]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/md.c
md: Make mddev->array_size sector-based.
[mirror_ubuntu-zesty-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47
48 #include <linux/init.h>
49
50 #include <linux/file.h>
51
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55
56 #include <asm/unaligned.h>
57
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66
67
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74
75 static void md_print_devices(void);
76
77 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
78
79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = &proc_dointvec,
118 },
119 {
120 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = &proc_dointvec,
126 },
127 { .ctl_name = 0 }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .ctl_name = DEV_RAID,
133 .procname = "raid",
134 .maxlen = 0,
135 .mode = S_IRUGO|S_IXUGO,
136 .child = raid_table,
137 },
138 { .ctl_name = 0 }
139 };
140
141 static ctl_table raid_root_table[] = {
142 {
143 .ctl_name = CTL_DEV,
144 .procname = "dev",
145 .maxlen = 0,
146 .mode = 0555,
147 .child = raid_dir_table,
148 },
149 { .ctl_name = 0 }
150 };
151
152 static struct block_device_operations md_fops;
153
154 static int start_readonly;
155
156 /*
157 * We have a system wide 'event count' that is incremented
158 * on any 'interesting' event, and readers of /proc/mdstat
159 * can use 'poll' or 'select' to find out when the event
160 * count increases.
161 *
162 * Events are:
163 * start array, stop array, error, add device, remove device,
164 * start build, activate spare
165 */
166 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
167 static atomic_t md_event_count;
168 void md_new_event(mddev_t *mddev)
169 {
170 atomic_inc(&md_event_count);
171 wake_up(&md_event_waiters);
172 }
173 EXPORT_SYMBOL_GPL(md_new_event);
174
175 /* Alternate version that can be called from interrupts
176 * when calling sysfs_notify isn't needed.
177 */
178 static void md_new_event_inintr(mddev_t *mddev)
179 {
180 atomic_inc(&md_event_count);
181 wake_up(&md_event_waiters);
182 }
183
184 /*
185 * Enables to iterate over all existing md arrays
186 * all_mddevs_lock protects this list.
187 */
188 static LIST_HEAD(all_mddevs);
189 static DEFINE_SPINLOCK(all_mddevs_lock);
190
191
192 /*
193 * iterates through all used mddevs in the system.
194 * We take care to grab the all_mddevs_lock whenever navigating
195 * the list, and to always hold a refcount when unlocked.
196 * Any code which breaks out of this loop while own
197 * a reference to the current mddev and must mddev_put it.
198 */
199 #define for_each_mddev(mddev,tmp) \
200 \
201 for (({ spin_lock(&all_mddevs_lock); \
202 tmp = all_mddevs.next; \
203 mddev = NULL;}); \
204 ({ if (tmp != &all_mddevs) \
205 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
206 spin_unlock(&all_mddevs_lock); \
207 if (mddev) mddev_put(mddev); \
208 mddev = list_entry(tmp, mddev_t, all_mddevs); \
209 tmp != &all_mddevs;}); \
210 ({ spin_lock(&all_mddevs_lock); \
211 tmp = tmp->next;}) \
212 )
213
214
215 static int md_fail_request (struct request_queue *q, struct bio *bio)
216 {
217 bio_io_error(bio);
218 return 0;
219 }
220
221 static inline mddev_t *mddev_get(mddev_t *mddev)
222 {
223 atomic_inc(&mddev->active);
224 return mddev;
225 }
226
227 static void mddev_put(mddev_t *mddev)
228 {
229 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
230 return;
231 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
232 list_del(&mddev->all_mddevs);
233 spin_unlock(&all_mddevs_lock);
234 blk_cleanup_queue(mddev->queue);
235 kobject_put(&mddev->kobj);
236 } else
237 spin_unlock(&all_mddevs_lock);
238 }
239
240 static mddev_t * mddev_find(dev_t unit)
241 {
242 mddev_t *mddev, *new = NULL;
243
244 retry:
245 spin_lock(&all_mddevs_lock);
246 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
247 if (mddev->unit == unit) {
248 mddev_get(mddev);
249 spin_unlock(&all_mddevs_lock);
250 kfree(new);
251 return mddev;
252 }
253
254 if (new) {
255 list_add(&new->all_mddevs, &all_mddevs);
256 spin_unlock(&all_mddevs_lock);
257 return new;
258 }
259 spin_unlock(&all_mddevs_lock);
260
261 new = kzalloc(sizeof(*new), GFP_KERNEL);
262 if (!new)
263 return NULL;
264
265 new->unit = unit;
266 if (MAJOR(unit) == MD_MAJOR)
267 new->md_minor = MINOR(unit);
268 else
269 new->md_minor = MINOR(unit) >> MdpMinorShift;
270
271 mutex_init(&new->reconfig_mutex);
272 INIT_LIST_HEAD(&new->disks);
273 INIT_LIST_HEAD(&new->all_mddevs);
274 init_timer(&new->safemode_timer);
275 atomic_set(&new->active, 1);
276 spin_lock_init(&new->write_lock);
277 init_waitqueue_head(&new->sb_wait);
278 init_waitqueue_head(&new->recovery_wait);
279 new->reshape_position = MaxSector;
280 new->resync_min = 0;
281 new->resync_max = MaxSector;
282 new->level = LEVEL_NONE;
283
284 new->queue = blk_alloc_queue(GFP_KERNEL);
285 if (!new->queue) {
286 kfree(new);
287 return NULL;
288 }
289 /* Can be unlocked because the queue is new: no concurrency */
290 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue);
291
292 blk_queue_make_request(new->queue, md_fail_request);
293
294 goto retry;
295 }
296
297 static inline int mddev_lock(mddev_t * mddev)
298 {
299 return mutex_lock_interruptible(&mddev->reconfig_mutex);
300 }
301
302 static inline int mddev_trylock(mddev_t * mddev)
303 {
304 return mutex_trylock(&mddev->reconfig_mutex);
305 }
306
307 static inline void mddev_unlock(mddev_t * mddev)
308 {
309 mutex_unlock(&mddev->reconfig_mutex);
310
311 md_wakeup_thread(mddev->thread);
312 }
313
314 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
315 {
316 mdk_rdev_t * rdev;
317 struct list_head *tmp;
318
319 rdev_for_each(rdev, tmp, mddev) {
320 if (rdev->desc_nr == nr)
321 return rdev;
322 }
323 return NULL;
324 }
325
326 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
327 {
328 struct list_head *tmp;
329 mdk_rdev_t *rdev;
330
331 rdev_for_each(rdev, tmp, mddev) {
332 if (rdev->bdev->bd_dev == dev)
333 return rdev;
334 }
335 return NULL;
336 }
337
338 static struct mdk_personality *find_pers(int level, char *clevel)
339 {
340 struct mdk_personality *pers;
341 list_for_each_entry(pers, &pers_list, list) {
342 if (level != LEVEL_NONE && pers->level == level)
343 return pers;
344 if (strcmp(pers->name, clevel)==0)
345 return pers;
346 }
347 return NULL;
348 }
349
350 /* return the offset of the super block in 512byte sectors */
351 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
352 {
353 sector_t num_sectors = bdev->bd_inode->i_size / 512;
354 return MD_NEW_SIZE_SECTORS(num_sectors);
355 }
356
357 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
358 {
359 sector_t num_sectors = rdev->sb_start;
360
361 if (chunk_size)
362 num_sectors &= ~((sector_t)chunk_size/512 - 1);
363 return num_sectors;
364 }
365
366 static int alloc_disk_sb(mdk_rdev_t * rdev)
367 {
368 if (rdev->sb_page)
369 MD_BUG();
370
371 rdev->sb_page = alloc_page(GFP_KERNEL);
372 if (!rdev->sb_page) {
373 printk(KERN_ALERT "md: out of memory.\n");
374 return -ENOMEM;
375 }
376
377 return 0;
378 }
379
380 static void free_disk_sb(mdk_rdev_t * rdev)
381 {
382 if (rdev->sb_page) {
383 put_page(rdev->sb_page);
384 rdev->sb_loaded = 0;
385 rdev->sb_page = NULL;
386 rdev->sb_start = 0;
387 rdev->size = 0;
388 }
389 }
390
391
392 static void super_written(struct bio *bio, int error)
393 {
394 mdk_rdev_t *rdev = bio->bi_private;
395 mddev_t *mddev = rdev->mddev;
396
397 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
398 printk("md: super_written gets error=%d, uptodate=%d\n",
399 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
400 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
401 md_error(mddev, rdev);
402 }
403
404 if (atomic_dec_and_test(&mddev->pending_writes))
405 wake_up(&mddev->sb_wait);
406 bio_put(bio);
407 }
408
409 static void super_written_barrier(struct bio *bio, int error)
410 {
411 struct bio *bio2 = bio->bi_private;
412 mdk_rdev_t *rdev = bio2->bi_private;
413 mddev_t *mddev = rdev->mddev;
414
415 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
416 error == -EOPNOTSUPP) {
417 unsigned long flags;
418 /* barriers don't appear to be supported :-( */
419 set_bit(BarriersNotsupp, &rdev->flags);
420 mddev->barriers_work = 0;
421 spin_lock_irqsave(&mddev->write_lock, flags);
422 bio2->bi_next = mddev->biolist;
423 mddev->biolist = bio2;
424 spin_unlock_irqrestore(&mddev->write_lock, flags);
425 wake_up(&mddev->sb_wait);
426 bio_put(bio);
427 } else {
428 bio_put(bio2);
429 bio->bi_private = rdev;
430 super_written(bio, error);
431 }
432 }
433
434 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
435 sector_t sector, int size, struct page *page)
436 {
437 /* write first size bytes of page to sector of rdev
438 * Increment mddev->pending_writes before returning
439 * and decrement it on completion, waking up sb_wait
440 * if zero is reached.
441 * If an error occurred, call md_error
442 *
443 * As we might need to resubmit the request if BIO_RW_BARRIER
444 * causes ENOTSUPP, we allocate a spare bio...
445 */
446 struct bio *bio = bio_alloc(GFP_NOIO, 1);
447 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
448
449 bio->bi_bdev = rdev->bdev;
450 bio->bi_sector = sector;
451 bio_add_page(bio, page, size, 0);
452 bio->bi_private = rdev;
453 bio->bi_end_io = super_written;
454 bio->bi_rw = rw;
455
456 atomic_inc(&mddev->pending_writes);
457 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
458 struct bio *rbio;
459 rw |= (1<<BIO_RW_BARRIER);
460 rbio = bio_clone(bio, GFP_NOIO);
461 rbio->bi_private = bio;
462 rbio->bi_end_io = super_written_barrier;
463 submit_bio(rw, rbio);
464 } else
465 submit_bio(rw, bio);
466 }
467
468 void md_super_wait(mddev_t *mddev)
469 {
470 /* wait for all superblock writes that were scheduled to complete.
471 * if any had to be retried (due to BARRIER problems), retry them
472 */
473 DEFINE_WAIT(wq);
474 for(;;) {
475 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
476 if (atomic_read(&mddev->pending_writes)==0)
477 break;
478 while (mddev->biolist) {
479 struct bio *bio;
480 spin_lock_irq(&mddev->write_lock);
481 bio = mddev->biolist;
482 mddev->biolist = bio->bi_next ;
483 bio->bi_next = NULL;
484 spin_unlock_irq(&mddev->write_lock);
485 submit_bio(bio->bi_rw, bio);
486 }
487 schedule();
488 }
489 finish_wait(&mddev->sb_wait, &wq);
490 }
491
492 static void bi_complete(struct bio *bio, int error)
493 {
494 complete((struct completion*)bio->bi_private);
495 }
496
497 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
498 struct page *page, int rw)
499 {
500 struct bio *bio = bio_alloc(GFP_NOIO, 1);
501 struct completion event;
502 int ret;
503
504 rw |= (1 << BIO_RW_SYNC);
505
506 bio->bi_bdev = bdev;
507 bio->bi_sector = sector;
508 bio_add_page(bio, page, size, 0);
509 init_completion(&event);
510 bio->bi_private = &event;
511 bio->bi_end_io = bi_complete;
512 submit_bio(rw, bio);
513 wait_for_completion(&event);
514
515 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
516 bio_put(bio);
517 return ret;
518 }
519 EXPORT_SYMBOL_GPL(sync_page_io);
520
521 static int read_disk_sb(mdk_rdev_t * rdev, int size)
522 {
523 char b[BDEVNAME_SIZE];
524 if (!rdev->sb_page) {
525 MD_BUG();
526 return -EINVAL;
527 }
528 if (rdev->sb_loaded)
529 return 0;
530
531
532 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
533 goto fail;
534 rdev->sb_loaded = 1;
535 return 0;
536
537 fail:
538 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
539 bdevname(rdev->bdev,b));
540 return -EINVAL;
541 }
542
543 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
544 {
545 return sb1->set_uuid0 == sb2->set_uuid0 &&
546 sb1->set_uuid1 == sb2->set_uuid1 &&
547 sb1->set_uuid2 == sb2->set_uuid2 &&
548 sb1->set_uuid3 == sb2->set_uuid3;
549 }
550
551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
552 {
553 int ret;
554 mdp_super_t *tmp1, *tmp2;
555
556 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
557 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
558
559 if (!tmp1 || !tmp2) {
560 ret = 0;
561 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
562 goto abort;
563 }
564
565 *tmp1 = *sb1;
566 *tmp2 = *sb2;
567
568 /*
569 * nr_disks is not constant
570 */
571 tmp1->nr_disks = 0;
572 tmp2->nr_disks = 0;
573
574 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
575 abort:
576 kfree(tmp1);
577 kfree(tmp2);
578 return ret;
579 }
580
581
582 static u32 md_csum_fold(u32 csum)
583 {
584 csum = (csum & 0xffff) + (csum >> 16);
585 return (csum & 0xffff) + (csum >> 16);
586 }
587
588 static unsigned int calc_sb_csum(mdp_super_t * sb)
589 {
590 u64 newcsum = 0;
591 u32 *sb32 = (u32*)sb;
592 int i;
593 unsigned int disk_csum, csum;
594
595 disk_csum = sb->sb_csum;
596 sb->sb_csum = 0;
597
598 for (i = 0; i < MD_SB_BYTES/4 ; i++)
599 newcsum += sb32[i];
600 csum = (newcsum & 0xffffffff) + (newcsum>>32);
601
602
603 #ifdef CONFIG_ALPHA
604 /* This used to use csum_partial, which was wrong for several
605 * reasons including that different results are returned on
606 * different architectures. It isn't critical that we get exactly
607 * the same return value as before (we always csum_fold before
608 * testing, and that removes any differences). However as we
609 * know that csum_partial always returned a 16bit value on
610 * alphas, do a fold to maximise conformity to previous behaviour.
611 */
612 sb->sb_csum = md_csum_fold(disk_csum);
613 #else
614 sb->sb_csum = disk_csum;
615 #endif
616 return csum;
617 }
618
619
620 /*
621 * Handle superblock details.
622 * We want to be able to handle multiple superblock formats
623 * so we have a common interface to them all, and an array of
624 * different handlers.
625 * We rely on user-space to write the initial superblock, and support
626 * reading and updating of superblocks.
627 * Interface methods are:
628 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
629 * loads and validates a superblock on dev.
630 * if refdev != NULL, compare superblocks on both devices
631 * Return:
632 * 0 - dev has a superblock that is compatible with refdev
633 * 1 - dev has a superblock that is compatible and newer than refdev
634 * so dev should be used as the refdev in future
635 * -EINVAL superblock incompatible or invalid
636 * -othererror e.g. -EIO
637 *
638 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
639 * Verify that dev is acceptable into mddev.
640 * The first time, mddev->raid_disks will be 0, and data from
641 * dev should be merged in. Subsequent calls check that dev
642 * is new enough. Return 0 or -EINVAL
643 *
644 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
645 * Update the superblock for rdev with data in mddev
646 * This does not write to disc.
647 *
648 */
649
650 struct super_type {
651 char *name;
652 struct module *owner;
653 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
654 int minor_version);
655 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
656 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
657 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
658 sector_t num_sectors);
659 };
660
661 /*
662 * load_super for 0.90.0
663 */
664 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
665 {
666 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
667 mdp_super_t *sb;
668 int ret;
669
670 /*
671 * Calculate the position of the superblock (512byte sectors),
672 * it's at the end of the disk.
673 *
674 * It also happens to be a multiple of 4Kb.
675 */
676 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
677
678 ret = read_disk_sb(rdev, MD_SB_BYTES);
679 if (ret) return ret;
680
681 ret = -EINVAL;
682
683 bdevname(rdev->bdev, b);
684 sb = (mdp_super_t*)page_address(rdev->sb_page);
685
686 if (sb->md_magic != MD_SB_MAGIC) {
687 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
688 b);
689 goto abort;
690 }
691
692 if (sb->major_version != 0 ||
693 sb->minor_version < 90 ||
694 sb->minor_version > 91) {
695 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
696 sb->major_version, sb->minor_version,
697 b);
698 goto abort;
699 }
700
701 if (sb->raid_disks <= 0)
702 goto abort;
703
704 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
705 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
706 b);
707 goto abort;
708 }
709
710 rdev->preferred_minor = sb->md_minor;
711 rdev->data_offset = 0;
712 rdev->sb_size = MD_SB_BYTES;
713
714 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
715 if (sb->level != 1 && sb->level != 4
716 && sb->level != 5 && sb->level != 6
717 && sb->level != 10) {
718 /* FIXME use a better test */
719 printk(KERN_WARNING
720 "md: bitmaps not supported for this level.\n");
721 goto abort;
722 }
723 }
724
725 if (sb->level == LEVEL_MULTIPATH)
726 rdev->desc_nr = -1;
727 else
728 rdev->desc_nr = sb->this_disk.number;
729
730 if (!refdev) {
731 ret = 1;
732 } else {
733 __u64 ev1, ev2;
734 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
735 if (!uuid_equal(refsb, sb)) {
736 printk(KERN_WARNING "md: %s has different UUID to %s\n",
737 b, bdevname(refdev->bdev,b2));
738 goto abort;
739 }
740 if (!sb_equal(refsb, sb)) {
741 printk(KERN_WARNING "md: %s has same UUID"
742 " but different superblock to %s\n",
743 b, bdevname(refdev->bdev, b2));
744 goto abort;
745 }
746 ev1 = md_event(sb);
747 ev2 = md_event(refsb);
748 if (ev1 > ev2)
749 ret = 1;
750 else
751 ret = 0;
752 }
753 rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2;
754
755 if (rdev->size < sb->size && sb->level > 1)
756 /* "this cannot possibly happen" ... */
757 ret = -EINVAL;
758
759 abort:
760 return ret;
761 }
762
763 /*
764 * validate_super for 0.90.0
765 */
766 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
767 {
768 mdp_disk_t *desc;
769 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
770 __u64 ev1 = md_event(sb);
771
772 rdev->raid_disk = -1;
773 clear_bit(Faulty, &rdev->flags);
774 clear_bit(In_sync, &rdev->flags);
775 clear_bit(WriteMostly, &rdev->flags);
776 clear_bit(BarriersNotsupp, &rdev->flags);
777
778 if (mddev->raid_disks == 0) {
779 mddev->major_version = 0;
780 mddev->minor_version = sb->minor_version;
781 mddev->patch_version = sb->patch_version;
782 mddev->external = 0;
783 mddev->chunk_size = sb->chunk_size;
784 mddev->ctime = sb->ctime;
785 mddev->utime = sb->utime;
786 mddev->level = sb->level;
787 mddev->clevel[0] = 0;
788 mddev->layout = sb->layout;
789 mddev->raid_disks = sb->raid_disks;
790 mddev->size = sb->size;
791 mddev->events = ev1;
792 mddev->bitmap_offset = 0;
793 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
794
795 if (mddev->minor_version >= 91) {
796 mddev->reshape_position = sb->reshape_position;
797 mddev->delta_disks = sb->delta_disks;
798 mddev->new_level = sb->new_level;
799 mddev->new_layout = sb->new_layout;
800 mddev->new_chunk = sb->new_chunk;
801 } else {
802 mddev->reshape_position = MaxSector;
803 mddev->delta_disks = 0;
804 mddev->new_level = mddev->level;
805 mddev->new_layout = mddev->layout;
806 mddev->new_chunk = mddev->chunk_size;
807 }
808
809 if (sb->state & (1<<MD_SB_CLEAN))
810 mddev->recovery_cp = MaxSector;
811 else {
812 if (sb->events_hi == sb->cp_events_hi &&
813 sb->events_lo == sb->cp_events_lo) {
814 mddev->recovery_cp = sb->recovery_cp;
815 } else
816 mddev->recovery_cp = 0;
817 }
818
819 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
820 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
821 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
822 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
823
824 mddev->max_disks = MD_SB_DISKS;
825
826 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
827 mddev->bitmap_file == NULL)
828 mddev->bitmap_offset = mddev->default_bitmap_offset;
829
830 } else if (mddev->pers == NULL) {
831 /* Insist on good event counter while assembling */
832 ++ev1;
833 if (ev1 < mddev->events)
834 return -EINVAL;
835 } else if (mddev->bitmap) {
836 /* if adding to array with a bitmap, then we can accept an
837 * older device ... but not too old.
838 */
839 if (ev1 < mddev->bitmap->events_cleared)
840 return 0;
841 } else {
842 if (ev1 < mddev->events)
843 /* just a hot-add of a new device, leave raid_disk at -1 */
844 return 0;
845 }
846
847 if (mddev->level != LEVEL_MULTIPATH) {
848 desc = sb->disks + rdev->desc_nr;
849
850 if (desc->state & (1<<MD_DISK_FAULTY))
851 set_bit(Faulty, &rdev->flags);
852 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
853 desc->raid_disk < mddev->raid_disks */) {
854 set_bit(In_sync, &rdev->flags);
855 rdev->raid_disk = desc->raid_disk;
856 }
857 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
858 set_bit(WriteMostly, &rdev->flags);
859 } else /* MULTIPATH are always insync */
860 set_bit(In_sync, &rdev->flags);
861 return 0;
862 }
863
864 /*
865 * sync_super for 0.90.0
866 */
867 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
868 {
869 mdp_super_t *sb;
870 struct list_head *tmp;
871 mdk_rdev_t *rdev2;
872 int next_spare = mddev->raid_disks;
873
874
875 /* make rdev->sb match mddev data..
876 *
877 * 1/ zero out disks
878 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
879 * 3/ any empty disks < next_spare become removed
880 *
881 * disks[0] gets initialised to REMOVED because
882 * we cannot be sure from other fields if it has
883 * been initialised or not.
