731 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1732
1733 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1734 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1735 if (rdev->sb_size & bmask)
1736 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1737
1738 if (minor_version
1739 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1740 return -EINVAL;
1741 if (minor_version
1742 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1743 return -EINVAL;
1744
1745 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1746 rdev->desc_nr = -1;
1747 else
1748 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1749
1750 if (!rdev->bb_page) {
1751 rdev->bb_page = alloc_page(GFP_KERNEL);
1752 if (!rdev->bb_page)
1753 return -ENOMEM;
1754 }
1755 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1756 rdev->badblocks.count == 0) {
1757 /* need to load the bad block list.
1758 * Currently we limit it to one page.
1759 */
1760 s32 offset;
1761 sector_t bb_sector;
1762 __le64 *bbp;
1763 int i;
1764 int sectors = le16_to_cpu(sb->bblog_size);
1765 if (sectors > (PAGE_SIZE / 512))
1766 return -EINVAL;
1767 offset = le32_to_cpu(sb->bblog_offset);
1768 if (offset == 0)
1769 return -EINVAL;
1770 bb_sector = (long long)offset;
1771 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1772 rdev->bb_page, REQ_OP_READ, 0, true))
1773 return -EIO;
1774 bbp = (__le64 *)page_address(rdev->bb_page);
1775 rdev->badblocks.shift = sb->bblog_shift;
1776 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1777 u64 bb = le64_to_cpu(*bbp);
1778 int count = bb & (0x3ff);
1779 u64 sector = bb >> 10;
1780 sector <<= sb->bblog_shift;
1781 count <<= sb->bblog_shift;
1782 if (bb + 1 == 0)
1783 break;
1784 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1785 return -EINVAL;
1786 }
1787 } else if (sb->bblog_offset != 0)
1788 rdev->badblocks.shift = 0;
1789
1790 if ((le32_to_cpu(sb->feature_map) &
1791 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1792 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1793 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1794 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1795 }
1796
1797 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1798 sb->level != 0)
1799 return -EINVAL;
1800
1801 /* not spare disk, or LEVEL_MULTIPATH */
1802 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1803 (rdev->desc_nr >= 0 &&
1804 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1805 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1806 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1807 spare_disk = false;
1808
1809 if (!refdev) {
1810 if (!spare_disk)
1811 ret = 1;
1812 else
1813 ret = 0;
1814 } else {
1815 __u64 ev1, ev2;
1816 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1817
1818 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1819 sb->level != refsb->level ||
1820 sb->layout != refsb->layout ||
1821 sb->chunksize != refsb->chunksize) {
1822 pr_warn("md: %s has strangely different superblock to %s\n",
1823 bdevname(rdev->bdev,b),
1824 bdevname(refdev->bdev,b2));
1825 return -EINVAL;
1826 }
1827 ev1 = le64_to_cpu(sb->events);
1828 ev2 = le64_to_cpu(refsb->events);
1829
1830 if (!spare_disk && ev1 > ev2)
1831 ret = 1;
1832 else
1833 ret = 0;
1834 }
1835 if (minor_version) {
1836 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1837 sectors -= rdev->data_offset;
1838 } else
1839 sectors = rdev->sb_start;
1840 if (sectors < le64_to_cpu(sb->data_size))
1841 return -EINVAL;
1842 rdev->sectors = le64_to_cpu(sb->data_size);
1843 return ret;
1844 }
1845
1846 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1847 {
1848 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1849 __u64 ev1 = le64_to_cpu(sb->events);
1850
1851 rdev->raid_disk = -1;
1852 clear_bit(Faulty, &rdev->flags);
1853 clear_bit(In_sync, &rdev->flags);
1854 clear_bit(Bitmap_sync, &rdev->flags);
1855 clear_bit(WriteMostly, &rdev->flags);
1856
1857 if (mddev->raid_disks == 0) {
1858 mddev->major_version = 1;
1859 mddev->patch_version = 0;
1860 mddev->external = 0;
1861 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1862 mddev->ctime = le64_to_cpu(sb->ctime);
1863 mddev->utime = le64_to_cpu(sb->utime);
1864 mddev->level = le32_to_cpu(sb->level);
1865 mddev->clevel[0] = 0;
1866 mddev->layout = le32_to_cpu(sb->layout);
1867 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1868 mddev->dev_sectors = le64_to_cpu(sb->size);
1869 mddev->events = ev1;
1870 mddev->bitmap_info.offset = 0;
1871 mddev->bitmap_info.space = 0;
1872 /* Default location for bitmap is 1K after superblock
1873 * using 3K - total of 4K
1874 */
1875 mddev->bitmap_info.default_offset = 1024 >> 9;
1876 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1877 mddev->reshape_backwards = 0;
1878
1879 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1880 memcpy(mddev->uuid, sb->set_uuid, 16);
1881
1882 mddev->max_disks = (4096-256)/2;
1883
1884 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1885 mddev->bitmap_info.file == NULL) {
1886 mddev->bitmap_info.offset =
1887 (__s32)le32_to_cpu(sb->bitmap_offset);
1888 /* Metadata doesn't record how much space is available.
1889 * For 1.0, we assume we can use up to the superblock
1890 * if before, else to 4K beyond superblock.
1891 * For others, assume no change is possible.
1892 */
1893 if (mddev->minor_version > 0)
1894 mddev->bitmap_info.space = 0;
1895 else if (mddev->bitmap_info.offset > 0)
1896 mddev->bitmap_info.space =
1897 8 - mddev->bitmap_info.offset;
1898 else
1899 mddev->bitmap_info.space =
1900 -mddev->bitmap_info.offset;
1901 }
1902
1903 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1904 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1905 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1906 mddev->new_level = le32_to_cpu(sb->new_level);
1907 mddev->new_layout = le32_to_cpu(sb->new_layout);
1908 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1909 if (mddev->delta_disks < 0 ||
1910 (mddev->delta_disks == 0 &&
1911 (le32_to_cpu(sb->feature_map)
1912 & MD_FEATURE_RESHAPE_BACKWARDS)))
1913 mddev->reshape_backwards = 1;
1914 } else {
1915 mddev->reshape_position = MaxSector;
1916 mddev->delta_disks = 0;
1917 mddev->new_level = mddev->level;
1918 mddev->new_layout = mddev->layout;
1919 mddev->new_chunk_sectors = mddev->chunk_sectors;
1920 }
1921
1922 if (mddev->level == 0 &&
1923 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1924 mddev->layout = -1;
1925
1926 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1927 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1928
1929 if (le32_to_cpu(sb->feature_map) &
1930 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1931 if (le32_to_cpu(sb->feature_map) &
1932 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1933 return -EINVAL;
1934 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1935 (le32_to_cpu(sb->feature_map) &
1936 MD_FEATURE_MULTIPLE_PPLS))
1937 return -EINVAL;
1938 set_bit(MD_HAS_PPL, &mddev->flags);
1939 }
1940 } else if (mddev->pers == NULL) {
1941 /* Insist of good event counter while assembling, except for
1942 * spares (which don't need an event count) */
1943 ++ev1;
1944 if (rdev->desc_nr >= 0 &&
1945 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1946 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1947 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1948 if (ev1 < mddev->events)
1949 return -EINVAL;
1950 } else if (mddev->bitmap) {
1951 /* If adding to array with a bitmap, then we can accept an
1952 * older device, but not too old.
1953 */
1954 if (ev1 < mddev->bitmap->events_cleared)
1955 return 0;
1956 if (ev1 < mddev->events)
1957 set_bit(Bitmap_sync, &rdev->flags);
1958 } else {
1959 if (ev1 < mddev->events)
1960 /* just a hot-add of a new device, leave raid_disk at -1 */
1961 return 0;
1962 }
1963 if (mddev->level != LEVEL_MULTIPATH) {
1964 int role;
1965 if (rdev->desc_nr < 0 ||
1966 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1967 role = MD_DISK_ROLE_SPARE;
1968 rdev->desc_nr = -1;
1969 } else
1970 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1971 switch(role) {
1972 case MD_DISK_ROLE_SPARE: /* spare */
1973 break;
1974 case MD_DISK_ROLE_FAULTY: /* faulty */
1975 set_bit(Faulty, &rdev->flags);
1976 break;
1977 case MD_DISK_ROLE_JOURNAL: /* journal device */
1978 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1979 /* journal device without journal feature */
1980 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1981 return -EINVAL;
1982 }
1983 set_bit(Journal, &rdev->flags);
1984 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1985 rdev->raid_disk = 0;
1986 break;
1987 default:
1988 rdev->saved_raid_disk = role;
1989 if ((le32_to_cpu(sb->feature_map) &
1990 MD_FEATURE_RECOVERY_OFFSET)) {
1991 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1992 if (!(le32_to_cpu(sb->feature_map) &
1993 MD_FEATURE_RECOVERY_BITMAP))
1994 rdev->saved_raid_disk = -1;
1995 } else {
1996 /*
1997 * If the array is FROZEN, then the device can't
1998 * be in_sync with rest of array.
1999 */
2000 if (!test_bit(MD_RECOVERY_FROZEN,
2001 &mddev->recovery))
2002 set_bit(In_sync, &rdev->flags);
2003 }
2004 rdev->raid_disk = role;
2005 break;
2006 }
2007 if (sb->devflags & WriteMostly1)
2008 set_bit(WriteMostly, &rdev->flags);
2009 if (sb->devflags & FailFast1)
2010 set_bit(FailFast, &rdev->flags);
2011 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2012 set_bit(Replacement, &rdev->flags);
2013 } else /* MULTIPATH are always insync */
2014 set_bit(In_sync, &rdev->flags);
2015
2016 return 0;
2017 }
2018
2019 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2020 {
2021 struct mdp_superblock_1 *sb;
2022 struct md_rdev *rdev2;
2023 int max_dev, i;
2024 /* make rdev->sb match mddev and rdev data. */
2025
2026 sb = page_address(rdev->sb_page);
2027
2028 sb->feature_map = 0;
2029 sb->pad0 = 0;
2030 sb->recovery_offset = cpu_to_le64(0);
2031 memset(sb->pad3, 0, sizeof(sb->pad3));
2032
2033 sb->utime = cpu_to_le64((__u64)mddev->utime);
2034 sb->events = cpu_to_le64(mddev->events);
2035 if (mddev->in_sync)
2036 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2037 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2038 sb->resync_offset = cpu_to_le64(MaxSector);
2039 else
2040 sb->resync_offset = cpu_to_le64(0);
2041
2042 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2043
2044 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2045 sb->size = cpu_to_le64(mddev->dev_sectors);
2046 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2047 sb->level = cpu_to_le32(mddev->level);
2048 sb->layout = cpu_to_le32(mddev->layout);
2049 if (test_bit(FailFast, &rdev->flags))
2050 sb->devflags |= FailFast1;
2051 else
2052 sb->devflags &= ~FailFast1;
2053
2054 if (test_bit(WriteMostly, &rdev->flags))
2055 sb->devflags |= WriteMostly1;
2056 else
2057 sb->devflags &= ~WriteMostly1;
2058 sb->data_offset = cpu_to_le64(rdev->data_offset);
2059 sb->data_size = cpu_to_le64(rdev->sectors);
2060
2061 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2062 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2063 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2064 }
2065
2066 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2067 !test_bit(In_sync, &rdev->flags)) {
2068 sb->feature_map |=
2069 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2070 sb->recovery_offset =
2071 cpu_to_le64(rdev->recovery_offset);
2072 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2073 sb->feature_map |=
2074 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2075 }
2076 /* Note: recovery_offset and journal_tail share space */
2077 if (test_bit(Journal, &rdev->flags))
2078 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2079 if (test_bit(Replacement, &rdev->flags))
2080 sb->feature_map |=
2081 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2082
2083 if (mddev->reshape_position != MaxSector) {
2084 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2085 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2086 sb->new_layout = cpu_to_le32(mddev->new_layout);
2087 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2088 sb->new_level = cpu_to_le32(mddev->new_level);
2089 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2090 if (mddev->delta_disks == 0 &&
2091 mddev->reshape_backwards)
2092 sb->feature_map
2093 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2094 if (rdev->new_data_offset != rdev->data_offset) {
2095 sb->feature_map
2096 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2097 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2098 - rdev->data_offset));
2099 }
2100 }
2101
2102 if (mddev_is_clustered(mddev))
2103 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2104
2105 if (rdev->badblocks.count == 0)
2106 /* Nothing to do for bad blocks*/ ;
2107 else if (sb->bblog_offset == 0)
2108 /* Cannot record bad blocks on this device */
2109 md_error(mddev, rdev);
2110 else {
2111 struct badblocks *bb = &rdev->badblocks;
2112 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2113 u64 *p = bb->page;
2114 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2115 if (bb->changed) {
2116 unsigned seq;
2117
2118 retry:
2119 seq = read_seqbegin(&bb->lock);
2120
2121 memset(bbp, 0xff, PAGE_SIZE);
2122
2123 for (i = 0 ; i < bb->count ; i++) {
2124 u64 internal_bb = p[i];
2125 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2126 | BB_LEN(internal_bb));
2127 bbp[i] = cpu_to_le64(store_bb);
2128 }
2129 bb->changed = 0;
2130 if (read_seqretry(&bb->lock, seq))
2131 goto retry;
2132
2133 bb->sector = (rdev->sb_start +
2134 (int)le32_to_cpu(sb->bblog_offset));
2135 bb->size = le16_to_cpu(sb->bblog_size);
2136 }
2137 }
2138
2139 max_dev = 0;
2140 rdev_for_each(rdev2, mddev)
2141 if (rdev2->desc_nr+1 > max_dev)
2142 max_dev = rdev2->desc_nr+1;
2143
2144 if (max_dev > le32_to_cpu(sb->max_dev)) {
2145 int bmask;
2146 sb->max_dev = cpu_to_le32(max_dev);
2147 rdev->sb_size = max_dev * 2 + 256;
2148 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2149 if (rdev->sb_size & bmask)
2150 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2151 } else
2152 max_dev = le32_to_cpu(sb->max_dev);
2153
2154 for (i=0; i<max_dev;i++)
2155 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2156
2157 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2158 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2159
2160 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2161 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2162 sb->feature_map |=
2163 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2164 else
2165 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2166 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2167 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2168 }
2169
2170 rdev_for_each(rdev2, mddev) {
2171 i = rdev2->desc_nr;
2172 if (test_bit(Faulty, &rdev2->flags))
2173 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2174 else if (test_bit(In_sync, &rdev2->flags))
2175 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2176 else if (test_bit(Journal, &rdev2->flags))
2177 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2178 else if (rdev2->raid_disk >= 0)
2179 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2180 else
2181 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2182 }
2183
2184 sb->sb_csum = calc_sb_1_csum(sb);
2185 }
2186
2187 static sector_t super_1_choose_bm_space(sector_t dev_size)
2188 {
2189 sector_t bm_space;
2190
2191 /* if the device is bigger than 8Gig, save 64k for bitmap
2192 * usage, if bigger than 200Gig, save 128k
2193 */
2194 if (dev_size < 64*2)
2195 bm_space = 0;
2196 else if (dev_size - 64*2 >= 200*1024*1024*2)
2197 bm_space = 128*2;
2198 else if (dev_size - 4*2 > 8*1024*1024*2)
2199 bm_space = 64*2;
2200 else
2201 bm_space = 4*2;
2202 return bm_space;
2203 }
2204
2205 static unsigned long long
2206 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2207 {
2208 struct mdp_superblock_1 *sb;
2209 sector_t max_sectors;
2210 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2211 return 0; /* component must fit device */
2212 if (rdev->data_offset != rdev->new_data_offset)
2213 return 0; /* too confusing */
2214 if (rdev->sb_start < rdev->data_offset) {
2215 /* minor versions 1 and 2; superblock before data */
2216 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2217 max_sectors -= rdev->data_offset;
2218 if (!num_sectors || num_sectors > max_sectors)
2219 num_sectors = max_sectors;
2220 } else if (rdev->mddev->bitmap_info.offset) {
2221 /* minor version 0 with bitmap we can't move */
2222 return 0;
2223 } else {
2224 /* minor version 0; superblock after data */
2225 sector_t sb_start, bm_space;
2226 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2227
2228 /* 8K is for superblock */
2229 sb_start = dev_size - 8*2;
2230 sb_start &= ~(sector_t)(4*2 - 1);
2231
2232 bm_space = super_1_choose_bm_space(dev_size);
2233
2234 /* Space that can be used to store date needs to decrease
2235 * superblock bitmap space and bad block space(4K)
2236 */
2237 max_sectors = sb_start - bm_space - 4*2;
2238
2239 if (!num_sectors || num_sectors > max_sectors)
2240 num_sectors = max_sectors;
2241 }
2242 sb = page_address(rdev->sb_page);
2243 sb->data_size = cpu_to_le64(num_sectors);
2244 sb->super_offset = cpu_to_le64(rdev->sb_start);
2245 sb->sb_csum = calc_sb_1_csum(sb);
2246 do {
2247 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2248 rdev->sb_page);
2249 } while (md_super_wait(rdev->mddev) < 0);
2250 return num_sectors;
2251
2252 }
2253
2254 static int
2255 super_1_allow_new_offset(struct md_rdev *rdev,
2256 unsigned long long new_offset)
2257 {
2258 /* All necessary checks on new >= old have been done */
2259 struct bitmap *bitmap;
2260 if (new_offset >= rdev->data_offset)
2261 return 1;
2262
2263 /* with 1.0 metadata, there is no metadata to tread on
2264 * so we can always move back */
2265 if (rdev->mddev->minor_version == 0)
2266 return 1;
2267
2268 /* otherwise we must be sure not to step on
2269 * any metadata, so stay:
2270 * 36K beyond start of superblock
2271 * beyond end of badblocks
2272 * beyond write-intent bitmap
2273 */
2274 if (rdev->sb_start + (32+4)*2 > new_offset)
2275 return 0;
2276 bitmap = rdev->mddev->bitmap;
2277 if (bitmap && !rdev->mddev->bitmap_info.file &&
2278 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2279 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2280 return 0;
2281 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2282 return 0;
2283
2284 return 1;
2285 }
2286
2287 static struct super_type super_types[] = {
2288 [0] = {
2289 .name = "0.90.0",
2290 .owner = THIS_MODULE,
2291 .load_super = super_90_load,
2292 .validate_super = super_90_validate,
2293 .sync_super = super_90_sync,
2294 .rdev_size_change = super_90_rdev_size_change,
2295 .allow_new_offset = super_90_allow_new_offset,
2296 },
2297 [1] = {
2298 .name = "md-1",
2299 .owner = THIS_MODULE,
2300 .load_super = super_1_load,
2301 .validate_super = super_1_validate,
2302 .sync_super = super_1_sync,
2303 .rdev_size_change = super_1_rdev_size_change,
2304 .allow_new_offset = super_1_allow_new_offset,
2305 },
2306 };
2307
2308 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2309 {
2310 if (mddev->sync_super) {
2311 mddev->sync_super(mddev, rdev);
2312 return;
2313 }
2314
2315 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2316
2317 super_types[mddev->major_version].sync_super(mddev, rdev);
2318 }
2319
2320 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2321 {
2322 struct md_rdev *rdev, *rdev2;
2323
2324 rcu_read_lock();
2325 rdev_for_each_rcu(rdev, mddev1) {
2326 if (test_bit(Faulty, &rdev->flags) ||
2327 test_bit(Journal, &rdev->flags) ||
2328 rdev->raid_disk == -1)
2329 continue;
2330 rdev_for_each_rcu(rdev2, mddev2) {
2331 if (test_bit(Faulty, &rdev2->flags) ||
2332 test_bit(Journal, &rdev2->flags) ||
2333 rdev2->raid_disk == -1)
2334 continue;
2335 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2336 rcu_read_unlock();
2337 return 1;
2338 }
2339 }
2340 }
2341 rcu_read_unlock();
2342 return 0;
2343 }
2344
2345 static LIST_HEAD(pending_raid_disks);
2346
2347 /*
2348 * Try to register data integrity profile for an mddev
2349 *
2350 * This is called when an array is started and after a disk has been kicked
2351 * from the array. It only succeeds if all working and active component devices
2352 * are integrity capable with matching profiles.
2353 */
2354 int md_integrity_register(struct mddev *mddev)
2355 {
2356 struct md_rdev *rdev, *reference = NULL;
2357
2358 if (list_empty(&mddev->disks))
2359 return 0; /* nothing to do */
2360 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2361 return 0; /* shouldn't register, or already is */
2362 rdev_for_each(rdev, mddev) {
2363 /* skip spares and non-functional disks */
2364 if (test_bit(Faulty, &rdev->flags))
2365 continue;
2366 if (rdev->raid_disk < 0)
2367 continue;
2368 if (!reference) {
2369 /* Use the first rdev as the reference */
2370 reference = rdev;
2371 continue;
2372 }
2373 /* does this rdev's profile match the reference profile? */
2374 if (blk_integrity_compare(reference->bdev->bd_disk,
2375 rdev->bdev->bd_disk) < 0)
2376 return -EINVAL;
2377 }
2378 if (!reference || !bdev_get_integrity(reference->bdev))
2379 return 0;
2380 /*
2381 * All component devices are integrity capable and have matching
2382 * profiles, register the common profile for the md device.
2383 */
2384 blk_integrity_register(mddev->gendisk,
2385 bdev_get_integrity(reference->bdev));
2386
2387 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2388 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2389 pr_err("md: failed to create integrity pool for %s\n",
2390 mdname(mddev));
2391 return -EINVAL;
2392 }
2393 return 0;
2394 }
2395 EXPORT_SYMBOL(md_integrity_register);
2396
2397 /*
2398 * Attempt to add an rdev, but only if it is consistent with the current
2399 * integrity profile
2400 */
2401 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2402 {
2403 struct blk_integrity *bi_mddev;
2404 char name[BDEVNAME_SIZE];
2405
2406 if (!mddev->gendisk)
2407 return 0;
2408
2409 bi_mddev = blk_get_integrity(mddev->gendisk);
2410
2411 if (!bi_mddev) /* nothing to do */
2412 return 0;
2413
2414 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2415 pr_err("%s: incompatible integrity profile for %s\n",
2416 mdname(mddev), bdevname(rdev->bdev, name));
2417 return -ENXIO;
2418 }
2419
2420 return 0;
2421 }
2422 EXPORT_SYMBOL(md_integrity_add_rdev);
2423
2424 static bool rdev_read_only(struct md_rdev *rdev)
2425 {
2426 return bdev_read_only(rdev->bdev) ||
2427 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2428 }
2429
2430 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2431 {
2432 char b[BDEVNAME_SIZE];
2433 int err;
2434
2435 /* prevent duplicates */
2436 if (find_rdev(mddev, rdev->bdev->bd_dev))
2437 return -EEXIST;
2438
2439 if (rdev_read_only(rdev) && mddev->pers)
2440 return -EROFS;
2441
2442 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2443 if (!test_bit(Journal, &rdev->flags) &&
2444 rdev->sectors &&
2445 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2446 if (mddev->pers) {
2447 /* Cannot change size, so fail
2448 * If mddev->level <= 0, then we don't care
2449 * about aligning sizes (e.g. linear)
2450 */
2451 if (mddev->level > 0)
2452 return -ENOSPC;
2453 } else
2454 mddev->dev_sectors = rdev->sectors;
2455 }
2456
2457 /* Verify rdev->desc_nr is unique.
2458 * If it is -1, assign a free number, else
2459 * check number is not in use
2460 */
2461 rcu_read_lock();
2462 if (rdev->desc_nr < 0) {
2463 int choice = 0;
2464 if (mddev->pers)
2465 choice = mddev->raid_disks;
2466 while (md_find_rdev_nr_rcu(mddev, choice))
2467 choice++;
2468 rdev->desc_nr = choice;
2469 } else {
2470 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2471 rcu_read_unlock();
2472 return -EBUSY;
2473 }
2474 }
2475 rcu_read_unlock();
2476 if (!test_bit(Journal, &rdev->flags) &&
2477 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2478 pr_warn("md: %s: array is limited to %d devices\n",
2479 mdname(mddev), mddev->max_disks);
2480 return -EBUSY;
2481 }
2482 bdevname(rdev->bdev,b);
2483 strreplace(b, '/', '!');
2484
2485 rdev->mddev = mddev;
2486 pr_debug("md: bind<%s>\n", b);
2487
2488 if (mddev->raid_disks)
2489 mddev_create_serial_pool(mddev, rdev, false);
2490
2491 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2492 goto fail;
2493
2494 /* failure here is OK */
2495 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2496 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2497 rdev->sysfs_unack_badblocks =
2498 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2499 rdev->sysfs_badblocks =
2500 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2501
2502 list_add_rcu(&rdev->same_set, &mddev->disks);
2503 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2504
2505 /* May as well allow recovery to be retried once */
2506 mddev->recovery_disabled++;
2507
2508 return 0;
2509
2510 fail:
2511 pr_warn("md: failed to register dev-%s for %s\n",
2512 b, mdname(mddev));
2513 return err;
2514 }
2515
2516 static void rdev_delayed_delete(struct work_struct *ws)
2517 {
2518 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2519 kobject_del(&rdev->kobj);
2520 kobject_put(&rdev->kobj);
2521 }
2522
2523 static void unbind_rdev_from_array(struct md_rdev *rdev)
2524 {
2525 char b[BDEVNAME_SIZE];
2526
2527 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2528 list_del_rcu(&rdev->same_set);
2529 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2530 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2531 rdev->mddev = NULL;
2532 sysfs_remove_link(&rdev->kobj, "block");
2533 sysfs_put(rdev->sysfs_state);
2534 sysfs_put(rdev->sysfs_unack_badblocks);
2535 sysfs_put(rdev->sysfs_badblocks);
2536 rdev->sysfs_state = NULL;
2537 rdev->sysfs_unack_badblocks = NULL;
2538 rdev->sysfs_badblocks = NULL;
2539 rdev->badblocks.count = 0;
2540 /* We need to delay this, otherwise we can deadlock when
2541 * writing to 'remove' to "dev/state". We also need
2542 * to delay it due to rcu usage.
2543 */
2544 synchronize_rcu();
2545 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2546 kobject_get(&rdev->kobj);
2547 queue_work(md_rdev_misc_wq, &rdev->del_work);
2548 }
2549
2550 /*
2551 * prevent the device from being mounted, repartitioned or
2552 * otherwise reused by a RAID array (or any other kernel
2553 * subsystem), by bd_claiming the device.
2554 */
2555 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2556 {
2557 int err = 0;
2558 struct block_device *bdev;
2559
2560 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2561 shared ? (struct md_rdev *)lock_rdev : rdev);
2562 if (IS_ERR(bdev)) {
2563 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2564 MAJOR(dev), MINOR(dev));
2565 return PTR_ERR(bdev);
2566 }
2567 rdev->bdev = bdev;
2568 return err;
2569 }
2570
2571 static void unlock_rdev(struct md_rdev *rdev)
2572 {
2573 struct block_device *bdev = rdev->bdev;
2574 rdev->bdev = NULL;
2575 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2576 }
2577
2578 void md_autodetect_dev(dev_t dev);
2579
2580 static void export_rdev(struct md_rdev *rdev)
2581 {
2582 char b[BDEVNAME_SIZE];
2583
2584 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2585 md_rdev_clear(rdev);
2586 #ifndef MODULE
2587 if (test_bit(AutoDetected, &rdev->flags))
2588 md_autodetect_dev(rdev->bdev->bd_dev);
2589 #endif
2590 unlock_rdev(rdev);
2591 kobject_put(&rdev->kobj);
2592 }
2593
2594 void md_kick_rdev_from_array(struct md_rdev *rdev)
2595 {
2596 unbind_rdev_from_array(rdev);
2597 export_rdev(rdev);
2598 }
2599 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2600
2601 static void export_array(struct mddev *mddev)
2602 {
2603 struct md_rdev *rdev;
2604
2605 while (!list_empty(&mddev->disks)) {
2606 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2607 same_set);
2608 md_kick_rdev_from_array(rdev);
2609 }
2610 mddev->raid_disks = 0;
2611 mddev->major_version = 0;
2612 }
2613
2614 static bool set_in_sync(struct mddev *mddev)
2615 {
2616 lockdep_assert_held(&mddev->lock);
2617 if (!mddev->in_sync) {
2618 mddev->sync_checkers++;
2619 spin_unlock(&mddev->lock);
2620 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2621 spin_lock(&mddev->lock);
2622 if (!mddev->in_sync &&
2623 percpu_ref_is_zero(&mddev->writes_pending)) {
2624 mddev->in_sync = 1;
2625 /*
2626 * Ensure ->in_sync is visible before we clear
2627 * ->sync_checkers.
2628 */
2629 smp_mb();
2630 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2631 sysfs_notify_dirent_safe(mddev->sysfs_state);
2632 }
2633 if (--mddev->sync_checkers == 0)
2634 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2635 }
2636 if (mddev->safemode == 1)
2637 mddev->safemode = 0;
2638 return mddev->in_sync;
2639 }
2640
2641 static void sync_sbs(struct mddev *mddev, int nospares)
2642 {
2643 /* Update each superblock (in-memory image), but
2644 * if we are allowed to, skip spares which already
2645 * have the right event counter, or have one earlier
2646 * (which would mean they aren't being marked as dirty
2647 * with the rest of the array)
2648 */
2649 struct md_rdev *rdev;
2650 rdev_for_each(rdev, mddev) {
2651 if (rdev->sb_events == mddev->events ||
2652 (nospares &&
2653 rdev->raid_disk < 0 &&
2654 rdev->sb_events+1 == mddev->events)) {
2655 /* Don't update this superblock */
2656 rdev->sb_loaded = 2;
2657 } else {
2658 sync_super(mddev, rdev);
2659 rdev->sb_loaded = 1;
2660 }
2661 }
2662 }
2663
2664 static bool does_sb_need_changing(struct mddev *mddev)
2665 {
2666 struct md_rdev *rdev;
2667 struct mdp_superblock_1 *sb;
2668 int role;
2669
2670 /* Find a good rdev */
2671 rdev_for_each(rdev, mddev)
2672 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2673 break;
2674
2675 /* No good device found. */
2676 if (!rdev)
2677 return false;
2678
2679 sb = page_address(rdev->sb_page);
2680 /* Check if a device has become faulty or a spare become active */
2681 rdev_for_each(rdev, mddev) {
2682 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2683 /* Device activated? */
2684 if (role == 0xffff && rdev->raid_disk >=0 &&
2685 !test_bit(Faulty, &rdev->flags))
2686 return true;
2687 /* Device turned faulty? */
2688 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2689 return true;
2690 }
2691
2692 /* Check if any mddev parameters have changed */
2693 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2694 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2695 (mddev->layout != le32_to_cpu(sb->layout)) ||
2696 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2697 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2698 return true;
2699
2700 return false;
2701 }
2702
2703 void md_update_sb(struct mddev *mddev, int force_change)
2704 {
2705 struct md_rdev *rdev;
2706 int sync_req;
2707 int nospares = 0;
2708 int any_badblocks_changed = 0;
2709 int ret = -1;
2710
2711 if (mddev->ro) {
2712 if (force_change)
2713 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2714 return;
2715 }
2716
2717 repeat:
2718 if (mddev_is_clustered(mddev)) {
2719 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2720 force_change = 1;
2721 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2722 nospares = 1;
2723 ret = md_cluster_ops->metadata_update_start(mddev);
2724 /* Has someone else has updated the sb */
2725 if (!does_sb_need_changing(mddev)) {
2726 if (ret == 0)
2727 md_cluster_ops->metadata_update_cancel(mddev);
2728 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2729 BIT(MD_SB_CHANGE_DEVS) |
2730 BIT(MD_SB_CHANGE_CLEAN));
2731 return;
2732 }
2733 }
2734
2735 /*
2736 * First make sure individual recovery_offsets are correct
2737 * curr_resync_completed can only be used during recovery.
2738 * During reshape/resync it might use array-addresses rather
2739 * that device addresses.
