]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/md.c
block: use ->bi_bdev for bio based I/O accounting
[mirror_ubuntu-jammy-kernel.git] / drivers / md / md.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70
71 /* pers_list is a list of registered personalities protected
72 * by pers_lock.
73 * pers_lock does extra service to protect accesses to
74 * mddev->thread when the mutex cannot be held.
75 */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78
79 static struct kobj_type md_ktype;
80
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89
90 static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static struct ctl_table raid_dir_table[] = {
312 {
313 .procname = "raid",
314 .maxlen = 0,
315 .mode = S_IRUGO|S_IXUGO,
316 .child = raid_table,
317 },
318 { }
319 };
320
321 static struct ctl_table raid_root_table[] = {
322 {
323 .procname = "dev",
324 .maxlen = 0,
325 .mode = 0555,
326 .child = raid_dir_table,
327 },
328 { }
329 };
330
331 static int start_readonly;
332
333 /*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341 static bool create_on_open = true;
342
343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
344 struct mddev *mddev)
345 {
346 if (!mddev || !bioset_initialized(&mddev->bio_set))
347 return bio_alloc(gfp_mask, nr_iovecs);
348
349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
350 }
351 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
352
353 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
354 {
355 if (!mddev || !bioset_initialized(&mddev->sync_set))
356 return bio_alloc(GFP_NOIO, 1);
357
358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
359 }
360
361 /*
362 * We have a system wide 'event count' that is incremented
363 * on any 'interesting' event, and readers of /proc/mdstat
364 * can use 'poll' or 'select' to find out when the event
365 * count increases.
366 *
367 * Events are:
368 * start array, stop array, error, add device, remove device,
369 * start build, activate spare
370 */
371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
372 static atomic_t md_event_count;
373 void md_new_event(struct mddev *mddev)
374 {
375 atomic_inc(&md_event_count);
376 wake_up(&md_event_waiters);
377 }
378 EXPORT_SYMBOL_GPL(md_new_event);
379
380 /*
381 * Enables to iterate over all existing md arrays
382 * all_mddevs_lock protects this list.
383 */
384 static LIST_HEAD(all_mddevs);
385 static DEFINE_SPINLOCK(all_mddevs_lock);
386
387 /*
388 * iterates through all used mddevs in the system.
389 * We take care to grab the all_mddevs_lock whenever navigating
390 * the list, and to always hold a refcount when unlocked.
391 * Any code which breaks out of this loop while own
392 * a reference to the current mddev and must mddev_put it.
393 */
394 #define for_each_mddev(_mddev,_tmp) \
395 \
396 for (({ spin_lock(&all_mddevs_lock); \
397 _tmp = all_mddevs.next; \
398 _mddev = NULL;}); \
399 ({ if (_tmp != &all_mddevs) \
400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
401 spin_unlock(&all_mddevs_lock); \
402 if (_mddev) mddev_put(_mddev); \
403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
404 _tmp != &all_mddevs;}); \
405 ({ spin_lock(&all_mddevs_lock); \
406 _tmp = _tmp->next;}) \
407 )
408
409 /* Rather than calling directly into the personality make_request function,
410 * IO requests come here first so that we can check if the device is
411 * being suspended pending a reconfiguration.
412 * We hold a refcount over the call to ->make_request. By the time that
413 * call has finished, the bio has been linked into some internal structure
414 * and so is visible to ->quiesce(), so we don't need the refcount any more.
415 */
416 static bool is_suspended(struct mddev *mddev, struct bio *bio)
417 {
418 if (mddev->suspended)
419 return true;
420 if (bio_data_dir(bio) != WRITE)
421 return false;
422 if (mddev->suspend_lo >= mddev->suspend_hi)
423 return false;
424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
425 return false;
426 if (bio_end_sector(bio) < mddev->suspend_lo)
427 return false;
428 return true;
429 }
430
431 void md_handle_request(struct mddev *mddev, struct bio *bio)
432 {
433 check_suspended:
434 rcu_read_lock();
435 if (is_suspended(mddev, bio)) {
436 DEFINE_WAIT(__wait);
437 for (;;) {
438 prepare_to_wait(&mddev->sb_wait, &__wait,
439 TASK_UNINTERRUPTIBLE);
440 if (!is_suspended(mddev, bio))
441 break;
442 rcu_read_unlock();
443 schedule();
444 rcu_read_lock();
445 }
446 finish_wait(&mddev->sb_wait, &__wait);
447 }
448 atomic_inc(&mddev->active_io);
449 rcu_read_unlock();
450
451 if (!mddev->pers->make_request(mddev, bio)) {
452 atomic_dec(&mddev->active_io);
453 wake_up(&mddev->sb_wait);
454 goto check_suspended;
455 }
456
457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
458 wake_up(&mddev->sb_wait);
459 }
460 EXPORT_SYMBOL(md_handle_request);
461
462 struct md_io {
463 struct mddev *mddev;
464 bio_end_io_t *orig_bi_end_io;
465 void *orig_bi_private;
466 struct block_device *orig_bi_bdev;
467 unsigned long start_time;
468 };
469
470 static void md_end_io(struct bio *bio)
471 {
472 struct md_io *md_io = bio->bi_private;
473 struct mddev *mddev = md_io->mddev;
474
475 bio_end_io_acct_remapped(bio, md_io->start_time, md_io->orig_bi_bdev);
476
477 bio->bi_end_io = md_io->orig_bi_end_io;
478 bio->bi_private = md_io->orig_bi_private;
479
480 mempool_free(md_io, &mddev->md_io_pool);
481
482 if (bio->bi_end_io)
483 bio->bi_end_io(bio);
484 }
485
486 static blk_qc_t md_submit_bio(struct bio *bio)
487 {
488 const int rw = bio_data_dir(bio);
489 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
490
491 if (mddev == NULL || mddev->pers == NULL) {
492 bio_io_error(bio);
493 return BLK_QC_T_NONE;
494 }
495
496 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
497 bio_io_error(bio);
498 return BLK_QC_T_NONE;
499 }
500
501 blk_queue_split(&bio);
502
503 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
504 if (bio_sectors(bio) != 0)
505 bio->bi_status = BLK_STS_IOERR;
506 bio_endio(bio);
507 return BLK_QC_T_NONE;
508 }
509
510 if (bio->bi_end_io != md_end_io) {
511 struct md_io *md_io;
512
513 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO);
514 md_io->mddev = mddev;
515 md_io->orig_bi_end_io = bio->bi_end_io;
516 md_io->orig_bi_private = bio->bi_private;
517 md_io->orig_bi_bdev = bio->bi_bdev;
518
519 bio->bi_end_io = md_end_io;
520 bio->bi_private = md_io;
521
522 md_io->start_time = bio_start_io_acct(bio);
523 }
524
525 /* bio could be mergeable after passing to underlayer */
526 bio->bi_opf &= ~REQ_NOMERGE;
527
528 md_handle_request(mddev, bio);
529
530 return BLK_QC_T_NONE;
531 }
532
533 /* mddev_suspend makes sure no new requests are submitted
534 * to the device, and that any requests that have been submitted
535 * are completely handled.
536 * Once mddev_detach() is called and completes, the module will be
537 * completely unused.
538 */
539 void mddev_suspend(struct mddev *mddev)
540 {
541 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
542 lockdep_assert_held(&mddev->reconfig_mutex);
543 if (mddev->suspended++)
544 return;
545 synchronize_rcu();
546 wake_up(&mddev->sb_wait);
547 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
548 smp_mb__after_atomic();
549 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
550 mddev->pers->quiesce(mddev, 1);
551 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
552 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
553
554 del_timer_sync(&mddev->safemode_timer);
555 /* restrict memory reclaim I/O during raid array is suspend */
556 mddev->noio_flag = memalloc_noio_save();
557 }
558 EXPORT_SYMBOL_GPL(mddev_suspend);
559
560 void mddev_resume(struct mddev *mddev)
561 {
562 /* entred the memalloc scope from mddev_suspend() */
563 memalloc_noio_restore(mddev->noio_flag);
564 lockdep_assert_held(&mddev->reconfig_mutex);
565 if (--mddev->suspended)
566 return;
567 wake_up(&mddev->sb_wait);
568 mddev->pers->quiesce(mddev, 0);
569
570 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
571 md_wakeup_thread(mddev->thread);
572 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
573 }
574 EXPORT_SYMBOL_GPL(mddev_resume);
575
576 /*
577 * Generic flush handling for md
578 */
579
580 static void md_end_flush(struct bio *bio)
581 {
582 struct md_rdev *rdev = bio->bi_private;
583 struct mddev *mddev = rdev->mddev;
584
585 rdev_dec_pending(rdev, mddev);
586
587 if (atomic_dec_and_test(&mddev->flush_pending)) {
588 /* The pre-request flush has finished */
589 queue_work(md_wq, &mddev->flush_work);
590 }
591 bio_put(bio);
592 }
593
594 static void md_submit_flush_data(struct work_struct *ws);
595
596 static void submit_flushes(struct work_struct *ws)
597 {
598 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
599 struct md_rdev *rdev;
600
601 mddev->start_flush = ktime_get_boottime();
602 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
603 atomic_set(&mddev->flush_pending, 1);
604 rcu_read_lock();
605 rdev_for_each_rcu(rdev, mddev)
606 if (rdev->raid_disk >= 0 &&
607 !test_bit(Faulty, &rdev->flags)) {
608 /* Take two references, one is dropped
609 * when request finishes, one after
610 * we reclaim rcu_read_lock
611 */
612 struct bio *bi;
613 atomic_inc(&rdev->nr_pending);
614 atomic_inc(&rdev->nr_pending);
615 rcu_read_unlock();
616 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
617 bi->bi_end_io = md_end_flush;
618 bi->bi_private = rdev;
619 bio_set_dev(bi, rdev->bdev);
620 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
621 atomic_inc(&mddev->flush_pending);
622 submit_bio(bi);
623 rcu_read_lock();
624 rdev_dec_pending(rdev, mddev);
625 }
626 rcu_read_unlock();
627 if (atomic_dec_and_test(&mddev->flush_pending))
628 queue_work(md_wq, &mddev->flush_work);
629 }
630
631 static void md_submit_flush_data(struct work_struct *ws)
632 {
633 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
634 struct bio *bio = mddev->flush_bio;
635
636 /*
637 * must reset flush_bio before calling into md_handle_request to avoid a
638 * deadlock, because other bios passed md_handle_request suspend check
639 * could wait for this and below md_handle_request could wait for those
640 * bios because of suspend check
641 */
642 spin_lock_irq(&mddev->lock);
643 mddev->prev_flush_start = mddev->start_flush;
644 mddev->flush_bio = NULL;
645 spin_unlock_irq(&mddev->lock);
646 wake_up(&mddev->sb_wait);
647
648 if (bio->bi_iter.bi_size == 0) {
649 /* an empty barrier - all done */
650 bio_endio(bio);
651 } else {
652 bio->bi_opf &= ~REQ_PREFLUSH;
653 md_handle_request(mddev, bio);
654 }
655 }
656
657 /*
658 * Manages consolidation of flushes and submitting any flushes needed for
659 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
660 * being finished in another context. Returns false if the flushing is
661 * complete but still needs the I/O portion of the bio to be processed.
662 */
663 bool md_flush_request(struct mddev *mddev, struct bio *bio)
664 {
665 ktime_t req_start = ktime_get_boottime();
666 spin_lock_irq(&mddev->lock);
667 /* flush requests wait until ongoing flush completes,
668 * hence coalescing all the pending requests.
669 */
670 wait_event_lock_irq(mddev->sb_wait,
671 !mddev->flush_bio ||
672 ktime_before(req_start, mddev->prev_flush_start),
673 mddev->lock);
674 /* new request after previous flush is completed */
675 if (ktime_after(req_start, mddev->prev_flush_start)) {
676 WARN_ON(mddev->flush_bio);
677 mddev->flush_bio = bio;
678 bio = NULL;
679 }
680 spin_unlock_irq(&mddev->lock);
681
682 if (!bio) {
683 INIT_WORK(&mddev->flush_work, submit_flushes);
684 queue_work(md_wq, &mddev->flush_work);
685 } else {
686 /* flush was performed for some other bio while we waited. */
687 if (bio->bi_iter.bi_size == 0)
688 /* an empty barrier - all done */
689 bio_endio(bio);
690 else {
691 bio->bi_opf &= ~REQ_PREFLUSH;
692 return false;
693 }
694 }
695 return true;
696 }
697 EXPORT_SYMBOL(md_flush_request);
698
699 static inline struct mddev *mddev_get(struct mddev *mddev)
700 {
701 atomic_inc(&mddev->active);
702 return mddev;
703 }
704
705 static void mddev_delayed_delete(struct work_struct *ws);
706
707 static void mddev_put(struct mddev *mddev)
708 {
709 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
710 return;
711 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
712 mddev->ctime == 0 && !mddev->hold_active) {
713 /* Array is not configured at all, and not held active,
714 * so destroy it */
715 list_del_init(&mddev->all_mddevs);
716
717 /*
718 * Call queue_work inside the spinlock so that
719 * flush_workqueue() after mddev_find will succeed in waiting
720 * for the work to be done.