884 */
885 int i;
886 int active=0, working=0,failed=0,spare=0,nr_disks=0;
887
888 rdev->sb_size = MD_SB_BYTES;
889
890 sb = (mdp_super_t*)page_address(rdev->sb_page);
891
892 memset(sb, 0, sizeof(*sb));
893
894 sb->md_magic = MD_SB_MAGIC;
895 sb->major_version = mddev->major_version;
896 sb->patch_version = mddev->patch_version;
897 sb->gvalid_words = 0; /* ignored */
898 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
899 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
900 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
901 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
902
903 sb->ctime = mddev->ctime;
904 sb->level = mddev->level;
905 sb->size = mddev->size;
906 sb->raid_disks = mddev->raid_disks;
907 sb->md_minor = mddev->md_minor;
908 sb->not_persistent = 0;
909 sb->utime = mddev->utime;
910 sb->state = 0;
911 sb->events_hi = (mddev->events>>32);
912 sb->events_lo = (u32)mddev->events;
913
914 if (mddev->reshape_position == MaxSector)
915 sb->minor_version = 90;
916 else {
917 sb->minor_version = 91;
918 sb->reshape_position = mddev->reshape_position;
919 sb->new_level = mddev->new_level;
920 sb->delta_disks = mddev->delta_disks;
921 sb->new_layout = mddev->new_layout;
922 sb->new_chunk = mddev->new_chunk;
923 }
924 mddev->minor_version = sb->minor_version;
925 if (mddev->in_sync)
926 {
927 sb->recovery_cp = mddev->recovery_cp;
928 sb->cp_events_hi = (mddev->events>>32);
929 sb->cp_events_lo = (u32)mddev->events;
930 if (mddev->recovery_cp == MaxSector)
931 sb->state = (1<< MD_SB_CLEAN);
932 } else
933 sb->recovery_cp = 0;
934
935 sb->layout = mddev->layout;
936 sb->chunk_size = mddev->chunk_size;
937
938 if (mddev->bitmap && mddev->bitmap_file == NULL)
939 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
940
941 sb->disks[0].state = (1<<MD_DISK_REMOVED);
942 rdev_for_each(rdev2, tmp, mddev) {
943 mdp_disk_t *d;
944 int desc_nr;
945 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
946 && !test_bit(Faulty, &rdev2->flags))
947 desc_nr = rdev2->raid_disk;
948 else
949 desc_nr = next_spare++;
950 rdev2->desc_nr = desc_nr;
951 d = &sb->disks[rdev2->desc_nr];
952 nr_disks++;
953 d->number = rdev2->desc_nr;
954 d->major = MAJOR(rdev2->bdev->bd_dev);
955 d->minor = MINOR(rdev2->bdev->bd_dev);
956 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
957 && !test_bit(Faulty, &rdev2->flags))
958 d->raid_disk = rdev2->raid_disk;
959 else
960 d->raid_disk = rdev2->desc_nr; /* compatibility */
961 if (test_bit(Faulty, &rdev2->flags))
962 d->state = (1<<MD_DISK_FAULTY);
963 else if (test_bit(In_sync, &rdev2->flags)) {
964 d->state = (1<<MD_DISK_ACTIVE);
965 d->state |= (1<<MD_DISK_SYNC);
966 active++;
967 working++;
968 } else {
969 d->state = 0;
970 spare++;
971 working++;
972 }
973 if (test_bit(WriteMostly, &rdev2->flags))
974 d->state |= (1<<MD_DISK_WRITEMOSTLY);
975 }
976 /* now set the "removed" and "faulty" bits on any missing devices */
977 for (i=0 ; i < mddev->raid_disks ; i++) {
978 mdp_disk_t *d = &sb->disks[i];
979 if (d->state == 0 && d->number == 0) {
980 d->number = i;
981 d->raid_disk = i;
982 d->state = (1<<MD_DISK_REMOVED);
983 d->state |= (1<<MD_DISK_FAULTY);
984 failed++;
985 }
986 }
987 sb->nr_disks = nr_disks;
988 sb->active_disks = active;
989 sb->working_disks = working;
990 sb->failed_disks = failed;
991 sb->spare_disks = spare;
992
993 sb->this_disk = sb->disks[rdev->desc_nr];
994 sb->sb_csum = calc_sb_csum(sb);
995 }
996
997 /*
998 * rdev_size_change for 0.90.0
999 */
1000 static unsigned long long
1001 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1002 {
1003 if (num_sectors && num_sectors < rdev->mddev->size * 2)
1004 return 0; /* component must fit device */
1005 if (rdev->mddev->bitmap_offset)
1006 return 0; /* can't move bitmap */
1007 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1008 if (!num_sectors || num_sectors > rdev->sb_start)
1009 num_sectors = rdev->sb_start;
1010 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1011 rdev->sb_page);
1012 md_super_wait(rdev->mddev);
1013 return num_sectors / 2; /* kB for sysfs */
1014 }
1015
1016
1017 /*
1018 * version 1 superblock
1019 */
1020
1021 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1022 {
1023 __le32 disk_csum;
1024 u32 csum;
1025 unsigned long long newcsum;
1026 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1027 __le32 *isuper = (__le32*)sb;
1028 int i;
1029
1030 disk_csum = sb->sb_csum;
1031 sb->sb_csum = 0;
1032 newcsum = 0;
1033 for (i=0; size>=4; size -= 4 )
1034 newcsum += le32_to_cpu(*isuper++);
1035
1036 if (size == 2)
1037 newcsum += le16_to_cpu(*(__le16*) isuper);
1038
1039 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1040 sb->sb_csum = disk_csum;
1041 return cpu_to_le32(csum);
1042 }
1043
1044 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1045 {
1046 struct mdp_superblock_1 *sb;
1047 int ret;
1048 sector_t sb_start;
1049 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1050 int bmask;
1051
1052 /*
1053 * Calculate the position of the superblock in 512byte sectors.
1054 * It is always aligned to a 4K boundary and
1055 * depeding on minor_version, it can be:
1056 * 0: At least 8K, but less than 12K, from end of device
1057 * 1: At start of device
1058 * 2: 4K from start of device.
1059 */
1060 switch(minor_version) {
1061 case 0:
1062 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1063 sb_start -= 8*2;
1064 sb_start &= ~(sector_t)(4*2-1);
1065 break;
1066 case 1:
1067 sb_start = 0;
1068 break;
1069 case 2:
1070 sb_start = 8;
1071 break;
1072 default:
1073 return -EINVAL;
1074 }
1075 rdev->sb_start = sb_start;
1076
1077 /* superblock is rarely larger than 1K, but it can be larger,
1078 * and it is safe to read 4k, so we do that
1079 */
1080 ret = read_disk_sb(rdev, 4096);
1081 if (ret) return ret;
1082
1083
1084 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1085
1086 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1087 sb->major_version != cpu_to_le32(1) ||
1088 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1089 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1090 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1091 return -EINVAL;
1092
1093 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1094 printk("md: invalid superblock checksum on %s\n",
1095 bdevname(rdev->bdev,b));
1096 return -EINVAL;
1097 }
1098 if (le64_to_cpu(sb->data_size) < 10) {
1099 printk("md: data_size too small on %s\n",
1100 bdevname(rdev->bdev,b));
1101 return -EINVAL;
1102 }
1103 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1104 if (sb->level != cpu_to_le32(1) &&
1105 sb->level != cpu_to_le32(4) &&
1106 sb->level != cpu_to_le32(5) &&
1107 sb->level != cpu_to_le32(6) &&
1108 sb->level != cpu_to_le32(10)) {
1109 printk(KERN_WARNING
1110 "md: bitmaps not supported for this level.\n");
1111 return -EINVAL;
1112 }
1113 }
1114
1115 rdev->preferred_minor = 0xffff;
1116 rdev->data_offset = le64_to_cpu(sb->data_offset);
1117 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1118
1119 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1120 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1121 if (rdev->sb_size & bmask)
1122 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1123
1124 if (minor_version
1125 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1126 return -EINVAL;
1127
1128 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1129 rdev->desc_nr = -1;
1130 else
1131 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1132
1133 if (!refdev) {
1134 ret = 1;
1135 } else {
1136 __u64 ev1, ev2;
1137 struct mdp_superblock_1 *refsb =
1138 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1139
1140 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1141 sb->level != refsb->level ||
1142 sb->layout != refsb->layout ||
1143 sb->chunksize != refsb->chunksize) {
1144 printk(KERN_WARNING "md: %s has strangely different"
1145 " superblock to %s\n",
1146 bdevname(rdev->bdev,b),
1147 bdevname(refdev->bdev,b2));
1148 return -EINVAL;
1149 }
1150 ev1 = le64_to_cpu(sb->events);
1151 ev2 = le64_to_cpu(refsb->events);
1152
1153 if (ev1 > ev2)
1154 ret = 1;
1155 else
1156 ret = 0;
1157 }
1158 if (minor_version)
1159 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1160 else
1161 rdev->size = rdev->sb_start / 2;
1162 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1163 return -EINVAL;
1164 rdev->size = le64_to_cpu(sb->data_size)/2;
1165 if (le32_to_cpu(sb->chunksize))
1166 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1167
1168 if (le64_to_cpu(sb->size) > rdev->size*2)
1169 return -EINVAL;
1170 return ret;
1171 }
1172
1173 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1174 {
1175 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1176 __u64 ev1 = le64_to_cpu(sb->events);
1177
1178 rdev->raid_disk = -1;
1179 clear_bit(Faulty, &rdev->flags);
1180 clear_bit(In_sync, &rdev->flags);
1181 clear_bit(WriteMostly, &rdev->flags);
1182 clear_bit(BarriersNotsupp, &rdev->flags);
1183
1184 if (mddev->raid_disks == 0) {
1185 mddev->major_version = 1;
1186 mddev->patch_version = 0;
1187 mddev->external = 0;
1188 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1189 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1190 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1191 mddev->level = le32_to_cpu(sb->level);
1192 mddev->clevel[0] = 0;
1193 mddev->layout = le32_to_cpu(sb->layout);
1194 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1195 mddev->size = le64_to_cpu(sb->size)/2;
1196 mddev->events = ev1;
1197 mddev->bitmap_offset = 0;
1198 mddev->default_bitmap_offset = 1024 >> 9;
1199
1200 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1201 memcpy(mddev->uuid, sb->set_uuid, 16);
1202
1203 mddev->max_disks = (4096-256)/2;
1204
1205 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1206 mddev->bitmap_file == NULL )
1207 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1208
1209 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1210 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1211 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1212 mddev->new_level = le32_to_cpu(sb->new_level);
1213 mddev->new_layout = le32_to_cpu(sb->new_layout);
1214 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1215 } else {
1216 mddev->reshape_position = MaxSector;
1217 mddev->delta_disks = 0;
1218 mddev->new_level = mddev->level;
1219 mddev->new_layout = mddev->layout;
1220 mddev->new_chunk = mddev->chunk_size;
1221 }
1222
1223 } else if (mddev->pers == NULL) {
1224 /* Insist of good event counter while assembling */
1225 ++ev1;
1226 if (ev1 < mddev->events)
1227 return -EINVAL;
1228 } else if (mddev->bitmap) {
1229 /* If adding to array with a bitmap, then we can accept an
1230 * older device, but not too old.
1231 */
1232 if (ev1 < mddev->bitmap->events_cleared)
1233 return 0;
1234 } else {
1235 if (ev1 < mddev->events)
1236 /* just a hot-add of a new device, leave raid_disk at -1 */
1237 return 0;
1238 }
1239 if (mddev->level != LEVEL_MULTIPATH) {
1240 int role;
1241 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1242 switch(role) {
1243 case 0xffff: /* spare */
1244 break;
1245 case 0xfffe: /* faulty */
1246 set_bit(Faulty, &rdev->flags);
1247 break;
1248 default:
1249 if ((le32_to_cpu(sb->feature_map) &
1250 MD_FEATURE_RECOVERY_OFFSET))
1251 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1252 else
1253 set_bit(In_sync, &rdev->flags);
1254 rdev->raid_disk = role;
1255 break;
1256 }
1257 if (sb->devflags & WriteMostly1)
1258 set_bit(WriteMostly, &rdev->flags);
1259 } else /* MULTIPATH are always insync */
1260 set_bit(In_sync, &rdev->flags);
1261
1262 return 0;
1263 }
1264
1265 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1266 {
1267 struct mdp_superblock_1 *sb;
1268 struct list_head *tmp;
1269 mdk_rdev_t *rdev2;
1270 int max_dev, i;
1271 /* make rdev->sb match mddev and rdev data. */
1272
1273 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1274
1275 sb->feature_map = 0;
1276 sb->pad0 = 0;
1277 sb->recovery_offset = cpu_to_le64(0);
1278 memset(sb->pad1, 0, sizeof(sb->pad1));
1279 memset(sb->pad2, 0, sizeof(sb->pad2));
1280 memset(sb->pad3, 0, sizeof(sb->pad3));
1281
1282 sb->utime = cpu_to_le64((__u64)mddev->utime);
1283 sb->events = cpu_to_le64(mddev->events);
1284 if (mddev->in_sync)
1285 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1286 else
1287 sb->resync_offset = cpu_to_le64(0);
1288
1289 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1290
1291 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1292 sb->size = cpu_to_le64(mddev->size<<1);
1293
1294 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1295 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1296 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1297 }
1298
1299 if (rdev->raid_disk >= 0 &&
1300 !test_bit(In_sync, &rdev->flags) &&
1301 rdev->recovery_offset > 0) {
1302 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1303 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1304 }
1305
1306 if (mddev->reshape_position != MaxSector) {
1307 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1308 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1309 sb->new_layout = cpu_to_le32(mddev->new_layout);
1310 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1311 sb->new_level = cpu_to_le32(mddev->new_level);
1312 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1313 }
1314
1315 max_dev = 0;
1316 rdev_for_each(rdev2, tmp, mddev)
1317 if (rdev2->desc_nr+1 > max_dev)
1318 max_dev = rdev2->desc_nr+1;
1319
1320 if (max_dev > le32_to_cpu(sb->max_dev))
1321 sb->max_dev = cpu_to_le32(max_dev);
1322 for (i=0; i<max_dev;i++)
1323 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1324
1325 rdev_for_each(rdev2, tmp, mddev) {
1326 i = rdev2->desc_nr;
1327 if (test_bit(Faulty, &rdev2->flags))
1328 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1329 else if (test_bit(In_sync, &rdev2->flags))
1330 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1331 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1332 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1333 else
1334 sb->dev_roles[i] = cpu_to_le16(0xffff);
1335 }
1336
1337 sb->sb_csum = calc_sb_1_csum(sb);
1338 }
1339
1340 static unsigned long long
1341 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1342 {
1343 struct mdp_superblock_1 *sb;
1344 sector_t max_sectors;
1345 if (num_sectors && num_sectors < rdev->mddev->size * 2)
1346 return 0; /* component must fit device */
1347 if (rdev->sb_start < rdev->data_offset) {
1348 /* minor versions 1 and 2; superblock before data */
1349 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1350 max_sectors -= rdev->data_offset;
1351 if (!num_sectors || num_sectors > max_sectors)
1352 num_sectors = max_sectors;
1353 } else if (rdev->mddev->bitmap_offset) {
1354 /* minor version 0 with bitmap we can't move */
1355 return 0;
1356 } else {
1357 /* minor version 0; superblock after data */
1358 sector_t sb_start;
1359 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1360 sb_start &= ~(sector_t)(4*2 - 1);
1361 max_sectors = rdev->size * 2 + sb_start - rdev->sb_start;
1362 if (!num_sectors || num_sectors > max_sectors)
1363 num_sectors = max_sectors;
1364 rdev->sb_start = sb_start;
1365 }
1366 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1367 sb->data_size = cpu_to_le64(num_sectors);
1368 sb->super_offset = rdev->sb_start;
1369 sb->sb_csum = calc_sb_1_csum(sb);
1370 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1371 rdev->sb_page);
1372 md_super_wait(rdev->mddev);
1373 return num_sectors / 2; /* kB for sysfs */
1374 }
1375
1376 static struct super_type super_types[] = {
1377 [0] = {
1378 .name = "0.90.0",
1379 .owner = THIS_MODULE,
1380 .load_super = super_90_load,
1381 .validate_super = super_90_validate,
1382 .sync_super = super_90_sync,
1383 .rdev_size_change = super_90_rdev_size_change,
1384 },
1385 [1] = {
1386 .name = "md-1",
1387 .owner = THIS_MODULE,
1388 .load_super = super_1_load,
1389 .validate_super = super_1_validate,
1390 .sync_super = super_1_sync,
1391 .rdev_size_change = super_1_rdev_size_change,
1392 },
1393 };
1394
1395 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1396 {
1397 struct list_head *tmp, *tmp2;
1398 mdk_rdev_t *rdev, *rdev2;
1399
1400 rdev_for_each(rdev, tmp, mddev1)
1401 rdev_for_each(rdev2, tmp2, mddev2)
1402 if (rdev->bdev->bd_contains ==
1403 rdev2->bdev->bd_contains)
1404 return 1;
1405
1406 return 0;
1407 }
1408
1409 static LIST_HEAD(pending_raid_disks);
1410
1411 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1412 {
1413 char b[BDEVNAME_SIZE];
1414 struct kobject *ko;
1415 char *s;
1416 int err;
1417
1418 if (rdev->mddev) {
1419 MD_BUG();
1420 return -EINVAL;
1421 }
1422
1423 /* prevent duplicates */
1424 if (find_rdev(mddev, rdev->bdev->bd_dev))
1425 return -EEXIST;
1426
1427 /* make sure rdev->size exceeds mddev->size */
1428 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1429 if (mddev->pers) {
1430 /* Cannot change size, so fail
1431 * If mddev->level <= 0, then we don't care
1432 * about aligning sizes (e.g. linear)
1433 */
1434 if (mddev->level > 0)
1435 return -ENOSPC;
1436 } else
1437 mddev->size = rdev->size;
1438 }
1439
1440 /* Verify rdev->desc_nr is unique.
1441 * If it is -1, assign a free number, else
1442 * check number is not in use
1443 */
1444 if (rdev->desc_nr < 0) {
1445 int choice = 0;
1446 if (mddev->pers) choice = mddev->raid_disks;
1447 while (find_rdev_nr(mddev, choice))
1448 choice++;
1449 rdev->desc_nr = choice;
1450 } else {
1451 if (find_rdev_nr(mddev, rdev->desc_nr))
1452 return -EBUSY;
1453 }
1454 bdevname(rdev->bdev,b);
1455 while ( (s=strchr(b, '/')) != NULL)
1456 *s = '!';
1457
1458 rdev->mddev = mddev;
1459 printk(KERN_INFO "md: bind<%s>\n", b);
1460
1461 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1462 goto fail;
1463
1464 if (rdev->bdev->bd_part)
1465 ko = &rdev->bdev->bd_part->dev.kobj;
1466 else
1467 ko = &rdev->bdev->bd_disk->dev.kobj;
1468 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1469 kobject_del(&rdev->kobj);
1470 goto fail;
1471 }
1472 list_add(&rdev->same_set, &mddev->disks);
1473 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1474 return 0;
1475
1476 fail:
1477 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1478 b, mdname(mddev));
1479 return err;
1480 }
1481
1482 static void md_delayed_delete(struct work_struct *ws)
1483 {
1484 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1485 kobject_del(&rdev->kobj);
1486 kobject_put(&rdev->kobj);
1487 }
1488
1489 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1490 {
1491 char b[BDEVNAME_SIZE];
1492 if (!rdev->mddev) {
1493 MD_BUG();
1494 return;
1495 }
1496 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1497 list_del_init(&rdev->same_set);
1498 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1499 rdev->mddev = NULL;
1500 sysfs_remove_link(&rdev->kobj, "block");
1501
1502 /* We need to delay this, otherwise we can deadlock when
1503 * writing to 'remove' to "dev/state"
1504 */
1505 INIT_WORK(&rdev->del_work, md_delayed_delete);
1506 kobject_get(&rdev->kobj);
1507 schedule_work(&rdev->del_work);
1508 }
1509
1510 /*
1511 * prevent the device from being mounted, repartitioned or
1512 * otherwise reused by a RAID array (or any other kernel
1513 * subsystem), by bd_claiming the device.
1514 */
1515 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1516 {
1517 int err = 0;
1518 struct block_device *bdev;
1519 char b[BDEVNAME_SIZE];
1520
1521 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1522 if (IS_ERR(bdev)) {
1523 printk(KERN_ERR "md: could not open %s.\n",
1524 __bdevname(dev, b));
1525 return PTR_ERR(bdev);
1526 }
1527 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1528 if (err) {
1529 printk(KERN_ERR "md: could not bd_claim %s.\n",
1530 bdevname(bdev, b));
1531 blkdev_put(bdev);
1532 return err;
1533 }
1534 if (!shared)
1535 set_bit(AllReserved, &rdev->flags);
1536 rdev->bdev = bdev;
1537 return err;
1538 }
1539
1540 static void unlock_rdev(mdk_rdev_t *rdev)
1541 {
1542 struct block_device *bdev = rdev->bdev;
1543 rdev->bdev = NULL;
1544 if (!bdev)
1545 MD_BUG();
1546 bd_release(bdev);
1547 blkdev_put(bdev);
1548 }
1549
1550 void md_autodetect_dev(dev_t dev);
1551
1552 static void export_rdev(mdk_rdev_t * rdev)
1553 {
1554 char b[BDEVNAME_SIZE];
1555 printk(KERN_INFO "md: export_rdev(%s)\n",
1556 bdevname(rdev->bdev,b));
1557 if (rdev->mddev)
1558 MD_BUG();
1559 free_disk_sb(rdev);
1560 list_del_init(&rdev->same_set);
1561 #ifndef MODULE
1562 if (test_bit(AutoDetected, &rdev->flags))
1563 md_autodetect_dev(rdev->bdev->bd_dev);
1564 #endif
1565 unlock_rdev(rdev);
1566 kobject_put(&rdev->kobj);
1567 }
1568
1569 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1570 {
1571 unbind_rdev_from_array(rdev);
1572 export_rdev(rdev);
1573 }
1574
1575 static void export_array(mddev_t *mddev)
1576 {
1577 struct list_head *tmp;
1578 mdk_rdev_t *rdev;
1579
1580 rdev_for_each(rdev, tmp, mddev) {
1581 if (!rdev->mddev) {
1582 MD_BUG();
1583 continue;
1584 }
1585 kick_rdev_from_array(rdev);
1586 }
1587 if (!list_empty(&mddev->disks))
1588 MD_BUG();
1589 mddev->raid_disks = 0;
1590 mddev->major_version = 0;
1591 }
1592
1593 static void print_desc(mdp_disk_t *desc)
1594 {
1595 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1596 desc->major,desc->minor,desc->raid_disk,desc->state);
1597 }
1598
1599 static void print_sb(mdp_super_t *sb)
1600 {
1601 int i;
1602
1603 printk(KERN_INFO
1604 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1605 sb->major_version, sb->minor_version, sb->patch_version,
1606 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1607 sb->ctime);
1608 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1609 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1610 sb->md_minor, sb->layout, sb->chunk_size);
1611 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1612 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1613 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1614 sb->failed_disks, sb->spare_disks,
1615 sb->sb_csum, (unsigned long)sb->events_lo);
1616
1617 printk(KERN_INFO);
1618 for (i = 0; i < MD_SB_DISKS; i++) {
1619 mdp_disk_t *desc;
1620
1621 desc = sb->disks + i;
1622 if (desc->number || desc->major || desc->minor ||
1623 desc->raid_disk || (desc->state && (desc->state != 4))) {
1624 printk(" D %2d: ", i);
1625 print_desc(desc);
1626 }
1627 }
1628 printk(KERN_INFO "md: THIS: ");
1629 print_desc(&sb->this_disk);
1630
1631 }
1632
1633 static void print_rdev(mdk_rdev_t *rdev)
1634 {
1635 char b[BDEVNAME_SIZE];
1636 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1637 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1638 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1639 rdev->desc_nr);
1640 if (rdev->sb_loaded) {
1641 printk(KERN_INFO "md: rdev superblock:\n");
1642 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1643 } else
1644 printk(KERN_INFO "md: no rdev superblock!\n");
1645 }
1646
1647 static void md_print_devices(void)
1648 {
1649 struct list_head *tmp, *tmp2;
1650 mdk_rdev_t *rdev;
1651 mddev_t *mddev;
1652 char b[BDEVNAME_SIZE];
1653
1654 printk("\n");
1655 printk("md: **********************************\n");
1656 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1657 printk("md: **********************************\n");
1658 for_each_mddev(mddev, tmp) {
1659
1660 if (mddev->bitmap)
1661 bitmap_print_sb(mddev->bitmap);
1662 else
1663 printk("%s: ", mdname(mddev));
1664 rdev_for_each(rdev, tmp2, mddev)
1665 printk("<%s>", bdevname(rdev->bdev,b));
1666 printk("\n");
1667
1668 rdev_for_each(rdev, tmp2, mddev)
1669 print_rdev(rdev);
1670 }
1671 printk("md: **********************************\n");
1672 printk("\n");
1673 }
1674
1675
1676 static void sync_sbs(mddev_t * mddev, int nospares)
1677 {
1678 /* Update each superblock (in-memory image), but
1679 * if we are allowed to, skip spares which already
1680 * have the right event counter, or have one earlier
1681 * (which would mean they aren't being marked as dirty
1682 * with the rest of the array)
1683 */
1684 mdk_rdev_t *rdev;
1685 struct list_head *tmp;
1686
1687 rdev_for_each(rdev, tmp, mddev) {
1688 if (rdev->sb_events == mddev->events ||
1689 (nospares &&
1690 rdev->raid_disk < 0 &&
1691 (rdev->sb_events&1)==0 &&
1692 rdev->sb_events+1 == mddev->events)) {
1693 /* Don't update this superblock */
1694 rdev->sb_loaded = 2;
1695 } else {
1696 super_types[mddev->major_version].