2740 */
2741 rdev_for_each(rdev, mddev) {
2742 if (rdev->raid_disk >= 0 &&
2743 mddev->delta_disks >= 0 &&
2744 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2745 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2746 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2747 !test_bit(Journal, &rdev->flags) &&
2748 !test_bit(In_sync, &rdev->flags) &&
2749 mddev->curr_resync_completed > rdev->recovery_offset)
2750 rdev->recovery_offset = mddev->curr_resync_completed;
2751
2752 }
2753 if (!mddev->persistent) {
2754 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2755 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2756 if (!mddev->external) {
2757 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2758 rdev_for_each(rdev, mddev) {
2759 if (rdev->badblocks.changed) {
2760 rdev->badblocks.changed = 0;
2761 ack_all_badblocks(&rdev->badblocks);
2762 md_error(mddev, rdev);
2763 }
2764 clear_bit(Blocked, &rdev->flags);
2765 clear_bit(BlockedBadBlocks, &rdev->flags);
2766 wake_up(&rdev->blocked_wait);
2767 }
2768 }
2769 wake_up(&mddev->sb_wait);
2770 return;
2771 }
2772
2773 spin_lock(&mddev->lock);
2774
2775 mddev->utime = ktime_get_real_seconds();
2776
2777 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2778 force_change = 1;
2779 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2780 /* just a clean<-> dirty transition, possibly leave spares alone,
2781 * though if events isn't the right even/odd, we will have to do
2782 * spares after all
2783 */
2784 nospares = 1;
2785 if (force_change)
2786 nospares = 0;
2787 if (mddev->degraded)
2788 /* If the array is degraded, then skipping spares is both
2789 * dangerous and fairly pointless.
2790 * Dangerous because a device that was removed from the array
2791 * might have a event_count that still looks up-to-date,
2792 * so it can be re-added without a resync.
2793 * Pointless because if there are any spares to skip,
2794 * then a recovery will happen and soon that array won't
2795 * be degraded any more and the spare can go back to sleep then.
2796 */
2797 nospares = 0;
2798
2799 sync_req = mddev->in_sync;
2800
2801 /* If this is just a dirty<->clean transition, and the array is clean
2802 * and 'events' is odd, we can roll back to the previous clean state */
2803 if (nospares
2804 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2805 && mddev->can_decrease_events
2806 && mddev->events != 1) {
2807 mddev->events--;
2808 mddev->can_decrease_events = 0;
2809 } else {
2810 /* otherwise we have to go forward and ... */
2811 mddev->events ++;
2812 mddev->can_decrease_events = nospares;
2813 }
2814
2815 /*
2816 * This 64-bit counter should never wrap.
2817 * Either we are in around ~1 trillion A.C., assuming
2818 * 1 reboot per second, or we have a bug...
2819 */
2820 WARN_ON(mddev->events == 0);
2821
2822 rdev_for_each(rdev, mddev) {
2823 if (rdev->badblocks.changed)
2824 any_badblocks_changed++;
2825 if (test_bit(Faulty, &rdev->flags))
2826 set_bit(FaultRecorded, &rdev->flags);
2827 }
2828
2829 sync_sbs(mddev, nospares);
2830 spin_unlock(&mddev->lock);
2831
2832 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2833 mdname(mddev), mddev->in_sync);
2834
2835 if (mddev->queue)
2836 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2837 rewrite:
2838 md_bitmap_update_sb(mddev->bitmap);
2839 rdev_for_each(rdev, mddev) {
2840 char b[BDEVNAME_SIZE];
2841
2842 if (rdev->sb_loaded != 1)
2843 continue; /* no noise on spare devices */
2844
2845 if (!test_bit(Faulty, &rdev->flags)) {
2846 md_super_write(mddev,rdev,
2847 rdev->sb_start, rdev->sb_size,
2848 rdev->sb_page);
2849 pr_debug("md: (write) %s's sb offset: %llu\n",
2850 bdevname(rdev->bdev, b),
2851 (unsigned long long)rdev->sb_start);
2852 rdev->sb_events = mddev->events;
2853 if (rdev->badblocks.size) {
2854 md_super_write(mddev, rdev,
2855 rdev->badblocks.sector,
2856 rdev->badblocks.size << 9,
2857 rdev->bb_page);
2858 rdev->badblocks.size = 0;
2859 }
2860
2861 } else
2862 pr_debug("md: %s (skipping faulty)\n",
2863 bdevname(rdev->bdev, b));
2864
2865 if (mddev->level == LEVEL_MULTIPATH)
2866 /* only need to write one superblock... */
2867 break;
2868 }
2869 if (md_super_wait(mddev) < 0)
2870 goto rewrite;
2871 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2872
2873 if (mddev_is_clustered(mddev) && ret == 0)
2874 md_cluster_ops->metadata_update_finish(mddev);
2875
2876 if (mddev->in_sync != sync_req ||
2877 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2878 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2879 /* have to write it out again */
2880 goto repeat;
2881 wake_up(&mddev->sb_wait);
2882 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2883 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2884
2885 rdev_for_each(rdev, mddev) {
2886 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2887 clear_bit(Blocked, &rdev->flags);
2888
2889 if (any_badblocks_changed)
2890 ack_all_badblocks(&rdev->badblocks);
2891 clear_bit(BlockedBadBlocks, &rdev->flags);
2892 wake_up(&rdev->blocked_wait);
2893 }
2894 }
2895 EXPORT_SYMBOL(md_update_sb);
2896
2897 static int add_bound_rdev(struct md_rdev *rdev)
2898 {
2899 struct mddev *mddev = rdev->mddev;
2900 int err = 0;
2901 bool add_journal = test_bit(Journal, &rdev->flags);
2902
2903 if (!mddev->pers->hot_remove_disk || add_journal) {
2904 /* If there is hot_add_disk but no hot_remove_disk
2905 * then added disks for geometry changes,
2906 * and should be added immediately.
2907 */
2908 super_types[mddev->major_version].
2909 validate_super(mddev, rdev);
2910 if (add_journal)
2911 mddev_suspend(mddev);
2912 err = mddev->pers->hot_add_disk(mddev, rdev);
2913 if (add_journal)
2914 mddev_resume(mddev);
2915 if (err) {
2916 md_kick_rdev_from_array(rdev);
2917 return err;
2918 }
2919 }
2920 sysfs_notify_dirent_safe(rdev->sysfs_state);
2921
2922 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2923 if (mddev->degraded)
2924 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2925 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2926 md_new_event(mddev);
2927 md_wakeup_thread(mddev->thread);
2928 return 0;
2929 }
2930
2931 /* words written to sysfs files may, or may not, be \n terminated.
2932 * We want to accept with case. For this we use cmd_match.
2933 */
2934 static int cmd_match(const char *cmd, const char *str)
2935 {
2936 /* See if cmd, written into a sysfs file, matches
2937 * str. They must either be the same, or cmd can
2938 * have a trailing newline
2939 */
2940 while (*cmd && *str && *cmd == *str) {
2941 cmd++;
2942 str++;
2943 }
2944 if (*cmd == '\n')
2945 cmd++;
2946 if (*str || *cmd)
2947 return 0;
2948 return 1;
2949 }
2950
2951 struct rdev_sysfs_entry {
2952 struct attribute attr;
2953 ssize_t (*show)(struct md_rdev *, char *);
2954 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2955 };
2956
2957 static ssize_t
2958 state_show(struct md_rdev *rdev, char *page)
2959 {
2960 char *sep = ",";
2961 size_t len = 0;
2962 unsigned long flags = READ_ONCE(rdev->flags);
2963
2964 if (test_bit(Faulty, &flags) ||
2965 (!test_bit(ExternalBbl, &flags) &&
2966 rdev->badblocks.unacked_exist))
2967 len += sprintf(page+len, "faulty%s", sep);
2968 if (test_bit(In_sync, &flags))
2969 len += sprintf(page+len, "in_sync%s", sep);
2970 if (test_bit(Journal, &flags))
2971 len += sprintf(page+len, "journal%s", sep);
2972 if (test_bit(WriteMostly, &flags))
2973 len += sprintf(page+len, "write_mostly%s", sep);
2974 if (test_bit(Blocked, &flags) ||
2975 (rdev->badblocks.unacked_exist
2976 && !test_bit(Faulty, &flags)))
2977 len += sprintf(page+len, "blocked%s", sep);
2978 if (!test_bit(Faulty, &flags) &&
2979 !test_bit(Journal, &flags) &&
2980 !test_bit(In_sync, &flags))
2981 len += sprintf(page+len, "spare%s", sep);
2982 if (test_bit(WriteErrorSeen, &flags))
2983 len += sprintf(page+len, "write_error%s", sep);
2984 if (test_bit(WantReplacement, &flags))
2985 len += sprintf(page+len, "want_replacement%s", sep);
2986 if (test_bit(Replacement, &flags))
2987 len += sprintf(page+len, "replacement%s", sep);
2988 if (test_bit(ExternalBbl, &flags))
2989 len += sprintf(page+len, "external_bbl%s", sep);
2990 if (test_bit(FailFast, &flags))
2991 len += sprintf(page+len, "failfast%s", sep);
2992
2993 if (len)
2994 len -= strlen(sep);
2995
2996 return len+sprintf(page+len, "\n");
2997 }
2998
2999 static ssize_t
3000 state_store(struct md_rdev *rdev, const char *buf, size_t len)
3001 {
3002 /* can write
3003 * faulty - simulates an error
3004 * remove - disconnects the device
3005 * writemostly - sets write_mostly
3006 * -writemostly - clears write_mostly
3007 * blocked - sets the Blocked flags
3008 * -blocked - clears the Blocked and possibly simulates an error
3009 * insync - sets Insync providing device isn't active
3010 * -insync - clear Insync for a device with a slot assigned,
3011 * so that it gets rebuilt based on bitmap
3012 * write_error - sets WriteErrorSeen
3013 * -write_error - clears WriteErrorSeen
3014 * {,-}failfast - set/clear FailFast
3015 */
3016 int err = -EINVAL;
3017 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3018 md_error(rdev->mddev, rdev);
3019 if (test_bit(Faulty, &rdev->flags))
3020 err = 0;
3021 else
3022 err = -EBUSY;
3023 } else if (cmd_match(buf, "remove")) {
3024 if (rdev->mddev->pers) {
3025 clear_bit(Blocked, &rdev->flags);
3026 remove_and_add_spares(rdev->mddev, rdev);
3027 }
3028 if (rdev->raid_disk >= 0)
3029 err = -EBUSY;
3030 else {
3031 struct mddev *mddev = rdev->mddev;
3032 err = 0;
3033 if (mddev_is_clustered(mddev))
3034 err = md_cluster_ops->remove_disk(mddev, rdev);
3035
3036 if (err == 0) {
3037 md_kick_rdev_from_array(rdev);
3038 if (mddev->pers) {
3039 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3040 md_wakeup_thread(mddev->thread);
3041 }
3042 md_new_event(mddev);
3043 }
3044 }
3045 } else if (cmd_match(buf, "writemostly")) {
3046 set_bit(WriteMostly, &rdev->flags);
3047 mddev_create_serial_pool(rdev->mddev, rdev, false);
3048 err = 0;
3049 } else if (cmd_match(buf, "-writemostly")) {
3050 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3051 clear_bit(WriteMostly, &rdev->flags);
3052 err = 0;
3053 } else if (cmd_match(buf, "blocked")) {
3054 set_bit(Blocked, &rdev->flags);
3055 err = 0;
3056 } else if (cmd_match(buf, "-blocked")) {
3057 if (!test_bit(Faulty, &rdev->flags) &&
3058 !test_bit(ExternalBbl, &rdev->flags) &&
3059 rdev->badblocks.unacked_exist) {
3060 /* metadata handler doesn't understand badblocks,
3061 * so we need to fail the device
3062 */
3063 md_error(rdev->mddev, rdev);
3064 }
3065 clear_bit(Blocked, &rdev->flags);
3066 clear_bit(BlockedBadBlocks, &rdev->flags);
3067 wake_up(&rdev->blocked_wait);
3068 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3069 md_wakeup_thread(rdev->mddev->thread);
3070
3071 err = 0;
3072 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3073 set_bit(In_sync, &rdev->flags);
3074 err = 0;
3075 } else if (cmd_match(buf, "failfast")) {
3076 set_bit(FailFast, &rdev->flags);
3077 err = 0;
3078 } else if (cmd_match(buf, "-failfast")) {
3079 clear_bit(FailFast, &rdev->flags);
3080 err = 0;
3081 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3082 !test_bit(Journal, &rdev->flags)) {
3083 if (rdev->mddev->pers == NULL) {
3084 clear_bit(In_sync, &rdev->flags);
3085 rdev->saved_raid_disk = rdev->raid_disk;
3086 rdev->raid_disk = -1;
3087 err = 0;
3088 }
3089 } else if (cmd_match(buf, "write_error")) {
3090 set_bit(WriteErrorSeen, &rdev->flags);
3091 err = 0;
3092 } else if (cmd_match(buf, "-write_error")) {
3093 clear_bit(WriteErrorSeen, &rdev->flags);
3094 err = 0;
3095 } else if (cmd_match(buf, "want_replacement")) {
3096 /* Any non-spare device that is not a replacement can
3097 * become want_replacement at any time, but we then need to
3098 * check if recovery is needed.
3099 */
3100 if (rdev->raid_disk >= 0 &&
3101 !test_bit(Journal, &rdev->flags) &&
3102 !test_bit(Replacement, &rdev->flags))
3103 set_bit(WantReplacement, &rdev->flags);
3104 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3105 md_wakeup_thread(rdev->mddev->thread);
3106 err = 0;
3107 } else if (cmd_match(buf, "-want_replacement")) {
3108 /* Clearing 'want_replacement' is always allowed.
3109 * Once replacements starts it is too late though.
3110 */
3111 err = 0;
3112 clear_bit(WantReplacement, &rdev->flags);
3113 } else if (cmd_match(buf, "replacement")) {
3114 /* Can only set a device as a replacement when array has not
3115 * yet been started. Once running, replacement is automatic
3116 * from spares, or by assigning 'slot'.
3117 */
3118 if (rdev->mddev->pers)
3119 err = -EBUSY;
3120 else {
3121 set_bit(Replacement, &rdev->flags);
3122 err = 0;
3123 }
3124 } else if (cmd_match(buf, "-replacement")) {
3125 /* Similarly, can only clear Replacement before start */
3126 if (rdev->mddev->pers)
3127 err = -EBUSY;
3128 else {
3129 clear_bit(Replacement, &rdev->flags);
3130 err = 0;
3131 }
3132 } else if (cmd_match(buf, "re-add")) {
3133 if (!rdev->mddev->pers)
3134 err = -EINVAL;
3135 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3136 rdev->saved_raid_disk >= 0) {
3137 /* clear_bit is performed _after_ all the devices
3138 * have their local Faulty bit cleared. If any writes
3139 * happen in the meantime in the local node, they
3140 * will land in the local bitmap, which will be synced
3141 * by this node eventually
3142 */
3143 if (!mddev_is_clustered(rdev->mddev) ||
3144 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3145 clear_bit(Faulty, &rdev->flags);
3146 err = add_bound_rdev(rdev);
3147 }
3148 } else
3149 err = -EBUSY;
3150 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3151 set_bit(ExternalBbl, &rdev->flags);
3152 rdev->badblocks.shift = 0;
3153 err = 0;
3154 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3155 clear_bit(ExternalBbl, &rdev->flags);
3156 err = 0;
3157 }
3158 if (!err)
3159 sysfs_notify_dirent_safe(rdev->sysfs_state);
3160 return err ? err : len;
3161 }
3162 static struct rdev_sysfs_entry rdev_state =
3163 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3164
3165 static ssize_t
3166 errors_show(struct md_rdev *rdev, char *page)
3167 {
3168 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3169 }
3170
3171 static ssize_t
3172 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3173 {
3174 unsigned int n;
3175 int rv;
3176
3177 rv = kstrtouint(buf, 10, &n);
3178 if (rv < 0)
3179 return rv;
3180 atomic_set(&rdev->corrected_errors, n);
3181 return len;
3182 }
3183 static struct rdev_sysfs_entry rdev_errors =
3184 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3185
3186 static ssize_t
3187 slot_show(struct md_rdev *rdev, char *page)
3188 {
3189 if (test_bit(Journal, &rdev->flags))
3190 return sprintf(page, "journal\n");
3191 else if (rdev->raid_disk < 0)
3192 return sprintf(page, "none\n");
3193 else
3194 return sprintf(page, "%d\n", rdev->raid_disk);
3195 }
3196
3197 static ssize_t
3198 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3199 {
3200 int slot;
3201 int err;
3202
3203 if (test_bit(Journal, &rdev->flags))
3204 return -EBUSY;
3205 if (strncmp(buf, "none", 4)==0)
3206 slot = -1;
3207 else {
3208 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3209 if (err < 0)
3210 return err;
3211 }
3212 if (rdev->mddev->pers && slot == -1) {
3213 /* Setting 'slot' on an active array requires also
3214 * updating the 'rd%d' link, and communicating
3215 * with the personality with ->hot_*_disk.
3216 * For now we only support removing
3217 * failed/spare devices. This normally happens automatically,
3218 * but not when the metadata is externally managed.
3219 */
3220 if (rdev->raid_disk == -1)
3221 return -EEXIST;
3222 /* personality does all needed checks */
3223 if (rdev->mddev->pers->hot_remove_disk == NULL)
3224 return -EINVAL;
3225 clear_bit(Blocked, &rdev->flags);
3226 remove_and_add_spares(rdev->mddev, rdev);
3227 if (rdev->raid_disk >= 0)
3228 return -EBUSY;
3229 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3230 md_wakeup_thread(rdev->mddev->thread);
3231 } else if (rdev->mddev->pers) {
3232 /* Activating a spare .. or possibly reactivating
3233 * if we ever get bitmaps working here.
3234 */
3235 int err;
3236
3237 if (rdev->raid_disk != -1)
3238 return -EBUSY;
3239
3240 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3241 return -EBUSY;
3242
3243 if (rdev->mddev->pers->hot_add_disk == NULL)
3244 return -EINVAL;
3245
3246 if (slot >= rdev->mddev->raid_disks &&
3247 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3248 return -ENOSPC;
3249
3250 rdev->raid_disk = slot;
3251 if (test_bit(In_sync, &rdev->flags))
3252 rdev->saved_raid_disk = slot;
3253 else
3254 rdev->saved_raid_disk = -1;
3255 clear_bit(In_sync, &rdev->flags);
3256 clear_bit(Bitmap_sync, &rdev->flags);
3257 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3258 if (err) {
3259 rdev->raid_disk = -1;
3260 return err;
3261 } else
3262 sysfs_notify_dirent_safe(rdev->sysfs_state);
3263 /* failure here is OK */;
3264 sysfs_link_rdev(rdev->mddev, rdev);
3265 /* don't wakeup anyone, leave that to userspace. */
3266 } else {
3267 if (slot >= rdev->mddev->raid_disks &&
3268 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3269 return -ENOSPC;
3270 rdev->raid_disk = slot;
3271 /* assume it is working */
3272 clear_bit(Faulty, &rdev->flags);
3273 clear_bit(WriteMostly, &rdev->flags);
3274 set_bit(In_sync, &rdev->flags);
3275 sysfs_notify_dirent_safe(rdev->sysfs_state);
3276 }
3277 return len;
3278 }
3279
3280 static struct rdev_sysfs_entry rdev_slot =
3281 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3282
3283 static ssize_t
3284 offset_show(struct md_rdev *rdev, char *page)
3285 {
3286 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3287 }
3288
3289 static ssize_t
3290 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3291 {
3292 unsigned long long offset;
3293 if (kstrtoull(buf, 10, &offset) < 0)
3294 return -EINVAL;
3295 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3296 return -EBUSY;
3297 if (rdev->sectors && rdev->mddev->external)
3298 /* Must set offset before size, so overlap checks
3299 * can be sane */
3300 return -EBUSY;
3301 rdev->data_offset = offset;
3302 rdev->new_data_offset = offset;
3303 return len;
3304 }
3305
3306 static struct rdev_sysfs_entry rdev_offset =
3307 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3308
3309 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3310 {
3311 return sprintf(page, "%llu\n",
3312 (unsigned long long)rdev->new_data_offset);
3313 }
3314
3315 static ssize_t new_offset_store(struct md_rdev *rdev,
3316 const char *buf, size_t len)
3317 {
3318 unsigned long long new_offset;
3319 struct mddev *mddev = rdev->mddev;
3320
3321 if (kstrtoull(buf, 10, &new_offset) < 0)
3322 return -EINVAL;
3323
3324 if (mddev->sync_thread ||
3325 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3326 return -EBUSY;
3327 if (new_offset == rdev->data_offset)
3328 /* reset is always permitted */
3329 ;
3330 else if (new_offset > rdev->data_offset) {
3331 /* must not push array size beyond rdev_sectors */
3332 if (new_offset - rdev->data_offset
3333 + mddev->dev_sectors > rdev->sectors)
3334 return -E2BIG;
3335 }
3336 /* Metadata worries about other space details. */
3337
3338 /* decreasing the offset is inconsistent with a backwards
3339 * reshape.
3340 */
3341 if (new_offset < rdev->data_offset &&
3342 mddev->reshape_backwards)
3343 return -EINVAL;
3344 /* Increasing offset is inconsistent with forwards
3345 * reshape. reshape_direction should be set to
3346 * 'backwards' first.
3347 */
3348 if (new_offset > rdev->data_offset &&
3349 !mddev->reshape_backwards)
3350 return -EINVAL;
3351
3352 if (mddev->pers && mddev->persistent &&
3353 !super_types[mddev->major_version]
3354 .allow_new_offset(rdev, new_offset))
3355 return -E2BIG;
3356 rdev->new_data_offset = new_offset;
3357 if (new_offset > rdev->data_offset)
3358 mddev->reshape_backwards = 1;
3359 else if (new_offset < rdev->data_offset)
3360 mddev->reshape_backwards = 0;
3361
3362 return len;
3363 }
3364 static struct rdev_sysfs_entry rdev_new_offset =
3365 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3366
3367 static ssize_t
3368 rdev_size_show(struct md_rdev *rdev, char *page)
3369 {
3370 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3371 }
3372
3373 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3374 {
3375 /* check if two start/length pairs overlap */
3376 if (s1+l1 <= s2)
3377 return 0;
3378 if (s2+l2 <= s1)
3379 return 0;
3380 return 1;
3381 }
3382
3383 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3384 {
3385 unsigned long long blocks;
3386 sector_t new;
3387
3388 if (kstrtoull(buf, 10, &blocks) < 0)
3389 return -EINVAL;
3390
3391 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3392 return -EINVAL; /* sector conversion overflow */
3393
3394 new = blocks * 2;
3395 if (new != blocks * 2)
3396 return -EINVAL; /* unsigned long long to sector_t overflow */
3397
3398 *sectors = new;
3399 return 0;
3400 }
3401
3402 static ssize_t
3403 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3404 {
3405 struct mddev *my_mddev = rdev->mddev;
3406 sector_t oldsectors = rdev->sectors;
3407 sector_t sectors;
3408
3409 if (test_bit(Journal, &rdev->flags))
3410 return -EBUSY;
3411 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3412 return -EINVAL;
3413 if (rdev->data_offset != rdev->new_data_offset)
3414 return -EINVAL; /* too confusing */
3415 if (my_mddev->pers && rdev->raid_disk >= 0) {
3416 if (my_mddev->persistent) {
3417 sectors = super_types[my_mddev->major_version].
3418 rdev_size_change(rdev, sectors);
3419 if (!sectors)
3420 return -EBUSY;
3421 } else if (!sectors)
3422 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3423 rdev->data_offset;
3424 if (!my_mddev->pers->resize)
3425 /* Cannot change size for RAID0 or Linear etc */
3426 return -EINVAL;
3427 }
3428 if (sectors < my_mddev->dev_sectors)
3429 return -EINVAL; /* component must fit device */
3430
3431 rdev->sectors = sectors;
3432 if (sectors > oldsectors && my_mddev->external) {
3433 /* Need to check that all other rdevs with the same
3434 * ->bdev do not overlap. 'rcu' is sufficient to walk
3435 * the rdev lists safely.
3436 * This check does not provide a hard guarantee, it
3437 * just helps avoid dangerous mistakes.
3438 */
3439 struct mddev *mddev;
3440 int overlap = 0;
3441 struct list_head *tmp;
3442
3443 rcu_read_lock();
3444 for_each_mddev(mddev, tmp) {
3445 struct md_rdev *rdev2;
3446
3447 rdev_for_each(rdev2, mddev)
3448 if (rdev->bdev == rdev2->bdev &&
3449 rdev != rdev2 &&
3450 overlaps(rdev->data_offset, rdev->sectors,
3451 rdev2->data_offset,
3452 rdev2->sectors)) {
3453 overlap = 1;
3454 break;
3455 }
3456 if (overlap) {
3457 mddev_put(mddev);
3458 break;
3459 }
3460 }
3461 rcu_read_unlock();
3462 if (overlap) {
3463 /* Someone else could have slipped in a size
3464 * change here, but doing so is just silly.
3465 * We put oldsectors back because we *know* it is
3466 * safe, and trust userspace not to race with
3467 * itself
3468 */
3469 rdev->sectors = oldsectors;
3470 return -EBUSY;
3471 }
3472 }
3473 return len;
3474 }
3475
3476 static struct rdev_sysfs_entry rdev_size =
3477 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3478
3479 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3480 {
3481 unsigned long long recovery_start = rdev->recovery_offset;
3482
3483 if (test_bit(In_sync, &rdev->flags) ||
3484 recovery_start == MaxSector)
3485 return sprintf(page, "none\n");
3486
3487 return sprintf(page, "%llu\n", recovery_start);
3488 }
3489
3490 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3491 {
3492 unsigned long long recovery_start;
3493
3494 if (cmd_match(buf, "none"))
3495 recovery_start = MaxSector;
3496 else if (kstrtoull(buf, 10, &recovery_start))
3497 return -EINVAL;
3498
3499 if (rdev->mddev->pers &&
3500 rdev->raid_disk >= 0)
3501 return -EBUSY;
3502
3503 rdev->recovery_offset = recovery_start;
3504 if (recovery_start == MaxSector)
3505 set_bit(In_sync, &rdev->flags);
3506 else
3507 clear_bit(In_sync, &rdev->flags);
3508 return len;
3509 }
3510
3511 static struct rdev_sysfs_entry rdev_recovery_start =
3512 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3513
3514 /* sysfs access to bad-blocks list.
3515 * We present two files.
3516 * 'bad-blocks' lists sector numbers and lengths of ranges that
3517 * are recorded as bad. The list is truncated to fit within
3518 * the one-page limit of sysfs.
3519 * Writing "sector length" to this file adds an acknowledged
3520 * bad block list.
3521 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3522 * been acknowledged. Writing to this file adds bad blocks
3523 * without acknowledging them. This is largely for testing.
3524 */
3525 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3526 {
3527 return badblocks_show(&rdev->badblocks, page, 0);
3528 }
3529 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3530 {
3531 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3532 /* Maybe that ack was all we needed */
3533 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3534 wake_up(&rdev->blocked_wait);
3535 return rv;
3536 }
3537 static struct rdev_sysfs_entry rdev_bad_blocks =
3538 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3539
3540 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3541 {
3542 return badblocks_show(&rdev->badblocks, page, 1);
3543 }
3544 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3545 {
3546 return badblocks_store(&rdev->badblocks, page, len, 1);
3547 }
3548 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3549 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3550
3551 static ssize_t
3552 ppl_sector_show(struct md_rdev *rdev, char *page)
3553 {
3554 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3555 }
3556
3557 static ssize_t
3558 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3559 {
3560 unsigned long long sector;
3561
3562 if (kstrtoull(buf, 10, &sector) < 0)
3563 return -EINVAL;
3564 if (sector != (sector_t)sector)
3565 return -EINVAL;
3566
3567 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3568 rdev->raid_disk >= 0)
3569 return -EBUSY;
3570
3571 if (rdev->mddev->persistent) {
3572 if (rdev->mddev->major_version == 0)
3573 return -EINVAL;
3574 if ((sector > rdev->sb_start &&
3575 sector - rdev->sb_start > S16_MAX) ||
3576 (sector < rdev->sb_start &&
3577 rdev->sb_start - sector > -S16_MIN))
3578 return -EINVAL;
3579 rdev->ppl.offset = sector - rdev->sb_start;
3580 } else if (!rdev->mddev->external) {
3581 return -EBUSY;
3582 }
3583 rdev->ppl.sector = sector;
3584 return len;
3585 }
3586
3587 static struct rdev_sysfs_entry rdev_ppl_sector =
3588 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3589
3590 static ssize_t
3591 ppl_size_show(struct md_rdev *rdev, char *page)
3592 {
3593 return sprintf(page, "%u\n", rdev->ppl.size);
3594 }
3595
3596 static ssize_t
3597 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3598 {
3599 unsigned int size;
3600
3601 if (kstrtouint(buf, 10, &size) < 0)
3602 return -EINVAL;
3603
3604 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3605 rdev->raid_disk >= 0)
3606 return -EBUSY;
3607
3608 if (rdev->mddev->persistent) {
3609 if (rdev->mddev->major_version == 0)
3610 return -EINVAL;
3611 if (size > U16_MAX)
3612 return -EINVAL;
3613 } else if (!rdev->mddev->external) {
3614 return -EBUSY;
3615 }
3616 rdev->ppl.size = size;
3617 return len;
3618 }
3619
3620 static struct rdev_sysfs_entry rdev_ppl_size =
3621 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3622
3623 static struct attribute *rdev_default_attrs[] = {
3624 &rdev_state.attr,
3625 &rdev_errors.attr,
3626 &rdev_slot.attr,
3627 &rdev_offset.attr,
3628 &rdev_new_offset.attr,
3629 &rdev_size.attr,
3630 &rdev_recovery_start.attr,
3631 &rdev_bad_blocks.attr,
3632 &rdev_unack_bad_blocks.attr,
3633 &rdev_ppl_sector.attr,
3634 &rdev_ppl_size.attr,
3635 NULL,
3636 };
3637 static ssize_t
3638 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3639 {
3640 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3641 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3642
3643 if (!entry->show)
3644 return -EIO;
3645 if (!rdev->mddev)
3646 return -ENODEV;
3647 return entry->show(rdev, page);
3648 }
3649
3650 static ssize_t
3651 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3652 const char *page, size_t length)
3653 {
3654 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3655 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3656 ssize_t rv;
3657 struct mddev *mddev = rdev->mddev;
3658
3659 if (!entry->store)
3660 return -EIO;
3661 if (!capable(CAP_SYS_ADMIN))
3662 return -EACCES;
3663 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3664 if (!rv) {
3665 if (rdev->mddev == NULL)
3666 rv = -ENODEV;
3667 else
3668 rv = entry->store(rdev, page, length);
3669 mddev_unlock(mddev);
3670 }
3671 return rv;
3672 }
3673
3674 static void rdev_free(struct kobject *ko)
3675 {
3676 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3677 kfree(rdev);
3678 }
3679 static const struct sysfs_ops rdev_sysfs_ops = {
3680 .show = rdev_attr_show,
3681 .store = rdev_attr_store,
3682 };
3683 static struct kobj_type rdev_ktype = {
3684 .release = rdev_free,
3685 .sysfs_ops = &rdev_sysfs_ops,
3686 .default_attrs = rdev_default_attrs,
3687 };
3688
3689 int md_rdev_init(struct md_rdev *rdev)
3690 {
3691 rdev->desc_nr = -1;
3692 rdev->saved_raid_disk = -1;
3693 rdev->raid_disk = -1;
3694 rdev->flags = 0;
3695 rdev->data_offset = 0;
3696 rdev->new_data_offset = 0;
3697 rdev->sb_events = 0;
3698 rdev->last_read_error = 0;
3699 rdev->sb_loaded = 0;
3700 rdev->bb_page = NULL;
3701 atomic_set(&rdev->nr_pending, 0);
3702 atomic_set(&rdev->read_errors, 0);
3703 atomic_set(&rdev->corrected_errors, 0);
3704
3705 INIT_LIST_HEAD(&rdev->same_set);
3706 init_waitqueue_head(&rdev->blocked_wait);
3707
3708 /* Add space to store bad block list.