721 */
722 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
723 queue_work(md_misc_wq, &mddev->del_work);
724 }
725 spin_unlock(&all_mddevs_lock);
726 }
727
728 static void md_safemode_timeout(struct timer_list *t);
729
730 void mddev_init(struct mddev *mddev)
731 {
732 kobject_init(&mddev->kobj, &md_ktype);
733 mutex_init(&mddev->open_mutex);
734 mutex_init(&mddev->reconfig_mutex);
735 mutex_init(&mddev->bitmap_info.mutex);
736 INIT_LIST_HEAD(&mddev->disks);
737 INIT_LIST_HEAD(&mddev->all_mddevs);
738 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
739 atomic_set(&mddev->active, 1);
740 atomic_set(&mddev->openers, 0);
741 atomic_set(&mddev->active_io, 0);
742 spin_lock_init(&mddev->lock);
743 atomic_set(&mddev->flush_pending, 0);
744 init_waitqueue_head(&mddev->sb_wait);
745 init_waitqueue_head(&mddev->recovery_wait);
746 mddev->reshape_position = MaxSector;
747 mddev->reshape_backwards = 0;
748 mddev->last_sync_action = "none";
749 mddev->resync_min = 0;
750 mddev->resync_max = MaxSector;
751 mddev->level = LEVEL_NONE;
752 }
753 EXPORT_SYMBOL_GPL(mddev_init);
754
755 static struct mddev *mddev_find(dev_t unit)
756 {
757 struct mddev *mddev, *new = NULL;
758
759 if (unit && MAJOR(unit) != MD_MAJOR)
760 unit &= ~((1<<MdpMinorShift)-1);
761
762 retry:
763 spin_lock(&all_mddevs_lock);
764
765 if (unit) {
766 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
767 if (mddev->unit == unit) {
768 mddev_get(mddev);
769 spin_unlock(&all_mddevs_lock);
770 kfree(new);
771 return mddev;
772 }
773
774 if (new) {
775 list_add(&new->all_mddevs, &all_mddevs);
776 spin_unlock(&all_mddevs_lock);
777 new->hold_active = UNTIL_IOCTL;
778 return new;
779 }
780 } else if (new) {
781 /* find an unused unit number */
782 static int next_minor = 512;
783 int start = next_minor;
784 int is_free = 0;
785 int dev = 0;
786 while (!is_free) {
787 dev = MKDEV(MD_MAJOR, next_minor);
788 next_minor++;
789 if (next_minor > MINORMASK)
790 next_minor = 0;
791 if (next_minor == start) {
792 /* Oh dear, all in use. */
793 spin_unlock(&all_mddevs_lock);
794 kfree(new);
795 return NULL;
796 }
797
798 is_free = 1;
799 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
800 if (mddev->unit == dev) {
801 is_free = 0;
802 break;
803 }
804 }
805 new->unit = dev;
806 new->md_minor = MINOR(dev);
807 new->hold_active = UNTIL_STOP;
808 list_add(&new->all_mddevs, &all_mddevs);
809 spin_unlock(&all_mddevs_lock);
810 return new;
811 }
812 spin_unlock(&all_mddevs_lock);
813
814 new = kzalloc(sizeof(*new), GFP_KERNEL);
815 if (!new)
816 return NULL;
817
818 new->unit = unit;
819 if (MAJOR(unit) == MD_MAJOR)
820 new->md_minor = MINOR(unit);
821 else
822 new->md_minor = MINOR(unit) >> MdpMinorShift;
823
824 mddev_init(new);
825
826 goto retry;
827 }
828
829 static struct attribute_group md_redundancy_group;
830
831 void mddev_unlock(struct mddev *mddev)
832 {
833 if (mddev->to_remove) {
834 /* These cannot be removed under reconfig_mutex as
835 * an access to the files will try to take reconfig_mutex
836 * while holding the file unremovable, which leads to
837 * a deadlock.
838 * So hold set sysfs_active while the remove in happeing,
839 * and anything else which might set ->to_remove or my
840 * otherwise change the sysfs namespace will fail with
841 * -EBUSY if sysfs_active is still set.
842 * We set sysfs_active under reconfig_mutex and elsewhere
843 * test it under the same mutex to ensure its correct value
844 * is seen.
845 */
846 struct attribute_group *to_remove = mddev->to_remove;
847 mddev->to_remove = NULL;
848 mddev->sysfs_active = 1;
849 mutex_unlock(&mddev->reconfig_mutex);
850
851 if (mddev->kobj.sd) {
852 if (to_remove != &md_redundancy_group)
853 sysfs_remove_group(&mddev->kobj, to_remove);
854 if (mddev->pers == NULL ||
855 mddev->pers->sync_request == NULL) {
856 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
857 if (mddev->sysfs_action)
858 sysfs_put(mddev->sysfs_action);
859 if (mddev->sysfs_completed)
860 sysfs_put(mddev->sysfs_completed);
861 if (mddev->sysfs_degraded)
862 sysfs_put(mddev->sysfs_degraded);
863 mddev->sysfs_action = NULL;
864 mddev->sysfs_completed = NULL;
865 mddev->sysfs_degraded = NULL;
866 }
867 }
868 mddev->sysfs_active = 0;
869 } else
870 mutex_unlock(&mddev->reconfig_mutex);
871
872 /* As we've dropped the mutex we need a spinlock to
873 * make sure the thread doesn't disappear
874 */
875 spin_lock(&pers_lock);
876 md_wakeup_thread(mddev->thread);
877 wake_up(&mddev->sb_wait);
878 spin_unlock(&pers_lock);
879 }
880 EXPORT_SYMBOL_GPL(mddev_unlock);
881
882 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
883 {
884 struct md_rdev *rdev;
885
886 rdev_for_each_rcu(rdev, mddev)
887 if (rdev->desc_nr == nr)
888 return rdev;
889
890 return NULL;
891 }
892 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
893
894 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
895 {
896 struct md_rdev *rdev;
897
898 rdev_for_each(rdev, mddev)
899 if (rdev->bdev->bd_dev == dev)
900 return rdev;
901
902 return NULL;
903 }
904
905 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
906 {
907 struct md_rdev *rdev;
908
909 rdev_for_each_rcu(rdev, mddev)
910 if (rdev->bdev->bd_dev == dev)
911 return rdev;
912
913 return NULL;
914 }
915 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
916
917 static struct md_personality *find_pers(int level, char *clevel)
918 {
919 struct md_personality *pers;
920 list_for_each_entry(pers, &pers_list, list) {
921 if (level != LEVEL_NONE && pers->level == level)
922 return pers;
923 if (strcmp(pers->name, clevel)==0)
924 return pers;
925 }
926 return NULL;
927 }
928
929 /* return the offset of the super block in 512byte sectors */
930 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
931 {
932 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
933 return MD_NEW_SIZE_SECTORS(num_sectors);
934 }
935
936 static int alloc_disk_sb(struct md_rdev *rdev)
937 {
938 rdev->sb_page = alloc_page(GFP_KERNEL);
939 if (!rdev->sb_page)
940 return -ENOMEM;
941 return 0;
942 }
943
944 void md_rdev_clear(struct md_rdev *rdev)
945 {
946 if (rdev->sb_page) {
947 put_page(rdev->sb_page);
948 rdev->sb_loaded = 0;
949 rdev->sb_page = NULL;
950 rdev->sb_start = 0;
951 rdev->sectors = 0;
952 }
953 if (rdev->bb_page) {
954 put_page(rdev->bb_page);
955 rdev->bb_page = NULL;
956 }
957 badblocks_exit(&rdev->badblocks);
958 }
959 EXPORT_SYMBOL_GPL(md_rdev_clear);
960
961 static void super_written(struct bio *bio)
962 {
963 struct md_rdev *rdev = bio->bi_private;
964 struct mddev *mddev = rdev->mddev;
965
966 if (bio->bi_status) {
967 pr_err("md: %s gets error=%d\n", __func__,
968 blk_status_to_errno(bio->bi_status));
969 md_error(mddev, rdev);
970 if (!test_bit(Faulty, &rdev->flags)
971 && (bio->bi_opf & MD_FAILFAST)) {
972 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
973 set_bit(LastDev, &rdev->flags);
974 }
975 } else
976 clear_bit(LastDev, &rdev->flags);
977
978 if (atomic_dec_and_test(&mddev->pending_writes))
979 wake_up(&mddev->sb_wait);
980 rdev_dec_pending(rdev, mddev);
981 bio_put(bio);
982 }
983
984 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
985 sector_t sector, int size, struct page *page)
986 {
987 /* write first size bytes of page to sector of rdev
988 * Increment mddev->pending_writes before returning
989 * and decrement it on completion, waking up sb_wait
990 * if zero is reached.
991 * If an error occurred, call md_error
992 */
993 struct bio *bio;
994 int ff = 0;
995
996 if (!page)
997 return;
998
999 if (test_bit(Faulty, &rdev->flags))
1000 return;
1001
1002 bio = md_bio_alloc_sync(mddev);
1003
1004 atomic_inc(&rdev->nr_pending);
1005
1006 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
1007 bio->bi_iter.bi_sector = sector;
1008 bio_add_page(bio, page, size, 0);
1009 bio->bi_private = rdev;
1010 bio->bi_end_io = super_written;
1011
1012 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
1013 test_bit(FailFast, &rdev->flags) &&
1014 !test_bit(LastDev, &rdev->flags))
1015 ff = MD_FAILFAST;
1016 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
1017
1018 atomic_inc(&mddev->pending_writes);
1019 submit_bio(bio);
1020 }
1021
1022 int md_super_wait(struct mddev *mddev)
1023 {
1024 /* wait for all superblock writes that were scheduled to complete */
1025 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1026 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1027 return -EAGAIN;
1028 return 0;
1029 }
1030
1031 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1032 struct page *page, int op, int op_flags, bool metadata_op)
1033 {
1034 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
1035 int ret;
1036
1037 if (metadata_op && rdev->meta_bdev)
1038 bio_set_dev(bio, rdev->meta_bdev);
1039 else
1040 bio_set_dev(bio, rdev->bdev);
1041 bio_set_op_attrs(bio, op, op_flags);
1042 if (metadata_op)
1043 bio->bi_iter.bi_sector = sector + rdev->sb_start;
1044 else if (rdev->mddev->reshape_position != MaxSector &&
1045 (rdev->mddev->reshape_backwards ==
1046 (sector >= rdev->mddev->reshape_position)))
1047 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
1048 else
1049 bio->bi_iter.bi_sector = sector + rdev->data_offset;
1050 bio_add_page(bio, page, size, 0);
1051
1052 submit_bio_wait(bio);
1053
1054 ret = !bio->bi_status;
1055 bio_put(bio);
1056 return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(sync_page_io);
1059
1060 static int read_disk_sb(struct md_rdev *rdev, int size)
1061 {
1062 char b[BDEVNAME_SIZE];
1063
1064 if (rdev->sb_loaded)
1065 return 0;
1066
1067 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1068 goto fail;
1069 rdev->sb_loaded = 1;
1070 return 0;
1071
1072 fail:
1073 pr_err("md: disabled device %s, could not read superblock.\n",
1074 bdevname(rdev->bdev,b));
1075 return -EINVAL;
1076 }
1077
1078 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1079 {
1080 return sb1->set_uuid0 == sb2->set_uuid0 &&
1081 sb1->set_uuid1 == sb2->set_uuid1 &&
1082 sb1->set_uuid2 == sb2->set_uuid2 &&
1083 sb1->set_uuid3 == sb2->set_uuid3;
1084 }
1085
1086 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1087 {
1088 int ret;
1089 mdp_super_t *tmp1, *tmp2;
1090
1091 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1092 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1093
1094 if (!tmp1 || !tmp2) {
1095 ret = 0;
1096 goto abort;
1097 }
1098
1099 *tmp1 = *sb1;
1100 *tmp2 = *sb2;
1101
1102 /*
1103 * nr_disks is not constant
1104 */
1105 tmp1->nr_disks = 0;
1106 tmp2->nr_disks = 0;
1107
1108 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1109 abort:
1110 kfree(tmp1);
1111 kfree(tmp2);
1112 return ret;
1113 }
1114
1115 static u32 md_csum_fold(u32 csum)
1116 {
1117 csum = (csum & 0xffff) + (csum >> 16);
1118 return (csum & 0xffff) + (csum >> 16);
1119 }
1120
1121 static unsigned int calc_sb_csum(mdp_super_t *sb)
1122 {
1123 u64 newcsum = 0;
1124 u32 *sb32 = (u32*)sb;
1125 int i;
1126 unsigned int disk_csum, csum;
1127
1128 disk_csum = sb->sb_csum;
1129 sb->sb_csum = 0;
1130
1131 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1132 newcsum += sb32[i];
1133 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1134
1135 #ifdef CONFIG_ALPHA
1136 /* This used to use csum_partial, which was wrong for several
1137 * reasons including that different results are returned on
1138 * different architectures. It isn't critical that we get exactly
1139 * the same return value as before (we always csum_fold before
1140 * testing, and that removes any differences). However as we
1141 * know that csum_partial always returned a 16bit value on
1142 * alphas, do a fold to maximise conformity to previous behaviour.
1143 */
1144 sb->sb_csum = md_csum_fold(disk_csum);
1145 #else
1146 sb->sb_csum = disk_csum;
1147 #endif
1148 return csum;
1149 }
1150
1151 /*
1152 * Handle superblock details.
1153 * We want to be able to handle multiple superblock formats
1154 * so we have a common interface to them all, and an array of
1155 * different handlers.
1156 * We rely on user-space to write the initial superblock, and support
1157 * reading and updating of superblocks.
1158 * Interface methods are:
1159 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1160 * loads and validates a superblock on dev.
1161 * if refdev != NULL, compare superblocks on both devices
1162 * Return:
1163 * 0 - dev has a superblock that is compatible with refdev
1164 * 1 - dev has a superblock that is compatible and newer than refdev
1165 * so dev should be used as the refdev in future
1166 * -EINVAL superblock incompatible or invalid
1167 * -othererror e.g. -EIO
1168 *
1169 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1170 * Verify that dev is acceptable into mddev.
1171 * The first time, mddev->raid_disks will be 0, and data from
1172 * dev should be merged in. Subsequent calls check that dev
1173 * is new enough. Return 0 or -EINVAL
1174 *
1175 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1176 * Update the superblock for rdev with data in mddev
1177 * This does not write to disc.
1178 *
1179 */
1180
1181 struct super_type {
1182 char *name;
1183 struct module *owner;
1184 int (*load_super)(struct md_rdev *rdev,
1185 struct md_rdev *refdev,
1186 int minor_version);
1187 int (*validate_super)(struct mddev *mddev,
1188 struct md_rdev *rdev);
1189 void (*sync_super)(struct mddev *mddev,
1190 struct md_rdev *rdev);
1191 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1192 sector_t num_sectors);
1193 int (*allow_new_offset)(struct md_rdev *rdev,
1194 unsigned long long new_offset);
1195 };
1196
1197 /*
1198 * Check that the given mddev has no bitmap.
1199 *
1200 * This function is called from the run method of all personalities that do not
1201 * support bitmaps. It prints an error message and returns non-zero if mddev
1202 * has a bitmap. Otherwise, it returns 0.
1203 *
1204 */
1205 int md_check_no_bitmap(struct mddev *mddev)
1206 {
1207 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1208 return 0;
1209 pr_warn("%s: bitmaps are not supported for %s\n",
1210 mdname(mddev), mddev->pers->name);
1211 return 1;
1212 }
1213 EXPORT_SYMBOL(md_check_no_bitmap);
1214
1215 /*
1216 * load_super for 0.90.0
1217 */
1218 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1219 {
1220 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1221 mdp_super_t *sb;
1222 int ret;
1223 bool spare_disk = true;
1224
1225 /*
1226 * Calculate the position of the superblock (512byte sectors),
1227 * it's at the end of the disk.
1228 *
1229 * It also happens to be a multiple of 4Kb.
