]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/md.c
md: remove unnecessary arguments from ->reconfig method.
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63
64 static void md_print_devices(void);
65
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69
70 /*
71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72 * is 1000 KB/sec, so the extra system load does not show up that much.
73 * Increase it if you want to have more _guaranteed_ speed. Note that
74 * the RAID driver will use the maximum available bandwidth if the IO
75 * subsystem is idle. There is also an 'absolute maximum' reconstruction
76 * speed limit - in case reconstruction slows down your system despite
77 * idle IO detection.
78 *
79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80 * or /sys/block/mdX/md/sync_speed_{min,max}
81 */
82
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 return mddev->sync_speed_min ?
88 mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90
91 static inline int speed_max(mddev_t *mddev)
92 {
93 return mddev->sync_speed_max ?
94 mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96
97 static struct ctl_table_header *raid_table_header;
98
99 static ctl_table raid_table[] = {
100 {
101 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
102 .procname = "speed_limit_min",
103 .data = &sysctl_speed_limit_min,
104 .maxlen = sizeof(int),
105 .mode = S_IRUGO|S_IWUSR,
106 .proc_handler = &proc_dointvec,
107 },
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
110 .procname = "speed_limit_max",
111 .data = &sysctl_speed_limit_max,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 { .ctl_name = 0 }
117 };
118
119 static ctl_table raid_dir_table[] = {
120 {
121 .ctl_name = DEV_RAID,
122 .procname = "raid",
123 .maxlen = 0,
124 .mode = S_IRUGO|S_IXUGO,
125 .child = raid_table,
126 },
127 { .ctl_name = 0 }
128 };
129
130 static ctl_table raid_root_table[] = {
131 {
132 .ctl_name = CTL_DEV,
133 .procname = "dev",
134 .maxlen = 0,
135 .mode = 0555,
136 .child = raid_dir_table,
137 },
138 { .ctl_name = 0 }
139 };
140
141 static struct block_device_operations md_fops;
142
143 static int start_readonly;
144
145 /*
146 * We have a system wide 'event count' that is incremented
147 * on any 'interesting' event, and readers of /proc/mdstat
148 * can use 'poll' or 'select' to find out when the event
149 * count increases.
150 *
151 * Events are:
152 * start array, stop array, error, add device, remove device,
153 * start build, activate spare
154 */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 atomic_inc(&md_event_count);
160 wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163
164 /* Alternate version that can be called from interrupts
165 * when calling sysfs_notify isn't needed.
166 */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 atomic_inc(&md_event_count);
170 wake_up(&md_event_waiters);
171 }
172
173 /*
174 * Enables to iterate over all existing md arrays
175 * all_mddevs_lock protects this list.
176 */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179
180
181 /*
182 * iterates through all used mddevs in the system.
183 * We take care to grab the all_mddevs_lock whenever navigating
184 * the list, and to always hold a refcount when unlocked.
185 * Any code which breaks out of this loop while own
186 * a reference to the current mddev and must mddev_put it.
187 */
188 #define for_each_mddev(mddev,tmp) \
189 \
190 for (({ spin_lock(&all_mddevs_lock); \
191 tmp = all_mddevs.next; \
192 mddev = NULL;}); \
193 ({ if (tmp != &all_mddevs) \
194 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 spin_unlock(&all_mddevs_lock); \
196 if (mddev) mddev_put(mddev); \
197 mddev = list_entry(tmp, mddev_t, all_mddevs); \
198 tmp != &all_mddevs;}); \
199 ({ spin_lock(&all_mddevs_lock); \
200 tmp = tmp->next;}) \
201 )
202
203
204 /* Rather than calling directly into the personality make_request function,
205 * IO requests come here first so that we can check if the device is
206 * being suspended pending a reconfiguration.
207 * We hold a refcount over the call to ->make_request. By the time that
208 * call has finished, the bio has been linked into some internal structure
209 * and so is visible to ->quiesce(), so we don't need the refcount any more.
210 */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 mddev_t *mddev = q->queuedata;
214 int rv;
215 if (mddev == NULL || mddev->pers == NULL) {
216 bio_io_error(bio);
217 return 0;
218 }
219 rcu_read_lock();
220 if (mddev->suspended) {
221 DEFINE_WAIT(__wait);
222 for (;;) {
223 prepare_to_wait(&mddev->sb_wait, &__wait,
224 TASK_UNINTERRUPTIBLE);
225 if (!mddev->suspended)
226 break;
227 rcu_read_unlock();
228 schedule();
229 rcu_read_lock();
230 }
231 finish_wait(&mddev->sb_wait, &__wait);
232 }
233 atomic_inc(&mddev->active_io);
234 rcu_read_unlock();
235 rv = mddev->pers->make_request(q, bio);
236 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 wake_up(&mddev->sb_wait);
238
239 return rv;
240 }
241
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 BUG_ON(mddev->suspended);
245 mddev->suspended = 1;
246 synchronize_rcu();
247 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 mddev->pers->quiesce(mddev, 1);
249 md_unregister_thread(mddev->thread);
250 mddev->thread = NULL;
251 /* we now know that no code is executing in the personality module,
252 * except possibly the tail end of a ->bi_end_io function, but that
253 * is certain to complete before the module has a chance to get
254 * unloaded
255 */
256 }
257
258 static void mddev_resume(mddev_t *mddev)
259 {
260 mddev->suspended = 0;
261 wake_up(&mddev->sb_wait);
262 mddev->pers->quiesce(mddev, 0);
263 }
264
265
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 atomic_inc(&mddev->active);
269 return mddev;
270 }
271
272 static void mddev_delayed_delete(struct work_struct *ws);
273
274 static void mddev_put(mddev_t *mddev)
275 {
276 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
277 return;
278 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
279 !mddev->hold_active) {
280 list_del(&mddev->all_mddevs);
281 if (mddev->gendisk) {
282 /* we did a probe so need to clean up.
283 * Call schedule_work inside the spinlock
284 * so that flush_scheduled_work() after
285 * mddev_find will succeed in waiting for the
286 * work to be done.
287 */
288 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
289 schedule_work(&mddev->del_work);
290 } else
291 kfree(mddev);
292 }
293 spin_unlock(&all_mddevs_lock);
294 }
295
296 static mddev_t * mddev_find(dev_t unit)
297 {
298 mddev_t *mddev, *new = NULL;
299
300 retry:
301 spin_lock(&all_mddevs_lock);
302
303 if (unit) {
304 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
305 if (mddev->unit == unit) {
306 mddev_get(mddev);
307 spin_unlock(&all_mddevs_lock);
308 kfree(new);
309 return mddev;
310 }
311
312 if (new) {
313 list_add(&new->all_mddevs, &all_mddevs);
314 spin_unlock(&all_mddevs_lock);
315 new->hold_active = UNTIL_IOCTL;
316 return new;
317 }
318 } else if (new) {
319 /* find an unused unit number */
320 static int next_minor = 512;
321 int start = next_minor;
322 int is_free = 0;
323 int dev = 0;
324 while (!is_free) {
325 dev = MKDEV(MD_MAJOR, next_minor);
326 next_minor++;
327 if (next_minor > MINORMASK)
328 next_minor = 0;
329 if (next_minor == start) {
330 /* Oh dear, all in use. */
331 spin_unlock(&all_mddevs_lock);
332 kfree(new);
333 return NULL;
334 }
335
336 is_free = 1;
337 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
338 if (mddev->unit == dev) {
339 is_free = 0;
340 break;
341 }
342 }
343 new->unit = dev;
344 new->md_minor = MINOR(dev);
345 new->hold_active = UNTIL_STOP;
346 list_add(&new->all_mddevs, &all_mddevs);
347 spin_unlock(&all_mddevs_lock);
348 return new;
349 }
350 spin_unlock(&all_mddevs_lock);
351
352 new = kzalloc(sizeof(*new), GFP_KERNEL);
353 if (!new)
354 return NULL;
355
356 new->unit = unit;
357 if (MAJOR(unit) == MD_MAJOR)
358 new->md_minor = MINOR(unit);
359 else
360 new->md_minor = MINOR(unit) >> MdpMinorShift;
361
362 mutex_init(&new->reconfig_mutex);
363 INIT_LIST_HEAD(&new->disks);
364 INIT_LIST_HEAD(&new->all_mddevs);
365 init_timer(&new->safemode_timer);
366 atomic_set(&new->active, 1);
367 atomic_set(&new->openers, 0);
368 atomic_set(&new->active_io, 0);
369 spin_lock_init(&new->write_lock);
370 init_waitqueue_head(&new->sb_wait);
371 init_waitqueue_head(&new->recovery_wait);
372 new->reshape_position = MaxSector;
373 new->resync_min = 0;
374 new->resync_max = MaxSector;
375 new->level = LEVEL_NONE;
376
377 goto retry;
378 }
379
380 static inline int mddev_lock(mddev_t * mddev)
381 {
382 return mutex_lock_interruptible(&mddev->reconfig_mutex);
383 }
384
385 static inline int mddev_is_locked(mddev_t *mddev)
386 {
387 return mutex_is_locked(&mddev->reconfig_mutex);
388 }
389
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 return mutex_trylock(&mddev->reconfig_mutex);
393 }
394
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 mutex_unlock(&mddev->reconfig_mutex);
398
399 md_wakeup_thread(mddev->thread);
400 }
401
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 mdk_rdev_t *rdev;
405
406 list_for_each_entry(rdev, &mddev->disks, same_set)
407 if (rdev->desc_nr == nr)
408 return rdev;
409
410 return NULL;
411 }
412
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 mdk_rdev_t *rdev;
416
417 list_for_each_entry(rdev, &mddev->disks, same_set)
418 if (rdev->bdev->bd_dev == dev)
419 return rdev;
420
421 return NULL;
422 }
423
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 struct mdk_personality *pers;
427 list_for_each_entry(pers, &pers_list, list) {
428 if (level != LEVEL_NONE && pers->level == level)
429 return pers;
430 if (strcmp(pers->name, clevel)==0)
431 return pers;
432 }
433 return NULL;
434 }
435
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442
443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
444 {
445 sector_t num_sectors = rdev->sb_start;
446
447 if (chunk_size) {
448 unsigned chunk_sects = chunk_size>>9;
449 sector_div(num_sectors, chunk_sects);
450 num_sectors *= chunk_sects;
451 }
452 return num_sectors;
453 }
454
455 static int alloc_disk_sb(mdk_rdev_t * rdev)
456 {
457 if (rdev->sb_page)
458 MD_BUG();
459
460 rdev->sb_page = alloc_page(GFP_KERNEL);
461 if (!rdev->sb_page) {
462 printk(KERN_ALERT "md: out of memory.\n");
463 return -ENOMEM;
464 }
465
466 return 0;
467 }
468
469 static void free_disk_sb(mdk_rdev_t * rdev)
470 {
471 if (rdev->sb_page) {
472 put_page(rdev->sb_page);
473 rdev->sb_loaded = 0;
474 rdev->sb_page = NULL;
475 rdev->sb_start = 0;
476 rdev->sectors = 0;
477 }
478 }
479
480
481 static void super_written(struct bio *bio, int error)
482 {
483 mdk_rdev_t *rdev = bio->bi_private;
484 mddev_t *mddev = rdev->mddev;
485
486 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
487 printk("md: super_written gets error=%d, uptodate=%d\n",
488 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
489 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
490 md_error(mddev, rdev);
491 }
492
493 if (atomic_dec_and_test(&mddev->pending_writes))
494 wake_up(&mddev->sb_wait);
495 bio_put(bio);
496 }
497
498 static void super_written_barrier(struct bio *bio, int error)
499 {
500 struct bio *bio2 = bio->bi_private;
501 mdk_rdev_t *rdev = bio2->bi_private;
502 mddev_t *mddev = rdev->mddev;
503
504 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
505 error == -EOPNOTSUPP) {
506 unsigned long flags;
507 /* barriers don't appear to be supported :-( */
508 set_bit(BarriersNotsupp, &rdev->flags);
509 mddev->barriers_work = 0;
510 spin_lock_irqsave(&mddev->write_lock, flags);
511 bio2->bi_next = mddev->biolist;
512 mddev->biolist = bio2;
513 spin_unlock_irqrestore(&mddev->write_lock, flags);
514 wake_up(&mddev->sb_wait);
515 bio_put(bio);
516 } else {
517 bio_put(bio2);
518 bio->bi_private = rdev;
519 super_written(bio, error);
520 }
521 }
522
523 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
524 sector_t sector, int size, struct page *page)
525 {
526 /* write first size bytes of page to sector of rdev
527 * Increment mddev->pending_writes before returning
528 * and decrement it on completion, waking up sb_wait
529 * if zero is reached.
530 * If an error occurred, call md_error
531 *
532 * As we might need to resubmit the request if BIO_RW_BARRIER
533 * causes ENOTSUPP, we allocate a spare bio...
534 */
535 struct bio *bio = bio_alloc(GFP_NOIO, 1);
536 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
537
538 bio->bi_bdev = rdev->bdev;
539 bio->bi_sector = sector;
540 bio_add_page(bio, page, size, 0);
541 bio->bi_private = rdev;
542 bio->bi_end_io = super_written;
543 bio->bi_rw = rw;
544
545 atomic_inc(&mddev->pending_writes);
546 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
547 struct bio *rbio;
548 rw |= (1<<BIO_RW_BARRIER);
549 rbio = bio_clone(bio, GFP_NOIO);
550 rbio->bi_private = bio;
551 rbio->bi_end_io = super_written_barrier;
552 submit_bio(rw, rbio);
553 } else
554 submit_bio(rw, bio);
555 }
556
557 void md_super_wait(mddev_t *mddev)
558 {
559 /* wait for all superblock writes that were scheduled to complete.
560 * if any had to be retried (due to BARRIER problems), retry them
561 */
562 DEFINE_WAIT(wq);
563 for(;;) {
564 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
565 if (atomic_read(&mddev->pending_writes)==0)
566 break;
567 while (mddev->biolist) {
568 struct bio *bio;
569 spin_lock_irq(&mddev->write_lock);
570 bio = mddev->biolist;
571 mddev->biolist = bio->bi_next ;
572 bio->bi_next = NULL;
573 spin_unlock_irq(&mddev->write_lock);
574 submit_bio(bio->bi_rw, bio);
575 }
576 schedule();
577 }
578 finish_wait(&mddev->sb_wait, &wq);
579 }
580
581 static void bi_complete(struct bio *bio, int error)
582 {
583 complete((struct completion*)bio->bi_private);
584 }
585
586 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
587 struct page *page, int rw)
588 {
589 struct bio *bio = bio_alloc(GFP_NOIO, 1);
590 struct completion event;
591 int ret;
592
593 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
594
595 bio->bi_bdev = bdev;
596 bio->bi_sector = sector;
597 bio_add_page(bio, page, size, 0);
598 init_completion(&event);
599 bio->bi_private = &event;
600 bio->bi_end_io = bi_complete;
601 submit_bio(rw, bio);
602 wait_for_completion(&event);
603
604 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
605 bio_put(bio);
606 return ret;
607 }
608 EXPORT_SYMBOL_GPL(sync_page_io);
609
610 static int read_disk_sb(mdk_rdev_t * rdev, int size)
611 {
612 char b[BDEVNAME_SIZE];
613 if (!rdev->sb_page) {
614 MD_BUG();
615 return -EINVAL;
616 }
617 if (rdev->sb_loaded)
618 return 0;
619
620
621 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
622 goto fail;
623 rdev->sb_loaded = 1;
624 return 0;
625
626 fail:
627 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
628 bdevname(rdev->bdev,b));
629 return -EINVAL;
630 }
631
632 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
633 {
634 return sb1->set_uuid0 == sb2->set_uuid0 &&
635 sb1->set_uuid1 == sb2->set_uuid1 &&
636 sb1->set_uuid2 == sb2->set_uuid2 &&
637 sb1->set_uuid3 == sb2->set_uuid3;
638 }
639
640 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
641 {
642 int ret;
643 mdp_super_t *tmp1, *tmp2;
644
645 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
646 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
647
648 if (!tmp1 || !tmp2) {
649 ret = 0;
650 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
651 goto abort;
652 }
653
654 *tmp1 = *sb1;
655 *tmp2 = *sb2;
656
657 /*
658 * nr_disks is not constant
659 */
660 tmp1->nr_disks = 0;
661 tmp2->nr_disks = 0;
662
663 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
664 abort:
665 kfree(tmp1);
666 kfree(tmp2);
667 return ret;
668 }
669
670
671 static u32 md_csum_fold(u32 csum)
672 {
673 csum = (csum & 0xffff) + (csum >> 16);
674 return (csum & 0xffff) + (csum >> 16);
675 }
676
677 static unsigned int calc_sb_csum(mdp_super_t * sb)
678 {
679 u64 newcsum = 0;
680 u32 *sb32 = (u32*)sb;
681 int i;
682 unsigned int disk_csum, csum;
683
684 disk_csum = sb->sb_csum;
685 sb->sb_csum = 0;
686
687 for (i = 0; i < MD_SB_BYTES/4 ; i++)
688 newcsum += sb32[i];
689 csum = (newcsum & 0xffffffff) + (newcsum>>32);
690
691
692 #ifdef CONFIG_ALPHA
693 /* This used to use csum_partial, which was wrong for several
694 * reasons including that different results are returned on
695 * different architectures. It isn't critical that we get exactly
696 * the same return value as before (we always csum_fold before
697 * testing, and that removes any differences). However as we
698 * know that csum_partial always returned a 16bit value on
699 * alphas, do a fold to maximise conformity to previous behaviour.
700 */
701 sb->sb_csum = md_csum_fold(disk_csum);
702 #else
703 sb->sb_csum = disk_csum;
704 #endif
705 return csum;
706 }
707
708
709 /*
710 * Handle superblock details.
711 * We want to be able to handle multiple superblock formats
712 * so we have a common interface to them all, and an array of
713 * different handlers.
714 * We rely on user-space to write the initial superblock, and support
715 * reading and updating of superblocks.
716 * Interface methods are:
717 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
718 * loads and validates a superblock on dev.
719 * if refdev != NULL, compare superblocks on both devices
720 * Return:
721 * 0 - dev has a superblock that is compatible with refdev
722 * 1 - dev has a superblock that is compatible and newer than refdev
723 * so dev should be used as the refdev in future
724 * -EINVAL superblock incompatible or invalid
725 * -othererror e.g. -EIO
726 *
727 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
728 * Verify that dev is acceptable into mddev.
729 * The first time, mddev->raid_disks will be 0, and data from
730 * dev should be merged in. Subsequent calls check that dev
731 * is new enough. Return 0 or -EINVAL
732 *
733 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
734 * Update the superblock for rdev with data in mddev
735 * This does not write to disc.
736 *
737 */
738
739 struct super_type {
740 char *name;
741 struct module *owner;
742 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
743 int minor_version);
744 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
745 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
746 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
747 sector_t num_sectors);
748 };
749
750 /*
751 * load_super for 0.90.0
752 */
753 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
754 {
755 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
756 mdp_super_t *sb;
757 int ret;
758
759 /*
760 * Calculate the position of the superblock (512byte sectors),
761 * it's at the end of the disk.
762 *
763 * It also happens to be a multiple of 4Kb.
764 */
765 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
766
767 ret = read_disk_sb(rdev, MD_SB_BYTES);
768 if (ret) return ret;
769
770 ret = -EINVAL;
771
772 bdevname(rdev->bdev, b);
773 sb = (mdp_super_t*)page_address(rdev->sb_page);
774
775 if (sb->md_magic != MD_SB_MAGIC) {
776 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
777 b);
778 goto abort;
779 }
780
781 if (sb->major_version != 0 ||
782 sb->minor_version < 90 ||
783 sb->minor_version > 91) {
784 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
785 sb->major_version, sb->minor_version,
786 b);
787 goto abort;
788 }
789
790 if (sb->raid_disks <= 0)
791 goto abort;
792
793 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
794 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
795 b);
796 goto abort;
797 }
798
799 rdev->preferred_minor = sb->md_minor;
800 rdev->data_offset = 0;
801 rdev->sb_size = MD_SB_BYTES;
802
803 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
804 if (sb->level != 1 && sb->level != 4
805 && sb->level != 5 && sb->level != 6
806 && sb->level != 10) {
807 /* FIXME use a better test */
808 printk(KERN_WARNING
809 "md: bitmaps not supported for this level.\n");
810 goto abort;
811 }
812 }
813
814 if (sb->level == LEVEL_MULTIPATH)
815 rdev->desc_nr = -1;
816 else
817 rdev->desc_nr = sb->this_disk.number;
818
819 if (!refdev) {
820 ret = 1;
821 } else {
822 __u64 ev1, ev2;
823 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
824 if (!uuid_equal(refsb, sb)) {
825 printk(KERN_WARNING "md: %s has different UUID to %s\n",
826 b, bdevname(refdev->bdev,b2));
827 goto abort;
828 }
829 if (!sb_equal(refsb, sb)) {
830 printk(KERN_WARNING "md: %s has same UUID"
831 " but different superblock to %s\n",
832 b, bdevname(refdev->bdev, b2));
833 goto abort;
834 }
835 ev1 = md_event(sb);
836 ev2 = md_event(refsb);
837 if (ev1 > ev2)
838 ret = 1;
839 else
840 ret = 0;
841 }
842 rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
843
844 if (rdev->sectors < sb->size * 2 && sb->level > 1)
845 /* "this cannot possibly happen" ... */
846 ret = -EINVAL;
847
848 abort:
849 return ret;
850 }
851
852 /*
853 * validate_super for 0.90.0
854 */
855 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
856 {
857 mdp_disk_t *desc;
858 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
859 __u64 ev1 = md_event(sb);
860
861 rdev->raid_disk = -1;
862 clear_bit(Faulty, &rdev->flags);
863 clear_bit(In_sync, &rdev->flags);
864 clear_bit(WriteMostly, &rdev->flags);
865 clear_bit(BarriersNotsupp, &rdev->flags);
866
867 if (mddev->raid_disks == 0) {
868 mddev->major_version = 0;
869 mddev->minor_version = sb->minor_version;
870 mddev->patch_version = sb->patch_version;
871 mddev->external = 0;
872 mddev->chunk_sectors = sb->chunk_size >> 9;
873 mddev->ctime = sb->ctime;
874 mddev->utime = sb->utime;
875 mddev->level = sb->level;
876 mddev->clevel[0] = 0;
877 mddev->layout = sb->layout;
878 mddev->raid_disks = sb->raid_disks;
879 mddev->dev_sectors = sb->size * 2;
880 mddev->events = ev1;
881 mddev->bitmap_offset = 0;
882 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
883
884 if (mddev->minor_version >= 91) {
885 mddev->reshape_position = sb->reshape_position;
886 mddev->delta_disks = sb->delta_disks;
887 mddev->new_level = sb->new_level;
888 mddev->new_layout = sb->new_layout;
889 mddev->new_chunk_sectors = sb->new_chunk >> 9;
890 } else {
891 mddev->reshape_position = MaxSector;
892 mddev->delta_disks = 0;
893 mddev->new_level = mddev->level;
894 mddev->new_layout = mddev->layout;
895 mddev->new_chunk_sectors = mddev->chunk_sectors;
896 }
897
898 if (sb->state & (1<<MD_SB_CLEAN))
899 mddev->recovery_cp = MaxSector;
900 else {
901 if (sb->events_hi == sb->cp_events_hi &&
902 sb->events_lo == sb->cp_events_lo) {
903 mddev->recovery_cp = sb->recovery_cp;
904 } else
905 mddev->recovery_cp = 0;
906 }
907
908 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
909 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
910 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
911 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
912
913 mddev->max_disks = MD_SB_DISKS;
914
915 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
916 mddev->bitmap_file == NULL)
917 mddev->bitmap_offset = mddev->default_bitmap_offset;
918
919 } else if (mddev->pers == NULL) {
920 /* Insist on good event counter while assembling */
921 ++ev1;
922 if (ev1 < mddev->events)
923 return -EINVAL;
924 } else if (mddev->bitmap) {
925 /* if adding to array with a bitmap, then we can accept an
926 * older device ... but not too old.
927 */
928 if (ev1 < mddev->bitmap->events_cleared)
929 return 0;
930 } else {
931 if (ev1 < mddev->events)
932 /* just a hot-add of a new device, leave raid_disk at -1 */
933 return 0;
934 }
935
936 if (mddev->level != LEVEL_MULTIPATH) {
937 desc = sb->disks + rdev->desc_nr;
938
939 if (desc->state & (1<<MD_DISK_FAULTY))
940 set_bit(Faulty, &rdev->flags);
941 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
942 desc->raid_disk < mddev->raid_disks */) {
943 set_bit(In_sync, &rdev->flags);
944 rdev->raid_disk = desc->raid_disk;
945 }
946 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
947 set_bit(WriteMostly, &rdev->flags);
948 } else /* MULTIPATH are always insync */
949 set_bit(In_sync, &rdev->flags);
950 return 0;
951 }
952
953 /*
954 * sync_super for 0.90.0
955 */
956 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
957 {
958 mdp_super_t *sb;
959 mdk_rdev_t *rdev2;
960 int next_spare = mddev->raid_disks;
961
962
963 /* make rdev->sb match mddev data..
964 *
965 * 1/ zero out disks
966 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
967 * 3/ any empty disks < next_spare become removed
968 *
969 * disks[0] gets initialised to REMOVED because
970 * we cannot be sure from other fields if it has
971 * been initialised or not.