3709 * This reserves the space even on arrays where it cannot
3710 * be used - I wonder if that matters
3711 */
3712 return badblocks_init(&rdev->badblocks, 0);
3713 }
3714 EXPORT_SYMBOL_GPL(md_rdev_init);
3715 /*
3716 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3717 *
3718 * mark the device faulty if:
3719 *
3720 * - the device is nonexistent (zero size)
3721 * - the device has no valid superblock
3722 *
3723 * a faulty rdev _never_ has rdev->sb set.
3724 */
3725 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3726 {
3727 char b[BDEVNAME_SIZE];
3728 int err;
3729 struct md_rdev *rdev;
3730 sector_t size;
3731
3732 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3733 if (!rdev)
3734 return ERR_PTR(-ENOMEM);
3735
3736 err = md_rdev_init(rdev);
3737 if (err)
3738 goto abort_free;
3739 err = alloc_disk_sb(rdev);
3740 if (err)
3741 goto abort_free;
3742
3743 err = lock_rdev(rdev, newdev, super_format == -2);
3744 if (err)
3745 goto abort_free;
3746
3747 kobject_init(&rdev->kobj, &rdev_ktype);
3748
3749 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3750 if (!size) {
3751 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3752 bdevname(rdev->bdev,b));
3753 err = -EINVAL;
3754 goto abort_free;
3755 }
3756
3757 if (super_format >= 0) {
3758 err = super_types[super_format].
3759 load_super(rdev, NULL, super_minor);
3760 if (err == -EINVAL) {
3761 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3762 bdevname(rdev->bdev,b),
3763 super_format, super_minor);
3764 goto abort_free;
3765 }
3766 if (err < 0) {
3767 pr_warn("md: could not read %s's sb, not importing!\n",
3768 bdevname(rdev->bdev,b));
3769 goto abort_free;
3770 }
3771 }
3772
3773 return rdev;
3774
3775 abort_free:
3776 if (rdev->bdev)
3777 unlock_rdev(rdev);
3778 md_rdev_clear(rdev);
3779 kfree(rdev);
3780 return ERR_PTR(err);
3781 }
3782
3783 /*
3784 * Check a full RAID array for plausibility
3785 */
3786
3787 static int analyze_sbs(struct mddev *mddev)
3788 {
3789 int i;
3790 struct md_rdev *rdev, *freshest, *tmp;
3791 char b[BDEVNAME_SIZE];
3792
3793 freshest = NULL;
3794 rdev_for_each_safe(rdev, tmp, mddev)
3795 switch (super_types[mddev->major_version].
3796 load_super(rdev, freshest, mddev->minor_version)) {
3797 case 1:
3798 freshest = rdev;
3799 break;
3800 case 0:
3801 break;
3802 default:
3803 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3804 bdevname(rdev->bdev,b));
3805 md_kick_rdev_from_array(rdev);
3806 }
3807
3808 /* Cannot find a valid fresh disk */
3809 if (!freshest) {
3810 pr_warn("md: cannot find a valid disk\n");
3811 return -EINVAL;
3812 }
3813
3814 super_types[mddev->major_version].
3815 validate_super(mddev, freshest);
3816
3817 i = 0;
3818 rdev_for_each_safe(rdev, tmp, mddev) {
3819 if (mddev->max_disks &&
3820 (rdev->desc_nr >= mddev->max_disks ||
3821 i > mddev->max_disks)) {
3822 pr_warn("md: %s: %s: only %d devices permitted\n",
3823 mdname(mddev), bdevname(rdev->bdev, b),
3824 mddev->max_disks);
3825 md_kick_rdev_from_array(rdev);
3826 continue;
3827 }
3828 if (rdev != freshest) {
3829 if (super_types[mddev->major_version].
3830 validate_super(mddev, rdev)) {
3831 pr_warn("md: kicking non-fresh %s from array!\n",
3832 bdevname(rdev->bdev,b));
3833 md_kick_rdev_from_array(rdev);
3834 continue;
3835 }
3836 }
3837 if (mddev->level == LEVEL_MULTIPATH) {
3838 rdev->desc_nr = i++;
3839 rdev->raid_disk = rdev->desc_nr;
3840 set_bit(In_sync, &rdev->flags);
3841 } else if (rdev->raid_disk >=
3842 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3843 !test_bit(Journal, &rdev->flags)) {
3844 rdev->raid_disk = -1;
3845 clear_bit(In_sync, &rdev->flags);
3846 }
3847 }
3848
3849 return 0;
3850 }
3851
3852 /* Read a fixed-point number.
3853 * Numbers in sysfs attributes should be in "standard" units where
3854 * possible, so time should be in seconds.
3855 * However we internally use a a much smaller unit such as
3856 * milliseconds or jiffies.
3857 * This function takes a decimal number with a possible fractional
3858 * component, and produces an integer which is the result of
3859 * multiplying that number by 10^'scale'.
3860 * all without any floating-point arithmetic.
3861 */
3862 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3863 {
3864 unsigned long result = 0;
3865 long decimals = -1;
3866 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3867 if (*cp == '.')
3868 decimals = 0;
3869 else if (decimals < scale) {
3870 unsigned int value;
3871 value = *cp - '0';
3872 result = result * 10 + value;
3873 if (decimals >= 0)
3874 decimals++;
3875 }
3876 cp++;
3877 }
3878 if (*cp == '\n')
3879 cp++;
3880 if (*cp)
3881 return -EINVAL;
3882 if (decimals < 0)
3883 decimals = 0;
3884 *res = result * int_pow(10, scale - decimals);
3885 return 0;
3886 }
3887
3888 static ssize_t
3889 safe_delay_show(struct mddev *mddev, char *page)
3890 {
3891 int msec = (mddev->safemode_delay*1000)/HZ;
3892 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3893 }
3894 static ssize_t
3895 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3896 {
3897 unsigned long msec;
3898
3899 if (mddev_is_clustered(mddev)) {
3900 pr_warn("md: Safemode is disabled for clustered mode\n");
3901 return -EINVAL;
3902 }
3903
3904 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3905 return -EINVAL;
3906 if (msec == 0)
3907 mddev->safemode_delay = 0;
3908 else {
3909 unsigned long old_delay = mddev->safemode_delay;
3910 unsigned long new_delay = (msec*HZ)/1000;
3911
3912 if (new_delay == 0)
3913 new_delay = 1;
3914 mddev->safemode_delay = new_delay;
3915 if (new_delay < old_delay || old_delay == 0)
3916 mod_timer(&mddev->safemode_timer, jiffies+1);
3917 }
3918 return len;
3919 }
3920 static struct md_sysfs_entry md_safe_delay =
3921 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3922
3923 static ssize_t
3924 level_show(struct mddev *mddev, char *page)
3925 {
3926 struct md_personality *p;
3927 int ret;
3928 spin_lock(&mddev->lock);
3929 p = mddev->pers;
3930 if (p)
3931 ret = sprintf(page, "%s\n", p->name);
3932 else if (mddev->clevel[0])
3933 ret = sprintf(page, "%s\n", mddev->clevel);
3934 else if (mddev->level != LEVEL_NONE)
3935 ret = sprintf(page, "%d\n", mddev->level);
3936 else
3937 ret = 0;
3938 spin_unlock(&mddev->lock);
3939 return ret;
3940 }
3941
3942 static ssize_t
3943 level_store(struct mddev *mddev, const char *buf, size_t len)
3944 {
3945 char clevel[16];
3946 ssize_t rv;
3947 size_t slen = len;
3948 struct md_personality *pers, *oldpers;
3949 long level;
3950 void *priv, *oldpriv;
3951 struct md_rdev *rdev;
3952
3953 if (slen == 0 || slen >= sizeof(clevel))
3954 return -EINVAL;
3955
3956 rv = mddev_lock(mddev);
3957 if (rv)
3958 return rv;
3959
3960 if (mddev->pers == NULL) {
3961 strncpy(mddev->clevel, buf, slen);
3962 if (mddev->clevel[slen-1] == '\n')
3963 slen--;
3964 mddev->clevel[slen] = 0;
3965 mddev->level = LEVEL_NONE;
3966 rv = len;
3967 goto out_unlock;
3968 }
3969 rv = -EROFS;
3970 if (mddev->ro)
3971 goto out_unlock;
3972
3973 /* request to change the personality. Need to ensure:
3974 * - array is not engaged in resync/recovery/reshape
3975 * - old personality can be suspended
3976 * - new personality will access other array.
3977 */
3978
3979 rv = -EBUSY;
3980 if (mddev->sync_thread ||
3981 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3982 mddev->reshape_position != MaxSector ||
3983 mddev->sysfs_active)
3984 goto out_unlock;
3985
3986 rv = -EINVAL;
3987 if (!mddev->pers->quiesce) {
3988 pr_warn("md: %s: %s does not support online personality change\n",
3989 mdname(mddev), mddev->pers->name);
3990 goto out_unlock;
3991 }
3992
3993 /* Now find the new personality */
3994 strncpy(clevel, buf, slen);
3995 if (clevel[slen-1] == '\n')
3996 slen--;
3997 clevel[slen] = 0;
3998 if (kstrtol(clevel, 10, &level))
3999 level = LEVEL_NONE;
4000
4001 if (request_module("md-%s", clevel) != 0)
4002 request_module("md-level-%s", clevel);
4003 spin_lock(&pers_lock);
4004 pers = find_pers(level, clevel);
4005 if (!pers || !try_module_get(pers->owner)) {
4006 spin_unlock(&pers_lock);
4007 pr_warn("md: personality %s not loaded\n", clevel);
4008 rv = -EINVAL;
4009 goto out_unlock;
4010 }
4011 spin_unlock(&pers_lock);
4012
4013 if (pers == mddev->pers) {
4014 /* Nothing to do! */
4015 module_put(pers->owner);
4016 rv = len;
4017 goto out_unlock;
4018 }
4019 if (!pers->takeover) {
4020 module_put(pers->owner);
4021 pr_warn("md: %s: %s does not support personality takeover\n",
4022 mdname(mddev), clevel);
4023 rv = -EINVAL;
4024 goto out_unlock;
4025 }
4026
4027 rdev_for_each(rdev, mddev)
4028 rdev->new_raid_disk = rdev->raid_disk;
4029
4030 /* ->takeover must set new_* and/or delta_disks
4031 * if it succeeds, and may set them when it fails.
4032 */
4033 priv = pers->takeover(mddev);
4034 if (IS_ERR(priv)) {
4035 mddev->new_level = mddev->level;
4036 mddev->new_layout = mddev->layout;
4037 mddev->new_chunk_sectors = mddev->chunk_sectors;
4038 mddev->raid_disks -= mddev->delta_disks;
4039 mddev->delta_disks = 0;
4040 mddev->reshape_backwards = 0;
4041 module_put(pers->owner);
4042 pr_warn("md: %s: %s would not accept array\n",
4043 mdname(mddev), clevel);
4044 rv = PTR_ERR(priv);
4045 goto out_unlock;
4046 }
4047
4048 /* Looks like we have a winner */
4049 mddev_suspend(mddev);
4050 mddev_detach(mddev);
4051
4052 spin_lock(&mddev->lock);
4053 oldpers = mddev->pers;
4054 oldpriv = mddev->private;
4055 mddev->pers = pers;
4056 mddev->private = priv;
4057 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4058 mddev->level = mddev->new_level;
4059 mddev->layout = mddev->new_layout;
4060 mddev->chunk_sectors = mddev->new_chunk_sectors;
4061 mddev->delta_disks = 0;
4062 mddev->reshape_backwards = 0;
4063 mddev->degraded = 0;
4064 spin_unlock(&mddev->lock);
4065
4066 if (oldpers->sync_request == NULL &&
4067 mddev->external) {
4068 /* We are converting from a no-redundancy array
4069 * to a redundancy array and metadata is managed
4070 * externally so we need to be sure that writes
4071 * won't block due to a need to transition
4072 * clean->dirty
4073 * until external management is started.
4074 */
4075 mddev->in_sync = 0;
4076 mddev->safemode_delay = 0;
4077 mddev->safemode = 0;
4078 }
4079
4080 oldpers->free(mddev, oldpriv);
4081
4082 if (oldpers->sync_request == NULL &&
4083 pers->sync_request != NULL) {
4084 /* need to add the md_redundancy_group */
4085 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4086 pr_warn("md: cannot register extra attributes for %s\n",
4087 mdname(mddev));
4088 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4089 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4090 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4091 }
4092 if (oldpers->sync_request != NULL &&
4093 pers->sync_request == NULL) {
4094 /* need to remove the md_redundancy_group */
4095 if (mddev->to_remove == NULL)
4096 mddev->to_remove = &md_redundancy_group;
4097 }
4098
4099 module_put(oldpers->owner);
4100
4101 rdev_for_each(rdev, mddev) {
4102 if (rdev->raid_disk < 0)
4103 continue;
4104 if (rdev->new_raid_disk >= mddev->raid_disks)
4105 rdev->new_raid_disk = -1;
4106 if (rdev->new_raid_disk == rdev->raid_disk)
4107 continue;
4108 sysfs_unlink_rdev(mddev, rdev);
4109 }
4110 rdev_for_each(rdev, mddev) {
4111 if (rdev->raid_disk < 0)
4112 continue;
4113 if (rdev->new_raid_disk == rdev->raid_disk)
4114 continue;
4115 rdev->raid_disk = rdev->new_raid_disk;
4116 if (rdev->raid_disk < 0)
4117 clear_bit(In_sync, &rdev->flags);
4118 else {
4119 if (sysfs_link_rdev(mddev, rdev))
4120 pr_warn("md: cannot register rd%d for %s after level change\n",
4121 rdev->raid_disk, mdname(mddev));
4122 }
4123 }
4124
4125 if (pers->sync_request == NULL) {
4126 /* this is now an array without redundancy, so
4127 * it must always be in_sync
4128 */
4129 mddev->in_sync = 1;
4130 del_timer_sync(&mddev->safemode_timer);
4131 }
4132 blk_set_stacking_limits(&mddev->queue->limits);
4133 pers->run(mddev);
4134 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4135 mddev_resume(mddev);
4136 if (!mddev->thread)
4137 md_update_sb(mddev, 1);
4138 sysfs_notify_dirent_safe(mddev->sysfs_level);
4139 md_new_event(mddev);
4140 rv = len;
4141 out_unlock:
4142 mddev_unlock(mddev);
4143 return rv;
4144 }
4145
4146 static struct md_sysfs_entry md_level =
4147 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4148
4149 static ssize_t
4150 layout_show(struct mddev *mddev, char *page)
4151 {
4152 /* just a number, not meaningful for all levels */
4153 if (mddev->reshape_position != MaxSector &&
4154 mddev->layout != mddev->new_layout)
4155 return sprintf(page, "%d (%d)\n",
4156 mddev->new_layout, mddev->layout);
4157 return sprintf(page, "%d\n", mddev->layout);
4158 }
4159
4160 static ssize_t
4161 layout_store(struct mddev *mddev, const char *buf, size_t len)
4162 {
4163 unsigned int n;
4164 int err;
4165
4166 err = kstrtouint(buf, 10, &n);
4167 if (err < 0)
4168 return err;
4169 err = mddev_lock(mddev);
4170 if (err)
4171 return err;
4172
4173 if (mddev->pers) {
4174 if (mddev->pers->check_reshape == NULL)
4175 err = -EBUSY;
4176 else if (mddev->ro)
4177 err = -EROFS;
4178 else {
4179 mddev->new_layout = n;
4180 err = mddev->pers->check_reshape(mddev);
4181 if (err)
4182 mddev->new_layout = mddev->layout;
4183 }
4184 } else {
4185 mddev->new_layout = n;
4186 if (mddev->reshape_position == MaxSector)
4187 mddev->layout = n;
4188 }
4189 mddev_unlock(mddev);
4190 return err ?: len;
4191 }
4192 static struct md_sysfs_entry md_layout =
4193 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4194
4195 static ssize_t
4196 raid_disks_show(struct mddev *mddev, char *page)
4197 {
4198 if (mddev->raid_disks == 0)
4199 return 0;
4200 if (mddev->reshape_position != MaxSector &&
4201 mddev->delta_disks != 0)
4202 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4203 mddev->raid_disks - mddev->delta_disks);
4204 return sprintf(page, "%d\n", mddev->raid_disks);
4205 }
4206
4207 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4208
4209 static ssize_t
4210 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4211 {
4212 unsigned int n;
4213 int err;
4214
4215 err = kstrtouint(buf, 10, &n);
4216 if (err < 0)
4217 return err;
4218
4219 err = mddev_lock(mddev);
4220 if (err)
4221 return err;
4222 if (mddev->pers)
4223 err = update_raid_disks(mddev, n);
4224 else if (mddev->reshape_position != MaxSector) {
4225 struct md_rdev *rdev;
4226 int olddisks = mddev->raid_disks - mddev->delta_disks;
4227
4228 err = -EINVAL;
4229 rdev_for_each(rdev, mddev) {
4230 if (olddisks < n &&
4231 rdev->data_offset < rdev->new_data_offset)
4232 goto out_unlock;
4233 if (olddisks > n &&
4234 rdev->data_offset > rdev->new_data_offset)
4235 goto out_unlock;
4236 }
4237 err = 0;
4238 mddev->delta_disks = n - olddisks;
4239 mddev->raid_disks = n;
4240 mddev->reshape_backwards = (mddev->delta_disks < 0);
4241 } else
4242 mddev->raid_disks = n;
4243 out_unlock:
4244 mddev_unlock(mddev);
4245 return err ? err : len;
4246 }
4247 static struct md_sysfs_entry md_raid_disks =
4248 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4249
4250 static ssize_t
4251 uuid_show(struct mddev *mddev, char *page)
4252 {
4253 return sprintf(page, "%pU\n", mddev->uuid);
4254 }
4255 static struct md_sysfs_entry md_uuid =
4256 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4257
4258 static ssize_t
4259 chunk_size_show(struct mddev *mddev, char *page)
4260 {
4261 if (mddev->reshape_position != MaxSector &&
4262 mddev->chunk_sectors != mddev->new_chunk_sectors)
4263 return sprintf(page, "%d (%d)\n",
4264 mddev->new_chunk_sectors << 9,
4265 mddev->chunk_sectors << 9);
4266 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4267 }
4268
4269 static ssize_t
4270 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4271 {
4272 unsigned long n;
4273 int err;
4274
4275 err = kstrtoul(buf, 10, &n);
4276 if (err < 0)
4277 return err;
4278
4279 err = mddev_lock(mddev);
4280 if (err)
4281 return err;
4282 if (mddev->pers) {
4283 if (mddev->pers->check_reshape == NULL)
4284 err = -EBUSY;
4285 else if (mddev->ro)
4286 err = -EROFS;
4287 else {
4288 mddev->new_chunk_sectors = n >> 9;
4289 err = mddev->pers->check_reshape(mddev);
4290 if (err)
4291 mddev->new_chunk_sectors = mddev->chunk_sectors;
4292 }
4293 } else {
4294 mddev->new_chunk_sectors = n >> 9;
4295 if (mddev->reshape_position == MaxSector)
4296 mddev->chunk_sectors = n >> 9;
4297 }
4298 mddev_unlock(mddev);
4299 return err ?: len;
4300 }
4301 static struct md_sysfs_entry md_chunk_size =
4302 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4303
4304 static ssize_t
4305 resync_start_show(struct mddev *mddev, char *page)
4306 {
4307 if (mddev->recovery_cp == MaxSector)
4308 return sprintf(page, "none\n");
4309 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4310 }
4311
4312 static ssize_t
4313 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4314 {
4315 unsigned long long n;
4316 int err;
4317
4318 if (cmd_match(buf, "none"))
4319 n = MaxSector;
4320 else {
4321 err = kstrtoull(buf, 10, &n);
4322 if (err < 0)
4323 return err;
4324 if (n != (sector_t)n)
4325 return -EINVAL;
4326 }
4327
4328 err = mddev_lock(mddev);
4329 if (err)
4330 return err;
4331 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4332 err = -EBUSY;
4333
4334 if (!err) {
4335 mddev->recovery_cp = n;
4336 if (mddev->pers)
4337 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4338 }
4339 mddev_unlock(mddev);
4340 return err ?: len;
4341 }
4342 static struct md_sysfs_entry md_resync_start =
4343 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4344 resync_start_show, resync_start_store);
4345
4346 /*
4347 * The array state can be:
4348 *
4349 * clear
4350 * No devices, no size, no level
4351 * Equivalent to STOP_ARRAY ioctl
4352 * inactive
4353 * May have some settings, but array is not active
4354 * all IO results in error
4355 * When written, doesn't tear down array, but just stops it
4356 * suspended (not supported yet)
4357 * All IO requests will block. The array can be reconfigured.
4358 * Writing this, if accepted, will block until array is quiescent
4359 * readonly
4360 * no resync can happen. no superblocks get written.
4361 * write requests fail
4362 * read-auto
4363 * like readonly, but behaves like 'clean' on a write request.
4364 *
4365 * clean - no pending writes, but otherwise active.
4366 * When written to inactive array, starts without resync
4367 * If a write request arrives then
4368 * if metadata is known, mark 'dirty' and switch to 'active'.
4369 * if not known, block and switch to write-pending
4370 * If written to an active array that has pending writes, then fails.
4371 * active
4372 * fully active: IO and resync can be happening.
4373 * When written to inactive array, starts with resync
4374 *
4375 * write-pending
4376 * clean, but writes are blocked waiting for 'active' to be written.
4377 *
4378 * active-idle
4379 * like active, but no writes have been seen for a while (100msec).
4380 *
4381 * broken
4382 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4383 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4384 * when a member is gone, so this state will at least alert the
4385 * user that something is wrong.
4386 */
4387 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4388 write_pending, active_idle, broken, bad_word};
4389 static char *array_states[] = {
4390 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4391 "write-pending", "active-idle", "broken", NULL };
4392
4393 static int match_word(const char *word, char **list)
4394 {
4395 int n;
4396 for (n=0; list[n]; n++)
4397 if (cmd_match(word, list[n]))
4398 break;
4399 return n;
4400 }
4401
4402 static ssize_t
4403 array_state_show(struct mddev *mddev, char *page)
4404 {
4405 enum array_state st = inactive;
4406
4407 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4408 switch(mddev->ro) {
4409 case 1:
4410 st = readonly;
4411 break;
4412 case 2:
4413 st = read_auto;
4414 break;
4415 case 0:
4416 spin_lock(&mddev->lock);
4417 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4418 st = write_pending;
4419 else if (mddev->in_sync)
4420 st = clean;
4421 else if (mddev->safemode)
4422 st = active_idle;
4423 else
4424 st = active;
4425 spin_unlock(&mddev->lock);
4426 }
4427
4428 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4429 st = broken;
4430 } else {
4431 if (list_empty(&mddev->disks) &&
4432 mddev->raid_disks == 0 &&
4433 mddev->dev_sectors == 0)
4434 st = clear;
4435 else
4436 st = inactive;
4437 }
4438 return sprintf(page, "%s\n", array_states[st]);
4439 }
4440
4441 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4442 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4443 static int restart_array(struct mddev *mddev);
4444
4445 static ssize_t
4446 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4447 {
4448 int err = 0;
4449 enum array_state st = match_word(buf, array_states);
4450
4451 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4452 /* don't take reconfig_mutex when toggling between
4453 * clean and active
4454 */
4455 spin_lock(&mddev->lock);
4456 if (st == active) {
4457 restart_array(mddev);
4458 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4459 md_wakeup_thread(mddev->thread);
4460 wake_up(&mddev->sb_wait);
4461 } else /* st == clean */ {
4462 restart_array(mddev);
4463 if (!set_in_sync(mddev))
4464 err = -EBUSY;
4465 }
4466 if (!err)
4467 sysfs_notify_dirent_safe(mddev->sysfs_state);
4468 spin_unlock(&mddev->lock);
4469 return err ?: len;
4470 }
4471 err = mddev_lock(mddev);
4472 if (err)
4473 return err;
4474 err = -EINVAL;
4475 switch(st) {
4476 case bad_word:
4477 break;
4478 case clear:
4479 /* stopping an active array */
4480 err = do_md_stop(mddev, 0, NULL);
4481 break;
4482 case inactive:
4483 /* stopping an active array */
4484 if (mddev->pers)
4485 err = do_md_stop(mddev, 2, NULL);
4486 else
4487 err = 0; /* already inactive */
4488 break;
4489 case suspended:
4490 break; /* not supported yet */
4491 case readonly:
4492 if (mddev->pers)
4493 err = md_set_readonly(mddev, NULL);
4494 else {
4495 mddev->ro = 1;
4496 set_disk_ro(mddev->gendisk, 1);
4497 err = do_md_run(mddev);
4498 }
4499 break;
4500 case read_auto:
4501 if (mddev->pers) {
4502 if (mddev->ro == 0)
4503 err = md_set_readonly(mddev, NULL);
4504 else if (mddev->ro == 1)
4505 err = restart_array(mddev);
4506 if (err == 0) {
4507 mddev->ro = 2;
4508 set_disk_ro(mddev->gendisk, 0);
4509 }
4510 } else {
4511 mddev->ro = 2;
4512 err = do_md_run(mddev);
4513 }
4514 break;
4515 case clean:
4516 if (mddev->pers) {
4517 err = restart_array(mddev);
4518 if (err)
4519 break;
4520 spin_lock(&mddev->lock);
4521 if (!set_in_sync(mddev))
4522 err = -EBUSY;
4523 spin_unlock(&mddev->lock);
4524 } else
4525 err = -EINVAL;
4526 break;
4527 case active:
4528 if (mddev->pers) {
4529 err = restart_array(mddev);
4530 if (err)
4531 break;
4532 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4533 wake_up(&mddev->sb_wait);
4534 err = 0;
4535 } else {
4536 mddev->ro = 0;
4537 set_disk_ro(mddev->gendisk, 0);
4538 err = do_md_run(mddev);
4539 }
4540 break;
4541 case write_pending:
4542 case active_idle:
4543 case broken:
4544 /* these cannot be set */
4545 break;
4546 }
4547
4548 if (!err) {
4549 if (mddev->hold_active == UNTIL_IOCTL)
4550 mddev->hold_active = 0;
4551 sysfs_notify_dirent_safe(mddev->sysfs_state);
4552 }
4553 mddev_unlock(mddev);
4554 return err ?: len;
4555 }
4556 static struct md_sysfs_entry md_array_state =
4557 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4558
4559 static ssize_t
4560 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4561 return sprintf(page, "%d\n",
4562 atomic_read(&mddev->max_corr_read_errors));
4563 }
4564
4565 static ssize_t
4566 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 unsigned int n;
4569 int rv;
4570
4571 rv = kstrtouint(buf, 10, &n);
4572 if (rv < 0)
4573 return rv;
4574 atomic_set(&mddev->max_corr_read_errors, n);
4575 return len;
4576 }
4577
4578 static struct md_sysfs_entry max_corr_read_errors =
4579 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4580 max_corrected_read_errors_store);
4581
4582 static ssize_t
4583 null_show(struct mddev *mddev, char *page)
4584 {
4585 return -EINVAL;
4586 }
4587
4588 /* need to ensure rdev_delayed_delete() has completed */
4589 static void flush_rdev_wq(struct mddev *mddev)
4590 {
4591 struct md_rdev *rdev;
4592
4593 rcu_read_lock();
4594 rdev_for_each_rcu(rdev, mddev)
4595 if (work_pending(&rdev->del_work)) {
4596 flush_workqueue(md_rdev_misc_wq);
4597 break;
4598 }
4599 rcu_read_unlock();
4600 }
4601
4602 static ssize_t
4603 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4604 {
4605 /* buf must be %d:%d\n? giving major and minor numbers */
4606 /* The new device is added to the array.
4607 * If the array has a persistent superblock, we read the
4608 * superblock to initialise info and check validity.
4609 * Otherwise, only checking done is that in bind_rdev_to_array,
4610 * which mainly checks size.
4611 */
4612 char *e;
4613 int major = simple_strtoul(buf, &e, 10);
4614 int minor;
4615 dev_t dev;
4616 struct md_rdev *rdev;
4617 int err;
4618
4619 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4620 return -EINVAL;
4621 minor = simple_strtoul(e+1, &e, 10);
4622 if (*e && *e != '\n')
4623 return -EINVAL;
4624 dev = MKDEV(major, minor);
4625 if (major != MAJOR(dev) ||
4626 minor != MINOR(dev))
4627 return -EOVERFLOW;
4628
4629 flush_rdev_wq(mddev);
4630 err = mddev_lock(mddev);
4631 if (err)
4632 return err;
4633 if (mddev->persistent) {
4634 rdev = md_import_device(dev, mddev->major_version,
4635 mddev->minor_version);
4636 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4637 struct md_rdev *rdev0
4638 = list_entry(mddev->disks.next,
4639 struct md_rdev, same_set);
4640 err = super_types[mddev->major_version]
4641 .load_super(rdev, rdev0, mddev->minor_version);
4642 if (err < 0)
4643 goto out;
4644 }
4645 } else if (mddev->external)
4646 rdev = md_import_device(dev, -2, -1);
4647 else
4648 rdev = md_import_device(dev, -1, -1);
4649
4650 if (IS_ERR(rdev)) {
4651 mddev_unlock(mddev);
4652 return PTR_ERR(rdev);
4653 }
4654 err = bind_rdev_to_array(rdev, mddev);
4655 out:
4656 if (err)
4657 export_rdev(rdev);
4658 mddev_unlock(mddev);
4659 if (!err)
4660 md_new_event(mddev);
4661 return err ? err : len;
4662 }
4663
4664 static struct md_sysfs_entry md_new_device =
4665 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4666
4667 static ssize_t
4668 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4669 {
4670 char *end;
4671 unsigned long chunk, end_chunk;
4672 int err;
4673
4674 err = mddev_lock(mddev);
4675 if (err)
4676 return err;
4677 if (!mddev->bitmap)
4678 goto out;
4679 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4680 while (*buf) {
4681 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4682 if (buf == end) break;
4683 if (*end == '-') { /* range */
4684 buf = end + 1;
4685 end_chunk = simple_strtoul(buf, &end, 0);
4686 if (buf == end) break;
4687 }
4688 if (*end && !isspace(*end)) break;
4689 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4690 buf = skip_spaces(end);
4691 }
4692 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4693 out:
4694 mddev_unlock(mddev);
4695 return len;
4696 }
4697
4698 static struct md_sysfs_entry md_bitmap =
4699 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4700
4701 static ssize_t
4702 size_show(struct mddev *mddev, char *page)
4703 {
4704 return sprintf(page, "%llu\n",
4705 (unsigned long long)mddev->dev_sectors / 2);
4706 }
4707
4708 static int update_size(struct mddev *mddev, sector_t num_sectors);
4709
4710 static ssize_t
4711 size_store(struct mddev *mddev, const char *buf, size_t len)
4712 {
4713 /* If array is inactive, we can reduce the component size, but
4714 * not increase it (except from 0).
4715 * If array is active, we can try an on-line resize
4716 */
4717 sector_t sectors;
4718 int err = strict_blocks_to_sectors(buf, &sectors);
4719
4720 if (err < 0)
4721 return err;
4722 err = mddev_lock(mddev);
4723 if (err)
4724 return err;
4725 if (mddev->pers) {
4726 err = update_size(mddev, sectors);
4727 if (err == 0)
4728 md_update_sb(mddev, 1);
4729 } else {
4730 if (mddev->dev_sectors == 0 ||
4731 mddev->dev_sectors > sectors)
4732 mddev->dev_sectors = sectors;
4733 else
4734 err = -ENOSPC;
4735 }
4736 mddev_unlock(mddev);
4737 return err ? err : len;
4738 }
4739
4740 static struct md_sysfs_entry md_size =
4741 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4742
4743 /* Metadata version.
4744 * This is one of
4745 * 'none' for arrays with no metadata (good luck...)