1230 */
1231 rdev->sb_start = calc_dev_sboffset(rdev);
1232
1233 ret = read_disk_sb(rdev, MD_SB_BYTES);
1234 if (ret)
1235 return ret;
1236
1237 ret = -EINVAL;
1238
1239 bdevname(rdev->bdev, b);
1240 sb = page_address(rdev->sb_page);
1241
1242 if (sb->md_magic != MD_SB_MAGIC) {
1243 pr_warn("md: invalid raid superblock magic on %s\n", b);
1244 goto abort;
1245 }
1246
1247 if (sb->major_version != 0 ||
1248 sb->minor_version < 90 ||
1249 sb->minor_version > 91) {
1250 pr_warn("Bad version number %d.%d on %s\n",
1251 sb->major_version, sb->minor_version, b);
1252 goto abort;
1253 }
1254
1255 if (sb->raid_disks <= 0)
1256 goto abort;
1257
1258 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1259 pr_warn("md: invalid superblock checksum on %s\n", b);
1260 goto abort;
1261 }
1262
1263 rdev->preferred_minor = sb->md_minor;
1264 rdev->data_offset = 0;
1265 rdev->new_data_offset = 0;
1266 rdev->sb_size = MD_SB_BYTES;
1267 rdev->badblocks.shift = -1;
1268
1269 if (sb->level == LEVEL_MULTIPATH)
1270 rdev->desc_nr = -1;
1271 else
1272 rdev->desc_nr = sb->this_disk.number;
1273
1274 /* not spare disk, or LEVEL_MULTIPATH */
1275 if (sb->level == LEVEL_MULTIPATH ||
1276 (rdev->desc_nr >= 0 &&
1277 rdev->desc_nr < MD_SB_DISKS &&
1278 sb->disks[rdev->desc_nr].state &
1279 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1280 spare_disk = false;
1281
1282 if (!refdev) {
1283 if (!spare_disk)
1284 ret = 1;
1285 else
1286 ret = 0;
1287 } else {
1288 __u64 ev1, ev2;
1289 mdp_super_t *refsb = page_address(refdev->sb_page);
1290 if (!md_uuid_equal(refsb, sb)) {
1291 pr_warn("md: %s has different UUID to %s\n",
1292 b, bdevname(refdev->bdev,b2));
1293 goto abort;
1294 }
1295 if (!md_sb_equal(refsb, sb)) {
1296 pr_warn("md: %s has same UUID but different superblock to %s\n",
1297 b, bdevname(refdev->bdev, b2));
1298 goto abort;
1299 }
1300 ev1 = md_event(sb);
1301 ev2 = md_event(refsb);
1302
1303 if (!spare_disk && ev1 > ev2)
1304 ret = 1;
1305 else
1306 ret = 0;
1307 }
1308 rdev->sectors = rdev->sb_start;
1309 /* Limit to 4TB as metadata cannot record more than that.
1310 * (not needed for Linear and RAID0 as metadata doesn't
1311 * record this size)
1312 */
1313 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1314 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1315
1316 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1317 /* "this cannot possibly happen" ... */
1318 ret = -EINVAL;
1319
1320 abort:
1321 return ret;
1322 }
1323
1324 /*
1325 * validate_super for 0.90.0
1326 */
1327 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1328 {
1329 mdp_disk_t *desc;
1330 mdp_super_t *sb = page_address(rdev->sb_page);
1331 __u64 ev1 = md_event(sb);
1332
1333 rdev->raid_disk = -1;
1334 clear_bit(Faulty, &rdev->flags);
1335 clear_bit(In_sync, &rdev->flags);
1336 clear_bit(Bitmap_sync, &rdev->flags);
1337 clear_bit(WriteMostly, &rdev->flags);
1338
1339 if (mddev->raid_disks == 0) {
1340 mddev->major_version = 0;
1341 mddev->minor_version = sb->minor_version;
1342 mddev->patch_version = sb->patch_version;
1343 mddev->external = 0;
1344 mddev->chunk_sectors = sb->chunk_size >> 9;
1345 mddev->ctime = sb->ctime;
1346 mddev->utime = sb->utime;
1347 mddev->level = sb->level;
1348 mddev->clevel[0] = 0;
1349 mddev->layout = sb->layout;
1350 mddev->raid_disks = sb->raid_disks;
1351 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1352 mddev->events = ev1;
1353 mddev->bitmap_info.offset = 0;
1354 mddev->bitmap_info.space = 0;
1355 /* bitmap can use 60 K after the 4K superblocks */
1356 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1357 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1358 mddev->reshape_backwards = 0;
1359
1360 if (mddev->minor_version >= 91) {
1361 mddev->reshape_position = sb->reshape_position;
1362 mddev->delta_disks = sb->delta_disks;
1363 mddev->new_level = sb->new_level;
1364 mddev->new_layout = sb->new_layout;
1365 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1366 if (mddev->delta_disks < 0)
1367 mddev->reshape_backwards = 1;
1368 } else {
1369 mddev->reshape_position = MaxSector;
1370 mddev->delta_disks = 0;
1371 mddev->new_level = mddev->level;
1372 mddev->new_layout = mddev->layout;
1373 mddev->new_chunk_sectors = mddev->chunk_sectors;
1374 }
1375 if (mddev->level == 0)
1376 mddev->layout = -1;
1377
1378 if (sb->state & (1<<MD_SB_CLEAN))
1379 mddev->recovery_cp = MaxSector;
1380 else {
1381 if (sb->events_hi == sb->cp_events_hi &&
1382 sb->events_lo == sb->cp_events_lo) {
1383 mddev->recovery_cp = sb->recovery_cp;
1384 } else
1385 mddev->recovery_cp = 0;
1386 }
1387
1388 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1389 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1390 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1391 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1392
1393 mddev->max_disks = MD_SB_DISKS;
1394
1395 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1396 mddev->bitmap_info.file == NULL) {
1397 mddev->bitmap_info.offset =
1398 mddev->bitmap_info.default_offset;
1399 mddev->bitmap_info.space =
1400 mddev->bitmap_info.default_space;
1401 }
1402
1403 } else if (mddev->pers == NULL) {
1404 /* Insist on good event counter while assembling, except
1405 * for spares (which don't need an event count) */
1406 ++ev1;
1407 if (sb->disks[rdev->desc_nr].state & (
1408 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1409 if (ev1 < mddev->events)
1410 return -EINVAL;
1411 } else if (mddev->bitmap) {
1412 /* if adding to array with a bitmap, then we can accept an
1413 * older device ... but not too old.
1414 */
1415 if (ev1 < mddev->bitmap->events_cleared)
1416 return 0;
1417 if (ev1 < mddev->events)
1418 set_bit(Bitmap_sync, &rdev->flags);
1419 } else {
1420 if (ev1 < mddev->events)
1421 /* just a hot-add of a new device, leave raid_disk at -1 */
1422 return 0;
1423 }
1424
1425 if (mddev->level != LEVEL_MULTIPATH) {
1426 desc = sb->disks + rdev->desc_nr;
1427
1428 if (desc->state & (1<<MD_DISK_FAULTY))
1429 set_bit(Faulty, &rdev->flags);
1430 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1431 desc->raid_disk < mddev->raid_disks */) {
1432 set_bit(In_sync, &rdev->flags);
1433 rdev->raid_disk = desc->raid_disk;
1434 rdev->saved_raid_disk = desc->raid_disk;
1435 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1436 /* active but not in sync implies recovery up to
1437 * reshape position. We don't know exactly where
1438 * that is, so set to zero for now */
1439 if (mddev->minor_version >= 91) {
1440 rdev->recovery_offset = 0;
1441 rdev->raid_disk = desc->raid_disk;
1442 }
1443 }
1444 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1445 set_bit(WriteMostly, &rdev->flags);
1446 if (desc->state & (1<<MD_DISK_FAILFAST))
1447 set_bit(FailFast, &rdev->flags);
1448 } else /* MULTIPATH are always insync */
1449 set_bit(In_sync, &rdev->flags);
1450 return 0;
1451 }
1452
1453 /*
1454 * sync_super for 0.90.0
1455 */
1456 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1457 {
1458 mdp_super_t *sb;
1459 struct md_rdev *rdev2;
1460 int next_spare = mddev->raid_disks;
1461
1462 /* make rdev->sb match mddev data..
1463 *
1464 * 1/ zero out disks
1465 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1466 * 3/ any empty disks < next_spare become removed
1467 *
1468 * disks[0] gets initialised to REMOVED because
1469 * we cannot be sure from other fields if it has
1470 * been initialised or not.
1471 */
1472 int i;
1473 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1474
1475 rdev->sb_size = MD_SB_BYTES;
1476
1477 sb = page_address(rdev->sb_page);
1478
1479 memset(sb, 0, sizeof(*sb));
1480
1481 sb->md_magic = MD_SB_MAGIC;
1482 sb->major_version = mddev->major_version;
1483 sb->patch_version = mddev->patch_version;
1484 sb->gvalid_words = 0; /* ignored */
1485 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1486 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1487 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1488 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1489
1490 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1491 sb->level = mddev->level;
1492 sb->size = mddev->dev_sectors / 2;
1493 sb->raid_disks = mddev->raid_disks;
1494 sb->md_minor = mddev->md_minor;
1495 sb->not_persistent = 0;
1496 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1497 sb->state = 0;
1498 sb->events_hi = (mddev->events>>32);
1499 sb->events_lo = (u32)mddev->events;
1500
1501 if (mddev->reshape_position == MaxSector)
1502 sb->minor_version = 90;
1503 else {
1504 sb->minor_version = 91;
1505 sb->reshape_position = mddev->reshape_position;
1506 sb->new_level = mddev->new_level;
1507 sb->delta_disks = mddev->delta_disks;
1508 sb->new_layout = mddev->new_layout;
1509 sb->new_chunk = mddev->new_chunk_sectors << 9;
1510 }
1511 mddev->minor_version = sb->minor_version;
1512 if (mddev->in_sync)
1513 {
1514 sb->recovery_cp = mddev->recovery_cp;
1515 sb->cp_events_hi = (mddev->events>>32);
1516 sb->cp_events_lo = (u32)mddev->events;
1517 if (mddev->recovery_cp == MaxSector)
1518 sb->state = (1<< MD_SB_CLEAN);
1519 } else
1520 sb->recovery_cp = 0;
1521
1522 sb->layout = mddev->layout;
1523 sb->chunk_size = mddev->chunk_sectors << 9;
1524
1525 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1526 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1527
1528 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1529 rdev_for_each(rdev2, mddev) {
1530 mdp_disk_t *d;
1531 int desc_nr;
1532 int is_active = test_bit(In_sync, &rdev2->flags);
1533
1534 if (rdev2->raid_disk >= 0 &&
1535 sb->minor_version >= 91)
1536 /* we have nowhere to store the recovery_offset,
1537 * but if it is not below the reshape_position,
1538 * we can piggy-back on that.
1539 */
1540 is_active = 1;
1541 if (rdev2->raid_disk < 0 ||
1542 test_bit(Faulty, &rdev2->flags))
1543 is_active = 0;
1544 if (is_active)
1545 desc_nr = rdev2->raid_disk;
1546 else
1547 desc_nr = next_spare++;
1548 rdev2->desc_nr = desc_nr;
1549 d = &sb->disks[rdev2->desc_nr];
1550 nr_disks++;
1551 d->number = rdev2->desc_nr;
1552 d->major = MAJOR(rdev2->bdev->bd_dev);
1553 d->minor = MINOR(rdev2->bdev->bd_dev);
1554 if (is_active)
1555 d->raid_disk = rdev2->raid_disk;
1556 else
1557 d->raid_disk = rdev2->desc_nr; /* compatibility */
1558 if (test_bit(Faulty, &rdev2->flags))
1559 d->state = (1<<MD_DISK_FAULTY);
1560 else if (is_active) {
1561 d->state = (1<<MD_DISK_ACTIVE);
1562 if (test_bit(In_sync, &rdev2->flags))
1563 d->state |= (1<<MD_DISK_SYNC);
1564 active++;
1565 working++;
1566 } else {
1567 d->state = 0;
1568 spare++;
1569 working++;
1570 }
1571 if (test_bit(WriteMostly, &rdev2->flags))
1572 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1573 if (test_bit(FailFast, &rdev2->flags))
1574 d->state |= (1<<MD_DISK_FAILFAST);
1575 }
1576 /* now set the "removed" and "faulty" bits on any missing devices */
1577 for (i=0 ; i < mddev->raid_disks ; i++) {
1578 mdp_disk_t *d = &sb->disks[i];
1579 if (d->state == 0 && d->number == 0) {
1580 d->number = i;
1581 d->raid_disk = i;
1582 d->state = (1<<MD_DISK_REMOVED);
1583 d->state |= (1<<MD_DISK_FAULTY);
1584 failed++;
1585 }
1586 }
1587 sb->nr_disks = nr_disks;
1588 sb->active_disks = active;
1589 sb->working_disks = working;
1590 sb->failed_disks = failed;
1591 sb->spare_disks = spare;
1592
1593 sb->this_disk = sb->disks[rdev->desc_nr];
1594 sb->sb_csum = calc_sb_csum(sb);
1595 }
1596
1597 /*
1598 * rdev_size_change for 0.90.0
1599 */
1600 static unsigned long long
1601 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1602 {
1603 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1604 return 0; /* component must fit device */
1605 if (rdev->mddev->bitmap_info.offset)
1606 return 0; /* can't move bitmap */
1607 rdev->sb_start = calc_dev_sboffset(rdev);
1608 if (!num_sectors || num_sectors > rdev->sb_start)
1609 num_sectors = rdev->sb_start;
1610 /* Limit to 4TB as metadata cannot record more than that.
1611 * 4TB == 2^32 KB, or 2*2^32 sectors.
1612 */
1613 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1614 num_sectors = (sector_t)(2ULL << 32) - 2;
1615 do {
1616 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1617 rdev->sb_page);
1618 } while (md_super_wait(rdev->mddev) < 0);
1619 return num_sectors;
1620 }
1621
1622 static int
1623 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1624 {
1625 /* non-zero offset changes not possible with v0.90 */
1626 return new_offset == 0;
1627 }
1628
1629 /*
1630 * version 1 superblock
1631 */
1632
1633 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1634 {
1635 __le32 disk_csum;
1636 u32 csum;
1637 unsigned long long newcsum;
1638 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1639 __le32 *isuper = (__le32*)sb;
1640
1641 disk_csum = sb->sb_csum;
1642 sb->sb_csum = 0;
1643 newcsum = 0;
1644 for (; size >= 4; size -= 4)
1645 newcsum += le32_to_cpu(*isuper++);
1646
1647 if (size == 2)
1648 newcsum += le16_to_cpu(*(__le16*) isuper);
1649
1650 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1651 sb->sb_csum = disk_csum;
1652 return cpu_to_le32(csum);
1653 }
1654
1655 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1656 {
1657 struct mdp_superblock_1 *sb;
1658 int ret;
1659 sector_t sb_start;
1660 sector_t sectors;
1661 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1662 int bmask;
1663 bool spare_disk = true;
1664
1665 /*
1666 * Calculate the position of the superblock in 512byte sectors.