972 */
973 int i;
974 int active=0, working=0,failed=0,spare=0,nr_disks=0;
975
976 rdev->sb_size = MD_SB_BYTES;
977
978 sb = (mdp_super_t*)page_address(rdev->sb_page);
979
980 memset(sb, 0, sizeof(*sb));
981
982 sb->md_magic = MD_SB_MAGIC;
983 sb->major_version = mddev->major_version;
984 sb->patch_version = mddev->patch_version;
985 sb->gvalid_words = 0; /* ignored */
986 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
987 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
988 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
989 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
990
991 sb->ctime = mddev->ctime;
992 sb->level = mddev->level;
993 sb->size = mddev->dev_sectors / 2;
994 sb->raid_disks = mddev->raid_disks;
995 sb->md_minor = mddev->md_minor;
996 sb->not_persistent = 0;
997 sb->utime = mddev->utime;
998 sb->state = 0;
999 sb->events_hi = (mddev->events>>32);
1000 sb->events_lo = (u32)mddev->events;
1001
1002 if (mddev->reshape_position == MaxSector)
1003 sb->minor_version = 90;
1004 else {
1005 sb->minor_version = 91;
1006 sb->reshape_position = mddev->reshape_position;
1007 sb->new_level = mddev->new_level;
1008 sb->delta_disks = mddev->delta_disks;
1009 sb->new_layout = mddev->new_layout;
1010 sb->new_chunk = mddev->new_chunk_sectors << 9;
1011 }
1012 mddev->minor_version = sb->minor_version;
1013 if (mddev->in_sync)
1014 {
1015 sb->recovery_cp = mddev->recovery_cp;
1016 sb->cp_events_hi = (mddev->events>>32);
1017 sb->cp_events_lo = (u32)mddev->events;
1018 if (mddev->recovery_cp == MaxSector)
1019 sb->state = (1<< MD_SB_CLEAN);
1020 } else
1021 sb->recovery_cp = 0;
1022
1023 sb->layout = mddev->layout;
1024 sb->chunk_size = mddev->chunk_sectors << 9;
1025
1026 if (mddev->bitmap && mddev->bitmap_file == NULL)
1027 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1028
1029 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1030 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1031 mdp_disk_t *d;
1032 int desc_nr;
1033 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1034 && !test_bit(Faulty, &rdev2->flags))
1035 desc_nr = rdev2->raid_disk;
1036 else
1037 desc_nr = next_spare++;
1038 rdev2->desc_nr = desc_nr;
1039 d = &sb->disks[rdev2->desc_nr];
1040 nr_disks++;
1041 d->number = rdev2->desc_nr;
1042 d->major = MAJOR(rdev2->bdev->bd_dev);
1043 d->minor = MINOR(rdev2->bdev->bd_dev);
1044 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1045 && !test_bit(Faulty, &rdev2->flags))
1046 d->raid_disk = rdev2->raid_disk;
1047 else
1048 d->raid_disk = rdev2->desc_nr; /* compatibility */
1049 if (test_bit(Faulty, &rdev2->flags))
1050 d->state = (1<<MD_DISK_FAULTY);
1051 else if (test_bit(In_sync, &rdev2->flags)) {
1052 d->state = (1<<MD_DISK_ACTIVE);
1053 d->state |= (1<<MD_DISK_SYNC);
1054 active++;
1055 working++;
1056 } else {
1057 d->state = 0;
1058 spare++;
1059 working++;
1060 }
1061 if (test_bit(WriteMostly, &rdev2->flags))
1062 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1063 }
1064 /* now set the "removed" and "faulty" bits on any missing devices */
1065 for (i=0 ; i < mddev->raid_disks ; i++) {
1066 mdp_disk_t *d = &sb->disks[i];
1067 if (d->state == 0 && d->number == 0) {
1068 d->number = i;
1069 d->raid_disk = i;
1070 d->state = (1<<MD_DISK_REMOVED);
1071 d->state |= (1<<MD_DISK_FAULTY);
1072 failed++;
1073 }
1074 }
1075 sb->nr_disks = nr_disks;
1076 sb->active_disks = active;
1077 sb->working_disks = working;
1078 sb->failed_disks = failed;
1079 sb->spare_disks = spare;
1080
1081 sb->this_disk = sb->disks[rdev->desc_nr];
1082 sb->sb_csum = calc_sb_csum(sb);
1083 }
1084
1085 /*
1086 * rdev_size_change for 0.90.0
1087 */
1088 static unsigned long long
1089 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1090 {
1091 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1092 return 0; /* component must fit device */
1093 if (rdev->mddev->bitmap_offset)
1094 return 0; /* can't move bitmap */
1095 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1096 if (!num_sectors || num_sectors > rdev->sb_start)
1097 num_sectors = rdev->sb_start;
1098 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1099 rdev->sb_page);
1100 md_super_wait(rdev->mddev);
1101 return num_sectors / 2; /* kB for sysfs */
1102 }
1103
1104
1105 /*
1106 * version 1 superblock
1107 */
1108
1109 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1110 {
1111 __le32 disk_csum;
1112 u32 csum;
1113 unsigned long long newcsum;
1114 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1115 __le32 *isuper = (__le32*)sb;
1116 int i;
1117
1118 disk_csum = sb->sb_csum;
1119 sb->sb_csum = 0;
1120 newcsum = 0;
1121 for (i=0; size>=4; size -= 4 )
1122 newcsum += le32_to_cpu(*isuper++);
1123
1124 if (size == 2)
1125 newcsum += le16_to_cpu(*(__le16*) isuper);
1126
1127 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1128 sb->sb_csum = disk_csum;
1129 return cpu_to_le32(csum);
1130 }
1131
1132 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1133 {
1134 struct mdp_superblock_1 *sb;
1135 int ret;
1136 sector_t sb_start;
1137 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1138 int bmask;
1139
1140 /*
1141 * Calculate the position of the superblock in 512byte sectors.
1142 * It is always aligned to a 4K boundary and
1143 * depeding on minor_version, it can be:
1144 * 0: At least 8K, but less than 12K, from end of device
1145 * 1: At start of device
1146 * 2: 4K from start of device.
1147 */
1148 switch(minor_version) {
1149 case 0:
1150 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1151 sb_start -= 8*2;
1152 sb_start &= ~(sector_t)(4*2-1);
1153 break;
1154 case 1:
1155 sb_start = 0;
1156 break;
1157 case 2:
1158 sb_start = 8;
1159 break;
1160 default:
1161 return -EINVAL;
1162 }
1163 rdev->sb_start = sb_start;
1164
1165 /* superblock is rarely larger than 1K, but it can be larger,
1166 * and it is safe to read 4k, so we do that
1167 */
1168 ret = read_disk_sb(rdev, 4096);
1169 if (ret) return ret;
1170
1171
1172 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1173
1174 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1175 sb->major_version != cpu_to_le32(1) ||
1176 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1177 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1178 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1179 return -EINVAL;
1180
1181 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1182 printk("md: invalid superblock checksum on %s\n",
1183 bdevname(rdev->bdev,b));
1184 return -EINVAL;
1185 }
1186 if (le64_to_cpu(sb->data_size) < 10) {
1187 printk("md: data_size too small on %s\n",
1188 bdevname(rdev->bdev,b));
1189 return -EINVAL;
1190 }
1191 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1192 if (sb->level != cpu_to_le32(1) &&
1193 sb->level != cpu_to_le32(4) &&
1194 sb->level != cpu_to_le32(5) &&
1195 sb->level != cpu_to_le32(6) &&
1196 sb->level != cpu_to_le32(10)) {
1197 printk(KERN_WARNING
1198 "md: bitmaps not supported for this level.\n");
1199 return -EINVAL;
1200 }
1201 }
1202
1203 rdev->preferred_minor = 0xffff;
1204 rdev->data_offset = le64_to_cpu(sb->data_offset);
1205 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1206
1207 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1208 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1209 if (rdev->sb_size & bmask)
1210 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1211
1212 if (minor_version
1213 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1214 return -EINVAL;
1215
1216 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1217 rdev->desc_nr = -1;
1218 else
1219 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1220
1221 if (!refdev) {
1222 ret = 1;
1223 } else {
1224 __u64 ev1, ev2;
1225 struct mdp_superblock_1 *refsb =
1226 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1227
1228 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1229 sb->level != refsb->level ||
1230 sb->layout != refsb->layout ||
1231 sb->chunksize != refsb->chunksize) {
1232 printk(KERN_WARNING "md: %s has strangely different"
1233 " superblock to %s\n",
1234 bdevname(rdev->bdev,b),
1235 bdevname(refdev->bdev,b2));
1236 return -EINVAL;
1237 }
1238 ev1 = le64_to_cpu(sb->events);
1239 ev2 = le64_to_cpu(refsb->events);
1240
1241 if (ev1 > ev2)
1242 ret = 1;
1243 else
1244 ret = 0;
1245 }
1246 if (minor_version)
1247 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1248 le64_to_cpu(sb->data_offset);
1249 else
1250 rdev->sectors = rdev->sb_start;
1251 if (rdev->sectors < le64_to_cpu(sb->data_size))
1252 return -EINVAL;
1253 rdev->sectors = le64_to_cpu(sb->data_size);
1254 if (le32_to_cpu(sb->chunksize)) {
1255 int chunk_sects = le32_to_cpu(sb->chunksize);
1256 sector_t chunks = rdev->sectors;
1257 sector_div(chunks, chunk_sects);
1258 rdev->sectors = chunks * chunk_sects;
1259 }
1260
1261 if (le64_to_cpu(sb->size) > rdev->sectors)
1262 return -EINVAL;
1263 return ret;
1264 }
1265
1266 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1267 {
1268 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1269 __u64 ev1 = le64_to_cpu(sb->events);
1270
1271 rdev->raid_disk = -1;
1272 clear_bit(Faulty, &rdev->flags);
1273 clear_bit(In_sync, &rdev->flags);
1274 clear_bit(WriteMostly, &rdev->flags);
1275 clear_bit(BarriersNotsupp, &rdev->flags);
1276
1277 if (mddev->raid_disks == 0) {
1278 mddev->major_version = 1;
1279 mddev->patch_version = 0;
1280 mddev->external = 0;
1281 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1282 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1283 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1284 mddev->level = le32_to_cpu(sb->level);
1285 mddev->clevel[0] = 0;
1286 mddev->layout = le32_to_cpu(sb->layout);
1287 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1288 mddev->dev_sectors = le64_to_cpu(sb->size);
1289 mddev->events = ev1;
1290 mddev->bitmap_offset = 0;
1291 mddev->default_bitmap_offset = 1024 >> 9;
1292
1293 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1294 memcpy(mddev->uuid, sb->set_uuid, 16);
1295
1296 mddev->max_disks = (4096-256)/2;
1297
1298 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1299 mddev->bitmap_file == NULL )
1300 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1301
1302 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1303 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1304 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1305 mddev->new_level = le32_to_cpu(sb->new_level);
1306 mddev->new_layout = le32_to_cpu(sb->new_layout);
1307 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1308 } else {
1309 mddev->reshape_position = MaxSector;
1310 mddev->delta_disks = 0;
1311 mddev->new_level = mddev->level;
1312 mddev->new_layout = mddev->layout;
1313 mddev->new_chunk_sectors = mddev->chunk_sectors;
1314 }
1315
1316 } else if (mddev->pers == NULL) {
1317 /* Insist of good event counter while assembling */
1318 ++ev1;
1319 if (ev1 < mddev->events)
1320 return -EINVAL;
1321 } else if (mddev->bitmap) {
1322 /* If adding to array with a bitmap, then we can accept an
1323 * older device, but not too old.
1324 */
1325 if (ev1 < mddev->bitmap->events_cleared)
1326 return 0;
1327 } else {
1328 if (ev1 < mddev->events)
1329 /* just a hot-add of a new device, leave raid_disk at -1 */
1330 return 0;
1331 }
1332 if (mddev->level != LEVEL_MULTIPATH) {
1333 int role;
1334 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1335 switch(role) {
1336 case 0xffff: /* spare */
1337 break;
1338 case 0xfffe: /* faulty */
1339 set_bit(Faulty, &rdev->flags);
1340 break;
1341 default:
1342 if ((le32_to_cpu(sb->feature_map) &
1343 MD_FEATURE_RECOVERY_OFFSET))
1344 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1345 else
1346 set_bit(In_sync, &rdev->flags);
1347 rdev->raid_disk = role;
1348 break;
1349 }
1350 if (sb->devflags & WriteMostly1)
1351 set_bit(WriteMostly, &rdev->flags);
1352 } else /* MULTIPATH are always insync */
1353 set_bit(In_sync, &rdev->flags);
1354
1355 return 0;
1356 }
1357
1358 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1359 {
1360 struct mdp_superblock_1 *sb;
1361 mdk_rdev_t *rdev2;
1362 int max_dev, i;
1363 /* make rdev->sb match mddev and rdev data. */
1364
1365 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1366
1367 sb->feature_map = 0;
1368 sb->pad0 = 0;
1369 sb->recovery_offset = cpu_to_le64(0);
1370 memset(sb->pad1, 0, sizeof(sb->pad1));
1371 memset(sb->pad2, 0, sizeof(sb->pad2));
1372 memset(sb->pad3, 0, sizeof(sb->pad3));
1373
1374 sb->utime = cpu_to_le64((__u64)mddev->utime);
1375 sb->events = cpu_to_le64(mddev->events);
1376 if (mddev->in_sync)
1377 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1378 else
1379 sb->resync_offset = cpu_to_le64(0);
1380
1381 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1382
1383 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1384 sb->size = cpu_to_le64(mddev->dev_sectors);
1385 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1386 sb->level = cpu_to_le32(mddev->level);
1387 sb->layout = cpu_to_le32(mddev->layout);
1388
1389 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1390 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1391 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1392 }
1393
1394 if (rdev->raid_disk >= 0 &&
1395 !test_bit(In_sync, &rdev->flags)) {
1396 if (mddev->curr_resync_completed > rdev->recovery_offset)
1397 rdev->recovery_offset = mddev->curr_resync_completed;
1398 if (rdev->recovery_offset > 0) {
1399 sb->feature_map |=
1400 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1401 sb->recovery_offset =
1402 cpu_to_le64(rdev->recovery_offset);
1403 }
1404 }
1405
1406 if (mddev->reshape_position != MaxSector) {
1407 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1408 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1409 sb->new_layout = cpu_to_le32(mddev->new_layout);
1410 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1411 sb->new_level = cpu_to_le32(mddev->new_level);
1412 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1413 }
1414
1415 max_dev = 0;
1416 list_for_each_entry(rdev2, &mddev->disks, same_set)
1417 if (rdev2->desc_nr+1 > max_dev)
1418 max_dev = rdev2->desc_nr+1;
1419
1420 if (max_dev > le32_to_cpu(sb->max_dev))
1421 sb->max_dev = cpu_to_le32(max_dev);
1422 for (i=0; i<max_dev;i++)
1423 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1424
1425 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1426 i = rdev2->desc_nr;
1427 if (test_bit(Faulty, &rdev2->flags))
1428 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1429 else if (test_bit(In_sync, &rdev2->flags))
1430 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1431 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1432 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1433 else
1434 sb->dev_roles[i] = cpu_to_le16(0xffff);
1435 }
1436
1437 sb->sb_csum = calc_sb_1_csum(sb);
1438 }
1439
1440 static unsigned long long
1441 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1442 {
1443 struct mdp_superblock_1 *sb;
1444 sector_t max_sectors;
1445 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1446 return 0; /* component must fit device */
1447 if (rdev->sb_start < rdev->data_offset) {
1448 /* minor versions 1 and 2; superblock before data */
1449 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1450 max_sectors -= rdev->data_offset;
1451 if (!num_sectors || num_sectors > max_sectors)
1452 num_sectors = max_sectors;
1453 } else if (rdev->mddev->bitmap_offset) {
1454 /* minor version 0 with bitmap we can't move */
1455 return 0;
1456 } else {
1457 /* minor version 0; superblock after data */
1458 sector_t sb_start;
1459 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1460 sb_start &= ~(sector_t)(4*2 - 1);
1461 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1462 if (!num_sectors || num_sectors > max_sectors)
1463 num_sectors = max_sectors;
1464 rdev->sb_start = sb_start;
1465 }
1466 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1467 sb->data_size = cpu_to_le64(num_sectors);
1468 sb->super_offset = rdev->sb_start;
1469 sb->sb_csum = calc_sb_1_csum(sb);
1470 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1471 rdev->sb_page);
1472 md_super_wait(rdev->mddev);
1473 return num_sectors / 2; /* kB for sysfs */
1474 }
1475
1476 static struct super_type super_types[] = {
1477 [0] = {
1478 .name = "0.90.0",
1479 .owner = THIS_MODULE,
1480 .load_super = super_90_load,
1481 .validate_super = super_90_validate,
1482 .sync_super = super_90_sync,
1483 .rdev_size_change = super_90_rdev_size_change,
1484 },
1485 [1] = {
1486 .name = "md-1",
1487 .owner = THIS_MODULE,
1488 .load_super = super_1_load,
1489 .validate_super = super_1_validate,
1490 .sync_super = super_1_sync,
1491 .rdev_size_change = super_1_rdev_size_change,
1492 },
1493 };
1494
1495 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1496 {
1497 mdk_rdev_t *rdev, *rdev2;
1498
1499 rcu_read_lock();
1500 rdev_for_each_rcu(rdev, mddev1)
1501 rdev_for_each_rcu(rdev2, mddev2)
1502 if (rdev->bdev->bd_contains ==
1503 rdev2->bdev->bd_contains) {
1504 rcu_read_unlock();
1505 return 1;
1506 }
1507 rcu_read_unlock();
1508 return 0;
1509 }
1510
1511 static LIST_HEAD(pending_raid_disks);
1512
1513 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1514 {
1515 struct mdk_personality *pers = mddev->pers;
1516 struct gendisk *disk = mddev->gendisk;
1517 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1518 struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1519
1520 /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1521 if (pers && pers->level >= 4 && pers->level <= 6)
1522 return;
1523
1524 /* If rdev is integrity capable, register profile for mddev */
1525 if (!bi_mddev && bi_rdev) {
1526 if (blk_integrity_register(disk, bi_rdev))
1527 printk(KERN_ERR "%s: %s Could not register integrity!\n",
1528 __func__, disk->disk_name);
1529 else
1530 printk(KERN_NOTICE "Enabling data integrity on %s\n",
1531 disk->disk_name);
1532 return;
1533 }
1534
1535 /* Check that mddev and rdev have matching profiles */
1536 if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1537 printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1538 disk->disk_name, rdev->bdev->bd_disk->disk_name);
1539 printk(KERN_NOTICE "Disabling data integrity on %s\n",
1540 disk->disk_name);
1541 blk_integrity_unregister(disk);
1542 }
1543 }
1544
1545 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1546 {
1547 char b[BDEVNAME_SIZE];
1548 struct kobject *ko;
1549 char *s;
1550 int err;
1551
1552 if (rdev->mddev) {
1553 MD_BUG();
1554 return -EINVAL;
1555 }
1556
1557 /* prevent duplicates */
1558 if (find_rdev(mddev, rdev->bdev->bd_dev))
1559 return -EEXIST;
1560
1561 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1562 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1563 rdev->sectors < mddev->dev_sectors)) {
1564 if (mddev->pers) {
1565 /* Cannot change size, so fail
1566 * If mddev->level <= 0, then we don't care
1567 * about aligning sizes (e.g. linear)
1568 */
1569 if (mddev->level > 0)
1570 return -ENOSPC;
1571 } else
1572 mddev->dev_sectors = rdev->sectors;
1573 }
1574
1575 /* Verify rdev->desc_nr is unique.
1576 * If it is -1, assign a free number, else
1577 * check number is not in use
1578 */
1579 if (rdev->desc_nr < 0) {
1580 int choice = 0;
1581 if (mddev->pers) choice = mddev->raid_disks;
1582 while (find_rdev_nr(mddev, choice))
1583 choice++;
1584 rdev->desc_nr = choice;
1585 } else {
1586 if (find_rdev_nr(mddev, rdev->desc_nr))
1587 return -EBUSY;
1588 }
1589 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1590 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1591 mdname(mddev), mddev->max_disks);
1592 return -EBUSY;
1593 }
1594 bdevname(rdev->bdev,b);
1595 while ( (s=strchr(b, '/')) != NULL)
1596 *s = '!';
1597
1598 rdev->mddev = mddev;
1599 printk(KERN_INFO "md: bind<%s>\n", b);
1600
1601 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1602 goto fail;
1603
1604 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1605 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1606 kobject_del(&rdev->kobj);
1607 goto fail;
1608 }
1609 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1610
1611 list_add_rcu(&rdev->same_set, &mddev->disks);
1612 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1613
1614 /* May as well allow recovery to be retried once */
1615 mddev->recovery_disabled = 0;
1616
1617 md_integrity_check(rdev, mddev);
1618 return 0;
1619
1620 fail:
1621 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1622 b, mdname(mddev));
1623 return err;
1624 }
1625
1626 static void md_delayed_delete(struct work_struct *ws)
1627 {
1628 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1629 kobject_del(&rdev->kobj);
1630 kobject_put(&rdev->kobj);
1631 }
1632
1633 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1634 {
1635 char b[BDEVNAME_SIZE];
1636 if (!rdev->mddev) {
1637 MD_BUG();
1638 return;
1639 }
1640 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1641 list_del_rcu(&rdev->same_set);
1642 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1643 rdev->mddev = NULL;
1644 sysfs_remove_link(&rdev->kobj, "block");
1645 sysfs_put(rdev->sysfs_state);
1646 rdev->sysfs_state = NULL;
1647 /* We need to delay this, otherwise we can deadlock when
1648 * writing to 'remove' to "dev/state". We also need
1649 * to delay it due to rcu usage.
1650 */
1651 synchronize_rcu();
1652 INIT_WORK(&rdev->del_work, md_delayed_delete);
1653 kobject_get(&rdev->kobj);
1654 schedule_work(&rdev->del_work);
1655 }
1656
1657 /*
1658 * prevent the device from being mounted, repartitioned or
1659 * otherwise reused by a RAID array (or any other kernel
1660 * subsystem), by bd_claiming the device.
1661 */
1662 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1663 {
1664 int err = 0;
1665 struct block_device *bdev;
1666 char b[BDEVNAME_SIZE];
1667
1668 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1669 if (IS_ERR(bdev)) {
1670 printk(KERN_ERR "md: could not open %s.\n",
1671 __bdevname(dev, b));
1672 return PTR_ERR(bdev);
1673 }
1674 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1675 if (err) {
1676 printk(KERN_ERR "md: could not bd_claim %s.\n",
1677 bdevname(bdev, b));
1678 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1679 return err;
1680 }
1681 if (!shared)
1682 set_bit(AllReserved, &rdev->flags);
1683 rdev->bdev = bdev;
1684 return err;
1685 }
1686
1687 static void unlock_rdev(mdk_rdev_t *rdev)
1688 {
1689 struct block_device *bdev = rdev->bdev;
1690 rdev->bdev = NULL;
1691 if (!bdev)
1692 MD_BUG();
1693 bd_release(bdev);
1694 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1695 }
1696
1697 void md_autodetect_dev(dev_t dev);
1698
1699 static void export_rdev(mdk_rdev_t * rdev)
1700 {
1701 char b[BDEVNAME_SIZE];
1702 printk(KERN_INFO "md: export_rdev(%s)\n",
1703 bdevname(rdev->bdev,b));
1704 if (rdev->mddev)
1705 MD_BUG();
1706 free_disk_sb(rdev);
1707 #ifndef MODULE
1708 if (test_bit(AutoDetected, &rdev->flags))
1709 md_autodetect_dev(rdev->bdev->bd_dev);
1710 #endif
1711 unlock_rdev(rdev);
1712 kobject_put(&rdev->kobj);
1713 }
1714
1715 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1716 {
1717 unbind_rdev_from_array(rdev);
1718 export_rdev(rdev);
1719 }
1720
1721 static void export_array(mddev_t *mddev)
1722 {
1723 mdk_rdev_t *rdev, *tmp;
1724
1725 rdev_for_each(rdev, tmp, mddev) {
1726 if (!rdev->mddev) {
1727 MD_BUG();
1728 continue;
1729 }
1730 kick_rdev_from_array(rdev);
1731 }
1732 if (!list_empty(&mddev->disks))
1733 MD_BUG();
1734 mddev->raid_disks = 0;
1735 mddev->major_version = 0;
1736 }
1737
1738 static void print_desc(mdp_disk_t *desc)
1739 {
1740 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1741 desc->major,desc->minor,desc->raid_disk,desc->state);
1742 }
1743
1744 static void print_sb_90(mdp_super_t *sb)
1745 {
1746 int i;
1747
1748 printk(KERN_INFO
1749 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1750 sb->major_version, sb->minor_version, sb->patch_version,
1751 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1752 sb->ctime);
1753 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1754 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1755 sb->md_minor, sb->layout, sb->chunk_size);
1756 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1757 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1758 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1759 sb->failed_disks, sb->spare_disks,
1760 sb->sb_csum, (unsigned long)sb->events_lo);
1761
1762 printk(KERN_INFO);
1763 for (i = 0; i < MD_SB_DISKS; i++) {
1764 mdp_disk_t *desc;
1765
1766 desc = sb->disks + i;
1767 if (desc->number || desc->major || desc->minor ||
1768 desc->raid_disk || (desc->state && (desc->state != 4))) {
1769 printk(" D %2d: ", i);
1770 print_desc(desc);
1771 }
1772 }
1773 printk(KERN_INFO "md: THIS: ");
1774 print_desc(&sb->this_disk);
1775 }
1776
1777 static void print_sb_1(struct mdp_superblock_1 *sb)
1778 {
1779 __u8 *uuid;
1780
1781 uuid = sb->set_uuid;
1782 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1783 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1784 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1785 le32_to_cpu(sb->major_version),
1786 le32_to_cpu(sb->feature_map),
1787 uuid[0], uuid[1], uuid[2], uuid[3],
1788 uuid[4], uuid[5], uuid[6], uuid[7],
1789 uuid[8], uuid[9], uuid[10], uuid[11],
1790 uuid[12], uuid[13], uuid[14], uuid[15],
1791 sb->set_name,
1792 (unsigned long long)le64_to_cpu(sb->ctime)
1793 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1794
1795 uuid = sb->device_uuid;
1796 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1797 " RO:%llu\n"
1798 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1799 ":%02x%02x%02x%02x%02x%02x\n"
1800 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1801 KERN_INFO "md: (MaxDev:%u) \n",
1802 le32_to_cpu(sb->level),
1803 (unsigned long long)le64_to_cpu(sb->size),
1804 le32_to_cpu(sb->raid_disks),
1805 le32_to_cpu(sb->layout),
1806 le32_to_cpu(sb->chunksize),
1807 (unsigned long long)le64_to_cpu(sb->data_offset),
1808 (unsigned long long)le64_to_cpu(sb->data_size),
1809 (unsigned long long)le64_to_cpu(sb->super_offset),
1810 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1811 le32_to_cpu(sb->dev_number),
1812 uuid[0], uuid[1], uuid[2], uuid[3],
1813 uuid[4], uuid[5], uuid[6], uuid[7],
1814 uuid[8], uuid[9], uuid[10], uuid[11],
1815 uuid[12], uuid[13], uuid[14], uuid[15],
1816 sb->devflags,
1817 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1818 (unsigned long long)le64_to_cpu(sb->events),
1819 (unsigned long long)le64_to_cpu(sb->resync_offset),
1820 le32_to_cpu(sb->sb_csum),
1821 le32_to_cpu(sb->max_dev)
1822 );
1823 }
1824
1825 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1826 {
1827 char b[BDEVNAME_SIZE];
1828 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1829 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1830 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1831 rdev->desc_nr);
1832 if (rdev->sb_loaded) {
1833 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1834 switch (major_version) {
1835 case 0:
1836 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1837 break;
1838 case 1:
1839 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1840 break;
1841 }
1842 } else
1843 printk(KERN_INFO "md: no rdev superblock!\n");
1844 }
1845
1846 static void md_print_devices(void)
1847 {
1848 struct list_head *tmp;
1849 mdk_rdev_t *rdev;
1850 mddev_t *mddev;
1851 char b[BDEVNAME_SIZE];
1852
1853 printk("\n");
1854 printk("md: **********************************\n");
1855 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1856 printk("md: **********************************\n");
1857 for_each_mddev(mddev, tmp) {
1858
1859 if (mddev->bitmap)
1860 bitmap_print_sb(mddev->bitmap);
1861 else
1862 printk("%s: ", mdname(mddev));
1863 list_for_each_entry(rdev, &mddev->disks, same_set)
1864 printk("<%s>", bdevname(rdev->bdev,b));
1865 printk("\n");
1866
1867 list_for_each_entry(rdev, &mddev->disks, same_set)
1868 print_rdev(rdev, mddev->major_version);
1869 }
1870 printk("md: **********************************\n");
1871 printk("\n");
1872 }
1873
1874
1875 static void sync_sbs(mddev_t * mddev, int nospares)
1876 {
1877 /* Update each superblock (in-memory image), but
1878 * if we are allowed to, skip spares which already
1879 * have the right event counter, or have one earlier
1880 * (which would mean they aren't being marked as dirty
1881 * with the rest of the array)
1882 */
1883 mdk_rdev_t *rdev;
1884
1885 list_for_each_entry(rdev, &mddev->disks, same_set) {
1886 if (rdev->sb_events == mddev->events ||
1887 (nospares &&
1888 rdev->raid_disk < 0 &&
1889 (rdev->sb_events&1)==0 &&
1890 rdev->sb_events+1 == mddev->events)) {
1891 /* Don't update this superblock */
1892 rdev->sb_loaded = 2;
1893 } else {
1894 super_types[mddev->major_version].