4746 * 'external' for arrays with externally managed metadata,
4747 * or N.M for internally known formats
4748 */
4749 static ssize_t
4750 metadata_show(struct mddev *mddev, char *page)
4751 {
4752 if (mddev->persistent)
4753 return sprintf(page, "%d.%d\n",
4754 mddev->major_version, mddev->minor_version);
4755 else if (mddev->external)
4756 return sprintf(page, "external:%s\n", mddev->metadata_type);
4757 else
4758 return sprintf(page, "none\n");
4759 }
4760
4761 static ssize_t
4762 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4763 {
4764 int major, minor;
4765 char *e;
4766 int err;
4767 /* Changing the details of 'external' metadata is
4768 * always permitted. Otherwise there must be
4769 * no devices attached to the array.
4770 */
4771
4772 err = mddev_lock(mddev);
4773 if (err)
4774 return err;
4775 err = -EBUSY;
4776 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4777 ;
4778 else if (!list_empty(&mddev->disks))
4779 goto out_unlock;
4780
4781 err = 0;
4782 if (cmd_match(buf, "none")) {
4783 mddev->persistent = 0;
4784 mddev->external = 0;
4785 mddev->major_version = 0;
4786 mddev->minor_version = 90;
4787 goto out_unlock;
4788 }
4789 if (strncmp(buf, "external:", 9) == 0) {
4790 size_t namelen = len-9;
4791 if (namelen >= sizeof(mddev->metadata_type))
4792 namelen = sizeof(mddev->metadata_type)-1;
4793 strncpy(mddev->metadata_type, buf+9, namelen);
4794 mddev->metadata_type[namelen] = 0;
4795 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4796 mddev->metadata_type[--namelen] = 0;
4797 mddev->persistent = 0;
4798 mddev->external = 1;
4799 mddev->major_version = 0;
4800 mddev->minor_version = 90;
4801 goto out_unlock;
4802 }
4803 major = simple_strtoul(buf, &e, 10);
4804 err = -EINVAL;
4805 if (e==buf || *e != '.')
4806 goto out_unlock;
4807 buf = e+1;
4808 minor = simple_strtoul(buf, &e, 10);
4809 if (e==buf || (*e && *e != '\n') )
4810 goto out_unlock;
4811 err = -ENOENT;
4812 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4813 goto out_unlock;
4814 mddev->major_version = major;
4815 mddev->minor_version = minor;
4816 mddev->persistent = 1;
4817 mddev->external = 0;
4818 err = 0;
4819 out_unlock:
4820 mddev_unlock(mddev);
4821 return err ?: len;
4822 }
4823
4824 static struct md_sysfs_entry md_metadata =
4825 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4826
4827 static ssize_t
4828 action_show(struct mddev *mddev, char *page)
4829 {
4830 char *type = "idle";
4831 unsigned long recovery = mddev->recovery;
4832 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4833 type = "frozen";
4834 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4835 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4836 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4837 type = "reshape";
4838 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4839 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4840 type = "resync";
4841 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4842 type = "check";
4843 else
4844 type = "repair";
4845 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4846 type = "recover";
4847 else if (mddev->reshape_position != MaxSector)
4848 type = "reshape";
4849 }
4850 return sprintf(page, "%s\n", type);
4851 }
4852
4853 static ssize_t
4854 action_store(struct mddev *mddev, const char *page, size_t len)
4855 {
4856 if (!mddev->pers || !mddev->pers->sync_request)
4857 return -EINVAL;
4858
4859
4860 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4861 if (cmd_match(page, "frozen"))
4862 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4863 else
4864 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4865 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4866 mddev_lock(mddev) == 0) {
4867 if (work_pending(&mddev->del_work))
4868 flush_workqueue(md_misc_wq);
4869 if (mddev->sync_thread) {
4870 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4871 md_reap_sync_thread(mddev);
4872 }
4873 mddev_unlock(mddev);
4874 }
4875 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4876 return -EBUSY;
4877 else if (cmd_match(page, "resync"))
4878 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4879 else if (cmd_match(page, "recover")) {
4880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4881 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4882 } else if (cmd_match(page, "reshape")) {
4883 int err;
4884 if (mddev->pers->start_reshape == NULL)
4885 return -EINVAL;
4886 err = mddev_lock(mddev);
4887 if (!err) {
4888 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4889 err = -EBUSY;
4890 else {
4891 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4892 err = mddev->pers->start_reshape(mddev);
4893 }
4894 mddev_unlock(mddev);
4895 }
4896 if (err)
4897 return err;
4898 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4899 } else {
4900 if (cmd_match(page, "check"))
4901 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4902 else if (!cmd_match(page, "repair"))
4903 return -EINVAL;
4904 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4905 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4906 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4907 }
4908 if (mddev->ro == 2) {
4909 /* A write to sync_action is enough to justify
4910 * canceling read-auto mode
4911 */
4912 mddev->ro = 0;
4913 md_wakeup_thread(mddev->sync_thread);
4914 }
4915 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4916 md_wakeup_thread(mddev->thread);
4917 sysfs_notify_dirent_safe(mddev->sysfs_action);
4918 return len;
4919 }
4920
4921 static struct md_sysfs_entry md_scan_mode =
4922 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4923
4924 static ssize_t
4925 last_sync_action_show(struct mddev *mddev, char *page)
4926 {
4927 return sprintf(page, "%s\n", mddev->last_sync_action);
4928 }
4929
4930 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4931
4932 static ssize_t
4933 mismatch_cnt_show(struct mddev *mddev, char *page)
4934 {
4935 return sprintf(page, "%llu\n",
4936 (unsigned long long)
4937 atomic64_read(&mddev->resync_mismatches));
4938 }
4939
4940 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4941
4942 static ssize_t
4943 sync_min_show(struct mddev *mddev, char *page)
4944 {
4945 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4946 mddev->sync_speed_min ? "local": "system");
4947 }
4948
4949 static ssize_t
4950 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4951 {
4952 unsigned int min;
4953 int rv;
4954
4955 if (strncmp(buf, "system", 6)==0) {
4956 min = 0;
4957 } else {
4958 rv = kstrtouint(buf, 10, &min);
4959 if (rv < 0)
4960 return rv;
4961 if (min == 0)
4962 return -EINVAL;
4963 }
4964 mddev->sync_speed_min = min;
4965 return len;
4966 }
4967
4968 static struct md_sysfs_entry md_sync_min =
4969 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4970
4971 static ssize_t
4972 sync_max_show(struct mddev *mddev, char *page)
4973 {
4974 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4975 mddev->sync_speed_max ? "local": "system");
4976 }
4977
4978 static ssize_t
4979 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4980 {
4981 unsigned int max;
4982 int rv;
4983
4984 if (strncmp(buf, "system", 6)==0) {
4985 max = 0;
4986 } else {
4987 rv = kstrtouint(buf, 10, &max);
4988 if (rv < 0)
4989 return rv;
4990 if (max == 0)
4991 return -EINVAL;
4992 }
4993 mddev->sync_speed_max = max;
4994 return len;
4995 }
4996
4997 static struct md_sysfs_entry md_sync_max =
4998 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4999
5000 static ssize_t
5001 degraded_show(struct mddev *mddev, char *page)
5002 {
5003 return sprintf(page, "%d\n", mddev->degraded);
5004 }
5005 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5006
5007 static ssize_t
5008 sync_force_parallel_show(struct mddev *mddev, char *page)
5009 {
5010 return sprintf(page, "%d\n", mddev->parallel_resync);
5011 }
5012
5013 static ssize_t
5014 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5015 {
5016 long n;
5017
5018 if (kstrtol(buf, 10, &n))
5019 return -EINVAL;
5020
5021 if (n != 0 && n != 1)
5022 return -EINVAL;
5023
5024 mddev->parallel_resync = n;
5025
5026 if (mddev->sync_thread)
5027 wake_up(&resync_wait);
5028
5029 return len;
5030 }
5031
5032 /* force parallel resync, even with shared block devices */
5033 static struct md_sysfs_entry md_sync_force_parallel =
5034 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5035 sync_force_parallel_show, sync_force_parallel_store);
5036
5037 static ssize_t
5038 sync_speed_show(struct mddev *mddev, char *page)
5039 {
5040 unsigned long resync, dt, db;
5041 if (mddev->curr_resync == 0)
5042 return sprintf(page, "none\n");
5043 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5044 dt = (jiffies - mddev->resync_mark) / HZ;
5045 if (!dt) dt++;
5046 db = resync - mddev->resync_mark_cnt;
5047 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5048 }
5049
5050 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5051
5052 static ssize_t
5053 sync_completed_show(struct mddev *mddev, char *page)
5054 {
5055 unsigned long long max_sectors, resync;
5056
5057 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5058 return sprintf(page, "none\n");
5059
5060 if (mddev->curr_resync == 1 ||
5061 mddev->curr_resync == 2)
5062 return sprintf(page, "delayed\n");
5063
5064 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5065 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5066 max_sectors = mddev->resync_max_sectors;
5067 else
5068 max_sectors = mddev->dev_sectors;
5069
5070 resync = mddev->curr_resync_completed;
5071 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5072 }
5073
5074 static struct md_sysfs_entry md_sync_completed =
5075 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5076
5077 static ssize_t
5078 min_sync_show(struct mddev *mddev, char *page)
5079 {
5080 return sprintf(page, "%llu\n",
5081 (unsigned long long)mddev->resync_min);
5082 }
5083 static ssize_t
5084 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5085 {
5086 unsigned long long min;
5087 int err;
5088
5089 if (kstrtoull(buf, 10, &min))
5090 return -EINVAL;
5091
5092 spin_lock(&mddev->lock);
5093 err = -EINVAL;
5094 if (min > mddev->resync_max)
5095 goto out_unlock;
5096
5097 err = -EBUSY;
5098 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5099 goto out_unlock;
5100
5101 /* Round down to multiple of 4K for safety */
5102 mddev->resync_min = round_down(min, 8);
5103 err = 0;
5104
5105 out_unlock:
5106 spin_unlock(&mddev->lock);
5107 return err ?: len;
5108 }
5109
5110 static struct md_sysfs_entry md_min_sync =
5111 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5112
5113 static ssize_t
5114 max_sync_show(struct mddev *mddev, char *page)
5115 {
5116 if (mddev->resync_max == MaxSector)
5117 return sprintf(page, "max\n");
5118 else
5119 return sprintf(page, "%llu\n",
5120 (unsigned long long)mddev->resync_max);
5121 }
5122 static ssize_t
5123 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5124 {
5125 int err;
5126 spin_lock(&mddev->lock);
5127 if (strncmp(buf, "max", 3) == 0)
5128 mddev->resync_max = MaxSector;
5129 else {
5130 unsigned long long max;
5131 int chunk;
5132
5133 err = -EINVAL;
5134 if (kstrtoull(buf, 10, &max))
5135 goto out_unlock;
5136 if (max < mddev->resync_min)
5137 goto out_unlock;
5138
5139 err = -EBUSY;
5140 if (max < mddev->resync_max &&
5141 mddev->ro == 0 &&
5142 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5143 goto out_unlock;
5144
5145 /* Must be a multiple of chunk_size */
5146 chunk = mddev->chunk_sectors;
5147 if (chunk) {
5148 sector_t temp = max;
5149
5150 err = -EINVAL;
5151 if (sector_div(temp, chunk))
5152 goto out_unlock;
5153 }
5154 mddev->resync_max = max;
5155 }
5156 wake_up(&mddev->recovery_wait);
5157 err = 0;
5158 out_unlock:
5159 spin_unlock(&mddev->lock);
5160 return err ?: len;
5161 }
5162
5163 static struct md_sysfs_entry md_max_sync =
5164 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5165
5166 static ssize_t
5167 suspend_lo_show(struct mddev *mddev, char *page)
5168 {
5169 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5170 }
5171
5172 static ssize_t
5173 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5174 {
5175 unsigned long long new;
5176 int err;
5177
5178 err = kstrtoull(buf, 10, &new);
5179 if (err < 0)
5180 return err;
5181 if (new != (sector_t)new)
5182 return -EINVAL;
5183
5184 err = mddev_lock(mddev);
5185 if (err)
5186 return err;
5187 err = -EINVAL;
5188 if (mddev->pers == NULL ||
5189 mddev->pers->quiesce == NULL)
5190 goto unlock;
5191 mddev_suspend(mddev);
5192 mddev->suspend_lo = new;
5193 mddev_resume(mddev);
5194
5195 err = 0;
5196 unlock:
5197 mddev_unlock(mddev);
5198 return err ?: len;
5199 }
5200 static struct md_sysfs_entry md_suspend_lo =
5201 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5202
5203 static ssize_t
5204 suspend_hi_show(struct mddev *mddev, char *page)
5205 {
5206 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5207 }
5208
5209 static ssize_t
5210 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5211 {
5212 unsigned long long new;
5213 int err;
5214
5215 err = kstrtoull(buf, 10, &new);
5216 if (err < 0)
5217 return err;
5218 if (new != (sector_t)new)
5219 return -EINVAL;
5220
5221 err = mddev_lock(mddev);
5222 if (err)
5223 return err;
5224 err = -EINVAL;
5225 if (mddev->pers == NULL)
5226 goto unlock;
5227
5228 mddev_suspend(mddev);
5229 mddev->suspend_hi = new;
5230 mddev_resume(mddev);
5231
5232 err = 0;
5233 unlock:
5234 mddev_unlock(mddev);
5235 return err ?: len;
5236 }
5237 static struct md_sysfs_entry md_suspend_hi =
5238 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5239
5240 static ssize_t
5241 reshape_position_show(struct mddev *mddev, char *page)
5242 {
5243 if (mddev->reshape_position != MaxSector)
5244 return sprintf(page, "%llu\n",
5245 (unsigned long long)mddev->reshape_position);
5246 strcpy(page, "none\n");
5247 return 5;
5248 }
5249
5250 static ssize_t
5251 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5252 {
5253 struct md_rdev *rdev;
5254 unsigned long long new;
5255 int err;
5256
5257 err = kstrtoull(buf, 10, &new);
5258 if (err < 0)
5259 return err;
5260 if (new != (sector_t)new)
5261 return -EINVAL;
5262 err = mddev_lock(mddev);
5263 if (err)
5264 return err;
5265 err = -EBUSY;
5266 if (mddev->pers)
5267 goto unlock;
5268 mddev->reshape_position = new;
5269 mddev->delta_disks = 0;
5270 mddev->reshape_backwards = 0;
5271 mddev->new_level = mddev->level;
5272 mddev->new_layout = mddev->layout;
5273 mddev->new_chunk_sectors = mddev->chunk_sectors;
5274 rdev_for_each(rdev, mddev)
5275 rdev->new_data_offset = rdev->data_offset;
5276 err = 0;
5277 unlock:
5278 mddev_unlock(mddev);
5279 return err ?: len;
5280 }
5281
5282 static struct md_sysfs_entry md_reshape_position =
5283 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5284 reshape_position_store);
5285
5286 static ssize_t
5287 reshape_direction_show(struct mddev *mddev, char *page)
5288 {
5289 return sprintf(page, "%s\n",
5290 mddev->reshape_backwards ? "backwards" : "forwards");
5291 }
5292
5293 static ssize_t
5294 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5295 {
5296 int backwards = 0;
5297 int err;
5298
5299 if (cmd_match(buf, "forwards"))
5300 backwards = 0;
5301 else if (cmd_match(buf, "backwards"))
5302 backwards = 1;
5303 else
5304 return -EINVAL;
5305 if (mddev->reshape_backwards == backwards)
5306 return len;
5307
5308 err = mddev_lock(mddev);
5309 if (err)
5310 return err;
5311 /* check if we are allowed to change */
5312 if (mddev->delta_disks)
5313 err = -EBUSY;
5314 else if (mddev->persistent &&
5315 mddev->major_version == 0)
5316 err = -EINVAL;
5317 else
5318 mddev->reshape_backwards = backwards;
5319 mddev_unlock(mddev);
5320 return err ?: len;
5321 }
5322
5323 static struct md_sysfs_entry md_reshape_direction =
5324 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5325 reshape_direction_store);
5326
5327 static ssize_t
5328 array_size_show(struct mddev *mddev, char *page)
5329 {
5330 if (mddev->external_size)
5331 return sprintf(page, "%llu\n",
5332 (unsigned long long)mddev->array_sectors/2);
5333 else
5334 return sprintf(page, "default\n");
5335 }
5336
5337 static ssize_t
5338 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5339 {
5340 sector_t sectors;
5341 int err;
5342
5343 err = mddev_lock(mddev);
5344 if (err)
5345 return err;
5346
5347 /* cluster raid doesn't support change array_sectors */
5348 if (mddev_is_clustered(mddev)) {
5349 mddev_unlock(mddev);
5350 return -EINVAL;
5351 }
5352
5353 if (strncmp(buf, "default", 7) == 0) {
5354 if (mddev->pers)
5355 sectors = mddev->pers->size(mddev, 0, 0);
5356 else
5357 sectors = mddev->array_sectors;
5358
5359 mddev->external_size = 0;
5360 } else {
5361 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5362 err = -EINVAL;
5363 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5364 err = -E2BIG;
5365 else
5366 mddev->external_size = 1;
5367 }
5368
5369 if (!err) {
5370 mddev->array_sectors = sectors;
5371 if (mddev->pers)
5372 set_capacity_and_notify(mddev->gendisk,
5373 mddev->array_sectors);
5374 }
5375 mddev_unlock(mddev);
5376 return err ?: len;
5377 }
5378
5379 static struct md_sysfs_entry md_array_size =
5380 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5381 array_size_store);
5382
5383 static ssize_t
5384 consistency_policy_show(struct mddev *mddev, char *page)
5385 {
5386 int ret;
5387
5388 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5389 ret = sprintf(page, "journal\n");
5390 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5391 ret = sprintf(page, "ppl\n");
5392 } else if (mddev->bitmap) {
5393 ret = sprintf(page, "bitmap\n");
5394 } else if (mddev->pers) {
5395 if (mddev->pers->sync_request)
5396 ret = sprintf(page, "resync\n");
5397 else
5398 ret = sprintf(page, "none\n");
5399 } else {
5400 ret = sprintf(page, "unknown\n");
5401 }
5402
5403 return ret;
5404 }
5405
5406 static ssize_t
5407 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5408 {
5409 int err = 0;
5410
5411 if (mddev->pers) {
5412 if (mddev->pers->change_consistency_policy)
5413 err = mddev->pers->change_consistency_policy(mddev, buf);
5414 else
5415 err = -EBUSY;
5416 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5417 set_bit(MD_HAS_PPL, &mddev->flags);
5418 } else {
5419 err = -EINVAL;
5420 }
5421
5422 return err ? err : len;
5423 }
5424
5425 static struct md_sysfs_entry md_consistency_policy =
5426 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5427 consistency_policy_store);
5428
5429 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5430 {
5431 return sprintf(page, "%d\n", mddev->fail_last_dev);
5432 }
5433
5434 /*
5435 * Setting fail_last_dev to true to allow last device to be forcibly removed
5436 * from RAID1/RAID10.
5437 */
5438 static ssize_t
5439 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5440 {
5441 int ret;
5442 bool value;
5443
5444 ret = kstrtobool(buf, &value);
5445 if (ret)
5446 return ret;
5447
5448 if (value != mddev->fail_last_dev)
5449 mddev->fail_last_dev = value;
5450
5451 return len;
5452 }
5453 static struct md_sysfs_entry md_fail_last_dev =
5454 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5455 fail_last_dev_store);
5456
5457 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5458 {
5459 if (mddev->pers == NULL || (mddev->pers->level != 1))
5460 return sprintf(page, "n/a\n");
5461 else
5462 return sprintf(page, "%d\n", mddev->serialize_policy);
5463 }
5464
5465 /*
5466 * Setting serialize_policy to true to enforce write IO is not reordered
5467 * for raid1.
5468 */
5469 static ssize_t
5470 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5471 {
5472 int err;
5473 bool value;
5474
5475 err = kstrtobool(buf, &value);
5476 if (err)
5477 return err;
5478
5479 if (value == mddev->serialize_policy)
5480 return len;
5481
5482 err = mddev_lock(mddev);
5483 if (err)
5484 return err;
5485 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5486 pr_err("md: serialize_policy is only effective for raid1\n");
5487 err = -EINVAL;
5488 goto unlock;
5489 }
5490
5491 mddev_suspend(mddev);
5492 if (value)
5493 mddev_create_serial_pool(mddev, NULL, true);
5494 else
5495 mddev_destroy_serial_pool(mddev, NULL, true);
5496 mddev->serialize_policy = value;
5497 mddev_resume(mddev);
5498 unlock:
5499 mddev_unlock(mddev);
5500 return err ?: len;
5501 }
5502
5503 static struct md_sysfs_entry md_serialize_policy =
5504 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5505 serialize_policy_store);
5506
5507
5508 static struct attribute *md_default_attrs[] = {
5509 &md_level.attr,
5510 &md_layout.attr,
5511 &md_raid_disks.attr,
5512 &md_uuid.attr,
5513 &md_chunk_size.attr,
5514 &md_size.attr,
5515 &md_resync_start.attr,
5516 &md_metadata.attr,
5517 &md_new_device.attr,
5518 &md_safe_delay.attr,
5519 &md_array_state.attr,
5520 &md_reshape_position.attr,
5521 &md_reshape_direction.attr,
5522 &md_array_size.attr,
5523 &max_corr_read_errors.attr,
5524 &md_consistency_policy.attr,
5525 &md_fail_last_dev.attr,
5526 &md_serialize_policy.attr,
5527 NULL,
5528 };
5529
5530 static struct attribute *md_redundancy_attrs[] = {
5531 &md_scan_mode.attr,
5532 &md_last_scan_mode.attr,
5533 &md_mismatches.attr,
5534 &md_sync_min.attr,
5535 &md_sync_max.attr,
5536 &md_sync_speed.attr,
5537 &md_sync_force_parallel.attr,
5538 &md_sync_completed.attr,
5539 &md_min_sync.attr,
5540 &md_max_sync.attr,
5541 &md_suspend_lo.attr,
5542 &md_suspend_hi.attr,
5543 &md_bitmap.attr,
5544 &md_degraded.attr,
5545 NULL,
5546 };
5547 static struct attribute_group md_redundancy_group = {
5548 .name = NULL,
5549 .attrs = md_redundancy_attrs,
5550 };
5551
5552 static ssize_t
5553 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5554 {
5555 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5556 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5557 ssize_t rv;
5558
5559 if (!entry->show)
5560 return -EIO;
5561 spin_lock(&all_mddevs_lock);
5562 if (list_empty(&mddev->all_mddevs)) {
5563 spin_unlock(&all_mddevs_lock);
5564 return -EBUSY;
5565 }
5566 mddev_get(mddev);
5567 spin_unlock(&all_mddevs_lock);
5568
5569 rv = entry->show(mddev, page);
5570 mddev_put(mddev);
5571 return rv;
5572 }
5573
5574 static ssize_t
5575 md_attr_store(struct kobject *kobj, struct attribute *attr,
5576 const char *page, size_t length)
5577 {
5578 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5579 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5580 ssize_t rv;
5581
5582 if (!entry->store)
5583 return -EIO;
5584 if (!capable(CAP_SYS_ADMIN))
5585 return -EACCES;
5586 spin_lock(&all_mddevs_lock);
5587 if (list_empty(&mddev->all_mddevs)) {
5588 spin_unlock(&all_mddevs_lock);
5589 return -EBUSY;
5590 }
5591 mddev_get(mddev);
5592 spin_unlock(&all_mddevs_lock);
5593 rv = entry->store(mddev, page, length);
5594 mddev_put(mddev);
5595 return rv;
5596 }
5597
5598 static void md_free(struct kobject *ko)
5599 {
5600 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5601
5602 if (mddev->sysfs_state)
5603 sysfs_put(mddev->sysfs_state);
5604 if (mddev->sysfs_level)
5605 sysfs_put(mddev->sysfs_level);
5606
5607 if (mddev->gendisk)
5608 del_gendisk(mddev->gendisk);
5609 if (mddev->queue)
5610 blk_cleanup_queue(mddev->queue);
5611 if (mddev->gendisk)
5612 put_disk(mddev->gendisk);
5613 percpu_ref_exit(&mddev->writes_pending);
5614
5615 bioset_exit(&mddev->bio_set);
5616 bioset_exit(&mddev->sync_set);
5617 mempool_exit(&mddev->md_io_pool);
5618 kfree(mddev);
5619 }
5620
5621 static const struct sysfs_ops md_sysfs_ops = {
5622 .show = md_attr_show,
5623 .store = md_attr_store,
5624 };
5625 static struct kobj_type md_ktype = {
5626 .release = md_free,
5627 .sysfs_ops = &md_sysfs_ops,
5628 .default_attrs = md_default_attrs,
5629 };
5630
5631 int mdp_major = 0;
5632
5633 static void mddev_delayed_delete(struct work_struct *ws)
5634 {
5635 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5636
5637 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5638 kobject_del(&mddev->kobj);
5639 kobject_put(&mddev->kobj);
5640 }
5641
5642 static void no_op(struct percpu_ref *r) {}
5643
5644 int mddev_init_writes_pending(struct mddev *mddev)
5645 {
5646 if (mddev->writes_pending.percpu_count_ptr)
5647 return 0;
5648 if (percpu_ref_init(&mddev->writes_pending, no_op,
5649 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5650 return -ENOMEM;
5651 /* We want to start with the refcount at zero */
5652 percpu_ref_put(&mddev->writes_pending);
5653 return 0;
5654 }
5655 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5656
5657 static int md_alloc(dev_t dev, char *name)
5658 {
5659 /*
5660 * If dev is zero, name is the name of a device to allocate with
5661 * an arbitrary minor number. It will be "md_???"
5662 * If dev is non-zero it must be a device number with a MAJOR of
5663 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5664 * the device is being created by opening a node in /dev.
5665 * If "name" is not NULL, the device is being created by
5666 * writing to /sys/module/md_mod/parameters/new_array.
5667 */
5668 static DEFINE_MUTEX(disks_mutex);
5669 struct mddev *mddev = mddev_find_or_alloc(dev);
5670 struct gendisk *disk;
5671 int partitioned;
5672 int shift;
5673 int unit;
5674 int error;
5675
5676 if (!mddev)
5677 return -ENODEV;
5678
5679 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5680 shift = partitioned ? MdpMinorShift : 0;
5681 unit = MINOR(mddev->unit) >> shift;
5682
5683 /* wait for any previous instance of this device to be
5684 * completely removed (mddev_delayed_delete).
5685 */
5686 flush_workqueue(md_misc_wq);
5687
5688 mutex_lock(&disks_mutex);
5689 error = -EEXIST;
5690 if (mddev->gendisk)
5691 goto abort;
5692
5693 if (name && !dev) {
5694 /* Need to ensure that 'name' is not a duplicate.
5695 */
5696 struct mddev *mddev2;
5697 spin_lock(&all_mddevs_lock);
5698
5699 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5700 if (mddev2->gendisk &&
5701 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5702 spin_unlock(&all_mddevs_lock);
5703 goto abort;
5704 }
5705 spin_unlock(&all_mddevs_lock);
5706 }
5707 if (name && dev)
5708 /*
5709 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5710 */
5711 mddev->hold_active = UNTIL_STOP;
5712
5713 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE,
5714 sizeof(struct md_io));
5715 if (error)
5716 goto abort;
5717
5718 error = -ENOMEM;
5719 mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5720 if (!mddev->queue)
5721 goto abort;
5722
5723 blk_set_stacking_limits(&mddev->queue->limits);
5724
5725 disk = alloc_disk(1 << shift);
5726 if (!disk) {
5727 blk_cleanup_queue(mddev->queue);
5728 mddev->queue = NULL;
5729 goto abort;
5730 }
5731 disk->major = MAJOR(mddev->unit);
5732 disk->first_minor = unit << shift;
5733 if (name)
5734 strcpy(disk->disk_name, name);
5735 else if (partitioned)
5736 sprintf(disk->disk_name, "md_d%d", unit);
5737 else
5738 sprintf(disk->disk_name, "md%d", unit);
5739 disk->fops = &md_fops;
5740 disk->private_data = mddev;
5741 disk->queue = mddev->queue;
5742 blk_queue_write_cache(mddev->queue, true, true);
5743 /* Allow extended partitions. This makes the
5744 * 'mdp' device redundant, but we can't really
5745 * remove it now.
5746 */
5747 disk->flags |= GENHD_FL_EXT_DEVT;
5748 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5749 mddev->gendisk = disk;
5750 /* As soon as we call add_disk(), another thread could get
5751 * through to md_open, so make sure it doesn't get too far
5752 */
5753 mutex_lock(&mddev->open_mutex);
5754 add_disk(disk);
5755
5756 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5757 if (error) {
5758 /* This isn't possible, but as kobject_init_and_add is marked
5759 * __must_check, we must do something with the result
5760 */
5761 pr_debug("md: cannot register %s/md - name in use\n",
5762 disk->disk_name);
5763 error = 0;
5764 }
5765 if (mddev->kobj.sd &&
5766 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5767 pr_debug("pointless warning\n");
5768 mutex_unlock(&mddev->open_mutex);
5769 abort:
5770 mutex_unlock(&disks_mutex);
5771 if (!error && mddev->kobj.sd) {
5772 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5773 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5774 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5775 }
5776 mddev_put(mddev);
5777 return error;
5778 }
5779
5780 static void md_probe(dev_t dev)
5781 {
5782 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5783 return;
5784 if (create_on_open)
5785 md_alloc(dev, NULL);
5786 }
5787
5788 static int add_named_array(const char *val, const struct kernel_param *kp)
5789 {
5790 /*
5791 * val must be "md_*" or "mdNNN".
5792 * For "md_*" we allocate an array with a large free minor number, and
5793 * set the name to val. val must not already be an active name.
5794 * For "mdNNN" we allocate an array with the minor number NNN
5795 * which must not already be in use.
5796 */
5797 int len = strlen(val);
5798 char buf[DISK_NAME_LEN];
5799 unsigned long devnum;
5800
5801 while (len && val[len-1] == '\n')
5802 len--;
5803 if (len >= DISK_NAME_LEN)
5804 return -E2BIG;
5805 strlcpy(buf, val, len+1);
5806 if (strncmp(buf, "md_", 3) == 0)
5807 return md_alloc(0, buf);
5808 if (strncmp(buf, "md", 2) == 0 &&
5809 isdigit(buf[2]) &&
5810 kstrtoul(buf+2, 10, &devnum) == 0 &&
5811 devnum <= MINORMASK)
5812 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5813
5814 return -EINVAL;
5815 }
5816
5817 static void md_safemode_timeout(struct timer_list *t)
5818 {
5819 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5820
5821 mddev->safemode = 1;
5822 if (mddev->external)
5823 sysfs_notify_dirent_safe(mddev->sysfs_state);
5824
5825 md_wakeup_thread(mddev->thread);
5826 }
5827
5828 static int start_dirty_degraded;
5829
5830 int md_run(struct mddev *mddev)
5831 {
5832 int err;
5833 struct md_rdev *rdev;
5834 struct md_personality *pers;
5835
5836 if (list_empty(&mddev->disks))
5837 /* cannot run an array with no devices.. */
5838 return -EINVAL;
5839
5840 if (mddev->pers)
5841 return -EBUSY;
5842 /* Cannot run until previous stop completes properly */
5843 if (mddev->sysfs_active)
5844 return -EBUSY;
5845
5846 /*
5847 * Analyze all RAID superblock(s)
5848 */
5849 if (!mddev->raid_disks) {
5850 if (!mddev->persistent)
5851 return -EINVAL;
5852 err = analyze_sbs(mddev);
5853 if (err)
5854 return -EINVAL;
5855 }
5856
5857 if (mddev->level != LEVEL_NONE)
5858 request_module("md-level-%d", mddev->level);
5859 else if (mddev->clevel[0])
5860 request_module("md-%s", mddev->clevel);
5861
5862 /*
5863 * Drop all container device buffers, from now on
5864 * the only valid external interface is through the md
5865 * device.
5866 */
5867 mddev->has_superblocks = false;
5868 rdev_for_each(rdev, mddev) {
5869 if (test_bit(Faulty, &rdev->flags))
5870 continue;
5871 sync_blockdev(rdev->bdev);
5872 invalidate_bdev(rdev->bdev);
5873 if (mddev->ro != 1 && rdev_read_only(rdev)) {
5874 mddev->ro = 1;
5875 if (mddev->gendisk)
5876 set_disk_ro(mddev->gendisk, 1);
5877 }
5878
5879 if (rdev->sb_page)
5880 mddev->has_superblocks = true;
5881
5882 /* perform some consistency tests on the device.