1667 * It is always aligned to a 4K boundary and
1668 * depeding on minor_version, it can be:
1669 * 0: At least 8K, but less than 12K, from end of device
1670 * 1: At start of device
1671 * 2: 4K from start of device.
1672 */
1673 switch(minor_version) {
1674 case 0:
1675 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1676 sb_start -= 8*2;
1677 sb_start &= ~(sector_t)(4*2-1);
1678 break;
1679 case 1:
1680 sb_start = 0;
1681 break;
1682 case 2:
1683 sb_start = 8;
1684 break;
1685 default:
1686 return -EINVAL;
1687 }
1688 rdev->sb_start = sb_start;
1689
1690 /* superblock is rarely larger than 1K, but it can be larger,
1691 * and it is safe to read 4k, so we do that
1692 */
1693 ret = read_disk_sb(rdev, 4096);
1694 if (ret) return ret;
1695
1696 sb = page_address(rdev->sb_page);
1697
1698 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1699 sb->major_version != cpu_to_le32(1) ||
1700 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1701 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1702 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1703 return -EINVAL;
1704
1705 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1706 pr_warn("md: invalid superblock checksum on %s\n",
1707 bdevname(rdev->bdev,b));
1708 return -EINVAL;
1709 }
1710 if (le64_to_cpu(sb->data_size) < 10) {
1711 pr_warn("md: data_size too small on %s\n",
1712 bdevname(rdev->bdev,b));
1713 return -EINVAL;
1714 }
1715 if (sb->pad0 ||
1716 sb->pad3[0] ||
1717 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1718 /* Some padding is non-zero, might be a new feature */
1719 return -EINVAL;
1720
1721 rdev->preferred_minor = 0xffff;
1722 rdev->data_offset = le64_to_cpu(sb->data_offset);
1723 rdev->new_data_offset = rdev->data_offset;
1724 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1725 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1726 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1727 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1728
1729 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1730 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1731 if (rdev->sb_size & bmask)
1732 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1733
1734 if (minor_version
1735 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1736 return -EINVAL;
1737 if (minor_version
1738 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1739 return -EINVAL;
1740
1741 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1742 rdev->desc_nr = -1;
1743 else
1744 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1745
1746 if (!rdev->bb_page) {
1747 rdev->bb_page = alloc_page(GFP_KERNEL);
1748 if (!rdev->bb_page)
1749 return -ENOMEM;
1750 }
1751 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1752 rdev->badblocks.count == 0) {
1753 /* need to load the bad block list.
1754 * Currently we limit it to one page.
1755 */
1756 s32 offset;
1757 sector_t bb_sector;
1758 __le64 *bbp;
1759 int i;
1760 int sectors = le16_to_cpu(sb->bblog_size);
1761 if (sectors > (PAGE_SIZE / 512))
1762 return -EINVAL;
1763 offset = le32_to_cpu(sb->bblog_offset);
1764 if (offset == 0)
1765 return -EINVAL;
1766 bb_sector = (long long)offset;
1767 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1768 rdev->bb_page, REQ_OP_READ, 0, true))
1769 return -EIO;
1770 bbp = (__le64 *)page_address(rdev->bb_page);
1771 rdev->badblocks.shift = sb->bblog_shift;
1772 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1773 u64 bb = le64_to_cpu(*bbp);
1774 int count = bb & (0x3ff);
1775 u64 sector = bb >> 10;
1776 sector <<= sb->bblog_shift;
1777 count <<= sb->bblog_shift;
1778 if (bb + 1 == 0)
1779 break;
1780 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1781 return -EINVAL;
1782 }
1783 } else if (sb->bblog_offset != 0)
1784 rdev->badblocks.shift = 0;
1785
1786 if ((le32_to_cpu(sb->feature_map) &
1787 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1788 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1789 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1790 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1791 }
1792
1793 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1794 sb->level != 0)
1795 return -EINVAL;
1796
1797 /* not spare disk, or LEVEL_MULTIPATH */
1798 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1799 (rdev->desc_nr >= 0 &&
1800 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1801 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1802 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1803 spare_disk = false;
1804
1805 if (!refdev) {
1806 if (!spare_disk)
1807 ret = 1;
1808 else
1809 ret = 0;
1810 } else {
1811 __u64 ev1, ev2;
1812 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1813
1814 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1815 sb->level != refsb->level ||
1816 sb->layout != refsb->layout ||
1817 sb->chunksize != refsb->chunksize) {
1818 pr_warn("md: %s has strangely different superblock to %s\n",
1819 bdevname(rdev->bdev,b),
1820 bdevname(refdev->bdev,b2));
1821 return -EINVAL;
1822 }
1823 ev1 = le64_to_cpu(sb->events);
1824 ev2 = le64_to_cpu(refsb->events);
1825
1826 if (!spare_disk && ev1 > ev2)
1827 ret = 1;
1828 else
1829 ret = 0;
1830 }
1831 if (minor_version) {
1832 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1833 sectors -= rdev->data_offset;
1834 } else
1835 sectors = rdev->sb_start;
1836 if (sectors < le64_to_cpu(sb->data_size))
1837 return -EINVAL;
1838 rdev->sectors = le64_to_cpu(sb->data_size);
1839 return ret;
1840 }
1841
1842 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1843 {
1844 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1845 __u64 ev1 = le64_to_cpu(sb->events);
1846
1847 rdev->raid_disk = -1;
1848 clear_bit(Faulty, &rdev->flags);
1849 clear_bit(In_sync, &rdev->flags);
1850 clear_bit(Bitmap_sync, &rdev->flags);
1851 clear_bit(WriteMostly, &rdev->flags);
1852
1853 if (mddev->raid_disks == 0) {
1854 mddev->major_version = 1;
1855 mddev->patch_version = 0;
1856 mddev->external = 0;
1857 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1858 mddev->ctime = le64_to_cpu(sb->ctime);
1859 mddev->utime = le64_to_cpu(sb->utime);
1860 mddev->level = le32_to_cpu(sb->level);
1861 mddev->clevel[0] = 0;
1862 mddev->layout = le32_to_cpu(sb->layout);
1863 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1864 mddev->dev_sectors = le64_to_cpu(sb->size);
1865 mddev->events = ev1;
1866 mddev->bitmap_info.offset = 0;
1867 mddev->bitmap_info.space = 0;
1868 /* Default location for bitmap is 1K after superblock
1869 * using 3K - total of 4K
1870 */
1871 mddev->bitmap_info.default_offset = 1024 >> 9;
1872 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1873 mddev->reshape_backwards = 0;
1874
1875 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1876 memcpy(mddev->uuid, sb->set_uuid, 16);
1877
1878 mddev->max_disks = (4096-256)/2;
1879
1880 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1881 mddev->bitmap_info.file == NULL) {
1882 mddev->bitmap_info.offset =
1883 (__s32)le32_to_cpu(sb->bitmap_offset);
1884 /* Metadata doesn't record how much space is available.
1885 * For 1.0, we assume we can use up to the superblock
1886 * if before, else to 4K beyond superblock.
1887 * For others, assume no change is possible.
1888 */
1889 if (mddev->minor_version > 0)
1890 mddev->bitmap_info.space = 0;
1891 else if (mddev->bitmap_info.offset > 0)
1892 mddev->bitmap_info.space =
1893 8 - mddev->bitmap_info.offset;
1894 else
1895 mddev->bitmap_info.space =
1896 -mddev->bitmap_info.offset;
1897 }
1898
1899 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1900 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1901 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1902 mddev->new_level = le32_to_cpu(sb->new_level);
1903 mddev->new_layout = le32_to_cpu(sb->new_layout);
1904 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1905 if (mddev->delta_disks < 0 ||
1906 (mddev->delta_disks == 0 &&
1907 (le32_to_cpu(sb->feature_map)
1908 & MD_FEATURE_RESHAPE_BACKWARDS)))
1909 mddev->reshape_backwards = 1;
1910 } else {
1911 mddev->reshape_position = MaxSector;
1912 mddev->delta_disks = 0;
1913 mddev->new_level = mddev->level;
1914 mddev->new_layout = mddev->layout;
1915 mddev->new_chunk_sectors = mddev->chunk_sectors;
1916 }
1917
1918 if (mddev->level == 0 &&
1919 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1920 mddev->layout = -1;
1921
1922 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1923 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1924
1925 if (le32_to_cpu(sb->feature_map) &
1926 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1927 if (le32_to_cpu(sb->feature_map) &
1928 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1929 return -EINVAL;
1930 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1931 (le32_to_cpu(sb->feature_map) &
1932 MD_FEATURE_MULTIPLE_PPLS))
1933 return -EINVAL;
1934 set_bit(MD_HAS_PPL, &mddev->flags);
1935 }
1936 } else if (mddev->pers == NULL) {
1937 /* Insist of good event counter while assembling, except for
1938 * spares (which don't need an event count) */
1939 ++ev1;
1940 if (rdev->desc_nr >= 0 &&
1941 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1942 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1943 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1944 if (ev1 < mddev->events)
1945 return -EINVAL;
1946 } else if (mddev->bitmap) {
1947 /* If adding to array with a bitmap, then we can accept an
1948 * older device, but not too old.
1949 */
1950 if (ev1 < mddev->bitmap->events_cleared)
1951 return 0;
1952 if (ev1 < mddev->events)
1953 set_bit(Bitmap_sync, &rdev->flags);
1954 } else {
1955 if (ev1 < mddev->events)
1956 /* just a hot-add of a new device, leave raid_disk at -1 */
1957 return 0;
1958 }
1959 if (mddev->level != LEVEL_MULTIPATH) {
1960 int role;
1961 if (rdev->desc_nr < 0 ||
1962 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1963 role = MD_DISK_ROLE_SPARE;
1964 rdev->desc_nr = -1;
1965 } else
1966 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1967 switch(role) {
1968 case MD_DISK_ROLE_SPARE: /* spare */
1969 break;
1970 case MD_DISK_ROLE_FAULTY: /* faulty */
1971 set_bit(Faulty, &rdev->flags);
1972 break;
1973 case MD_DISK_ROLE_JOURNAL: /* journal device */
1974 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1975 /* journal device without journal feature */
1976 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1977 return -EINVAL;
1978 }
1979 set_bit(Journal, &rdev->flags);
1980 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1981 rdev->raid_disk = 0;
1982 break;
1983 default:
1984 rdev->saved_raid_disk = role;
1985 if ((le32_to_cpu(sb->feature_map) &
1986 MD_FEATURE_RECOVERY_OFFSET)) {
1987 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1988 if (!(le32_to_cpu(sb->feature_map) &
1989 MD_FEATURE_RECOVERY_BITMAP))
1990 rdev->saved_raid_disk = -1;
1991 } else {
1992 /*
1993 * If the array is FROZEN, then the device can't
1994 * be in_sync with rest of array.