1895 sync_super(mddev, rdev);
1896 rdev->sb_loaded = 1;
1897 }
1898 }
1899 }
1900
1901 static void md_update_sb(mddev_t * mddev, int force_change)
1902 {
1903 mdk_rdev_t *rdev;
1904 int sync_req;
1905 int nospares = 0;
1906
1907 if (mddev->external)
1908 return;
1909 repeat:
1910 spin_lock_irq(&mddev->write_lock);
1911
1912 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1913 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1914 force_change = 1;
1915 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1916 /* just a clean<-> dirty transition, possibly leave spares alone,
1917 * though if events isn't the right even/odd, we will have to do
1918 * spares after all
1919 */
1920 nospares = 1;
1921 if (force_change)
1922 nospares = 0;
1923 if (mddev->degraded)
1924 /* If the array is degraded, then skipping spares is both
1925 * dangerous and fairly pointless.
1926 * Dangerous because a device that was removed from the array
1927 * might have a event_count that still looks up-to-date,
1928 * so it can be re-added without a resync.
1929 * Pointless because if there are any spares to skip,
1930 * then a recovery will happen and soon that array won't
1931 * be degraded any more and the spare can go back to sleep then.
1932 */
1933 nospares = 0;
1934
1935 sync_req = mddev->in_sync;
1936 mddev->utime = get_seconds();
1937
1938 /* If this is just a dirty<->clean transition, and the array is clean
1939 * and 'events' is odd, we can roll back to the previous clean state */
1940 if (nospares
1941 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1942 && (mddev->events & 1)
1943 && mddev->events != 1)
1944 mddev->events--;
1945 else {
1946 /* otherwise we have to go forward and ... */
1947 mddev->events ++;
1948 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1949 /* .. if the array isn't clean, insist on an odd 'events' */
1950 if ((mddev->events&1)==0) {
1951 mddev->events++;
1952 nospares = 0;
1953 }
1954 } else {
1955 /* otherwise insist on an even 'events' (for clean states) */
1956 if ((mddev->events&1)) {
1957 mddev->events++;
1958 nospares = 0;
1959 }
1960 }
1961 }
1962
1963 if (!mddev->events) {
1964 /*
1965 * oops, this 64-bit counter should never wrap.
1966 * Either we are in around ~1 trillion A.C., assuming
1967 * 1 reboot per second, or we have a bug:
1968 */
1969 MD_BUG();
1970 mddev->events --;
1971 }
1972
1973 /*
1974 * do not write anything to disk if using
1975 * nonpersistent superblocks
1976 */
1977 if (!mddev->persistent) {
1978 if (!mddev->external)
1979 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1980
1981 spin_unlock_irq(&mddev->write_lock);
1982 wake_up(&mddev->sb_wait);
1983 return;
1984 }
1985 sync_sbs(mddev, nospares);
1986 spin_unlock_irq(&mddev->write_lock);
1987
1988 dprintk(KERN_INFO
1989 "md: updating %s RAID superblock on device (in sync %d)\n",
1990 mdname(mddev),mddev->in_sync);
1991
1992 bitmap_update_sb(mddev->bitmap);
1993 list_for_each_entry(rdev, &mddev->disks, same_set) {
1994 char b[BDEVNAME_SIZE];
1995 dprintk(KERN_INFO "md: ");
1996 if (rdev->sb_loaded != 1)
1997 continue; /* no noise on spare devices */
1998 if (test_bit(Faulty, &rdev->flags))
1999 dprintk("(skipping faulty ");
2000
2001 dprintk("%s ", bdevname(rdev->bdev,b));
2002 if (!test_bit(Faulty, &rdev->flags)) {
2003 md_super_write(mddev,rdev,
2004 rdev->sb_start, rdev->sb_size,
2005 rdev->sb_page);
2006 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2007 bdevname(rdev->bdev,b),
2008 (unsigned long long)rdev->sb_start);
2009 rdev->sb_events = mddev->events;
2010
2011 } else
2012 dprintk(")\n");
2013 if (mddev->level == LEVEL_MULTIPATH)
2014 /* only need to write one superblock... */
2015 break;
2016 }
2017 md_super_wait(mddev);
2018 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2019
2020 spin_lock_irq(&mddev->write_lock);
2021 if (mddev->in_sync != sync_req ||
2022 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2023 /* have to write it out again */
2024 spin_unlock_irq(&mddev->write_lock);
2025 goto repeat;
2026 }
2027 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2028 spin_unlock_irq(&mddev->write_lock);
2029 wake_up(&mddev->sb_wait);
2030 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2031 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2032
2033 }
2034
2035 /* words written to sysfs files may, or may not, be \n terminated.
2036 * We want to accept with case. For this we use cmd_match.
2037 */
2038 static int cmd_match(const char *cmd, const char *str)
2039 {
2040 /* See if cmd, written into a sysfs file, matches
2041 * str. They must either be the same, or cmd can
2042 * have a trailing newline
2043 */
2044 while (*cmd && *str && *cmd == *str) {
2045 cmd++;
2046 str++;
2047 }
2048 if (*cmd == '\n')
2049 cmd++;
2050 if (*str || *cmd)
2051 return 0;
2052 return 1;
2053 }
2054
2055 struct rdev_sysfs_entry {
2056 struct attribute attr;
2057 ssize_t (*show)(mdk_rdev_t *, char *);
2058 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2059 };
2060
2061 static ssize_t
2062 state_show(mdk_rdev_t *rdev, char *page)
2063 {
2064 char *sep = "";
2065 size_t len = 0;
2066
2067 if (test_bit(Faulty, &rdev->flags)) {
2068 len+= sprintf(page+len, "%sfaulty",sep);
2069 sep = ",";
2070 }
2071 if (test_bit(In_sync, &rdev->flags)) {
2072 len += sprintf(page+len, "%sin_sync",sep);
2073 sep = ",";
2074 }
2075 if (test_bit(WriteMostly, &rdev->flags)) {
2076 len += sprintf(page+len, "%swrite_mostly",sep);
2077 sep = ",";
2078 }
2079 if (test_bit(Blocked, &rdev->flags)) {
2080 len += sprintf(page+len, "%sblocked", sep);
2081 sep = ",";
2082 }
2083 if (!test_bit(Faulty, &rdev->flags) &&
2084 !test_bit(In_sync, &rdev->flags)) {
2085 len += sprintf(page+len, "%sspare", sep);
2086 sep = ",";
2087 }
2088 return len+sprintf(page+len, "\n");
2089 }
2090
2091 static ssize_t
2092 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2093 {
2094 /* can write
2095 * faulty - simulates and error
2096 * remove - disconnects the device
2097 * writemostly - sets write_mostly
2098 * -writemostly - clears write_mostly
2099 * blocked - sets the Blocked flag
2100 * -blocked - clears the Blocked flag
2101 * insync - sets Insync providing device isn't active
2102 */
2103 int err = -EINVAL;
2104 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2105 md_error(rdev->mddev, rdev);
2106 err = 0;
2107 } else if (cmd_match(buf, "remove")) {
2108 if (rdev->raid_disk >= 0)
2109 err = -EBUSY;
2110 else {
2111 mddev_t *mddev = rdev->mddev;
2112 kick_rdev_from_array(rdev);
2113 if (mddev->pers)
2114 md_update_sb(mddev, 1);
2115 md_new_event(mddev);
2116 err = 0;
2117 }
2118 } else if (cmd_match(buf, "writemostly")) {
2119 set_bit(WriteMostly, &rdev->flags);
2120 err = 0;
2121 } else if (cmd_match(buf, "-writemostly")) {
2122 clear_bit(WriteMostly, &rdev->flags);
2123 err = 0;
2124 } else if (cmd_match(buf, "blocked")) {
2125 set_bit(Blocked, &rdev->flags);
2126 err = 0;
2127 } else if (cmd_match(buf, "-blocked")) {
2128 clear_bit(Blocked, &rdev->flags);
2129 wake_up(&rdev->blocked_wait);
2130 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2131 md_wakeup_thread(rdev->mddev->thread);
2132
2133 err = 0;
2134 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2135 set_bit(In_sync, &rdev->flags);
2136 err = 0;
2137 }
2138 if (!err && rdev->sysfs_state)
2139 sysfs_notify_dirent(rdev->sysfs_state);
2140 return err ? err : len;
2141 }
2142 static struct rdev_sysfs_entry rdev_state =
2143 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2144
2145 static ssize_t
2146 errors_show(mdk_rdev_t *rdev, char *page)
2147 {
2148 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2149 }
2150
2151 static ssize_t
2152 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2153 {
2154 char *e;
2155 unsigned long n = simple_strtoul(buf, &e, 10);
2156 if (*buf && (*e == 0 || *e == '\n')) {
2157 atomic_set(&rdev->corrected_errors, n);
2158 return len;
2159 }
2160 return -EINVAL;
2161 }
2162 static struct rdev_sysfs_entry rdev_errors =
2163 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2164
2165 static ssize_t
2166 slot_show(mdk_rdev_t *rdev, char *page)
2167 {
2168 if (rdev->raid_disk < 0)
2169 return sprintf(page, "none\n");
2170 else
2171 return sprintf(page, "%d\n", rdev->raid_disk);
2172 }
2173
2174 static ssize_t
2175 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2176 {
2177 char *e;
2178 int err;
2179 char nm[20];
2180 int slot = simple_strtoul(buf, &e, 10);
2181 if (strncmp(buf, "none", 4)==0)
2182 slot = -1;
2183 else if (e==buf || (*e && *e!= '\n'))
2184 return -EINVAL;
2185 if (rdev->mddev->pers && slot == -1) {
2186 /* Setting 'slot' on an active array requires also
2187 * updating the 'rd%d' link, and communicating
2188 * with the personality with ->hot_*_disk.
2189 * For now we only support removing
2190 * failed/spare devices. This normally happens automatically,
2191 * but not when the metadata is externally managed.
2192 */
2193 if (rdev->raid_disk == -1)
2194 return -EEXIST;
2195 /* personality does all needed checks */
2196 if (rdev->mddev->pers->hot_add_disk == NULL)
2197 return -EINVAL;
2198 err = rdev->mddev->pers->
2199 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2200 if (err)
2201 return err;
2202 sprintf(nm, "rd%d", rdev->raid_disk);
2203 sysfs_remove_link(&rdev->mddev->kobj, nm);
2204 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2205 md_wakeup_thread(rdev->mddev->thread);
2206 } else if (rdev->mddev->pers) {
2207 mdk_rdev_t *rdev2;
2208 /* Activating a spare .. or possibly reactivating
2209 * if we ever get bitmaps working here.
2210 */
2211
2212 if (rdev->raid_disk != -1)
2213 return -EBUSY;
2214
2215 if (rdev->mddev->pers->hot_add_disk == NULL)
2216 return -EINVAL;
2217
2218 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2219 if (rdev2->raid_disk == slot)
2220 return -EEXIST;
2221
2222 rdev->raid_disk = slot;
2223 if (test_bit(In_sync, &rdev->flags))
2224 rdev->saved_raid_disk = slot;
2225 else
2226 rdev->saved_raid_disk = -1;
2227 err = rdev->mddev->pers->
2228 hot_add_disk(rdev->mddev, rdev);
2229 if (err) {
2230 rdev->raid_disk = -1;
2231 return err;
2232 } else
2233 sysfs_notify_dirent(rdev->sysfs_state);
2234 sprintf(nm, "rd%d", rdev->raid_disk);
2235 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2236 printk(KERN_WARNING
2237 "md: cannot register "
2238 "%s for %s\n",
2239 nm, mdname(rdev->mddev));
2240
2241 /* don't wakeup anyone, leave that to userspace. */
2242 } else {
2243 if (slot >= rdev->mddev->raid_disks)
2244 return -ENOSPC;
2245 rdev->raid_disk = slot;
2246 /* assume it is working */
2247 clear_bit(Faulty, &rdev->flags);
2248 clear_bit(WriteMostly, &rdev->flags);
2249 set_bit(In_sync, &rdev->flags);
2250 sysfs_notify_dirent(rdev->sysfs_state);
2251 }
2252 return len;
2253 }
2254
2255
2256 static struct rdev_sysfs_entry rdev_slot =
2257 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2258
2259 static ssize_t
2260 offset_show(mdk_rdev_t *rdev, char *page)
2261 {
2262 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2263 }
2264
2265 static ssize_t
2266 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2267 {
2268 char *e;
2269 unsigned long long offset = simple_strtoull(buf, &e, 10);
2270 if (e==buf || (*e && *e != '\n'))
2271 return -EINVAL;
2272 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2273 return -EBUSY;
2274 if (rdev->sectors && rdev->mddev->external)
2275 /* Must set offset before size, so overlap checks
2276 * can be sane */
2277 return -EBUSY;
2278 rdev->data_offset = offset;
2279 return len;
2280 }
2281
2282 static struct rdev_sysfs_entry rdev_offset =
2283 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2284
2285 static ssize_t
2286 rdev_size_show(mdk_rdev_t *rdev, char *page)
2287 {
2288 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2289 }
2290
2291 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2292 {
2293 /* check if two start/length pairs overlap */
2294 if (s1+l1 <= s2)
2295 return 0;
2296 if (s2+l2 <= s1)
2297 return 0;
2298 return 1;
2299 }
2300
2301 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2302 {
2303 unsigned long long blocks;
2304 sector_t new;
2305
2306 if (strict_strtoull(buf, 10, &blocks) < 0)
2307 return -EINVAL;
2308
2309 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2310 return -EINVAL; /* sector conversion overflow */
2311
2312 new = blocks * 2;
2313 if (new != blocks * 2)
2314 return -EINVAL; /* unsigned long long to sector_t overflow */
2315
2316 *sectors = new;
2317 return 0;
2318 }
2319
2320 static ssize_t
2321 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2322 {
2323 mddev_t *my_mddev = rdev->mddev;
2324 sector_t oldsectors = rdev->sectors;
2325 sector_t sectors;
2326
2327 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2328 return -EINVAL;
2329 if (my_mddev->pers && rdev->raid_disk >= 0) {
2330 if (my_mddev->persistent) {
2331 sectors = super_types[my_mddev->major_version].
2332 rdev_size_change(rdev, sectors);
2333 if (!sectors)
2334 return -EBUSY;
2335 } else if (!sectors)
2336 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2337 rdev->data_offset;
2338 }
2339 if (sectors < my_mddev->dev_sectors)
2340 return -EINVAL; /* component must fit device */
2341
2342 rdev->sectors = sectors;
2343 if (sectors > oldsectors && my_mddev->external) {
2344 /* need to check that all other rdevs with the same ->bdev
2345 * do not overlap. We need to unlock the mddev to avoid
2346 * a deadlock. We have already changed rdev->sectors, and if
2347 * we have to change it back, we will have the lock again.
2348 */
2349 mddev_t *mddev;
2350 int overlap = 0;
2351 struct list_head *tmp;
2352
2353 mddev_unlock(my_mddev);
2354 for_each_mddev(mddev, tmp) {
2355 mdk_rdev_t *rdev2;
2356
2357 mddev_lock(mddev);
2358 list_for_each_entry(rdev2, &mddev->disks, same_set)
2359 if (test_bit(AllReserved, &rdev2->flags) ||
2360 (rdev->bdev == rdev2->bdev &&
2361 rdev != rdev2 &&
2362 overlaps(rdev->data_offset, rdev->sectors,
2363 rdev2->data_offset,
2364 rdev2->sectors))) {
2365 overlap = 1;
2366 break;
2367 }
2368 mddev_unlock(mddev);
2369 if (overlap) {
2370 mddev_put(mddev);
2371 break;
2372 }
2373 }
2374 mddev_lock(my_mddev);
2375 if (overlap) {
2376 /* Someone else could have slipped in a size
2377 * change here, but doing so is just silly.
2378 * We put oldsectors back because we *know* it is
2379 * safe, and trust userspace not to race with
2380 * itself
2381 */
2382 rdev->sectors = oldsectors;
2383 return -EBUSY;
2384 }
2385 }
2386 return len;
2387 }
2388
2389 static struct rdev_sysfs_entry rdev_size =
2390 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2391
2392 static struct attribute *rdev_default_attrs[] = {
2393 &rdev_state.attr,
2394 &rdev_errors.attr,
2395 &rdev_slot.attr,
2396 &rdev_offset.attr,
2397 &rdev_size.attr,
2398 NULL,
2399 };
2400 static ssize_t
2401 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2402 {
2403 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2404 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2405 mddev_t *mddev = rdev->mddev;
2406 ssize_t rv;
2407
2408 if (!entry->show)
2409 return -EIO;
2410
2411 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2412 if (!rv) {
2413 if (rdev->mddev == NULL)
2414 rv = -EBUSY;
2415 else
2416 rv = entry->show(rdev, page);
2417 mddev_unlock(mddev);
2418 }
2419 return rv;
2420 }
2421
2422 static ssize_t
2423 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2424 const char *page, size_t length)
2425 {
2426 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2427 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2428 ssize_t rv;
2429 mddev_t *mddev = rdev->mddev;
2430
2431 if (!entry->store)
2432 return -EIO;
2433 if (!capable(CAP_SYS_ADMIN))
2434 return -EACCES;
2435 rv = mddev ? mddev_lock(mddev): -EBUSY;
2436 if (!rv) {
2437 if (rdev->mddev == NULL)
2438 rv = -EBUSY;
2439 else
2440 rv = entry->store(rdev, page, length);
2441 mddev_unlock(mddev);
2442 }
2443 return rv;
2444 }
2445
2446 static void rdev_free(struct kobject *ko)
2447 {
2448 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2449 kfree(rdev);
2450 }
2451 static struct sysfs_ops rdev_sysfs_ops = {
2452 .show = rdev_attr_show,
2453 .store = rdev_attr_store,
2454 };
2455 static struct kobj_type rdev_ktype = {
2456 .release = rdev_free,
2457 .sysfs_ops = &rdev_sysfs_ops,
2458 .default_attrs = rdev_default_attrs,
2459 };
2460
2461 /*
2462 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2463 *
2464 * mark the device faulty if:
2465 *
2466 * - the device is nonexistent (zero size)
2467 * - the device has no valid superblock
2468 *
2469 * a faulty rdev _never_ has rdev->sb set.
2470 */
2471 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2472 {
2473 char b[BDEVNAME_SIZE];
2474 int err;
2475 mdk_rdev_t *rdev;
2476 sector_t size;
2477
2478 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2479 if (!rdev) {
2480 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2481 return ERR_PTR(-ENOMEM);
2482 }
2483
2484 if ((err = alloc_disk_sb(rdev)))
2485 goto abort_free;
2486
2487 err = lock_rdev(rdev, newdev, super_format == -2);
2488 if (err)
2489 goto abort_free;
2490
2491 kobject_init(&rdev->kobj, &rdev_ktype);
2492
2493 rdev->desc_nr = -1;
2494 rdev->saved_raid_disk = -1;
2495 rdev->raid_disk = -1;
2496 rdev->flags = 0;
2497 rdev->data_offset = 0;
2498 rdev->sb_events = 0;
2499 atomic_set(&rdev->nr_pending, 0);
2500 atomic_set(&rdev->read_errors, 0);
2501 atomic_set(&rdev->corrected_errors, 0);
2502
2503 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2504 if (!size) {
2505 printk(KERN_WARNING
2506 "md: %s has zero or unknown size, marking faulty!\n",
2507 bdevname(rdev->bdev,b));
2508 err = -EINVAL;
2509 goto abort_free;
2510 }
2511
2512 if (super_format >= 0) {
2513 err = super_types[super_format].
2514 load_super(rdev, NULL, super_minor);
2515 if (err == -EINVAL) {
2516 printk(KERN_WARNING
2517 "md: %s does not have a valid v%d.%d "
2518 "superblock, not importing!\n",
2519 bdevname(rdev->bdev,b),
2520 super_format, super_minor);
2521 goto abort_free;
2522 }
2523 if (err < 0) {
2524 printk(KERN_WARNING
2525 "md: could not read %s's sb, not importing!\n",
2526 bdevname(rdev->bdev,b));
2527 goto abort_free;
2528 }
2529 }
2530
2531 INIT_LIST_HEAD(&rdev->same_set);
2532 init_waitqueue_head(&rdev->blocked_wait);
2533
2534 return rdev;
2535
2536 abort_free:
2537 if (rdev->sb_page) {
2538 if (rdev->bdev)
2539 unlock_rdev(rdev);
2540 free_disk_sb(rdev);
2541 }
2542 kfree(rdev);
2543 return ERR_PTR(err);
2544 }
2545
2546 /*
2547 * Check a full RAID array for plausibility
2548 */
2549
2550
2551 static void analyze_sbs(mddev_t * mddev)
2552 {
2553 int i;
2554 mdk_rdev_t *rdev, *freshest, *tmp;
2555 char b[BDEVNAME_SIZE];
2556
2557 freshest = NULL;
2558 rdev_for_each(rdev, tmp, mddev)
2559 switch (super_types[mddev->major_version].
2560 load_super(rdev, freshest, mddev->minor_version)) {
2561 case 1:
2562 freshest = rdev;
2563 break;
2564 case 0:
2565 break;
2566 default:
2567 printk( KERN_ERR \
2568 "md: fatal superblock inconsistency in %s"
2569 " -- removing from array\n",
2570 bdevname(rdev->bdev,b));
2571 kick_rdev_from_array(rdev);
2572 }
2573
2574
2575 super_types[mddev->major_version].
2576 validate_super(mddev, freshest);
2577
2578 i = 0;
2579 rdev_for_each(rdev, tmp, mddev) {
2580 if (rdev->desc_nr >= mddev->max_disks ||
2581 i > mddev->max_disks) {
2582 printk(KERN_WARNING
2583 "md: %s: %s: only %d devices permitted\n",
2584 mdname(mddev), bdevname(rdev->bdev, b),
2585 mddev->max_disks);
2586 kick_rdev_from_array(rdev);
2587 continue;
2588 }
2589 if (rdev != freshest)
2590 if (super_types[mddev->major_version].
2591 validate_super(mddev, rdev)) {
2592 printk(KERN_WARNING "md: kicking non-fresh %s"
2593 " from array!\n",
2594 bdevname(rdev->bdev,b));
2595 kick_rdev_from_array(rdev);
2596 continue;
2597 }
2598 if (mddev->level == LEVEL_MULTIPATH) {
2599 rdev->desc_nr = i++;
2600 rdev->raid_disk = rdev->desc_nr;
2601 set_bit(In_sync, &rdev->flags);
2602 } else if (rdev->raid_disk >= mddev->raid_disks) {
2603 rdev->raid_disk = -1;
2604 clear_bit(In_sync, &rdev->flags);
2605 }
2606 }
2607
2608
2609
2610 if (mddev->recovery_cp != MaxSector &&
2611 mddev->level >= 1)
2612 printk(KERN_ERR "md: %s: raid array is not clean"
2613 " -- starting background reconstruction\n",
2614 mdname(mddev));
2615
2616 }
2617
2618 static void md_safemode_timeout(unsigned long data);
2619
2620 static ssize_t
2621 safe_delay_show(mddev_t *mddev, char *page)
2622 {
2623 int msec = (mddev->safemode_delay*1000)/HZ;
2624 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2625 }
2626 static ssize_t
2627 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2628 {
2629 int scale=1;
2630 int dot=0;
2631 int i;
2632 unsigned long msec;
2633 char buf[30];
2634
2635 /* remove a period, and count digits after it */
2636 if (len >= sizeof(buf))
2637 return -EINVAL;
2638 strlcpy(buf, cbuf, sizeof(buf));
2639 for (i=0; i<len; i++) {
2640 if (dot) {
2641 if (isdigit(buf[i])) {
2642 buf[i-1] = buf[i];
2643 scale *= 10;
2644 }
2645 buf[i] = 0;
2646 } else if (buf[i] == '.') {
2647 dot=1;
2648 buf[i] = 0;
2649 }
2650 }
2651 if (strict_strtoul(buf, 10, &msec) < 0)
2652 return -EINVAL;
2653 msec = (msec * 1000) / scale;
2654 if (msec == 0)
2655 mddev->safemode_delay = 0;
2656 else {
2657 unsigned long old_delay = mddev->safemode_delay;
2658 mddev->safemode_delay = (msec*HZ)/1000;
2659 if (mddev->safemode_delay == 0)
2660 mddev->safemode_delay = 1;
2661 if (mddev->safemode_delay < old_delay)
2662 md_safemode_timeout((unsigned long)mddev);
2663 }
2664 return len;
2665 }
2666 static struct md_sysfs_entry md_safe_delay =
2667 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2668
2669 static ssize_t
2670 level_show(mddev_t *mddev, char *page)
2671 {
2672 struct mdk_personality *p = mddev->pers;
2673 if (p)
2674 return sprintf(page, "%s\n", p->name);
2675 else if (mddev->clevel[0])
2676 return sprintf(page, "%s\n", mddev->clevel);
2677 else if (mddev->level != LEVEL_NONE)
2678 return sprintf(page, "%d\n", mddev->level);
2679 else
2680 return 0;
2681 }
2682
2683 static ssize_t
2684 level_store(mddev_t *mddev, const char *buf, size_t len)
2685 {
2686 char level[16];
2687 ssize_t rv = len;
2688 struct mdk_personality *pers;
2689 void *priv;
2690
2691 if (mddev->pers == NULL) {
2692 if (len == 0)
2693 return 0;
2694 if (len >= sizeof(mddev->clevel))
2695 return -ENOSPC;
2696 strncpy(mddev->clevel, buf, len);
2697 if (mddev->clevel[len-1] == '\n')
2698 len--;
2699 mddev->clevel[len] = 0;
2700 mddev->level = LEVEL_NONE;
2701 return rv;
2702 }
2703
2704 /* request to change the personality. Need to ensure:
2705 * - array is not engaged in resync/recovery/reshape
2706 * - old personality can be suspended
2707 * - new personality will access other array.