5883 * We don't want the data to overlap the metadata,
5884 * Internal Bitmap issues have been handled elsewhere.
5885 */
5886 if (rdev->meta_bdev) {
5887 /* Nothing to check */;
5888 } else if (rdev->data_offset < rdev->sb_start) {
5889 if (mddev->dev_sectors &&
5890 rdev->data_offset + mddev->dev_sectors
5891 > rdev->sb_start) {
5892 pr_warn("md: %s: data overlaps metadata\n",
5893 mdname(mddev));
5894 return -EINVAL;
5895 }
5896 } else {
5897 if (rdev->sb_start + rdev->sb_size/512
5898 > rdev->data_offset) {
5899 pr_warn("md: %s: metadata overlaps data\n",
5900 mdname(mddev));
5901 return -EINVAL;
5902 }
5903 }
5904 sysfs_notify_dirent_safe(rdev->sysfs_state);
5905 }
5906
5907 if (!bioset_initialized(&mddev->bio_set)) {
5908 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5909 if (err)
5910 return err;
5911 }
5912 if (!bioset_initialized(&mddev->sync_set)) {
5913 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5914 if (err)
5915 return err;
5916 }
5917
5918 spin_lock(&pers_lock);
5919 pers = find_pers(mddev->level, mddev->clevel);
5920 if (!pers || !try_module_get(pers->owner)) {
5921 spin_unlock(&pers_lock);
5922 if (mddev->level != LEVEL_NONE)
5923 pr_warn("md: personality for level %d is not loaded!\n",
5924 mddev->level);
5925 else
5926 pr_warn("md: personality for level %s is not loaded!\n",
5927 mddev->clevel);
5928 err = -EINVAL;
5929 goto abort;
5930 }
5931 spin_unlock(&pers_lock);
5932 if (mddev->level != pers->level) {
5933 mddev->level = pers->level;
5934 mddev->new_level = pers->level;
5935 }
5936 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5937
5938 if (mddev->reshape_position != MaxSector &&
5939 pers->start_reshape == NULL) {
5940 /* This personality cannot handle reshaping... */
5941 module_put(pers->owner);
5942 err = -EINVAL;
5943 goto abort;
5944 }
5945
5946 if (pers->sync_request) {
5947 /* Warn if this is a potentially silly
5948 * configuration.
5949 */
5950 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5951 struct md_rdev *rdev2;
5952 int warned = 0;
5953
5954 rdev_for_each(rdev, mddev)
5955 rdev_for_each(rdev2, mddev) {
5956 if (rdev < rdev2 &&
5957 rdev->bdev->bd_disk ==
5958 rdev2->bdev->bd_disk) {
5959 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5960 mdname(mddev),
5961 bdevname(rdev->bdev,b),
5962 bdevname(rdev2->bdev,b2));
5963 warned = 1;
5964 }
5965 }
5966
5967 if (warned)
5968 pr_warn("True protection against single-disk failure might be compromised.\n");
5969 }
5970
5971 mddev->recovery = 0;
5972 /* may be over-ridden by personality */
5973 mddev->resync_max_sectors = mddev->dev_sectors;
5974
5975 mddev->ok_start_degraded = start_dirty_degraded;
5976
5977 if (start_readonly && mddev->ro == 0)
5978 mddev->ro = 2; /* read-only, but switch on first write */
5979
5980 err = pers->run(mddev);
5981 if (err)
5982 pr_warn("md: pers->run() failed ...\n");
5983 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5984 WARN_ONCE(!mddev->external_size,
5985 "%s: default size too small, but 'external_size' not in effect?\n",
5986 __func__);
5987 pr_warn("md: invalid array_size %llu > default size %llu\n",
5988 (unsigned long long)mddev->array_sectors / 2,
5989 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5990 err = -EINVAL;
5991 }
5992 if (err == 0 && pers->sync_request &&
5993 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5994 struct bitmap *bitmap;
5995
5996 bitmap = md_bitmap_create(mddev, -1);
5997 if (IS_ERR(bitmap)) {
5998 err = PTR_ERR(bitmap);
5999 pr_warn("%s: failed to create bitmap (%d)\n",
6000 mdname(mddev), err);
6001 } else
6002 mddev->bitmap = bitmap;
6003
6004 }
6005 if (err)
6006 goto bitmap_abort;
6007
6008 if (mddev->bitmap_info.max_write_behind > 0) {
6009 bool create_pool = false;
6010
6011 rdev_for_each(rdev, mddev) {
6012 if (test_bit(WriteMostly, &rdev->flags) &&
6013 rdev_init_serial(rdev))
6014 create_pool = true;
6015 }
6016 if (create_pool && mddev->serial_info_pool == NULL) {
6017 mddev->serial_info_pool =
6018 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6019 sizeof(struct serial_info));
6020 if (!mddev->serial_info_pool) {
6021 err = -ENOMEM;
6022 goto bitmap_abort;
6023 }
6024 }
6025 }
6026
6027 if (mddev->queue) {
6028 bool nonrot = true;
6029
6030 rdev_for_each(rdev, mddev) {
6031 if (rdev->raid_disk >= 0 &&
6032 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6033 nonrot = false;
6034 break;
6035 }
6036 }
6037 if (mddev->degraded)
6038 nonrot = false;
6039 if (nonrot)
6040 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6041 else
6042 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6043 }
6044 if (pers->sync_request) {
6045 if (mddev->kobj.sd &&
6046 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6047 pr_warn("md: cannot register extra attributes for %s\n",
6048 mdname(mddev));
6049 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6050 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6051 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6052 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6053 mddev->ro = 0;
6054
6055 atomic_set(&mddev->max_corr_read_errors,
6056 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6057 mddev->safemode = 0;
6058 if (mddev_is_clustered(mddev))
6059 mddev->safemode_delay = 0;
6060 else
6061 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6062 mddev->in_sync = 1;
6063 smp_wmb();
6064 spin_lock(&mddev->lock);
6065 mddev->pers = pers;
6066 spin_unlock(&mddev->lock);
6067 rdev_for_each(rdev, mddev)
6068 if (rdev->raid_disk >= 0)
6069 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6070
6071 if (mddev->degraded && !mddev->ro)
6072 /* This ensures that recovering status is reported immediately
6073 * via sysfs - until a lack of spares is confirmed.
6074 */
6075 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6076 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6077
6078 if (mddev->sb_flags)
6079 md_update_sb(mddev, 0);
6080
6081 md_new_event(mddev);
6082 return 0;
6083
6084 bitmap_abort:
6085 mddev_detach(mddev);
6086 if (mddev->private)
6087 pers->free(mddev, mddev->private);
6088 mddev->private = NULL;
6089 module_put(pers->owner);
6090 md_bitmap_destroy(mddev);
6091 abort:
6092 bioset_exit(&mddev->bio_set);
6093 bioset_exit(&mddev->sync_set);
6094 return err;
6095 }
6096 EXPORT_SYMBOL_GPL(md_run);
6097
6098 int do_md_run(struct mddev *mddev)
6099 {
6100 int err;
6101
6102 set_bit(MD_NOT_READY, &mddev->flags);
6103 err = md_run(mddev);
6104 if (err)
6105 goto out;
6106 err = md_bitmap_load(mddev);
6107 if (err) {
6108 md_bitmap_destroy(mddev);
6109 goto out;
6110 }
6111
6112 if (mddev_is_clustered(mddev))
6113 md_allow_write(mddev);
6114
6115 /* run start up tasks that require md_thread */
6116 md_start(mddev);
6117
6118 md_wakeup_thread(mddev->thread);
6119 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6120
6121 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6122 clear_bit(MD_NOT_READY, &mddev->flags);
6123 mddev->changed = 1;
6124 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6125 sysfs_notify_dirent_safe(mddev->sysfs_state);
6126 sysfs_notify_dirent_safe(mddev->sysfs_action);
6127 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6128 out:
6129 clear_bit(MD_NOT_READY, &mddev->flags);
6130 return err;
6131 }
6132
6133 int md_start(struct mddev *mddev)
6134 {
6135 int ret = 0;
6136
6137 if (mddev->pers->start) {
6138 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6139 md_wakeup_thread(mddev->thread);
6140 ret = mddev->pers->start(mddev);
6141 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6142 md_wakeup_thread(mddev->sync_thread);
6143 }
6144 return ret;
6145 }
6146 EXPORT_SYMBOL_GPL(md_start);
6147
6148 static int restart_array(struct mddev *mddev)
6149 {
6150 struct gendisk *disk = mddev->gendisk;
6151 struct md_rdev *rdev;
6152 bool has_journal = false;
6153 bool has_readonly = false;
6154
6155 /* Complain if it has no devices */
6156 if (list_empty(&mddev->disks))
6157 return -ENXIO;
6158 if (!mddev->pers)
6159 return -EINVAL;
6160 if (!mddev->ro)
6161 return -EBUSY;
6162
6163 rcu_read_lock();
6164 rdev_for_each_rcu(rdev, mddev) {
6165 if (test_bit(Journal, &rdev->flags) &&
6166 !test_bit(Faulty, &rdev->flags))
6167 has_journal = true;
6168 if (rdev_read_only(rdev))
6169 has_readonly = true;
6170 }
6171 rcu_read_unlock();
6172 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6173 /* Don't restart rw with journal missing/faulty */
6174 return -EINVAL;
6175 if (has_readonly)
6176 return -EROFS;
6177
6178 mddev->safemode = 0;
6179 mddev->ro = 0;
6180 set_disk_ro(disk, 0);
6181 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6182 /* Kick recovery or resync if necessary */
6183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6184 md_wakeup_thread(mddev->thread);
6185 md_wakeup_thread(mddev->sync_thread);
6186 sysfs_notify_dirent_safe(mddev->sysfs_state);
6187 return 0;
6188 }
6189
6190 static void md_clean(struct mddev *mddev)
6191 {
6192 mddev->array_sectors = 0;
6193 mddev->external_size = 0;
6194 mddev->dev_sectors = 0;
6195 mddev->raid_disks = 0;
6196 mddev->recovery_cp = 0;
6197 mddev->resync_min = 0;
6198 mddev->resync_max = MaxSector;
6199 mddev->reshape_position = MaxSector;
6200 mddev->external = 0;
6201 mddev->persistent = 0;
6202 mddev->level = LEVEL_NONE;
6203 mddev->clevel[0] = 0;
6204 mddev->flags = 0;
6205 mddev->sb_flags = 0;
6206 mddev->ro = 0;
6207 mddev->metadata_type[0] = 0;
6208 mddev->chunk_sectors = 0;
6209 mddev->ctime = mddev->utime = 0;
6210 mddev->layout = 0;
6211 mddev->max_disks = 0;
6212 mddev->events = 0;
6213 mddev->can_decrease_events = 0;
6214 mddev->delta_disks = 0;
6215 mddev->reshape_backwards = 0;
6216 mddev->new_level = LEVEL_NONE;
6217 mddev->new_layout = 0;
6218 mddev->new_chunk_sectors = 0;
6219 mddev->curr_resync = 0;
6220 atomic64_set(&mddev->resync_mismatches, 0);
6221 mddev->suspend_lo = mddev->suspend_hi = 0;
6222 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6223 mddev->recovery = 0;
6224 mddev->in_sync = 0;
6225 mddev->changed = 0;
6226 mddev->degraded = 0;
6227 mddev->safemode = 0;
6228 mddev->private = NULL;
6229 mddev->cluster_info = NULL;
6230 mddev->bitmap_info.offset = 0;
6231 mddev->bitmap_info.default_offset = 0;
6232 mddev->bitmap_info.default_space = 0;
6233 mddev->bitmap_info.chunksize = 0;
6234 mddev->bitmap_info.daemon_sleep = 0;
6235 mddev->bitmap_info.max_write_behind = 0;
6236 mddev->bitmap_info.nodes = 0;
6237 }
6238
6239 static void __md_stop_writes(struct mddev *mddev)
6240 {
6241 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6242 if (work_pending(&mddev->del_work))
6243 flush_workqueue(md_misc_wq);
6244 if (mddev->sync_thread) {
6245 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6246 md_reap_sync_thread(mddev);
6247 }
6248
6249 del_timer_sync(&mddev->safemode_timer);
6250
6251 if (mddev->pers && mddev->pers->quiesce) {
6252 mddev->pers->quiesce(mddev, 1);
6253 mddev->pers->quiesce(mddev, 0);
6254 }
6255 md_bitmap_flush(mddev);
6256
6257 if (mddev->ro == 0 &&
6258 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6259 mddev->sb_flags)) {
6260 /* mark array as shutdown cleanly */
6261 if (!mddev_is_clustered(mddev))
6262 mddev->in_sync = 1;
6263 md_update_sb(mddev, 1);
6264 }
6265 /* disable policy to guarantee rdevs free resources for serialization */
6266 mddev->serialize_policy = 0;
6267 mddev_destroy_serial_pool(mddev, NULL, true);
6268 }
6269
6270 void md_stop_writes(struct mddev *mddev)
6271 {
6272 mddev_lock_nointr(mddev);
6273 __md_stop_writes(mddev);
6274 mddev_unlock(mddev);
6275 }
6276 EXPORT_SYMBOL_GPL(md_stop_writes);
6277
6278 static void mddev_detach(struct mddev *mddev)
6279 {
6280 md_bitmap_wait_behind_writes(mddev);
6281 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6282 mddev->pers->quiesce(mddev, 1);
6283 mddev->pers->quiesce(mddev, 0);
6284 }
6285 md_unregister_thread(&mddev->thread);
6286 if (mddev->queue)
6287 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6288 }
6289
6290 static void __md_stop(struct mddev *mddev)
6291 {
6292 struct md_personality *pers = mddev->pers;
6293 md_bitmap_destroy(mddev);
6294 mddev_detach(mddev);
6295 /* Ensure ->event_work is done */
6296 if (mddev->event_work.func)
6297 flush_workqueue(md_misc_wq);
6298 spin_lock(&mddev->lock);
6299 mddev->pers = NULL;
6300 spin_unlock(&mddev->lock);
6301 pers->free(mddev, mddev->private);
6302 mddev->private = NULL;
6303 if (pers->sync_request && mddev->to_remove == NULL)
6304 mddev->to_remove = &md_redundancy_group;
6305 module_put(pers->owner);
6306 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6307 }
6308
6309 void md_stop(struct mddev *mddev)
6310 {
6311 /* stop the array and free an attached data structures.
6312 * This is called from dm-raid
6313 */
6314 __md_stop(mddev);
6315 bioset_exit(&mddev->bio_set);
6316 bioset_exit(&mddev->sync_set);
6317 }
6318
6319 EXPORT_SYMBOL_GPL(md_stop);
6320
6321 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6322 {
6323 int err = 0;
6324 int did_freeze = 0;
6325
6326 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6327 did_freeze = 1;
6328 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6329 md_wakeup_thread(mddev->thread);
6330 }
6331 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6332 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6333 if (mddev->sync_thread)
6334 /* Thread might be blocked waiting for metadata update
6335 * which will now never happen */
6336 wake_up_process(mddev->sync_thread->tsk);
6337
6338 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6339 return -EBUSY;
6340 mddev_unlock(mddev);
6341 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6342 &mddev->recovery));
6343 wait_event(mddev->sb_wait,
6344 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6345 mddev_lock_nointr(mddev);
6346
6347 mutex_lock(&mddev->open_mutex);
6348 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6349 mddev->sync_thread ||
6350 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6351 pr_warn("md: %s still in use.\n",mdname(mddev));
6352 if (did_freeze) {
6353 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6354 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6355 md_wakeup_thread(mddev->thread);
6356 }
6357 err = -EBUSY;
6358 goto out;
6359 }
6360 if (mddev->pers) {
6361 __md_stop_writes(mddev);
6362
6363 err = -ENXIO;
6364 if (mddev->ro==1)
6365 goto out;
6366 mddev->ro = 1;
6367 set_disk_ro(mddev->gendisk, 1);
6368 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6369 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6370 md_wakeup_thread(mddev->thread);
6371 sysfs_notify_dirent_safe(mddev->sysfs_state);
6372 err = 0;
6373 }
6374 out:
6375 mutex_unlock(&mddev->open_mutex);
6376 return err;
6377 }
6378
6379 /* mode:
6380 * 0 - completely stop and dis-assemble array
6381 * 2 - stop but do not disassemble array
6382 */
6383 static int do_md_stop(struct mddev *mddev, int mode,
6384 struct block_device *bdev)
6385 {
6386 struct gendisk *disk = mddev->gendisk;
6387 struct md_rdev *rdev;
6388 int did_freeze = 0;
6389
6390 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6391 did_freeze = 1;
6392 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6393 md_wakeup_thread(mddev->thread);
6394 }
6395 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6396 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6397 if (mddev->sync_thread)
6398 /* Thread might be blocked waiting for metadata update
6399 * which will now never happen */
6400 wake_up_process(mddev->sync_thread->tsk);
6401
6402 mddev_unlock(mddev);
6403 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6404 !test_bit(MD_RECOVERY_RUNNING,
6405 &mddev->recovery)));
6406 mddev_lock_nointr(mddev);
6407
6408 mutex_lock(&mddev->open_mutex);
6409 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6410 mddev->sysfs_active ||
6411 mddev->sync_thread ||
6412 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6413 pr_warn("md: %s still in use.\n",mdname(mddev));
6414 mutex_unlock(&mddev->open_mutex);
6415 if (did_freeze) {
6416 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6417 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6418 md_wakeup_thread(mddev->thread);
6419 }
6420 return -EBUSY;
6421 }
6422 if (mddev->pers) {
6423 if (mddev->ro)
6424 set_disk_ro(disk, 0);
6425
6426 __md_stop_writes(mddev);
6427 __md_stop(mddev);
6428
6429 /* tell userspace to handle 'inactive' */
6430 sysfs_notify_dirent_safe(mddev->sysfs_state);
6431
6432 rdev_for_each(rdev, mddev)
6433 if (rdev->raid_disk >= 0)
6434 sysfs_unlink_rdev(mddev, rdev);
6435
6436 set_capacity_and_notify(disk, 0);
6437 mutex_unlock(&mddev->open_mutex);
6438 mddev->changed = 1;
6439
6440 if (mddev->ro)
6441 mddev->ro = 0;
6442 } else
6443 mutex_unlock(&mddev->open_mutex);
6444 /*
6445 * Free resources if final stop
6446 */
6447 if (mode == 0) {
6448 pr_info("md: %s stopped.\n", mdname(mddev));
6449
6450 if (mddev->bitmap_info.file) {
6451 struct file *f = mddev->bitmap_info.file;
6452 spin_lock(&mddev->lock);
6453 mddev->bitmap_info.file = NULL;
6454 spin_unlock(&mddev->lock);
6455 fput(f);
6456 }
6457 mddev->bitmap_info.offset = 0;
6458
6459 export_array(mddev);
6460
6461 md_clean(mddev);
6462 if (mddev->hold_active == UNTIL_STOP)
6463 mddev->hold_active = 0;
6464 }
6465 md_new_event(mddev);
6466 sysfs_notify_dirent_safe(mddev->sysfs_state);
6467 return 0;
6468 }
6469
6470 #ifndef MODULE
6471 static void autorun_array(struct mddev *mddev)
6472 {
6473 struct md_rdev *rdev;
6474 int err;
6475
6476 if (list_empty(&mddev->disks))
6477 return;
6478
6479 pr_info("md: running: ");
6480
6481 rdev_for_each(rdev, mddev) {
6482 char b[BDEVNAME_SIZE];
6483 pr_cont("<%s>", bdevname(rdev->bdev,b));
6484 }
6485 pr_cont("\n");
6486
6487 err = do_md_run(mddev);
6488 if (err) {
6489 pr_warn("md: do_md_run() returned %d\n", err);
6490 do_md_stop(mddev, 0, NULL);
6491 }
6492 }
6493
6494 /*
6495 * lets try to run arrays based on all disks that have arrived
6496 * until now. (those are in pending_raid_disks)
6497 *
6498 * the method: pick the first pending disk, collect all disks with
6499 * the same UUID, remove all from the pending list and put them into
6500 * the 'same_array' list. Then order this list based on superblock
6501 * update time (freshest comes first), kick out 'old' disks and
6502 * compare superblocks. If everything's fine then run it.
6503 *
6504 * If "unit" is allocated, then bump its reference count
6505 */
6506 static void autorun_devices(int part)
6507 {
6508 struct md_rdev *rdev0, *rdev, *tmp;
6509 struct mddev *mddev;
6510 char b[BDEVNAME_SIZE];
6511
6512 pr_info("md: autorun ...\n");
6513 while (!list_empty(&pending_raid_disks)) {
6514 int unit;
6515 dev_t dev;
6516 LIST_HEAD(candidates);
6517 rdev0 = list_entry(pending_raid_disks.next,
6518 struct md_rdev, same_set);
6519
6520 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6521 INIT_LIST_HEAD(&candidates);
6522 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6523 if (super_90_load(rdev, rdev0, 0) >= 0) {
6524 pr_debug("md: adding %s ...\n",
6525 bdevname(rdev->bdev,b));
6526 list_move(&rdev->same_set, &candidates);
6527 }
6528 /*
6529 * now we have a set of devices, with all of them having
6530 * mostly sane superblocks. It's time to allocate the
6531 * mddev.
6532 */
6533 if (part) {
6534 dev = MKDEV(mdp_major,
6535 rdev0->preferred_minor << MdpMinorShift);
6536 unit = MINOR(dev) >> MdpMinorShift;
6537 } else {
6538 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6539 unit = MINOR(dev);
6540 }
6541 if (rdev0->preferred_minor != unit) {
6542 pr_warn("md: unit number in %s is bad: %d\n",
6543 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6544 break;
6545 }
6546
6547 md_probe(dev);
6548 mddev = mddev_find(dev);
6549 if (!mddev)
6550 break;
6551
6552 if (mddev_lock(mddev))
6553 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6554 else if (mddev->raid_disks || mddev->major_version
6555 || !list_empty(&mddev->disks)) {
6556 pr_warn("md: %s already running, cannot run %s\n",
6557 mdname(mddev), bdevname(rdev0->bdev,b));
6558 mddev_unlock(mddev);
6559 } else {
6560 pr_debug("md: created %s\n", mdname(mddev));
6561 mddev->persistent = 1;
6562 rdev_for_each_list(rdev, tmp, &candidates) {
6563 list_del_init(&rdev->same_set);
6564 if (bind_rdev_to_array(rdev, mddev))
6565 export_rdev(rdev);
6566 }
6567 autorun_array(mddev);
6568 mddev_unlock(mddev);
6569 }
6570 /* on success, candidates will be empty, on error
6571 * it won't...
6572 */
6573 rdev_for_each_list(rdev, tmp, &candidates) {
6574 list_del_init(&rdev->same_set);
6575 export_rdev(rdev);
6576 }
6577 mddev_put(mddev);
6578 }
6579 pr_info("md: ... autorun DONE.\n");
6580 }
6581 #endif /* !MODULE */
6582
6583 static int get_version(void __user *arg)
6584 {
6585 mdu_version_t ver;
6586
6587 ver.major = MD_MAJOR_VERSION;
6588 ver.minor = MD_MINOR_VERSION;
6589 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6590
6591 if (copy_to_user(arg, &ver, sizeof(ver)))
6592 return -EFAULT;
6593
6594 return 0;
6595 }
6596
6597 static int get_array_info(struct mddev *mddev, void __user *arg)
6598 {
6599 mdu_array_info_t info;
6600 int nr,working,insync,failed,spare;
6601 struct md_rdev *rdev;
6602
6603 nr = working = insync = failed = spare = 0;
6604 rcu_read_lock();
6605 rdev_for_each_rcu(rdev, mddev) {
6606 nr++;
6607 if (test_bit(Faulty, &rdev->flags))
6608 failed++;
6609 else {
6610 working++;
6611 if (test_bit(In_sync, &rdev->flags))
6612 insync++;
6613 else if (test_bit(Journal, &rdev->flags))
6614 /* TODO: add journal count to md_u.h */
6615 ;
6616 else
6617 spare++;
6618 }
6619 }
6620 rcu_read_unlock();
6621
6622 info.major_version = mddev->major_version;
6623 info.minor_version = mddev->minor_version;
6624 info.patch_version = MD_PATCHLEVEL_VERSION;
6625 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6626 info.level = mddev->level;
6627 info.size = mddev->dev_sectors / 2;
6628 if (info.size != mddev->dev_sectors / 2) /* overflow */
6629 info.size = -1;
6630 info.nr_disks = nr;
6631 info.raid_disks = mddev->raid_disks;
6632 info.md_minor = mddev->md_minor;
6633 info.not_persistent= !mddev->persistent;
6634
6635 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6636 info.state = 0;
6637 if (mddev->in_sync)
6638 info.state = (1<<MD_SB_CLEAN);
6639 if (mddev->bitmap && mddev->bitmap_info.offset)
6640 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6641 if (mddev_is_clustered(mddev))
6642 info.state |= (1<<MD_SB_CLUSTERED);
6643 info.active_disks = insync;
6644 info.working_disks = working;
6645 info.failed_disks = failed;
6646 info.spare_disks = spare;
6647
6648 info.layout = mddev->layout;
6649 info.chunk_size = mddev->chunk_sectors << 9;
6650
6651 if (copy_to_user(arg, &info, sizeof(info)))
6652 return -EFAULT;
6653
6654 return 0;
6655 }
6656
6657 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6658 {
6659 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6660 char *ptr;
6661 int err;
6662
6663 file = kzalloc(sizeof(*file), GFP_NOIO);
6664 if (!file)
6665 return -ENOMEM;
6666
6667 err = 0;
6668 spin_lock(&mddev->lock);
6669 /* bitmap enabled */
6670 if (mddev->bitmap_info.file) {
6671 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6672 sizeof(file->pathname));
6673 if (IS_ERR(ptr))
6674 err = PTR_ERR(ptr);
6675 else
6676 memmove(file->pathname, ptr,
6677 sizeof(file->pathname)-(ptr-file->pathname));
6678 }
6679 spin_unlock(&mddev->lock);
6680
6681 if (err == 0 &&
6682 copy_to_user(arg, file, sizeof(*file)))
6683 err = -EFAULT;
6684
6685 kfree(file);
6686 return err;
6687 }
6688
6689 static int get_disk_info(struct mddev *mddev, void __user * arg)
6690 {
6691 mdu_disk_info_t info;
6692 struct md_rdev *rdev;
6693
6694 if (copy_from_user(&info, arg, sizeof(info)))
6695 return -EFAULT;
6696
6697 rcu_read_lock();
6698 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6699 if (rdev) {
6700 info.major = MAJOR(rdev->bdev->bd_dev);
6701 info.minor = MINOR(rdev->bdev->bd_dev);
6702 info.raid_disk = rdev->raid_disk;
6703 info.state = 0;
6704 if (test_bit(Faulty, &rdev->flags))
6705 info.state |= (1<<MD_DISK_FAULTY);
6706 else if (test_bit(In_sync, &rdev->flags)) {
6707 info.state |= (1<<MD_DISK_ACTIVE);
6708 info.state |= (1<<MD_DISK_SYNC);
6709 }
6710 if (test_bit(Journal, &rdev->flags))
6711 info.state |= (1<<MD_DISK_JOURNAL);
6712 if (test_bit(WriteMostly, &rdev->flags))
6713 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6714 if (test_bit(FailFast, &rdev->flags))
6715 info.state |= (1<<MD_DISK_FAILFAST);
6716 } else {
6717 info.major = info.minor = 0;
6718 info.raid_disk = -1;
6719 info.state = (1<<MD_DISK_REMOVED);
6720 }
6721 rcu_read_unlock();
6722
6723 if (copy_to_user(arg, &info, sizeof(info)))
6724 return -EFAULT;
6725
6726 return 0;
6727 }
6728
6729 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6730 {
6731 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6732 struct md_rdev *rdev;
6733 dev_t dev = MKDEV(info->major,info->minor);
6734
6735 if (mddev_is_clustered(mddev) &&
6736 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6737 pr_warn("%s: Cannot add to clustered mddev.\n",
6738 mdname(mddev));
6739 return -EINVAL;
6740 }
6741
6742 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6743 return -EOVERFLOW;
6744
6745 if (!mddev->raid_disks) {
6746 int err;
6747 /* expecting a device which has a superblock */
6748 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6749 if (IS_ERR(rdev)) {
6750 pr_warn("md: md_import_device returned %ld\n",
6751 PTR_ERR(rdev));
6752 return PTR_ERR(rdev);
6753 }
6754 if (!list_empty(&mddev->disks)) {
6755 struct md_rdev *rdev0
6756 = list_entry(mddev->disks.next,
6757 struct md_rdev, same_set);
6758 err = super_types[mddev->major_version]
6759 .load_super(rdev, rdev0, mddev->minor_version);
6760 if (err < 0) {
6761 pr_warn("md: %s has different UUID to %s\n",
6762 bdevname(rdev->bdev,b),
6763 bdevname(rdev0->bdev,b2));
6764 export_rdev(rdev);
6765 return -EINVAL;
6766 }
6767 }
6768 err = bind_rdev_to_array(rdev, mddev);
6769 if (err)
6770 export_rdev(rdev);
6771 return err;
6772 }
6773
6774 /*
6775 * md_add_new_disk can be used once the array is assembled
6776 * to add "hot spares". They must already have a superblock
6777 * written
6778 */
6779 if (mddev->pers) {
6780 int err;
6781 if (!mddev->pers->hot_add_disk) {
6782 pr_warn("%s: personality does not support diskops!\n",
6783 mdname(mddev));
6784 return -EINVAL;
6785 }
6786 if (mddev->persistent)
6787 rdev = md_import_device(dev, mddev->major_version,
6788 mddev->minor_version);
6789 else
6790 rdev = md_import_device(dev, -1, -1);
6791 if (IS_ERR(rdev)) {
6792 pr_warn("md: md_import_device returned %ld\n",
6793 PTR_ERR(rdev));
6794 return PTR_ERR(rdev);
6795 }
6796 /* set saved_raid_disk if appropriate */
6797 if (!mddev->persistent) {
6798 if (info->state & (1<<MD_DISK_SYNC) &&
6799 info->raid_disk < mddev->raid_disks) {
6800 rdev->raid_disk = info->raid_disk;
6801 set_bit(In_sync, &rdev->flags);
6802 clear_bit(Bitmap_sync, &rdev->flags);
6803 } else
6804 rdev->raid_disk = -1;
6805 rdev->saved_raid_disk = rdev->raid_disk;
6806 } else
6807 super_types[mddev->major_version].
6808 validate_super(mddev, rdev);
6809 if ((info->state & (1<<MD_DISK_SYNC)) &&
6810 rdev->raid_disk != info->raid_disk) {
6811 /* This was a hot-add request, but events doesn't
6812 * match, so reject it.