1697 sync_super(mddev, rdev);
1698 rdev->sb_loaded = 1;
1699 }
1700 }
1701 }
1702
1703 static void md_update_sb(mddev_t * mddev, int force_change)
1704 {
1705 struct list_head *tmp;
1706 mdk_rdev_t *rdev;
1707 int sync_req;
1708 int nospares = 0;
1709
1710 if (mddev->external)
1711 return;
1712 repeat:
1713 spin_lock_irq(&mddev->write_lock);
1714
1715 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1716 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1717 force_change = 1;
1718 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1719 /* just a clean<-> dirty transition, possibly leave spares alone,
1720 * though if events isn't the right even/odd, we will have to do
1721 * spares after all
1722 */
1723 nospares = 1;
1724 if (force_change)
1725 nospares = 0;
1726 if (mddev->degraded)
1727 /* If the array is degraded, then skipping spares is both
1728 * dangerous and fairly pointless.
1729 * Dangerous because a device that was removed from the array
1730 * might have a event_count that still looks up-to-date,
1731 * so it can be re-added without a resync.
1732 * Pointless because if there are any spares to skip,
1733 * then a recovery will happen and soon that array won't
1734 * be degraded any more and the spare can go back to sleep then.
1735 */
1736 nospares = 0;
1737
1738 sync_req = mddev->in_sync;
1739 mddev->utime = get_seconds();
1740
1741 /* If this is just a dirty<->clean transition, and the array is clean
1742 * and 'events' is odd, we can roll back to the previous clean state */
1743 if (nospares
1744 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1745 && (mddev->events & 1)
1746 && mddev->events != 1)
1747 mddev->events--;
1748 else {
1749 /* otherwise we have to go forward and ... */
1750 mddev->events ++;
1751 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1752 /* .. if the array isn't clean, insist on an odd 'events' */
1753 if ((mddev->events&1)==0) {
1754 mddev->events++;
1755 nospares = 0;
1756 }
1757 } else {
1758 /* otherwise insist on an even 'events' (for clean states) */
1759 if ((mddev->events&1)) {
1760 mddev->events++;
1761 nospares = 0;
1762 }
1763 }
1764 }
1765
1766 if (!mddev->events) {
1767 /*
1768 * oops, this 64-bit counter should never wrap.
1769 * Either we are in around ~1 trillion A.C., assuming
1770 * 1 reboot per second, or we have a bug:
1771 */
1772 MD_BUG();
1773 mddev->events --;
1774 }
1775
1776 /*
1777 * do not write anything to disk if using
1778 * nonpersistent superblocks
1779 */
1780 if (!mddev->persistent) {
1781 if (!mddev->external)
1782 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1783
1784 spin_unlock_irq(&mddev->write_lock);
1785 wake_up(&mddev->sb_wait);
1786 return;
1787 }
1788 sync_sbs(mddev, nospares);
1789 spin_unlock_irq(&mddev->write_lock);
1790
1791 dprintk(KERN_INFO
1792 "md: updating %s RAID superblock on device (in sync %d)\n",
1793 mdname(mddev),mddev->in_sync);
1794
1795 bitmap_update_sb(mddev->bitmap);
1796 rdev_for_each(rdev, tmp, mddev) {
1797 char b[BDEVNAME_SIZE];
1798 dprintk(KERN_INFO "md: ");
1799 if (rdev->sb_loaded != 1)
1800 continue; /* no noise on spare devices */
1801 if (test_bit(Faulty, &rdev->flags))
1802 dprintk("(skipping faulty ");
1803
1804 dprintk("%s ", bdevname(rdev->bdev,b));
1805 if (!test_bit(Faulty, &rdev->flags)) {
1806 md_super_write(mddev,rdev,
1807 rdev->sb_start, rdev->sb_size,
1808 rdev->sb_page);
1809 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1810 bdevname(rdev->bdev,b),
1811 (unsigned long long)rdev->sb_start);
1812 rdev->sb_events = mddev->events;
1813
1814 } else
1815 dprintk(")\n");
1816 if (mddev->level == LEVEL_MULTIPATH)
1817 /* only need to write one superblock... */
1818 break;
1819 }
1820 md_super_wait(mddev);
1821 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1822
1823 spin_lock_irq(&mddev->write_lock);
1824 if (mddev->in_sync != sync_req ||
1825 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1826 /* have to write it out again */
1827 spin_unlock_irq(&mddev->write_lock);
1828 goto repeat;
1829 }
1830 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1831 spin_unlock_irq(&mddev->write_lock);
1832 wake_up(&mddev->sb_wait);
1833
1834 }
1835
1836 /* words written to sysfs files may, or may not, be \n terminated.
1837 * We want to accept with case. For this we use cmd_match.
1838 */
1839 static int cmd_match(const char *cmd, const char *str)
1840 {
1841 /* See if cmd, written into a sysfs file, matches
1842 * str. They must either be the same, or cmd can
1843 * have a trailing newline
1844 */
1845 while (*cmd && *str && *cmd == *str) {
1846 cmd++;
1847 str++;
1848 }
1849 if (*cmd == '\n')
1850 cmd++;
1851 if (*str || *cmd)
1852 return 0;
1853 return 1;
1854 }
1855
1856 struct rdev_sysfs_entry {
1857 struct attribute attr;
1858 ssize_t (*show)(mdk_rdev_t *, char *);
1859 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1860 };
1861
1862 static ssize_t
1863 state_show(mdk_rdev_t *rdev, char *page)
1864 {
1865 char *sep = "";
1866 size_t len = 0;
1867
1868 if (test_bit(Faulty, &rdev->flags)) {
1869 len+= sprintf(page+len, "%sfaulty",sep);
1870 sep = ",";
1871 }
1872 if (test_bit(In_sync, &rdev->flags)) {
1873 len += sprintf(page+len, "%sin_sync",sep);
1874 sep = ",";
1875 }
1876 if (test_bit(WriteMostly, &rdev->flags)) {
1877 len += sprintf(page+len, "%swrite_mostly",sep);
1878 sep = ",";
1879 }
1880 if (test_bit(Blocked, &rdev->flags)) {
1881 len += sprintf(page+len, "%sblocked", sep);
1882 sep = ",";
1883 }
1884 if (!test_bit(Faulty, &rdev->flags) &&
1885 !test_bit(In_sync, &rdev->flags)) {
1886 len += sprintf(page+len, "%sspare", sep);
1887 sep = ",";
1888 }
1889 return len+sprintf(page+len, "\n");
1890 }
1891
1892 static ssize_t
1893 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1894 {
1895 /* can write
1896 * faulty - simulates and error
1897 * remove - disconnects the device
1898 * writemostly - sets write_mostly
1899 * -writemostly - clears write_mostly
1900 * blocked - sets the Blocked flag
1901 * -blocked - clears the Blocked flag
1902 */
1903 int err = -EINVAL;
1904 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1905 md_error(rdev->mddev, rdev);
1906 err = 0;
1907 } else if (cmd_match(buf, "remove")) {
1908 if (rdev->raid_disk >= 0)
1909 err = -EBUSY;
1910 else {
1911 mddev_t *mddev = rdev->mddev;
1912 kick_rdev_from_array(rdev);
1913 if (mddev->pers)
1914 md_update_sb(mddev, 1);
1915 md_new_event(mddev);
1916 err = 0;
1917 }
1918 } else if (cmd_match(buf, "writemostly")) {
1919 set_bit(WriteMostly, &rdev->flags);
1920 err = 0;
1921 } else if (cmd_match(buf, "-writemostly")) {
1922 clear_bit(WriteMostly, &rdev->flags);
1923 err = 0;
1924 } else if (cmd_match(buf, "blocked")) {
1925 set_bit(Blocked, &rdev->flags);
1926 err = 0;
1927 } else if (cmd_match(buf, "-blocked")) {
1928 clear_bit(Blocked, &rdev->flags);
1929 wake_up(&rdev->blocked_wait);
1930 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1931 md_wakeup_thread(rdev->mddev->thread);
1932
1933 err = 0;
1934 }
1935 if (!err)
1936 sysfs_notify(&rdev->kobj, NULL, "state");
1937 return err ? err : len;
1938 }
1939 static struct rdev_sysfs_entry rdev_state =
1940 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1941
1942 static ssize_t
1943 errors_show(mdk_rdev_t *rdev, char *page)
1944 {
1945 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1946 }
1947
1948 static ssize_t
1949 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1950 {
1951 char *e;
1952 unsigned long n = simple_strtoul(buf, &e, 10);
1953 if (*buf && (*e == 0 || *e == '\n')) {
1954 atomic_set(&rdev->corrected_errors, n);
1955 return len;
1956 }
1957 return -EINVAL;
1958 }
1959 static struct rdev_sysfs_entry rdev_errors =
1960 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1961
1962 static ssize_t
1963 slot_show(mdk_rdev_t *rdev, char *page)
1964 {
1965 if (rdev->raid_disk < 0)
1966 return sprintf(page, "none\n");
1967 else
1968 return sprintf(page, "%d\n", rdev->raid_disk);
1969 }
1970
1971 static ssize_t
1972 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1973 {
1974 char *e;
1975 int err;
1976 char nm[20];
1977 int slot = simple_strtoul(buf, &e, 10);
1978 if (strncmp(buf, "none", 4)==0)
1979 slot = -1;
1980 else if (e==buf || (*e && *e!= '\n'))
1981 return -EINVAL;
1982 if (rdev->mddev->pers && slot == -1) {
1983 /* Setting 'slot' on an active array requires also
1984 * updating the 'rd%d' link, and communicating
1985 * with the personality with ->hot_*_disk.
1986 * For now we only support removing
1987 * failed/spare devices. This normally happens automatically,
1988 * but not when the metadata is externally managed.
1989 */
1990 if (rdev->raid_disk == -1)
1991 return -EEXIST;
1992 /* personality does all needed checks */
1993 if (rdev->mddev->pers->hot_add_disk == NULL)
1994 return -EINVAL;
1995 err = rdev->mddev->pers->
1996 hot_remove_disk(rdev->mddev, rdev->raid_disk);
1997 if (err)
1998 return err;
1999 sprintf(nm, "rd%d", rdev->raid_disk);
2000 sysfs_remove_link(&rdev->mddev->kobj, nm);
2001 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2002 md_wakeup_thread(rdev->mddev->thread);
2003 } else if (rdev->mddev->pers) {
2004 mdk_rdev_t *rdev2;
2005 struct list_head *tmp;
2006 /* Activating a spare .. or possibly reactivating
2007 * if we every get bitmaps working here.
2008 */
2009
2010 if (rdev->raid_disk != -1)
2011 return -EBUSY;
2012
2013 if (rdev->mddev->pers->hot_add_disk == NULL)
2014 return -EINVAL;
2015
2016 rdev_for_each(rdev2, tmp, rdev->mddev)
2017 if (rdev2->raid_disk == slot)
2018 return -EEXIST;
2019
2020 rdev->raid_disk = slot;
2021 if (test_bit(In_sync, &rdev->flags))
2022 rdev->saved_raid_disk = slot;
2023 else
2024 rdev->saved_raid_disk = -1;
2025 err = rdev->mddev->pers->
2026 hot_add_disk(rdev->mddev, rdev);
2027 if (err) {
2028 rdev->raid_disk = -1;
2029 return err;
2030 } else
2031 sysfs_notify(&rdev->kobj, NULL, "state");
2032 sprintf(nm, "rd%d", rdev->raid_disk);
2033 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2034 printk(KERN_WARNING
2035 "md: cannot register "
2036 "%s for %s\n",
2037 nm, mdname(rdev->mddev));
2038
2039 /* don't wakeup anyone, leave that to userspace. */
2040 } else {
2041 if (slot >= rdev->mddev->raid_disks)
2042 return -ENOSPC;
2043 rdev->raid_disk = slot;
2044 /* assume it is working */
2045 clear_bit(Faulty, &rdev->flags);
2046 clear_bit(WriteMostly, &rdev->flags);
2047 set_bit(In_sync, &rdev->flags);
2048 sysfs_notify(&rdev->kobj, NULL, "state");
2049 }
2050 return len;
2051 }
2052
2053
2054 static struct rdev_sysfs_entry rdev_slot =
2055 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2056
2057 static ssize_t
2058 offset_show(mdk_rdev_t *rdev, char *page)
2059 {
2060 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2061 }
2062
2063 static ssize_t
2064 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2065 {
2066 char *e;
2067 unsigned long long offset = simple_strtoull(buf, &e, 10);
2068 if (e==buf || (*e && *e != '\n'))
2069 return -EINVAL;
2070 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2071 return -EBUSY;
2072 if (rdev->size && rdev->mddev->external)
2073 /* Must set offset before size, so overlap checks
2074 * can be sane */
2075 return -EBUSY;
2076 rdev->data_offset = offset;
2077 return len;
2078 }
2079
2080 static struct rdev_sysfs_entry rdev_offset =
2081 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2082
2083 static ssize_t
2084 rdev_size_show(mdk_rdev_t *rdev, char *page)
2085 {
2086 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2087 }
2088
2089 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2090 {
2091 /* check if two start/length pairs overlap */
2092 if (s1+l1 <= s2)
2093 return 0;
2094 if (s2+l2 <= s1)
2095 return 0;
2096 return 1;
2097 }
2098
2099 static ssize_t
2100 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2101 {
2102 unsigned long long size;
2103 unsigned long long oldsize = rdev->size;
2104 mddev_t *my_mddev = rdev->mddev;
2105
2106 if (strict_strtoull(buf, 10, &size) < 0)
2107 return -EINVAL;
2108 if (size < my_mddev->size)
2109 return -EINVAL;
2110 if (my_mddev->pers && rdev->raid_disk >= 0) {
2111 if (my_mddev->persistent) {
2112 size = super_types[my_mddev->major_version].
2113 rdev_size_change(rdev, size * 2);
2114 if (!size)
2115 return -EBUSY;
2116 } else if (!size) {
2117 size = (rdev->bdev->bd_inode->i_size >> 10);
2118 size -= rdev->data_offset/2;
2119 }
2120 if (size < my_mddev->size)
2121 return -EINVAL; /* component must fit device */
2122 }
2123
2124 rdev->size = size;
2125 if (size > oldsize && my_mddev->external) {
2126 /* need to check that all other rdevs with the same ->bdev
2127 * do not overlap. We need to unlock the mddev to avoid
2128 * a deadlock. We have already changed rdev->size, and if
2129 * we have to change it back, we will have the lock again.
2130 */
2131 mddev_t *mddev;
2132 int overlap = 0;
2133 struct list_head *tmp, *tmp2;
2134
2135 mddev_unlock(my_mddev);
2136 for_each_mddev(mddev, tmp) {
2137 mdk_rdev_t *rdev2;
2138
2139 mddev_lock(mddev);
2140 rdev_for_each(rdev2, tmp2, mddev)
2141 if (test_bit(AllReserved, &rdev2->flags) ||
2142 (rdev->bdev == rdev2->bdev &&
2143 rdev != rdev2 &&
2144 overlaps(rdev->data_offset, rdev->size * 2,
2145 rdev2->data_offset,
2146 rdev2->size * 2))) {
2147 overlap = 1;
2148 break;
2149 }
2150 mddev_unlock(mddev);
2151 if (overlap) {
2152 mddev_put(mddev);
2153 break;
2154 }
2155 }
2156 mddev_lock(my_mddev);
2157 if (overlap) {
2158 /* Someone else could have slipped in a size
2159 * change here, but doing so is just silly.
2160 * We put oldsize back because we *know* it is
2161 * safe, and trust userspace not to race with
2162 * itself
2163 */
2164 rdev->size = oldsize;
2165 return -EBUSY;
2166 }
2167 }
2168 return len;
2169 }
2170
2171 static struct rdev_sysfs_entry rdev_size =
2172 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2173
2174 static struct attribute *rdev_default_attrs[] = {
2175 &rdev_state.attr,
2176 &rdev_errors.attr,
2177 &rdev_slot.attr,
2178 &rdev_offset.attr,
2179 &rdev_size.attr,
2180 NULL,
2181 };
2182 static ssize_t
2183 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2184 {
2185 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2186 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2187 mddev_t *mddev = rdev->mddev;
2188 ssize_t rv;
2189
2190 if (!entry->show)
2191 return -EIO;
2192
2193 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2194 if (!rv) {
2195 if (rdev->mddev == NULL)
2196 rv = -EBUSY;
2197 else
2198 rv = entry->show(rdev, page);
2199 mddev_unlock(mddev);
2200 }
2201 return rv;
2202 }
2203
2204 static ssize_t
2205 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2206 const char *page, size_t length)
2207 {
2208 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2209 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2210 ssize_t rv;
2211 mddev_t *mddev = rdev->mddev;
2212
2213 if (!entry->store)
2214 return -EIO;
2215 if (!capable(CAP_SYS_ADMIN))
2216 return -EACCES;
2217 rv = mddev ? mddev_lock(mddev): -EBUSY;
2218 if (!rv) {
2219 if (rdev->mddev == NULL)
2220 rv = -EBUSY;
2221 else
2222 rv = entry->store(rdev, page, length);
2223 mddev_unlock(mddev);
2224 }
2225 return rv;
2226 }
2227
2228 static void rdev_free(struct kobject *ko)
2229 {
2230 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2231 kfree(rdev);
2232 }
2233 static struct sysfs_ops rdev_sysfs_ops = {
2234 .show = rdev_attr_show,
2235 .store = rdev_attr_store,
2236 };
2237 static struct kobj_type rdev_ktype = {
2238 .release = rdev_free,
2239 .sysfs_ops = &rdev_sysfs_ops,
2240 .default_attrs = rdev_default_attrs,
2241 };
2242
2243 /*
2244 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2245 *
2246 * mark the device faulty if:
2247 *
2248 * - the device is nonexistent (zero size)
2249 * - the device has no valid superblock
2250 *
2251 * a faulty rdev _never_ has rdev->sb set.
2252 */
2253 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2254 {
2255 char b[BDEVNAME_SIZE];
2256 int err;
2257 mdk_rdev_t *rdev;
2258 sector_t size;
2259
2260 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2261 if (!rdev) {
2262 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2263 return ERR_PTR(-ENOMEM);
2264 }
2265
2266 if ((err = alloc_disk_sb(rdev)))
2267 goto abort_free;
2268
2269 err = lock_rdev(rdev, newdev, super_format == -2);
2270 if (err)
2271 goto abort_free;
2272
2273 kobject_init(&rdev->kobj, &rdev_ktype);
2274
2275 rdev->desc_nr = -1;
2276 rdev->saved_raid_disk = -1;
2277 rdev->raid_disk = -1;
2278 rdev->flags = 0;
2279 rdev->data_offset = 0;
2280 rdev->sb_events = 0;
2281 atomic_set(&rdev->nr_pending, 0);
2282 atomic_set(&rdev->read_errors, 0);
2283 atomic_set(&rdev->corrected_errors, 0);
2284
2285 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2286 if (!size) {
2287 printk(KERN_WARNING
2288 "md: %s has zero or unknown size, marking faulty!\n",
2289 bdevname(rdev->bdev,b));
2290 err = -EINVAL;
2291 goto abort_free;
2292 }
2293
2294 if (super_format >= 0) {
2295 err = super_types[super_format].
2296 load_super(rdev, NULL, super_minor);
2297 if (err == -EINVAL) {
2298 printk(KERN_WARNING
2299 "md: %s does not have a valid v%d.%d "
2300 "superblock, not importing!\n",
2301 bdevname(rdev->bdev,b),
2302 super_format, super_minor);
2303 goto abort_free;
2304 }
2305 if (err < 0) {
2306 printk(KERN_WARNING
2307 "md: could not read %s's sb, not importing!\n",
2308 bdevname(rdev->bdev,b));
2309 goto abort_free;
2310 }
2311 }
2312
2313 INIT_LIST_HEAD(&rdev->same_set);
2314 init_waitqueue_head(&rdev->blocked_wait);
2315
2316 return rdev;
2317
2318 abort_free:
2319 if (rdev->sb_page) {
2320 if (rdev->bdev)
2321 unlock_rdev(rdev);
2322 free_disk_sb(rdev);
2323 }
2324 kfree(rdev);
2325 return ERR_PTR(err);
2326 }
2327
2328 /*
2329 * Check a full RAID array for plausibility
2330 */
2331
2332
2333 static void analyze_sbs(mddev_t * mddev)
2334 {
2335 int i;
2336 struct list_head *tmp;
2337 mdk_rdev_t *rdev, *freshest;
2338 char b[BDEVNAME_SIZE];
2339
2340 freshest = NULL;
2341 rdev_for_each(rdev, tmp, mddev)
2342 switch (super_types[mddev->major_version].
2343 load_super(rdev, freshest, mddev->minor_version)) {
2344 case 1:
2345 freshest = rdev;
2346 break;
2347 case 0:
2348 break;
2349 default:
2350 printk( KERN_ERR \
2351 "md: fatal superblock inconsistency in %s"
2352 " -- removing from array\n",
2353 bdevname(rdev->bdev,b));
2354 kick_rdev_from_array(rdev);
2355 }
2356
2357
2358 super_types[mddev->major_version].
2359 validate_super(mddev, freshest);
2360
2361 i = 0;
2362 rdev_for_each(rdev, tmp, mddev) {
2363 if (rdev != freshest)
2364 if (super_types[mddev->major_version].