2708 */
2709
2710 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2711 return -EBUSY;
2712
2713 if (!mddev->pers->quiesce) {
2714 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2715 mdname(mddev), mddev->pers->name);
2716 return -EINVAL;
2717 }
2718
2719 /* Now find the new personality */
2720 if (len == 0 || len >= sizeof(level))
2721 return -EINVAL;
2722 strncpy(level, buf, len);
2723 if (level[len-1] == '\n')
2724 len--;
2725 level[len] = 0;
2726
2727 request_module("md-%s", level);
2728 spin_lock(&pers_lock);
2729 pers = find_pers(LEVEL_NONE, level);
2730 if (!pers || !try_module_get(pers->owner)) {
2731 spin_unlock(&pers_lock);
2732 printk(KERN_WARNING "md: personality %s not loaded\n", level);
2733 return -EINVAL;
2734 }
2735 spin_unlock(&pers_lock);
2736
2737 if (pers == mddev->pers) {
2738 /* Nothing to do! */
2739 module_put(pers->owner);
2740 return rv;
2741 }
2742 if (!pers->takeover) {
2743 module_put(pers->owner);
2744 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2745 mdname(mddev), level);
2746 return -EINVAL;
2747 }
2748
2749 /* ->takeover must set new_* and/or delta_disks
2750 * if it succeeds, and may set them when it fails.
2751 */
2752 priv = pers->takeover(mddev);
2753 if (IS_ERR(priv)) {
2754 mddev->new_level = mddev->level;
2755 mddev->new_layout = mddev->layout;
2756 mddev->new_chunk_sectors = mddev->chunk_sectors;
2757 mddev->raid_disks -= mddev->delta_disks;
2758 mddev->delta_disks = 0;
2759 module_put(pers->owner);
2760 printk(KERN_WARNING "md: %s: %s would not accept array\n",
2761 mdname(mddev), level);
2762 return PTR_ERR(priv);
2763 }
2764
2765 /* Looks like we have a winner */
2766 mddev_suspend(mddev);
2767 mddev->pers->stop(mddev);
2768 module_put(mddev->pers->owner);
2769 mddev->pers = pers;
2770 mddev->private = priv;
2771 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2772 mddev->level = mddev->new_level;
2773 mddev->layout = mddev->new_layout;
2774 mddev->chunk_sectors = mddev->new_chunk_sectors;
2775 mddev->delta_disks = 0;
2776 pers->run(mddev);
2777 mddev_resume(mddev);
2778 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2779 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2780 md_wakeup_thread(mddev->thread);
2781 return rv;
2782 }
2783
2784 static struct md_sysfs_entry md_level =
2785 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2786
2787
2788 static ssize_t
2789 layout_show(mddev_t *mddev, char *page)
2790 {
2791 /* just a number, not meaningful for all levels */
2792 if (mddev->reshape_position != MaxSector &&
2793 mddev->layout != mddev->new_layout)
2794 return sprintf(page, "%d (%d)\n",
2795 mddev->new_layout, mddev->layout);
2796 return sprintf(page, "%d\n", mddev->layout);
2797 }
2798
2799 static ssize_t
2800 layout_store(mddev_t *mddev, const char *buf, size_t len)
2801 {
2802 char *e;
2803 unsigned long n = simple_strtoul(buf, &e, 10);
2804
2805 if (!*buf || (*e && *e != '\n'))
2806 return -EINVAL;
2807
2808 if (mddev->pers) {
2809 int err;
2810 if (mddev->pers->reconfig == NULL)
2811 return -EBUSY;
2812 mddev->new_layout = n;
2813 err = mddev->pers->reconfig(mddev);
2814 if (err) {
2815 mddev->new_layout = mddev->layout;
2816 return err;
2817 }
2818 } else {
2819 mddev->new_layout = n;
2820 if (mddev->reshape_position == MaxSector)
2821 mddev->layout = n;
2822 }
2823 return len;
2824 }
2825 static struct md_sysfs_entry md_layout =
2826 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2827
2828
2829 static ssize_t
2830 raid_disks_show(mddev_t *mddev, char *page)
2831 {
2832 if (mddev->raid_disks == 0)
2833 return 0;
2834 if (mddev->reshape_position != MaxSector &&
2835 mddev->delta_disks != 0)
2836 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2837 mddev->raid_disks - mddev->delta_disks);
2838 return sprintf(page, "%d\n", mddev->raid_disks);
2839 }
2840
2841 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2842
2843 static ssize_t
2844 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2845 {
2846 char *e;
2847 int rv = 0;
2848 unsigned long n = simple_strtoul(buf, &e, 10);
2849
2850 if (!*buf || (*e && *e != '\n'))
2851 return -EINVAL;
2852
2853 if (mddev->pers)
2854 rv = update_raid_disks(mddev, n);
2855 else if (mddev->reshape_position != MaxSector) {
2856 int olddisks = mddev->raid_disks - mddev->delta_disks;
2857 mddev->delta_disks = n - olddisks;
2858 mddev->raid_disks = n;
2859 } else
2860 mddev->raid_disks = n;
2861 return rv ? rv : len;
2862 }
2863 static struct md_sysfs_entry md_raid_disks =
2864 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2865
2866 static ssize_t
2867 chunk_size_show(mddev_t *mddev, char *page)
2868 {
2869 if (mddev->reshape_position != MaxSector &&
2870 mddev->chunk_sectors != mddev->new_chunk_sectors)
2871 return sprintf(page, "%d (%d)\n",
2872 mddev->new_chunk_sectors << 9,
2873 mddev->chunk_sectors << 9);
2874 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
2875 }
2876
2877 static ssize_t
2878 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2879 {
2880 char *e;
2881 unsigned long n = simple_strtoul(buf, &e, 10);
2882
2883 if (!*buf || (*e && *e != '\n'))
2884 return -EINVAL;
2885
2886 if (mddev->pers) {
2887 int err;
2888 if (mddev->pers->reconfig == NULL)
2889 return -EBUSY;
2890 mddev->new_chunk_sectors = n >> 9;
2891 err = mddev->pers->reconfig(mddev);
2892 if (err) {
2893 mddev->new_chunk_sectors = mddev->chunk_sectors;
2894 return err;
2895 }
2896 } else {
2897 mddev->new_chunk_sectors = n >> 9;
2898 if (mddev->reshape_position == MaxSector)
2899 mddev->chunk_sectors = n >> 9;
2900 }
2901 return len;
2902 }
2903 static struct md_sysfs_entry md_chunk_size =
2904 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2905
2906 static ssize_t
2907 resync_start_show(mddev_t *mddev, char *page)
2908 {
2909 if (mddev->recovery_cp == MaxSector)
2910 return sprintf(page, "none\n");
2911 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2912 }
2913
2914 static ssize_t
2915 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2916 {
2917 char *e;
2918 unsigned long long n = simple_strtoull(buf, &e, 10);
2919
2920 if (mddev->pers)
2921 return -EBUSY;
2922 if (!*buf || (*e && *e != '\n'))
2923 return -EINVAL;
2924
2925 mddev->recovery_cp = n;
2926 return len;
2927 }
2928 static struct md_sysfs_entry md_resync_start =
2929 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2930
2931 /*
2932 * The array state can be:
2933 *
2934 * clear
2935 * No devices, no size, no level
2936 * Equivalent to STOP_ARRAY ioctl
2937 * inactive
2938 * May have some settings, but array is not active
2939 * all IO results in error
2940 * When written, doesn't tear down array, but just stops it
2941 * suspended (not supported yet)
2942 * All IO requests will block. The array can be reconfigured.
2943 * Writing this, if accepted, will block until array is quiescent
2944 * readonly
2945 * no resync can happen. no superblocks get written.
2946 * write requests fail
2947 * read-auto
2948 * like readonly, but behaves like 'clean' on a write request.
2949 *
2950 * clean - no pending writes, but otherwise active.
2951 * When written to inactive array, starts without resync
2952 * If a write request arrives then
2953 * if metadata is known, mark 'dirty' and switch to 'active'.
2954 * if not known, block and switch to write-pending
2955 * If written to an active array that has pending writes, then fails.
2956 * active
2957 * fully active: IO and resync can be happening.
2958 * When written to inactive array, starts with resync
2959 *
2960 * write-pending
2961 * clean, but writes are blocked waiting for 'active' to be written.
2962 *
2963 * active-idle
2964 * like active, but no writes have been seen for a while (100msec).
2965 *
2966 */
2967 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2968 write_pending, active_idle, bad_word};
2969 static char *array_states[] = {
2970 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2971 "write-pending", "active-idle", NULL };
2972
2973 static int match_word(const char *word, char **list)
2974 {
2975 int n;
2976 for (n=0; list[n]; n++)
2977 if (cmd_match(word, list[n]))
2978 break;
2979 return n;
2980 }
2981
2982 static ssize_t
2983 array_state_show(mddev_t *mddev, char *page)
2984 {
2985 enum array_state st = inactive;
2986
2987 if (mddev->pers)
2988 switch(mddev->ro) {
2989 case 1:
2990 st = readonly;
2991 break;
2992 case 2:
2993 st = read_auto;
2994 break;
2995 case 0:
2996 if (mddev->in_sync)
2997 st = clean;
2998 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2999 st = write_pending;
3000 else if (mddev->safemode)
3001 st = active_idle;
3002 else
3003 st = active;
3004 }
3005 else {
3006 if (list_empty(&mddev->disks) &&
3007 mddev->raid_disks == 0 &&
3008 mddev->dev_sectors == 0)
3009 st = clear;
3010 else
3011 st = inactive;
3012 }
3013 return sprintf(page, "%s\n", array_states[st]);
3014 }
3015
3016 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3017 static int do_md_run(mddev_t * mddev);
3018 static int restart_array(mddev_t *mddev);
3019
3020 static ssize_t
3021 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3022 {
3023 int err = -EINVAL;
3024 enum array_state st = match_word(buf, array_states);
3025 switch(st) {
3026 case bad_word:
3027 break;
3028 case clear:
3029 /* stopping an active array */
3030 if (atomic_read(&mddev->openers) > 0)
3031 return -EBUSY;
3032 err = do_md_stop(mddev, 0, 0);
3033 break;
3034 case inactive:
3035 /* stopping an active array */
3036 if (mddev->pers) {
3037 if (atomic_read(&mddev->openers) > 0)
3038 return -EBUSY;
3039 err = do_md_stop(mddev, 2, 0);
3040 } else
3041 err = 0; /* already inactive */
3042 break;
3043 case suspended:
3044 break; /* not supported yet */
3045 case readonly:
3046 if (mddev->pers)
3047 err = do_md_stop(mddev, 1, 0);
3048 else {
3049 mddev->ro = 1;
3050 set_disk_ro(mddev->gendisk, 1);
3051 err = do_md_run(mddev);
3052 }
3053 break;
3054 case read_auto:
3055 if (mddev->pers) {
3056 if (mddev->ro == 0)
3057 err = do_md_stop(mddev, 1, 0);
3058 else if (mddev->ro == 1)
3059 err = restart_array(mddev);
3060 if (err == 0) {
3061 mddev->ro = 2;
3062 set_disk_ro(mddev->gendisk, 0);
3063 }
3064 } else {
3065 mddev->ro = 2;
3066 err = do_md_run(mddev);
3067 }
3068 break;
3069 case clean:
3070 if (mddev->pers) {
3071 restart_array(mddev);
3072 spin_lock_irq(&mddev->write_lock);
3073 if (atomic_read(&mddev->writes_pending) == 0) {
3074 if (mddev->in_sync == 0) {
3075 mddev->in_sync = 1;
3076 if (mddev->safemode == 1)
3077 mddev->safemode = 0;
3078 if (mddev->persistent)
3079 set_bit(MD_CHANGE_CLEAN,
3080 &mddev->flags);
3081 }
3082 err = 0;
3083 } else
3084 err = -EBUSY;
3085 spin_unlock_irq(&mddev->write_lock);
3086 } else
3087 err = -EINVAL;
3088 break;
3089 case active:
3090 if (mddev->pers) {
3091 restart_array(mddev);
3092 if (mddev->external)
3093 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3094 wake_up(&mddev->sb_wait);
3095 err = 0;
3096 } else {
3097 mddev->ro = 0;
3098 set_disk_ro(mddev->gendisk, 0);
3099 err = do_md_run(mddev);
3100 }
3101 break;
3102 case write_pending:
3103 case active_idle:
3104 /* these cannot be set */
3105 break;
3106 }
3107 if (err)
3108 return err;
3109 else {
3110 sysfs_notify_dirent(mddev->sysfs_state);
3111 return len;
3112 }
3113 }
3114 static struct md_sysfs_entry md_array_state =
3115 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3116
3117 static ssize_t
3118 null_show(mddev_t *mddev, char *page)
3119 {
3120 return -EINVAL;
3121 }
3122
3123 static ssize_t
3124 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3125 {
3126 /* buf must be %d:%d\n? giving major and minor numbers */
3127 /* The new device is added to the array.
3128 * If the array has a persistent superblock, we read the
3129 * superblock to initialise info and check validity.
3130 * Otherwise, only checking done is that in bind_rdev_to_array,
3131 * which mainly checks size.
3132 */
3133 char *e;
3134 int major = simple_strtoul(buf, &e, 10);
3135 int minor;
3136 dev_t dev;
3137 mdk_rdev_t *rdev;
3138 int err;
3139
3140 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3141 return -EINVAL;
3142 minor = simple_strtoul(e+1, &e, 10);
3143 if (*e && *e != '\n')
3144 return -EINVAL;
3145 dev = MKDEV(major, minor);
3146 if (major != MAJOR(dev) ||
3147 minor != MINOR(dev))
3148 return -EOVERFLOW;
3149
3150
3151 if (mddev->persistent) {
3152 rdev = md_import_device(dev, mddev->major_version,
3153 mddev->minor_version);
3154 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3155 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3156 mdk_rdev_t, same_set);
3157 err = super_types[mddev->major_version]
3158 .load_super(rdev, rdev0, mddev->minor_version);
3159 if (err < 0)
3160 goto out;
3161 }
3162 } else if (mddev->external)
3163 rdev = md_import_device(dev, -2, -1);
3164 else
3165 rdev = md_import_device(dev, -1, -1);
3166
3167 if (IS_ERR(rdev))
3168 return PTR_ERR(rdev);
3169 err = bind_rdev_to_array(rdev, mddev);
3170 out:
3171 if (err)
3172 export_rdev(rdev);
3173 return err ? err : len;
3174 }
3175
3176 static struct md_sysfs_entry md_new_device =
3177 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3178
3179 static ssize_t
3180 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3181 {
3182 char *end;
3183 unsigned long chunk, end_chunk;
3184
3185 if (!mddev->bitmap)
3186 goto out;
3187 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3188 while (*buf) {
3189 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3190 if (buf == end) break;
3191 if (*end == '-') { /* range */
3192 buf = end + 1;
3193 end_chunk = simple_strtoul(buf, &end, 0);
3194 if (buf == end) break;
3195 }
3196 if (*end && !isspace(*end)) break;
3197 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3198 buf = end;
3199 while (isspace(*buf)) buf++;
3200 }
3201 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3202 out:
3203 return len;
3204 }
3205
3206 static struct md_sysfs_entry md_bitmap =
3207 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3208
3209 static ssize_t
3210 size_show(mddev_t *mddev, char *page)
3211 {
3212 return sprintf(page, "%llu\n",
3213 (unsigned long long)mddev->dev_sectors / 2);
3214 }
3215
3216 static int update_size(mddev_t *mddev, sector_t num_sectors);
3217
3218 static ssize_t
3219 size_store(mddev_t *mddev, const char *buf, size_t len)
3220 {
3221 /* If array is inactive, we can reduce the component size, but
3222 * not increase it (except from 0).
3223 * If array is active, we can try an on-line resize
3224 */
3225 sector_t sectors;
3226 int err = strict_blocks_to_sectors(buf, &sectors);
3227
3228 if (err < 0)
3229 return err;
3230 if (mddev->pers) {
3231 err = update_size(mddev, sectors);
3232 md_update_sb(mddev, 1);
3233 } else {
3234 if (mddev->dev_sectors == 0 ||
3235 mddev->dev_sectors > sectors)
3236 mddev->dev_sectors = sectors;
3237 else
3238 err = -ENOSPC;
3239 }
3240 return err ? err : len;
3241 }
3242
3243 static struct md_sysfs_entry md_size =
3244 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3245
3246
3247 /* Metdata version.
3248 * This is one of
3249 * 'none' for arrays with no metadata (good luck...)
3250 * 'external' for arrays with externally managed metadata,
3251 * or N.M for internally known formats
3252 */
3253 static ssize_t
3254 metadata_show(mddev_t *mddev, char *page)
3255 {
3256 if (mddev->persistent)
3257 return sprintf(page, "%d.%d\n",
3258 mddev->major_version, mddev->minor_version);
3259 else if (mddev->external)
3260 return sprintf(page, "external:%s\n", mddev->metadata_type);
3261 else
3262 return sprintf(page, "none\n");
3263 }
3264
3265 static ssize_t
3266 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3267 {
3268 int major, minor;
3269 char *e;
3270 /* Changing the details of 'external' metadata is
3271 * always permitted. Otherwise there must be
3272 * no devices attached to the array.
3273 */
3274 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3275 ;
3276 else if (!list_empty(&mddev->disks))
3277 return -EBUSY;
3278
3279 if (cmd_match(buf, "none")) {
3280 mddev->persistent = 0;
3281 mddev->external = 0;
3282 mddev->major_version = 0;
3283 mddev->minor_version = 90;
3284 return len;
3285 }
3286 if (strncmp(buf, "external:", 9) == 0) {
3287 size_t namelen = len-9;
3288 if (namelen >= sizeof(mddev->metadata_type))
3289 namelen = sizeof(mddev->metadata_type)-1;
3290 strncpy(mddev->metadata_type, buf+9, namelen);
3291 mddev->metadata_type[namelen] = 0;
3292 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3293 mddev->metadata_type[--namelen] = 0;
3294 mddev->persistent = 0;
3295 mddev->external = 1;
3296 mddev->major_version = 0;
3297 mddev->minor_version = 90;
3298 return len;
3299 }
3300 major = simple_strtoul(buf, &e, 10);
3301 if (e==buf || *e != '.')