6813 */
6814 export_rdev(rdev);
6815 return -EINVAL;
6816 }
6817
6818 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6819 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6820 set_bit(WriteMostly, &rdev->flags);
6821 else
6822 clear_bit(WriteMostly, &rdev->flags);
6823 if (info->state & (1<<MD_DISK_FAILFAST))
6824 set_bit(FailFast, &rdev->flags);
6825 else
6826 clear_bit(FailFast, &rdev->flags);
6827
6828 if (info->state & (1<<MD_DISK_JOURNAL)) {
6829 struct md_rdev *rdev2;
6830 bool has_journal = false;
6831
6832 /* make sure no existing journal disk */
6833 rdev_for_each(rdev2, mddev) {
6834 if (test_bit(Journal, &rdev2->flags)) {
6835 has_journal = true;
6836 break;
6837 }
6838 }
6839 if (has_journal || mddev->bitmap) {
6840 export_rdev(rdev);
6841 return -EBUSY;
6842 }
6843 set_bit(Journal, &rdev->flags);
6844 }
6845 /*
6846 * check whether the device shows up in other nodes
6847 */
6848 if (mddev_is_clustered(mddev)) {
6849 if (info->state & (1 << MD_DISK_CANDIDATE))
6850 set_bit(Candidate, &rdev->flags);
6851 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6852 /* --add initiated by this node */
6853 err = md_cluster_ops->add_new_disk(mddev, rdev);
6854 if (err) {
6855 export_rdev(rdev);
6856 return err;
6857 }
6858 }
6859 }
6860
6861 rdev->raid_disk = -1;
6862 err = bind_rdev_to_array(rdev, mddev);
6863
6864 if (err)
6865 export_rdev(rdev);
6866
6867 if (mddev_is_clustered(mddev)) {
6868 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6869 if (!err) {
6870 err = md_cluster_ops->new_disk_ack(mddev,
6871 err == 0);
6872 if (err)
6873 md_kick_rdev_from_array(rdev);
6874 }
6875 } else {
6876 if (err)
6877 md_cluster_ops->add_new_disk_cancel(mddev);
6878 else
6879 err = add_bound_rdev(rdev);
6880 }
6881
6882 } else if (!err)
6883 err = add_bound_rdev(rdev);
6884
6885 return err;
6886 }
6887
6888 /* otherwise, md_add_new_disk is only allowed
6889 * for major_version==0 superblocks
6890 */
6891 if (mddev->major_version != 0) {
6892 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6893 return -EINVAL;
6894 }
6895
6896 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6897 int err;
6898 rdev = md_import_device(dev, -1, 0);
6899 if (IS_ERR(rdev)) {
6900 pr_warn("md: error, md_import_device() returned %ld\n",
6901 PTR_ERR(rdev));
6902 return PTR_ERR(rdev);
6903 }
6904 rdev->desc_nr = info->number;
6905 if (info->raid_disk < mddev->raid_disks)
6906 rdev->raid_disk = info->raid_disk;
6907 else
6908 rdev->raid_disk = -1;
6909
6910 if (rdev->raid_disk < mddev->raid_disks)
6911 if (info->state & (1<<MD_DISK_SYNC))
6912 set_bit(In_sync, &rdev->flags);
6913
6914 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6915 set_bit(WriteMostly, &rdev->flags);
6916 if (info->state & (1<<MD_DISK_FAILFAST))
6917 set_bit(FailFast, &rdev->flags);
6918
6919 if (!mddev->persistent) {
6920 pr_debug("md: nonpersistent superblock ...\n");
6921 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6922 } else
6923 rdev->sb_start = calc_dev_sboffset(rdev);
6924 rdev->sectors = rdev->sb_start;
6925
6926 err = bind_rdev_to_array(rdev, mddev);
6927 if (err) {
6928 export_rdev(rdev);
6929 return err;
6930 }
6931 }
6932
6933 return 0;
6934 }
6935
6936 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6937 {
6938 char b[BDEVNAME_SIZE];
6939 struct md_rdev *rdev;
6940
6941 if (!mddev->pers)
6942 return -ENODEV;
6943
6944 rdev = find_rdev(mddev, dev);
6945 if (!rdev)
6946 return -ENXIO;
6947
6948 if (rdev->raid_disk < 0)
6949 goto kick_rdev;
6950
6951 clear_bit(Blocked, &rdev->flags);
6952 remove_and_add_spares(mddev, rdev);
6953
6954 if (rdev->raid_disk >= 0)
6955 goto busy;
6956
6957 kick_rdev:
6958 if (mddev_is_clustered(mddev)) {
6959 if (md_cluster_ops->remove_disk(mddev, rdev))
6960 goto busy;
6961 }
6962
6963 md_kick_rdev_from_array(rdev);
6964 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6965 if (mddev->thread)
6966 md_wakeup_thread(mddev->thread);
6967 else
6968 md_update_sb(mddev, 1);
6969 md_new_event(mddev);
6970
6971 return 0;
6972 busy:
6973 pr_debug("md: cannot remove active disk %s from %s ...\n",
6974 bdevname(rdev->bdev,b), mdname(mddev));
6975 return -EBUSY;
6976 }
6977
6978 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6979 {
6980 char b[BDEVNAME_SIZE];
6981 int err;
6982 struct md_rdev *rdev;
6983
6984 if (!mddev->pers)
6985 return -ENODEV;
6986
6987 if (mddev->major_version != 0) {
6988 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6989 mdname(mddev));
6990 return -EINVAL;
6991 }
6992 if (!mddev->pers->hot_add_disk) {
6993 pr_warn("%s: personality does not support diskops!\n",
6994 mdname(mddev));
6995 return -EINVAL;
6996 }
6997
6998 rdev = md_import_device(dev, -1, 0);
6999 if (IS_ERR(rdev)) {
7000 pr_warn("md: error, md_import_device() returned %ld\n",
7001 PTR_ERR(rdev));
7002 return -EINVAL;
7003 }
7004
7005 if (mddev->persistent)
7006 rdev->sb_start = calc_dev_sboffset(rdev);
7007 else
7008 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7009
7010 rdev->sectors = rdev->sb_start;
7011
7012 if (test_bit(Faulty, &rdev->flags)) {
7013 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7014 bdevname(rdev->bdev,b), mdname(mddev));
7015 err = -EINVAL;
7016 goto abort_export;
7017 }
7018
7019 clear_bit(In_sync, &rdev->flags);
7020 rdev->desc_nr = -1;
7021 rdev->saved_raid_disk = -1;
7022 err = bind_rdev_to_array(rdev, mddev);
7023 if (err)
7024 goto abort_export;
7025
7026 /*
7027 * The rest should better be atomic, we can have disk failures
7028 * noticed in interrupt contexts ...
7029 */
7030
7031 rdev->raid_disk = -1;
7032
7033 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7034 if (!mddev->thread)
7035 md_update_sb(mddev, 1);
7036 /*
7037 * Kick recovery, maybe this spare has to be added to the
7038 * array immediately.
7039 */
7040 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7041 md_wakeup_thread(mddev->thread);
7042 md_new_event(mddev);
7043 return 0;
7044
7045 abort_export:
7046 export_rdev(rdev);
7047 return err;
7048 }
7049
7050 static int set_bitmap_file(struct mddev *mddev, int fd)
7051 {
7052 int err = 0;
7053
7054 if (mddev->pers) {
7055 if (!mddev->pers->quiesce || !mddev->thread)
7056 return -EBUSY;
7057 if (mddev->recovery || mddev->sync_thread)
7058 return -EBUSY;
7059 /* we should be able to change the bitmap.. */
7060 }
7061
7062 if (fd >= 0) {
7063 struct inode *inode;
7064 struct file *f;
7065
7066 if (mddev->bitmap || mddev->bitmap_info.file)
7067 return -EEXIST; /* cannot add when bitmap is present */
7068 f = fget(fd);
7069
7070 if (f == NULL) {
7071 pr_warn("%s: error: failed to get bitmap file\n",
7072 mdname(mddev));
7073 return -EBADF;
7074 }
7075
7076 inode = f->f_mapping->host;
7077 if (!S_ISREG(inode->i_mode)) {
7078 pr_warn("%s: error: bitmap file must be a regular file\n",
7079 mdname(mddev));
7080 err = -EBADF;
7081 } else if (!(f->f_mode & FMODE_WRITE)) {
7082 pr_warn("%s: error: bitmap file must open for write\n",
7083 mdname(mddev));
7084 err = -EBADF;
7085 } else if (atomic_read(&inode->i_writecount) != 1) {
7086 pr_warn("%s: error: bitmap file is already in use\n",
7087 mdname(mddev));
7088 err = -EBUSY;
7089 }
7090 if (err) {
7091 fput(f);
7092 return err;
7093 }
7094 mddev->bitmap_info.file = f;
7095 mddev->bitmap_info.offset = 0; /* file overrides offset */
7096 } else if (mddev->bitmap == NULL)
7097 return -ENOENT; /* cannot remove what isn't there */
7098 err = 0;
7099 if (mddev->pers) {
7100 if (fd >= 0) {
7101 struct bitmap *bitmap;
7102
7103 bitmap = md_bitmap_create(mddev, -1);
7104 mddev_suspend(mddev);
7105 if (!IS_ERR(bitmap)) {
7106 mddev->bitmap = bitmap;
7107 err = md_bitmap_load(mddev);
7108 } else
7109 err = PTR_ERR(bitmap);
7110 if (err) {
7111 md_bitmap_destroy(mddev);
7112 fd = -1;
7113 }
7114 mddev_resume(mddev);
7115 } else if (fd < 0) {
7116 mddev_suspend(mddev);
7117 md_bitmap_destroy(mddev);
7118 mddev_resume(mddev);
7119 }
7120 }
7121 if (fd < 0) {
7122 struct file *f = mddev->bitmap_info.file;
7123 if (f) {
7124 spin_lock(&mddev->lock);
7125 mddev->bitmap_info.file = NULL;
7126 spin_unlock(&mddev->lock);
7127 fput(f);
7128 }
7129 }
7130
7131 return err;
7132 }
7133
7134 /*
7135 * md_set_array_info is used two different ways
7136 * The original usage is when creating a new array.
7137 * In this usage, raid_disks is > 0 and it together with
7138 * level, size, not_persistent,layout,chunksize determine the
7139 * shape of the array.
7140 * This will always create an array with a type-0.90.0 superblock.
7141 * The newer usage is when assembling an array.
7142 * In this case raid_disks will be 0, and the major_version field is
7143 * use to determine which style super-blocks are to be found on the devices.
7144 * The minor and patch _version numbers are also kept incase the
7145 * super_block handler wishes to interpret them.
7146 */
7147 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7148 {
7149 if (info->raid_disks == 0) {
7150 /* just setting version number for superblock loading */
7151 if (info->major_version < 0 ||
7152 info->major_version >= ARRAY_SIZE(super_types) ||
7153 super_types[info->major_version].name == NULL) {
7154 /* maybe try to auto-load a module? */
7155 pr_warn("md: superblock version %d not known\n",
7156 info->major_version);
7157 return -EINVAL;
7158 }
7159 mddev->major_version = info->major_version;
7160 mddev->minor_version = info->minor_version;
7161 mddev->patch_version = info->patch_version;
7162 mddev->persistent = !info->not_persistent;
7163 /* ensure mddev_put doesn't delete this now that there
7164 * is some minimal configuration.
7165 */
7166 mddev->ctime = ktime_get_real_seconds();
7167 return 0;
7168 }
7169 mddev->major_version = MD_MAJOR_VERSION;
7170 mddev->minor_version = MD_MINOR_VERSION;
7171 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7172 mddev->ctime = ktime_get_real_seconds();
7173
7174 mddev->level = info->level;
7175 mddev->clevel[0] = 0;
7176 mddev->dev_sectors = 2 * (sector_t)info->size;
7177 mddev->raid_disks = info->raid_disks;
7178 /* don't set md_minor, it is determined by which /dev/md* was
7179 * openned
7180 */
7181 if (info->state & (1<<MD_SB_CLEAN))
7182 mddev->recovery_cp = MaxSector;
7183 else
7184 mddev->recovery_cp = 0;
7185 mddev->persistent = ! info->not_persistent;
7186 mddev->external = 0;
7187
7188 mddev->layout = info->layout;
7189 if (mddev->level == 0)
7190 /* Cannot trust RAID0 layout info here */
7191 mddev->layout = -1;
7192 mddev->chunk_sectors = info->chunk_size >> 9;
7193
7194 if (mddev->persistent) {
7195 mddev->max_disks = MD_SB_DISKS;
7196 mddev->flags = 0;
7197 mddev->sb_flags = 0;
7198 }
7199 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7200
7201 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7202 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7203 mddev->bitmap_info.offset = 0;
7204
7205 mddev->reshape_position = MaxSector;
7206
7207 /*
7208 * Generate a 128 bit UUID
7209 */
7210 get_random_bytes(mddev->uuid, 16);
7211
7212 mddev->new_level = mddev->level;
7213 mddev->new_chunk_sectors = mddev->chunk_sectors;
7214 mddev->new_layout = mddev->layout;
7215 mddev->delta_disks = 0;
7216 mddev->reshape_backwards = 0;
7217
7218 return 0;
7219 }
7220
7221 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7222 {
7223 lockdep_assert_held(&mddev->reconfig_mutex);
7224
7225 if (mddev->external_size)
7226 return;
7227
7228 mddev->array_sectors = array_sectors;
7229 }
7230 EXPORT_SYMBOL(md_set_array_sectors);
7231
7232 static int update_size(struct mddev *mddev, sector_t num_sectors)
7233 {
7234 struct md_rdev *rdev;
7235 int rv;
7236 int fit = (num_sectors == 0);
7237 sector_t old_dev_sectors = mddev->dev_sectors;
7238
7239 if (mddev->pers->resize == NULL)
7240 return -EINVAL;
7241 /* The "num_sectors" is the number of sectors of each device that
7242 * is used. This can only make sense for arrays with redundancy.
7243 * linear and raid0 always use whatever space is available. We can only
7244 * consider changing this number if no resync or reconstruction is
7245 * happening, and if the new size is acceptable. It must fit before the
7246 * sb_start or, if that is <data_offset, it must fit before the size
7247 * of each device. If num_sectors is zero, we find the largest size
7248 * that fits.
7249 */
7250 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7251 mddev->sync_thread)
7252 return -EBUSY;
7253 if (mddev->ro)
7254 return -EROFS;
7255
7256 rdev_for_each(rdev, mddev) {
7257 sector_t avail = rdev->sectors;
7258
7259 if (fit && (num_sectors == 0 || num_sectors > avail))
7260 num_sectors = avail;
7261 if (avail < num_sectors)
7262 return -ENOSPC;
7263 }
7264 rv = mddev->pers->resize(mddev, num_sectors);
7265 if (!rv) {
7266 if (mddev_is_clustered(mddev))
7267 md_cluster_ops->update_size(mddev, old_dev_sectors);
7268 else if (mddev->queue) {
7269 set_capacity_and_notify(mddev->gendisk,
7270 mddev->array_sectors);
7271 }
7272 }
7273 return rv;
7274 }
7275
7276 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7277 {
7278 int rv;
7279 struct md_rdev *rdev;
7280 /* change the number of raid disks */
7281 if (mddev->pers->check_reshape == NULL)
7282 return -EINVAL;
7283 if (mddev->ro)
7284 return -EROFS;
7285 if (raid_disks <= 0 ||
7286 (mddev->max_disks && raid_disks >= mddev->max_disks))
7287 return -EINVAL;
7288 if (mddev->sync_thread ||
7289 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7290 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7291 mddev->reshape_position != MaxSector)
7292 return -EBUSY;
7293
7294 rdev_for_each(rdev, mddev) {
7295 if (mddev->raid_disks < raid_disks &&
7296 rdev->data_offset < rdev->new_data_offset)
7297 return -EINVAL;
7298 if (mddev->raid_disks > raid_disks &&
7299 rdev->data_offset > rdev->new_data_offset)
7300 return -EINVAL;
7301 }
7302
7303 mddev->delta_disks = raid_disks - mddev->raid_disks;
7304 if (mddev->delta_disks < 0)
7305 mddev->reshape_backwards = 1;
7306 else if (mddev->delta_disks > 0)
7307 mddev->reshape_backwards = 0;
7308
7309 rv = mddev->pers->check_reshape(mddev);
7310 if (rv < 0) {
7311 mddev->delta_disks = 0;
7312 mddev->reshape_backwards = 0;
7313 }
7314 return rv;
7315 }
7316
7317 /*
7318 * update_array_info is used to change the configuration of an
7319 * on-line array.
7320 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7321 * fields in the info are checked against the array.
7322 * Any differences that cannot be handled will cause an error.
7323 * Normally, only one change can be managed at a time.
7324 */
7325 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7326 {
7327 int rv = 0;
7328 int cnt = 0;
7329 int state = 0;
7330
7331 /* calculate expected state,ignoring low bits */
7332 if (mddev->bitmap && mddev->bitmap_info.offset)
7333 state |= (1 << MD_SB_BITMAP_PRESENT);
7334
7335 if (mddev->major_version != info->major_version ||
7336 mddev->minor_version != info->minor_version ||
7337 /* mddev->patch_version != info->patch_version || */
7338 mddev->ctime != info->ctime ||
7339 mddev->level != info->level ||
7340 /* mddev->layout != info->layout || */
7341 mddev->persistent != !info->not_persistent ||
7342 mddev->chunk_sectors != info->chunk_size >> 9 ||
7343 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7344 ((state^info->state) & 0xfffffe00)
7345 )
7346 return -EINVAL;
7347 /* Check there is only one change */
7348 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7349 cnt++;
7350 if (mddev->raid_disks != info->raid_disks)
7351 cnt++;
7352 if (mddev->layout != info->layout)
7353 cnt++;
7354 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7355 cnt++;
7356 if (cnt == 0)
7357 return 0;
7358 if (cnt > 1)
7359 return -EINVAL;
7360
7361 if (mddev->layout != info->layout) {
7362 /* Change layout
7363 * we don't need to do anything at the md level, the
7364 * personality will take care of it all.
7365 */
7366 if (mddev->pers->check_reshape == NULL)
7367 return -EINVAL;
7368 else {
7369 mddev->new_layout = info->layout;
7370 rv = mddev->pers->check_reshape(mddev);
7371 if (rv)
7372 mddev->new_layout = mddev->layout;
7373 return rv;
7374 }
7375 }
7376 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7377 rv = update_size(mddev, (sector_t)info->size * 2);
7378
7379 if (mddev->raid_disks != info->raid_disks)
7380 rv = update_raid_disks(mddev, info->raid_disks);
7381
7382 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7383 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7384 rv = -EINVAL;
7385 goto err;
7386 }
7387 if (mddev->recovery || mddev->sync_thread) {
7388 rv = -EBUSY;
7389 goto err;
7390 }
7391 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7392 struct bitmap *bitmap;
7393 /* add the bitmap */
7394 if (mddev->bitmap) {
7395 rv = -EEXIST;
7396 goto err;
7397 }
7398 if (mddev->bitmap_info.default_offset == 0) {
7399 rv = -EINVAL;
7400 goto err;
7401 }
7402 mddev->bitmap_info.offset =
7403 mddev->bitmap_info.default_offset;
7404 mddev->bitmap_info.space =
7405 mddev->bitmap_info.default_space;
7406 bitmap = md_bitmap_create(mddev, -1);
7407 mddev_suspend(mddev);
7408 if (!IS_ERR(bitmap)) {
7409 mddev->bitmap = bitmap;
7410 rv = md_bitmap_load(mddev);
7411 } else
7412 rv = PTR_ERR(bitmap);
7413 if (rv)
7414 md_bitmap_destroy(mddev);
7415 mddev_resume(mddev);
7416 } else {
7417 /* remove the bitmap */
7418 if (!mddev->bitmap) {
7419 rv = -ENOENT;
7420 goto err;
7421 }
7422 if (mddev->bitmap->storage.file) {
7423 rv = -EINVAL;
7424 goto err;
7425 }
7426 if (mddev->bitmap_info.nodes) {
7427 /* hold PW on all the bitmap lock */
7428 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7429 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7430 rv = -EPERM;
7431 md_cluster_ops->unlock_all_bitmaps(mddev);
7432 goto err;
7433 }
7434
7435 mddev->bitmap_info.nodes = 0;
7436 md_cluster_ops->leave(mddev);
7437 module_put(md_cluster_mod);
7438 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7439 }
7440 mddev_suspend(mddev);
7441 md_bitmap_destroy(mddev);
7442 mddev_resume(mddev);
7443 mddev->bitmap_info.offset = 0;
7444 }
7445 }
7446 md_update_sb(mddev, 1);
7447 return rv;
7448 err:
7449 return rv;
7450 }
7451
7452 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7453 {
7454 struct md_rdev *rdev;
7455 int err = 0;
7456
7457 if (mddev->pers == NULL)
7458 return -ENODEV;
7459
7460 rcu_read_lock();
7461 rdev = md_find_rdev_rcu(mddev, dev);
7462 if (!rdev)
7463 err = -ENODEV;
7464 else {
7465 md_error(mddev, rdev);
7466 if (!test_bit(Faulty, &rdev->flags))
7467 err = -EBUSY;
7468 }
7469 rcu_read_unlock();
7470 return err;
7471 }
7472
7473 /*
7474 * We have a problem here : there is no easy way to give a CHS
7475 * virtual geometry. We currently pretend that we have a 2 heads
7476 * 4 sectors (with a BIG number of cylinders...). This drives
7477 * dosfs just mad... ;-)
7478 */
7479 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7480 {
7481 struct mddev *mddev = bdev->bd_disk->private_data;
7482
7483 geo->heads = 2;
7484 geo->sectors = 4;
7485 geo->cylinders = mddev->array_sectors / 8;
7486 return 0;
7487 }
7488
7489 static inline bool md_ioctl_valid(unsigned int cmd)
7490 {
7491 switch (cmd) {
7492 case ADD_NEW_DISK:
7493 case GET_ARRAY_INFO:
7494 case GET_BITMAP_FILE:
7495 case GET_DISK_INFO:
7496 case HOT_ADD_DISK:
7497 case HOT_REMOVE_DISK:
7498 case RAID_VERSION:
7499 case RESTART_ARRAY_RW:
7500 case RUN_ARRAY:
7501 case SET_ARRAY_INFO:
7502 case SET_BITMAP_FILE:
7503 case SET_DISK_FAULTY:
7504 case STOP_ARRAY:
7505 case STOP_ARRAY_RO:
7506 case CLUSTERED_DISK_NACK:
7507 return true;
7508 default:
7509 return false;
7510 }
7511 }
7512
7513 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7514 unsigned int cmd, unsigned long arg)
7515 {
7516 int err = 0;
7517 void __user *argp = (void __user *)arg;
7518 struct mddev *mddev = NULL;
7519 bool did_set_md_closing = false;
7520
7521 if (!md_ioctl_valid(cmd))
7522 return -ENOTTY;
7523
7524 switch (cmd) {
7525 case RAID_VERSION:
7526 case GET_ARRAY_INFO:
7527 case GET_DISK_INFO:
7528 break;
7529 default:
7530 if (!capable(CAP_SYS_ADMIN))
7531 return -EACCES;
7532 }
7533
7534 /*
7535 * Commands dealing with the RAID driver but not any
7536 * particular array:
7537 */
7538 switch (cmd) {
7539 case RAID_VERSION:
7540 err = get_version(argp);
7541 goto out;
7542 default:;
7543 }
7544
7545 /*
7546 * Commands creating/starting a new array:
7547 */
7548
7549 mddev = bdev->bd_disk->private_data;
7550
7551 if (!mddev) {
7552 BUG();
7553 goto out;
7554 }
7555
7556 /* Some actions do not requires the mutex */
7557 switch (cmd) {
7558 case GET_ARRAY_INFO:
7559 if (!mddev->raid_disks && !mddev->external)
7560 err = -ENODEV;
7561 else
7562 err = get_array_info(mddev, argp);
7563 goto out;
7564
7565 case GET_DISK_INFO:
7566 if (!mddev->raid_disks && !mddev->external)
7567 err = -ENODEV;
7568 else
7569 err = get_disk_info(mddev, argp);
7570 goto out;
7571
7572 case SET_DISK_FAULTY:
7573 err = set_disk_faulty(mddev, new_decode_dev(arg));
7574 goto out;
7575
7576 case GET_BITMAP_FILE:
7577 err = get_bitmap_file(mddev, argp);
7578 goto out;
7579
7580 }
7581
7582 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7583 flush_rdev_wq(mddev);
7584
7585 if (cmd == HOT_REMOVE_DISK)
7586 /* need to ensure recovery thread has run */
7587 wait_event_interruptible_timeout(mddev->sb_wait,
7588 !test_bit(MD_RECOVERY_NEEDED,
7589 &mddev->recovery),
7590 msecs_to_jiffies(5000));
7591 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7592 /* Need to flush page cache, and ensure no-one else opens
7593 * and writes
7594 */
7595 mutex_lock(&mddev->open_mutex);
7596 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7597 mutex_unlock(&mddev->open_mutex);
7598 err = -EBUSY;
7599 goto out;
7600 }
7601 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7602 mutex_unlock(&mddev->open_mutex);
7603 err = -EBUSY;
7604 goto out;
7605 }
7606 did_set_md_closing = true;
7607 mutex_unlock(&mddev->open_mutex);
7608 sync_blockdev(bdev);
7609 }
7610 err = mddev_lock(mddev);
7611 if (err) {
7612 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7613 err, cmd);
7614 goto out;
7615 }
7616
7617 if (cmd == SET_ARRAY_INFO) {
7618 mdu_array_info_t info;
7619 if (!arg)
7620 memset(&info, 0, sizeof(info));
7621 else if (copy_from_user(&info, argp, sizeof(info))) {
7622 err = -EFAULT;
7623 goto unlock;
7624 }
7625 if (mddev->pers) {
7626 err = update_array_info(mddev, &info);
7627 if (err) {
7628 pr_warn("md: couldn't update array info. %d\n", err);
7629 goto unlock;
7630 }
7631 goto unlock;
7632 }
7633 if (!list_empty(&mddev->disks)) {
7634 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7635 err = -EBUSY;
7636 goto unlock;
7637 }
7638 if (mddev->raid_disks) {
7639 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7640 err = -EBUSY;
7641 goto unlock;
7642 }
7643 err = md_set_array_info(mddev, &info);
7644 if (err) {
7645 pr_warn("md: couldn't set array info. %d\n", err);
7646 goto unlock;
7647 }
7648 goto unlock;
7649 }
7650
7651 /*
7652 * Commands querying/configuring an existing array:
7653 */
7654 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7655 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7656 if ((!mddev->raid_disks && !mddev->external)
7657 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7658 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7659 && cmd != GET_BITMAP_FILE) {
7660 err = -ENODEV;
7661 goto unlock;
7662 }
7663
7664 /*
7665 * Commands even a read-only array can execute:
7666 */
7667 switch (cmd) {
7668 case RESTART_ARRAY_RW:
7669 err = restart_array(mddev);
7670 goto unlock;
7671
7672 case STOP_ARRAY:
7673 err = do_md_stop(mddev, 0, bdev);
7674 goto unlock;
7675
7676 case STOP_ARRAY_RO:
7677 err = md_set_readonly(mddev, bdev);
7678 goto unlock;
7679
7680 case HOT_REMOVE_DISK:
7681 err = hot_remove_disk(mddev, new_decode_dev(arg));
7682 goto unlock;
7683
7684 case ADD_NEW_DISK:
7685 /* We can support ADD_NEW_DISK on read-only arrays
7686 * only if we are re-adding a preexisting device.
7687 * So require mddev->pers and MD_DISK_SYNC.
7688 */
7689 if (mddev->pers) {
7690 mdu_disk_info_t info;
7691 if (copy_from_user(&info, argp, sizeof(info)))
7692 err = -EFAULT;
7693 else if (!(info.state & (1<<MD_DISK_SYNC)))
7694 /* Need to clear read-only for this */
7695 break;
7696 else
7697 err = md_add_new_disk(mddev, &info);
7698 goto unlock;
7699 }
7700 break;
7701 }
7702
7703 /*
7704 * The remaining ioctls are changing the state of the
7705 * superblock, so we do not allow them on read-only arrays.
7706 */
7707 if (mddev->ro && mddev->pers) {
7708 if (mddev->ro == 2) {
7709 mddev->ro = 0;
7710 sysfs_notify_dirent_safe(mddev->sysfs_state);
7711 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7712 /* mddev_unlock will wake thread */
7713 /* If a device failed while we were read-only, we
7714 * need to make sure the metadata is updated now.
7715 */
7716 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7717 mddev_unlock(mddev);
7718 wait_event(mddev->sb_wait,
7719 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7720 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7721 mddev_lock_nointr(mddev);
7722 }
7723 } else {
7724 err = -EROFS;
7725 goto unlock;
7726 }
7727 }
7728
7729 switch (cmd) {
7730 case ADD_NEW_DISK:
7731 {
7732 mdu_disk_info_t info;
7733 if (copy_from_user(&info, argp, sizeof(info)))
7734 err = -EFAULT;
7735 else
7736 err = md_add_new_disk(mddev, &info);
7737 goto unlock;
7738 }
7739
7740 case CLUSTERED_DISK_NACK:
7741 if (mddev_is_clustered(mddev))
7742 md_cluster_ops->new_disk_ack(mddev, false);
7743 else
7744 err = -EINVAL;
7745 goto unlock;
7746
7747 case HOT_ADD_DISK:
7748 err = hot_add_disk(mddev, new_decode_dev(arg));
7749 goto unlock;
7750
7751 case RUN_ARRAY:
7752 err = do_md_run(mddev);
7753 goto unlock;
7754
7755 case SET_BITMAP_FILE:
7756 err = set_bitmap_file(mddev, (int)arg);
7757 goto unlock;
7758
7759 default:
7760 err = -EINVAL;
7761 goto unlock;
7762 }
7763
7764 unlock:
7765 if (mddev->hold_active == UNTIL_IOCTL &&
7766 err != -EINVAL)
7767 mddev->hold_active = 0;
7768 mddev_unlock(mddev);
7769 out:
7770 if(did_set_md_closing)
7771 clear_bit(MD_CLOSING, &mddev->flags);
7772 return err;
7773 }
7774 #ifdef CONFIG_COMPAT
7775 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7776 unsigned int cmd, unsigned long arg)
7777 {
7778 switch (cmd) {
7779 case HOT_REMOVE_DISK:
7780 case HOT_ADD_DISK:
7781 case SET_DISK_FAULTY:
7782 case SET_BITMAP_FILE:
7783 /* These take in integer arg, do not convert */
7784 break;
7785 default:
7786 arg = (unsigned long)compat_ptr(arg);
7787 break;
7788 }
7789
7790 return md_ioctl(bdev, mode, cmd, arg);
7791 }
7792 #endif /* CONFIG_COMPAT */
7793
7794 static int md_set_read_only(struct block_device *bdev, bool ro)
7795 {
7796 struct mddev *mddev = bdev->bd_disk->private_data;
7797 int err;
7798
7799 err = mddev_lock(mddev);
7800 if (err)
7801 return err;
7802
7803 if (!mddev->raid_disks && !mddev->external) {
7804 err = -ENODEV;
7805 goto out_unlock;
7806 }
7807
7808 /*
7809 * Transitioning to read-auto need only happen for arrays that call
7810 * md_write_start and which are not ready for writes yet.
7811 */
7812 if (!ro && mddev->ro == 1 && mddev->pers) {
7813 err = restart_array(mddev);
7814 if (err)
7815 goto out_unlock;
7816 mddev->ro = 2;
7817 }
7818
7819 out_unlock:
7820 mddev_unlock(mddev);
7821 return err;
7822 }
7823
7824 static int md_open(struct block_device *bdev, fmode_t mode)
7825 {
7826 /*
7827 * Succeed if we can lock the mddev, which confirms that
7828 * it isn't being stopped right now.
7829 */
7830 struct mddev *mddev = mddev_find(bdev->bd_dev);
7831 int err;
7832
7833 if (!mddev)
7834 return -ENODEV;
7835
7836 if (mddev->gendisk != bdev->bd_disk) {
7837 /* we are racing with mddev_put which is discarding this
7838 * bd_disk.