2365 validate_super(mddev, rdev)) {
2366 printk(KERN_WARNING "md: kicking non-fresh %s"
2367 " from array!\n",
2368 bdevname(rdev->bdev,b));
2369 kick_rdev_from_array(rdev);
2370 continue;
2371 }
2372 if (mddev->level == LEVEL_MULTIPATH) {
2373 rdev->desc_nr = i++;
2374 rdev->raid_disk = rdev->desc_nr;
2375 set_bit(In_sync, &rdev->flags);
2376 } else if (rdev->raid_disk >= mddev->raid_disks) {
2377 rdev->raid_disk = -1;
2378 clear_bit(In_sync, &rdev->flags);
2379 }
2380 }
2381
2382
2383
2384 if (mddev->recovery_cp != MaxSector &&
2385 mddev->level >= 1)
2386 printk(KERN_ERR "md: %s: raid array is not clean"
2387 " -- starting background reconstruction\n",
2388 mdname(mddev));
2389
2390 }
2391
2392 static ssize_t
2393 safe_delay_show(mddev_t *mddev, char *page)
2394 {
2395 int msec = (mddev->safemode_delay*1000)/HZ;
2396 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2397 }
2398 static ssize_t
2399 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2400 {
2401 int scale=1;
2402 int dot=0;
2403 int i;
2404 unsigned long msec;
2405 char buf[30];
2406 char *e;
2407 /* remove a period, and count digits after it */
2408 if (len >= sizeof(buf))
2409 return -EINVAL;
2410 strlcpy(buf, cbuf, len);
2411 buf[len] = 0;
2412 for (i=0; i<len; i++) {
2413 if (dot) {
2414 if (isdigit(buf[i])) {
2415 buf[i-1] = buf[i];
2416 scale *= 10;
2417 }
2418 buf[i] = 0;
2419 } else if (buf[i] == '.') {
2420 dot=1;
2421 buf[i] = 0;
2422 }
2423 }
2424 msec = simple_strtoul(buf, &e, 10);
2425 if (e == buf || (*e && *e != '\n'))
2426 return -EINVAL;
2427 msec = (msec * 1000) / scale;
2428 if (msec == 0)
2429 mddev->safemode_delay = 0;
2430 else {
2431 mddev->safemode_delay = (msec*HZ)/1000;
2432 if (mddev->safemode_delay == 0)
2433 mddev->safemode_delay = 1;
2434 }
2435 return len;
2436 }
2437 static struct md_sysfs_entry md_safe_delay =
2438 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2439
2440 static ssize_t
2441 level_show(mddev_t *mddev, char *page)
2442 {
2443 struct mdk_personality *p = mddev->pers;
2444 if (p)
2445 return sprintf(page, "%s\n", p->name);
2446 else if (mddev->clevel[0])
2447 return sprintf(page, "%s\n", mddev->clevel);
2448 else if (mddev->level != LEVEL_NONE)
2449 return sprintf(page, "%d\n", mddev->level);
2450 else
2451 return 0;
2452 }
2453
2454 static ssize_t
2455 level_store(mddev_t *mddev, const char *buf, size_t len)
2456 {
2457 ssize_t rv = len;
2458 if (mddev->pers)
2459 return -EBUSY;
2460 if (len == 0)
2461 return 0;
2462 if (len >= sizeof(mddev->clevel))
2463 return -ENOSPC;
2464 strncpy(mddev->clevel, buf, len);
2465 if (mddev->clevel[len-1] == '\n')
2466 len--;
2467 mddev->clevel[len] = 0;
2468 mddev->level = LEVEL_NONE;
2469 return rv;
2470 }
2471
2472 static struct md_sysfs_entry md_level =
2473 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2474
2475
2476 static ssize_t
2477 layout_show(mddev_t *mddev, char *page)
2478 {
2479 /* just a number, not meaningful for all levels */
2480 if (mddev->reshape_position != MaxSector &&
2481 mddev->layout != mddev->new_layout)
2482 return sprintf(page, "%d (%d)\n",
2483 mddev->new_layout, mddev->layout);
2484 return sprintf(page, "%d\n", mddev->layout);
2485 }
2486
2487 static ssize_t
2488 layout_store(mddev_t *mddev, const char *buf, size_t len)
2489 {
2490 char *e;
2491 unsigned long n = simple_strtoul(buf, &e, 10);
2492
2493 if (!*buf || (*e && *e != '\n'))
2494 return -EINVAL;
2495
2496 if (mddev->pers)
2497 return -EBUSY;
2498 if (mddev->reshape_position != MaxSector)
2499 mddev->new_layout = n;
2500 else
2501 mddev->layout = n;
2502 return len;
2503 }
2504 static struct md_sysfs_entry md_layout =
2505 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2506
2507
2508 static ssize_t
2509 raid_disks_show(mddev_t *mddev, char *page)
2510 {
2511 if (mddev->raid_disks == 0)
2512 return 0;
2513 if (mddev->reshape_position != MaxSector &&
2514 mddev->delta_disks != 0)
2515 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2516 mddev->raid_disks - mddev->delta_disks);
2517 return sprintf(page, "%d\n", mddev->raid_disks);
2518 }
2519
2520 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2521
2522 static ssize_t
2523 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2524 {
2525 char *e;
2526 int rv = 0;
2527 unsigned long n = simple_strtoul(buf, &e, 10);
2528
2529 if (!*buf || (*e && *e != '\n'))
2530 return -EINVAL;
2531
2532 if (mddev->pers)
2533 rv = update_raid_disks(mddev, n);
2534 else if (mddev->reshape_position != MaxSector) {
2535 int olddisks = mddev->raid_disks - mddev->delta_disks;
2536 mddev->delta_disks = n - olddisks;
2537 mddev->raid_disks = n;
2538 } else
2539 mddev->raid_disks = n;
2540 return rv ? rv : len;
2541 }
2542 static struct md_sysfs_entry md_raid_disks =
2543 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2544
2545 static ssize_t
2546 chunk_size_show(mddev_t *mddev, char *page)
2547 {
2548 if (mddev->reshape_position != MaxSector &&
2549 mddev->chunk_size != mddev->new_chunk)
2550 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2551 mddev->chunk_size);
2552 return sprintf(page, "%d\n", mddev->chunk_size);
2553 }
2554
2555 static ssize_t
2556 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2557 {
2558 /* can only set chunk_size if array is not yet active */
2559 char *e;
2560 unsigned long n = simple_strtoul(buf, &e, 10);
2561
2562 if (!*buf || (*e && *e != '\n'))
2563 return -EINVAL;
2564
2565 if (mddev->pers)
2566 return -EBUSY;
2567 else if (mddev->reshape_position != MaxSector)
2568 mddev->new_chunk = n;
2569 else
2570 mddev->chunk_size = n;
2571 return len;
2572 }
2573 static struct md_sysfs_entry md_chunk_size =
2574 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2575
2576 static ssize_t
2577 resync_start_show(mddev_t *mddev, char *page)
2578 {
2579 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2580 }
2581
2582 static ssize_t
2583 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2584 {
2585 char *e;
2586 unsigned long long n = simple_strtoull(buf, &e, 10);
2587
2588 if (mddev->pers)
2589 return -EBUSY;
2590 if (!*buf || (*e && *e != '\n'))
2591 return -EINVAL;
2592
2593 mddev->recovery_cp = n;
2594 return len;
2595 }
2596 static struct md_sysfs_entry md_resync_start =
2597 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2598
2599 /*
2600 * The array state can be:
2601 *
2602 * clear
2603 * No devices, no size, no level
2604 * Equivalent to STOP_ARRAY ioctl
2605 * inactive
2606 * May have some settings, but array is not active
2607 * all IO results in error
2608 * When written, doesn't tear down array, but just stops it
2609 * suspended (not supported yet)
2610 * All IO requests will block. The array can be reconfigured.
2611 * Writing this, if accepted, will block until array is quiescent
2612 * readonly
2613 * no resync can happen. no superblocks get written.
2614 * write requests fail
2615 * read-auto
2616 * like readonly, but behaves like 'clean' on a write request.
2617 *
2618 * clean - no pending writes, but otherwise active.
2619 * When written to inactive array, starts without resync
2620 * If a write request arrives then
2621 * if metadata is known, mark 'dirty' and switch to 'active'.
2622 * if not known, block and switch to write-pending
2623 * If written to an active array that has pending writes, then fails.
2624 * active
2625 * fully active: IO and resync can be happening.
2626 * When written to inactive array, starts with resync
2627 *
2628 * write-pending
2629 * clean, but writes are blocked waiting for 'active' to be written.
2630 *
2631 * active-idle
2632 * like active, but no writes have been seen for a while (100msec).
2633 *
2634 */
2635 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2636 write_pending, active_idle, bad_word};
2637 static char *array_states[] = {
2638 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2639 "write-pending", "active-idle", NULL };
2640
2641 static int match_word(const char *word, char **list)
2642 {
2643 int n;
2644 for (n=0; list[n]; n++)
2645 if (cmd_match(word, list[n]))
2646 break;
2647 return n;
2648 }
2649
2650 static ssize_t
2651 array_state_show(mddev_t *mddev, char *page)
2652 {
2653 enum array_state st = inactive;
2654
2655 if (mddev->pers)
2656 switch(mddev->ro) {
2657 case 1:
2658 st = readonly;
2659 break;
2660 case 2:
2661 st = read_auto;
2662 break;
2663 case 0:
2664 if (mddev->in_sync)
2665 st = clean;
2666 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2667 st = write_pending;
2668 else if (mddev->safemode)
2669 st = active_idle;
2670 else
2671 st = active;
2672 }
2673 else {
2674 if (list_empty(&mddev->disks) &&
2675 mddev->raid_disks == 0 &&
2676 mddev->size == 0)
2677 st = clear;
2678 else
2679 st = inactive;
2680 }
2681 return sprintf(page, "%s\n", array_states[st]);
2682 }
2683
2684 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2685 static int do_md_run(mddev_t * mddev);
2686 static int restart_array(mddev_t *mddev);
2687
2688 static ssize_t
2689 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2690 {
2691 int err = -EINVAL;
2692 enum array_state st = match_word(buf, array_states);
2693 switch(st) {
2694 case bad_word:
2695 break;
2696 case clear:
2697 /* stopping an active array */
2698 if (atomic_read(&mddev->active) > 1)
2699 return -EBUSY;
2700 err = do_md_stop(mddev, 0, 0);
2701 break;
2702 case inactive:
2703 /* stopping an active array */
2704 if (mddev->pers) {
2705 if (atomic_read(&mddev->active) > 1)
2706 return -EBUSY;
2707 err = do_md_stop(mddev, 2, 0);
2708 } else
2709 err = 0; /* already inactive */
2710 break;
2711 case suspended:
2712 break; /* not supported yet */
2713 case readonly:
2714 if (mddev->pers)
2715 err = do_md_stop(mddev, 1, 0);
2716 else {
2717 mddev->ro = 1;
2718 set_disk_ro(mddev->gendisk, 1);
2719 err = do_md_run(mddev);
2720 }
2721 break;
2722 case read_auto:
2723 if (mddev->pers) {
2724 if (mddev->ro != 1)
2725 err = do_md_stop(mddev, 1, 0);
2726 else
2727 err = restart_array(mddev);
2728 if (err == 0) {
2729 mddev->ro = 2;
2730 set_disk_ro(mddev->gendisk, 0);
2731 }
2732 } else {
2733 mddev->ro = 2;
2734 err = do_md_run(mddev);
2735 }
2736 break;
2737 case clean:
2738 if (mddev->pers) {
2739 restart_array(mddev);
2740 spin_lock_irq(&mddev->write_lock);
2741 if (atomic_read(&mddev->writes_pending) == 0) {
2742 if (mddev->in_sync == 0) {
2743 mddev->in_sync = 1;
2744 if (mddev->safemode == 1)
2745 mddev->safemode = 0;
2746 if (mddev->persistent)
2747 set_bit(MD_CHANGE_CLEAN,
2748 &mddev->flags);
2749 }
2750 err = 0;
2751 } else
2752 err = -EBUSY;
2753 spin_unlock_irq(&mddev->write_lock);
2754 } else {
2755 mddev->ro = 0;
2756 mddev->recovery_cp = MaxSector;
2757 err = do_md_run(mddev);
2758 }
2759 break;
2760 case active:
2761 if (mddev->pers) {
2762 restart_array(mddev);
2763 if (mddev->external)
2764 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2765 wake_up(&mddev->sb_wait);
2766 err = 0;
2767 } else {
2768 mddev->ro = 0;
2769 set_disk_ro(mddev->gendisk, 0);
2770 err = do_md_run(mddev);
2771 }
2772 break;
2773 case write_pending:
2774 case active_idle:
2775 /* these cannot be set */
2776 break;
2777 }
2778 if (err)
2779 return err;
2780 else {
2781 sysfs_notify(&mddev->kobj, NULL, "array_state");
2782 return len;
2783 }
2784 }
2785 static struct md_sysfs_entry md_array_state =
2786 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2787
2788 static ssize_t
2789 null_show(mddev_t *mddev, char *page)
2790 {
2791 return -EINVAL;
2792 }
2793
2794 static ssize_t
2795 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2796 {
2797 /* buf must be %d:%d\n? giving major and minor numbers */
2798 /* The new device is added to the array.
2799 * If the array has a persistent superblock, we read the
2800 * superblock to initialise info and check validity.
2801 * Otherwise, only checking done is that in bind_rdev_to_array,
2802 * which mainly checks size.
2803 */
2804 char *e;
2805 int major = simple_strtoul(buf, &e, 10);
2806 int minor;
2807 dev_t dev;
2808 mdk_rdev_t *rdev;
2809 int err;
2810
2811 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2812 return -EINVAL;
2813 minor = simple_strtoul(e+1, &e, 10);
2814 if (*e && *e != '\n')
2815 return -EINVAL;
2816 dev = MKDEV(major, minor);
2817 if (major != MAJOR(dev) ||
2818 minor != MINOR(dev))
2819 return -EOVERFLOW;
2820
2821
2822 if (mddev->persistent) {
2823 rdev = md_import_device(dev, mddev->major_version,
2824 mddev->minor_version);
2825 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2826 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2827 mdk_rdev_t, same_set);
2828 err = super_types[mddev->major_version]
2829 .load_super(rdev, rdev0, mddev->minor_version);
2830 if (err < 0)
2831 goto out;
2832 }
2833 } else if (mddev->external)
2834 rdev = md_import_device(dev, -2, -1);
2835 else
2836 rdev = md_import_device(dev, -1, -1);
2837
2838 if (IS_ERR(rdev))
2839 return PTR_ERR(rdev);
2840 err = bind_rdev_to_array(rdev, mddev);
2841 out:
2842 if (err)
2843 export_rdev(rdev);
2844 return err ? err : len;
2845 }
2846
2847 static struct md_sysfs_entry md_new_device =
2848 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2849
2850 static ssize_t
2851 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2852 {
2853 char *end;
2854 unsigned long chunk, end_chunk;
2855
2856 if (!mddev->bitmap)
2857 goto out;
2858 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2859 while (*buf) {
2860 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2861 if (buf == end) break;
2862 if (*end == '-') { /* range */
2863 buf = end + 1;
2864 end_chunk = simple_strtoul(buf, &end, 0);
2865 if (buf == end) break;
2866 }
2867 if (*end && !isspace(*end)) break;
2868 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2869 buf = end;
2870 while (isspace(*buf)) buf++;
2871 }
2872 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2873 out:
2874 return len;
2875 }
2876
2877 static struct md_sysfs_entry md_bitmap =
2878 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2879
2880 static ssize_t
2881 size_show(mddev_t *mddev, char *page)
2882 {
2883 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2884 }
2885
2886 static int update_size(mddev_t *mddev, sector_t num_sectors);
2887
2888 static ssize_t
2889 size_store(mddev_t *mddev, const char *buf, size_t len)
2890 {
2891 /* If array is inactive, we can reduce the component size, but
2892 * not increase it (except from 0).
2893 * If array is active, we can try an on-line resize
2894 */
2895 char *e;
2896 int err = 0;
2897 unsigned long long size = simple_strtoull(buf, &e, 10);
2898 if (!*buf || *buf == '\n' ||
2899 (*e && *e != '\n'))
2900 return -EINVAL;
2901
2902 if (mddev->pers) {
2903 err = update_size(mddev, size * 2);
2904 md_update_sb(mddev, 1);
2905 } else {
2906 if (mddev->size == 0 ||
2907 mddev->size > size)
2908 mddev->size = size;
2909 else
2910 err = -ENOSPC;
2911 }
2912 return err ? err : len;
2913 }
2914
2915 static struct md_sysfs_entry md_size =
2916 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2917
2918
2919 /* Metdata version.
2920 * This is one of
2921 * 'none' for arrays with no metadata (good luck...)
2922 * 'external' for arrays with externally managed metadata,
2923 * or N.M for internally known formats
2924 */
2925 static ssize_t
2926 metadata_show(mddev_t *mddev, char *page)
2927 {
2928 if (mddev->persistent)
2929 return sprintf(page, "%d.%d\n",
2930 mddev->major_version, mddev->minor_version);
2931 else if (mddev->external)
2932 return sprintf(page, "external:%s\n", mddev->metadata_type);
2933 else
2934 return sprintf(page, "none\n");
2935 }
2936
2937 static ssize_t
2938 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2939 {
2940 int major, minor;
2941 char *e;
2942 if (!list_empty(&mddev->disks))
2943 return -EBUSY;
2944
2945 if (cmd_match(buf, "none")) {
2946 mddev->persistent = 0;
2947 mddev->external = 0;
2948 mddev->major_version = 0;
2949 mddev->minor_version = 90;
2950 return len;
2951 }
2952 if (strncmp(buf, "external:", 9) == 0) {
2953 size_t namelen = len-9;
2954 if (namelen >= sizeof(mddev->metadata_type))
2955 namelen = sizeof(mddev->metadata_type)-1;
2956 strncpy(mddev->metadata_type, buf+9, namelen);
2957 mddev->metadata_type[namelen] = 0;
2958 if (namelen && mddev->metadata_type[namelen-1] == '\n')
2959 mddev->metadata_type[--namelen] = 0;
2960 mddev->persistent = 0;
2961 mddev->external = 1;
2962 mddev->major_version = 0;
2963 mddev->minor_version = 90;
2964 return len;
2965 }
2966 major = simple_strtoul(buf, &e, 10);
2967 if (e==buf || *e != '.')
2968 return -EINVAL;
2969 buf = e+1;
2970 minor = simple_strtoul(buf, &e, 10);
2971 if (e==buf || (*e && *e != '\n') )
2972 return -EINVAL;
2973 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2974 return -ENOENT;
2975 mddev->major_version = major;
2976 mddev->minor_version = minor;
2977 mddev->persistent = 1;
2978 mddev->external = 0;
2979 return len;
2980 }
2981
2982 static struct md_sysfs_entry md_metadata =
2983 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2984
2985 static ssize_t
2986 action_show(mddev_t *mddev, char *page)
2987 {
2988 char *type = "idle";
2989 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2990 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2991 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2992 type = "reshape";
2993 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2994 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2995 type = "resync";
2996 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2997 type = "check";
2998 else
2999 type = "repair";
3000 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3001 type = "recover";
3002 }
3003 return sprintf(page, "%s\n", type);
3004 }
3005
3006 static ssize_t
3007 action_store(mddev_t *mddev, const char *page, size_t len)
3008 {
3009 if (!mddev->pers || !mddev->pers->sync_request)
3010 return -EINVAL;
3011
3012 if (cmd_match(page, "idle")) {
3013 if (mddev->sync_thread) {
3014 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3015 md_unregister_thread(mddev->sync_thread);
3016 mddev->sync_thread = NULL;
3017 mddev->recovery = 0;
3018 }
3019 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3020 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3021 return -EBUSY;
3022 else if (cmd_match(page, "resync"))
3023 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3024 else if (cmd_match(page, "recover")) {
3025 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3026 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3027 } else if (cmd_match(page, "reshape")) {
3028 int err;
3029 if (mddev->pers->start_reshape == NULL)
3030 return -EINVAL;
3031 err = mddev->pers->start_reshape(mddev);
3032 if (err)
3033 return err;
3034 sysfs_notify(&mddev->kobj, NULL, "degraded");
3035 } else {
3036 if (cmd_match(page, "check"))
3037 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3038 else if (!cmd_match(page, "repair"))
3039 return -EINVAL;
3040 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3041 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3042 }
3043 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3044 md_wakeup_thread(mddev->thread);
3045 sysfs_notify(&mddev->kobj, NULL, "sync_action");
3046 return len;
3047 }
3048
3049 static ssize_t
3050 mismatch_cnt_show(mddev_t *mddev, char *page)
3051 {
3052 return sprintf(page, "%llu\n",
3053 (unsigned long long) mddev->resync_mismatches);
3054 }
3055
3056 static struct md_sysfs_entry md_scan_mode =
3057 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3058
3059
3060 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3061
3062 static ssize_t
3063 sync_min_show(mddev_t *mddev, char *page)
3064 {
3065 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3066 mddev->sync_speed_min ? "local": "system");
3067 }
3068
3069 static ssize_t
3070 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3071 {
3072 int min;
3073 char *e;
3074 if (strncmp(buf, "system", 6)==0) {
3075 mddev->sync_speed_min = 0;
3076 return len;
3077 }
3078 min = simple_strtoul(buf, &e, 10);
3079 if (buf == e || (*e && *e != '\n') || min <= 0)
3080 return -EINVAL;
3081 mddev->sync_speed_min = min;
3082 return len;
3083 }
3084
3085 static struct md_sysfs_entry md_sync_min =
3086 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3087
3088 static ssize_t
3089 sync_max_show(mddev_t *mddev, char *page)
3090 {
3091 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3092 mddev->sync_speed_max ? "local": "system");
3093 }
3094
3095 static ssize_t
3096 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3097 {
3098 int max;
3099 char *e;
3100 if (strncmp(buf, "system", 6)==0) {
3101 mddev->sync_speed_max = 0;
3102 return len;
3103 }
3104 max = simple_strtoul(buf, &e, 10);
3105 if (buf == e || (*e && *e != '\n') || max <= 0)
3106 return -EINVAL;
3107 mddev->sync_speed_max = max;
3108 return len;
3109 }
3110
3111 static struct md_sysfs_entry md_sync_max =
3112 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3113
3114 static ssize_t
3115 degraded_show(mddev_t *mddev, char *page)
3116 {
3117 return sprintf(page, "%d\n", mddev->degraded);
3118 }
3119 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3120
3121 static ssize_t
3122 sync_force_parallel_show(mddev_t *mddev, char *page)
3123 {
3124 return sprintf(page, "%d\n", mddev->parallel_resync);
3125 }
3126
3127 static ssize_t
3128 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3129 {
3130 long n;
3131
3132 if (strict_strtol(buf, 10, &n))
3133 return -EINVAL;
3134
3135 if (n != 0 && n != 1)
3136 return -EINVAL;
3137
3138 mddev->parallel_resync = n;
3139
3140 if (mddev->sync_thread)
3141 wake_up(&resync_wait);
3142
3143 return len;
3144 }
3145
3146 /* force parallel resync, even with shared block devices */
3147 static struct md_sysfs_entry md_sync_force_parallel =
3148 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3149 sync_force_parallel_show, sync_force_parallel_store);
3150
3151 static ssize_t
3152 sync_speed_show(mddev_t *mddev, char *page)
3153 {
3154 unsigned long resync, dt, db;
3155 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3156 dt = (jiffies - mddev->resync_mark) / HZ;
3157 if (!dt) dt++;
3158 db = resync - mddev->resync_mark_cnt;
3159 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3160 }
3161
3162 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3163
3164 static ssize_t
3165 sync_completed_show(mddev_t *mddev, char *page)
3166 {
3167 unsigned long max_blocks, resync;
3168
3169 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3170 max_blocks = mddev->resync_max_sectors;
3171 else
3172 max_blocks = mddev->size << 1;
3173
3174 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3175 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3176 }
3177
3178 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3179
3180 static ssize_t
3181 min_sync_show(mddev_t *mddev, char *page)
3182 {
3183 return sprintf(page, "%llu\n",
3184 (unsigned long long)mddev->resync_min);
3185 }
3186 static ssize_t
3187 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3188 {
3189 unsigned long long min;
3190 if (strict_strtoull(buf, 10, &min))
3191 return -EINVAL;
3192 if (min > mddev->resync_max)
3193 return -EINVAL;
3194 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3195 return -EBUSY;
3196
3197 /* Must be a multiple of chunk_size */
3198 if (mddev->chunk_size) {
3199 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3200 return -EINVAL;
3201 }
3202 mddev->resync_min = min;
3203
3204 return len;
3205 }
3206
3207 static struct md_sysfs_entry md_min_sync =
3208 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3209
3210 static ssize_t
3211 max_sync_show(mddev_t *mddev, char *page)
3212 {
3213 if (mddev->resync_max == MaxSector)
3214 return sprintf(page, "max\n");
3215 else
3216 return sprintf(page, "%llu\n",
3217 (unsigned long long)mddev->resync_max);