1995 */
1996 if (!test_bit(MD_RECOVERY_FROZEN,
1997 &mddev->recovery))
1998 set_bit(In_sync, &rdev->flags);
1999 }
2000 rdev->raid_disk = role;
2001 break;
2002 }
2003 if (sb->devflags & WriteMostly1)
2004 set_bit(WriteMostly, &rdev->flags);
2005 if (sb->devflags & FailFast1)
2006 set_bit(FailFast, &rdev->flags);
2007 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2008 set_bit(Replacement, &rdev->flags);
2009 } else /* MULTIPATH are always insync */
2010 set_bit(In_sync, &rdev->flags);
2011
2012 return 0;
2013 }
2014
2015 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2016 {
2017 struct mdp_superblock_1 *sb;
2018 struct md_rdev *rdev2;
2019 int max_dev, i;
2020 /* make rdev->sb match mddev and rdev data. */
2021
2022 sb = page_address(rdev->sb_page);
2023
2024 sb->feature_map = 0;
2025 sb->pad0 = 0;
2026 sb->recovery_offset = cpu_to_le64(0);
2027 memset(sb->pad3, 0, sizeof(sb->pad3));
2028
2029 sb->utime = cpu_to_le64((__u64)mddev->utime);
2030 sb->events = cpu_to_le64(mddev->events);
2031 if (mddev->in_sync)
2032 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2033 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2034 sb->resync_offset = cpu_to_le64(MaxSector);
2035 else
2036 sb->resync_offset = cpu_to_le64(0);
2037
2038 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2039
2040 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2041 sb->size = cpu_to_le64(mddev->dev_sectors);
2042 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2043 sb->level = cpu_to_le32(mddev->level);
2044 sb->layout = cpu_to_le32(mddev->layout);
2045 if (test_bit(FailFast, &rdev->flags))
2046 sb->devflags |= FailFast1;
2047 else
2048 sb->devflags &= ~FailFast1;
2049
2050 if (test_bit(WriteMostly, &rdev->flags))
2051 sb->devflags |= WriteMostly1;
2052 else
2053 sb->devflags &= ~WriteMostly1;
2054 sb->data_offset = cpu_to_le64(rdev->data_offset);
2055 sb->data_size = cpu_to_le64(rdev->sectors);
2056
2057 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2058 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2059 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2060 }
2061
2062 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2063 !test_bit(In_sync, &rdev->flags)) {
2064 sb->feature_map |=
2065 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2066 sb->recovery_offset =
2067 cpu_to_le64(rdev->recovery_offset);
2068 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2069 sb->feature_map |=
2070 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2071 }
2072 /* Note: recovery_offset and journal_tail share space */
2073 if (test_bit(Journal, &rdev->flags))
2074 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2075 if (test_bit(Replacement, &rdev->flags))
2076 sb->feature_map |=
2077 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2078
2079 if (mddev->reshape_position != MaxSector) {
2080 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2081 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2082 sb->new_layout = cpu_to_le32(mddev->new_layout);
2083 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2084 sb->new_level = cpu_to_le32(mddev->new_level);
2085 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2086 if (mddev->delta_disks == 0 &&
2087 mddev->reshape_backwards)
2088 sb->feature_map
2089 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2090 if (rdev->new_data_offset != rdev->data_offset) {
2091 sb->feature_map
2092 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2093 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2094 - rdev->data_offset));
2095 }
2096 }
2097
2098 if (mddev_is_clustered(mddev))
2099 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2100
2101 if (rdev->badblocks.count == 0)
2102 /* Nothing to do for bad blocks*/ ;
2103 else if (sb->bblog_offset == 0)
2104 /* Cannot record bad blocks on this device */
2105 md_error(mddev, rdev);
2106 else {
2107 struct badblocks *bb = &rdev->badblocks;
2108 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2109 u64 *p = bb->page;
2110 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2111 if (bb->changed) {
2112 unsigned seq;
2113
2114 retry:
2115 seq = read_seqbegin(&bb->lock);
2116
2117 memset(bbp, 0xff, PAGE_SIZE);
2118
2119 for (i = 0 ; i < bb->count ; i++) {
2120 u64 internal_bb = p[i];
2121 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2122 | BB_LEN(internal_bb));
2123 bbp[i] = cpu_to_le64(store_bb);
2124 }
2125 bb->changed = 0;
2126 if (read_seqretry(&bb->lock, seq))
2127 goto retry;
2128
2129 bb->sector = (rdev->sb_start +
2130 (int)le32_to_cpu(sb->bblog_offset));
2131 bb->size = le16_to_cpu(sb->bblog_size);
2132 }
2133 }
2134
2135 max_dev = 0;
2136 rdev_for_each(rdev2, mddev)
2137 if (rdev2->desc_nr+1 > max_dev)
2138 max_dev = rdev2->desc_nr+1;
2139
2140 if (max_dev > le32_to_cpu(sb->max_dev)) {
2141 int bmask;
2142 sb->max_dev = cpu_to_le32(max_dev);
2143 rdev->sb_size = max_dev * 2 + 256;
2144 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2145 if (rdev->sb_size & bmask)
2146 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2147 } else
2148 max_dev = le32_to_cpu(sb->max_dev);
2149
2150 for (i=0; i<max_dev;i++)
2151 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2152
2153 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2154 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2155
2156 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2157 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2158 sb->feature_map |=
2159 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2160 else
2161 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2162 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2163 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2164 }
2165
2166 rdev_for_each(rdev2, mddev) {
2167 i = rdev2->desc_nr;
2168 if (test_bit(Faulty, &rdev2->flags))
2169 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2170 else if (test_bit(In_sync, &rdev2->flags))
2171 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2172 else if (test_bit(Journal, &rdev2->flags))
2173 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2174 else if (rdev2->raid_disk >= 0)
2175 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2176 else
2177 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2178 }
2179
2180 sb->sb_csum = calc_sb_1_csum(sb);
2181 }
2182
2183 static sector_t super_1_choose_bm_space(sector_t dev_size)
2184 {
2185 sector_t bm_space;
2186
2187 /* if the device is bigger than 8Gig, save 64k for bitmap
2188 * usage, if bigger than 200Gig, save 128k
2189 */
2190 if (dev_size < 64*2)
2191 bm_space = 0;
2192 else if (dev_size - 64*2 >= 200*1024*1024*2)
2193 bm_space = 128*2;
2194 else if (dev_size - 4*2 > 8*1024*1024*2)
2195 bm_space = 64*2;
2196 else
2197 bm_space = 4*2;
2198 return bm_space;
2199 }
2200
2201 static unsigned long long
2202 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2203 {
2204 struct mdp_superblock_1 *sb;
2205 sector_t max_sectors;
2206 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2207 return 0; /* component must fit device */
2208 if (rdev->data_offset != rdev->new_data_offset)
2209 return 0; /* too confusing */
2210 if (rdev->sb_start < rdev->data_offset) {
2211 /* minor versions 1 and 2; superblock before data */
2212 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2213 max_sectors -= rdev->data_offset;
2214 if (!num_sectors || num_sectors > max_sectors)
2215 num_sectors = max_sectors;
2216 } else if (rdev->mddev->bitmap_info.offset) {
2217 /* minor version 0 with bitmap we can't move */
2218 return 0;
2219 } else {
2220 /* minor version 0; superblock after data */
2221 sector_t sb_start, bm_space;
2222 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2223
2224 /* 8K is for superblock */
2225 sb_start = dev_size - 8*2;
2226 sb_start &= ~(sector_t)(4*2 - 1);
2227
2228 bm_space = super_1_choose_bm_space(dev_size);
2229
2230 /* Space that can be used to store date needs to decrease
2231 * superblock bitmap space and bad block space(4K)
2232 */
2233 max_sectors = sb_start - bm_space - 4*2;
2234
2235 if (!num_sectors || num_sectors > max_sectors)
2236 num_sectors = max_sectors;
2237 }
2238 sb = page_address(rdev->sb_page);
2239 sb->data_size = cpu_to_le64(num_sectors);
2240 sb->super_offset = cpu_to_le64(rdev->sb_start);
2241 sb->sb_csum = calc_sb_1_csum(sb);
2242 do {
2243 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2244 rdev->sb_page);
2245 } while (md_super_wait(rdev->mddev) < 0);
2246 return num_sectors;
2247
2248 }
2249
2250 static int
2251 super_1_allow_new_offset(struct md_rdev *rdev,
2252 unsigned long long new_offset)
2253 {
2254 /* All necessary checks on new >= old have been done */
2255 struct bitmap *bitmap;
2256 if (new_offset >= rdev->data_offset)
2257 return 1;
2258
2259 /* with 1.0 metadata, there is no metadata to tread on
2260 * so we can always move back */
2261 if (rdev->mddev->minor_version == 0)
2262 return 1;
2263
2264 /* otherwise we must be sure not to step on
2265 * any metadata, so stay:
2266 * 36K beyond start of superblock
2267 * beyond end of badblocks
2268 * beyond write-intent bitmap
2269 */
2270 if (rdev->sb_start + (32+4)*2 > new_offset)
2271 return 0;
2272 bitmap = rdev->mddev->bitmap;
2273 if (bitmap && !rdev->mddev->bitmap_info.file &&
2274 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2275 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2276 return 0;
2277 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2278 return 0;
2279
2280 return 1;
2281 }
2282
2283 static struct super_type super_types[] = {
2284 [0] = {
2285 .name = "0.90.0",
2286 .owner = THIS_MODULE,
2287 .load_super = super_90_load,
2288 .validate_super = super_90_validate,
2289 .sync_super = super_90_sync,
2290 .rdev_size_change = super_90_rdev_size_change,
2291 .allow_new_offset = super_90_allow_new_offset,
2292 },
2293 [1] = {
2294 .name = "md-1",
2295 .owner = THIS_MODULE,
2296 .load_super = super_1_load,
2297 .validate_super = super_1_validate,
2298 .sync_super = super_1_sync,
2299 .rdev_size_change = super_1_rdev_size_change,
2300 .allow_new_offset = super_1_allow_new_offset,
2301 },
2302 };
2303
2304 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2305 {
2306 if (mddev->sync_super) {
2307 mddev->sync_super(mddev, rdev);
2308 return;
2309 }
2310
2311 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2312
2313 super_types[mddev->major_version].sync_super(mddev, rdev);
2314 }
2315
2316 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2317 {
2318 struct md_rdev *rdev, *rdev2;
2319
2320 rcu_read_lock();
2321 rdev_for_each_rcu(rdev, mddev1) {
2322 if (test_bit(Faulty, &rdev->flags) ||
2323 test_bit(Journal, &rdev->flags) ||
2324 rdev->raid_disk == -1)
2325 continue;
2326 rdev_for_each_rcu(rdev2, mddev2) {
2327 if (test_bit(Faulty, &rdev2->flags) ||
2328 test_bit(Journal, &rdev2->flags) ||
2329 rdev2->raid_disk == -1)
2330 continue;
2331 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2332 rcu_read_unlock();
2333 return 1;
2334 }
2335 }
2336 }
2337 rcu_read_unlock();
2338 return 0;
2339 }
2340
2341 static LIST_HEAD(pending_raid_disks);
2342
2343 /*
2344 * Try to register data integrity profile for an mddev
2345 *
2346 * This is called when an array is started and after a disk has been kicked
2347 * from the array. It only succeeds if all working and active component devices
2348 * are integrity capable with matching profiles.
2349 */
2350 int md_integrity_register(struct mddev *mddev)
2351 {
2352 struct md_rdev *rdev, *reference = NULL;
2353
2354 if (list_empty(&mddev->disks))
2355 return 0; /* nothing to do */
2356 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2357 return 0; /* shouldn't register, or already is */
2358 rdev_for_each(rdev, mddev) {
2359 /* skip spares and non-functional disks */
2360 if (test_bit(Faulty, &rdev->flags))
2361 continue;
2362 if (rdev->raid_disk < 0)
2363 continue;
2364 if (!reference) {
2365 /* Use the first rdev as the reference */
2366 reference = rdev;
2367 continue;
2368 }
2369 /* does this rdev's profile match the reference profile? */
2370 if (blk_integrity_compare(reference->bdev->bd_disk,
2371 rdev->bdev->bd_disk) < 0)
2372 return -EINVAL;
2373 }
2374 if (!reference || !bdev_get_integrity(reference->bdev))
2375 return 0;
2376 /*
2377 * All component devices are integrity capable and have matching
2378 * profiles, register the common profile for the md device.
2379 */
2380 blk_integrity_register(mddev->gendisk,
2381 bdev_get_integrity(reference->bdev));
2382
2383 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2384 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2385 pr_err("md: failed to create integrity pool for %s\n",
2386 mdname(mddev));
2387 return -EINVAL;
2388 }
2389 return 0;
2390 }
2391 EXPORT_SYMBOL(md_integrity_register);
2392
2393 /*
2394 * Attempt to add an rdev, but only if it is consistent with the current
2395 * integrity profile
2396 */
2397 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2398 {
2399 struct blk_integrity *bi_mddev;
2400 char name[BDEVNAME_SIZE];
2401
2402 if (!mddev->gendisk)
2403 return 0;
2404
2405 bi_mddev = blk_get_integrity(mddev->gendisk);
2406
2407 if (!bi_mddev) /* nothing to do */
2408 return 0;
2409
2410 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2411 pr_err("%s: incompatible integrity profile for %s\n",
2412 mdname(mddev), bdevname(rdev->bdev, name));
2413 return -ENXIO;
2414 }
2415
2416 return 0;
2417 }
2418 EXPORT_SYMBOL(md_integrity_add_rdev);
2419
2420 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2421 {
2422 char b[BDEVNAME_SIZE];
2423 int err;
2424
2425 /* prevent duplicates */
2426 if (find_rdev(mddev, rdev->bdev->bd_dev))
2427 return -EEXIST;
2428
2429 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2430 mddev->pers)
2431 return -EROFS;
2432
2433 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2434 if (!test_bit(Journal, &rdev->flags) &&
2435 rdev->sectors &&
2436 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2437 if (mddev->pers) {
2438 /* Cannot change size, so fail
2439 * If mddev->level <= 0, then we don't care
2440 * about aligning sizes (e.g. linear)
2441 */
2442 if (mddev->level > 0)
2443 return -ENOSPC;
2444 } else
2445 mddev->dev_sectors = rdev->sectors;
2446 }
2447
2448 /* Verify rdev->desc_nr is unique.
2449 * If it is -1, assign a free number, else
2450 * check number is not in use
2451 */
2452 rcu_read_lock();
2453 if (rdev->desc_nr < 0) {
2454 int choice = 0;
2455 if (mddev->pers)
2456 choice = mddev->raid_disks;
2457 while (md_find_rdev_nr_rcu(mddev, choice))
2458 choice++;
2459 rdev->desc_nr = choice;
2460 } else {
2461 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2462 rcu_read_unlock();
2463 return -EBUSY;
2464 }
2465 }
2466 rcu_read_unlock();
2467 if (!test_bit(Journal, &rdev->flags) &&
2468 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2469 pr_warn("md: %s: array is limited to %d devices\n",
2470 mdname(mddev), mddev->max_disks);
2471 return -EBUSY;
2472 }
2473 bdevname(rdev->bdev,b);
2474 strreplace(b, '/', '!');
2475
2476 rdev->mddev = mddev;
2477 pr_debug("md: bind<%s>\n", b);
2478
2479 if (mddev->raid_disks)
2480 mddev_create_serial_pool(mddev, rdev, false);
2481
2482 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2483 goto fail;
2484
2485 /* failure here is OK */
2486 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2487 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2488 rdev->sysfs_unack_badblocks =
2489 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2490 rdev->sysfs_badblocks =
2491 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2492
2493 list_add_rcu(&rdev->same_set, &mddev->disks);
2494 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2495
2496 /* May as well allow recovery to be retried once */
2497 mddev->recovery_disabled++;
2498
2499 return 0;
2500
2501 fail:
2502 pr_warn("md: failed to register dev-%s for %s\n",
2503 b, mdname(mddev));
2504 return err;
2505 }
2506
2507 static void rdev_delayed_delete(struct work_struct *ws)
2508 {
2509 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2510 kobject_del(&rdev->kobj);
2511 kobject_put(&rdev->kobj);
2512 }
2513
2514 static void unbind_rdev_from_array(struct md_rdev *rdev)
2515 {
2516 char b[BDEVNAME_SIZE];
2517
2518 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2519 list_del_rcu(&rdev->same_set);
2520 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2521 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2522 rdev->mddev = NULL;
2523 sysfs_remove_link(&rdev->kobj, "block");
2524 sysfs_put(rdev->sysfs_state);
2525 sysfs_put(rdev->sysfs_unack_badblocks);
2526 sysfs_put(rdev->sysfs_badblocks);
2527 rdev->sysfs_state = NULL;
2528 rdev->sysfs_unack_badblocks = NULL;
2529 rdev->sysfs_badblocks = NULL;
2530 rdev->badblocks.count = 0;
2531 /* We need to delay this, otherwise we can deadlock when
2532 * writing to 'remove' to "dev/state". We also need
2533 * to delay it due to rcu usage.
2534 */
2535 synchronize_rcu();
2536 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2537 kobject_get(&rdev->kobj);
2538 queue_work(md_rdev_misc_wq, &rdev->del_work);
2539 }
2540
2541 /*
2542 * prevent the device from being mounted, repartitioned or
2543 * otherwise reused by a RAID array (or any other kernel
2544 * subsystem), by bd_claiming the device.