3302 return -EINVAL;
3303 buf = e+1;
3304 minor = simple_strtoul(buf, &e, 10);
3305 if (e==buf || (*e && *e != '\n') )
3306 return -EINVAL;
3307 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3308 return -ENOENT;
3309 mddev->major_version = major;
3310 mddev->minor_version = minor;
3311 mddev->persistent = 1;
3312 mddev->external = 0;
3313 return len;
3314 }
3315
3316 static struct md_sysfs_entry md_metadata =
3317 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3318
3319 static ssize_t
3320 action_show(mddev_t *mddev, char *page)
3321 {
3322 char *type = "idle";
3323 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3324 type = "frozen";
3325 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3326 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3327 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3328 type = "reshape";
3329 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3330 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3331 type = "resync";
3332 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3333 type = "check";
3334 else
3335 type = "repair";
3336 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3337 type = "recover";
3338 }
3339 return sprintf(page, "%s\n", type);
3340 }
3341
3342 static ssize_t
3343 action_store(mddev_t *mddev, const char *page, size_t len)
3344 {
3345 if (!mddev->pers || !mddev->pers->sync_request)
3346 return -EINVAL;
3347
3348 if (cmd_match(page, "frozen"))
3349 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3350 else
3351 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3352
3353 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3354 if (mddev->sync_thread) {
3355 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3356 md_unregister_thread(mddev->sync_thread);
3357 mddev->sync_thread = NULL;
3358 mddev->recovery = 0;
3359 }
3360 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3361 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3362 return -EBUSY;
3363 else if (cmd_match(page, "resync"))
3364 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3365 else if (cmd_match(page, "recover")) {
3366 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3368 } else if (cmd_match(page, "reshape")) {
3369 int err;
3370 if (mddev->pers->start_reshape == NULL)
3371 return -EINVAL;
3372 err = mddev->pers->start_reshape(mddev);
3373 if (err)
3374 return err;
3375 sysfs_notify(&mddev->kobj, NULL, "degraded");
3376 } else {
3377 if (cmd_match(page, "check"))
3378 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3379 else if (!cmd_match(page, "repair"))
3380 return -EINVAL;
3381 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3382 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3383 }
3384 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3385 md_wakeup_thread(mddev->thread);
3386 sysfs_notify_dirent(mddev->sysfs_action);
3387 return len;
3388 }
3389
3390 static ssize_t
3391 mismatch_cnt_show(mddev_t *mddev, char *page)
3392 {
3393 return sprintf(page, "%llu\n",
3394 (unsigned long long) mddev->resync_mismatches);
3395 }
3396
3397 static struct md_sysfs_entry md_scan_mode =
3398 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3399
3400
3401 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3402
3403 static ssize_t
3404 sync_min_show(mddev_t *mddev, char *page)
3405 {
3406 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3407 mddev->sync_speed_min ? "local": "system");
3408 }
3409
3410 static ssize_t
3411 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3412 {
3413 int min;
3414 char *e;
3415 if (strncmp(buf, "system", 6)==0) {
3416 mddev->sync_speed_min = 0;
3417 return len;
3418 }
3419 min = simple_strtoul(buf, &e, 10);
3420 if (buf == e || (*e && *e != '\n') || min <= 0)
3421 return -EINVAL;
3422 mddev->sync_speed_min = min;
3423 return len;
3424 }
3425
3426 static struct md_sysfs_entry md_sync_min =
3427 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3428
3429 static ssize_t
3430 sync_max_show(mddev_t *mddev, char *page)
3431 {
3432 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3433 mddev->sync_speed_max ? "local": "system");
3434 }
3435
3436 static ssize_t
3437 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3438 {
3439 int max;
3440 char *e;
3441 if (strncmp(buf, "system", 6)==0) {
3442 mddev->sync_speed_max = 0;
3443 return len;
3444 }
3445 max = simple_strtoul(buf, &e, 10);
3446 if (buf == e || (*e && *e != '\n') || max <= 0)
3447 return -EINVAL;
3448 mddev->sync_speed_max = max;
3449 return len;
3450 }
3451
3452 static struct md_sysfs_entry md_sync_max =
3453 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3454
3455 static ssize_t
3456 degraded_show(mddev_t *mddev, char *page)
3457 {
3458 return sprintf(page, "%d\n", mddev->degraded);
3459 }
3460 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3461
3462 static ssize_t
3463 sync_force_parallel_show(mddev_t *mddev, char *page)
3464 {
3465 return sprintf(page, "%d\n", mddev->parallel_resync);
3466 }
3467
3468 static ssize_t
3469 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3470 {
3471 long n;
3472
3473 if (strict_strtol(buf, 10, &n))
3474 return -EINVAL;
3475
3476 if (n != 0 && n != 1)
3477 return -EINVAL;
3478
3479 mddev->parallel_resync = n;
3480
3481 if (mddev->sync_thread)
3482 wake_up(&resync_wait);
3483
3484 return len;
3485 }
3486
3487 /* force parallel resync, even with shared block devices */
3488 static struct md_sysfs_entry md_sync_force_parallel =
3489 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3490 sync_force_parallel_show, sync_force_parallel_store);
3491
3492 static ssize_t
3493 sync_speed_show(mddev_t *mddev, char *page)
3494 {
3495 unsigned long resync, dt, db;
3496 if (mddev->curr_resync == 0)
3497 return sprintf(page, "none\n");
3498 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3499 dt = (jiffies - mddev->resync_mark) / HZ;
3500 if (!dt) dt++;
3501 db = resync - mddev->resync_mark_cnt;
3502 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3503 }
3504
3505 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3506
3507 static ssize_t
3508 sync_completed_show(mddev_t *mddev, char *page)
3509 {
3510 unsigned long max_sectors, resync;
3511
3512 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3513 return sprintf(page, "none\n");
3514
3515 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3516 max_sectors = mddev->resync_max_sectors;
3517 else
3518 max_sectors = mddev->dev_sectors;
3519
3520 resync = mddev->curr_resync_completed;
3521 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3522 }
3523
3524 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3525
3526 static ssize_t
3527 min_sync_show(mddev_t *mddev, char *page)
3528 {
3529 return sprintf(page, "%llu\n",
3530 (unsigned long long)mddev->resync_min);
3531 }
3532 static ssize_t
3533 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3534 {
3535 unsigned long long min;
3536 if (strict_strtoull(buf, 10, &min))
3537 return -EINVAL;
3538 if (min > mddev->resync_max)
3539 return -EINVAL;
3540 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3541 return -EBUSY;
3542
3543 /* Must be a multiple of chunk_size */
3544 if (mddev->chunk_sectors) {
3545 sector_t temp = min;
3546 if (sector_div(temp, mddev->chunk_sectors))
3547 return -EINVAL;
3548 }
3549 mddev->resync_min = min;
3550
3551 return len;
3552 }
3553
3554 static struct md_sysfs_entry md_min_sync =
3555 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3556
3557 static ssize_t
3558 max_sync_show(mddev_t *mddev, char *page)
3559 {
3560 if (mddev->resync_max == MaxSector)
3561 return sprintf(page, "max\n");
3562 else
3563 return sprintf(page, "%llu\n",
3564 (unsigned long long)mddev->resync_max);
3565 }
3566 static ssize_t
3567 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3568 {
3569 if (strncmp(buf, "max", 3) == 0)
3570 mddev->resync_max = MaxSector;
3571 else {
3572 unsigned long long max;
3573 if (strict_strtoull(buf, 10, &max))
3574 return -EINVAL;
3575 if (max < mddev->resync_min)
3576 return -EINVAL;
3577 if (max < mddev->resync_max &&
3578 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3579 return -EBUSY;
3580
3581 /* Must be a multiple of chunk_size */
3582 if (mddev->chunk_sectors) {
3583 sector_t temp = max;
3584 if (sector_div(temp, mddev->chunk_sectors))
3585 return -EINVAL;
3586 }
3587 mddev->resync_max = max;
3588 }
3589 wake_up(&mddev->recovery_wait);
3590 return len;
3591 }
3592
3593 static struct md_sysfs_entry md_max_sync =
3594 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3595
3596 static ssize_t
3597 suspend_lo_show(mddev_t *mddev, char *page)
3598 {
3599 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3600 }
3601
3602 static ssize_t
3603 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3604 {
3605 char *e;
3606 unsigned long long new = simple_strtoull(buf, &e, 10);
3607
3608 if (mddev->pers->quiesce == NULL)
3609 return -EINVAL;
3610 if (buf == e || (*e && *e != '\n'))
3611 return -EINVAL;
3612 if (new >= mddev->suspend_hi ||
3613 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3614 mddev->suspend_lo = new;
3615 mddev->pers->quiesce(mddev, 2);
3616 return len;
3617 } else
3618 return -EINVAL;
3619 }
3620 static struct md_sysfs_entry md_suspend_lo =
3621 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3622
3623
3624 static ssize_t
3625 suspend_hi_show(mddev_t *mddev, char *page)
3626 {
3627 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3628 }
3629
3630 static ssize_t
3631 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3632 {
3633 char *e;
3634 unsigned long long new = simple_strtoull(buf, &e, 10);
3635
3636 if (mddev->pers->quiesce == NULL)
3637 return -EINVAL;
3638 if (buf == e || (*e && *e != '\n'))
3639 return -EINVAL;
3640 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3641 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3642 mddev->suspend_hi = new;
3643 mddev->pers->quiesce(mddev, 1);
3644 mddev->pers->quiesce(mddev, 0);
3645 return len;
3646 } else
3647 return -EINVAL;
3648 }
3649 static struct md_sysfs_entry md_suspend_hi =
3650 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3651
3652 static ssize_t
3653 reshape_position_show(mddev_t *mddev, char *page)
3654 {
3655 if (mddev->reshape_position != MaxSector)
3656 return sprintf(page, "%llu\n",
3657 (unsigned long long)mddev->reshape_position);
3658 strcpy(page, "none\n");
3659 return 5;
3660 }
3661
3662 static ssize_t
3663 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3664 {
3665 char *e;
3666 unsigned long long new = simple_strtoull(buf, &e, 10);
3667 if (mddev->pers)
3668 return -EBUSY;
3669 if (buf == e || (*e && *e != '\n'))
3670 return -EINVAL;
3671 mddev->reshape_position = new;
3672 mddev->delta_disks = 0;
3673 mddev->new_level = mddev->level;
3674 mddev->new_layout = mddev->layout;
3675 mddev->new_chunk_sectors = mddev->chunk_sectors;
3676 return len;
3677 }
3678
3679 static struct md_sysfs_entry md_reshape_position =
3680 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3681 reshape_position_store);
3682
3683 static ssize_t
3684 array_size_show(mddev_t *mddev, char *page)
3685 {
3686 if (mddev->external_size)
3687 return sprintf(page, "%llu\n",
3688 (unsigned long long)mddev->array_sectors/2);
3689 else
3690 return sprintf(page, "default\n");
3691 }
3692
3693 static ssize_t
3694 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3695 {
3696 sector_t sectors;
3697
3698 if (strncmp(buf, "default", 7) == 0) {
3699 if (mddev->pers)
3700 sectors = mddev->pers->size(mddev, 0, 0);
3701 else
3702 sectors = mddev->array_sectors;
3703
3704 mddev->external_size = 0;
3705 } else {
3706 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3707 return -EINVAL;
3708 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3709 return -E2BIG;
3710
3711 mddev->external_size = 1;
3712 }
3713
3714 mddev->array_sectors = sectors;
3715 set_capacity(mddev->gendisk, mddev->array_sectors);
3716 if (mddev->pers) {
3717 struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
3718
3719 if (bdev) {
3720 mutex_lock(&bdev->bd_inode->i_mutex);
3721 i_size_write(bdev->bd_inode,
3722 (loff_t)mddev->array_sectors << 9);
3723 mutex_unlock(&bdev->bd_inode->i_mutex);
3724 bdput(bdev);
3725 }
3726 }
3727
3728 return len;
3729 }
3730
3731 static struct md_sysfs_entry md_array_size =
3732 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3733 array_size_store);
3734
3735 static struct attribute *md_default_attrs[] = {
3736 &md_level.attr,
3737 &md_layout.attr,
3738 &md_raid_disks.attr,
3739 &md_chunk_size.attr,
3740 &md_size.attr,
3741 &md_resync_start.attr,
3742 &md_metadata.attr,
3743 &md_new_device.attr,
3744 &md_safe_delay.attr,
3745 &md_array_state.attr,
3746 &md_reshape_position.attr,
3747 &md_array_size.attr,
3748 NULL,
3749 };
3750
3751 static struct attribute *md_redundancy_attrs[] = {
3752 &md_scan_mode.attr,
3753 &md_mismatches.attr,
3754 &md_sync_min.attr,
3755 &md_sync_max.attr,
3756 &md_sync_speed.attr,
3757 &md_sync_force_parallel.attr,
3758 &md_sync_completed.attr,
3759 &md_min_sync.attr,
3760 &md_max_sync.attr,
3761 &md_suspend_lo.attr,
3762 &md_suspend_hi.attr,
3763 &md_bitmap.attr,
3764 &md_degraded.attr,
3765 NULL,
3766 };
3767 static struct attribute_group md_redundancy_group = {
3768 .name = NULL,
3769 .attrs = md_redundancy_attrs,
3770 };
3771
3772
3773 static ssize_t
3774 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3775 {
3776 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3777 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3778 ssize_t rv;
3779
3780 if (!entry->show)
3781 return -EIO;
3782 rv = mddev_lock(mddev);
3783 if (!rv) {
3784 rv = entry->show(mddev, page);
3785 mddev_unlock(mddev);
3786 }
3787 return rv;
3788 }
3789
3790 static ssize_t
3791 md_attr_store(struct kobject *kobj, struct attribute *attr,
3792 const char *page, size_t length)
3793 {
3794 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3795 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3796 ssize_t rv;
3797
3798 if (!entry->store)
3799 return -EIO;
3800 if (!capable(CAP_SYS_ADMIN))
3801 return -EACCES;
3802 rv = mddev_lock(mddev);
3803 if (mddev->hold_active == UNTIL_IOCTL)
3804 mddev->hold_active = 0;
3805 if (!rv) {
3806 rv = entry->store(mddev, page, length);
3807 mddev_unlock(mddev);
3808 }
3809 return rv;
3810 }
3811
3812 static void md_free(struct kobject *ko)
3813 {
3814 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3815
3816 if (mddev->sysfs_state)
3817 sysfs_put(mddev->sysfs_state);
3818
3819 if (mddev->gendisk) {
3820 del_gendisk(mddev->gendisk);
3821 put_disk(mddev->gendisk);
3822 }
3823 if (mddev->queue)
3824 blk_cleanup_queue(mddev->queue);
3825
3826 kfree(mddev);
3827 }
3828
3829 static struct sysfs_ops md_sysfs_ops = {
3830 .show = md_attr_show,
3831 .store = md_attr_store,
3832 };
3833 static struct kobj_type md_ktype = {
3834 .release = md_free,
3835 .sysfs_ops = &md_sysfs_ops,
3836 .default_attrs = md_default_attrs,
3837 };
3838
3839 int mdp_major = 0;
3840
3841 static void mddev_delayed_delete(struct work_struct *ws)
3842 {
3843 mddev_t *mddev = container_of(ws, mddev_t, del_work);
3844
3845 if (mddev->private == &md_redundancy_group) {
3846 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3847 if (mddev->sysfs_action)
3848 sysfs_put(mddev->sysfs_action);
3849 mddev->sysfs_action = NULL;
3850 mddev->private = NULL;
3851 }
3852 kobject_del(&mddev->kobj);
3853 kobject_put(&mddev->kobj);
3854 }
3855
3856 static int md_alloc(dev_t dev, char *name)
3857 {
3858 static DEFINE_MUTEX(disks_mutex);
3859 mddev_t *mddev = mddev_find(dev);
3860 struct gendisk *disk;
3861 int partitioned;
3862 int shift;
3863 int unit;
3864 int error;
3865
3866 if (!mddev)
3867 return -ENODEV;
3868
3869 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3870 shift = partitioned ? MdpMinorShift : 0;
3871 unit = MINOR(mddev->unit) >> shift;
3872
3873 /* wait for any previous instance if this device
3874 * to be completed removed (mddev_delayed_delete).
3875 */
3876 flush_scheduled_work();
3877
3878 mutex_lock(&disks_mutex);
3879 if (mddev->gendisk) {
3880 mutex_unlock(&disks_mutex);
3881 mddev_put(mddev);
3882 return -EEXIST;
3883 }
3884
3885 if (name) {
3886 /* Need to ensure that 'name' is not a duplicate.
3887 */
3888 mddev_t *mddev2;
3889 spin_lock(&all_mddevs_lock);
3890
3891 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3892 if (mddev2->gendisk &&
3893 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3894 spin_unlock(&all_mddevs_lock);
3895 return -EEXIST;
3896 }
3897 spin_unlock(&all_mddevs_lock);
3898 }
3899
3900 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3901 if (!mddev->queue) {
3902 mutex_unlock(&disks_mutex);
3903 mddev_put(mddev);
3904 return -ENOMEM;
3905 }
3906 mddev->queue->queuedata = mddev;
3907
3908 /* Can be unlocked because the queue is new: no concurrency */
3909 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3910
3911 blk_queue_make_request(mddev->queue, md_make_request);
3912
3913 disk = alloc_disk(1 << shift);
3914 if (!disk) {
3915 mutex_unlock(&disks_mutex);
3916 blk_cleanup_queue(mddev->queue);
3917 mddev->queue = NULL;
3918 mddev_put(mddev);
3919 return -ENOMEM;
3920 }
3921 disk->major = MAJOR(mddev->unit);
3922 disk->first_minor = unit << shift;
3923 if (name)
3924 strcpy(disk->disk_name, name);
3925 else if (partitioned)
3926 sprintf(disk->disk_name, "md_d%d", unit);
3927 else
3928 sprintf(disk->disk_name, "md%d", unit);
3929 disk->fops = &md_fops;
3930 disk->private_data = mddev;
3931 disk->queue = mddev->queue;
3932 /* Allow extended partitions. This makes the
3933 * 'mdp' device redundant, but we can't really
3934 * remove it now.
3935 */
3936 disk->flags |= GENHD_FL_EXT_DEVT;
3937 add_disk(disk);
3938 mddev->gendisk = disk;
3939 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3940 &disk_to_dev(disk)->kobj, "%s", "md");
3941 mutex_unlock(&disks_mutex);
3942 if (error)
3943 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3944 disk->disk_name);
3945 else {
3946 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3947 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3948 }
3949 mddev_put(mddev);
3950 return 0;
3951 }
3952
3953 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3954 {
3955 md_alloc(dev, NULL);
3956 return NULL;
3957 }
3958
3959 static int add_named_array(const char *val, struct kernel_param *kp)
3960 {
3961 /* val must be "md_*" where * is not all digits.
3962 * We allocate an array with a large free minor number, and
3963 * set the name to val. val must not already be an active name.
3964 */
3965 int len = strlen(val);
3966 char buf[DISK_NAME_LEN];
3967
3968 while (len && val[len-1] == '\n')
3969 len--;
3970 if (len >= DISK_NAME_LEN)
3971 return -E2BIG;
3972 strlcpy(buf, val, len+1);
3973 if (strncmp(buf, "md_", 3) != 0)
3974 return -EINVAL;
3975 return md_alloc(0, buf);
3976 }
3977
3978 static void md_safemode_timeout(unsigned long data)
3979 {
3980 mddev_t *mddev = (mddev_t *) data;
3981
3982 if (!atomic_read(&mddev->writes_pending)) {
3983 mddev->safemode = 1;
3984 if (mddev->external)
3985 sysfs_notify_dirent(mddev->sysfs_state);
3986 }
3987 md_wakeup_thread(mddev->thread);
3988 }
3989
3990 static int start_dirty_degraded;
3991
3992 static int do_md_run(mddev_t * mddev)
3993 {
3994 int err;
3995 int chunk_size;
3996 mdk_rdev_t *rdev;
3997 struct gendisk *disk;
3998 struct mdk_personality *pers;
3999 char b[BDEVNAME_SIZE];
4000
4001 if (list_empty(&mddev->disks))
4002 /* cannot run an array with no devices.. */
4003 return -EINVAL;
4004
4005 if (mddev->pers)
4006 return -EBUSY;
4007
4008 /*
4009 * Analyze all RAID superblock(s)
4010 */
4011 if (!mddev->raid_disks) {
4012 if (!mddev->persistent)
4013 return -EINVAL;
4014 analyze_sbs(mddev);
4015 }
4016
4017 chunk_size = mddev->chunk_sectors << 9;
4018
4019 if (chunk_size) {
4020 if (chunk_size > MAX_CHUNK_SIZE) {
4021 printk(KERN_ERR "too big chunk_size: %d > %d\n",
4022 chunk_size, MAX_CHUNK_SIZE);
4023 return -EINVAL;
4024 }
4025 /* devices must have minimum size of one chunk */
4026 list_for_each_entry(rdev, &mddev->disks, same_set) {
4027 if (test_bit(Faulty, &rdev->flags))
4028 continue;
4029 if (rdev->sectors < chunk_size / 512) {
4030 printk(KERN_WARNING
4031 "md: Dev %s smaller than chunk_size:"
4032 " %llu < %d\n",
4033 bdevname(rdev->bdev,b),
4034 (unsigned long long)rdev->sectors,
4035 chunk_size / 512);
4036 return -EINVAL;
4037 }
4038 }
4039 }
4040
4041 if (mddev->level != LEVEL_NONE)
4042 request_module("md-level-%d", mddev->level);
4043 else if (mddev->clevel[0])
4044 request_module("md-%s", mddev->clevel);
4045
4046 /*
4047 * Drop all container device buffers, from now on
4048 * the only valid external interface is through the md
4049 * device.
4050 */
4051 list_for_each_entry(rdev, &mddev->disks, same_set) {
4052 if (test_bit(Faulty, &rdev->flags))
4053 continue;
4054 sync_blockdev(rdev->bdev);
4055 invalidate_bdev(rdev->bdev);
4056
4057 /* perform some consistency tests on the device.
4058 * We don't want the data to overlap the metadata,
4059 * Internal Bitmap issues have been handled elsewhere.
4060 */
4061 if (rdev->data_offset < rdev->sb_start) {
4062 if (mddev->dev_sectors &&
4063 rdev->data_offset + mddev->dev_sectors
4064 > rdev->sb_start) {
4065 printk("md: %s: data overlaps metadata\n",
4066 mdname(mddev));
4067 return -EINVAL;
4068 }
4069 } else {
4070 if (rdev->sb_start + rdev->sb_size/512
4071 > rdev->data_offset) {
4072 printk("md: %s: metadata overlaps data\n",
4073 mdname(mddev));
4074 return -EINVAL;
4075 }
4076 }
4077 sysfs_notify_dirent(rdev->sysfs_state);
4078 }
4079
4080 md_probe(mddev->unit, NULL, NULL);
4081 disk = mddev->gendisk;
4082 if (!disk)
4083 return -ENOMEM;
4084
4085 spin_lock(&pers_lock);
4086 pers = find_pers(mddev->level, mddev->clevel);
4087 if (!pers || !try_module_get(pers->owner)) {
4088 spin_unlock(&pers_lock);
4089 if (mddev->level != LEVEL_NONE)
4090 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4091 mddev->level);
4092 else
4093 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4094 mddev->clevel);
4095 return -EINVAL;
4096 }
4097 mddev->pers = pers;
4098 spin_unlock(&pers_lock);
4099 if (mddev->level != pers->level) {
4100 mddev->level = pers->level;
4101 mddev->new_level = pers->level;
4102 }
4103 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4104
4105 if (pers->level >= 4 && pers->level <= 6)
4106 /* Cannot support integrity (yet) */
4107 blk_integrity_unregister(mddev->gendisk);
4108
4109 if (mddev->reshape_position != MaxSector &&
4110 pers->start_reshape == NULL) {
4111 /* This personality cannot handle reshaping... */
4112 mddev->pers = NULL;
4113 module_put(pers->owner);
4114 return -EINVAL;
4115 }
4116
4117 if (pers->sync_request) {
4118 /* Warn if this is a potentially silly
4119 * configuration.
4120 */
4121 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4122 mdk_rdev_t *rdev2;
4123 int warned = 0;
4124
4125 list_for_each_entry(rdev, &mddev->disks, same_set)
4126 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4127 if (rdev < rdev2 &&
4128 rdev->bdev->bd_contains ==
4129 rdev2->bdev->bd_contains) {
4130 printk(KERN_WARNING
4131 "%s: WARNING: %s appears to be"
4132 " on the same physical disk as"
4133 " %s.\n",
4134 mdname(mddev),
4135 bdevname(rdev->bdev,b),
4136 bdevname(rdev2->bdev,b2));
4137 warned = 1;
4138 }
4139 }
4140
4141 if (warned)
4142 printk(KERN_WARNING
4143 "True protection against single-disk"
4144 " failure might be compromised.\n");
4145 }
4146
4147 mddev->recovery = 0;
4148 /* may be over-ridden by personality */
4149 mddev->resync_max_sectors = mddev->dev_sectors;
4150
4151 mddev->barriers_work = 1;
4152 mddev->ok_start_degraded = start_dirty_degraded;
4153
4154 if (start_readonly)
4155 mddev->ro = 2; /* read-only, but switch on first write */
4156
4157 err = mddev->pers->run(mddev);
4158 if (err)
4159 printk(KERN_ERR "md: pers->run() failed ...\n");
4160 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4161 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4162 " but 'external_size' not in effect?\n", __func__);
4163 printk(KERN_ERR
4164 "md: invalid array_size %llu > default size %llu\n",
4165 (unsigned long long)mddev->array_sectors / 2,
4166 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4167 err = -EINVAL;
4168 mddev->pers->stop(mddev);
4169 }
4170 if (err == 0 && mddev->pers->sync_request) {
4171 err = bitmap_create(mddev);
4172 if (err) {
4173 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4174 mdname(mddev), err);
4175 mddev->pers->stop(mddev);
4176 }
4177 }
4178 if (err) {
4179 module_put(mddev->pers->owner);
4180 mddev->pers = NULL;
4181 bitmap_destroy(mddev);
4182 return err;
4183 }
4184 if (mddev->pers->sync_request) {
4185 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4186 printk(KERN_WARNING
4187 "md: cannot register extra attributes for %s\n",
4188 mdname(mddev));
4189 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4190 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4191 mddev->ro = 0;
4192
4193 atomic_set(&mddev->writes_pending,0);
4194 mddev->safemode = 0;
4195 mddev->safemode_timer.function = md_safemode_timeout;
4196 mddev->safemode_timer.data = (unsigned long) mddev;
4197 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4198 mddev->in_sync = 1;
4199
4200 list_for_each_entry(rdev, &mddev->disks, same_set)
4201 if (rdev->raid_disk >= 0) {
4202 char nm[20];
4203 sprintf(nm, "rd%d", rdev->raid_disk);
4204 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4205 printk("md: cannot register %s for %s\n",
4206 nm, mdname(mddev));
4207 }
4208
4209 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4210
4211 if (mddev->flags)
4212 md_update_sb(mddev, 0);
4213
4214 set_capacity(disk, mddev->array_sectors);
4215
4216 /* If there is a partially-recovered drive we need to
4217 * start recovery here. If we leave it to md_check_recovery,
4218 * it will remove the drives and not do the right thing
4219 */
4220 if (mddev->degraded && !mddev->sync_thread) {
4221 int spares = 0;
4222 list_for_each_entry(rdev, &mddev->disks, same_set)
4223 if (rdev->raid_disk >= 0 &&
4224 !test_bit(In_sync, &rdev->flags) &&
4225 !test_bit(Faulty, &rdev->flags))
4226 /* complete an interrupted recovery */
4227 spares++;
4228 if (spares && mddev->pers->sync_request) {
4229 mddev->recovery = 0;
4230 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4231 mddev->sync_thread = md_register_thread(md_do_sync,
4232 mddev,
4233 "%s_resync");
4234 if (!mddev->sync_thread) {
4235 printk(KERN_ERR "%s: could not start resync"
4236 " thread...\n",
4237 mdname(mddev));
4238 /* leave the spares where they are, it shouldn't hurt */
4239 mddev->recovery = 0;
4240 }
4241 }
4242 }
4243 md_wakeup_thread(mddev->thread);
4244 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4245
4246 mddev->changed = 1;
4247 md_new_event(mddev);
4248 sysfs_notify_dirent(mddev->sysfs_state);
4249 if (mddev->sysfs_action)
4250 sysfs_notify_dirent(mddev->sysfs_action);
4251 sysfs_notify(&mddev->kobj, NULL, "degraded");
4252 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4253 return 0;
4254 }
4255
4256 static int restart_array(mddev_t *mddev)
4257 {
4258 struct gendisk *disk = mddev->gendisk;
4259
4260 /* Complain if it has no devices */
4261 if (list_empty(&mddev->disks))
4262 return -ENXIO;
4263 if (!mddev->pers)
4264 return -EINVAL;
4265 if (!mddev->ro)
4266 return -EBUSY;
4267 mddev->safemode = 0;
4268 mddev->ro = 0;
4269 set_disk_ro(disk, 0);
4270 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4271 mdname(mddev));
4272 /* Kick recovery or resync if necessary */
4273 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4274 md_wakeup_thread(mddev->thread);
4275 md_wakeup_thread(mddev->sync_thread);
4276 sysfs_notify_dirent(mddev->sysfs_state);
4277 return 0;
4278 }
4279
4280 /* similar to deny_write_access, but accounts for our holding a reference
4281 * to the file ourselves */
4282 static int deny_bitmap_write_access(struct file * file)
4283 {
4284 struct inode *inode = file->f_mapping->host;
4285
4286 spin_lock(&inode->i_lock);
4287 if (atomic_read(&inode->i_writecount) > 1) {
4288 spin_unlock(&inode->i_lock);
4289 return -ETXTBSY;
4290 }
4291 atomic_set(&inode->i_writecount, -1);
4292 spin_unlock(&inode->i_lock);
4293
4294 return 0;
4295 }
4296
4297 static void restore_bitmap_write_access(struct file *file)
4298 {
4299 struct inode *inode = file->f_mapping->host;
4300
4301 spin_lock(&inode->i_lock);
4302 atomic_set(&inode->i_writecount, 1);
4303 spin_unlock(&inode->i_lock);
4304 }
4305
4306 /* mode:
4307 * 0 - completely stop and dis-assemble array
4308 * 1 - switch to readonly
4309 * 2 - stop but do not disassemble array
4310 */
4311 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4312 {
4313 int err = 0;
4314 struct gendisk *disk = mddev->gendisk;
4315 mdk_rdev_t *rdev;
4316
4317 if (atomic_read(&mddev->openers) > is_open) {
4318 printk("md: %s still in use.\n",mdname(mddev));
4319 return -EBUSY;
4320 }
4321
4322 if (mddev->pers) {
4323
4324 if (mddev->sync_thread) {
4325 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4327 md_unregister_thread(mddev->sync_thread);
4328 mddev->sync_thread = NULL;
4329 }
4330
4331 del_timer_sync(&mddev->safemode_timer);
4332
4333 switch(mode) {
4334 case 1: /* readonly */
4335 err = -ENXIO;
4336 if (mddev->ro==1)
4337 goto out;
4338 mddev->ro = 1;
4339 break;
4340 case 0: /* disassemble */
4341 case 2: /* stop */
4342 bitmap_flush(mddev);
4343 md_super_wait(mddev);
4344 if (mddev->ro)
4345 set_disk_ro(disk, 0);
4346
4347 mddev->pers->stop(mddev);
4348 mddev->queue->merge_bvec_fn = NULL;
4349 mddev->queue->unplug_fn = NULL;
4350 mddev->queue->backing_dev_info.congested_fn = NULL;
4351 module_put(mddev->pers->owner);
4352 if (mddev->pers->sync_request)
4353 mddev->private = &md_redundancy_group;
4354 mddev->pers = NULL;
4355 /* tell userspace to handle 'inactive' */
4356 sysfs_notify_dirent(mddev->sysfs_state);
4357
4358 list_for_each_entry(rdev, &mddev->disks, same_set)
4359 if (rdev->raid_disk >= 0) {
4360 char nm[20];
4361 sprintf(nm, "rd%d", rdev->raid_disk);
4362 sysfs_remove_link(&mddev->kobj, nm);
4363 }
4364
4365 set_capacity(disk, 0);
4366 mddev->changed = 1;
4367
4368 if (mddev->ro)
4369 mddev->ro = 0;
4370 }
4371 if (!mddev->in_sync || mddev->flags) {
4372 /* mark array as shutdown cleanly */
4373 mddev->in_sync = 1;
4374 md_update_sb(mddev, 1);
4375 }
4376 if (mode == 1)
4377 set_disk_ro(disk, 1);
4378 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4379 }
4380
4381 /*
4382 * Free resources if final stop
4383 */
4384 if (mode == 0) {
4385
4386 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4387
4388 bitmap_destroy(mddev);
4389 if (mddev->bitmap_file) {
4390 restore_bitmap_write_access(mddev->bitmap_file);
4391 fput(mddev->bitmap_file);
4392 mddev->bitmap_file = NULL;
4393 }
4394 mddev->bitmap_offset = 0;
4395
4396 /* make sure all md_delayed_delete calls have finished */
4397 flush_scheduled_work();
4398
4399 export_array(mddev);
4400
4401 mddev->array_sectors = 0;
4402 mddev->external_size = 0;
4403 mddev->dev_sectors = 0;
4404 mddev->raid_disks = 0;
4405 mddev->recovery_cp = 0;
4406 mddev->resync_min = 0;
4407 mddev->resync_max = MaxSector;
4408 mddev->reshape_position = MaxSector;
4409 mddev->external = 0;
4410 mddev->persistent = 0;
4411 mddev->level = LEVEL_NONE;
4412 mddev->clevel[0] = 0;
4413 mddev->flags = 0;
4414 mddev->ro = 0;
4415 mddev->metadata_type[0] = 0;
4416 mddev->chunk_sectors = 0;
4417 mddev->ctime = mddev->utime = 0;
4418 mddev->layout = 0;
4419 mddev->max_disks = 0;
4420 mddev->events = 0;
4421 mddev->delta_disks = 0;
4422 mddev->new_level = LEVEL_NONE;
4423 mddev->new_layout = 0;
4424 mddev->new_chunk_sectors = 0;
4425 mddev->curr_resync = 0;
4426 mddev->resync_mismatches = 0;
4427 mddev->suspend_lo = mddev->suspend_hi = 0;
4428 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4429 mddev->recovery = 0;
4430 mddev->in_sync = 0;
4431 mddev->changed = 0;
4432 mddev->degraded = 0;
4433 mddev->barriers_work = 0;
4434 mddev->safemode = 0;
4435 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4436 if (mddev->hold_active == UNTIL_STOP)
4437 mddev->hold_active = 0;
4438
4439 } else if (mddev->pers)
4440 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4441 mdname(mddev));
4442 err = 0;
4443 blk_integrity_unregister(disk);
4444 md_new_event(mddev);
4445 sysfs_notify_dirent(mddev->sysfs_state);
4446 out:
4447 return err;
4448 }
4449
4450 #ifndef MODULE
4451 static void autorun_array(mddev_t *mddev)
4452 {
4453 mdk_rdev_t *rdev;
4454 int err;
4455
4456 if (list_empty(&mddev->disks))
4457 return;
4458
4459 printk(KERN_INFO "md: running: ");
4460
4461 list_for_each_entry(rdev, &mddev->disks, same_set) {
4462 char b[BDEVNAME_SIZE];
4463 printk("<%s>", bdevname(rdev->bdev,b));
4464 }
4465 printk("\n");
4466
4467 err = do_md_run(mddev);
4468 if (err) {
4469 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4470 do_md_stop(mddev, 0, 0);
4471 }
4472 }
4473
4474 /*
4475 * lets try to run arrays based on all disks that have arrived
4476 * until now. (those are in pending_raid_disks)
4477 *
4478 * the method: pick the first pending disk, collect all disks with
4479 * the same UUID, remove all from the pending list and put them into
4480 * the 'same_array' list. Then order this list based on superblock
4481 * update time (freshest comes first), kick out 'old' disks and
4482 * compare superblocks. If everything's fine then run it.