3218 }
3219 static ssize_t
3220 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3221 {
3222 if (strncmp(buf, "max", 3) == 0)
3223 mddev->resync_max = MaxSector;
3224 else {
3225 unsigned long long max;
3226 if (strict_strtoull(buf, 10, &max))
3227 return -EINVAL;
3228 if (max < mddev->resync_min)
3229 return -EINVAL;
3230 if (max < mddev->resync_max &&
3231 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3232 return -EBUSY;
3233
3234 /* Must be a multiple of chunk_size */
3235 if (mddev->chunk_size) {
3236 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3237 return -EINVAL;
3238 }
3239 mddev->resync_max = max;
3240 }
3241 wake_up(&mddev->recovery_wait);
3242 return len;
3243 }
3244
3245 static struct md_sysfs_entry md_max_sync =
3246 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3247
3248 static ssize_t
3249 suspend_lo_show(mddev_t *mddev, char *page)
3250 {
3251 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3252 }
3253
3254 static ssize_t
3255 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3256 {
3257 char *e;
3258 unsigned long long new = simple_strtoull(buf, &e, 10);
3259
3260 if (mddev->pers->quiesce == NULL)
3261 return -EINVAL;
3262 if (buf == e || (*e && *e != '\n'))
3263 return -EINVAL;
3264 if (new >= mddev->suspend_hi ||
3265 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3266 mddev->suspend_lo = new;
3267 mddev->pers->quiesce(mddev, 2);
3268 return len;
3269 } else
3270 return -EINVAL;
3271 }
3272 static struct md_sysfs_entry md_suspend_lo =
3273 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3274
3275
3276 static ssize_t
3277 suspend_hi_show(mddev_t *mddev, char *page)
3278 {
3279 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3280 }
3281
3282 static ssize_t
3283 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3284 {
3285 char *e;
3286 unsigned long long new = simple_strtoull(buf, &e, 10);
3287
3288 if (mddev->pers->quiesce == NULL)
3289 return -EINVAL;
3290 if (buf == e || (*e && *e != '\n'))
3291 return -EINVAL;
3292 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3293 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3294 mddev->suspend_hi = new;
3295 mddev->pers->quiesce(mddev, 1);
3296 mddev->pers->quiesce(mddev, 0);
3297 return len;
3298 } else
3299 return -EINVAL;
3300 }
3301 static struct md_sysfs_entry md_suspend_hi =
3302 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3303
3304 static ssize_t
3305 reshape_position_show(mddev_t *mddev, char *page)
3306 {
3307 if (mddev->reshape_position != MaxSector)
3308 return sprintf(page, "%llu\n",
3309 (unsigned long long)mddev->reshape_position);
3310 strcpy(page, "none\n");
3311 return 5;
3312 }
3313
3314 static ssize_t
3315 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3316 {
3317 char *e;
3318 unsigned long long new = simple_strtoull(buf, &e, 10);
3319 if (mddev->pers)
3320 return -EBUSY;
3321 if (buf == e || (*e && *e != '\n'))
3322 return -EINVAL;
3323 mddev->reshape_position = new;
3324 mddev->delta_disks = 0;
3325 mddev->new_level = mddev->level;
3326 mddev->new_layout = mddev->layout;
3327 mddev->new_chunk = mddev->chunk_size;
3328 return len;
3329 }
3330
3331 static struct md_sysfs_entry md_reshape_position =
3332 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3333 reshape_position_store);
3334
3335
3336 static struct attribute *md_default_attrs[] = {
3337 &md_level.attr,
3338 &md_layout.attr,
3339 &md_raid_disks.attr,
3340 &md_chunk_size.attr,
3341 &md_size.attr,
3342 &md_resync_start.attr,
3343 &md_metadata.attr,
3344 &md_new_device.attr,
3345 &md_safe_delay.attr,
3346 &md_array_state.attr,
3347 &md_reshape_position.attr,
3348 NULL,
3349 };
3350
3351 static struct attribute *md_redundancy_attrs[] = {
3352 &md_scan_mode.attr,
3353 &md_mismatches.attr,
3354 &md_sync_min.attr,
3355 &md_sync_max.attr,
3356 &md_sync_speed.attr,
3357 &md_sync_force_parallel.attr,
3358 &md_sync_completed.attr,
3359 &md_min_sync.attr,
3360 &md_max_sync.attr,
3361 &md_suspend_lo.attr,
3362 &md_suspend_hi.attr,
3363 &md_bitmap.attr,
3364 &md_degraded.attr,
3365 NULL,
3366 };
3367 static struct attribute_group md_redundancy_group = {
3368 .name = NULL,
3369 .attrs = md_redundancy_attrs,
3370 };
3371
3372
3373 static ssize_t
3374 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3375 {
3376 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3377 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3378 ssize_t rv;
3379
3380 if (!entry->show)
3381 return -EIO;
3382 rv = mddev_lock(mddev);
3383 if (!rv) {
3384 rv = entry->show(mddev, page);
3385 mddev_unlock(mddev);
3386 }
3387 return rv;
3388 }
3389
3390 static ssize_t
3391 md_attr_store(struct kobject *kobj, struct attribute *attr,
3392 const char *page, size_t length)
3393 {
3394 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3395 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3396 ssize_t rv;
3397
3398 if (!entry->store)
3399 return -EIO;
3400 if (!capable(CAP_SYS_ADMIN))
3401 return -EACCES;
3402 rv = mddev_lock(mddev);
3403 if (!rv) {
3404 rv = entry->store(mddev, page, length);
3405 mddev_unlock(mddev);
3406 }
3407 return rv;
3408 }
3409
3410 static void md_free(struct kobject *ko)
3411 {
3412 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3413 kfree(mddev);
3414 }
3415
3416 static struct sysfs_ops md_sysfs_ops = {
3417 .show = md_attr_show,
3418 .store = md_attr_store,
3419 };
3420 static struct kobj_type md_ktype = {
3421 .release = md_free,
3422 .sysfs_ops = &md_sysfs_ops,
3423 .default_attrs = md_default_attrs,
3424 };
3425
3426 int mdp_major = 0;
3427
3428 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3429 {
3430 static DEFINE_MUTEX(disks_mutex);
3431 mddev_t *mddev = mddev_find(dev);
3432 struct gendisk *disk;
3433 int partitioned = (MAJOR(dev) != MD_MAJOR);
3434 int shift = partitioned ? MdpMinorShift : 0;
3435 int unit = MINOR(dev) >> shift;
3436 int error;
3437
3438 if (!mddev)
3439 return NULL;
3440
3441 mutex_lock(&disks_mutex);
3442 if (mddev->gendisk) {
3443 mutex_unlock(&disks_mutex);
3444 mddev_put(mddev);
3445 return NULL;
3446 }
3447 disk = alloc_disk(1 << shift);
3448 if (!disk) {
3449 mutex_unlock(&disks_mutex);
3450 mddev_put(mddev);
3451 return NULL;
3452 }
3453 disk->major = MAJOR(dev);
3454 disk->first_minor = unit << shift;
3455 if (partitioned)
3456 sprintf(disk->disk_name, "md_d%d", unit);
3457 else
3458 sprintf(disk->disk_name, "md%d", unit);
3459 disk->fops = &md_fops;
3460 disk->private_data = mddev;
3461 disk->queue = mddev->queue;
3462 add_disk(disk);
3463 mddev->gendisk = disk;
3464 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3465 "%s", "md");
3466 mutex_unlock(&disks_mutex);
3467 if (error)
3468 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3469 disk->disk_name);
3470 else
3471 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3472 return NULL;
3473 }
3474
3475 static void md_safemode_timeout(unsigned long data)
3476 {
3477 mddev_t *mddev = (mddev_t *) data;
3478
3479 if (!atomic_read(&mddev->writes_pending)) {
3480 mddev->safemode = 1;
3481 if (mddev->external)
3482 sysfs_notify(&mddev->kobj, NULL, "array_state");
3483 }
3484 md_wakeup_thread(mddev->thread);
3485 }
3486
3487 static int start_dirty_degraded;
3488
3489 static int do_md_run(mddev_t * mddev)
3490 {
3491 int err;
3492 int chunk_size;
3493 struct list_head *tmp;
3494 mdk_rdev_t *rdev;
3495 struct gendisk *disk;
3496 struct mdk_personality *pers;
3497 char b[BDEVNAME_SIZE];
3498
3499 if (list_empty(&mddev->disks))
3500 /* cannot run an array with no devices.. */
3501 return -EINVAL;
3502
3503 if (mddev->pers)
3504 return -EBUSY;
3505
3506 /*
3507 * Analyze all RAID superblock(s)
3508 */
3509 if (!mddev->raid_disks) {
3510 if (!mddev->persistent)
3511 return -EINVAL;
3512 analyze_sbs(mddev);
3513 }
3514
3515 chunk_size = mddev->chunk_size;
3516
3517 if (chunk_size) {
3518 if (chunk_size > MAX_CHUNK_SIZE) {
3519 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3520 chunk_size, MAX_CHUNK_SIZE);
3521 return -EINVAL;
3522 }
3523 /*
3524 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3525 */
3526 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3527 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3528 return -EINVAL;
3529 }
3530 if (chunk_size < PAGE_SIZE) {
3531 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3532 chunk_size, PAGE_SIZE);
3533 return -EINVAL;
3534 }
3535
3536 /* devices must have minimum size of one chunk */
3537 rdev_for_each(rdev, tmp, mddev) {
3538 if (test_bit(Faulty, &rdev->flags))
3539 continue;
3540 if (rdev->size < chunk_size / 1024) {
3541 printk(KERN_WARNING
3542 "md: Dev %s smaller than chunk_size:"
3543 " %lluk < %dk\n",
3544 bdevname(rdev->bdev,b),
3545 (unsigned long long)rdev->size,
3546 chunk_size / 1024);
3547 return -EINVAL;
3548 }
3549 }
3550 }
3551
3552 #ifdef CONFIG_KMOD
3553 if (mddev->level != LEVEL_NONE)
3554 request_module("md-level-%d", mddev->level);
3555 else if (mddev->clevel[0])
3556 request_module("md-%s", mddev->clevel);
3557 #endif
3558
3559 /*
3560 * Drop all container device buffers, from now on
3561 * the only valid external interface is through the md
3562 * device.
3563 */
3564 rdev_for_each(rdev, tmp, mddev) {
3565 if (test_bit(Faulty, &rdev->flags))
3566 continue;
3567 sync_blockdev(rdev->bdev);
3568 invalidate_bdev(rdev->bdev);
3569
3570 /* perform some consistency tests on the device.
3571 * We don't want the data to overlap the metadata,
3572 * Internal Bitmap issues has handled elsewhere.
3573 */
3574 if (rdev->data_offset < rdev->sb_start) {
3575 if (mddev->size &&
3576 rdev->data_offset + mddev->size*2
3577 > rdev->sb_start) {
3578 printk("md: %s: data overlaps metadata\n",
3579 mdname(mddev));
3580 return -EINVAL;
3581 }
3582 } else {
3583 if (rdev->sb_start + rdev->sb_size/512
3584 > rdev->data_offset) {
3585 printk("md: %s: metadata overlaps data\n",
3586 mdname(mddev));
3587 return -EINVAL;
3588 }
3589 }
3590 sysfs_notify(&rdev->kobj, NULL, "state");
3591 }
3592
3593 md_probe(mddev->unit, NULL, NULL);
3594 disk = mddev->gendisk;
3595 if (!disk)
3596 return -ENOMEM;
3597
3598 spin_lock(&pers_lock);
3599 pers = find_pers(mddev->level, mddev->clevel);
3600 if (!pers || !try_module_get(pers->owner)) {
3601 spin_unlock(&pers_lock);
3602 if (mddev->level != LEVEL_NONE)
3603 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3604 mddev->level);
3605 else
3606 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3607 mddev->clevel);
3608 return -EINVAL;
3609 }
3610 mddev->pers = pers;
3611 spin_unlock(&pers_lock);
3612 mddev->level = pers->level;
3613 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3614
3615 if (mddev->reshape_position != MaxSector &&
3616 pers->start_reshape == NULL) {
3617 /* This personality cannot handle reshaping... */
3618 mddev->pers = NULL;
3619 module_put(pers->owner);
3620 return -EINVAL;
3621 }
3622
3623 if (pers->sync_request) {
3624 /* Warn if this is a potentially silly
3625 * configuration.
3626 */
3627 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3628 mdk_rdev_t *rdev2;
3629 struct list_head *tmp2;
3630 int warned = 0;
3631 rdev_for_each(rdev, tmp, mddev) {
3632 rdev_for_each(rdev2, tmp2, mddev) {
3633 if (rdev < rdev2 &&
3634 rdev->bdev->bd_contains ==
3635 rdev2->bdev->bd_contains) {
3636 printk(KERN_WARNING
3637 "%s: WARNING: %s appears to be"
3638 " on the same physical disk as"
3639 " %s.\n",
3640 mdname(mddev),
3641 bdevname(rdev->bdev,b),
3642 bdevname(rdev2->bdev,b2));
3643 warned = 1;
3644 }
3645 }
3646 }
3647 if (warned)
3648 printk(KERN_WARNING
3649 "True protection against single-disk"
3650 " failure might be compromised.\n");
3651 }
3652
3653 mddev->recovery = 0;
3654 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3655 mddev->barriers_work = 1;
3656 mddev->ok_start_degraded = start_dirty_degraded;
3657
3658 if (start_readonly)
3659 mddev->ro = 2; /* read-only, but switch on first write */
3660
3661 err = mddev->pers->run(mddev);
3662 if (err)
3663 printk(KERN_ERR "md: pers->run() failed ...\n");
3664 else if (mddev->pers->sync_request) {
3665 err = bitmap_create(mddev);
3666 if (err) {
3667 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3668 mdname(mddev), err);
3669 mddev->pers->stop(mddev);
3670 }
3671 }
3672 if (err) {
3673 module_put(mddev->pers->owner);
3674 mddev->pers = NULL;
3675 bitmap_destroy(mddev);
3676 return err;
3677 }
3678 if (mddev->pers->sync_request) {
3679 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3680 printk(KERN_WARNING
3681 "md: cannot register extra attributes for %s\n",
3682 mdname(mddev));
3683 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3684 mddev->ro = 0;
3685
3686 atomic_set(&mddev->writes_pending,0);
3687 mddev->safemode = 0;
3688 mddev->safemode_timer.function = md_safemode_timeout;
3689 mddev->safemode_timer.data = (unsigned long) mddev;
3690 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3691 mddev->in_sync = 1;
3692
3693 rdev_for_each(rdev, tmp, mddev)
3694 if (rdev->raid_disk >= 0) {
3695 char nm[20];
3696 sprintf(nm, "rd%d", rdev->raid_disk);
3697 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3698 printk("md: cannot register %s for %s\n",
3699 nm, mdname(mddev));
3700 }
3701
3702 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3703
3704 if (mddev->flags)
3705 md_update_sb(mddev, 0);
3706
3707 set_capacity(disk, mddev->array_sectors);
3708
3709 /* If we call blk_queue_make_request here, it will
3710 * re-initialise max_sectors etc which may have been
3711 * refined inside -> run. So just set the bits we need to set.
3712 * Most initialisation happended when we called
3713 * blk_queue_make_request(..., md_fail_request)
3714 * earlier.
3715 */
3716 mddev->queue->queuedata = mddev;
3717 mddev->queue->make_request_fn = mddev->pers->make_request;
3718
3719 /* If there is a partially-recovered drive we need to
3720 * start recovery here. If we leave it to md_check_recovery,
3721 * it will remove the drives and not do the right thing
3722 */
3723 if (mddev->degraded && !mddev->sync_thread) {
3724 struct list_head *rtmp;
3725 int spares = 0;
3726 rdev_for_each(rdev, rtmp, mddev)
3727 if (rdev->raid_disk >= 0 &&
3728 !test_bit(In_sync, &rdev->flags) &&
3729 !test_bit(Faulty, &rdev->flags))
3730 /* complete an interrupted recovery */
3731 spares++;
3732 if (spares && mddev->pers->sync_request) {
3733 mddev->recovery = 0;
3734 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3735 mddev->sync_thread = md_register_thread(md_do_sync,
3736 mddev,
3737 "%s_resync");
3738 if (!mddev->sync_thread) {
3739 printk(KERN_ERR "%s: could not start resync"
3740 " thread...\n",
3741 mdname(mddev));
3742 /* leave the spares where they are, it shouldn't hurt */
3743 mddev->recovery = 0;
3744 }
3745 }
3746 }
3747 md_wakeup_thread(mddev->thread);
3748 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3749
3750 mddev->changed = 1;
3751 md_new_event(mddev);
3752 sysfs_notify(&mddev->kobj, NULL, "array_state");
3753 sysfs_notify(&mddev->kobj, NULL, "sync_action");
3754 sysfs_notify(&mddev->kobj, NULL, "degraded");
3755 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3756 return 0;
3757 }
3758
3759 static int restart_array(mddev_t *mddev)
3760 {
3761 struct gendisk *disk = mddev->gendisk;
3762
3763 /* Complain if it has no devices */
3764 if (list_empty(&mddev->disks))
3765 return -ENXIO;
3766 if (!mddev->pers)
3767 return -EINVAL;
3768 if (!mddev->ro)
3769 return -EBUSY;
3770 mddev->safemode = 0;
3771 mddev->ro = 0;
3772 set_disk_ro(disk, 0);
3773 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3774 mdname(mddev));
3775 /* Kick recovery or resync if necessary */
3776 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3777 md_wakeup_thread(mddev->thread);
3778 md_wakeup_thread(mddev->sync_thread);
3779 sysfs_notify(&mddev->kobj, NULL, "array_state");
3780 return 0;
3781 }
3782
3783 /* similar to deny_write_access, but accounts for our holding a reference
3784 * to the file ourselves */
3785 static int deny_bitmap_write_access(struct file * file)
3786 {
3787 struct inode *inode = file->f_mapping->host;
3788
3789 spin_lock(&inode->i_lock);
3790 if (atomic_read(&inode->i_writecount) > 1) {
3791 spin_unlock(&inode->i_lock);
3792 return -ETXTBSY;
3793 }
3794 atomic_set(&inode->i_writecount, -1);
3795 spin_unlock(&inode->i_lock);
3796
3797 return 0;
3798 }
3799
3800 static void restore_bitmap_write_access(struct file *file)
3801 {
3802 struct inode *inode = file->f_mapping->host;
3803
3804 spin_lock(&inode->i_lock);
3805 atomic_set(&inode->i_writecount, 1);
3806 spin_unlock(&inode->i_lock);
3807 }
3808
3809 /* mode:
3810 * 0 - completely stop and dis-assemble array
3811 * 1 - switch to readonly
3812 * 2 - stop but do not disassemble array
3813 */
3814 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
3815 {
3816 int err = 0;
3817 struct gendisk *disk = mddev->gendisk;
3818
3819 if (atomic_read(&mddev->active) > 1 + is_open) {
3820 printk("md: %s still in use.\n",mdname(mddev));
3821 return -EBUSY;
3822 }
3823
3824 if (mddev->pers) {
3825
3826 if (mddev->sync_thread) {
3827 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3828 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3829 md_unregister_thread(mddev->sync_thread);
3830 mddev->sync_thread = NULL;
3831 }
3832
3833 del_timer_sync(&mddev->safemode_timer);
3834
3835 invalidate_partition(disk, 0);
3836
3837 switch(mode) {
3838 case 1: /* readonly */
3839 err = -ENXIO;
3840 if (mddev->ro==1)
3841 goto out;
3842 mddev->ro = 1;
3843 break;
3844 case 0: /* disassemble */
3845 case 2: /* stop */
3846 bitmap_flush(mddev);
3847 md_super_wait(mddev);
3848 if (mddev->ro)
3849 set_disk_ro(disk, 0);
3850 blk_queue_make_request(mddev->queue, md_fail_request);
3851 mddev->pers->stop(mddev);
3852 mddev->queue->merge_bvec_fn = NULL;
3853 mddev->queue->unplug_fn = NULL;
3854 mddev->queue->backing_dev_info.congested_fn = NULL;
3855 if (mddev->pers->sync_request)
3856 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3857
3858 module_put(mddev->pers->owner);
3859 mddev->pers = NULL;
3860 /* tell userspace to handle 'inactive' */
3861 sysfs_notify(&mddev->kobj, NULL, "array_state");
3862
3863 set_capacity(disk, 0);
3864 mddev->changed = 1;
3865
3866 if (mddev->ro)
3867 mddev->ro = 0;
3868 }
3869 if (!mddev->in_sync || mddev->flags) {
3870 /* mark array as shutdown cleanly */
3871 mddev->in_sync = 1;
3872 md_update_sb(mddev, 1);
3873 }
3874 if (mode == 1)
3875 set_disk_ro(disk, 1);
3876 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3877 }
3878
3879 /*
3880 * Free resources if final stop
3881 */
3882 if (mode == 0) {
3883 mdk_rdev_t *rdev;
3884 struct list_head *tmp;
3885
3886 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3887
3888 bitmap_destroy(mddev);
3889 if (mddev->bitmap_file) {
3890 restore_bitmap_write_access(mddev->bitmap_file);
3891 fput(mddev->bitmap_file);
3892 mddev->bitmap_file = NULL;
3893 }
3894 mddev->bitmap_offset = 0;
3895
3896 rdev_for_each(rdev, tmp, mddev)
3897 if (rdev->raid_disk >= 0) {
3898 char nm[20];
3899 sprintf(nm, "rd%d", rdev->raid_disk);
3900 sysfs_remove_link(&mddev->kobj, nm);
3901 }
3902
3903 /* make sure all md_delayed_delete calls have finished */
3904 flush_scheduled_work();
3905
3906 export_array(mddev);
3907
3908 mddev->array_sectors = 0;
3909 mddev->size = 0;
3910 mddev->raid_disks = 0;
3911 mddev->recovery_cp = 0;
3912 mddev->resync_min = 0;
3913 mddev->resync_max = MaxSector;
3914 mddev->reshape_position = MaxSector;
3915 mddev->external = 0;
3916 mddev->persistent = 0;
3917 mddev->level = LEVEL_NONE;
3918 mddev->clevel[0] = 0;
3919 mddev->flags = 0;
3920 mddev->ro = 0;
3921 mddev->metadata_type[0] = 0;
3922 mddev->chunk_size = 0;
3923 mddev->ctime = mddev->utime = 0;
3924 mddev->layout = 0;
3925 mddev->max_disks = 0;
3926 mddev->events = 0;
3927 mddev->delta_disks = 0;
3928 mddev->new_level = LEVEL_NONE;
3929 mddev->new_layout = 0;
3930 mddev->new_chunk = 0;
3931 mddev->curr_resync = 0;
3932 mddev->resync_mismatches = 0;
3933 mddev->suspend_lo = mddev->suspend_hi = 0;
3934 mddev->sync_speed_min = mddev->sync_speed_max = 0;
3935 mddev->recovery = 0;
3936 mddev->in_sync = 0;
3937 mddev->changed = 0;
3938 mddev->degraded = 0;
3939 mddev->barriers_work = 0;
3940 mddev->safemode = 0;
3941
3942 } else if (mddev->pers)
3943 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3944 mdname(mddev));
3945 err = 0;
3946 md_new_event(mddev);
3947 sysfs_notify(&mddev->kobj, NULL, "array_state");
3948 out:
3949 return err;
3950 }
3951
3952 #ifndef MODULE
3953 static void autorun_array(mddev_t *mddev)
3954 {
3955 mdk_rdev_t *rdev;
3956 struct list_head *tmp;
3957 int err;
3958
3959 if (list_empty(&mddev->disks))
3960 return;
3961
3962 printk(KERN_INFO "md: running: ");
3963
3964 rdev_for_each(rdev, tmp, mddev) {
3965 char b[BDEVNAME_SIZE];
3966 printk("<%s>", bdevname(rdev->bdev,b));
3967 }
3968 printk("\n");
3969
3970 err = do_md_run (mddev);
3971 if (err) {
3972 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3973 do_md_stop (mddev, 0, 0);
3974 }
3975 }
3976
3977 /*
3978 * lets try to run arrays based on all disks that have arrived
3979 * until now. (those are in pending_raid_disks)
3980 *
3981 * the method: pick the first pending disk, collect all disks with
3982 * the same UUID, remove all from the pending list and put them into
3983 * the 'same_array' list. Then order this list based on superblock
3984 * update time (freshest comes first), kick out 'old' disks and
3985 * compare superblocks. If everything's fine then run it.
3986 *
3987 * If "unit" is allocated, then bump its reference count
3988 */
3989 static void autorun_devices(int part)
3990 {
3991 struct list_head *tmp;
3992 mdk_rdev_t *rdev0, *rdev;
3993 mddev_t *mddev;
3994 char b[BDEVNAME_SIZE];
3995
3996 printk(KERN_INFO "md: autorun ...\n");
3997 while (!list_empty(&pending_raid_disks)) {
3998 int unit;
3999 dev_t dev;
4000 LIST_HEAD(candidates);
4001 rdev0 = list_entry(pending_raid_disks.next,
4002 mdk_rdev_t, same_set);
4003
4004 printk(KERN_INFO "md: considering %s ...\n",
4005 bdevname(rdev0->bdev,b));
4006 INIT_LIST_HEAD(&candidates);
4007 rdev_for_each_list(rdev, tmp, pending_raid_disks)
4008 if (super_90_load(rdev, rdev0, 0) >= 0) {
4009 printk(KERN_INFO "md: adding %s ...\n",
4010 bdevname(rdev->bdev,b));
4011 list_move(&rdev->same_set, &candidates);
4012 }
4013 /*
4014 * now we have a set of devices, with all of them having
4015 * mostly sane superblocks. It's time to allocate the
4016 * mddev.
4017 */
4018 if (part) {
4019 dev = MKDEV(mdp_major,
4020 rdev0->preferred_minor << MdpMinorShift);
4021 unit = MINOR(dev) >> MdpMinorShift;
4022 } else {
4023 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4024 unit = MINOR(dev);
4025 }
4026 if (rdev0->preferred_minor != unit) {
4027 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4028 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4029 break;
4030 }
4031
4032 md_probe(dev, NULL, NULL);
4033 mddev = mddev_find(dev);
4034 if (!mddev || !mddev->gendisk) {
4035 if (mddev)
4036 mddev_put(mddev);
4037 printk(KERN_ERR
4038 "md: cannot allocate memory for md drive.\n");
4039 break;
4040 }
4041 if (mddev_lock(mddev))
4042 printk(KERN_WARNING "md: %s locked, cannot run\n",
4043 mdname(mddev));
4044 else if (mddev->raid_disks || mddev->major_version
4045 || !list_empty(&mddev->disks)) {
4046 printk(KERN_WARNING
4047 "md: %s already running, cannot run %s\n",
4048 mdname(mddev), bdevname(rdev0->bdev,b));
4049 mddev_unlock(mddev);
4050 } else {
4051 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4052 mddev->persistent = 1;
4053 rdev_for_each_list(rdev, tmp, candidates) {
4054 list_del_init(&rdev->same_set);
4055 if (bind_rdev_to_array(rdev, mddev))
4056 export_rdev(rdev);
4057 }
4058 autorun_array(mddev);
4059 mddev_unlock(mddev);
4060 }
4061 /* on success, candidates will be empty, on error
4062 * it won't...