2545 */
2546 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2547 {
2548 int err = 0;
2549 struct block_device *bdev;
2550
2551 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2552 shared ? (struct md_rdev *)lock_rdev : rdev);
2553 if (IS_ERR(bdev)) {
2554 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2555 MAJOR(dev), MINOR(dev));
2556 return PTR_ERR(bdev);
2557 }
2558 rdev->bdev = bdev;
2559 return err;
2560 }
2561
2562 static void unlock_rdev(struct md_rdev *rdev)
2563 {
2564 struct block_device *bdev = rdev->bdev;
2565 rdev->bdev = NULL;
2566 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2567 }
2568
2569 void md_autodetect_dev(dev_t dev);
2570
2571 static void export_rdev(struct md_rdev *rdev)
2572 {
2573 char b[BDEVNAME_SIZE];
2574
2575 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2576 md_rdev_clear(rdev);
2577 #ifndef MODULE
2578 if (test_bit(AutoDetected, &rdev->flags))
2579 md_autodetect_dev(rdev->bdev->bd_dev);
2580 #endif
2581 unlock_rdev(rdev);
2582 kobject_put(&rdev->kobj);
2583 }
2584
2585 void md_kick_rdev_from_array(struct md_rdev *rdev)
2586 {
2587 unbind_rdev_from_array(rdev);
2588 export_rdev(rdev);
2589 }
2590 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2591
2592 static void export_array(struct mddev *mddev)
2593 {
2594 struct md_rdev *rdev;
2595
2596 while (!list_empty(&mddev->disks)) {
2597 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2598 same_set);
2599 md_kick_rdev_from_array(rdev);
2600 }
2601 mddev->raid_disks = 0;
2602 mddev->major_version = 0;
2603 }
2604
2605 static bool set_in_sync(struct mddev *mddev)
2606 {
2607 lockdep_assert_held(&mddev->lock);
2608 if (!mddev->in_sync) {
2609 mddev->sync_checkers++;
2610 spin_unlock(&mddev->lock);
2611 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2612 spin_lock(&mddev->lock);
2613 if (!mddev->in_sync &&
2614 percpu_ref_is_zero(&mddev->writes_pending)) {
2615 mddev->in_sync = 1;
2616 /*
2617 * Ensure ->in_sync is visible before we clear
2618 * ->sync_checkers.
2619 */
2620 smp_mb();
2621 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2622 sysfs_notify_dirent_safe(mddev->sysfs_state);
2623 }
2624 if (--mddev->sync_checkers == 0)
2625 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2626 }
2627 if (mddev->safemode == 1)
2628 mddev->safemode = 0;
2629 return mddev->in_sync;
2630 }
2631
2632 static void sync_sbs(struct mddev *mddev, int nospares)
2633 {
2634 /* Update each superblock (in-memory image), but
2635 * if we are allowed to, skip spares which already
2636 * have the right event counter, or have one earlier
2637 * (which would mean they aren't being marked as dirty
2638 * with the rest of the array)
2639 */
2640 struct md_rdev *rdev;
2641 rdev_for_each(rdev, mddev) {
2642 if (rdev->sb_events == mddev->events ||
2643 (nospares &&
2644 rdev->raid_disk < 0 &&
2645 rdev->sb_events+1 == mddev->events)) {
2646 /* Don't update this superblock */
2647 rdev->sb_loaded = 2;
2648 } else {
2649 sync_super(mddev, rdev);
2650 rdev->sb_loaded = 1;
2651 }
2652 }
2653 }
2654
2655 static bool does_sb_need_changing(struct mddev *mddev)
2656 {
2657 struct md_rdev *rdev;
2658 struct mdp_superblock_1 *sb;
2659 int role;
2660
2661 /* Find a good rdev */
2662 rdev_for_each(rdev, mddev)
2663 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2664 break;
2665
2666 /* No good device found. */
2667 if (!rdev)
2668 return false;
2669
2670 sb = page_address(rdev->sb_page);
2671 /* Check if a device has become faulty or a spare become active */
2672 rdev_for_each(rdev, mddev) {
2673 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2674 /* Device activated? */
2675 if (role == 0xffff && rdev->raid_disk >=0 &&
2676 !test_bit(Faulty, &rdev->flags))
2677 return true;
2678 /* Device turned faulty? */
2679 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2680 return true;
2681 }
2682
2683 /* Check if any mddev parameters have changed */
2684 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2685 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2686 (mddev->layout != le32_to_cpu(sb->layout)) ||
2687 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2688 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2689 return true;
2690
2691 return false;
2692 }
2693
2694 void md_update_sb(struct mddev *mddev, int force_change)
2695 {
2696 struct md_rdev *rdev;
2697 int sync_req;
2698 int nospares = 0;
2699 int any_badblocks_changed = 0;
2700 int ret = -1;
2701
2702 if (mddev->ro) {
2703 if (force_change)
2704 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2705 return;
2706 }
2707
2708 repeat:
2709 if (mddev_is_clustered(mddev)) {
2710 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2711 force_change = 1;
2712 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2713 nospares = 1;
2714 ret = md_cluster_ops->metadata_update_start(mddev);
2715 /* Has someone else has updated the sb */
2716 if (!does_sb_need_changing(mddev)) {
2717 if (ret == 0)
2718 md_cluster_ops->metadata_update_cancel(mddev);
2719 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2720 BIT(MD_SB_CHANGE_DEVS) |
2721 BIT(MD_SB_CHANGE_CLEAN));
2722 return;
2723 }
2724 }
2725
2726 /*
2727 * First make sure individual recovery_offsets are correct
2728 * curr_resync_completed can only be used during recovery.
2729 * During reshape/resync it might use array-addresses rather
2730 * that device addresses.
2731 */
2732 rdev_for_each(rdev, mddev) {
2733 if (rdev->raid_disk >= 0 &&
2734 mddev->delta_disks >= 0 &&
2735 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2736 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2737 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2738 !test_bit(Journal, &rdev->flags) &&
2739 !test_bit(In_sync, &rdev->flags) &&
2740 mddev->curr_resync_completed > rdev->recovery_offset)
2741 rdev->recovery_offset = mddev->curr_resync_completed;
2742
2743 }
2744 if (!mddev->persistent) {
2745 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2746 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2747 if (!mddev->external) {
2748 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2749 rdev_for_each(rdev, mddev) {
2750 if (rdev->badblocks.changed) {
2751 rdev->badblocks.changed = 0;
2752 ack_all_badblocks(&rdev->badblocks);
2753 md_error(mddev, rdev);
2754 }
2755 clear_bit(Blocked, &rdev->flags);
2756 clear_bit(BlockedBadBlocks, &rdev->flags);
2757 wake_up(&rdev->blocked_wait);
2758 }
2759 }
2760 wake_up(&mddev->sb_wait);
2761 return;
2762 }
2763
2764 spin_lock(&mddev->lock);
2765
2766 mddev->utime = ktime_get_real_seconds();
2767
2768 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2769 force_change = 1;
2770 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2771 /* just a clean<-> dirty transition, possibly leave spares alone,
2772 * though if events isn't the right even/odd, we will have to do
2773 * spares after all
2774 */
2775 nospares = 1;
2776 if (force_change)
2777 nospares = 0;
2778 if (mddev->degraded)
2779 /* If the array is degraded, then skipping spares is both
2780 * dangerous and fairly pointless.
2781 * Dangerous because a device that was removed from the array
2782 * might have a event_count that still looks up-to-date,
2783 * so it can be re-added without a resync.
2784 * Pointless because if there are any spares to skip,
2785 * then a recovery will happen and soon that array won't
2786 * be degraded any more and the spare can go back to sleep then.
2787 */
2788 nospares = 0;
2789
2790 sync_req = mddev->in_sync;
2791
2792 /* If this is just a dirty<->clean transition, and the array is clean
2793 * and 'events' is odd, we can roll back to the previous clean state */
2794 if (nospares
2795 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2796 && mddev->can_decrease_events
2797 && mddev->events != 1) {
2798 mddev->events--;
2799 mddev->can_decrease_events = 0;
2800 } else {
2801 /* otherwise we have to go forward and ... */
2802 mddev->events ++;
2803 mddev->can_decrease_events = nospares;
2804 }
2805
2806 /*
2807 * This 64-bit counter should never wrap.
2808 * Either we are in around ~1 trillion A.C., assuming
2809 * 1 reboot per second, or we have a bug...
2810 */
2811 WARN_ON(mddev->events == 0);
2812
2813 rdev_for_each(rdev, mddev) {
2814 if (rdev->badblocks.changed)
2815 any_badblocks_changed++;
2816 if (test_bit(Faulty, &rdev->flags))
2817 set_bit(FaultRecorded, &rdev->flags);
2818 }
2819
2820 sync_sbs(mddev, nospares);
2821 spin_unlock(&mddev->lock);
2822
2823 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2824 mdname(mddev), mddev->in_sync);
2825
2826 if (mddev->queue)
2827 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2828 rewrite:
2829 md_bitmap_update_sb(mddev->bitmap);
2830 rdev_for_each(rdev, mddev) {
2831 char b[BDEVNAME_SIZE];
2832
2833 if (rdev->sb_loaded != 1)
2834 continue; /* no noise on spare devices */
2835
2836 if (!test_bit(Faulty, &rdev->flags)) {
2837 md_super_write(mddev,rdev,
2838 rdev->sb_start, rdev->sb_size,
2839 rdev->sb_page);
2840 pr_debug("md: (write) %s's sb offset: %llu\n",
2841 bdevname(rdev->bdev, b),
2842 (unsigned long long)rdev->sb_start);
2843 rdev->sb_events = mddev->events;
2844 if (rdev->badblocks.size) {
2845 md_super_write(mddev, rdev,
2846 rdev->badblocks.sector,
2847 rdev->badblocks.size << 9,
2848 rdev->bb_page);
2849 rdev->badblocks.size = 0;
2850 }
2851
2852 } else
2853 pr_debug("md: %s (skipping faulty)\n",
2854 bdevname(rdev->bdev, b));
2855
2856 if (mddev->level == LEVEL_MULTIPATH)
2857 /* only need to write one superblock... */
2858 break;
2859 }
2860 if (md_super_wait(mddev) < 0)
2861 goto rewrite;
2862 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2863
2864 if (mddev_is_clustered(mddev) && ret == 0)
2865 md_cluster_ops->metadata_update_finish(mddev);
2866
2867 if (mddev->in_sync != sync_req ||
2868 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2869 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2870 /* have to write it out again */
2871 goto repeat;
2872 wake_up(&mddev->sb_wait);
2873 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2874 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2875
2876 rdev_for_each(rdev, mddev) {
2877 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2878 clear_bit(Blocked, &rdev->flags);
2879
2880 if (any_badblocks_changed)
2881 ack_all_badblocks(&rdev->badblocks);
2882 clear_bit(BlockedBadBlocks, &rdev->flags);
2883 wake_up(&rdev->blocked_wait);
2884 }
2885 }
2886 EXPORT_SYMBOL(md_update_sb);
2887
2888 static int add_bound_rdev(struct md_rdev *rdev)
2889 {
2890 struct mddev *mddev = rdev->mddev;
2891 int err = 0;
2892 bool add_journal = test_bit(Journal, &rdev->flags);
2893
2894 if (!mddev->pers->hot_remove_disk || add_journal) {
2895 /* If there is hot_add_disk but no hot_remove_disk
2896 * then added disks for geometry changes,
2897 * and should be added immediately.
2898 */
2899 super_types[mddev->major_version].
2900 validate_super(mddev, rdev);
2901 if (add_journal)
2902 mddev_suspend(mddev);
2903 err = mddev->pers->hot_add_disk(mddev, rdev);
2904 if (add_journal)
2905 mddev_resume(mddev);
2906 if (err) {
2907 md_kick_rdev_from_array(rdev);
2908 return err;
2909 }
2910 }
2911 sysfs_notify_dirent_safe(rdev->sysfs_state);
2912
2913 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2914 if (mddev->degraded)
2915 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2916 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2917 md_new_event(mddev);
2918 md_wakeup_thread(mddev->thread);
2919 return 0;
2920 }
2921
2922 /* words written to sysfs files may, or may not, be \n terminated.
2923 * We want to accept with case. For this we use cmd_match.