7839 */
7840 mddev_put(mddev);
7841 /* Wait until bdev->bd_disk is definitely gone */
7842 if (work_pending(&mddev->del_work))
7843 flush_workqueue(md_misc_wq);
7844 return -EBUSY;
7845 }
7846 BUG_ON(mddev != bdev->bd_disk->private_data);
7847
7848 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7849 goto out;
7850
7851 if (test_bit(MD_CLOSING, &mddev->flags)) {
7852 mutex_unlock(&mddev->open_mutex);
7853 err = -ENODEV;
7854 goto out;
7855 }
7856
7857 err = 0;
7858 atomic_inc(&mddev->openers);
7859 mutex_unlock(&mddev->open_mutex);
7860
7861 bdev_check_media_change(bdev);
7862 out:
7863 if (err)
7864 mddev_put(mddev);
7865 return err;
7866 }
7867
7868 static void md_release(struct gendisk *disk, fmode_t mode)
7869 {
7870 struct mddev *mddev = disk->private_data;
7871
7872 BUG_ON(!mddev);
7873 atomic_dec(&mddev->openers);
7874 mddev_put(mddev);
7875 }
7876
7877 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7878 {
7879 struct mddev *mddev = disk->private_data;
7880 unsigned int ret = 0;
7881
7882 if (mddev->changed)
7883 ret = DISK_EVENT_MEDIA_CHANGE;
7884 mddev->changed = 0;
7885 return ret;
7886 }
7887
7888 const struct block_device_operations md_fops =
7889 {
7890 .owner = THIS_MODULE,
7891 .submit_bio = md_submit_bio,
7892 .open = md_open,
7893 .release = md_release,
7894 .ioctl = md_ioctl,
7895 #ifdef CONFIG_COMPAT
7896 .compat_ioctl = md_compat_ioctl,
7897 #endif
7898 .getgeo = md_getgeo,
7899 .check_events = md_check_events,
7900 .set_read_only = md_set_read_only,
7901 };
7902
7903 static int md_thread(void *arg)
7904 {
7905 struct md_thread *thread = arg;
7906
7907 /*
7908 * md_thread is a 'system-thread', it's priority should be very
7909 * high. We avoid resource deadlocks individually in each
7910 * raid personality. (RAID5 does preallocation) We also use RR and
7911 * the very same RT priority as kswapd, thus we will never get
7912 * into a priority inversion deadlock.
7913 *
7914 * we definitely have to have equal or higher priority than
7915 * bdflush, otherwise bdflush will deadlock if there are too
7916 * many dirty RAID5 blocks.
7917 */
7918
7919 allow_signal(SIGKILL);
7920 while (!kthread_should_stop()) {
7921
7922 /* We need to wait INTERRUPTIBLE so that
7923 * we don't add to the load-average.
7924 * That means we need to be sure no signals are
7925 * pending
7926 */
7927 if (signal_pending(current))
7928 flush_signals(current);
7929
7930 wait_event_interruptible_timeout
7931 (thread->wqueue,
7932 test_bit(THREAD_WAKEUP, &thread->flags)
7933 || kthread_should_stop() || kthread_should_park(),
7934 thread->timeout);
7935
7936 clear_bit(THREAD_WAKEUP, &thread->flags);
7937 if (kthread_should_park())
7938 kthread_parkme();
7939 if (!kthread_should_stop())
7940 thread->run(thread);
7941 }
7942
7943 return 0;
7944 }
7945
7946 void md_wakeup_thread(struct md_thread *thread)
7947 {
7948 if (thread) {
7949 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7950 set_bit(THREAD_WAKEUP, &thread->flags);
7951 wake_up(&thread->wqueue);
7952 }
7953 }
7954 EXPORT_SYMBOL(md_wakeup_thread);
7955
7956 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7957 struct mddev *mddev, const char *name)
7958 {
7959 struct md_thread *thread;
7960
7961 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7962 if (!thread)
7963 return NULL;
7964
7965 init_waitqueue_head(&thread->wqueue);
7966
7967 thread->run = run;
7968 thread->mddev = mddev;
7969 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7970 thread->tsk = kthread_run(md_thread, thread,
7971 "%s_%s",
7972 mdname(thread->mddev),
7973 name);
7974 if (IS_ERR(thread->tsk)) {
7975 kfree(thread);
7976 return NULL;
7977 }
7978 return thread;
7979 }
7980 EXPORT_SYMBOL(md_register_thread);
7981
7982 void md_unregister_thread(struct md_thread **threadp)
7983 {
7984 struct md_thread *thread = *threadp;
7985 if (!thread)
7986 return;
7987 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7988 /* Locking ensures that mddev_unlock does not wake_up a
7989 * non-existent thread
7990 */
7991 spin_lock(&pers_lock);
7992 *threadp = NULL;
7993 spin_unlock(&pers_lock);
7994
7995 kthread_stop(thread->tsk);
7996 kfree(thread);
7997 }
7998 EXPORT_SYMBOL(md_unregister_thread);
7999
8000 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8001 {
8002 if (!rdev || test_bit(Faulty, &rdev->flags))
8003 return;
8004
8005 if (!mddev->pers || !mddev->pers->error_handler)
8006 return;
8007 mddev->pers->error_handler(mddev,rdev);
8008 if (mddev->degraded)
8009 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8010 sysfs_notify_dirent_safe(rdev->sysfs_state);
8011 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8012 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8013 md_wakeup_thread(mddev->thread);
8014 if (mddev->event_work.func)
8015 queue_work(md_misc_wq, &mddev->event_work);
8016 md_new_event(mddev);
8017 }
8018 EXPORT_SYMBOL(md_error);
8019
8020 /* seq_file implementation /proc/mdstat */
8021
8022 static void status_unused(struct seq_file *seq)
8023 {
8024 int i = 0;
8025 struct md_rdev *rdev;
8026
8027 seq_printf(seq, "unused devices: ");
8028
8029 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8030 char b[BDEVNAME_SIZE];
8031 i++;
8032 seq_printf(seq, "%s ",
8033 bdevname(rdev->bdev,b));
8034 }
8035 if (!i)
8036 seq_printf(seq, "<none>");
8037
8038 seq_printf(seq, "\n");
8039 }
8040
8041 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8042 {
8043 sector_t max_sectors, resync, res;
8044 unsigned long dt, db = 0;
8045 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8046 int scale, recovery_active;
8047 unsigned int per_milli;
8048
8049 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8050 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8051 max_sectors = mddev->resync_max_sectors;
8052 else
8053 max_sectors = mddev->dev_sectors;
8054
8055 resync = mddev->curr_resync;
8056 if (resync <= 3) {
8057 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8058 /* Still cleaning up */
8059 resync = max_sectors;
8060 } else if (resync > max_sectors)
8061 resync = max_sectors;
8062 else
8063 resync -= atomic_read(&mddev->recovery_active);
8064
8065 if (resync == 0) {
8066 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8067 struct md_rdev *rdev;
8068
8069 rdev_for_each(rdev, mddev)
8070 if (rdev->raid_disk >= 0 &&
8071 !test_bit(Faulty, &rdev->flags) &&
8072 rdev->recovery_offset != MaxSector &&
8073 rdev->recovery_offset) {
8074 seq_printf(seq, "\trecover=REMOTE");
8075 return 1;
8076 }
8077 if (mddev->reshape_position != MaxSector)
8078 seq_printf(seq, "\treshape=REMOTE");
8079 else
8080 seq_printf(seq, "\tresync=REMOTE");
8081 return 1;
8082 }
8083 if (mddev->recovery_cp < MaxSector) {
8084 seq_printf(seq, "\tresync=PENDING");
8085 return 1;
8086 }
8087 return 0;
8088 }
8089 if (resync < 3) {
8090 seq_printf(seq, "\tresync=DELAYED");
8091 return 1;
8092 }
8093
8094 WARN_ON(max_sectors == 0);
8095 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8096 * in a sector_t, and (max_sectors>>scale) will fit in a
8097 * u32, as those are the requirements for sector_div.
8098 * Thus 'scale' must be at least 10
8099 */
8100 scale = 10;
8101 if (sizeof(sector_t) > sizeof(unsigned long)) {
8102 while ( max_sectors/2 > (1ULL<<(scale+32)))
8103 scale++;
8104 }
8105 res = (resync>>scale)*1000;
8106 sector_div(res, (u32)((max_sectors>>scale)+1));
8107
8108 per_milli = res;
8109 {
8110 int i, x = per_milli/50, y = 20-x;
8111 seq_printf(seq, "[");
8112 for (i = 0; i < x; i++)
8113 seq_printf(seq, "=");
8114 seq_printf(seq, ">");
8115 for (i = 0; i < y; i++)
8116 seq_printf(seq, ".");
8117 seq_printf(seq, "] ");
8118 }
8119 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8120 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8121 "reshape" :
8122 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8123 "check" :
8124 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8125 "resync" : "recovery"))),
8126 per_milli/10, per_milli % 10,
8127 (unsigned long long) resync/2,
8128 (unsigned long long) max_sectors/2);
8129
8130 /*
8131 * dt: time from mark until now
8132 * db: blocks written from mark until now
8133 * rt: remaining time
8134 *
8135 * rt is a sector_t, which is always 64bit now. We are keeping
8136 * the original algorithm, but it is not really necessary.
8137 *
8138 * Original algorithm:
8139 * So we divide before multiply in case it is 32bit and close
8140 * to the limit.
8141 * We scale the divisor (db) by 32 to avoid losing precision
8142 * near the end of resync when the number of remaining sectors
8143 * is close to 'db'.
8144 * We then divide rt by 32 after multiplying by db to compensate.
8145 * The '+1' avoids division by zero if db is very small.
8146 */
8147 dt = ((jiffies - mddev->resync_mark) / HZ);
8148 if (!dt) dt++;
8149
8150 curr_mark_cnt = mddev->curr_mark_cnt;
8151 recovery_active = atomic_read(&mddev->recovery_active);
8152 resync_mark_cnt = mddev->resync_mark_cnt;
8153
8154 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8155 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8156
8157 rt = max_sectors - resync; /* number of remaining sectors */
8158 rt = div64_u64(rt, db/32+1);
8159 rt *= dt;
8160 rt >>= 5;
8161
8162 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8163 ((unsigned long)rt % 60)/6);
8164
8165 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8166 return 1;
8167 }
8168
8169 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8170 {
8171 struct list_head *tmp;
8172 loff_t l = *pos;
8173 struct mddev *mddev;
8174
8175 if (l == 0x10000) {
8176 ++*pos;
8177 return (void *)2;
8178 }
8179 if (l > 0x10000)
8180 return NULL;
8181 if (!l--)
8182 /* header */
8183 return (void*)1;
8184
8185 spin_lock(&all_mddevs_lock);
8186 list_for_each(tmp,&all_mddevs)
8187 if (!l--) {
8188 mddev = list_entry(tmp, struct mddev, all_mddevs);
8189 mddev_get(mddev);
8190 spin_unlock(&all_mddevs_lock);
8191 return mddev;
8192 }
8193 spin_unlock(&all_mddevs_lock);
8194 if (!l--)
8195 return (void*)2;/* tail */
8196 return NULL;
8197 }
8198
8199 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8200 {
8201 struct list_head *tmp;
8202 struct mddev *next_mddev, *mddev = v;
8203
8204 ++*pos;
8205 if (v == (void*)2)
8206 return NULL;
8207
8208 spin_lock(&all_mddevs_lock);
8209 if (v == (void*)1)
8210 tmp = all_mddevs.next;
8211 else
8212 tmp = mddev->all_mddevs.next;
8213 if (tmp != &all_mddevs)
8214 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8215 else {
8216 next_mddev = (void*)2;
8217 *pos = 0x10000;
8218 }
8219 spin_unlock(&all_mddevs_lock);
8220
8221 if (v != (void*)1)
8222 mddev_put(mddev);
8223 return next_mddev;
8224
8225 }
8226
8227 static void md_seq_stop(struct seq_file *seq, void *v)
8228 {
8229 struct mddev *mddev = v;
8230
8231 if (mddev && v != (void*)1 && v != (void*)2)
8232 mddev_put(mddev);
8233 }
8234
8235 static int md_seq_show(struct seq_file *seq, void *v)
8236 {
8237 struct mddev *mddev = v;
8238 sector_t sectors;
8239 struct md_rdev *rdev;
8240
8241 if (v == (void*)1) {
8242 struct md_personality *pers;
8243 seq_printf(seq, "Personalities : ");
8244 spin_lock(&pers_lock);
8245 list_for_each_entry(pers, &pers_list, list)
8246 seq_printf(seq, "[%s] ", pers->name);
8247
8248 spin_unlock(&pers_lock);
8249 seq_printf(seq, "\n");
8250 seq->poll_event = atomic_read(&md_event_count);
8251 return 0;
8252 }
8253 if (v == (void*)2) {
8254 status_unused(seq);
8255 return 0;
8256 }
8257
8258 spin_lock(&mddev->lock);
8259 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8260 seq_printf(seq, "%s : %sactive", mdname(mddev),
8261 mddev->pers ? "" : "in");
8262 if (mddev->pers) {
8263 if (mddev->ro==1)
8264 seq_printf(seq, " (read-only)");
8265 if (mddev->ro==2)
8266 seq_printf(seq, " (auto-read-only)");
8267 seq_printf(seq, " %s", mddev->pers->name);
8268 }
8269
8270 sectors = 0;
8271 rcu_read_lock();
8272 rdev_for_each_rcu(rdev, mddev) {
8273 char b[BDEVNAME_SIZE];
8274 seq_printf(seq, " %s[%d]",
8275 bdevname(rdev->bdev,b), rdev->desc_nr);
8276 if (test_bit(WriteMostly, &rdev->flags))
8277 seq_printf(seq, "(W)");
8278 if (test_bit(Journal, &rdev->flags))
8279 seq_printf(seq, "(J)");
8280 if (test_bit(Faulty, &rdev->flags)) {
8281 seq_printf(seq, "(F)");
8282 continue;
8283 }
8284 if (rdev->raid_disk < 0)
8285 seq_printf(seq, "(S)"); /* spare */
8286 if (test_bit(Replacement, &rdev->flags))
8287 seq_printf(seq, "(R)");
8288 sectors += rdev->sectors;
8289 }
8290 rcu_read_unlock();
8291
8292 if (!list_empty(&mddev->disks)) {
8293 if (mddev->pers)
8294 seq_printf(seq, "\n %llu blocks",
8295 (unsigned long long)
8296 mddev->array_sectors / 2);
8297 else
8298 seq_printf(seq, "\n %llu blocks",
8299 (unsigned long long)sectors / 2);
8300 }
8301 if (mddev->persistent) {
8302 if (mddev->major_version != 0 ||
8303 mddev->minor_version != 90) {
8304 seq_printf(seq," super %d.%d",
8305 mddev->major_version,
8306 mddev->minor_version);
8307 }
8308 } else if (mddev->external)
8309 seq_printf(seq, " super external:%s",
8310 mddev->metadata_type);
8311 else
8312 seq_printf(seq, " super non-persistent");
8313
8314 if (mddev->pers) {
8315 mddev->pers->status(seq, mddev);
8316 seq_printf(seq, "\n ");
8317 if (mddev->pers->sync_request) {
8318 if (status_resync(seq, mddev))
8319 seq_printf(seq, "\n ");
8320 }
8321 } else
8322 seq_printf(seq, "\n ");
8323
8324 md_bitmap_status(seq, mddev->bitmap);
8325
8326 seq_printf(seq, "\n");
8327 }
8328 spin_unlock(&mddev->lock);
8329
8330 return 0;
8331 }
8332
8333 static const struct seq_operations md_seq_ops = {
8334 .start = md_seq_start,
8335 .next = md_seq_next,
8336 .stop = md_seq_stop,
8337 .show = md_seq_show,
8338 };
8339
8340 static int md_seq_open(struct inode *inode, struct file *file)
8341 {
8342 struct seq_file *seq;
8343 int error;
8344
8345 error = seq_open(file, &md_seq_ops);
8346 if (error)
8347 return error;
8348
8349 seq = file->private_data;
8350 seq->poll_event = atomic_read(&md_event_count);
8351 return error;
8352 }
8353
8354 static int md_unloading;
8355 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8356 {
8357 struct seq_file *seq = filp->private_data;
8358 __poll_t mask;
8359
8360 if (md_unloading)
8361 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8362 poll_wait(filp, &md_event_waiters, wait);
8363
8364 /* always allow read */
8365 mask = EPOLLIN | EPOLLRDNORM;
8366
8367 if (seq->poll_event != atomic_read(&md_event_count))
8368 mask |= EPOLLERR | EPOLLPRI;
8369 return mask;
8370 }
8371
8372 static const struct proc_ops mdstat_proc_ops = {
8373 .proc_open = md_seq_open,
8374 .proc_read = seq_read,
8375 .proc_lseek = seq_lseek,
8376 .proc_release = seq_release,
8377 .proc_poll = mdstat_poll,
8378 };
8379
8380 int register_md_personality(struct md_personality *p)
8381 {
8382 pr_debug("md: %s personality registered for level %d\n",
8383 p->name, p->level);
8384 spin_lock(&pers_lock);
8385 list_add_tail(&p->list, &pers_list);
8386 spin_unlock(&pers_lock);
8387 return 0;
8388 }
8389 EXPORT_SYMBOL(register_md_personality);
8390
8391 int unregister_md_personality(struct md_personality *p)
8392 {
8393 pr_debug("md: %s personality unregistered\n", p->name);
8394 spin_lock(&pers_lock);
8395 list_del_init(&p->list);
8396 spin_unlock(&pers_lock);
8397 return 0;
8398 }
8399 EXPORT_SYMBOL(unregister_md_personality);
8400
8401 int register_md_cluster_operations(struct md_cluster_operations *ops,
8402 struct module *module)
8403 {
8404 int ret = 0;
8405 spin_lock(&pers_lock);
8406 if (md_cluster_ops != NULL)
8407 ret = -EALREADY;
8408 else {
8409 md_cluster_ops = ops;
8410 md_cluster_mod = module;
8411 }
8412 spin_unlock(&pers_lock);
8413 return ret;
8414 }
8415 EXPORT_SYMBOL(register_md_cluster_operations);
8416
8417 int unregister_md_cluster_operations(void)
8418 {
8419 spin_lock(&pers_lock);
8420 md_cluster_ops = NULL;
8421 spin_unlock(&pers_lock);
8422 return 0;
8423 }
8424 EXPORT_SYMBOL(unregister_md_cluster_operations);
8425
8426 int md_setup_cluster(struct mddev *mddev, int nodes)
8427 {
8428 int ret;
8429 if (!md_cluster_ops)
8430 request_module("md-cluster");
8431 spin_lock(&pers_lock);
8432 /* ensure module won't be unloaded */
8433 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8434 pr_warn("can't find md-cluster module or get it's reference.\n");
8435 spin_unlock(&pers_lock);
8436 return -ENOENT;
8437 }
8438 spin_unlock(&pers_lock);
8439
8440 ret = md_cluster_ops->join(mddev, nodes);
8441 if (!ret)
8442 mddev->safemode_delay = 0;
8443 return ret;
8444 }
8445
8446 void md_cluster_stop(struct mddev *mddev)
8447 {
8448 if (!md_cluster_ops)
8449 return;
8450 md_cluster_ops->leave(mddev);
8451 module_put(md_cluster_mod);
8452 }
8453
8454 static int is_mddev_idle(struct mddev *mddev, int init)
8455 {
8456 struct md_rdev *rdev;
8457 int idle;
8458 int curr_events;
8459
8460 idle = 1;
8461 rcu_read_lock();
8462 rdev_for_each_rcu(rdev, mddev) {
8463 struct gendisk *disk = rdev->bdev->bd_disk;
8464 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8465 atomic_read(&disk->sync_io);
8466 /* sync IO will cause sync_io to increase before the disk_stats
8467 * as sync_io is counted when a request starts, and
8468 * disk_stats is counted when it completes.
8469 * So resync activity will cause curr_events to be smaller than
8470 * when there was no such activity.
8471 * non-sync IO will cause disk_stat to increase without
8472 * increasing sync_io so curr_events will (eventually)
8473 * be larger than it was before. Once it becomes
8474 * substantially larger, the test below will cause
8475 * the array to appear non-idle, and resync will slow
8476 * down.
8477 * If there is a lot of outstanding resync activity when
8478 * we set last_event to curr_events, then all that activity
8479 * completing might cause the array to appear non-idle
8480 * and resync will be slowed down even though there might
8481 * not have been non-resync activity. This will only
8482 * happen once though. 'last_events' will soon reflect
8483 * the state where there is little or no outstanding
8484 * resync requests, and further resync activity will
8485 * always make curr_events less than last_events.
8486 *
8487 */
8488 if (init || curr_events - rdev->last_events > 64) {
8489 rdev->last_events = curr_events;
8490 idle = 0;
8491 }
8492 }
8493 rcu_read_unlock();
8494 return idle;
8495 }
8496
8497 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8498 {
8499 /* another "blocks" (512byte) blocks have been synced */
8500 atomic_sub(blocks, &mddev->recovery_active);
8501 wake_up(&mddev->recovery_wait);
8502 if (!ok) {
8503 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8504 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8505 md_wakeup_thread(mddev->thread);
8506 // stop recovery, signal do_sync ....
8507 }
8508 }
8509 EXPORT_SYMBOL(md_done_sync);
8510
8511 /* md_write_start(mddev, bi)
8512 * If we need to update some array metadata (e.g. 'active' flag
8513 * in superblock) before writing, schedule a superblock update
8514 * and wait for it to complete.
8515 * A return value of 'false' means that the write wasn't recorded
8516 * and cannot proceed as the array is being suspend.
8517 */
8518 bool md_write_start(struct mddev *mddev, struct bio *bi)
8519 {
8520 int did_change = 0;
8521
8522 if (bio_data_dir(bi) != WRITE)
8523 return true;
8524
8525 BUG_ON(mddev->ro == 1);
8526 if (mddev->ro == 2) {
8527 /* need to switch to read/write */
8528 mddev->ro = 0;
8529 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8530 md_wakeup_thread(mddev->thread);
8531 md_wakeup_thread(mddev->sync_thread);
8532 did_change = 1;
8533 }
8534 rcu_read_lock();
8535 percpu_ref_get(&mddev->writes_pending);
8536 smp_mb(); /* Match smp_mb in set_in_sync() */
8537 if (mddev->safemode == 1)
8538 mddev->safemode = 0;
8539 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8540 if (mddev->in_sync || mddev->sync_checkers) {
8541 spin_lock(&mddev->lock);
8542 if (mddev->in_sync) {
8543 mddev->in_sync = 0;
8544 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8545 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8546 md_wakeup_thread(mddev->thread);
8547 did_change = 1;
8548 }
8549 spin_unlock(&mddev->lock);
8550 }
8551 rcu_read_unlock();
8552 if (did_change)
8553 sysfs_notify_dirent_safe(mddev->sysfs_state);
8554 if (!mddev->has_superblocks)
8555 return true;
8556 wait_event(mddev->sb_wait,
8557 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8558 mddev->suspended);
8559 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8560 percpu_ref_put(&mddev->writes_pending);
8561 return false;
8562 }
8563 return true;
8564 }
8565 EXPORT_SYMBOL(md_write_start);
8566
8567 /* md_write_inc can only be called when md_write_start() has
8568 * already been called at least once of the current request.
8569 * It increments the counter and is useful when a single request
8570 * is split into several parts. Each part causes an increment and
8571 * so needs a matching md_write_end().
8572 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8573 * a spinlocked region.
8574 */
8575 void md_write_inc(struct mddev *mddev, struct bio *bi)
8576 {
8577 if (bio_data_dir(bi) != WRITE)
8578 return;
8579 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8580 percpu_ref_get(&mddev->writes_pending);
8581 }
8582 EXPORT_SYMBOL(md_write_inc);
8583
8584 void md_write_end(struct mddev *mddev)
8585 {
8586 percpu_ref_put(&mddev->writes_pending);
8587
8588 if (mddev->safemode == 2)
8589 md_wakeup_thread(mddev->thread);
8590 else if (mddev->safemode_delay)
8591 /* The roundup() ensures this only performs locking once
8592 * every ->safemode_delay jiffies
8593 */
8594 mod_timer(&mddev->safemode_timer,
8595 roundup(jiffies, mddev->safemode_delay) +
8596 mddev->safemode_delay);
8597 }
8598
8599 EXPORT_SYMBOL(md_write_end);
8600
8601 /* This is used by raid0 and raid10 */
8602 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8603 struct bio *bio, sector_t start, sector_t size)
8604 {
8605 struct bio *discard_bio = NULL;
8606
8607 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8608 &discard_bio) || !discard_bio)
8609 return;
8610
8611 bio_chain(discard_bio, bio);
8612 bio_clone_blkg_association(discard_bio, bio);
8613 if (mddev->gendisk)
8614 trace_block_bio_remap(discard_bio,
8615 disk_devt(mddev->gendisk),
8616 bio->bi_iter.bi_sector);
8617 submit_bio_noacct(discard_bio);
8618 }
8619 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8620
8621 /* md_allow_write(mddev)
8622 * Calling this ensures that the array is marked 'active' so that writes
8623 * may proceed without blocking. It is important to call this before
8624 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8625 * Must be called with mddev_lock held.
8626 */
8627 void md_allow_write(struct mddev *mddev)
8628 {
8629 if (!mddev->pers)
8630 return;
8631 if (mddev->ro)
8632 return;
8633 if (!mddev->pers->sync_request)
8634 return;
8635
8636 spin_lock(&mddev->lock);
8637 if (mddev->in_sync) {
8638 mddev->in_sync = 0;
8639 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8640 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8641 if (mddev->safemode_delay &&
8642 mddev->safemode == 0)
8643 mddev->safemode = 1;
8644 spin_unlock(&mddev->lock);
8645 md_update_sb(mddev, 0);
8646 sysfs_notify_dirent_safe(mddev->sysfs_state);
8647 /* wait for the dirty state to be recorded in the metadata */
8648 wait_event(mddev->sb_wait,
8649 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8650 } else
8651 spin_unlock(&mddev->lock);
8652 }
8653 EXPORT_SYMBOL_GPL(md_allow_write);
8654
8655 #define SYNC_MARKS 10
8656 #define SYNC_MARK_STEP (3*HZ)
8657 #define UPDATE_FREQUENCY (5*60*HZ)
8658 void md_do_sync(struct md_thread *thread)
8659 {
8660 struct mddev *mddev = thread->mddev;
8661 struct mddev *mddev2;
8662 unsigned int currspeed = 0, window;
8663 sector_t max_sectors,j, io_sectors, recovery_done;
8664 unsigned long mark[SYNC_MARKS];
8665 unsigned long update_time;
8666 sector_t mark_cnt[SYNC_MARKS];
8667 int last_mark,m;
8668 struct list_head *tmp;
8669 sector_t last_check;
8670 int skipped = 0;
8671 struct md_rdev *rdev;
8672 char *desc, *action = NULL;
8673 struct blk_plug plug;
8674 int ret;
8675
8676 /* just incase thread restarts... */
8677 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8678 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8679 return;
8680 if (mddev->ro) {/* never try to sync a read-only array */
8681 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8682 return;
8683 }
8684
8685 if (mddev_is_clustered(mddev)) {
8686 ret = md_cluster_ops->resync_start(mddev);
8687 if (ret)
8688 goto skip;
8689
8690 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8691 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8692 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8693 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8694 && ((unsigned long long)mddev->curr_resync_completed
8695 < (unsigned long long)mddev->resync_max_sectors))
8696 goto skip;
8697 }
8698
8699 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8700 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8701 desc = "data-check";
8702 action = "check";
8703 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8704 desc = "requested-resync";
8705 action = "repair";
8706 } else
8707 desc = "resync";
8708 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8709 desc = "reshape";
8710 else
8711 desc = "recovery";
8712
8713 mddev->last_sync_action = action ?: desc;
8714
8715 /* we overload curr_resync somewhat here.
8716 * 0 == not engaged in resync at all
8717 * 2 == checking that there is no conflict with another sync
8718 * 1 == like 2, but have yielded to allow conflicting resync to
8719 * commence
8720 * other == active in resync - this many blocks
8721 *
8722 * Before starting a resync we must have set curr_resync to
8723 * 2, and then checked that every "conflicting" array has curr_resync
8724 * less than ours. When we find one that is the same or higher
8725 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8726 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8727 * This will mean we have to start checking from the beginning again.
8728 *
8729 */
8730
8731 do {
8732 int mddev2_minor = -1;
8733 mddev->curr_resync = 2;
8734
8735 try_again:
8736 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8737 goto skip;
8738 for_each_mddev(mddev2, tmp) {
8739 if (mddev2 == mddev)
8740 continue;
8741 if (!mddev->parallel_resync
8742 && mddev2->curr_resync
8743 && match_mddev_units(mddev, mddev2)) {
8744 DEFINE_WAIT(wq);
8745 if (mddev < mddev2 && mddev->curr_resync == 2) {
8746 /* arbitrarily yield */
8747 mddev->curr_resync = 1;
8748 wake_up(&resync_wait);
8749 }
8750 if (mddev > mddev2 && mddev->curr_resync == 1)
8751 /* no need to wait here, we can wait the next
8752 * time 'round when curr_resync == 2
8753 */
8754 continue;
8755 /* We need to wait 'interruptible' so as not to
8756 * contribute to the load average, and not to
8757 * be caught by 'softlockup'
8758 */
8759 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8760 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8761 mddev2->curr_resync >= mddev->curr_resync) {
8762 if (mddev2_minor != mddev2->md_minor) {
8763 mddev2_minor = mddev2->md_minor;
8764 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8765 desc, mdname(mddev),
8766 mdname(mddev2));
8767 }
8768 mddev_put(mddev2);
8769 if (signal_pending(current))
8770 flush_signals(current);
8771 schedule();
8772 finish_wait(&resync_wait, &wq);
8773 goto try_again;
8774 }
8775 finish_wait(&resync_wait, &wq);
8776 }
8777 }
8778 } while (mddev->curr_resync < 2);
8779
8780 j = 0;
8781 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8782 /* resync follows the size requested by the personality,
8783 * which defaults to physical size, but can be virtual size
8784 */
8785 max_sectors = mddev->resync_max_sectors;
8786 atomic64_set(&mddev->resync_mismatches, 0);
8787 /* we don't use the checkpoint if there's a bitmap */
8788 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8789 j = mddev->resync_min;
8790 else if (!mddev->bitmap)
8791 j = mddev->recovery_cp;
8792
8793 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8794 max_sectors = mddev->resync_max_sectors;
8795 /*
8796 * If the original node aborts reshaping then we continue the
8797 * reshaping, so set j again to avoid restart reshape from the
8798 * first beginning
8799 */
8800 if (mddev_is_clustered(mddev) &&
8801 mddev->reshape_position != MaxSector)
8802 j = mddev->reshape_position;
8803 } else {
8804 /* recovery follows the physical size of devices */
8805 max_sectors = mddev->dev_sectors;
8806 j = MaxSector;
8807 rcu_read_lock();
8808 rdev_for_each_rcu(rdev, mddev)
8809 if (rdev->raid_disk >= 0 &&
8810 !test_bit(Journal, &rdev->flags) &&
8811 !test_bit(Faulty, &rdev->flags) &&
8812 !test_bit(In_sync, &rdev->flags) &&
8813 rdev->recovery_offset < j)
8814 j = rdev->recovery_offset;
8815 rcu_read_unlock();
8816
8817 /* If there is a bitmap, we need to make sure all
8818 * writes that started before we added a spare
8819 * complete before we start doing a recovery.
8820 * Otherwise the write might complete and (via
8821 * bitmap_endwrite) set a bit in the bitmap after the
8822 * recovery has checked that bit and skipped that
8823 * region.
8824 */
8825 if (mddev->bitmap) {
8826 mddev->pers->quiesce(mddev, 1);
8827 mddev->pers->quiesce(mddev, 0);
8828 }
8829 }
8830
8831 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8832 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8833 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8834 speed_max(mddev), desc);
8835
8836 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8837
8838 io_sectors = 0;
8839 for (m = 0; m < SYNC_MARKS; m++) {
8840 mark[m] = jiffies;
8841 mark_cnt[m] = io_sectors;
8842 }
8843 last_mark = 0;
8844 mddev->resync_mark = mark[last_mark];
8845 mddev->resync_mark_cnt = mark_cnt[last_mark];
8846
8847 /*
8848 * Tune reconstruction:
8849 */
8850 window = 32 * (PAGE_SIZE / 512);
8851 pr_debug("md: using %dk window, over a total of %lluk.\n",
8852 window/2, (unsigned long long)max_sectors/2);
8853
8854 atomic_set(&mddev->recovery_active, 0);
8855 last_check = 0;
8856
8857 if (j>2) {
8858 pr_debug("md: resuming %s of %s from checkpoint.\n",
8859 desc, mdname(mddev));
8860 mddev->curr_resync = j;
8861 } else
8862 mddev->curr_resync = 3; /* no longer delayed */
8863 mddev->curr_resync_completed = j;
8864 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8865 md_new_event(mddev);
8866 update_time = jiffies;
8867
8868 blk_start_plug(&plug);
8869 while (j < max_sectors) {
8870 sector_t sectors;
8871
8872 skipped = 0;
8873
8874 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8875 ((mddev->curr_resync > mddev->curr_resync_completed &&
8876 (mddev->curr_resync - mddev->curr_resync_completed)
8877 > (max_sectors >> 4)) ||
8878 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8879 (j - mddev->curr_resync_completed)*2
8880 >= mddev->resync_max - mddev->curr_resync_completed ||
8881 mddev->curr_resync_completed > mddev->resync_max
8882 )) {
8883 /* time to update curr_resync_completed */
8884 wait_event(mddev->recovery_wait,
8885 atomic_read(&mddev->recovery_active) == 0);
8886 mddev->curr_resync_completed = j;
8887 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8888 j > mddev->recovery_cp)
8889 mddev->recovery_cp = j;
8890 update_time = jiffies;
8891 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8892 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8893 }
8894
8895 while (j >= mddev->resync_max &&
8896 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8897 /* As this condition is controlled by user-space,
8898 * we can block indefinitely, so use '_interruptible'
8899 * to avoid triggering warnings.