4063 */
4064 rdev_for_each_list(rdev, tmp, candidates)
4065 export_rdev(rdev);
4066 mddev_put(mddev);
4067 }
4068 printk(KERN_INFO "md: ... autorun DONE.\n");
4069 }
4070 #endif /* !MODULE */
4071
4072 static int get_version(void __user * arg)
4073 {
4074 mdu_version_t ver;
4075
4076 ver.major = MD_MAJOR_VERSION;
4077 ver.minor = MD_MINOR_VERSION;
4078 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4079
4080 if (copy_to_user(arg, &ver, sizeof(ver)))
4081 return -EFAULT;
4082
4083 return 0;
4084 }
4085
4086 static int get_array_info(mddev_t * mddev, void __user * arg)
4087 {
4088 mdu_array_info_t info;
4089 int nr,working,active,failed,spare;
4090 mdk_rdev_t *rdev;
4091 struct list_head *tmp;
4092
4093 nr=working=active=failed=spare=0;
4094 rdev_for_each(rdev, tmp, mddev) {
4095 nr++;
4096 if (test_bit(Faulty, &rdev->flags))
4097 failed++;
4098 else {
4099 working++;
4100 if (test_bit(In_sync, &rdev->flags))
4101 active++;
4102 else
4103 spare++;
4104 }
4105 }
4106
4107 info.major_version = mddev->major_version;
4108 info.minor_version = mddev->minor_version;
4109 info.patch_version = MD_PATCHLEVEL_VERSION;
4110 info.ctime = mddev->ctime;
4111 info.level = mddev->level;
4112 info.size = mddev->size;
4113 if (info.size != mddev->size) /* overflow */
4114 info.size = -1;
4115 info.nr_disks = nr;
4116 info.raid_disks = mddev->raid_disks;
4117 info.md_minor = mddev->md_minor;
4118 info.not_persistent= !mddev->persistent;
4119
4120 info.utime = mddev->utime;
4121 info.state = 0;
4122 if (mddev->in_sync)
4123 info.state = (1<<MD_SB_CLEAN);
4124 if (mddev->bitmap && mddev->bitmap_offset)
4125 info.state = (1<<MD_SB_BITMAP_PRESENT);
4126 info.active_disks = active;
4127 info.working_disks = working;
4128 info.failed_disks = failed;
4129 info.spare_disks = spare;
4130
4131 info.layout = mddev->layout;
4132 info.chunk_size = mddev->chunk_size;
4133
4134 if (copy_to_user(arg, &info, sizeof(info)))
4135 return -EFAULT;
4136
4137 return 0;
4138 }
4139
4140 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4141 {
4142 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4143 char *ptr, *buf = NULL;
4144 int err = -ENOMEM;
4145
4146 if (md_allow_write(mddev))
4147 file = kmalloc(sizeof(*file), GFP_NOIO);
4148 else
4149 file = kmalloc(sizeof(*file), GFP_KERNEL);
4150
4151 if (!file)
4152 goto out;
4153
4154 /* bitmap disabled, zero the first byte and copy out */
4155 if (!mddev->bitmap || !mddev->bitmap->file) {
4156 file->pathname[0] = '\0';
4157 goto copy_out;
4158 }
4159
4160 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4161 if (!buf)
4162 goto out;
4163
4164 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4165 if (IS_ERR(ptr))
4166 goto out;
4167
4168 strcpy(file->pathname, ptr);
4169
4170 copy_out:
4171 err = 0;
4172 if (copy_to_user(arg, file, sizeof(*file)))
4173 err = -EFAULT;
4174 out:
4175 kfree(buf);
4176 kfree(file);
4177 return err;
4178 }
4179
4180 static int get_disk_info(mddev_t * mddev, void __user * arg)
4181 {
4182 mdu_disk_info_t info;
4183 mdk_rdev_t *rdev;
4184
4185 if (copy_from_user(&info, arg, sizeof(info)))
4186 return -EFAULT;
4187
4188 rdev = find_rdev_nr(mddev, info.number);
4189 if (rdev) {
4190 info.major = MAJOR(rdev->bdev->bd_dev);
4191 info.minor = MINOR(rdev->bdev->bd_dev);
4192 info.raid_disk = rdev->raid_disk;
4193 info.state = 0;
4194 if (test_bit(Faulty, &rdev->flags))
4195 info.state |= (1<<MD_DISK_FAULTY);
4196 else if (test_bit(In_sync, &rdev->flags)) {
4197 info.state |= (1<<MD_DISK_ACTIVE);
4198 info.state |= (1<<MD_DISK_SYNC);
4199 }
4200 if (test_bit(WriteMostly, &rdev->flags))
4201 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4202 } else {
4203 info.major = info.minor = 0;
4204 info.raid_disk = -1;
4205 info.state = (1<<MD_DISK_REMOVED);
4206 }
4207
4208 if (copy_to_user(arg, &info, sizeof(info)))
4209 return -EFAULT;
4210
4211 return 0;
4212 }
4213
4214 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4215 {
4216 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4217 mdk_rdev_t *rdev;
4218 dev_t dev = MKDEV(info->major,info->minor);
4219
4220 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4221 return -EOVERFLOW;
4222
4223 if (!mddev->raid_disks) {
4224 int err;
4225 /* expecting a device which has a superblock */
4226 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4227 if (IS_ERR(rdev)) {
4228 printk(KERN_WARNING
4229 "md: md_import_device returned %ld\n",
4230 PTR_ERR(rdev));
4231 return PTR_ERR(rdev);
4232 }
4233 if (!list_empty(&mddev->disks)) {
4234 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4235 mdk_rdev_t, same_set);
4236 int err = super_types[mddev->major_version]
4237 .load_super(rdev, rdev0, mddev->minor_version);
4238 if (err < 0) {
4239 printk(KERN_WARNING
4240 "md: %s has different UUID to %s\n",
4241 bdevname(rdev->bdev,b),
4242 bdevname(rdev0->bdev,b2));
4243 export_rdev(rdev);
4244 return -EINVAL;
4245 }
4246 }
4247 err = bind_rdev_to_array(rdev, mddev);
4248 if (err)
4249 export_rdev(rdev);
4250 return err;
4251 }
4252
4253 /*
4254 * add_new_disk can be used once the array is assembled
4255 * to add "hot spares". They must already have a superblock
4256 * written
4257 */
4258 if (mddev->pers) {
4259 int err;
4260 if (!mddev->pers->hot_add_disk) {
4261 printk(KERN_WARNING
4262 "%s: personality does not support diskops!\n",
4263 mdname(mddev));
4264 return -EINVAL;
4265 }
4266 if (mddev->persistent)
4267 rdev = md_import_device(dev, mddev->major_version,
4268 mddev->minor_version);
4269 else
4270 rdev = md_import_device(dev, -1, -1);
4271 if (IS_ERR(rdev)) {
4272 printk(KERN_WARNING
4273 "md: md_import_device returned %ld\n",
4274 PTR_ERR(rdev));
4275 return PTR_ERR(rdev);
4276 }
4277 /* set save_raid_disk if appropriate */
4278 if (!mddev->persistent) {
4279 if (info->state & (1<<MD_DISK_SYNC) &&
4280 info->raid_disk < mddev->raid_disks)
4281 rdev->raid_disk = info->raid_disk;
4282 else
4283 rdev->raid_disk = -1;
4284 } else
4285 super_types[mddev->major_version].
4286 validate_super(mddev, rdev);
4287 rdev->saved_raid_disk = rdev->raid_disk;
4288
4289 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4290 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4291 set_bit(WriteMostly, &rdev->flags);
4292
4293 rdev->raid_disk = -1;
4294 err = bind_rdev_to_array(rdev, mddev);
4295 if (!err && !mddev->pers->hot_remove_disk) {
4296 /* If there is hot_add_disk but no hot_remove_disk
4297 * then added disks for geometry changes,
4298 * and should be added immediately.
4299 */
4300 super_types[mddev->major_version].
4301 validate_super(mddev, rdev);
4302 err = mddev->pers->hot_add_disk(mddev, rdev);
4303 if (err)
4304 unbind_rdev_from_array(rdev);
4305 }
4306 if (err)
4307 export_rdev(rdev);
4308 else
4309 sysfs_notify(&rdev->kobj, NULL, "state");
4310
4311 md_update_sb(mddev, 1);
4312 if (mddev->degraded)
4313 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4314 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4315 md_wakeup_thread(mddev->thread);
4316 return err;
4317 }
4318
4319 /* otherwise, add_new_disk is only allowed
4320 * for major_version==0 superblocks
4321 */
4322 if (mddev->major_version != 0) {
4323 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4324 mdname(mddev));
4325 return -EINVAL;
4326 }
4327
4328 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4329 int err;
4330 rdev = md_import_device (dev, -1, 0);
4331 if (IS_ERR(rdev)) {
4332 printk(KERN_WARNING
4333 "md: error, md_import_device() returned %ld\n",
4334 PTR_ERR(rdev));
4335 return PTR_ERR(rdev);
4336 }
4337 rdev->desc_nr = info->number;
4338 if (info->raid_disk < mddev->raid_disks)
4339 rdev->raid_disk = info->raid_disk;
4340 else
4341 rdev->raid_disk = -1;
4342
4343 if (rdev->raid_disk < mddev->raid_disks)
4344 if (info->state & (1<<MD_DISK_SYNC))
4345 set_bit(In_sync, &rdev->flags);
4346
4347 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4348 set_bit(WriteMostly, &rdev->flags);
4349
4350 if (!mddev->persistent) {
4351 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4352 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4353 } else
4354 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4355 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4356
4357 err = bind_rdev_to_array(rdev, mddev);
4358 if (err) {
4359 export_rdev(rdev);
4360 return err;
4361 }
4362 }
4363
4364 return 0;
4365 }
4366
4367 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4368 {
4369 char b[BDEVNAME_SIZE];
4370 mdk_rdev_t *rdev;
4371
4372 rdev = find_rdev(mddev, dev);
4373 if (!rdev)
4374 return -ENXIO;
4375
4376 if (rdev->raid_disk >= 0)
4377 goto busy;
4378
4379 kick_rdev_from_array(rdev);
4380 md_update_sb(mddev, 1);
4381 md_new_event(mddev);
4382
4383 return 0;
4384 busy:
4385 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4386 bdevname(rdev->bdev,b), mdname(mddev));
4387 return -EBUSY;
4388 }
4389
4390 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4391 {
4392 char b[BDEVNAME_SIZE];
4393 int err;
4394 mdk_rdev_t *rdev;
4395
4396 if (!mddev->pers)
4397 return -ENODEV;
4398
4399 if (mddev->major_version != 0) {
4400 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4401 " version-0 superblocks.\n",
4402 mdname(mddev));
4403 return -EINVAL;
4404 }
4405 if (!mddev->pers->hot_add_disk) {
4406 printk(KERN_WARNING
4407 "%s: personality does not support diskops!\n",
4408 mdname(mddev));
4409 return -EINVAL;
4410 }
4411
4412 rdev = md_import_device (dev, -1, 0);
4413 if (IS_ERR(rdev)) {
4414 printk(KERN_WARNING
4415 "md: error, md_import_device() returned %ld\n",
4416 PTR_ERR(rdev));
4417 return -EINVAL;
4418 }
4419
4420 if (mddev->persistent)
4421 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4422 else
4423 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4424
4425 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4426
4427 if (test_bit(Faulty, &rdev->flags)) {
4428 printk(KERN_WARNING
4429 "md: can not hot-add faulty %s disk to %s!\n",
4430 bdevname(rdev->bdev,b), mdname(mddev));
4431 err = -EINVAL;
4432 goto abort_export;
4433 }
4434 clear_bit(In_sync, &rdev->flags);
4435 rdev->desc_nr = -1;
4436 rdev->saved_raid_disk = -1;
4437 err = bind_rdev_to_array(rdev, mddev);
4438 if (err)
4439 goto abort_export;
4440
4441 /*
4442 * The rest should better be atomic, we can have disk failures
4443 * noticed in interrupt contexts ...
4444 */
4445
4446 if (rdev->desc_nr == mddev->max_disks) {
4447 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4448 mdname(mddev));
4449 err = -EBUSY;
4450 goto abort_unbind_export;
4451 }
4452
4453 rdev->raid_disk = -1;
4454
4455 md_update_sb(mddev, 1);
4456
4457 /*
4458 * Kick recovery, maybe this spare has to be added to the
4459 * array immediately.
4460 */
4461 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4462 md_wakeup_thread(mddev->thread);
4463 md_new_event(mddev);
4464 return 0;
4465
4466 abort_unbind_export:
4467 unbind_rdev_from_array(rdev);
4468
4469 abort_export:
4470 export_rdev(rdev);
4471 return err;
4472 }
4473
4474 static int set_bitmap_file(mddev_t *mddev, int fd)
4475 {
4476 int err;
4477
4478 if (mddev->pers) {
4479 if (!mddev->pers->quiesce)
4480 return -EBUSY;
4481 if (mddev->recovery || mddev->sync_thread)
4482 return -EBUSY;
4483 /* we should be able to change the bitmap.. */
4484 }
4485
4486
4487 if (fd >= 0) {
4488 if (mddev->bitmap)
4489 return -EEXIST; /* cannot add when bitmap is present */
4490 mddev->bitmap_file = fget(fd);
4491
4492 if (mddev->bitmap_file == NULL) {
4493 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4494 mdname(mddev));
4495 return -EBADF;
4496 }
4497
4498 err = deny_bitmap_write_access(mddev->bitmap_file);
4499 if (err) {
4500 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4501 mdname(mddev));
4502 fput(mddev->bitmap_file);
4503 mddev->bitmap_file = NULL;
4504 return err;
4505 }
4506 mddev->bitmap_offset = 0; /* file overrides offset */
4507 } else if (mddev->bitmap == NULL)
4508 return -ENOENT; /* cannot remove what isn't there */
4509 err = 0;
4510 if (mddev->pers) {
4511 mddev->pers->quiesce(mddev, 1);
4512 if (fd >= 0)
4513 err = bitmap_create(mddev);
4514 if (fd < 0 || err) {
4515 bitmap_destroy(mddev);
4516 fd = -1; /* make sure to put the file */
4517 }
4518 mddev->pers->quiesce(mddev, 0);
4519 }
4520 if (fd < 0) {
4521 if (mddev->bitmap_file) {
4522 restore_bitmap_write_access(mddev->bitmap_file);
4523 fput(mddev->bitmap_file);
4524 }
4525 mddev->bitmap_file = NULL;
4526 }
4527
4528 return err;
4529 }
4530
4531 /*
4532 * set_array_info is used two different ways
4533 * The original usage is when creating a new array.
4534 * In this usage, raid_disks is > 0 and it together with
4535 * level, size, not_persistent,layout,chunksize determine the
4536 * shape of the array.
4537 * This will always create an array with a type-0.90.0 superblock.
4538 * The newer usage is when assembling an array.
4539 * In this case raid_disks will be 0, and the major_version field is
4540 * use to determine which style super-blocks are to be found on the devices.
4541 * The minor and patch _version numbers are also kept incase the
4542 * super_block handler wishes to interpret them.
4543 */
4544 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4545 {
4546
4547 if (info->raid_disks == 0) {
4548 /* just setting version number for superblock loading */
4549 if (info->major_version < 0 ||
4550 info->major_version >= ARRAY_SIZE(super_types) ||
4551 super_types[info->major_version].name == NULL) {
4552 /* maybe try to auto-load a module? */
4553 printk(KERN_INFO
4554 "md: superblock version %d not known\n",
4555 info->major_version);
4556 return -EINVAL;
4557 }
4558 mddev->major_version = info->major_version;
4559 mddev->minor_version = info->minor_version;
4560 mddev->patch_version = info->patch_version;
4561 mddev->persistent = !info->not_persistent;
4562 return 0;
4563 }
4564 mddev->major_version = MD_MAJOR_VERSION;
4565 mddev->minor_version = MD_MINOR_VERSION;
4566 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4567 mddev->ctime = get_seconds();
4568
4569 mddev->level = info->level;
4570 mddev->clevel[0] = 0;
4571 mddev->size = info->size;
4572 mddev->raid_disks = info->raid_disks;
4573 /* don't set md_minor, it is determined by which /dev/md* was
4574 * openned
4575 */
4576 if (info->state & (1<<MD_SB_CLEAN))
4577 mddev->recovery_cp = MaxSector;
4578 else
4579 mddev->recovery_cp = 0;
4580 mddev->persistent = ! info->not_persistent;
4581 mddev->external = 0;
4582
4583 mddev->layout = info->layout;
4584 mddev->chunk_size = info->chunk_size;
4585
4586 mddev->max_disks = MD_SB_DISKS;
4587
4588 if (mddev->persistent)
4589 mddev->flags = 0;
4590 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4591
4592 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4593 mddev->bitmap_offset = 0;
4594
4595 mddev->reshape_position = MaxSector;
4596
4597 /*
4598 * Generate a 128 bit UUID
4599 */
4600 get_random_bytes(mddev->uuid, 16);
4601
4602 mddev->new_level = mddev->level;
4603 mddev->new_chunk = mddev->chunk_size;
4604 mddev->new_layout = mddev->layout;
4605 mddev->delta_disks = 0;
4606
4607 return 0;
4608 }
4609
4610 static int update_size(mddev_t *mddev, sector_t num_sectors)
4611 {
4612 mdk_rdev_t * rdev;
4613 int rv;
4614 struct list_head *tmp;
4615 int fit = (num_sectors == 0);
4616
4617 if (mddev->pers->resize == NULL)
4618 return -EINVAL;
4619 /* The "num_sectors" is the number of sectors of each device that
4620 * is used. This can only make sense for arrays with redundancy.
4621 * linear and raid0 always use whatever space is available. We can only
4622 * consider changing this number if no resync or reconstruction is
4623 * happening, and if the new size is acceptable. It must fit before the
4624 * sb_start or, if that is <data_offset, it must fit before the size
4625 * of each device. If num_sectors is zero, we find the largest size
4626 * that fits.
4627
4628 */
4629 if (mddev->sync_thread)
4630 return -EBUSY;
4631 rdev_for_each(rdev, tmp, mddev) {
4632 sector_t avail;
4633 avail = rdev->size * 2;
4634
4635 if (fit && (num_sectors == 0 || num_sectors > avail))
4636 num_sectors = avail;
4637 if (avail < num_sectors)
4638 return -ENOSPC;
4639 }
4640 rv = mddev->pers->resize(mddev, num_sectors);
4641 if (!rv) {
4642 struct block_device *bdev;
4643
4644 bdev = bdget_disk(mddev->gendisk, 0);
4645 if (bdev) {
4646 mutex_lock(&bdev->bd_inode->i_mutex);
4647 i_size_write(bdev->bd_inode,
4648 (loff_t)mddev->array_sectors << 9);
4649 mutex_unlock(&bdev->bd_inode->i_mutex);
4650 bdput(bdev);
4651 }
4652 }
4653 return rv;
4654 }
4655
4656 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4657 {
4658 int rv;
4659 /* change the number of raid disks */
4660 if (mddev->pers->check_reshape == NULL)
4661 return -EINVAL;
4662 if (raid_disks <= 0 ||
4663 raid_disks >= mddev->max_disks)
4664 return -EINVAL;
4665 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4666 return -EBUSY;
4667 mddev->delta_disks = raid_disks - mddev->raid_disks;
4668
4669 rv = mddev->pers->check_reshape(mddev);
4670 return rv;
4671 }
4672
4673
4674 /*
4675 * update_array_info is used to change the configuration of an
4676 * on-line array.
4677 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4678 * fields in the info are checked against the array.
4679 * Any differences that cannot be handled will cause an error.
4680 * Normally, only one change can be managed at a time.
4681 */
4682 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4683 {
4684 int rv = 0;
4685 int cnt = 0;
4686 int state = 0;
4687
4688 /* calculate expected state,ignoring low bits */
4689 if (mddev->bitmap && mddev->bitmap_offset)
4690 state |= (1 << MD_SB_BITMAP_PRESENT);
4691
4692 if (mddev->major_version != info->major_version ||
4693 mddev->minor_version != info->minor_version ||
4694 /* mddev->patch_version != info->patch_version || */
4695 mddev->ctime != info->ctime ||
4696 mddev->level != info->level ||
4697 /* mddev->layout != info->layout || */
4698 !mddev->persistent != info->not_persistent||
4699 mddev->chunk_size != info->chunk_size ||
4700 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4701 ((state^info->state) & 0xfffffe00)
4702 )
4703 return -EINVAL;
4704 /* Check there is only one change */
4705 if (info->size >= 0 && mddev->size != info->size) cnt++;
4706 if (mddev->raid_disks != info->raid_disks) cnt++;
4707 if (mddev->layout != info->layout) cnt++;
4708 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4709 if (cnt == 0) return 0;
4710 if (cnt > 1) return -EINVAL;
4711
4712 if (mddev->layout != info->layout) {
4713 /* Change layout
4714 * we don't need to do anything at the md level, the
4715 * personality will take care of it all.