2924 */
2925 static int cmd_match(const char *cmd, const char *str)
2926 {
2927 /* See if cmd, written into a sysfs file, matches
2928 * str. They must either be the same, or cmd can
2929 * have a trailing newline
2930 */
2931 while (*cmd && *str && *cmd == *str) {
2932 cmd++;
2933 str++;
2934 }
2935 if (*cmd == '\n')
2936 cmd++;
2937 if (*str || *cmd)
2938 return 0;
2939 return 1;
2940 }
2941
2942 struct rdev_sysfs_entry {
2943 struct attribute attr;
2944 ssize_t (*show)(struct md_rdev *, char *);
2945 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2946 };
2947
2948 static ssize_t
2949 state_show(struct md_rdev *rdev, char *page)
2950 {
2951 char *sep = ",";
2952 size_t len = 0;
2953 unsigned long flags = READ_ONCE(rdev->flags);
2954
2955 if (test_bit(Faulty, &flags) ||
2956 (!test_bit(ExternalBbl, &flags) &&
2957 rdev->badblocks.unacked_exist))
2958 len += sprintf(page+len, "faulty%s", sep);
2959 if (test_bit(In_sync, &flags))
2960 len += sprintf(page+len, "in_sync%s", sep);
2961 if (test_bit(Journal, &flags))
2962 len += sprintf(page+len, "journal%s", sep);
2963 if (test_bit(WriteMostly, &flags))
2964 len += sprintf(page+len, "write_mostly%s", sep);
2965 if (test_bit(Blocked, &flags) ||
2966 (rdev->badblocks.unacked_exist
2967 && !test_bit(Faulty, &flags)))
2968 len += sprintf(page+len, "blocked%s", sep);
2969 if (!test_bit(Faulty, &flags) &&
2970 !test_bit(Journal, &flags) &&
2971 !test_bit(In_sync, &flags))
2972 len += sprintf(page+len, "spare%s", sep);
2973 if (test_bit(WriteErrorSeen, &flags))
2974 len += sprintf(page+len, "write_error%s", sep);
2975 if (test_bit(WantReplacement, &flags))
2976 len += sprintf(page+len, "want_replacement%s", sep);
2977 if (test_bit(Replacement, &flags))
2978 len += sprintf(page+len, "replacement%s", sep);
2979 if (test_bit(ExternalBbl, &flags))
2980 len += sprintf(page+len, "external_bbl%s", sep);
2981 if (test_bit(FailFast, &flags))
2982 len += sprintf(page+len, "failfast%s", sep);
2983
2984 if (len)
2985 len -= strlen(sep);
2986
2987 return len+sprintf(page+len, "\n");
2988 }
2989
2990 static ssize_t
2991 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2992 {
2993 /* can write
2994 * faulty - simulates an error
2995 * remove - disconnects the device
2996 * writemostly - sets write_mostly
2997 * -writemostly - clears write_mostly
2998 * blocked - sets the Blocked flags
2999 * -blocked - clears the Blocked and possibly simulates an error
3000 * insync - sets Insync providing device isn't active
3001 * -insync - clear Insync for a device with a slot assigned,
3002 * so that it gets rebuilt based on bitmap
3003 * write_error - sets WriteErrorSeen
3004 * -write_error - clears WriteErrorSeen
3005 * {,-}failfast - set/clear FailFast
3006 */
3007 int err = -EINVAL;
3008 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3009 md_error(rdev->mddev, rdev);
3010 if (test_bit(Faulty, &rdev->flags))
3011 err = 0;
3012 else
3013 err = -EBUSY;
3014 } else if (cmd_match(buf, "remove")) {
3015 if (rdev->mddev->pers) {
3016 clear_bit(Blocked, &rdev->flags);
3017 remove_and_add_spares(rdev->mddev, rdev);
3018 }
3019 if (rdev->raid_disk >= 0)
3020 err = -EBUSY;
3021 else {
3022 struct mddev *mddev = rdev->mddev;
3023 err = 0;
3024 if (mddev_is_clustered(mddev))
3025 err = md_cluster_ops->remove_disk(mddev, rdev);
3026
3027 if (err == 0) {
3028 md_kick_rdev_from_array(rdev);
3029 if (mddev->pers) {
3030 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3031 md_wakeup_thread(mddev->thread);
3032 }
3033 md_new_event(mddev);
3034 }
3035 }
3036 } else if (cmd_match(buf, "writemostly")) {
3037 set_bit(WriteMostly, &rdev->flags);
3038 mddev_create_serial_pool(rdev->mddev, rdev, false);
3039 err = 0;
3040 } else if (cmd_match(buf, "-writemostly")) {
3041 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3042 clear_bit(WriteMostly, &rdev->flags);
3043 err = 0;
3044 } else if (cmd_match(buf, "blocked")) {
3045 set_bit(Blocked, &rdev->flags);
3046 err = 0;
3047 } else if (cmd_match(buf, "-blocked")) {
3048 if (!test_bit(Faulty, &rdev->flags) &&
3049 !test_bit(ExternalBbl, &rdev->flags) &&
3050 rdev->badblocks.unacked_exist) {
3051 /* metadata handler doesn't understand badblocks,
3052 * so we need to fail the device
3053 */
3054 md_error(rdev->mddev, rdev);
3055 }
3056 clear_bit(Blocked, &rdev->flags);
3057 clear_bit(BlockedBadBlocks, &rdev->flags);
3058 wake_up(&rdev->blocked_wait);
3059 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3060 md_wakeup_thread(rdev->mddev->thread);
3061
3062 err = 0;
3063 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3064 set_bit(In_sync, &rdev->flags);
3065 err = 0;
3066 } else if (cmd_match(buf, "failfast")) {
3067 set_bit(FailFast, &rdev->flags);
3068 err = 0;
3069 } else if (cmd_match(buf, "-failfast")) {
3070 clear_bit(FailFast, &rdev->flags);
3071 err = 0;
3072 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3073 !test_bit(Journal, &rdev->flags)) {
3074 if (rdev->mddev->pers == NULL) {
3075 clear_bit(In_sync, &rdev->flags);
3076 rdev->saved_raid_disk = rdev->raid_disk;
3077 rdev->raid_disk = -1;
3078 err = 0;
3079 }
3080 } else if (cmd_match(buf, "write_error")) {
3081 set_bit(WriteErrorSeen, &rdev->flags);
3082 err = 0;
3083 } else if (cmd_match(buf, "-write_error")) {
3084 clear_bit(WriteErrorSeen, &rdev->flags);
3085 err = 0;
3086 } else if (cmd_match(buf, "want_replacement")) {
3087 /* Any non-spare device that is not a replacement can
3088 * become want_replacement at any time, but we then need to
3089 * check if recovery is needed.
3090 */
3091 if (rdev->raid_disk >= 0 &&
3092 !test_bit(Journal, &rdev->flags) &&
3093 !test_bit(Replacement, &rdev->flags))
3094 set_bit(WantReplacement, &rdev->flags);
3095 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3096 md_wakeup_thread(rdev->mddev->thread);
3097 err = 0;
3098 } else if (cmd_match(buf, "-want_replacement")) {
3099 /* Clearing 'want_replacement' is always allowed.
3100 * Once replacements starts it is too late though.
3101 */
3102 err = 0;
3103 clear_bit(WantReplacement, &rdev->flags);
3104 } else if (cmd_match(buf, "replacement")) {
3105 /* Can only set a device as a replacement when array has not
3106 * yet been started. Once running, replacement is automatic
3107 * from spares, or by assigning 'slot'.
3108 */
3109 if (rdev->mddev->pers)
3110 err = -EBUSY;
3111 else {
3112 set_bit(Replacement, &rdev->flags);
3113 err = 0;
3114 }
3115 } else if (cmd_match(buf, "-replacement")) {
3116 /* Similarly, can only clear Replacement before start */
3117 if (rdev->mddev->pers)
3118 err = -EBUSY;
3119 else {
3120 clear_bit(Replacement, &rdev->flags);
3121 err = 0;
3122 }
3123 } else if (cmd_match(buf, "re-add")) {
3124 if (!rdev->mddev->pers)
3125 err = -EINVAL;
3126 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3127 rdev->saved_raid_disk >= 0) {
3128 /* clear_bit is performed _after_ all the devices
3129 * have their local Faulty bit cleared. If any writes
3130 * happen in the meantime in the local node, they
3131 * will land in the local bitmap, which will be synced
3132 * by this node eventually
3133 */
3134 if (!mddev_is_clustered(rdev->mddev) ||
3135 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3136 clear_bit(Faulty, &rdev->flags);
3137 err = add_bound_rdev(rdev);
3138 }
3139 } else
3140 err = -EBUSY;
3141 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3142 set_bit(ExternalBbl, &rdev->flags);
3143 rdev->badblocks.shift = 0;
3144 err = 0;
3145 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3146 clear_bit(ExternalBbl, &rdev->flags);
3147 err = 0;
3148 }
3149 if (!err)
3150 sysfs_notify_dirent_safe(rdev->sysfs_state);
3151 return err ? err : len;
3152 }
3153 static struct rdev_sysfs_entry rdev_state =
3154 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3155
3156 static ssize_t
3157 errors_show(struct md_rdev *rdev, char *page)
3158 {
3159 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3160 }
3161
3162 static ssize_t
3163 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3164 {
3165 unsigned int n;
3166 int rv;
3167
3168 rv = kstrtouint(buf, 10, &n);
3169 if (rv < 0)
3170 return rv;
3171 atomic_set(&rdev->corrected_errors, n);
3172 return len;
3173 }
3174 static struct rdev_sysfs_entry rdev_errors =
3175 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3176
3177 static ssize_t
3178 slot_show(struct md_rdev *rdev, char *page)
3179 {
3180 if (test_bit(Journal, &rdev->flags))
3181 return sprintf(page, "journal\n");
3182 else if (rdev->raid_disk < 0)
3183 return sprintf(page, "none\n");
3184 else
3185 return sprintf(page, "%d\n", rdev->raid_disk);
3186 }
3187
3188 static ssize_t
3189 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3190 {
3191 int slot;
3192 int err;
3193
3194 if (test_bit(Journal, &rdev->flags))
3195 return -EBUSY;
3196 if (strncmp(buf, "none", 4)==0)
3197 slot = -1;
3198 else {
3199 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3200 if (err < 0)
3201 return err;
3202 }
3203 if (rdev->mddev->pers && slot == -1) {
3204 /* Setting 'slot' on an active array requires also
3205 * updating the 'rd%d' link, and communicating
3206 * with the personality with ->hot_*_disk.
3207 * For now we only support removing
3208 * failed/spare devices. This normally happens automatically,
3209 * but not when the metadata is externally managed.
3210 */
3211 if (rdev->raid_disk == -1)
3212 return -EEXIST;
3213 /* personality does all needed checks */
3214 if (rdev->mddev->pers->hot_remove_disk == NULL)
3215 return -EINVAL;
3216 clear_bit(Blocked, &rdev->flags);
3217 remove_and_add_spares(rdev->mddev, rdev);
3218 if (rdev->raid_disk >= 0)
3219 return -EBUSY;
3220 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3221 md_wakeup_thread(rdev->mddev->thread);
3222 } else if (rdev->mddev->pers) {
3223 /* Activating a spare .. or possibly reactivating
3224 * if we ever get bitmaps working here.
3225 */
3226 int err;
3227
3228 if (rdev->raid_disk != -1)
3229 return -EBUSY;
3230
3231 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3232 return -EBUSY;
3233
3234 if (rdev->mddev->pers->hot_add_disk == NULL)
3235 return -EINVAL;
3236
3237 if (slot >= rdev->mddev->raid_disks &&
3238 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3239 return -ENOSPC;
3240
3241 rdev->raid_disk = slot;
3242 if (test_bit(In_sync, &rdev->flags))
3243 rdev->saved_raid_disk = slot;
3244 else
3245 rdev->saved_raid_disk = -1;
3246 clear_bit(In_sync, &rdev->flags);
3247 clear_bit(Bitmap_sync, &rdev->flags);
3248 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3249 if (err) {
3250 rdev->raid_disk = -1;
3251 return err;
3252 } else
3253 sysfs_notify_dirent_safe(rdev->sysfs_state);
3254 /* failure here is OK */;
3255 sysfs_link_rdev(rdev->mddev, rdev);
3256 /* don't wakeup anyone, leave that to userspace. */
3257 } else {
3258 if (slot >= rdev->mddev->raid_disks &&
3259 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3260 return -ENOSPC;
3261 rdev->raid_disk = slot;
3262 /* assume it is working */
3263 clear_bit(Faulty, &rdev->flags);
3264 clear_bit(WriteMostly, &rdev->flags);
3265 set_bit(In_sync, &rdev->flags);
3266 sysfs_notify_dirent_safe(rdev->sysfs_state);
3267 }
3268 return len;
3269 }
3270
3271 static struct rdev_sysfs_entry rdev_slot =
3272 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3273
3274 static ssize_t
3275 offset_show(struct md_rdev *rdev, char *page)
3276 {
3277 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3278 }
3279
3280 static ssize_t
3281 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3282 {
3283 unsigned long long offset;
3284 if (kstrtoull(buf, 10, &offset) < 0)
3285 return -EINVAL;
3286 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3287 return -EBUSY;
3288 if (rdev->sectors && rdev->mddev->external)
3289 /* Must set offset before size, so overlap checks
3290 * can be sane */
3291 return -EBUSY;
3292 rdev->data_offset = offset;
3293 rdev->new_data_offset = offset;
3294 return len;
3295 }
3296
3297 static struct rdev_sysfs_entry rdev_offset =
3298 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3299
3300 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3301 {
3302 return sprintf(page, "%llu\n",
3303 (unsigned long long)rdev->new_data_offset);
3304 }
3305
3306 static ssize_t new_offset_store(struct md_rdev *rdev,
3307 const char *buf, size_t len)
3308 {
3309 unsigned long long new_offset;
3310 struct mddev *mddev = rdev->mddev;
3311
3312 if (kstrtoull(buf, 10, &new_offset) < 0)
3313 return -EINVAL;
3314
3315 if (mddev->sync_thread ||
3316 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3317 return -EBUSY;
3318 if (new_offset == rdev->data_offset)
3319 /* reset is always permitted */
3320 ;
3321 else if (new_offset > rdev->data_offset) {
3322 /* must not push array size beyond rdev_sectors */
3323 if (new_offset - rdev->data_offset
3324 + mddev->dev_sectors > rdev->sectors)
3325 return -E2BIG;
3326 }
3327 /* Metadata worries about other space details. */
3328
3329 /* decreasing the offset is inconsistent with a backwards
3330 * reshape.
3331 */
3332 if (new_offset < rdev->data_offset &&
3333 mddev->reshape_backwards)
3334 return -EINVAL;
3335 /* Increasing offset is inconsistent with forwards
3336 * reshape. reshape_direction should be set to
3337 * 'backwards' first.
3338 */
3339 if (new_offset > rdev->data_offset &&
3340 !mddev->reshape_backwards)
3341 return -EINVAL;
3342
3343 if (mddev->pers && mddev->persistent &&
3344 !super_types[mddev->major_version]
3345 .allow_new_offset(rdev, new_offset))
3346 return -E2BIG;
3347 rdev->new_data_offset = new_offset;
3348 if (new_offset > rdev->data_offset)
3349 mddev->reshape_backwards = 1;
3350 else if (new_offset < rdev->data_offset)
3351 mddev->reshape_backwards = 0;
3352
3353 return len;
3354 }
3355 static struct rdev_sysfs_entry rdev_new_offset =
3356 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3357
3358 static ssize_t
3359 rdev_size_show(struct md_rdev *rdev, char *page)
3360 {
3361 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3362 }
3363
3364 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3365 {
3366 /* check if two start/length pairs overlap */
3367 if (s1+l1 <= s2)
3368 return 0;
3369 if (s2+l2 <= s1)
3370 return 0;
3371 return 1;
3372 }
3373
3374 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3375 {
3376 unsigned long long blocks;
3377 sector_t new;
3378
3379 if (kstrtoull(buf, 10, &blocks) < 0)
3380 return -EINVAL;
3381
3382 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3383 return -EINVAL; /* sector conversion overflow */
3384
3385 new = blocks * 2;
3386 if (new != blocks * 2)
3387 return -EINVAL; /* unsigned long long to sector_t overflow */
3388
3389 *sectors = new;
3390 return 0;
3391 }
3392
3393 static ssize_t
3394 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3395 {
3396 struct mddev *my_mddev = rdev->mddev;
3397 sector_t oldsectors = rdev->sectors;
3398 sector_t sectors;
3399
3400 if (test_bit(Journal, &rdev->flags))
3401 return -EBUSY;
3402 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3403 return -EINVAL;
3404 if (rdev->data_offset != rdev->new_data_offset)
3405 return -EINVAL; /* too confusing */
3406 if (my_mddev->pers && rdev->raid_disk >= 0) {
3407 if (my_mddev->persistent) {
3408 sectors = super_types[my_mddev->major_version].