4483 *
4484 * If "unit" is allocated, then bump its reference count
4485 */
4486 static void autorun_devices(int part)
4487 {
4488 mdk_rdev_t *rdev0, *rdev, *tmp;
4489 mddev_t *mddev;
4490 char b[BDEVNAME_SIZE];
4491
4492 printk(KERN_INFO "md: autorun ...\n");
4493 while (!list_empty(&pending_raid_disks)) {
4494 int unit;
4495 dev_t dev;
4496 LIST_HEAD(candidates);
4497 rdev0 = list_entry(pending_raid_disks.next,
4498 mdk_rdev_t, same_set);
4499
4500 printk(KERN_INFO "md: considering %s ...\n",
4501 bdevname(rdev0->bdev,b));
4502 INIT_LIST_HEAD(&candidates);
4503 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4504 if (super_90_load(rdev, rdev0, 0) >= 0) {
4505 printk(KERN_INFO "md: adding %s ...\n",
4506 bdevname(rdev->bdev,b));
4507 list_move(&rdev->same_set, &candidates);
4508 }
4509 /*
4510 * now we have a set of devices, with all of them having
4511 * mostly sane superblocks. It's time to allocate the
4512 * mddev.
4513 */
4514 if (part) {
4515 dev = MKDEV(mdp_major,
4516 rdev0->preferred_minor << MdpMinorShift);
4517 unit = MINOR(dev) >> MdpMinorShift;
4518 } else {
4519 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4520 unit = MINOR(dev);
4521 }
4522 if (rdev0->preferred_minor != unit) {
4523 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4524 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4525 break;
4526 }
4527
4528 md_probe(dev, NULL, NULL);
4529 mddev = mddev_find(dev);
4530 if (!mddev || !mddev->gendisk) {
4531 if (mddev)
4532 mddev_put(mddev);
4533 printk(KERN_ERR
4534 "md: cannot allocate memory for md drive.\n");
4535 break;
4536 }
4537 if (mddev_lock(mddev))
4538 printk(KERN_WARNING "md: %s locked, cannot run\n",
4539 mdname(mddev));
4540 else if (mddev->raid_disks || mddev->major_version
4541 || !list_empty(&mddev->disks)) {
4542 printk(KERN_WARNING
4543 "md: %s already running, cannot run %s\n",
4544 mdname(mddev), bdevname(rdev0->bdev,b));
4545 mddev_unlock(mddev);
4546 } else {
4547 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4548 mddev->persistent = 1;
4549 rdev_for_each_list(rdev, tmp, &candidates) {
4550 list_del_init(&rdev->same_set);
4551 if (bind_rdev_to_array(rdev, mddev))
4552 export_rdev(rdev);
4553 }
4554 autorun_array(mddev);
4555 mddev_unlock(mddev);
4556 }
4557 /* on success, candidates will be empty, on error
4558 * it won't...
4559 */
4560 rdev_for_each_list(rdev, tmp, &candidates) {
4561 list_del_init(&rdev->same_set);
4562 export_rdev(rdev);
4563 }
4564 mddev_put(mddev);
4565 }
4566 printk(KERN_INFO "md: ... autorun DONE.\n");
4567 }
4568 #endif /* !MODULE */
4569
4570 static int get_version(void __user * arg)
4571 {
4572 mdu_version_t ver;
4573
4574 ver.major = MD_MAJOR_VERSION;
4575 ver.minor = MD_MINOR_VERSION;
4576 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4577
4578 if (copy_to_user(arg, &ver, sizeof(ver)))
4579 return -EFAULT;
4580
4581 return 0;
4582 }
4583
4584 static int get_array_info(mddev_t * mddev, void __user * arg)
4585 {
4586 mdu_array_info_t info;
4587 int nr,working,active,failed,spare;
4588 mdk_rdev_t *rdev;
4589
4590 nr=working=active=failed=spare=0;
4591 list_for_each_entry(rdev, &mddev->disks, same_set) {
4592 nr++;
4593 if (test_bit(Faulty, &rdev->flags))
4594 failed++;
4595 else {
4596 working++;
4597 if (test_bit(In_sync, &rdev->flags))
4598 active++;
4599 else
4600 spare++;
4601 }
4602 }
4603
4604 info.major_version = mddev->major_version;
4605 info.minor_version = mddev->minor_version;
4606 info.patch_version = MD_PATCHLEVEL_VERSION;
4607 info.ctime = mddev->ctime;
4608 info.level = mddev->level;
4609 info.size = mddev->dev_sectors / 2;
4610 if (info.size != mddev->dev_sectors / 2) /* overflow */
4611 info.size = -1;
4612 info.nr_disks = nr;
4613 info.raid_disks = mddev->raid_disks;
4614 info.md_minor = mddev->md_minor;
4615 info.not_persistent= !mddev->persistent;
4616
4617 info.utime = mddev->utime;
4618 info.state = 0;
4619 if (mddev->in_sync)
4620 info.state = (1<<MD_SB_CLEAN);
4621 if (mddev->bitmap && mddev->bitmap_offset)
4622 info.state = (1<<MD_SB_BITMAP_PRESENT);
4623 info.active_disks = active;
4624 info.working_disks = working;
4625 info.failed_disks = failed;
4626 info.spare_disks = spare;
4627
4628 info.layout = mddev->layout;
4629 info.chunk_size = mddev->chunk_sectors << 9;
4630
4631 if (copy_to_user(arg, &info, sizeof(info)))
4632 return -EFAULT;
4633
4634 return 0;
4635 }
4636
4637 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4638 {
4639 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4640 char *ptr, *buf = NULL;
4641 int err = -ENOMEM;
4642
4643 if (md_allow_write(mddev))
4644 file = kmalloc(sizeof(*file), GFP_NOIO);
4645 else
4646 file = kmalloc(sizeof(*file), GFP_KERNEL);
4647
4648 if (!file)
4649 goto out;
4650
4651 /* bitmap disabled, zero the first byte and copy out */
4652 if (!mddev->bitmap || !mddev->bitmap->file) {
4653 file->pathname[0] = '\0';
4654 goto copy_out;
4655 }
4656
4657 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4658 if (!buf)
4659 goto out;
4660
4661 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4662 if (IS_ERR(ptr))
4663 goto out;
4664
4665 strcpy(file->pathname, ptr);
4666
4667 copy_out:
4668 err = 0;
4669 if (copy_to_user(arg, file, sizeof(*file)))
4670 err = -EFAULT;
4671 out:
4672 kfree(buf);
4673 kfree(file);
4674 return err;
4675 }
4676
4677 static int get_disk_info(mddev_t * mddev, void __user * arg)
4678 {
4679 mdu_disk_info_t info;
4680 mdk_rdev_t *rdev;
4681
4682 if (copy_from_user(&info, arg, sizeof(info)))
4683 return -EFAULT;
4684
4685 rdev = find_rdev_nr(mddev, info.number);
4686 if (rdev) {
4687 info.major = MAJOR(rdev->bdev->bd_dev);
4688 info.minor = MINOR(rdev->bdev->bd_dev);
4689 info.raid_disk = rdev->raid_disk;
4690 info.state = 0;
4691 if (test_bit(Faulty, &rdev->flags))
4692 info.state |= (1<<MD_DISK_FAULTY);
4693 else if (test_bit(In_sync, &rdev->flags)) {
4694 info.state |= (1<<MD_DISK_ACTIVE);
4695 info.state |= (1<<MD_DISK_SYNC);
4696 }
4697 if (test_bit(WriteMostly, &rdev->flags))
4698 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4699 } else {
4700 info.major = info.minor = 0;
4701 info.raid_disk = -1;
4702 info.state = (1<<MD_DISK_REMOVED);
4703 }
4704
4705 if (copy_to_user(arg, &info, sizeof(info)))
4706 return -EFAULT;
4707
4708 return 0;
4709 }
4710
4711 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4712 {
4713 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4714 mdk_rdev_t *rdev;
4715 dev_t dev = MKDEV(info->major,info->minor);
4716
4717 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4718 return -EOVERFLOW;
4719
4720 if (!mddev->raid_disks) {
4721 int err;
4722 /* expecting a device which has a superblock */
4723 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4724 if (IS_ERR(rdev)) {
4725 printk(KERN_WARNING
4726 "md: md_import_device returned %ld\n",
4727 PTR_ERR(rdev));
4728 return PTR_ERR(rdev);
4729 }
4730 if (!list_empty(&mddev->disks)) {
4731 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4732 mdk_rdev_t, same_set);
4733 int err = super_types[mddev->major_version]
4734 .load_super(rdev, rdev0, mddev->minor_version);
4735 if (err < 0) {
4736 printk(KERN_WARNING
4737 "md: %s has different UUID to %s\n",
4738 bdevname(rdev->bdev,b),
4739 bdevname(rdev0->bdev,b2));
4740 export_rdev(rdev);
4741 return -EINVAL;
4742 }
4743 }
4744 err = bind_rdev_to_array(rdev, mddev);
4745 if (err)
4746 export_rdev(rdev);
4747 return err;
4748 }
4749
4750 /*
4751 * add_new_disk can be used once the array is assembled
4752 * to add "hot spares". They must already have a superblock
4753 * written
4754 */
4755 if (mddev->pers) {
4756 int err;
4757 if (!mddev->pers->hot_add_disk) {
4758 printk(KERN_WARNING
4759 "%s: personality does not support diskops!\n",
4760 mdname(mddev));
4761 return -EINVAL;
4762 }
4763 if (mddev->persistent)
4764 rdev = md_import_device(dev, mddev->major_version,
4765 mddev->minor_version);
4766 else
4767 rdev = md_import_device(dev, -1, -1);
4768 if (IS_ERR(rdev)) {
4769 printk(KERN_WARNING
4770 "md: md_import_device returned %ld\n",
4771 PTR_ERR(rdev));
4772 return PTR_ERR(rdev);
4773 }
4774 /* set save_raid_disk if appropriate */
4775 if (!mddev->persistent) {
4776 if (info->state & (1<<MD_DISK_SYNC) &&
4777 info->raid_disk < mddev->raid_disks)
4778 rdev->raid_disk = info->raid_disk;
4779 else
4780 rdev->raid_disk = -1;
4781 } else
4782 super_types[mddev->major_version].
4783 validate_super(mddev, rdev);
4784 rdev->saved_raid_disk = rdev->raid_disk;
4785
4786 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4787 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4788 set_bit(WriteMostly, &rdev->flags);
4789 else
4790 clear_bit(WriteMostly, &rdev->flags);
4791
4792 rdev->raid_disk = -1;
4793 err = bind_rdev_to_array(rdev, mddev);
4794 if (!err && !mddev->pers->hot_remove_disk) {
4795 /* If there is hot_add_disk but no hot_remove_disk
4796 * then added disks for geometry changes,
4797 * and should be added immediately.
4798 */
4799 super_types[mddev->major_version].
4800 validate_super(mddev, rdev);
4801 err = mddev->pers->hot_add_disk(mddev, rdev);
4802 if (err)
4803 unbind_rdev_from_array(rdev);
4804 }
4805 if (err)
4806 export_rdev(rdev);
4807 else
4808 sysfs_notify_dirent(rdev->sysfs_state);
4809
4810 md_update_sb(mddev, 1);
4811 if (mddev->degraded)
4812 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4813 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4814 md_wakeup_thread(mddev->thread);
4815 return err;
4816 }
4817
4818 /* otherwise, add_new_disk is only allowed
4819 * for major_version==0 superblocks
4820 */
4821 if (mddev->major_version != 0) {
4822 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4823 mdname(mddev));
4824 return -EINVAL;
4825 }
4826
4827 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4828 int err;
4829 rdev = md_import_device(dev, -1, 0);
4830 if (IS_ERR(rdev)) {
4831 printk(KERN_WARNING
4832 "md: error, md_import_device() returned %ld\n",
4833 PTR_ERR(rdev));
4834 return PTR_ERR(rdev);
4835 }
4836 rdev->desc_nr = info->number;
4837 if (info->raid_disk < mddev->raid_disks)
4838 rdev->raid_disk = info->raid_disk;
4839 else
4840 rdev->raid_disk = -1;
4841
4842 if (rdev->raid_disk < mddev->raid_disks)
4843 if (info->state & (1<<MD_DISK_SYNC))
4844 set_bit(In_sync, &rdev->flags);
4845
4846 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4847 set_bit(WriteMostly, &rdev->flags);
4848
4849 if (!mddev->persistent) {
4850 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4851 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4852 } else
4853 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4854 rdev->sectors = calc_num_sectors(rdev,
4855 mddev->chunk_sectors << 9);
4856
4857 err = bind_rdev_to_array(rdev, mddev);
4858 if (err) {
4859 export_rdev(rdev);
4860 return err;
4861 }
4862 }
4863
4864 return 0;
4865 }
4866
4867 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4868 {
4869 char b[BDEVNAME_SIZE];
4870 mdk_rdev_t *rdev;
4871
4872 rdev = find_rdev(mddev, dev);
4873 if (!rdev)
4874 return -ENXIO;
4875
4876 if (rdev->raid_disk >= 0)
4877 goto busy;
4878
4879 kick_rdev_from_array(rdev);
4880 md_update_sb(mddev, 1);
4881 md_new_event(mddev);
4882
4883 return 0;
4884 busy:
4885 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4886 bdevname(rdev->bdev,b), mdname(mddev));
4887 return -EBUSY;
4888 }
4889
4890 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4891 {
4892 char b[BDEVNAME_SIZE];
4893 int err;
4894 mdk_rdev_t *rdev;
4895
4896 if (!mddev->pers)
4897 return -ENODEV;
4898
4899 if (mddev->major_version != 0) {
4900 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4901 " version-0 superblocks.\n",
4902 mdname(mddev));
4903 return -EINVAL;
4904 }
4905 if (!mddev->pers->hot_add_disk) {
4906 printk(KERN_WARNING
4907 "%s: personality does not support diskops!\n",
4908 mdname(mddev));
4909 return -EINVAL;
4910 }
4911
4912 rdev = md_import_device(dev, -1, 0);
4913 if (IS_ERR(rdev)) {
4914 printk(KERN_WARNING
4915 "md: error, md_import_device() returned %ld\n",
4916 PTR_ERR(rdev));
4917 return -EINVAL;
4918 }
4919
4920 if (mddev->persistent)
4921 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4922 else
4923 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4924
4925 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_sectors << 9);
4926
4927 if (test_bit(Faulty, &rdev->flags)) {
4928 printk(KERN_WARNING
4929 "md: can not hot-add faulty %s disk to %s!\n",
4930 bdevname(rdev->bdev,b), mdname(mddev));
4931 err = -EINVAL;
4932 goto abort_export;
4933 }
4934 clear_bit(In_sync, &rdev->flags);
4935 rdev->desc_nr = -1;
4936 rdev->saved_raid_disk = -1;
4937 err = bind_rdev_to_array(rdev, mddev);
4938 if (err)
4939 goto abort_export;
4940
4941 /*
4942 * The rest should better be atomic, we can have disk failures
4943 * noticed in interrupt contexts ...
4944 */
4945
4946 rdev->raid_disk = -1;
4947
4948 md_update_sb(mddev, 1);
4949
4950 /*
4951 * Kick recovery, maybe this spare has to be added to the
4952 * array immediately.
4953 */
4954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4955 md_wakeup_thread(mddev->thread);
4956 md_new_event(mddev);
4957 return 0;
4958
4959 abort_export:
4960 export_rdev(rdev);
4961 return err;
4962 }
4963
4964 static int set_bitmap_file(mddev_t *mddev, int fd)
4965 {
4966 int err;
4967
4968 if (mddev->pers) {
4969 if (!mddev->pers->quiesce)
4970 return -EBUSY;
4971 if (mddev->recovery || mddev->sync_thread)
4972 return -EBUSY;
4973 /* we should be able to change the bitmap.. */
4974 }
4975
4976
4977 if (fd >= 0) {
4978 if (mddev->bitmap)
4979 return -EEXIST; /* cannot add when bitmap is present */
4980 mddev->bitmap_file = fget(fd);
4981
4982 if (mddev->bitmap_file == NULL) {
4983 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4984 mdname(mddev));
4985 return -EBADF;
4986 }
4987
4988 err = deny_bitmap_write_access(mddev->bitmap_file);
4989 if (err) {
4990 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4991 mdname(mddev));
4992 fput(mddev->bitmap_file);
4993 mddev->bitmap_file = NULL;
4994 return err;
4995 }
4996 mddev->bitmap_offset = 0; /* file overrides offset */
4997 } else if (mddev->bitmap == NULL)
4998 return -ENOENT; /* cannot remove what isn't there */
4999 err = 0;
5000 if (mddev->pers) {
5001 mddev->pers->quiesce(mddev, 1);
5002 if (fd >= 0)
5003 err = bitmap_create(mddev);
5004 if (fd < 0 || err) {
5005 bitmap_destroy(mddev);
5006 fd = -1; /* make sure to put the file */
5007 }
5008 mddev->pers->quiesce(mddev, 0);
5009 }
5010 if (fd < 0) {
5011 if (mddev->bitmap_file) {
5012 restore_bitmap_write_access(mddev->bitmap_file);
5013 fput(mddev->bitmap_file);
5014 }
5015 mddev->bitmap_file = NULL;
5016 }
5017
5018 return err;
5019 }
5020
5021 /*
5022 * set_array_info is used two different ways
5023 * The original usage is when creating a new array.
5024 * In this usage, raid_disks is > 0 and it together with
5025 * level, size, not_persistent,layout,chunksize determine the
5026 * shape of the array.
5027 * This will always create an array with a type-0.90.0 superblock.
5028 * The newer usage is when assembling an array.
5029 * In this case raid_disks will be 0, and the major_version field is
5030 * use to determine which style super-blocks are to be found on the devices.
5031 * The minor and patch _version numbers are also kept incase the
5032 * super_block handler wishes to interpret them.
5033 */
5034 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5035 {
5036
5037 if (info->raid_disks == 0) {
5038 /* just setting version number for superblock loading */
5039 if (info->major_version < 0 ||
5040 info->major_version >= ARRAY_SIZE(super_types) ||
5041 super_types[info->major_version].name == NULL) {
5042 /* maybe try to auto-load a module? */
5043 printk(KERN_INFO
5044 "md: superblock version %d not known\n",
5045 info->major_version);
5046 return -EINVAL;
5047 }
5048 mddev->major_version = info->major_version;
5049 mddev->minor_version = info->minor_version;
5050 mddev->patch_version = info->patch_version;
5051 mddev->persistent = !info->not_persistent;
5052 return 0;
5053 }
5054 mddev->major_version = MD_MAJOR_VERSION;
5055 mddev->minor_version = MD_MINOR_VERSION;
5056 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5057 mddev->ctime = get_seconds();
5058
5059 mddev->level = info->level;
5060 mddev->clevel[0] = 0;
5061 mddev->dev_sectors = 2 * (sector_t)info->size;
5062 mddev->raid_disks = info->raid_disks;
5063 /* don't set md_minor, it is determined by which /dev/md* was
5064 * openned
5065 */
5066 if (info->state & (1<<MD_SB_CLEAN))
5067 mddev->recovery_cp = MaxSector;
5068 else
5069 mddev->recovery_cp = 0;
5070 mddev->persistent = ! info->not_persistent;
5071 mddev->external = 0;
5072
5073 mddev->layout = info->layout;
5074 mddev->chunk_sectors = info->chunk_size >> 9;
5075
5076 mddev->max_disks = MD_SB_DISKS;
5077
5078 if (mddev->persistent)
5079 mddev->flags = 0;
5080 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5081
5082 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5083 mddev->bitmap_offset = 0;
5084
5085 mddev->reshape_position = MaxSector;
5086
5087 /*
5088 * Generate a 128 bit UUID
5089 */
5090 get_random_bytes(mddev->uuid, 16);
5091
5092 mddev->new_level = mddev->level;
5093 mddev->new_chunk_sectors = mddev->chunk_sectors;
5094 mddev->new_layout = mddev->layout;
5095 mddev->delta_disks = 0;
5096
5097 return 0;
5098 }
5099
5100 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5101 {
5102 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5103
5104 if (mddev->external_size)
5105 return;
5106
5107 mddev->array_sectors = array_sectors;
5108 }
5109 EXPORT_SYMBOL(md_set_array_sectors);
5110
5111 static int update_size(mddev_t *mddev, sector_t num_sectors)
5112 {
5113 mdk_rdev_t *rdev;
5114 int rv;
5115 int fit = (num_sectors == 0);
5116
5117 if (mddev->pers->resize == NULL)
5118 return -EINVAL;
5119 /* The "num_sectors" is the number of sectors of each device that
5120 * is used. This can only make sense for arrays with redundancy.
5121 * linear and raid0 always use whatever space is available. We can only
5122 * consider changing this number if no resync or reconstruction is
5123 * happening, and if the new size is acceptable. It must fit before the
5124 * sb_start or, if that is <data_offset, it must fit before the size
5125 * of each device. If num_sectors is zero, we find the largest size
5126 * that fits.
5127
5128 */
5129 if (mddev->sync_thread)
5130 return -EBUSY;
5131 if (mddev->bitmap)
5132 /* Sorry, cannot grow a bitmap yet, just remove it,
5133 * grow, and re-add.
5134 */
5135 return -EBUSY;
5136 list_for_each_entry(rdev, &mddev->disks, same_set) {
5137 sector_t avail = rdev->sectors;
5138
5139 if (fit && (num_sectors == 0 || num_sectors > avail))
5140 num_sectors = avail;
5141 if (avail < num_sectors)
5142 return -ENOSPC;
5143 }
5144 rv = mddev->pers->resize(mddev, num_sectors);
5145 if (!rv) {
5146 struct block_device *bdev;
5147
5148 bdev = bdget_disk(mddev->gendisk, 0);
5149 if (bdev) {
5150 mutex_lock(&bdev->bd_inode->i_mutex);
5151 i_size_write(bdev->bd_inode,
5152 (loff_t)mddev->array_sectors << 9);
5153 mutex_unlock(&bdev->bd_inode->i_mutex);
5154 bdput(bdev);
5155 }
5156 }
5157 return rv;
5158 }
5159
5160 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5161 {
5162 int rv;
5163 /* change the number of raid disks */
5164 if (mddev->pers->check_reshape == NULL)
5165 return -EINVAL;
5166 if (raid_disks <= 0 ||
5167 raid_disks >= mddev->max_disks)
5168 return -EINVAL;
5169 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5170 return -EBUSY;
5171 mddev->delta_disks = raid_disks - mddev->raid_disks;
5172
5173 rv = mddev->pers->check_reshape(mddev);
5174 return rv;
5175 }
5176
5177
5178 /*
5179 * update_array_info is used to change the configuration of an
5180 * on-line array.
5181 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5182 * fields in the info are checked against the array.
5183 * Any differences that cannot be handled will cause an error.
5184 * Normally, only one change can be managed at a time.
5185 */
5186 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5187 {
5188 int rv = 0;
5189 int cnt = 0;
5190 int state = 0;
5191
5192 /* calculate expected state,ignoring low bits */
5193 if (mddev->bitmap && mddev->bitmap_offset)
5194 state |= (1 << MD_SB_BITMAP_PRESENT);
5195
5196 if (mddev->major_version != info->major_version ||
5197 mddev->minor_version != info->minor_version ||
5198 /* mddev->patch_version != info->patch_version || */
5199 mddev->ctime != info->ctime ||
5200 mddev->level != info->level ||
5201 /* mddev->layout != info->layout || */
5202 !mddev->persistent != info->not_persistent||
5203 mddev->chunk_sectors != info->chunk_size >> 9 ||
5204 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5205 ((state^info->state) & 0xfffffe00)
5206 )
5207 return -EINVAL;
5208 /* Check there is only one change */
5209 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5210 cnt++;
5211 if (mddev->raid_disks != info->raid_disks)
5212 cnt++;
5213 if (mddev->layout != info->layout)
5214 cnt++;
5215 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5216 cnt++;
5217 if (cnt == 0)
5218 return 0;
5219 if (cnt > 1)
5220 return -EINVAL;
5221
5222 if (mddev->layout != info->layout) {
5223 /* Change layout
5224 * we don't need to do anything at the md level, the
5225 * personality will take care of it all.