4716 */
4717 if (mddev->pers->reconfig == NULL)
4718 return -EINVAL;
4719 else
4720 return mddev->pers->reconfig(mddev, info->layout, -1);
4721 }
4722 if (info->size >= 0 && mddev->size != info->size)
4723 rv = update_size(mddev, (sector_t)info->size * 2);
4724
4725 if (mddev->raid_disks != info->raid_disks)
4726 rv = update_raid_disks(mddev, info->raid_disks);
4727
4728 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4729 if (mddev->pers->quiesce == NULL)
4730 return -EINVAL;
4731 if (mddev->recovery || mddev->sync_thread)
4732 return -EBUSY;
4733 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4734 /* add the bitmap */
4735 if (mddev->bitmap)
4736 return -EEXIST;
4737 if (mddev->default_bitmap_offset == 0)
4738 return -EINVAL;
4739 mddev->bitmap_offset = mddev->default_bitmap_offset;
4740 mddev->pers->quiesce(mddev, 1);
4741 rv = bitmap_create(mddev);
4742 if (rv)
4743 bitmap_destroy(mddev);
4744 mddev->pers->quiesce(mddev, 0);
4745 } else {
4746 /* remove the bitmap */
4747 if (!mddev->bitmap)
4748 return -ENOENT;
4749 if (mddev->bitmap->file)
4750 return -EINVAL;
4751 mddev->pers->quiesce(mddev, 1);
4752 bitmap_destroy(mddev);
4753 mddev->pers->quiesce(mddev, 0);
4754 mddev->bitmap_offset = 0;
4755 }
4756 }
4757 md_update_sb(mddev, 1);
4758 return rv;
4759 }
4760
4761 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4762 {
4763 mdk_rdev_t *rdev;
4764
4765 if (mddev->pers == NULL)
4766 return -ENODEV;
4767
4768 rdev = find_rdev(mddev, dev);
4769 if (!rdev)
4770 return -ENODEV;
4771
4772 md_error(mddev, rdev);
4773 return 0;
4774 }
4775
4776 /*
4777 * We have a problem here : there is no easy way to give a CHS
4778 * virtual geometry. We currently pretend that we have a 2 heads
4779 * 4 sectors (with a BIG number of cylinders...). This drives
4780 * dosfs just mad... ;-)
4781 */
4782 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4783 {
4784 mddev_t *mddev = bdev->bd_disk->private_data;
4785
4786 geo->heads = 2;
4787 geo->sectors = 4;
4788 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4789 return 0;
4790 }
4791
4792 static int md_ioctl(struct inode *inode, struct file *file,
4793 unsigned int cmd, unsigned long arg)
4794 {
4795 int err = 0;
4796 void __user *argp = (void __user *)arg;
4797 mddev_t *mddev = NULL;
4798
4799 if (!capable(CAP_SYS_ADMIN))
4800 return -EACCES;
4801
4802 /*
4803 * Commands dealing with the RAID driver but not any
4804 * particular array:
4805 */
4806 switch (cmd)
4807 {
4808 case RAID_VERSION:
4809 err = get_version(argp);
4810 goto done;
4811
4812 case PRINT_RAID_DEBUG:
4813 err = 0;
4814 md_print_devices();
4815 goto done;
4816
4817 #ifndef MODULE
4818 case RAID_AUTORUN:
4819 err = 0;
4820 autostart_arrays(arg);
4821 goto done;
4822 #endif
4823 default:;
4824 }
4825
4826 /*
4827 * Commands creating/starting a new array:
4828 */
4829
4830 mddev = inode->i_bdev->bd_disk->private_data;
4831
4832 if (!mddev) {
4833 BUG();
4834 goto abort;
4835 }
4836
4837 err = mddev_lock(mddev);
4838 if (err) {
4839 printk(KERN_INFO
4840 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4841 err, cmd);
4842 goto abort;
4843 }
4844
4845 switch (cmd)
4846 {
4847 case SET_ARRAY_INFO:
4848 {
4849 mdu_array_info_t info;
4850 if (!arg)
4851 memset(&info, 0, sizeof(info));
4852 else if (copy_from_user(&info, argp, sizeof(info))) {
4853 err = -EFAULT;
4854 goto abort_unlock;
4855 }
4856 if (mddev->pers) {
4857 err = update_array_info(mddev, &info);
4858 if (err) {
4859 printk(KERN_WARNING "md: couldn't update"
4860 " array info. %d\n", err);
4861 goto abort_unlock;
4862 }
4863 goto done_unlock;
4864 }
4865 if (!list_empty(&mddev->disks)) {
4866 printk(KERN_WARNING
4867 "md: array %s already has disks!\n",
4868 mdname(mddev));
4869 err = -EBUSY;
4870 goto abort_unlock;
4871 }
4872 if (mddev->raid_disks) {
4873 printk(KERN_WARNING
4874 "md: array %s already initialised!\n",
4875 mdname(mddev));
4876 err = -EBUSY;
4877 goto abort_unlock;
4878 }
4879 err = set_array_info(mddev, &info);
4880 if (err) {
4881 printk(KERN_WARNING "md: couldn't set"
4882 " array info. %d\n", err);
4883 goto abort_unlock;
4884 }
4885 }
4886 goto done_unlock;
4887
4888 default:;
4889 }
4890
4891 /*
4892 * Commands querying/configuring an existing array:
4893 */
4894 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4895 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4896 if ((!mddev->raid_disks && !mddev->external)
4897 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4898 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4899 && cmd != GET_BITMAP_FILE) {
4900 err = -ENODEV;
4901 goto abort_unlock;
4902 }
4903
4904 /*
4905 * Commands even a read-only array can execute:
4906 */
4907 switch (cmd)
4908 {
4909 case GET_ARRAY_INFO:
4910 err = get_array_info(mddev, argp);
4911 goto done_unlock;
4912
4913 case GET_BITMAP_FILE:
4914 err = get_bitmap_file(mddev, argp);
4915 goto done_unlock;
4916
4917 case GET_DISK_INFO:
4918 err = get_disk_info(mddev, argp);
4919 goto done_unlock;
4920
4921 case RESTART_ARRAY_RW:
4922 err = restart_array(mddev);
4923 goto done_unlock;
4924
4925 case STOP_ARRAY:
4926 err = do_md_stop (mddev, 0, 1);
4927 goto done_unlock;
4928
4929 case STOP_ARRAY_RO:
4930 err = do_md_stop (mddev, 1, 1);
4931 goto done_unlock;
4932
4933 }
4934
4935 /*
4936 * The remaining ioctls are changing the state of the
4937 * superblock, so we do not allow them on read-only arrays.
4938 * However non-MD ioctls (e.g. get-size) will still come through
4939 * here and hit the 'default' below, so only disallow
4940 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4941 */
4942 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
4943 if (mddev->ro == 2) {
4944 mddev->ro = 0;
4945 sysfs_notify(&mddev->kobj, NULL, "array_state");
4946 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4947 md_wakeup_thread(mddev->thread);
4948 } else {
4949 err = -EROFS;
4950 goto abort_unlock;
4951 }
4952 }
4953
4954 switch (cmd)
4955 {
4956 case ADD_NEW_DISK:
4957 {
4958 mdu_disk_info_t info;
4959 if (copy_from_user(&info, argp, sizeof(info)))
4960 err = -EFAULT;
4961 else
4962 err = add_new_disk(mddev, &info);
4963 goto done_unlock;
4964 }
4965
4966 case HOT_REMOVE_DISK:
4967 err = hot_remove_disk(mddev, new_decode_dev(arg));
4968 goto done_unlock;
4969
4970 case HOT_ADD_DISK:
4971 err = hot_add_disk(mddev, new_decode_dev(arg));
4972 goto done_unlock;
4973
4974 case SET_DISK_FAULTY:
4975 err = set_disk_faulty(mddev, new_decode_dev(arg));
4976 goto done_unlock;
4977
4978 case RUN_ARRAY:
4979 err = do_md_run (mddev);
4980 goto done_unlock;
4981
4982 case SET_BITMAP_FILE:
4983 err = set_bitmap_file(mddev, (int)arg);
4984 goto done_unlock;
4985
4986 default:
4987 err = -EINVAL;
4988 goto abort_unlock;
4989 }
4990
4991 done_unlock:
4992 abort_unlock:
4993 mddev_unlock(mddev);
4994
4995 return err;
4996 done:
4997 if (err)
4998 MD_BUG();
4999 abort:
5000 return err;
5001 }
5002
5003 static int md_open(struct inode *inode, struct file *file)
5004 {
5005 /*
5006 * Succeed if we can lock the mddev, which confirms that
5007 * it isn't being stopped right now.
5008 */
5009 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
5010 int err;
5011
5012 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5013 goto out;
5014
5015 err = 0;
5016 mddev_get(mddev);
5017 mddev_unlock(mddev);
5018
5019 check_disk_change(inode->i_bdev);
5020 out:
5021 return err;
5022 }
5023
5024 static int md_release(struct inode *inode, struct file * file)
5025 {
5026 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
5027
5028 BUG_ON(!mddev);
5029 mddev_put(mddev);
5030
5031 return 0;
5032 }
5033
5034 static int md_media_changed(struct gendisk *disk)
5035 {
5036 mddev_t *mddev = disk->private_data;
5037
5038 return mddev->changed;
5039 }
5040
5041 static int md_revalidate(struct gendisk *disk)
5042 {
5043 mddev_t *mddev = disk->private_data;
5044
5045 mddev->changed = 0;
5046 return 0;
5047 }
5048 static struct block_device_operations md_fops =
5049 {
5050 .owner = THIS_MODULE,
5051 .open = md_open,
5052 .release = md_release,
5053 .ioctl = md_ioctl,
5054 .getgeo = md_getgeo,
5055 .media_changed = md_media_changed,
5056 .revalidate_disk= md_revalidate,
5057 };
5058
5059 static int md_thread(void * arg)
5060 {
5061 mdk_thread_t *thread = arg;
5062
5063 /*
5064 * md_thread is a 'system-thread', it's priority should be very
5065 * high. We avoid resource deadlocks individually in each
5066 * raid personality. (RAID5 does preallocation) We also use RR and
5067 * the very same RT priority as kswapd, thus we will never get
5068 * into a priority inversion deadlock.
5069 *
5070 * we definitely have to have equal or higher priority than
5071 * bdflush, otherwise bdflush will deadlock if there are too
5072 * many dirty RAID5 blocks.
5073 */
5074
5075 allow_signal(SIGKILL);
5076 while (!kthread_should_stop()) {
5077
5078 /* We need to wait INTERRUPTIBLE so that
5079 * we don't add to the load-average.
5080 * That means we need to be sure no signals are
5081 * pending
5082 */
5083 if (signal_pending(current))
5084 flush_signals(current);
5085
5086 wait_event_interruptible_timeout
5087 (thread->wqueue,
5088 test_bit(THREAD_WAKEUP, &thread->flags)
5089 || kthread_should_stop(),
5090 thread->timeout);
5091
5092 clear_bit(THREAD_WAKEUP, &thread->flags);
5093
5094 thread->run(thread->mddev);
5095 }
5096
5097 return 0;
5098 }
5099
5100 void md_wakeup_thread(mdk_thread_t *thread)
5101 {
5102 if (thread) {
5103 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5104 set_bit(THREAD_WAKEUP, &thread->flags);
5105 wake_up(&thread->wqueue);
5106 }
5107 }
5108
5109 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5110 const char *name)
5111 {
5112 mdk_thread_t *thread;
5113
5114 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5115 if (!thread)
5116 return NULL;
5117
5118 init_waitqueue_head(&thread->wqueue);
5119
5120 thread->run = run;
5121 thread->mddev = mddev;
5122 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5123 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5124 if (IS_ERR(thread->tsk)) {
5125 kfree(thread);
5126 return NULL;
5127 }
5128 return thread;
5129 }
5130
5131 void md_unregister_thread(mdk_thread_t *thread)
5132 {
5133 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5134
5135 kthread_stop(thread->tsk);
5136 kfree(thread);
5137 }
5138
5139 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5140 {
5141 if (!mddev) {
5142 MD_BUG();
5143 return;
5144 }
5145
5146 if (!rdev || test_bit(Faulty, &rdev->flags))
5147 return;
5148
5149 if (mddev->external)
5150 set_bit(Blocked, &rdev->flags);
5151 /*
5152 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5153 mdname(mddev),
5154 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5155 __builtin_return_address(0),__builtin_return_address(1),
5156 __builtin_return_address(2),__builtin_return_address(3));
5157 */
5158 if (!mddev->pers)
5159 return;
5160 if (!mddev->pers->error_handler)
5161 return;
5162 mddev->pers->error_handler(mddev,rdev);
5163 if (mddev->degraded)
5164 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5165 set_bit(StateChanged, &rdev->flags);
5166 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5167 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5168 md_wakeup_thread(mddev->thread);
5169 md_new_event_inintr(mddev);
5170 }
5171
5172 /* seq_file implementation /proc/mdstat */
5173
5174 static void status_unused(struct seq_file *seq)
5175 {
5176 int i = 0;
5177 mdk_rdev_t *rdev;
5178 struct list_head *tmp;
5179
5180 seq_printf(seq, "unused devices: ");
5181
5182 rdev_for_each_list(rdev, tmp, pending_raid_disks) {
5183 char b[BDEVNAME_SIZE];
5184 i++;
5185 seq_printf(seq, "%s ",
5186 bdevname(rdev->bdev,b));
5187 }
5188 if (!i)
5189 seq_printf(seq, "<none>");
5190
5191 seq_printf(seq, "\n");
5192 }
5193
5194
5195 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5196 {
5197 sector_t max_blocks, resync, res;
5198 unsigned long dt, db, rt;
5199 int scale;
5200 unsigned int per_milli;
5201
5202 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5203
5204 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5205 max_blocks = mddev->resync_max_sectors >> 1;
5206 else
5207 max_blocks = mddev->size;
5208
5209 /*
5210 * Should not happen.
5211 */
5212 if (!max_blocks) {
5213 MD_BUG();
5214 return;
5215 }
5216 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5217 * in a sector_t, and (max_blocks>>scale) will fit in a
5218 * u32, as those are the requirements for sector_div.
5219 * Thus 'scale' must be at least 10
5220 */
5221 scale = 10;
5222 if (sizeof(sector_t) > sizeof(unsigned long)) {
5223 while ( max_blocks/2 > (1ULL<<(scale+32)))
5224 scale++;
5225 }
5226 res = (resync>>scale)*1000;
5227 sector_div(res, (u32)((max_blocks>>scale)+1));
5228
5229 per_milli = res;
5230 {
5231 int i, x = per_milli/50, y = 20-x;
5232 seq_printf(seq, "[");
5233 for (i = 0; i < x; i++)
5234 seq_printf(seq, "=");
5235 seq_printf(seq, ">");
5236 for (i = 0; i < y; i++)
5237 seq_printf(seq, ".");
5238 seq_printf(seq, "] ");
5239 }
5240 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5241 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5242 "reshape" :
5243 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5244 "check" :
5245 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5246 "resync" : "recovery"))),
5247 per_milli/10, per_milli % 10,
5248 (unsigned long long) resync,
5249 (unsigned long long) max_blocks);
5250
5251 /*
5252 * We do not want to overflow, so the order of operands and
5253 * the * 100 / 100 trick are important. We do a +1 to be
5254 * safe against division by zero. We only estimate anyway.
5255 *
5256 * dt: time from mark until now
5257 * db: blocks written from mark until now
5258 * rt: remaining time
5259 */
5260 dt = ((jiffies - mddev->resync_mark) / HZ);
5261 if (!dt) dt++;
5262 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5263 - mddev->resync_mark_cnt;
5264 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5265
5266 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5267
5268 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5269 }
5270
5271 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5272 {
5273 struct list_head *tmp;
5274 loff_t l = *pos;
5275 mddev_t *mddev;
5276
5277 if (l >= 0x10000)
5278 return NULL;
5279 if (!l--)
5280 /* header */
5281 return (void*)1;
5282
5283 spin_lock(&all_mddevs_lock);
5284 list_for_each(tmp,&all_mddevs)
5285 if (!l--) {
5286 mddev = list_entry(tmp, mddev_t, all_mddevs);
5287 mddev_get(mddev);
5288 spin_unlock(&all_mddevs_lock);
5289 return mddev;
5290 }
5291 spin_unlock(&all_mddevs_lock);
5292 if (!l--)
5293 return (void*)2;/* tail */
5294 return NULL;
5295 }
5296
5297 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5298 {
5299 struct list_head *tmp;
5300 mddev_t *next_mddev, *mddev = v;
5301
5302 ++*pos;
5303 if (v == (void*)2)
5304 return NULL;
5305
5306 spin_lock(&all_mddevs_lock);
5307 if (v == (void*)1)
5308 tmp = all_mddevs.next;
5309 else
5310 tmp = mddev->all_mddevs.next;
5311 if (tmp != &all_mddevs)
5312 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5313 else {
5314 next_mddev = (void*)2;
5315 *pos = 0x10000;
5316 }
5317 spin_unlock(&all_mddevs_lock);
5318
5319 if (v != (void*)1)
5320 mddev_put(mddev);
5321 return next_mddev;
5322
5323 }
5324
5325 static void md_seq_stop(struct seq_file *seq, void *v)
5326 {
5327 mddev_t *mddev = v;
5328
5329 if (mddev && v != (void*)1 && v != (void*)2)
5330 mddev_put(mddev);
5331 }
5332
5333 struct mdstat_info {
5334 int event;
5335 };
5336
5337 static int md_seq_show(struct seq_file *seq, void *v)
5338 {
5339 mddev_t *mddev = v;
5340 sector_t size;
5341 struct list_head *tmp2;
5342 mdk_rdev_t *rdev;
5343 struct mdstat_info *mi = seq->private;
5344 struct bitmap *bitmap;
5345
5346 if (v == (void*)1) {
5347 struct mdk_personality *pers;
5348 seq_printf(seq, "Personalities : ");
5349 spin_lock(&pers_lock);
5350 list_for_each_entry(pers, &pers_list, list)
5351 seq_printf(seq, "[%s] ", pers->name);
5352
5353 spin_unlock(&pers_lock);
5354 seq_printf(seq, "\n");
5355 mi->event = atomic_read(&md_event_count);
5356 return 0;
5357 }
5358 if (v == (void*)2) {
5359 status_unused(seq);
5360 return 0;
5361 }
5362
5363 if (mddev_lock(mddev) < 0)
5364 return -EINTR;
5365
5366 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5367 seq_printf(seq, "%s : %sactive", mdname(mddev),
5368 mddev->pers ? "" : "in");
5369 if (mddev->pers) {
5370 if (mddev->ro==1)
5371 seq_printf(seq, " (read-only)");
5372 if (mddev->ro==2)
5373 seq_printf(seq, " (auto-read-only)");
5374 seq_printf(seq, " %s", mddev->pers->name);
5375 }
5376
5377 size = 0;
5378 rdev_for_each(rdev, tmp2, mddev) {
5379 char b[BDEVNAME_SIZE];
5380 seq_printf(seq, " %s[%d]",
5381 bdevname(rdev->bdev,b), rdev->desc_nr);
5382 if (test_bit(WriteMostly, &rdev->flags))
5383 seq_printf(seq, "(W)");
5384 if (test_bit(Faulty, &rdev->flags)) {
5385 seq_printf(seq, "(F)");
5386 continue;
5387 } else if (rdev->raid_disk < 0)
5388 seq_printf(seq, "(S)"); /* spare */
5389 size += rdev->size;
5390 }
5391
5392 if (!list_empty(&mddev->disks)) {
5393 if (mddev->pers)
5394 seq_printf(seq, "\n %llu blocks",
5395 (unsigned long long)
5396 mddev->array_sectors / 2);
5397 else
5398 seq_printf(seq, "\n %llu blocks",
5399 (unsigned long long)size);
5400 }
5401 if (mddev->persistent) {
5402 if (mddev->major_version != 0 ||
5403 mddev->minor_version != 90) {
5404 seq_printf(seq," super %d.%d",
5405 mddev->major_version,
5406 mddev->minor_version);
5407 }
5408 } else if (mddev->external)
5409 seq_printf(seq, " super external:%s",
5410 mddev->metadata_type);
5411 else
5412 seq_printf(seq, " super non-persistent");
5413
5414 if (mddev->pers) {
5415 mddev->pers->status (seq, mddev);
5416 seq_printf(seq, "\n ");
5417 if (mddev->pers->sync_request) {
5418 if (mddev->curr_resync > 2) {
5419 status_resync (seq, mddev);
5420 seq_printf(seq, "\n ");
5421 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5422 seq_printf(seq, "\tresync=DELAYED\n ");
5423 else if (mddev->recovery_cp < MaxSector)
5424 seq_printf(seq, "\tresync=PENDING\n ");
5425 }
5426 } else
5427 seq_printf(seq, "\n ");
5428
5429 if ((bitmap = mddev->bitmap)) {
5430 unsigned long chunk_kb;
5431 unsigned long flags;
5432 spin_lock_irqsave(&bitmap->lock, flags);
5433 chunk_kb = bitmap->chunksize >> 10;
5434 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5435 "%lu%s chunk",
5436 bitmap->pages - bitmap->missing_pages,
5437 bitmap->pages,
5438 (bitmap->pages - bitmap->missing_pages)
5439 << (PAGE_SHIFT - 10),
5440 chunk_kb ? chunk_kb : bitmap->chunksize,
5441 chunk_kb ? "KB" : "B");
5442 if (bitmap->file) {
5443 seq_printf(seq, ", file: ");
5444 seq_path(seq, &bitmap->file->f_path, " \t\n");
5445 }
5446
5447 seq_printf(seq, "\n");
5448 spin_unlock_irqrestore(&bitmap->lock, flags);
5449 }
5450
5451 seq_printf(seq, "\n");
5452 }
5453 mddev_unlock(mddev);
5454
5455 return 0;
5456 }
5457
5458 static struct seq_operations md_seq_ops = {
5459 .start = md_seq_start,
5460 .next = md_seq_next,
5461 .stop = md_seq_stop,
5462 .show = md_seq_show,
5463 };
5464
5465 static int md_seq_open(struct inode *inode, struct file *file)
5466 {
5467 int error;
5468 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5469 if (mi == NULL)
5470 return -ENOMEM;
5471
5472 error = seq_open(file, &md_seq_ops);
5473 if (error)
5474 kfree(mi);
5475 else {
5476 struct seq_file *p = file->private_data;
5477 p->private = mi;
5478 mi->event = atomic_read(&md_event_count);
5479 }
5480 return error;
5481 }
5482
5483 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5484 {
5485 struct seq_file *m = filp->private_data;
5486 struct mdstat_info *mi = m->private;
5487 int mask;
5488
5489 poll_wait(filp, &md_event_waiters, wait);
5490
5491 /* always allow read */
5492 mask = POLLIN | POLLRDNORM;
5493
5494 if (mi->event != atomic_read(&md_event_count))
5495 mask |= POLLERR | POLLPRI;
5496 return mask;
5497 }
5498
5499 static const struct file_operations md_seq_fops = {
5500 .owner = THIS_MODULE,
5501 .open = md_seq_open,
5502 .read = seq_read,
5503 .llseek = seq_lseek,
5504 .release = seq_release_private,
5505 .poll = mdstat_poll,
5506 };
5507
5508 int register_md_personality(struct mdk_personality *p)
5509 {
5510 spin_lock(&pers_lock);
5511 list_add_tail(&p->list, &pers_list);
5512 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5513 spin_unlock(&pers_lock);
5514 return 0;
5515 }
5516
5517 int unregister_md_personality(struct mdk_personality *p)
5518 {
5519 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5520 spin_lock(&pers_lock);
5521 list_del_init(&p->list);
5522 spin_unlock(&pers_lock);
5523 return 0;
5524 }
5525
5526 static int is_mddev_idle(mddev_t *mddev)
5527 {
5528 mdk_rdev_t * rdev;
5529 struct list_head *tmp;
5530 int idle;
5531 long curr_events;
5532
5533 idle = 1;
5534 rdev_for_each(rdev, tmp, mddev) {
5535 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5536 curr_events = disk_stat_read(disk, sectors[0]) +
5537 disk_stat_read(disk, sectors[1]) -
5538 atomic_read(&disk->sync_io);
5539 /* sync IO will cause sync_io to increase before the disk_stats
5540 * as sync_io is counted when a request starts, and
5541 * disk_stats is counted when it completes.
5542 * So resync activity will cause curr_events to be smaller than
5543 * when there was no such activity.
5544 * non-sync IO will cause disk_stat to increase without
5545 * increasing sync_io so curr_events will (eventually)
5546 * be larger than it was before. Once it becomes
5547 * substantially larger, the test below will cause
5548 * the array to appear non-idle, and resync will slow
5549 * down.
5550 * If there is a lot of outstanding resync activity when
5551 * we set last_event to curr_events, then all that activity
5552 * completing might cause the array to appear non-idle
5553 * and resync will be slowed down even though there might
5554 * not have been non-resync activity. This will only
5555 * happen once though. 'last_events' will soon reflect
5556 * the state where there is little or no outstanding
5557 * resync requests, and further resync activity will
5558 * always make curr_events less than last_events.
5559 *
5560 */
5561 if (curr_events - rdev->last_events > 4096) {
5562 rdev->last_events = curr_events;
5563 idle = 0;
5564 }
5565 }
5566 return idle;
5567 }
5568
5569 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5570 {
5571 /* another "blocks" (512byte) blocks have been synced */
5572 atomic_sub(blocks, &mddev->recovery_active);
5573 wake_up(&mddev->recovery_wait);
5574 if (!ok) {
5575 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5576 md_wakeup_thread(mddev->thread);
5577 // stop recovery, signal do_sync ....
5578 }
5579 }
5580
5581
5582 /* md_write_start(mddev, bi)
5583 * If we need to update some array metadata (e.g. 'active' flag
5584 * in superblock) before writing, schedule a superblock update
5585 * and wait for it to complete.
5586 */
5587 void md_write_start(mddev_t *mddev, struct bio *bi)
5588 {
5589 int did_change = 0;
5590 if (bio_data_dir(bi) != WRITE)
5591 return;
5592
5593 BUG_ON(mddev->ro == 1);
5594 if (mddev->ro == 2) {
5595 /* need to switch to read/write */
5596 mddev->ro = 0;
5597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5598 md_wakeup_thread(mddev->thread);
5599 md_wakeup_thread(mddev->sync_thread);
5600 did_change = 1;
5601 }
5602 atomic_inc(&mddev->writes_pending);
5603 if (mddev->safemode == 1)
5604 mddev->safemode = 0;
5605 if (mddev->in_sync) {
5606 spin_lock_irq(&mddev->write_lock);
5607 if (mddev->in_sync) {
5608 mddev->in_sync = 0;
5609 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5610 md_wakeup_thread(mddev->thread);
5611 did_change = 1;
5612 }
5613 spin_unlock_irq(&mddev->write_lock);
5614 }
5615 if (did_change)
5616 sysfs_notify(&mddev->kobj, NULL, "array_state");
5617 wait_event(mddev->sb_wait,
5618 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5619 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5620 }
5621
5622 void md_write_end(mddev_t *mddev)
5623 {
5624 if (atomic_dec_and_test(&mddev->writes_pending)) {
5625 if (mddev->safemode == 2)
5626 md_wakeup_thread(mddev->thread);
5627 else if (mddev->safemode_delay)
5628 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5629 }
5630 }
5631
5632 /* md_allow_write(mddev)
5633 * Calling this ensures that the array is marked 'active' so that writes
5634 * may proceed without blocking. It is important to call this before
5635 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5636 * Must be called with mddev_lock held.