8900 */
8901 flush_signals(current); /* just in case */
8902 wait_event_interruptible(mddev->recovery_wait,
8903 mddev->resync_max > j
8904 || test_bit(MD_RECOVERY_INTR,
8905 &mddev->recovery));
8906 }
8907
8908 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8909 break;
8910
8911 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8912 if (sectors == 0) {
8913 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8914 break;
8915 }
8916
8917 if (!skipped) { /* actual IO requested */
8918 io_sectors += sectors;
8919 atomic_add(sectors, &mddev->recovery_active);
8920 }
8921
8922 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8923 break;
8924
8925 j += sectors;
8926 if (j > max_sectors)
8927 /* when skipping, extra large numbers can be returned. */
8928 j = max_sectors;
8929 if (j > 2)
8930 mddev->curr_resync = j;
8931 mddev->curr_mark_cnt = io_sectors;
8932 if (last_check == 0)
8933 /* this is the earliest that rebuild will be
8934 * visible in /proc/mdstat
8935 */
8936 md_new_event(mddev);
8937
8938 if (last_check + window > io_sectors || j == max_sectors)
8939 continue;
8940
8941 last_check = io_sectors;
8942 repeat:
8943 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8944 /* step marks */
8945 int next = (last_mark+1) % SYNC_MARKS;
8946
8947 mddev->resync_mark = mark[next];
8948 mddev->resync_mark_cnt = mark_cnt[next];
8949 mark[next] = jiffies;
8950 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8951 last_mark = next;
8952 }
8953
8954 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8955 break;
8956
8957 /*
8958 * this loop exits only if either when we are slower than
8959 * the 'hard' speed limit, or the system was IO-idle for
8960 * a jiffy.
8961 * the system might be non-idle CPU-wise, but we only care
8962 * about not overloading the IO subsystem. (things like an
8963 * e2fsck being done on the RAID array should execute fast)
8964 */
8965 cond_resched();
8966
8967 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8968 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8969 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8970
8971 if (currspeed > speed_min(mddev)) {
8972 if (currspeed > speed_max(mddev)) {
8973 msleep(500);
8974 goto repeat;
8975 }
8976 if (!is_mddev_idle(mddev, 0)) {
8977 /*
8978 * Give other IO more of a chance.
8979 * The faster the devices, the less we wait.
8980 */
8981 wait_event(mddev->recovery_wait,
8982 !atomic_read(&mddev->recovery_active));
8983 }
8984 }
8985 }
8986 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8987 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8988 ? "interrupted" : "done");
8989 /*
8990 * this also signals 'finished resyncing' to md_stop
8991 */
8992 blk_finish_plug(&plug);
8993 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8994
8995 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8996 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8997 mddev->curr_resync > 3) {
8998 mddev->curr_resync_completed = mddev->curr_resync;
8999 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9000 }
9001 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9002
9003 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9004 mddev->curr_resync > 3) {
9005 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9006 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9007 if (mddev->curr_resync >= mddev->recovery_cp) {
9008 pr_debug("md: checkpointing %s of %s.\n",
9009 desc, mdname(mddev));
9010 if (test_bit(MD_RECOVERY_ERROR,
9011 &mddev->recovery))
9012 mddev->recovery_cp =
9013 mddev->curr_resync_completed;
9014 else
9015 mddev->recovery_cp =
9016 mddev->curr_resync;
9017 }
9018 } else
9019 mddev->recovery_cp = MaxSector;
9020 } else {
9021 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9022 mddev->curr_resync = MaxSector;
9023 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9024 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9025 rcu_read_lock();
9026 rdev_for_each_rcu(rdev, mddev)
9027 if (rdev->raid_disk >= 0 &&
9028 mddev->delta_disks >= 0 &&
9029 !test_bit(Journal, &rdev->flags) &&
9030 !test_bit(Faulty, &rdev->flags) &&
9031 !test_bit(In_sync, &rdev->flags) &&
9032 rdev->recovery_offset < mddev->curr_resync)
9033 rdev->recovery_offset = mddev->curr_resync;
9034 rcu_read_unlock();
9035 }
9036 }
9037 }
9038 skip:
9039 /* set CHANGE_PENDING here since maybe another update is needed,
9040 * so other nodes are informed. It should be harmless for normal
9041 * raid */
9042 set_mask_bits(&mddev->sb_flags, 0,
9043 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9044
9045 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9046 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9047 mddev->delta_disks > 0 &&
9048 mddev->pers->finish_reshape &&
9049 mddev->pers->size &&
9050 mddev->queue) {
9051 mddev_lock_nointr(mddev);
9052 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9053 mddev_unlock(mddev);
9054 if (!mddev_is_clustered(mddev))
9055 set_capacity_and_notify(mddev->gendisk,
9056 mddev->array_sectors);
9057 }
9058
9059 spin_lock(&mddev->lock);
9060 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9061 /* We completed so min/max setting can be forgotten if used. */
9062 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9063 mddev->resync_min = 0;
9064 mddev->resync_max = MaxSector;
9065 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9066 mddev->resync_min = mddev->curr_resync_completed;
9067 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9068 mddev->curr_resync = 0;
9069 spin_unlock(&mddev->lock);
9070
9071 wake_up(&resync_wait);
9072 md_wakeup_thread(mddev->thread);
9073 return;
9074 }
9075 EXPORT_SYMBOL_GPL(md_do_sync);
9076
9077 static int remove_and_add_spares(struct mddev *mddev,
9078 struct md_rdev *this)
9079 {
9080 struct md_rdev *rdev;
9081 int spares = 0;
9082 int removed = 0;
9083 bool remove_some = false;
9084
9085 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9086 /* Mustn't remove devices when resync thread is running */
9087 return 0;
9088
9089 rdev_for_each(rdev, mddev) {
9090 if ((this == NULL || rdev == this) &&
9091 rdev->raid_disk >= 0 &&
9092 !test_bit(Blocked, &rdev->flags) &&
9093 test_bit(Faulty, &rdev->flags) &&
9094 atomic_read(&rdev->nr_pending)==0) {
9095 /* Faulty non-Blocked devices with nr_pending == 0
9096 * never get nr_pending incremented,
9097 * never get Faulty cleared, and never get Blocked set.
9098 * So we can synchronize_rcu now rather than once per device
9099 */
9100 remove_some = true;
9101 set_bit(RemoveSynchronized, &rdev->flags);
9102 }
9103 }
9104
9105 if (remove_some)
9106 synchronize_rcu();
9107 rdev_for_each(rdev, mddev) {
9108 if ((this == NULL || rdev == this) &&
9109 rdev->raid_disk >= 0 &&
9110 !test_bit(Blocked, &rdev->flags) &&
9111 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9112 (!test_bit(In_sync, &rdev->flags) &&
9113 !test_bit(Journal, &rdev->flags))) &&
9114 atomic_read(&rdev->nr_pending)==0)) {
9115 if (mddev->pers->hot_remove_disk(
9116 mddev, rdev) == 0) {
9117 sysfs_unlink_rdev(mddev, rdev);
9118 rdev->saved_raid_disk = rdev->raid_disk;
9119 rdev->raid_disk = -1;
9120 removed++;
9121 }
9122 }
9123 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9124 clear_bit(RemoveSynchronized, &rdev->flags);
9125 }
9126
9127 if (removed && mddev->kobj.sd)
9128 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9129
9130 if (this && removed)
9131 goto no_add;
9132
9133 rdev_for_each(rdev, mddev) {
9134 if (this && this != rdev)
9135 continue;
9136 if (test_bit(Candidate, &rdev->flags))
9137 continue;
9138 if (rdev->raid_disk >= 0 &&
9139 !test_bit(In_sync, &rdev->flags) &&
9140 !test_bit(Journal, &rdev->flags) &&
9141 !test_bit(Faulty, &rdev->flags))
9142 spares++;
9143 if (rdev->raid_disk >= 0)
9144 continue;
9145 if (test_bit(Faulty, &rdev->flags))
9146 continue;
9147 if (!test_bit(Journal, &rdev->flags)) {
9148 if (mddev->ro &&
9149 ! (rdev->saved_raid_disk >= 0 &&
9150 !test_bit(Bitmap_sync, &rdev->flags)))
9151 continue;
9152
9153 rdev->recovery_offset = 0;
9154 }
9155 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9156 /* failure here is OK */
9157 sysfs_link_rdev(mddev, rdev);
9158 if (!test_bit(Journal, &rdev->flags))
9159 spares++;
9160 md_new_event(mddev);
9161 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9162 }
9163 }
9164 no_add:
9165 if (removed)
9166 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9167 return spares;
9168 }
9169
9170 static void md_start_sync(struct work_struct *ws)
9171 {
9172 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9173
9174 mddev->sync_thread = md_register_thread(md_do_sync,
9175 mddev,
9176 "resync");
9177 if (!mddev->sync_thread) {
9178 pr_warn("%s: could not start resync thread...\n",
9179 mdname(mddev));
9180 /* leave the spares where they are, it shouldn't hurt */
9181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9182 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9183 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9184 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9185 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9186 wake_up(&resync_wait);
9187 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9188 &mddev->recovery))
9189 if (mddev->sysfs_action)
9190 sysfs_notify_dirent_safe(mddev->sysfs_action);
9191 } else
9192 md_wakeup_thread(mddev->sync_thread);
9193 sysfs_notify_dirent_safe(mddev->sysfs_action);
9194 md_new_event(mddev);
9195 }
9196
9197 /*
9198 * This routine is regularly called by all per-raid-array threads to
9199 * deal with generic issues like resync and super-block update.
9200 * Raid personalities that don't have a thread (linear/raid0) do not
9201 * need this as they never do any recovery or update the superblock.
9202 *
9203 * It does not do any resync itself, but rather "forks" off other threads
9204 * to do that as needed.
9205 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9206 * "->recovery" and create a thread at ->sync_thread.
9207 * When the thread finishes it sets MD_RECOVERY_DONE
9208 * and wakeups up this thread which will reap the thread and finish up.
9209 * This thread also removes any faulty devices (with nr_pending == 0).
9210 *
9211 * The overall approach is:
9212 * 1/ if the superblock needs updating, update it.
9213 * 2/ If a recovery thread is running, don't do anything else.
9214 * 3/ If recovery has finished, clean up, possibly marking spares active.
9215 * 4/ If there are any faulty devices, remove them.
9216 * 5/ If array is degraded, try to add spares devices
9217 * 6/ If array has spares or is not in-sync, start a resync thread.
9218 */
9219 void md_check_recovery(struct mddev *mddev)
9220 {
9221 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9222 /* Write superblock - thread that called mddev_suspend()
9223 * holds reconfig_mutex for us.
9224 */
9225 set_bit(MD_UPDATING_SB, &mddev->flags);
9226 smp_mb__after_atomic();
9227 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9228 md_update_sb(mddev, 0);
9229 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9230 wake_up(&mddev->sb_wait);
9231 }
9232
9233 if (mddev->suspended)
9234 return;
9235
9236 if (mddev->bitmap)
9237 md_bitmap_daemon_work(mddev);
9238
9239 if (signal_pending(current)) {
9240 if (mddev->pers->sync_request && !mddev->external) {
9241 pr_debug("md: %s in immediate safe mode\n",
9242 mdname(mddev));
9243 mddev->safemode = 2;
9244 }
9245 flush_signals(current);
9246 }
9247
9248 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9249 return;
9250 if ( ! (
9251 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9252 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9253 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9254 (mddev->external == 0 && mddev->safemode == 1) ||
9255 (mddev->safemode == 2
9256 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9257 ))
9258 return;
9259
9260 if (mddev_trylock(mddev)) {
9261 int spares = 0;
9262 bool try_set_sync = mddev->safemode != 0;
9263
9264 if (!mddev->external && mddev->safemode == 1)
9265 mddev->safemode = 0;
9266
9267 if (mddev->ro) {
9268 struct md_rdev *rdev;
9269 if (!mddev->external && mddev->in_sync)
9270 /* 'Blocked' flag not needed as failed devices
9271 * will be recorded if array switched to read/write.
9272 * Leaving it set will prevent the device
9273 * from being removed.
9274 */
9275 rdev_for_each(rdev, mddev)
9276 clear_bit(Blocked, &rdev->flags);
9277 /* On a read-only array we can:
9278 * - remove failed devices
9279 * - add already-in_sync devices if the array itself
9280 * is in-sync.
9281 * As we only add devices that are already in-sync,
9282 * we can activate the spares immediately.
9283 */
9284 remove_and_add_spares(mddev, NULL);
9285 /* There is no thread, but we need to call
9286 * ->spare_active and clear saved_raid_disk
9287 */
9288 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9289 md_reap_sync_thread(mddev);
9290 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9291 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9292 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9293 goto unlock;
9294 }
9295
9296 if (mddev_is_clustered(mddev)) {
9297 struct md_rdev *rdev;
9298 /* kick the device if another node issued a
9299 * remove disk.
9300 */
9301 rdev_for_each(rdev, mddev) {
9302 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9303 rdev->raid_disk < 0)
9304 md_kick_rdev_from_array(rdev);
9305 }
9306 }
9307
9308 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9309 spin_lock(&mddev->lock);
9310 set_in_sync(mddev);
9311 spin_unlock(&mddev->lock);
9312 }
9313
9314 if (mddev->sb_flags)
9315 md_update_sb(mddev, 0);
9316
9317 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9318 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9319 /* resync/recovery still happening */
9320 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9321 goto unlock;
9322 }
9323 if (mddev->sync_thread) {
9324 md_reap_sync_thread(mddev);
9325 goto unlock;
9326 }
9327 /* Set RUNNING before clearing NEEDED to avoid
9328 * any transients in the value of "sync_action".
9329 */
9330 mddev->curr_resync_completed = 0;
9331 spin_lock(&mddev->lock);
9332 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9333 spin_unlock(&mddev->lock);
9334 /* Clear some bits that don't mean anything, but
9335 * might be left set
9336 */
9337 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9338 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9339
9340 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9341 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9342 goto not_running;
9343 /* no recovery is running.
9344 * remove any failed drives, then
9345 * add spares if possible.
9346 * Spares are also removed and re-added, to allow
9347 * the personality to fail the re-add.
9348 */
9349
9350 if (mddev->reshape_position != MaxSector) {
9351 if (mddev->pers->check_reshape == NULL ||
9352 mddev->pers->check_reshape(mddev) != 0)
9353 /* Cannot proceed */
9354 goto not_running;
9355 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9356 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9357 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9358 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9359 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9360 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9361 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9362 } else if (mddev->recovery_cp < MaxSector) {
9363 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9364 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9365 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9366 /* nothing to be done ... */
9367 goto not_running;
9368
9369 if (mddev->pers->sync_request) {
9370 if (spares) {
9371 /* We are adding a device or devices to an array
9372 * which has the bitmap stored on all devices.
9373 * So make sure all bitmap pages get written
9374 */
9375 md_bitmap_write_all(mddev->bitmap);
9376 }
9377 INIT_WORK(&mddev->del_work, md_start_sync);
9378 queue_work(md_misc_wq, &mddev->del_work);
9379 goto unlock;
9380 }
9381 not_running:
9382 if (!mddev->sync_thread) {
9383 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9384 wake_up(&resync_wait);
9385 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9386 &mddev->recovery))
9387 if (mddev->sysfs_action)
9388 sysfs_notify_dirent_safe(mddev->sysfs_action);
9389 }
9390 unlock:
9391 wake_up(&mddev->sb_wait);
9392 mddev_unlock(mddev);
9393 }
9394 }
9395 EXPORT_SYMBOL(md_check_recovery);
9396
9397 void md_reap_sync_thread(struct mddev *mddev)
9398 {
9399 struct md_rdev *rdev;
9400 sector_t old_dev_sectors = mddev->dev_sectors;
9401 bool is_reshaped = false;
9402
9403 /* resync has finished, collect result */
9404 md_unregister_thread(&mddev->sync_thread);
9405 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9406 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9407 mddev->degraded != mddev->raid_disks) {
9408 /* success...*/
9409 /* activate any spares */
9410 if (mddev->pers->spare_active(mddev)) {
9411 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9412 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9413 }
9414 }
9415 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9416 mddev->pers->finish_reshape) {
9417 mddev->pers->finish_reshape(mddev);
9418 if (mddev_is_clustered(mddev))
9419 is_reshaped = true;
9420 }
9421
9422 /* If array is no-longer degraded, then any saved_raid_disk
9423 * information must be scrapped.
9424 */
9425 if (!mddev->degraded)
9426 rdev_for_each(rdev, mddev)
9427 rdev->saved_raid_disk = -1;
9428
9429 md_update_sb(mddev, 1);
9430 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9431 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9432 * clustered raid */
9433 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9434 md_cluster_ops->resync_finish(mddev);
9435 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9436 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9437 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9438 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9439 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9440 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9441 /*
9442 * We call md_cluster_ops->update_size here because sync_size could
9443 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9444 * so it is time to update size across cluster.
9445 */
9446 if (mddev_is_clustered(mddev) && is_reshaped
9447 && !test_bit(MD_CLOSING, &mddev->flags))
9448 md_cluster_ops->update_size(mddev, old_dev_sectors);
9449 wake_up(&resync_wait);
9450 /* flag recovery needed just to double check */
9451 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9452 sysfs_notify_dirent_safe(mddev->sysfs_action);
9453 md_new_event(mddev);
9454 if (mddev->event_work.func)
9455 queue_work(md_misc_wq, &mddev->event_work);
9456 }
9457 EXPORT_SYMBOL(md_reap_sync_thread);
9458
9459 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9460 {
9461 sysfs_notify_dirent_safe(rdev->sysfs_state);
9462 wait_event_timeout(rdev->blocked_wait,
9463 !test_bit(Blocked, &rdev->flags) &&
9464 !test_bit(BlockedBadBlocks, &rdev->flags),
9465 msecs_to_jiffies(5000));
9466 rdev_dec_pending(rdev, mddev);
9467 }
9468 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9469
9470 void md_finish_reshape(struct mddev *mddev)
9471 {
9472 /* called be personality module when reshape completes. */
9473 struct md_rdev *rdev;
9474
9475 rdev_for_each(rdev, mddev) {
9476 if (rdev->data_offset > rdev->new_data_offset)
9477 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9478 else
9479 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9480 rdev->data_offset = rdev->new_data_offset;
9481 }
9482 }
9483 EXPORT_SYMBOL(md_finish_reshape);
9484
9485 /* Bad block management */
9486
9487 /* Returns 1 on success, 0 on failure */
9488 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9489 int is_new)
9490 {
9491 struct mddev *mddev = rdev->mddev;
9492 int rv;
9493 if (is_new)
9494 s += rdev->new_data_offset;
9495 else
9496 s += rdev->data_offset;
9497 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9498 if (rv == 0) {
9499 /* Make sure they get written out promptly */
9500 if (test_bit(ExternalBbl, &rdev->flags))
9501 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9502 sysfs_notify_dirent_safe(rdev->sysfs_state);
9503 set_mask_bits(&mddev->sb_flags, 0,
9504 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9505 md_wakeup_thread(rdev->mddev->thread);
9506 return 1;
9507 } else
9508 return 0;
9509 }
9510 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9511
9512 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9513 int is_new)
9514 {
9515 int rv;
9516 if (is_new)
9517 s += rdev->new_data_offset;
9518 else
9519 s += rdev->data_offset;
9520 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9521 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9522 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9523 return rv;
9524 }
9525 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9526
9527 static int md_notify_reboot(struct notifier_block *this,
9528 unsigned long code, void *x)
9529 {
9530 struct list_head *tmp;
9531 struct mddev *mddev;
9532 int need_delay = 0;
9533
9534 for_each_mddev(mddev, tmp) {
9535 if (mddev_trylock(mddev)) {
9536 if (mddev->pers)
9537 __md_stop_writes(mddev);
9538 if (mddev->persistent)
9539 mddev->safemode = 2;
9540 mddev_unlock(mddev);
9541 }
9542 need_delay = 1;
9543 }
9544 /*
9545 * certain more exotic SCSI devices are known to be
9546 * volatile wrt too early system reboots. While the
9547 * right place to handle this issue is the given
9548 * driver, we do want to have a safe RAID driver ...
9549 */
9550 if (need_delay)
9551 mdelay(1000*1);
9552
9553 return NOTIFY_DONE;
9554 }
9555
9556 static struct notifier_block md_notifier = {
9557 .notifier_call = md_notify_reboot,
9558 .next = NULL,
9559 .priority = INT_MAX, /* before any real devices */
9560 };
9561
9562 static void md_geninit(void)
9563 {
9564 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9565
9566 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9567 }
9568
9569 static int __init md_init(void)
9570 {
9571 int ret = -ENOMEM;
9572
9573 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9574 if (!md_wq)
9575 goto err_wq;
9576
9577 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9578 if (!md_misc_wq)
9579 goto err_misc_wq;
9580
9581 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9582 if (!md_rdev_misc_wq)
9583 goto err_rdev_misc_wq;
9584
9585 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9586 if (ret < 0)
9587 goto err_md;
9588
9589 ret = __register_blkdev(0, "mdp", md_probe);
9590 if (ret < 0)
9591 goto err_mdp;
9592 mdp_major = ret;
9593
9594 register_reboot_notifier(&md_notifier);
9595 raid_table_header = register_sysctl_table(raid_root_table);
9596
9597 md_geninit();
9598 return 0;
9599
9600 err_mdp:
9601 unregister_blkdev(MD_MAJOR, "md");
9602 err_md:
9603 destroy_workqueue(md_rdev_misc_wq);
9604 err_rdev_misc_wq:
9605 destroy_workqueue(md_misc_wq);
9606 err_misc_wq:
9607 destroy_workqueue(md_wq);
9608 err_wq:
9609 return ret;
9610 }
9611
9612 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9613 {
9614 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9615 struct md_rdev *rdev2;
9616 int role, ret;
9617 char b[BDEVNAME_SIZE];
9618
9619 /*
9620 * If size is changed in another node then we need to
9621 * do resize as well.
9622 */
9623 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9624 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9625 if (ret)
9626 pr_info("md-cluster: resize failed\n");
9627 else
9628 md_bitmap_update_sb(mddev->bitmap);
9629 }
9630
9631 /* Check for change of roles in the active devices */
9632 rdev_for_each(rdev2, mddev) {
9633 if (test_bit(Faulty, &rdev2->flags))
9634 continue;
9635
9636 /* Check if the roles changed */
9637 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9638
9639 if (test_bit(Candidate, &rdev2->flags)) {
9640 if (role == 0xfffe) {
9641 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9642 md_kick_rdev_from_array(rdev2);
9643 continue;
9644 }
9645 else
9646 clear_bit(Candidate, &rdev2->flags);
9647 }
9648
9649 if (role != rdev2->raid_disk) {
9650 /*
9651 * got activated except reshape is happening.
9652 */
9653 if (rdev2->raid_disk == -1 && role != 0xffff &&
9654 !(le32_to_cpu(sb->feature_map) &
9655 MD_FEATURE_RESHAPE_ACTIVE)) {
9656 rdev2->saved_raid_disk = role;
9657 ret = remove_and_add_spares(mddev, rdev2);
9658 pr_info("Activated spare: %s\n",
9659 bdevname(rdev2->bdev,b));
9660 /* wakeup mddev->thread here, so array could
9661 * perform resync with the new activated disk */
9662 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9663 md_wakeup_thread(mddev->thread);
9664 }
9665 /* device faulty
9666 * We just want to do the minimum to mark the disk
9667 * as faulty. The recovery is performed by the
9668 * one who initiated the error.
9669 */
9670 if ((role == 0xfffe) || (role == 0xfffd)) {
9671 md_error(mddev, rdev2);
9672 clear_bit(Blocked, &rdev2->flags);
9673 }
9674 }
9675 }
9676
9677 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9678 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9679 if (ret)
9680 pr_warn("md: updating array disks failed. %d\n", ret);
9681 }
9682
9683 /*
9684 * Since mddev->delta_disks has already updated in update_raid_disks,
9685 * so it is time to check reshape.
9686 */
9687 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9688 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9689 /*
9690 * reshape is happening in the remote node, we need to
9691 * update reshape_position and call start_reshape.
9692 */
9693 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9694 if (mddev->pers->update_reshape_pos)
9695 mddev->pers->update_reshape_pos(mddev);
9696 if (mddev->pers->start_reshape)
9697 mddev->pers->start_reshape(mddev);
9698 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9699 mddev->reshape_position != MaxSector &&
9700 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9701 /* reshape is just done in another node. */
9702 mddev->reshape_position = MaxSector;
9703 if (mddev->pers->update_reshape_pos)
9704 mddev->pers->update_reshape_pos(mddev);
9705 }
9706
9707 /* Finally set the event to be up to date */
9708 mddev->events = le64_to_cpu(sb->events);
9709 }
9710
9711 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9712 {
9713 int err;
9714 struct page *swapout = rdev->sb_page;
9715 struct mdp_superblock_1 *sb;
9716
9717 /* Store the sb page of the rdev in the swapout temporary
9718 * variable in case we err in the future
9719 */
9720 rdev->sb_page = NULL;
9721 err = alloc_disk_sb(rdev);
9722 if (err == 0) {
9723 ClearPageUptodate(rdev->sb_page);
9724 rdev->sb_loaded = 0;
9725 err = super_types[mddev->major_version].
9726 load_super(rdev, NULL, mddev->minor_version);
9727 }
9728 if (err < 0) {
9729 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9730 __func__, __LINE__, rdev->desc_nr, err);
9731 if (rdev->sb_page)
9732 put_page(rdev->sb_page);
9733 rdev->sb_page = swapout;
9734 rdev->sb_loaded = 1;
9735 return err;
9736 }
9737
9738 sb = page_address(rdev->sb_page);
9739 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9740 * is not set
9741 */
9742
9743 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9744 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9745
9746 /* The other node finished recovery, call spare_active to set
9747 * device In_sync and mddev->degraded
9748 */
9749 if (rdev->recovery_offset == MaxSector &&
9750 !test_bit(In_sync, &rdev->flags) &&
9751 mddev->pers->spare_active(mddev))
9752 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9753
9754 put_page(swapout);
9755 return 0;
9756 }
9757
9758 void md_reload_sb(struct mddev *mddev, int nr)
9759 {
9760 struct md_rdev *rdev;
9761 int err;
9762
9763 /* Find the rdev */
9764 rdev_for_each_rcu(rdev, mddev) {
9765 if (rdev->desc_nr == nr)
9766 break;
9767 }
9768
9769 if (!rdev || rdev->desc_nr != nr) {
9770 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9771 return;
9772 }
9773
9774 err = read_rdev(mddev, rdev);
9775 if (err < 0)
9776 return;
9777
9778 check_sb_changes(mddev, rdev);
9779
9780 /* Read all rdev's to update recovery_offset */
9781 rdev_for_each_rcu(rdev, mddev) {
9782 if (!test_bit(Faulty, &rdev->flags))
9783 read_rdev(mddev, rdev);
9784 }
9785 }
9786 EXPORT_SYMBOL(md_reload_sb);
9787
9788 #ifndef MODULE
9789
9790 /*
9791 * Searches all registered partitions for autorun RAID arrays
9792 * at boot time.
9793 */
9794
9795 static DEFINE_MUTEX(detected_devices_mutex);
9796 static LIST_HEAD(all_detected_devices);
9797 struct detected_devices_node {
9798 struct list_head list;
9799 dev_t dev;
9800 };
9801
9802 void md_autodetect_dev(dev_t dev)
9803 {
9804 struct detected_devices_node *node_detected_dev;
9805
9806 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9807 if (node_detected_dev) {
9808 node_detected_dev->dev = dev;
9809 mutex_lock(&detected_devices_mutex);
9810 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9811 mutex_unlock(&detected_devices_mutex);
9812 }
9813 }
9814
9815 void md_autostart_arrays(int part)
9816 {
9817 struct md_rdev *rdev;
9818 struct detected_devices_node *node_detected_dev;
9819 dev_t dev;
9820 int i_scanned, i_passed;
9821
9822 i_scanned = 0;
9823 i_passed = 0;
9824
9825 pr_info("md: Autodetecting RAID arrays.\n");
9826
9827 mutex_lock(&detected_devices_mutex);
9828 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9829 i_scanned++;
9830 node_detected_dev = list_entry(all_detected_devices.next,
9831 struct detected_devices_node, list);
9832 list_del(&node_detected_dev->list);
9833 dev = node_detected_dev->dev;
9834 kfree(node_detected_dev);
9835 mutex_unlock(&detected_devices_mutex);
9836 rdev = md_import_device(dev,0, 90);
9837 mutex_lock(&detected_devices_mutex);
9838 if (IS_ERR(rdev))
9839 continue;
9840
9841 if (test_bit(Faulty, &rdev->flags))
9842 continue;
9843
9844 set_bit(AutoDetected, &rdev->flags);
9845 list_add(&rdev->same_set, &pending_raid_disks);
9846 i_passed++;
9847 }
9848 mutex_unlock(&detected_devices_mutex);
9849
9850 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9851
9852 autorun_devices(part);
9853 }
9854
9855 #endif /* !MODULE */
9856
9857 static __exit void md_exit(void)
9858 {
9859 struct mddev *mddev;
9860 struct list_head *tmp;
9861 int delay = 1;
9862
9863 unregister_blkdev(MD_MAJOR,"md");
9864 unregister_blkdev(mdp_major, "mdp");
9865 unregister_reboot_notifier(&md_notifier);
9866 unregister_sysctl_table(raid_table_header);
9867
9868 /* We cannot unload the modules while some process is
9869 * waiting for us in select() or poll() - wake them up
9870 */
9871 md_unloading = 1;
9872 while (waitqueue_active(&md_event_waiters)) {
9873 /* not safe to leave yet */
9874 wake_up(&md_event_waiters);
9875 msleep(delay);
9876 delay += delay;
9877 }
9878 remove_proc_entry("mdstat", NULL);
9879
9880 for_each_mddev(mddev, tmp) {
9881 export_array(mddev);
9882 mddev->ctime = 0;
9883 mddev->hold_active = 0;
9884 /*
9885 * for_each_mddev() will call mddev_put() at the end of each
9886 * iteration. As the mddev is now fully clear, this will
9887 * schedule the mddev for destruction by a workqueue, and the
9888 * destroy_workqueue() below will wait for that to complete.
9889 */
9890 }
9891 destroy_workqueue(md_rdev_misc_wq);
9892 destroy_workqueue(md_misc_wq);
9893 destroy_workqueue(md_wq);
9894 }
9895
9896 subsys_initcall(md_init);
9897 module_exit(md_exit)
9898
9899 static int get_ro(char *buffer, const struct kernel_param *kp)
9900 {
9901 return sprintf(buffer, "%d\n", start_readonly);
9902 }
9903 static int set_ro(const char *val, const struct kernel_param *kp)
9904 {
9905 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9906 }
9907
9908 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9909 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9910 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9911 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9912
9913 MODULE_LICENSE("GPL");
9914 MODULE_DESCRIPTION("MD RAID framework");
9915 MODULE_ALIAS("md");
9916 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);