5226 */
5227 if (mddev->pers->reconfig == NULL)
5228 return -EINVAL;
5229 else {
5230 mddev->new_layout = info->layout;
5231 rv = mddev->pers->reconfig(mddev);
5232 if (rv)
5233 mddev->new_layout = mddev->layout;
5234 return rv;
5235 }
5236 }
5237 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5238 rv = update_size(mddev, (sector_t)info->size * 2);
5239
5240 if (mddev->raid_disks != info->raid_disks)
5241 rv = update_raid_disks(mddev, info->raid_disks);
5242
5243 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5244 if (mddev->pers->quiesce == NULL)
5245 return -EINVAL;
5246 if (mddev->recovery || mddev->sync_thread)
5247 return -EBUSY;
5248 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5249 /* add the bitmap */
5250 if (mddev->bitmap)
5251 return -EEXIST;
5252 if (mddev->default_bitmap_offset == 0)
5253 return -EINVAL;
5254 mddev->bitmap_offset = mddev->default_bitmap_offset;
5255 mddev->pers->quiesce(mddev, 1);
5256 rv = bitmap_create(mddev);
5257 if (rv)
5258 bitmap_destroy(mddev);
5259 mddev->pers->quiesce(mddev, 0);
5260 } else {
5261 /* remove the bitmap */
5262 if (!mddev->bitmap)
5263 return -ENOENT;
5264 if (mddev->bitmap->file)
5265 return -EINVAL;
5266 mddev->pers->quiesce(mddev, 1);
5267 bitmap_destroy(mddev);
5268 mddev->pers->quiesce(mddev, 0);
5269 mddev->bitmap_offset = 0;
5270 }
5271 }
5272 md_update_sb(mddev, 1);
5273 return rv;
5274 }
5275
5276 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5277 {
5278 mdk_rdev_t *rdev;
5279
5280 if (mddev->pers == NULL)
5281 return -ENODEV;
5282
5283 rdev = find_rdev(mddev, dev);
5284 if (!rdev)
5285 return -ENODEV;
5286
5287 md_error(mddev, rdev);
5288 return 0;
5289 }
5290
5291 /*
5292 * We have a problem here : there is no easy way to give a CHS
5293 * virtual geometry. We currently pretend that we have a 2 heads
5294 * 4 sectors (with a BIG number of cylinders...). This drives
5295 * dosfs just mad... ;-)
5296 */
5297 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5298 {
5299 mddev_t *mddev = bdev->bd_disk->private_data;
5300
5301 geo->heads = 2;
5302 geo->sectors = 4;
5303 geo->cylinders = get_capacity(mddev->gendisk) / 8;
5304 return 0;
5305 }
5306
5307 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5308 unsigned int cmd, unsigned long arg)
5309 {
5310 int err = 0;
5311 void __user *argp = (void __user *)arg;
5312 mddev_t *mddev = NULL;
5313
5314 if (!capable(CAP_SYS_ADMIN))
5315 return -EACCES;
5316
5317 /*
5318 * Commands dealing with the RAID driver but not any
5319 * particular array:
5320 */
5321 switch (cmd)
5322 {
5323 case RAID_VERSION:
5324 err = get_version(argp);
5325 goto done;
5326
5327 case PRINT_RAID_DEBUG:
5328 err = 0;
5329 md_print_devices();
5330 goto done;
5331
5332 #ifndef MODULE
5333 case RAID_AUTORUN:
5334 err = 0;
5335 autostart_arrays(arg);
5336 goto done;
5337 #endif
5338 default:;
5339 }
5340
5341 /*
5342 * Commands creating/starting a new array:
5343 */
5344
5345 mddev = bdev->bd_disk->private_data;
5346
5347 if (!mddev) {
5348 BUG();
5349 goto abort;
5350 }
5351
5352 err = mddev_lock(mddev);
5353 if (err) {
5354 printk(KERN_INFO
5355 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5356 err, cmd);
5357 goto abort;
5358 }
5359
5360 switch (cmd)
5361 {
5362 case SET_ARRAY_INFO:
5363 {
5364 mdu_array_info_t info;
5365 if (!arg)
5366 memset(&info, 0, sizeof(info));
5367 else if (copy_from_user(&info, argp, sizeof(info))) {
5368 err = -EFAULT;
5369 goto abort_unlock;
5370 }
5371 if (mddev->pers) {
5372 err = update_array_info(mddev, &info);
5373 if (err) {
5374 printk(KERN_WARNING "md: couldn't update"
5375 " array info. %d\n", err);
5376 goto abort_unlock;
5377 }
5378 goto done_unlock;
5379 }
5380 if (!list_empty(&mddev->disks)) {
5381 printk(KERN_WARNING
5382 "md: array %s already has disks!\n",
5383 mdname(mddev));
5384 err = -EBUSY;
5385 goto abort_unlock;
5386 }
5387 if (mddev->raid_disks) {
5388 printk(KERN_WARNING
5389 "md: array %s already initialised!\n",
5390 mdname(mddev));
5391 err = -EBUSY;
5392 goto abort_unlock;
5393 }
5394 err = set_array_info(mddev, &info);
5395 if (err) {
5396 printk(KERN_WARNING "md: couldn't set"
5397 " array info. %d\n", err);
5398 goto abort_unlock;
5399 }
5400 }
5401 goto done_unlock;
5402
5403 default:;
5404 }
5405
5406 /*
5407 * Commands querying/configuring an existing array:
5408 */
5409 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5410 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5411 if ((!mddev->raid_disks && !mddev->external)
5412 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5413 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5414 && cmd != GET_BITMAP_FILE) {
5415 err = -ENODEV;
5416 goto abort_unlock;
5417 }
5418
5419 /*
5420 * Commands even a read-only array can execute:
5421 */
5422 switch (cmd)
5423 {
5424 case GET_ARRAY_INFO:
5425 err = get_array_info(mddev, argp);
5426 goto done_unlock;
5427
5428 case GET_BITMAP_FILE:
5429 err = get_bitmap_file(mddev, argp);
5430 goto done_unlock;
5431
5432 case GET_DISK_INFO:
5433 err = get_disk_info(mddev, argp);
5434 goto done_unlock;
5435
5436 case RESTART_ARRAY_RW:
5437 err = restart_array(mddev);
5438 goto done_unlock;
5439
5440 case STOP_ARRAY:
5441 err = do_md_stop(mddev, 0, 1);
5442 goto done_unlock;
5443
5444 case STOP_ARRAY_RO:
5445 err = do_md_stop(mddev, 1, 1);
5446 goto done_unlock;
5447
5448 }
5449
5450 /*
5451 * The remaining ioctls are changing the state of the
5452 * superblock, so we do not allow them on read-only arrays.
5453 * However non-MD ioctls (e.g. get-size) will still come through
5454 * here and hit the 'default' below, so only disallow
5455 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5456 */
5457 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5458 if (mddev->ro == 2) {
5459 mddev->ro = 0;
5460 sysfs_notify_dirent(mddev->sysfs_state);
5461 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5462 md_wakeup_thread(mddev->thread);
5463 } else {
5464 err = -EROFS;
5465 goto abort_unlock;
5466 }
5467 }
5468
5469 switch (cmd)
5470 {
5471 case ADD_NEW_DISK:
5472 {
5473 mdu_disk_info_t info;
5474 if (copy_from_user(&info, argp, sizeof(info)))
5475 err = -EFAULT;
5476 else
5477 err = add_new_disk(mddev, &info);
5478 goto done_unlock;
5479 }
5480
5481 case HOT_REMOVE_DISK:
5482 err = hot_remove_disk(mddev, new_decode_dev(arg));
5483 goto done_unlock;
5484
5485 case HOT_ADD_DISK:
5486 err = hot_add_disk(mddev, new_decode_dev(arg));
5487 goto done_unlock;
5488
5489 case SET_DISK_FAULTY:
5490 err = set_disk_faulty(mddev, new_decode_dev(arg));
5491 goto done_unlock;
5492
5493 case RUN_ARRAY:
5494 err = do_md_run(mddev);
5495 goto done_unlock;
5496
5497 case SET_BITMAP_FILE:
5498 err = set_bitmap_file(mddev, (int)arg);
5499 goto done_unlock;
5500
5501 default:
5502 err = -EINVAL;
5503 goto abort_unlock;
5504 }
5505
5506 done_unlock:
5507 abort_unlock:
5508 if (mddev->hold_active == UNTIL_IOCTL &&
5509 err != -EINVAL)
5510 mddev->hold_active = 0;
5511 mddev_unlock(mddev);
5512
5513 return err;
5514 done:
5515 if (err)
5516 MD_BUG();
5517 abort:
5518 return err;
5519 }
5520
5521 static int md_open(struct block_device *bdev, fmode_t mode)
5522 {
5523 /*
5524 * Succeed if we can lock the mddev, which confirms that
5525 * it isn't being stopped right now.
5526 */
5527 mddev_t *mddev = mddev_find(bdev->bd_dev);
5528 int err;
5529
5530 if (mddev->gendisk != bdev->bd_disk) {
5531 /* we are racing with mddev_put which is discarding this
5532 * bd_disk.
5533 */
5534 mddev_put(mddev);
5535 /* Wait until bdev->bd_disk is definitely gone */
5536 flush_scheduled_work();
5537 /* Then retry the open from the top */
5538 return -ERESTARTSYS;
5539 }
5540 BUG_ON(mddev != bdev->bd_disk->private_data);
5541
5542 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5543 goto out;
5544
5545 err = 0;
5546 atomic_inc(&mddev->openers);
5547 mddev_unlock(mddev);
5548
5549 check_disk_change(bdev);
5550 out:
5551 return err;
5552 }
5553
5554 static int md_release(struct gendisk *disk, fmode_t mode)
5555 {
5556 mddev_t *mddev = disk->private_data;
5557
5558 BUG_ON(!mddev);
5559 atomic_dec(&mddev->openers);
5560 mddev_put(mddev);
5561
5562 return 0;
5563 }
5564
5565 static int md_media_changed(struct gendisk *disk)
5566 {
5567 mddev_t *mddev = disk->private_data;
5568
5569 return mddev->changed;
5570 }
5571
5572 static int md_revalidate(struct gendisk *disk)
5573 {
5574 mddev_t *mddev = disk->private_data;
5575
5576 mddev->changed = 0;
5577 return 0;
5578 }
5579 static struct block_device_operations md_fops =
5580 {
5581 .owner = THIS_MODULE,
5582 .open = md_open,
5583 .release = md_release,
5584 .ioctl = md_ioctl,
5585 .getgeo = md_getgeo,
5586 .media_changed = md_media_changed,
5587 .revalidate_disk= md_revalidate,
5588 };
5589
5590 static int md_thread(void * arg)
5591 {
5592 mdk_thread_t *thread = arg;
5593
5594 /*
5595 * md_thread is a 'system-thread', it's priority should be very
5596 * high. We avoid resource deadlocks individually in each
5597 * raid personality. (RAID5 does preallocation) We also use RR and
5598 * the very same RT priority as kswapd, thus we will never get
5599 * into a priority inversion deadlock.
5600 *
5601 * we definitely have to have equal or higher priority than
5602 * bdflush, otherwise bdflush will deadlock if there are too
5603 * many dirty RAID5 blocks.
5604 */
5605
5606 allow_signal(SIGKILL);
5607 while (!kthread_should_stop()) {
5608
5609 /* We need to wait INTERRUPTIBLE so that
5610 * we don't add to the load-average.
5611 * That means we need to be sure no signals are
5612 * pending
5613 */
5614 if (signal_pending(current))
5615 flush_signals(current);
5616
5617 wait_event_interruptible_timeout
5618 (thread->wqueue,
5619 test_bit(THREAD_WAKEUP, &thread->flags)
5620 || kthread_should_stop(),
5621 thread->timeout);
5622
5623 clear_bit(THREAD_WAKEUP, &thread->flags);
5624
5625 thread->run(thread->mddev);
5626 }
5627
5628 return 0;
5629 }
5630
5631 void md_wakeup_thread(mdk_thread_t *thread)
5632 {
5633 if (thread) {
5634 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5635 set_bit(THREAD_WAKEUP, &thread->flags);
5636 wake_up(&thread->wqueue);
5637 }
5638 }
5639
5640 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5641 const char *name)
5642 {
5643 mdk_thread_t *thread;
5644
5645 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5646 if (!thread)
5647 return NULL;
5648
5649 init_waitqueue_head(&thread->wqueue);
5650
5651 thread->run = run;
5652 thread->mddev = mddev;
5653 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5654 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5655 if (IS_ERR(thread->tsk)) {
5656 kfree(thread);
5657 return NULL;
5658 }
5659 return thread;
5660 }
5661
5662 void md_unregister_thread(mdk_thread_t *thread)
5663 {
5664 if (!thread)
5665 return;
5666 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5667
5668 kthread_stop(thread->tsk);
5669 kfree(thread);
5670 }
5671
5672 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5673 {
5674 if (!mddev) {
5675 MD_BUG();
5676 return;
5677 }
5678
5679 if (!rdev || test_bit(Faulty, &rdev->flags))
5680 return;
5681
5682 if (mddev->external)
5683 set_bit(Blocked, &rdev->flags);
5684 /*
5685 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5686 mdname(mddev),
5687 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5688 __builtin_return_address(0),__builtin_return_address(1),
5689 __builtin_return_address(2),__builtin_return_address(3));
5690 */
5691 if (!mddev->pers)
5692 return;
5693 if (!mddev->pers->error_handler)
5694 return;
5695 mddev->pers->error_handler(mddev,rdev);
5696 if (mddev->degraded)
5697 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5698 set_bit(StateChanged, &rdev->flags);
5699 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5700 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5701 md_wakeup_thread(mddev->thread);
5702 md_new_event_inintr(mddev);
5703 }
5704
5705 /* seq_file implementation /proc/mdstat */
5706
5707 static void status_unused(struct seq_file *seq)
5708 {
5709 int i = 0;
5710 mdk_rdev_t *rdev;
5711
5712 seq_printf(seq, "unused devices: ");
5713
5714 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5715 char b[BDEVNAME_SIZE];
5716 i++;
5717 seq_printf(seq, "%s ",
5718 bdevname(rdev->bdev,b));
5719 }
5720 if (!i)
5721 seq_printf(seq, "<none>");
5722
5723 seq_printf(seq, "\n");
5724 }
5725
5726
5727 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5728 {
5729 sector_t max_sectors, resync, res;
5730 unsigned long dt, db;
5731 sector_t rt;
5732 int scale;
5733 unsigned int per_milli;
5734
5735 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5736
5737 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5738 max_sectors = mddev->resync_max_sectors;
5739 else
5740 max_sectors = mddev->dev_sectors;
5741
5742 /*
5743 * Should not happen.
5744 */
5745 if (!max_sectors) {
5746 MD_BUG();
5747 return;
5748 }
5749 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5750 * in a sector_t, and (max_sectors>>scale) will fit in a
5751 * u32, as those are the requirements for sector_div.
5752 * Thus 'scale' must be at least 10
5753 */
5754 scale = 10;
5755 if (sizeof(sector_t) > sizeof(unsigned long)) {
5756 while ( max_sectors/2 > (1ULL<<(scale+32)))
5757 scale++;
5758 }
5759 res = (resync>>scale)*1000;
5760 sector_div(res, (u32)((max_sectors>>scale)+1));
5761
5762 per_milli = res;
5763 {
5764 int i, x = per_milli/50, y = 20-x;
5765 seq_printf(seq, "[");
5766 for (i = 0; i < x; i++)
5767 seq_printf(seq, "=");
5768 seq_printf(seq, ">");
5769 for (i = 0; i < y; i++)
5770 seq_printf(seq, ".");
5771 seq_printf(seq, "] ");
5772 }
5773 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5774 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5775 "reshape" :
5776 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5777 "check" :
5778 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5779 "resync" : "recovery"))),
5780 per_milli/10, per_milli % 10,
5781 (unsigned long long) resync/2,
5782 (unsigned long long) max_sectors/2);
5783
5784 /*
5785 * dt: time from mark until now
5786 * db: blocks written from mark until now
5787 * rt: remaining time
5788 *
5789 * rt is a sector_t, so could be 32bit or 64bit.
5790 * So we divide before multiply in case it is 32bit and close
5791 * to the limit.
5792 * We scale the divisor (db) by 32 to avoid loosing precision
5793 * near the end of resync when the number of remaining sectors
5794 * is close to 'db'.
5795 * We then divide rt by 32 after multiplying by db to compensate.
5796 * The '+1' avoids division by zero if db is very small.
5797 */
5798 dt = ((jiffies - mddev->resync_mark) / HZ);
5799 if (!dt) dt++;
5800 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5801 - mddev->resync_mark_cnt;
5802
5803 rt = max_sectors - resync; /* number of remaining sectors */
5804 sector_div(rt, db/32+1);
5805 rt *= dt;
5806 rt >>= 5;
5807
5808 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
5809 ((unsigned long)rt % 60)/6);
5810
5811 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5812 }
5813
5814 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5815 {
5816 struct list_head *tmp;
5817 loff_t l = *pos;
5818 mddev_t *mddev;
5819
5820 if (l >= 0x10000)
5821 return NULL;
5822 if (!l--)
5823 /* header */
5824 return (void*)1;
5825
5826 spin_lock(&all_mddevs_lock);
5827 list_for_each(tmp,&all_mddevs)
5828 if (!l--) {
5829 mddev = list_entry(tmp, mddev_t, all_mddevs);
5830 mddev_get(mddev);
5831 spin_unlock(&all_mddevs_lock);
5832 return mddev;
5833 }
5834 spin_unlock(&all_mddevs_lock);
5835 if (!l--)
5836 return (void*)2;/* tail */
5837 return NULL;
5838 }
5839
5840 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5841 {
5842 struct list_head *tmp;
5843 mddev_t *next_mddev, *mddev = v;
5844
5845 ++*pos;
5846 if (v == (void*)2)
5847 return NULL;
5848
5849 spin_lock(&all_mddevs_lock);
5850 if (v == (void*)1)
5851 tmp = all_mddevs.next;
5852 else
5853 tmp = mddev->all_mddevs.next;
5854 if (tmp != &all_mddevs)
5855 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5856 else {
5857 next_mddev = (void*)2;
5858 *pos = 0x10000;
5859 }
5860 spin_unlock(&all_mddevs_lock);
5861
5862 if (v != (void*)1)
5863 mddev_put(mddev);
5864 return next_mddev;
5865
5866 }
5867
5868 static void md_seq_stop(struct seq_file *seq, void *v)
5869 {
5870 mddev_t *mddev = v;
5871
5872 if (mddev && v != (void*)1 && v != (void*)2)
5873 mddev_put(mddev);
5874 }
5875
5876 struct mdstat_info {
5877 int event;
5878 };
5879
5880 static int md_seq_show(struct seq_file *seq, void *v)
5881 {
5882 mddev_t *mddev = v;
5883 sector_t sectors;
5884 mdk_rdev_t *rdev;
5885 struct mdstat_info *mi = seq->private;
5886 struct bitmap *bitmap;
5887
5888 if (v == (void*)1) {
5889 struct mdk_personality *pers;
5890 seq_printf(seq, "Personalities : ");
5891 spin_lock(&pers_lock);
5892 list_for_each_entry(pers, &pers_list, list)
5893 seq_printf(seq, "[%s] ", pers->name);
5894
5895 spin_unlock(&pers_lock);
5896 seq_printf(seq, "\n");
5897 mi->event = atomic_read(&md_event_count);
5898 return 0;
5899 }
5900 if (v == (void*)2) {
5901 status_unused(seq);
5902 return 0;
5903 }
5904
5905 if (mddev_lock(mddev) < 0)
5906 return -EINTR;
5907
5908 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5909 seq_printf(seq, "%s : %sactive", mdname(mddev),
5910 mddev->pers ? "" : "in");
5911 if (mddev->pers) {
5912 if (mddev->ro==1)
5913 seq_printf(seq, " (read-only)");
5914 if (mddev->ro==2)
5915 seq_printf(seq, " (auto-read-only)");
5916 seq_printf(seq, " %s", mddev->pers->name);
5917 }
5918
5919 sectors = 0;
5920 list_for_each_entry(rdev, &mddev->disks, same_set) {
5921 char b[BDEVNAME_SIZE];
5922 seq_printf(seq, " %s[%d]",
5923 bdevname(rdev->bdev,b), rdev->desc_nr);
5924 if (test_bit(WriteMostly, &rdev->flags))
5925 seq_printf(seq, "(W)");
5926 if (test_bit(Faulty, &rdev->flags)) {
5927 seq_printf(seq, "(F)");
5928 continue;
5929 } else if (rdev->raid_disk < 0)
5930 seq_printf(seq, "(S)"); /* spare */
5931 sectors += rdev->sectors;
5932 }
5933
5934 if (!list_empty(&mddev->disks)) {
5935 if (mddev->pers)
5936 seq_printf(seq, "\n %llu blocks",
5937 (unsigned long long)
5938 mddev->array_sectors / 2);
5939 else
5940 seq_printf(seq, "\n %llu blocks",
5941 (unsigned long long)sectors / 2);
5942 }
5943 if (mddev->persistent) {
5944 if (mddev->major_version != 0 ||
5945 mddev->minor_version != 90) {
5946 seq_printf(seq," super %d.%d",
5947 mddev->major_version,
5948 mddev->minor_version);
5949 }
5950 } else if (mddev->external)
5951 seq_printf(seq, " super external:%s",
5952 mddev->metadata_type);
5953 else
5954 seq_printf(seq, " super non-persistent");
5955
5956 if (mddev->pers) {
5957 mddev->pers->status(seq, mddev);
5958 seq_printf(seq, "\n ");
5959 if (mddev->pers->sync_request) {
5960 if (mddev->curr_resync > 2) {
5961 status_resync(seq, mddev);
5962 seq_printf(seq, "\n ");
5963 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5964 seq_printf(seq, "\tresync=DELAYED\n ");
5965 else if (mddev->recovery_cp < MaxSector)
5966 seq_printf(seq, "\tresync=PENDING\n ");
5967 }
5968 } else
5969 seq_printf(seq, "\n ");
5970
5971 if ((bitmap = mddev->bitmap)) {
5972 unsigned long chunk_kb;
5973 unsigned long flags;
5974 spin_lock_irqsave(&bitmap->lock, flags);
5975 chunk_kb = bitmap->chunksize >> 10;
5976 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5977 "%lu%s chunk",
5978 bitmap->pages - bitmap->missing_pages,
5979 bitmap->pages,
5980 (bitmap->pages - bitmap->missing_pages)
5981 << (PAGE_SHIFT - 10),
5982 chunk_kb ? chunk_kb : bitmap->chunksize,
5983 chunk_kb ? "KB" : "B");
5984 if (bitmap->file) {
5985 seq_printf(seq, ", file: ");
5986 seq_path(seq, &bitmap->file->f_path, " \t\n");
5987 }
5988
5989 seq_printf(seq, "\n");
5990 spin_unlock_irqrestore(&bitmap->lock, flags);
5991 }
5992
5993 seq_printf(seq, "\n");
5994 }
5995 mddev_unlock(mddev);
5996
5997 return 0;
5998 }
5999
6000 static const struct seq_operations md_seq_ops = {
6001 .start = md_seq_start,
6002 .next = md_seq_next,
6003 .stop = md_seq_stop,
6004 .show = md_seq_show,
6005 };
6006
6007 static int md_seq_open(struct inode *inode, struct file *file)
6008 {
6009 int error;
6010 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6011 if (mi == NULL)
6012 return -ENOMEM;
6013
6014 error = seq_open(file, &md_seq_ops);
6015 if (error)
6016 kfree(mi);
6017 else {
6018 struct seq_file *p = file->private_data;
6019 p->private = mi;
6020 mi->event = atomic_read(&md_event_count);
6021 }
6022 return error;
6023 }
6024
6025 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6026 {
6027 struct seq_file *m = filp->private_data;
6028 struct mdstat_info *mi = m->private;
6029 int mask;
6030
6031 poll_wait(filp, &md_event_waiters, wait);
6032
6033 /* always allow read */
6034 mask = POLLIN | POLLRDNORM;
6035
6036 if (mi->event != atomic_read(&md_event_count))
6037 mask |= POLLERR | POLLPRI;
6038 return mask;
6039 }
6040
6041 static const struct file_operations md_seq_fops = {
6042 .owner = THIS_MODULE,
6043 .open = md_seq_open,
6044 .read = seq_read,
6045 .llseek = seq_lseek,
6046 .release = seq_release_private,
6047 .poll = mdstat_poll,
6048 };
6049
6050 int register_md_personality(struct mdk_personality *p)
6051 {
6052 spin_lock(&pers_lock);
6053 list_add_tail(&p->list, &pers_list);
6054 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6055 spin_unlock(&pers_lock);
6056 return 0;
6057 }
6058
6059 int unregister_md_personality(struct mdk_personality *p)
6060 {
6061 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6062 spin_lock(&pers_lock);
6063 list_del_init(&p->list);
6064 spin_unlock(&pers_lock);
6065 return 0;
6066 }
6067
6068 static int is_mddev_idle(mddev_t *mddev, int init)
6069 {
6070 mdk_rdev_t * rdev;
6071 int idle;
6072 int curr_events;
6073
6074 idle = 1;
6075 rcu_read_lock();
6076 rdev_for_each_rcu(rdev, mddev) {
6077 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6078 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6079 (int)part_stat_read(&disk->part0, sectors[1]) -
6080 atomic_read(&disk->sync_io);
6081 /* sync IO will cause sync_io to increase before the disk_stats
6082 * as sync_io is counted when a request starts, and
6083 * disk_stats is counted when it completes.
6084 * So resync activity will cause curr_events to be smaller than
6085 * when there was no such activity.
6086 * non-sync IO will cause disk_stat to increase without
6087 * increasing sync_io so curr_events will (eventually)
6088 * be larger than it was before. Once it becomes
6089 * substantially larger, the test below will cause
6090 * the array to appear non-idle, and resync will slow
6091 * down.
6092 * If there is a lot of outstanding resync activity when
6093 * we set last_event to curr_events, then all that activity
6094 * completing might cause the array to appear non-idle
6095 * and resync will be slowed down even though there might
6096 * not have been non-resync activity. This will only
6097 * happen once though. 'last_events' will soon reflect
6098 * the state where there is little or no outstanding
6099 * resync requests, and further resync activity will
6100 * always make curr_events less than last_events.
6101 *
6102 */
6103 if (init || curr_events - rdev->last_events > 64) {
6104 rdev->last_events = curr_events;
6105 idle = 0;
6106 }
6107 }
6108 rcu_read_unlock();
6109 return idle;
6110 }
6111
6112 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6113 {
6114 /* another "blocks" (512byte) blocks have been synced */
6115 atomic_sub(blocks, &mddev->recovery_active);
6116 wake_up(&mddev->recovery_wait);
6117 if (!ok) {
6118 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6119 md_wakeup_thread(mddev->thread);
6120 // stop recovery, signal do_sync ....
6121 }
6122 }
6123
6124
6125 /* md_write_start(mddev, bi)
6126 * If we need to update some array metadata (e.g. 'active' flag
6127 * in superblock) before writing, schedule a superblock update
6128 * and wait for it to complete.