5637 *
5638 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
5639 * is dropped, so return -EAGAIN after notifying userspace.
5640 */
5641 int md_allow_write(mddev_t *mddev)
5642 {
5643 if (!mddev->pers)
5644 return 0;
5645 if (mddev->ro)
5646 return 0;
5647 if (!mddev->pers->sync_request)
5648 return 0;
5649
5650 spin_lock_irq(&mddev->write_lock);
5651 if (mddev->in_sync) {
5652 mddev->in_sync = 0;
5653 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5654 if (mddev->safemode_delay &&
5655 mddev->safemode == 0)
5656 mddev->safemode = 1;
5657 spin_unlock_irq(&mddev->write_lock);
5658 md_update_sb(mddev, 0);
5659 sysfs_notify(&mddev->kobj, NULL, "array_state");
5660 } else
5661 spin_unlock_irq(&mddev->write_lock);
5662
5663 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
5664 return -EAGAIN;
5665 else
5666 return 0;
5667 }
5668 EXPORT_SYMBOL_GPL(md_allow_write);
5669
5670 #define SYNC_MARKS 10
5671 #define SYNC_MARK_STEP (3*HZ)
5672 void md_do_sync(mddev_t *mddev)
5673 {
5674 mddev_t *mddev2;
5675 unsigned int currspeed = 0,
5676 window;
5677 sector_t max_sectors,j, io_sectors;
5678 unsigned long mark[SYNC_MARKS];
5679 sector_t mark_cnt[SYNC_MARKS];
5680 int last_mark,m;
5681 struct list_head *tmp;
5682 sector_t last_check;
5683 int skipped = 0;
5684 struct list_head *rtmp;
5685 mdk_rdev_t *rdev;
5686 char *desc;
5687
5688 /* just incase thread restarts... */
5689 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5690 return;
5691 if (mddev->ro) /* never try to sync a read-only array */
5692 return;
5693
5694 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5695 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5696 desc = "data-check";
5697 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5698 desc = "requested-resync";
5699 else
5700 desc = "resync";
5701 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5702 desc = "reshape";
5703 else
5704 desc = "recovery";
5705
5706 /* we overload curr_resync somewhat here.
5707 * 0 == not engaged in resync at all
5708 * 2 == checking that there is no conflict with another sync
5709 * 1 == like 2, but have yielded to allow conflicting resync to
5710 * commense
5711 * other == active in resync - this many blocks
5712 *
5713 * Before starting a resync we must have set curr_resync to
5714 * 2, and then checked that every "conflicting" array has curr_resync
5715 * less than ours. When we find one that is the same or higher
5716 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5717 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5718 * This will mean we have to start checking from the beginning again.
5719 *
5720 */
5721
5722 do {
5723 mddev->curr_resync = 2;
5724
5725 try_again:
5726 if (kthread_should_stop()) {
5727 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5728 goto skip;
5729 }
5730 for_each_mddev(mddev2, tmp) {
5731 if (mddev2 == mddev)
5732 continue;
5733 if (!mddev->parallel_resync
5734 && mddev2->curr_resync
5735 && match_mddev_units(mddev, mddev2)) {
5736 DEFINE_WAIT(wq);
5737 if (mddev < mddev2 && mddev->curr_resync == 2) {
5738 /* arbitrarily yield */
5739 mddev->curr_resync = 1;
5740 wake_up(&resync_wait);
5741 }
5742 if (mddev > mddev2 && mddev->curr_resync == 1)
5743 /* no need to wait here, we can wait the next
5744 * time 'round when curr_resync == 2
5745 */
5746 continue;
5747 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5748 if (!kthread_should_stop() &&
5749 mddev2->curr_resync >= mddev->curr_resync) {
5750 printk(KERN_INFO "md: delaying %s of %s"
5751 " until %s has finished (they"
5752 " share one or more physical units)\n",
5753 desc, mdname(mddev), mdname(mddev2));
5754 mddev_put(mddev2);
5755 schedule();
5756 finish_wait(&resync_wait, &wq);
5757 goto try_again;
5758 }
5759 finish_wait(&resync_wait, &wq);
5760 }
5761 }
5762 } while (mddev->curr_resync < 2);
5763
5764 j = 0;
5765 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5766 /* resync follows the size requested by the personality,
5767 * which defaults to physical size, but can be virtual size
5768 */
5769 max_sectors = mddev->resync_max_sectors;
5770 mddev->resync_mismatches = 0;
5771 /* we don't use the checkpoint if there's a bitmap */
5772 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5773 j = mddev->resync_min;
5774 else if (!mddev->bitmap)
5775 j = mddev->recovery_cp;
5776
5777 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5778 max_sectors = mddev->size << 1;
5779 else {
5780 /* recovery follows the physical size of devices */
5781 max_sectors = mddev->size << 1;
5782 j = MaxSector;
5783 rdev_for_each(rdev, rtmp, mddev)
5784 if (rdev->raid_disk >= 0 &&
5785 !test_bit(Faulty, &rdev->flags) &&
5786 !test_bit(In_sync, &rdev->flags) &&
5787 rdev->recovery_offset < j)
5788 j = rdev->recovery_offset;
5789 }
5790
5791 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5792 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5793 " %d KB/sec/disk.\n", speed_min(mddev));
5794 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5795 "(but not more than %d KB/sec) for %s.\n",
5796 speed_max(mddev), desc);
5797
5798 is_mddev_idle(mddev); /* this also initializes IO event counters */
5799
5800 io_sectors = 0;
5801 for (m = 0; m < SYNC_MARKS; m++) {
5802 mark[m] = jiffies;
5803 mark_cnt[m] = io_sectors;
5804 }
5805 last_mark = 0;
5806 mddev->resync_mark = mark[last_mark];
5807 mddev->resync_mark_cnt = mark_cnt[last_mark];
5808
5809 /*
5810 * Tune reconstruction:
5811 */
5812 window = 32*(PAGE_SIZE/512);
5813 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5814 window/2,(unsigned long long) max_sectors/2);
5815
5816 atomic_set(&mddev->recovery_active, 0);
5817 last_check = 0;
5818
5819 if (j>2) {
5820 printk(KERN_INFO
5821 "md: resuming %s of %s from checkpoint.\n",
5822 desc, mdname(mddev));
5823 mddev->curr_resync = j;
5824 }
5825
5826 while (j < max_sectors) {
5827 sector_t sectors;
5828
5829 skipped = 0;
5830 if (j >= mddev->resync_max) {
5831 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5832 wait_event(mddev->recovery_wait,
5833 mddev->resync_max > j
5834 || kthread_should_stop());
5835 }
5836 if (kthread_should_stop())
5837 goto interrupted;
5838 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5839 currspeed < speed_min(mddev));
5840 if (sectors == 0) {
5841 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5842 goto out;
5843 }
5844
5845 if (!skipped) { /* actual IO requested */
5846 io_sectors += sectors;
5847 atomic_add(sectors, &mddev->recovery_active);
5848 }
5849
5850 j += sectors;
5851 if (j>1) mddev->curr_resync = j;
5852 mddev->curr_mark_cnt = io_sectors;
5853 if (last_check == 0)
5854 /* this is the earliers that rebuilt will be
5855 * visible in /proc/mdstat
5856 */
5857 md_new_event(mddev);
5858
5859 if (last_check + window > io_sectors || j == max_sectors)
5860 continue;
5861
5862 last_check = io_sectors;
5863
5864 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5865 break;
5866
5867 repeat:
5868 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5869 /* step marks */
5870 int next = (last_mark+1) % SYNC_MARKS;
5871
5872 mddev->resync_mark = mark[next];
5873 mddev->resync_mark_cnt = mark_cnt[next];
5874 mark[next] = jiffies;
5875 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5876 last_mark = next;
5877 }
5878
5879
5880 if (kthread_should_stop())
5881 goto interrupted;
5882
5883
5884 /*
5885 * this loop exits only if either when we are slower than
5886 * the 'hard' speed limit, or the system was IO-idle for
5887 * a jiffy.
5888 * the system might be non-idle CPU-wise, but we only care
5889 * about not overloading the IO subsystem. (things like an
5890 * e2fsck being done on the RAID array should execute fast)
5891 */
5892 blk_unplug(mddev->queue);
5893 cond_resched();
5894
5895 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5896 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5897
5898 if (currspeed > speed_min(mddev)) {
5899 if ((currspeed > speed_max(mddev)) ||
5900 !is_mddev_idle(mddev)) {
5901 msleep(500);
5902 goto repeat;
5903 }
5904 }
5905 }
5906 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5907 /*
5908 * this also signals 'finished resyncing' to md_stop
5909 */
5910 out:
5911 blk_unplug(mddev->queue);
5912
5913 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5914
5915 /* tell personality that we are finished */
5916 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5917
5918 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5919 mddev->curr_resync > 2) {
5920 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5921 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5922 if (mddev->curr_resync >= mddev->recovery_cp) {
5923 printk(KERN_INFO
5924 "md: checkpointing %s of %s.\n",
5925 desc, mdname(mddev));
5926 mddev->recovery_cp = mddev->curr_resync;
5927 }
5928 } else
5929 mddev->recovery_cp = MaxSector;
5930 } else {
5931 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5932 mddev->curr_resync = MaxSector;
5933 rdev_for_each(rdev, rtmp, mddev)
5934 if (rdev->raid_disk >= 0 &&
5935 !test_bit(Faulty, &rdev->flags) &&
5936 !test_bit(In_sync, &rdev->flags) &&
5937 rdev->recovery_offset < mddev->curr_resync)
5938 rdev->recovery_offset = mddev->curr_resync;
5939 }
5940 }
5941 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5942
5943 skip:
5944 mddev->curr_resync = 0;
5945 mddev->resync_min = 0;
5946 mddev->resync_max = MaxSector;
5947 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5948 wake_up(&resync_wait);
5949 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5950 md_wakeup_thread(mddev->thread);
5951 return;
5952
5953 interrupted:
5954 /*
5955 * got a signal, exit.
5956 */
5957 printk(KERN_INFO
5958 "md: md_do_sync() got signal ... exiting\n");
5959 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5960 goto out;
5961
5962 }
5963 EXPORT_SYMBOL_GPL(md_do_sync);
5964
5965
5966 static int remove_and_add_spares(mddev_t *mddev)
5967 {
5968 mdk_rdev_t *rdev;
5969 struct list_head *rtmp;
5970 int spares = 0;
5971
5972 rdev_for_each(rdev, rtmp, mddev)
5973 if (rdev->raid_disk >= 0 &&
5974 !test_bit(Blocked, &rdev->flags) &&
5975 (test_bit(Faulty, &rdev->flags) ||
5976 ! test_bit(In_sync, &rdev->flags)) &&
5977 atomic_read(&rdev->nr_pending)==0) {
5978 if (mddev->pers->hot_remove_disk(
5979 mddev, rdev->raid_disk)==0) {
5980 char nm[20];
5981 sprintf(nm,"rd%d", rdev->raid_disk);
5982 sysfs_remove_link(&mddev->kobj, nm);
5983 rdev->raid_disk = -1;
5984 }
5985 }
5986
5987 if (mddev->degraded) {
5988 rdev_for_each(rdev, rtmp, mddev) {
5989 if (rdev->raid_disk >= 0 &&
5990 !test_bit(In_sync, &rdev->flags))
5991 spares++;
5992 if (rdev->raid_disk < 0
5993 && !test_bit(Faulty, &rdev->flags)) {
5994 rdev->recovery_offset = 0;
5995 if (mddev->pers->
5996 hot_add_disk(mddev, rdev) == 0) {
5997 char nm[20];
5998 sprintf(nm, "rd%d", rdev->raid_disk);
5999 if (sysfs_create_link(&mddev->kobj,
6000 &rdev->kobj, nm))
6001 printk(KERN_WARNING
6002 "md: cannot register "
6003 "%s for %s\n",
6004 nm, mdname(mddev));
6005 spares++;
6006 md_new_event(mddev);
6007 } else
6008 break;
6009 }
6010 }
6011 }
6012 return spares;
6013 }
6014 /*
6015 * This routine is regularly called by all per-raid-array threads to
6016 * deal with generic issues like resync and super-block update.
6017 * Raid personalities that don't have a thread (linear/raid0) do not
6018 * need this as they never do any recovery or update the superblock.
6019 *
6020 * It does not do any resync itself, but rather "forks" off other threads
6021 * to do that as needed.
6022 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6023 * "->recovery" and create a thread at ->sync_thread.
6024 * When the thread finishes it sets MD_RECOVERY_DONE
6025 * and wakeups up this thread which will reap the thread and finish up.
6026 * This thread also removes any faulty devices (with nr_pending == 0).
6027 *
6028 * The overall approach is:
6029 * 1/ if the superblock needs updating, update it.
6030 * 2/ If a recovery thread is running, don't do anything else.
6031 * 3/ If recovery has finished, clean up, possibly marking spares active.
6032 * 4/ If there are any faulty devices, remove them.
6033 * 5/ If array is degraded, try to add spares devices
6034 * 6/ If array has spares or is not in-sync, start a resync thread.
6035 */
6036 void md_check_recovery(mddev_t *mddev)
6037 {
6038 mdk_rdev_t *rdev;
6039 struct list_head *rtmp;
6040
6041
6042 if (mddev->bitmap)
6043 bitmap_daemon_work(mddev->bitmap);
6044
6045 if (mddev->ro)
6046 return;
6047
6048 if (signal_pending(current)) {
6049 if (mddev->pers->sync_request && !mddev->external) {
6050 printk(KERN_INFO "md: %s in immediate safe mode\n",
6051 mdname(mddev));
6052 mddev->safemode = 2;
6053 }
6054 flush_signals(current);
6055 }
6056
6057 if ( ! (
6058 (mddev->flags && !mddev->external) ||
6059 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6060 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6061 (mddev->external == 0 && mddev->safemode == 1) ||
6062 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6063 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6064 ))
6065 return;
6066
6067 if (mddev_trylock(mddev)) {
6068 int spares = 0;
6069
6070 if (!mddev->external) {
6071 int did_change = 0;
6072 spin_lock_irq(&mddev->write_lock);
6073 if (mddev->safemode &&
6074 !atomic_read(&mddev->writes_pending) &&
6075 !mddev->in_sync &&
6076 mddev->recovery_cp == MaxSector) {
6077 mddev->in_sync = 1;
6078 did_change = 1;
6079 if (mddev->persistent)
6080 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6081 }
6082 if (mddev->safemode == 1)
6083 mddev->safemode = 0;
6084 spin_unlock_irq(&mddev->write_lock);
6085 if (did_change)
6086 sysfs_notify(&mddev->kobj, NULL, "array_state");
6087 }
6088
6089 if (mddev->flags)
6090 md_update_sb(mddev, 0);
6091
6092 rdev_for_each(rdev, rtmp, mddev)
6093 if (test_and_clear_bit(StateChanged, &rdev->flags))
6094 sysfs_notify(&rdev->kobj, NULL, "state");
6095
6096
6097 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6098 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6099 /* resync/recovery still happening */
6100 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6101 goto unlock;
6102 }
6103 if (mddev->sync_thread) {
6104 /* resync has finished, collect result */
6105 md_unregister_thread(mddev->sync_thread);
6106 mddev->sync_thread = NULL;
6107 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6108 /* success...*/
6109 /* activate any spares */
6110 if (mddev->pers->spare_active(mddev))
6111 sysfs_notify(&mddev->kobj, NULL,
6112 "degraded");
6113 }
6114 md_update_sb(mddev, 1);
6115
6116 /* if array is no-longer degraded, then any saved_raid_disk
6117 * information must be scrapped
6118 */
6119 if (!mddev->degraded)
6120 rdev_for_each(rdev, rtmp, mddev)
6121 rdev->saved_raid_disk = -1;
6122
6123 mddev->recovery = 0;
6124 /* flag recovery needed just to double check */
6125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6126 sysfs_notify(&mddev->kobj, NULL, "sync_action");
6127 md_new_event(mddev);
6128 goto unlock;
6129 }
6130 /* Set RUNNING before clearing NEEDED to avoid
6131 * any transients in the value of "sync_action".
6132 */
6133 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6134 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6135 /* Clear some bits that don't mean anything, but
6136 * might be left set
6137 */
6138 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6139 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6140
6141 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6142 goto unlock;
6143 /* no recovery is running.
6144 * remove any failed drives, then
6145 * add spares if possible.
6146 * Spare are also removed and re-added, to allow
6147 * the personality to fail the re-add.
6148 */
6149
6150 if (mddev->reshape_position != MaxSector) {
6151 if (mddev->pers->check_reshape(mddev) != 0)
6152 /* Cannot proceed */
6153 goto unlock;
6154 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6155 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6156 } else if ((spares = remove_and_add_spares(mddev))) {
6157 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6158 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6159 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6160 } else if (mddev->recovery_cp < MaxSector) {
6161 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6162 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6163 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6164 /* nothing to be done ... */
6165 goto unlock;
6166
6167 if (mddev->pers->sync_request) {
6168 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6169 /* We are adding a device or devices to an array
6170 * which has the bitmap stored on all devices.
6171 * So make sure all bitmap pages get written
6172 */
6173 bitmap_write_all(mddev->bitmap);
6174 }
6175 mddev->sync_thread = md_register_thread(md_do_sync,
6176 mddev,
6177 "%s_resync");
6178 if (!mddev->sync_thread) {
6179 printk(KERN_ERR "%s: could not start resync"
6180 " thread...\n",
6181 mdname(mddev));
6182 /* leave the spares where they are, it shouldn't hurt */
6183 mddev->recovery = 0;
6184 } else
6185 md_wakeup_thread(mddev->sync_thread);
6186 sysfs_notify(&mddev->kobj, NULL, "sync_action");
6187 md_new_event(mddev);
6188 }
6189 unlock:
6190 if (!mddev->sync_thread) {
6191 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6192 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6193 &mddev->recovery))
6194 sysfs_notify(&mddev->kobj, NULL, "sync_action");
6195 }
6196 mddev_unlock(mddev);
6197 }
6198 }
6199
6200 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6201 {
6202 sysfs_notify(&rdev->kobj, NULL, "state");
6203 wait_event_timeout(rdev->blocked_wait,
6204 !test_bit(Blocked, &rdev->flags),
6205 msecs_to_jiffies(5000));
6206 rdev_dec_pending(rdev, mddev);
6207 }
6208 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6209
6210 static int md_notify_reboot(struct notifier_block *this,
6211 unsigned long code, void *x)
6212 {
6213 struct list_head *tmp;
6214 mddev_t *mddev;
6215
6216 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6217
6218 printk(KERN_INFO "md: stopping all md devices.\n");
6219
6220 for_each_mddev(mddev, tmp)
6221 if (mddev_trylock(mddev)) {
6222 do_md_stop (mddev, 1, 0);
6223 mddev_unlock(mddev);
6224 }
6225 /*
6226 * certain more exotic SCSI devices are known to be
6227 * volatile wrt too early system reboots. While the
6228 * right place to handle this issue is the given
6229 * driver, we do want to have a safe RAID driver ...
6230 */
6231 mdelay(1000*1);
6232 }
6233 return NOTIFY_DONE;
6234 }
6235
6236 static struct notifier_block md_notifier = {
6237 .notifier_call = md_notify_reboot,
6238 .next = NULL,
6239 .priority = INT_MAX, /* before any real devices */
6240 };
6241
6242 static void md_geninit(void)
6243 {
6244 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6245
6246 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6247 }
6248
6249 static int __init md_init(void)
6250 {
6251 if (register_blkdev(MAJOR_NR, "md"))
6252 return -1;
6253 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6254 unregister_blkdev(MAJOR_NR, "md");
6255 return -1;
6256 }
6257 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6258 md_probe, NULL, NULL);
6259 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6260 md_probe, NULL, NULL);
6261
6262 register_reboot_notifier(&md_notifier);
6263 raid_table_header = register_sysctl_table(raid_root_table);
6264
6265 md_geninit();
6266 return (0);
6267 }
6268
6269
6270 #ifndef MODULE
6271
6272 /*
6273 * Searches all registered partitions for autorun RAID arrays
6274 * at boot time.
6275 */
6276
6277 static LIST_HEAD(all_detected_devices);
6278 struct detected_devices_node {
6279 struct list_head list;
6280 dev_t dev;
6281 };
6282
6283 void md_autodetect_dev(dev_t dev)
6284 {
6285 struct detected_devices_node *node_detected_dev;
6286
6287 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6288 if (node_detected_dev) {
6289 node_detected_dev->dev = dev;
6290 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6291 } else {
6292 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6293 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6294 }
6295 }
6296
6297
6298 static void autostart_arrays(int part)
6299 {
6300 mdk_rdev_t *rdev;
6301 struct detected_devices_node *node_detected_dev;
6302 dev_t dev;
6303 int i_scanned, i_passed;
6304
6305 i_scanned = 0;
6306 i_passed = 0;
6307
6308 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6309
6310 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6311 i_scanned++;
6312 node_detected_dev = list_entry(all_detected_devices.next,
6313 struct detected_devices_node, list);
6314 list_del(&node_detected_dev->list);
6315 dev = node_detected_dev->dev;
6316 kfree(node_detected_dev);
6317 rdev = md_import_device(dev,0, 90);
6318 if (IS_ERR(rdev))
6319 continue;
6320
6321 if (test_bit(Faulty, &rdev->flags)) {
6322 MD_BUG();
6323 continue;
6324 }
6325 set_bit(AutoDetected, &rdev->flags);
6326 list_add(&rdev->same_set, &pending_raid_disks);
6327 i_passed++;
6328 }
6329
6330 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6331 i_scanned, i_passed);
6332
6333 autorun_devices(part);
6334 }
6335
6336 #endif /* !MODULE */
6337
6338 static __exit void md_exit(void)
6339 {
6340 mddev_t *mddev;
6341 struct list_head *tmp;
6342
6343 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6344 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6345
6346 unregister_blkdev(MAJOR_NR,"md");
6347 unregister_blkdev(mdp_major, "mdp");
6348 unregister_reboot_notifier(&md_notifier);
6349 unregister_sysctl_table(raid_table_header);
6350 remove_proc_entry("mdstat", NULL);
6351 for_each_mddev(mddev, tmp) {
6352 struct gendisk *disk = mddev->gendisk;
6353 if (!disk)
6354 continue;
6355 export_array(mddev);
6356 del_gendisk(disk);
6357 put_disk(disk);
6358 mddev->gendisk = NULL;
6359 mddev_put(mddev);
6360 }
6361 }
6362
6363 subsys_initcall(md_init);
6364 module_exit(md_exit)
6365
6366 static int get_ro(char *buffer, struct kernel_param *kp)
6367 {
6368 return sprintf(buffer, "%d", start_readonly);
6369 }
6370 static int set_ro(const char *val, struct kernel_param *kp)
6371 {
6372 char *e;
6373 int num = simple_strtoul(val, &e, 10);
6374 if (*val && (*e == '\0' || *e == '\n')) {
6375 start_readonly = num;
6376 return 0;
6377 }
6378 return -EINVAL;
6379 }
6380
6381 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6382 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6383
6384
6385 EXPORT_SYMBOL(register_md_personality);
6386 EXPORT_SYMBOL(unregister_md_personality);
6387 EXPORT_SYMBOL(md_error);
6388 EXPORT_SYMBOL(md_done_sync);
6389 EXPORT_SYMBOL(md_write_start);
6390 EXPORT_SYMBOL(md_write_end);
6391 EXPORT_SYMBOL(md_register_thread);
6392 EXPORT_SYMBOL(md_unregister_thread);
6393 EXPORT_SYMBOL(md_wakeup_thread);
6394 EXPORT_SYMBOL(md_check_recovery);
6395 MODULE_LICENSE("GPL");
6396 MODULE_ALIAS("md");
6397 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);