6129 */
6130 void md_write_start(mddev_t *mddev, struct bio *bi)
6131 {
6132 int did_change = 0;
6133 if (bio_data_dir(bi) != WRITE)
6134 return;
6135
6136 BUG_ON(mddev->ro == 1);
6137 if (mddev->ro == 2) {
6138 /* need to switch to read/write */
6139 mddev->ro = 0;
6140 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6141 md_wakeup_thread(mddev->thread);
6142 md_wakeup_thread(mddev->sync_thread);
6143 did_change = 1;
6144 }
6145 atomic_inc(&mddev->writes_pending);
6146 if (mddev->safemode == 1)
6147 mddev->safemode = 0;
6148 if (mddev->in_sync) {
6149 spin_lock_irq(&mddev->write_lock);
6150 if (mddev->in_sync) {
6151 mddev->in_sync = 0;
6152 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6153 md_wakeup_thread(mddev->thread);
6154 did_change = 1;
6155 }
6156 spin_unlock_irq(&mddev->write_lock);
6157 }
6158 if (did_change)
6159 sysfs_notify_dirent(mddev->sysfs_state);
6160 wait_event(mddev->sb_wait,
6161 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6162 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6163 }
6164
6165 void md_write_end(mddev_t *mddev)
6166 {
6167 if (atomic_dec_and_test(&mddev->writes_pending)) {
6168 if (mddev->safemode == 2)
6169 md_wakeup_thread(mddev->thread);
6170 else if (mddev->safemode_delay)
6171 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6172 }
6173 }
6174
6175 /* md_allow_write(mddev)
6176 * Calling this ensures that the array is marked 'active' so that writes
6177 * may proceed without blocking. It is important to call this before
6178 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6179 * Must be called with mddev_lock held.
6180 *
6181 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6182 * is dropped, so return -EAGAIN after notifying userspace.
6183 */
6184 int md_allow_write(mddev_t *mddev)
6185 {
6186 if (!mddev->pers)
6187 return 0;
6188 if (mddev->ro)
6189 return 0;
6190 if (!mddev->pers->sync_request)
6191 return 0;
6192
6193 spin_lock_irq(&mddev->write_lock);
6194 if (mddev->in_sync) {
6195 mddev->in_sync = 0;
6196 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6197 if (mddev->safemode_delay &&
6198 mddev->safemode == 0)
6199 mddev->safemode = 1;
6200 spin_unlock_irq(&mddev->write_lock);
6201 md_update_sb(mddev, 0);
6202 sysfs_notify_dirent(mddev->sysfs_state);
6203 } else
6204 spin_unlock_irq(&mddev->write_lock);
6205
6206 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6207 return -EAGAIN;
6208 else
6209 return 0;
6210 }
6211 EXPORT_SYMBOL_GPL(md_allow_write);
6212
6213 #define SYNC_MARKS 10
6214 #define SYNC_MARK_STEP (3*HZ)
6215 void md_do_sync(mddev_t *mddev)
6216 {
6217 mddev_t *mddev2;
6218 unsigned int currspeed = 0,
6219 window;
6220 sector_t max_sectors,j, io_sectors;
6221 unsigned long mark[SYNC_MARKS];
6222 sector_t mark_cnt[SYNC_MARKS];
6223 int last_mark,m;
6224 struct list_head *tmp;
6225 sector_t last_check;
6226 int skipped = 0;
6227 mdk_rdev_t *rdev;
6228 char *desc;
6229
6230 /* just incase thread restarts... */
6231 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6232 return;
6233 if (mddev->ro) /* never try to sync a read-only array */
6234 return;
6235
6236 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6237 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6238 desc = "data-check";
6239 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6240 desc = "requested-resync";
6241 else
6242 desc = "resync";
6243 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6244 desc = "reshape";
6245 else
6246 desc = "recovery";
6247
6248 /* we overload curr_resync somewhat here.
6249 * 0 == not engaged in resync at all
6250 * 2 == checking that there is no conflict with another sync
6251 * 1 == like 2, but have yielded to allow conflicting resync to
6252 * commense
6253 * other == active in resync - this many blocks
6254 *
6255 * Before starting a resync we must have set curr_resync to
6256 * 2, and then checked that every "conflicting" array has curr_resync
6257 * less than ours. When we find one that is the same or higher
6258 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6259 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6260 * This will mean we have to start checking from the beginning again.
6261 *
6262 */
6263
6264 do {
6265 mddev->curr_resync = 2;
6266
6267 try_again:
6268 if (kthread_should_stop()) {
6269 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6270 goto skip;
6271 }
6272 for_each_mddev(mddev2, tmp) {
6273 if (mddev2 == mddev)
6274 continue;
6275 if (!mddev->parallel_resync
6276 && mddev2->curr_resync
6277 && match_mddev_units(mddev, mddev2)) {
6278 DEFINE_WAIT(wq);
6279 if (mddev < mddev2 && mddev->curr_resync == 2) {
6280 /* arbitrarily yield */
6281 mddev->curr_resync = 1;
6282 wake_up(&resync_wait);
6283 }
6284 if (mddev > mddev2 && mddev->curr_resync == 1)
6285 /* no need to wait here, we can wait the next
6286 * time 'round when curr_resync == 2
6287 */
6288 continue;
6289 /* We need to wait 'interruptible' so as not to
6290 * contribute to the load average, and not to
6291 * be caught by 'softlockup'
6292 */
6293 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6294 if (!kthread_should_stop() &&
6295 mddev2->curr_resync >= mddev->curr_resync) {
6296 printk(KERN_INFO "md: delaying %s of %s"
6297 " until %s has finished (they"
6298 " share one or more physical units)\n",
6299 desc, mdname(mddev), mdname(mddev2));
6300 mddev_put(mddev2);
6301 if (signal_pending(current))
6302 flush_signals(current);
6303 schedule();
6304 finish_wait(&resync_wait, &wq);
6305 goto try_again;
6306 }
6307 finish_wait(&resync_wait, &wq);
6308 }
6309 }
6310 } while (mddev->curr_resync < 2);
6311
6312 j = 0;
6313 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6314 /* resync follows the size requested by the personality,
6315 * which defaults to physical size, but can be virtual size
6316 */
6317 max_sectors = mddev->resync_max_sectors;
6318 mddev->resync_mismatches = 0;
6319 /* we don't use the checkpoint if there's a bitmap */
6320 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6321 j = mddev->resync_min;
6322 else if (!mddev->bitmap)
6323 j = mddev->recovery_cp;
6324
6325 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6326 max_sectors = mddev->dev_sectors;
6327 else {
6328 /* recovery follows the physical size of devices */
6329 max_sectors = mddev->dev_sectors;
6330 j = MaxSector;
6331 list_for_each_entry(rdev, &mddev->disks, same_set)
6332 if (rdev->raid_disk >= 0 &&
6333 !test_bit(Faulty, &rdev->flags) &&
6334 !test_bit(In_sync, &rdev->flags) &&
6335 rdev->recovery_offset < j)
6336 j = rdev->recovery_offset;
6337 }
6338
6339 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6340 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6341 " %d KB/sec/disk.\n", speed_min(mddev));
6342 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6343 "(but not more than %d KB/sec) for %s.\n",
6344 speed_max(mddev), desc);
6345
6346 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6347
6348 io_sectors = 0;
6349 for (m = 0; m < SYNC_MARKS; m++) {
6350 mark[m] = jiffies;
6351 mark_cnt[m] = io_sectors;
6352 }
6353 last_mark = 0;
6354 mddev->resync_mark = mark[last_mark];
6355 mddev->resync_mark_cnt = mark_cnt[last_mark];
6356
6357 /*
6358 * Tune reconstruction:
6359 */
6360 window = 32*(PAGE_SIZE/512);
6361 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6362 window/2,(unsigned long long) max_sectors/2);
6363
6364 atomic_set(&mddev->recovery_active, 0);
6365 last_check = 0;
6366
6367 if (j>2) {
6368 printk(KERN_INFO
6369 "md: resuming %s of %s from checkpoint.\n",
6370 desc, mdname(mddev));
6371 mddev->curr_resync = j;
6372 }
6373
6374 while (j < max_sectors) {
6375 sector_t sectors;
6376
6377 skipped = 0;
6378
6379 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6380 ((mddev->curr_resync > mddev->curr_resync_completed &&
6381 (mddev->curr_resync - mddev->curr_resync_completed)
6382 > (max_sectors >> 4)) ||
6383 (j - mddev->curr_resync_completed)*2
6384 >= mddev->resync_max - mddev->curr_resync_completed
6385 )) {
6386 /* time to update curr_resync_completed */
6387 blk_unplug(mddev->queue);
6388 wait_event(mddev->recovery_wait,
6389 atomic_read(&mddev->recovery_active) == 0);
6390 mddev->curr_resync_completed =
6391 mddev->curr_resync;
6392 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6393 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6394 }
6395
6396 if (j >= mddev->resync_max)
6397 wait_event(mddev->recovery_wait,
6398 mddev->resync_max > j
6399 || kthread_should_stop());
6400
6401 if (kthread_should_stop())
6402 goto interrupted;
6403
6404 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6405 currspeed < speed_min(mddev));
6406 if (sectors == 0) {
6407 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6408 goto out;
6409 }
6410
6411 if (!skipped) { /* actual IO requested */
6412 io_sectors += sectors;
6413 atomic_add(sectors, &mddev->recovery_active);
6414 }
6415
6416 j += sectors;
6417 if (j>1) mddev->curr_resync = j;
6418 mddev->curr_mark_cnt = io_sectors;
6419 if (last_check == 0)
6420 /* this is the earliers that rebuilt will be
6421 * visible in /proc/mdstat
6422 */
6423 md_new_event(mddev);
6424
6425 if (last_check + window > io_sectors || j == max_sectors)
6426 continue;
6427
6428 last_check = io_sectors;
6429
6430 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6431 break;
6432
6433 repeat:
6434 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6435 /* step marks */
6436 int next = (last_mark+1) % SYNC_MARKS;
6437
6438 mddev->resync_mark = mark[next];
6439 mddev->resync_mark_cnt = mark_cnt[next];
6440 mark[next] = jiffies;
6441 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6442 last_mark = next;
6443 }
6444
6445
6446 if (kthread_should_stop())
6447 goto interrupted;
6448
6449
6450 /*
6451 * this loop exits only if either when we are slower than
6452 * the 'hard' speed limit, or the system was IO-idle for
6453 * a jiffy.
6454 * the system might be non-idle CPU-wise, but we only care
6455 * about not overloading the IO subsystem. (things like an
6456 * e2fsck being done on the RAID array should execute fast)
6457 */
6458 blk_unplug(mddev->queue);
6459 cond_resched();
6460
6461 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6462 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6463
6464 if (currspeed > speed_min(mddev)) {
6465 if ((currspeed > speed_max(mddev)) ||
6466 !is_mddev_idle(mddev, 0)) {
6467 msleep(500);
6468 goto repeat;
6469 }
6470 }
6471 }
6472 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6473 /*
6474 * this also signals 'finished resyncing' to md_stop
6475 */
6476 out:
6477 blk_unplug(mddev->queue);
6478
6479 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6480
6481 /* tell personality that we are finished */
6482 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6483
6484 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6485 mddev->curr_resync > 2) {
6486 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6487 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6488 if (mddev->curr_resync >= mddev->recovery_cp) {
6489 printk(KERN_INFO
6490 "md: checkpointing %s of %s.\n",
6491 desc, mdname(mddev));
6492 mddev->recovery_cp = mddev->curr_resync;
6493 }
6494 } else
6495 mddev->recovery_cp = MaxSector;
6496 } else {
6497 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6498 mddev->curr_resync = MaxSector;
6499 list_for_each_entry(rdev, &mddev->disks, same_set)
6500 if (rdev->raid_disk >= 0 &&
6501 !test_bit(Faulty, &rdev->flags) &&
6502 !test_bit(In_sync, &rdev->flags) &&
6503 rdev->recovery_offset < mddev->curr_resync)
6504 rdev->recovery_offset = mddev->curr_resync;
6505 }
6506 }
6507 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6508
6509 skip:
6510 mddev->curr_resync = 0;
6511 mddev->curr_resync_completed = 0;
6512 mddev->resync_min = 0;
6513 mddev->resync_max = MaxSector;
6514 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6515 wake_up(&resync_wait);
6516 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6517 md_wakeup_thread(mddev->thread);
6518 return;
6519
6520 interrupted:
6521 /*
6522 * got a signal, exit.
6523 */
6524 printk(KERN_INFO
6525 "md: md_do_sync() got signal ... exiting\n");
6526 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6527 goto out;
6528
6529 }
6530 EXPORT_SYMBOL_GPL(md_do_sync);
6531
6532
6533 static int remove_and_add_spares(mddev_t *mddev)
6534 {
6535 mdk_rdev_t *rdev;
6536 int spares = 0;
6537
6538 mddev->curr_resync_completed = 0;
6539
6540 list_for_each_entry(rdev, &mddev->disks, same_set)
6541 if (rdev->raid_disk >= 0 &&
6542 !test_bit(Blocked, &rdev->flags) &&
6543 (test_bit(Faulty, &rdev->flags) ||
6544 ! test_bit(In_sync, &rdev->flags)) &&
6545 atomic_read(&rdev->nr_pending)==0) {
6546 if (mddev->pers->hot_remove_disk(
6547 mddev, rdev->raid_disk)==0) {
6548 char nm[20];
6549 sprintf(nm,"rd%d", rdev->raid_disk);
6550 sysfs_remove_link(&mddev->kobj, nm);
6551 rdev->raid_disk = -1;
6552 }
6553 }
6554
6555 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6556 list_for_each_entry(rdev, &mddev->disks, same_set) {
6557 if (rdev->raid_disk >= 0 &&
6558 !test_bit(In_sync, &rdev->flags) &&
6559 !test_bit(Blocked, &rdev->flags))
6560 spares++;
6561 if (rdev->raid_disk < 0
6562 && !test_bit(Faulty, &rdev->flags)) {
6563 rdev->recovery_offset = 0;
6564 if (mddev->pers->
6565 hot_add_disk(mddev, rdev) == 0) {
6566 char nm[20];
6567 sprintf(nm, "rd%d", rdev->raid_disk);
6568 if (sysfs_create_link(&mddev->kobj,
6569 &rdev->kobj, nm))
6570 printk(KERN_WARNING
6571 "md: cannot register "
6572 "%s for %s\n",
6573 nm, mdname(mddev));
6574 spares++;
6575 md_new_event(mddev);
6576 } else
6577 break;
6578 }
6579 }
6580 }
6581 return spares;
6582 }
6583 /*
6584 * This routine is regularly called by all per-raid-array threads to
6585 * deal with generic issues like resync and super-block update.
6586 * Raid personalities that don't have a thread (linear/raid0) do not
6587 * need this as they never do any recovery or update the superblock.
6588 *
6589 * It does not do any resync itself, but rather "forks" off other threads
6590 * to do that as needed.
6591 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6592 * "->recovery" and create a thread at ->sync_thread.
6593 * When the thread finishes it sets MD_RECOVERY_DONE
6594 * and wakeups up this thread which will reap the thread and finish up.
6595 * This thread also removes any faulty devices (with nr_pending == 0).
6596 *
6597 * The overall approach is:
6598 * 1/ if the superblock needs updating, update it.
6599 * 2/ If a recovery thread is running, don't do anything else.
6600 * 3/ If recovery has finished, clean up, possibly marking spares active.
6601 * 4/ If there are any faulty devices, remove them.
6602 * 5/ If array is degraded, try to add spares devices
6603 * 6/ If array has spares or is not in-sync, start a resync thread.
6604 */
6605 void md_check_recovery(mddev_t *mddev)
6606 {
6607 mdk_rdev_t *rdev;
6608
6609
6610 if (mddev->bitmap)
6611 bitmap_daemon_work(mddev->bitmap);
6612
6613 if (mddev->ro)
6614 return;
6615
6616 if (signal_pending(current)) {
6617 if (mddev->pers->sync_request && !mddev->external) {
6618 printk(KERN_INFO "md: %s in immediate safe mode\n",
6619 mdname(mddev));
6620 mddev->safemode = 2;
6621 }
6622 flush_signals(current);
6623 }
6624
6625 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6626 return;
6627 if ( ! (
6628 (mddev->flags && !mddev->external) ||
6629 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6630 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6631 (mddev->external == 0 && mddev->safemode == 1) ||
6632 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6633 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6634 ))
6635 return;
6636
6637 if (mddev_trylock(mddev)) {
6638 int spares = 0;
6639
6640 if (mddev->ro) {
6641 /* Only thing we do on a ro array is remove
6642 * failed devices.
6643 */
6644 remove_and_add_spares(mddev);
6645 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6646 goto unlock;
6647 }
6648
6649 if (!mddev->external) {
6650 int did_change = 0;
6651 spin_lock_irq(&mddev->write_lock);
6652 if (mddev->safemode &&
6653 !atomic_read(&mddev->writes_pending) &&
6654 !mddev->in_sync &&
6655 mddev->recovery_cp == MaxSector) {
6656 mddev->in_sync = 1;
6657 did_change = 1;
6658 if (mddev->persistent)
6659 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6660 }
6661 if (mddev->safemode == 1)
6662 mddev->safemode = 0;
6663 spin_unlock_irq(&mddev->write_lock);
6664 if (did_change)
6665 sysfs_notify_dirent(mddev->sysfs_state);
6666 }
6667
6668 if (mddev->flags)
6669 md_update_sb(mddev, 0);
6670
6671 list_for_each_entry(rdev, &mddev->disks, same_set)
6672 if (test_and_clear_bit(StateChanged, &rdev->flags))
6673 sysfs_notify_dirent(rdev->sysfs_state);
6674
6675
6676 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6677 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6678 /* resync/recovery still happening */
6679 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6680 goto unlock;
6681 }
6682 if (mddev->sync_thread) {
6683 /* resync has finished, collect result */
6684 md_unregister_thread(mddev->sync_thread);
6685 mddev->sync_thread = NULL;
6686 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6687 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6688 /* success...*/
6689 /* activate any spares */
6690 if (mddev->pers->spare_active(mddev))
6691 sysfs_notify(&mddev->kobj, NULL,
6692 "degraded");
6693 }
6694 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6695 mddev->pers->finish_reshape)
6696 mddev->pers->finish_reshape(mddev);
6697 md_update_sb(mddev, 1);
6698
6699 /* if array is no-longer degraded, then any saved_raid_disk
6700 * information must be scrapped
6701 */
6702 if (!mddev->degraded)
6703 list_for_each_entry(rdev, &mddev->disks, same_set)
6704 rdev->saved_raid_disk = -1;
6705
6706 mddev->recovery = 0;
6707 /* flag recovery needed just to double check */
6708 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6709 sysfs_notify_dirent(mddev->sysfs_action);
6710 md_new_event(mddev);
6711 goto unlock;
6712 }
6713 /* Set RUNNING before clearing NEEDED to avoid
6714 * any transients in the value of "sync_action".
6715 */
6716 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6717 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6718 /* Clear some bits that don't mean anything, but
6719 * might be left set
6720 */
6721 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6722 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6723
6724 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6725 goto unlock;
6726 /* no recovery is running.
6727 * remove any failed drives, then
6728 * add spares if possible.
6729 * Spare are also removed and re-added, to allow
6730 * the personality to fail the re-add.
6731 */
6732
6733 if (mddev->reshape_position != MaxSector) {
6734 if (mddev->pers->check_reshape(mddev) != 0)
6735 /* Cannot proceed */
6736 goto unlock;
6737 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6738 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6739 } else if ((spares = remove_and_add_spares(mddev))) {
6740 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6741 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6742 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6743 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6744 } else if (mddev->recovery_cp < MaxSector) {
6745 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6746 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6747 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6748 /* nothing to be done ... */
6749 goto unlock;
6750
6751 if (mddev->pers->sync_request) {
6752 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6753 /* We are adding a device or devices to an array
6754 * which has the bitmap stored on all devices.
6755 * So make sure all bitmap pages get written
6756 */
6757 bitmap_write_all(mddev->bitmap);
6758 }
6759 mddev->sync_thread = md_register_thread(md_do_sync,
6760 mddev,
6761 "%s_resync");
6762 if (!mddev->sync_thread) {
6763 printk(KERN_ERR "%s: could not start resync"
6764 " thread...\n",
6765 mdname(mddev));
6766 /* leave the spares where they are, it shouldn't hurt */
6767 mddev->recovery = 0;
6768 } else
6769 md_wakeup_thread(mddev->sync_thread);
6770 sysfs_notify_dirent(mddev->sysfs_action);
6771 md_new_event(mddev);
6772 }
6773 unlock:
6774 if (!mddev->sync_thread) {
6775 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6776 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6777 &mddev->recovery))
6778 if (mddev->sysfs_action)
6779 sysfs_notify_dirent(mddev->sysfs_action);
6780 }
6781 mddev_unlock(mddev);
6782 }
6783 }
6784
6785 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6786 {
6787 sysfs_notify_dirent(rdev->sysfs_state);
6788 wait_event_timeout(rdev->blocked_wait,
6789 !test_bit(Blocked, &rdev->flags),
6790 msecs_to_jiffies(5000));
6791 rdev_dec_pending(rdev, mddev);
6792 }
6793 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6794
6795 static int md_notify_reboot(struct notifier_block *this,
6796 unsigned long code, void *x)
6797 {
6798 struct list_head *tmp;
6799 mddev_t *mddev;
6800
6801 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6802
6803 printk(KERN_INFO "md: stopping all md devices.\n");
6804
6805 for_each_mddev(mddev, tmp)
6806 if (mddev_trylock(mddev)) {
6807 /* Force a switch to readonly even array
6808 * appears to still be in use. Hence
6809 * the '100'.
6810 */
6811 do_md_stop(mddev, 1, 100);
6812 mddev_unlock(mddev);
6813 }
6814 /*
6815 * certain more exotic SCSI devices are known to be
6816 * volatile wrt too early system reboots. While the
6817 * right place to handle this issue is the given
6818 * driver, we do want to have a safe RAID driver ...
6819 */
6820 mdelay(1000*1);
6821 }
6822 return NOTIFY_DONE;
6823 }
6824
6825 static struct notifier_block md_notifier = {
6826 .notifier_call = md_notify_reboot,
6827 .next = NULL,
6828 .priority = INT_MAX, /* before any real devices */
6829 };
6830
6831 static void md_geninit(void)
6832 {
6833 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6834
6835 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6836 }
6837
6838 static int __init md_init(void)
6839 {
6840 if (register_blkdev(MD_MAJOR, "md"))
6841 return -1;
6842 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6843 unregister_blkdev(MD_MAJOR, "md");
6844 return -1;
6845 }
6846 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6847 md_probe, NULL, NULL);
6848 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6849 md_probe, NULL, NULL);
6850
6851 register_reboot_notifier(&md_notifier);
6852 raid_table_header = register_sysctl_table(raid_root_table);
6853
6854 md_geninit();
6855 return 0;
6856 }
6857
6858
6859 #ifndef MODULE
6860
6861 /*
6862 * Searches all registered partitions for autorun RAID arrays
6863 * at boot time.
6864 */
6865
6866 static LIST_HEAD(all_detected_devices);
6867 struct detected_devices_node {
6868 struct list_head list;
6869 dev_t dev;
6870 };
6871
6872 void md_autodetect_dev(dev_t dev)
6873 {
6874 struct detected_devices_node *node_detected_dev;
6875
6876 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6877 if (node_detected_dev) {
6878 node_detected_dev->dev = dev;
6879 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6880 } else {
6881 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6882 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6883 }
6884 }
6885
6886
6887 static void autostart_arrays(int part)
6888 {
6889 mdk_rdev_t *rdev;
6890 struct detected_devices_node *node_detected_dev;
6891 dev_t dev;
6892 int i_scanned, i_passed;
6893
6894 i_scanned = 0;
6895 i_passed = 0;
6896
6897 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6898
6899 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6900 i_scanned++;
6901 node_detected_dev = list_entry(all_detected_devices.next,
6902 struct detected_devices_node, list);
6903 list_del(&node_detected_dev->list);
6904 dev = node_detected_dev->dev;
6905 kfree(node_detected_dev);
6906 rdev = md_import_device(dev,0, 90);
6907 if (IS_ERR(rdev))
6908 continue;
6909
6910 if (test_bit(Faulty, &rdev->flags)) {
6911 MD_BUG();
6912 continue;
6913 }
6914 set_bit(AutoDetected, &rdev->flags);
6915 list_add(&rdev->same_set, &pending_raid_disks);
6916 i_passed++;
6917 }
6918
6919 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6920 i_scanned, i_passed);
6921
6922 autorun_devices(part);
6923 }
6924
6925 #endif /* !MODULE */
6926
6927 static __exit void md_exit(void)
6928 {
6929 mddev_t *mddev;
6930 struct list_head *tmp;
6931
6932 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6933 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6934
6935 unregister_blkdev(MD_MAJOR,"md");
6936 unregister_blkdev(mdp_major, "mdp");
6937 unregister_reboot_notifier(&md_notifier);
6938 unregister_sysctl_table(raid_table_header);
6939 remove_proc_entry("mdstat", NULL);
6940 for_each_mddev(mddev, tmp) {
6941 export_array(mddev);
6942 mddev->hold_active = 0;
6943 }
6944 }
6945
6946 subsys_initcall(md_init);
6947 module_exit(md_exit)
6948
6949 static int get_ro(char *buffer, struct kernel_param *kp)
6950 {
6951 return sprintf(buffer, "%d", start_readonly);
6952 }
6953 static int set_ro(const char *val, struct kernel_param *kp)
6954 {
6955 char *e;
6956 int num = simple_strtoul(val, &e, 10);
6957 if (*val && (*e == '\0' || *e == '\n')) {
6958 start_readonly = num;
6959 return 0;
6960 }
6961 return -EINVAL;
6962 }
6963
6964 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6965 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6966
6967 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6968
6969 EXPORT_SYMBOL(register_md_personality);
6970 EXPORT_SYMBOL(unregister_md_personality);
6971 EXPORT_SYMBOL(md_error);
6972 EXPORT_SYMBOL(md_done_sync);
6973 EXPORT_SYMBOL(md_write_start);
6974 EXPORT_SYMBOL(md_write_end);
6975 EXPORT_SYMBOL(md_register_thread);
6976 EXPORT_SYMBOL(md_unregister_thread);
6977 EXPORT_SYMBOL(md_wakeup_thread);
6978 EXPORT_SYMBOL(md_check_recovery);
6979 MODULE_LICENSE("GPL");
6980 MODULE_ALIAS("md");
6981 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);