3409 rdev_size_change(rdev, sectors);
3410 if (!sectors)
3411 return -EBUSY;
3412 } else if (!sectors)
3413 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3414 rdev->data_offset;
3415 if (!my_mddev->pers->resize)
3416 /* Cannot change size for RAID0 or Linear etc */
3417 return -EINVAL;
3418 }
3419 if (sectors < my_mddev->dev_sectors)
3420 return -EINVAL; /* component must fit device */
3421
3422 rdev->sectors = sectors;
3423 if (sectors > oldsectors && my_mddev->external) {
3424 /* Need to check that all other rdevs with the same
3425 * ->bdev do not overlap. 'rcu' is sufficient to walk
3426 * the rdev lists safely.
3427 * This check does not provide a hard guarantee, it
3428 * just helps avoid dangerous mistakes.
3429 */
3430 struct mddev *mddev;
3431 int overlap = 0;
3432 struct list_head *tmp;
3433
3434 rcu_read_lock();
3435 for_each_mddev(mddev, tmp) {
3436 struct md_rdev *rdev2;
3437
3438 rdev_for_each(rdev2, mddev)
3439 if (rdev->bdev == rdev2->bdev &&
3440 rdev != rdev2 &&
3441 overlaps(rdev->data_offset, rdev->sectors,
3442 rdev2->data_offset,
3443 rdev2->sectors)) {
3444 overlap = 1;
3445 break;
3446 }
3447 if (overlap) {
3448 mddev_put(mddev);
3449 break;
3450 }
3451 }
3452 rcu_read_unlock();
3453 if (overlap) {
3454 /* Someone else could have slipped in a size
3455 * change here, but doing so is just silly.
3456 * We put oldsectors back because we *know* it is
3457 * safe, and trust userspace not to race with
3458 * itself
3459 */
3460 rdev->sectors = oldsectors;
3461 return -EBUSY;
3462 }
3463 }
3464 return len;
3465 }
3466
3467 static struct rdev_sysfs_entry rdev_size =
3468 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3469
3470 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3471 {
3472 unsigned long long recovery_start = rdev->recovery_offset;
3473
3474 if (test_bit(In_sync, &rdev->flags) ||
3475 recovery_start == MaxSector)
3476 return sprintf(page, "none\n");
3477
3478 return sprintf(page, "%llu\n", recovery_start);
3479 }
3480
3481 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3482 {
3483 unsigned long long recovery_start;
3484
3485 if (cmd_match(buf, "none"))
3486 recovery_start = MaxSector;
3487 else if (kstrtoull(buf, 10, &recovery_start))
3488 return -EINVAL;
3489
3490 if (rdev->mddev->pers &&
3491 rdev->raid_disk >= 0)
3492 return -EBUSY;
3493
3494 rdev->recovery_offset = recovery_start;
3495 if (recovery_start == MaxSector)
3496 set_bit(In_sync, &rdev->flags);
3497 else
3498 clear_bit(In_sync, &rdev->flags);
3499 return len;
3500 }
3501
3502 static struct rdev_sysfs_entry rdev_recovery_start =
3503 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3504
3505 /* sysfs access to bad-blocks list.
3506 * We present two files.
3507 * 'bad-blocks' lists sector numbers and lengths of ranges that
3508 * are recorded as bad. The list is truncated to fit within
3509 * the one-page limit of sysfs.
3510 * Writing "sector length" to this file adds an acknowledged
3511 * bad block list.
3512 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3513 * been acknowledged. Writing to this file adds bad blocks
3514 * without acknowledging them. This is largely for testing.
3515 */
3516 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3517 {
3518 return badblocks_show(&rdev->badblocks, page, 0);
3519 }
3520 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3521 {
3522 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3523 /* Maybe that ack was all we needed */
3524 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3525 wake_up(&rdev->blocked_wait);
3526 return rv;
3527 }
3528 static struct rdev_sysfs_entry rdev_bad_blocks =
3529 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3530
3531 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3532 {
3533 return badblocks_show(&rdev->badblocks, page, 1);
3534 }
3535 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3536 {
3537 return badblocks_store(&rdev->badblocks, page, len, 1);
3538 }
3539 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3540 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3541
3542 static ssize_t
3543 ppl_sector_show(struct md_rdev *rdev, char *page)
3544 {
3545 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3546 }
3547
3548 static ssize_t
3549 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3550 {
3551 unsigned long long sector;
3552
3553 if (kstrtoull(buf, 10, &sector) < 0)
3554 return -EINVAL;
3555 if (sector != (sector_t)sector)
3556 return -EINVAL;
3557
3558 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3559 rdev->raid_disk >= 0)
3560 return -EBUSY;
3561
3562 if (rdev->mddev->persistent) {
3563 if (rdev->mddev->major_version == 0)
3564 return -EINVAL;
3565 if ((sector > rdev->sb_start &&
3566 sector - rdev->sb_start > S16_MAX) ||
3567 (sector < rdev->sb_start &&
3568 rdev->sb_start - sector > -S16_MIN))
3569 return -EINVAL;
3570 rdev->ppl.offset = sector - rdev->sb_start;
3571 } else if (!rdev->mddev->external) {
3572 return -EBUSY;
3573 }
3574 rdev->ppl.sector = sector;
3575 return len;
3576 }
3577
3578 static struct rdev_sysfs_entry rdev_ppl_sector =
3579 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3580
3581 static ssize_t
3582 ppl_size_show(struct md_rdev *rdev, char *page)
3583 {
3584 return sprintf(page, "%u\n", rdev->ppl.size);
3585 }
3586
3587 static ssize_t
3588 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3589 {
3590 unsigned int size;
3591
3592 if (kstrtouint(buf, 10, &size) < 0)
3593 return -EINVAL;
3594
3595 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3596 rdev->raid_disk >= 0)
3597 return -EBUSY;
3598
3599 if (rdev->mddev->persistent) {
3600 if (rdev->mddev->major_version == 0)
3601 return -EINVAL;
3602 if (size > U16_MAX)
3603 return -EINVAL;
3604 } else if (!rdev->mddev->external) {
3605 return -EBUSY;
3606 }
3607 rdev->ppl.size = size;
3608 return len;
3609 }
3610
3611 static struct rdev_sysfs_entry rdev_ppl_size =
3612 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3613
3614 static struct attribute *rdev_default_attrs[] = {
3615 &rdev_state.attr,
3616 &rdev_errors.attr,
3617 &rdev_slot.attr,
3618 &rdev_offset.attr,
3619 &rdev_new_offset.attr,
3620 &rdev_size.attr,
3621 &rdev_recovery_start.attr,
3622 &rdev_bad_blocks.attr,
3623 &rdev_unack_bad_blocks.attr,
3624 &rdev_ppl_sector.attr,
3625 &rdev_ppl_size.attr,
3626 NULL,
3627 };
3628 static ssize_t
3629 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3630 {
3631 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3632 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3633
3634 if (!entry->show)
3635 return -EIO;
3636 if (!rdev->mddev)
3637 return -ENODEV;
3638 return entry->show(rdev, page);
3639 }
3640
3641 static ssize_t
3642 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3643 const char *page, size_t length)
3644 {
3645 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3646 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3647 ssize_t rv;
3648 struct mddev *mddev = rdev->mddev;
3649
3650 if (!entry->store)
3651 return -EIO;
3652 if (!capable(CAP_SYS_ADMIN))
3653 return -EACCES;
3654 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3655 if (!rv) {
3656 if (rdev->mddev == NULL)
3657 rv = -ENODEV;
3658 else
3659 rv = entry->store(rdev, page, length);
3660 mddev_unlock(mddev);
3661 }
3662 return rv;
3663 }
3664
3665 static void rdev_free(struct kobject *ko)
3666 {
3667 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3668 kfree(rdev);
3669 }
3670 static const struct sysfs_ops rdev_sysfs_ops = {
3671 .show = rdev_attr_show,
3672 .store = rdev_attr_store,
3673 };
3674 static struct kobj_type rdev_ktype = {
3675 .release = rdev_free,
3676 .sysfs_ops = &rdev_sysfs_ops,
3677 .default_attrs = rdev_default_attrs,
3678 };
3679
3680 int md_rdev_init(struct md_rdev *rdev)
3681 {
3682 rdev->desc_nr = -1;
3683 rdev->saved_raid_disk = -1;
3684 rdev->raid_disk = -1;
3685 rdev->flags = 0;
3686 rdev->data_offset = 0;
3687 rdev->new_data_offset = 0;
3688 rdev->sb_events = 0;
3689 rdev->last_read_error = 0;
3690 rdev->sb_loaded = 0;
3691 rdev->bb_page = NULL;
3692 atomic_set(&rdev->nr_pending, 0);
3693 atomic_set(&rdev->read_errors, 0);
3694 atomic_set(&rdev->corrected_errors, 0);
3695
3696 INIT_LIST_HEAD(&rdev->same_set);
3697 init_waitqueue_head(&rdev->blocked_wait);
3698
3699 /* Add space to store bad block list.
3700 * This reserves the space even on arrays where it cannot
3701 * be used - I wonder if that matters
3702 */
3703 return badblocks_init(&rdev->badblocks, 0);
3704 }
3705 EXPORT_SYMBOL_GPL(md_rdev_init);
3706 /*
3707 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3708 *
3709 * mark the device faulty if:
3710 *
3711 * - the device is nonexistent (zero size)
3712 * - the device has no valid superblock
3713 *
3714 * a faulty rdev _never_ has rdev->sb set.
3715 */
3716 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3717 {
3718 char b[BDEVNAME_SIZE];
3719 int err;
3720 struct md_rdev *rdev;
3721 sector_t size;
3722
3723 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3724 if (!rdev)
3725 return ERR_PTR(-ENOMEM);
3726
3727 err = md_rdev_init(rdev);
3728 if (err)
3729 goto abort_free;
3730 err = alloc_disk_sb(rdev);
3731 if (err)
3732 goto abort_free;
3733
3734 err = lock_rdev(rdev, newdev, super_format == -2);
3735 if (err)
3736 goto abort_free;
3737
3738 kobject_init(&rdev->kobj, &rdev_ktype);
3739
3740 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3741 if (!size) {
3742 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3743 bdevname(rdev->bdev,b));
3744 err = -EINVAL;
3745 goto abort_free;
3746 }
3747
3748 if (super_format >= 0) {
3749 err = super_types[super_format].
3750 load_super(rdev, NULL, super_minor);
3751 if (err == -EINVAL) {
3752 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3753 bdevname(rdev->bdev,b),
3754 super_format, super_minor);
3755 goto abort_free;
3756 }
3757 if (err < 0) {
3758 pr_warn("md: could not read %s's sb, not importing!\n",
3759 bdevname(rdev->bdev,b));
3760 goto abort_free;
3761 }
3762 }
3763
3764 return rdev;
3765
3766 abort_free:
3767 if (rdev->bdev)
3768 unlock_rdev(rdev);
3769 md_rdev_clear(rdev);
3770 kfree(rdev);
3771 return ERR_PTR(err);
3772 }
3773
3774 /*
3775 * Check a full RAID array for plausibility
3776 */
3777
3778 static int analyze_sbs(struct mddev *mddev)
3779 {
3780 int i;
3781 struct md_rdev *rdev, *freshest, *tmp;
3782 char b[BDEVNAME_SIZE];
3783
3784 freshest = NULL;
3785 rdev_for_each_safe(rdev, tmp, mddev)
3786 switch (super_types[mddev->major_version].
3787 load_super(rdev, freshest, mddev->minor_version)) {
3788 case 1:
3789 freshest = rdev;
3790 break;
3791 case 0:
3792 break;
3793 default:
3794 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3795 bdevname(rdev->bdev,b));
3796 md_kick_rdev_from_array(rdev);
3797 }
3798
3799 /* Cannot find a valid fresh disk */
3800 if (!freshest) {
3801 pr_warn("md: cannot find a valid disk\n");
3802 return -EINVAL;
3803 }
3804
3805 super_types[mddev->major_version].
3806 validate_super(mddev, freshest);
3807
3808 i = 0;
3809 rdev_for_each_safe(rdev, tmp, mddev) {
3810 if (mddev->max_disks &&
3811 (rdev->desc_nr >= mddev->max_disks ||
3812 i > mddev->max_disks)) {
3813 pr_warn("md: %s: %s: only %d devices permitted\n",
3814 mdname(mddev), bdevname(rdev->bdev, b),
3815 mddev->max_disks);
3816 md_kick_rdev_from_array(rdev);
3817 continue;
3818 }
3819 if (rdev != freshest) {
3820 if (super_types[mddev->major_version].
3821 validate_super(mddev, rdev)) {
3822 pr_warn("md: kicking non-fresh %s from array!\n",
3823 bdevname(rdev->bdev,b));
3824 md_kick_rdev_from_array(rdev);
3825 continue;
3826 }
3827 }
3828 if (mddev->level == LEVEL_MULTIPATH) {
3829 rdev->desc_nr = i++;
3830 rdev->raid_disk = rdev->desc_nr;
3831 set_bit(In_sync, &rdev->flags);
3832 } else if (rdev->raid_disk >=
3833 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3834 !test_bit(Journal, &rdev->flags)) {
3835 rdev->raid_disk = -1;
3836 clear_bit(In_sync, &rdev->flags);
3837 }
3838 }
3839
3840 return 0;
3841 }
3842
3843 /* Read a fixed-point number.
3844 * Numbers in sysfs attributes should be in "standard" units where
3845 * possible, so time should be in seconds.
3846 * However we internally use a a much smaller unit such as
3847 * milliseconds or jiffies.
3848 * This function takes a decimal number with a possible fractional
3849 * component, and produces an integer which is the result of
3850 * multiplying that number by 10^'scale'.
3851 * all without any floating-point arithmetic.
3852 */
3853 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3854 {
3855 unsigned long result = 0;
3856 long decimals = -1;
3857 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3858 if (*cp == '.')
3859 decimals = 0;
3860 else if (decimals < scale) {
3861 unsigned int value;
3862 value = *cp - '0';
3863 result = result * 10 + value;
3864 if (decimals >= 0)
3865 decimals++;
3866 }
3867 cp++;
3868 }
3869 if (*cp == '\n')
3870 cp++;
3871 if (*cp)
3872 return -EINVAL;
3873 if (decimals < 0)
3874 decimals = 0;
3875 *res = result * int_pow(10, scale - decimals);
3876 return 0;
3877 }
3878
3879 static ssize_t
3880 safe_delay_show(struct mddev *mddev, char *page)
3881 {
3882 int msec = (mddev->safemode_delay*1000)/HZ;
3883 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3884 }
3885 static ssize_t
3886 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3887 {
3888 unsigned long msec;
3889
3890 if (mddev_is_clustered(mddev)) {
3891 pr_warn("md: Safemode is disabled for clustered mode\n");
3892 return -EINVAL;
3893 }
3894
3895 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3896 return -EINVAL;
3897 if (msec == 0)
3898 mddev->safemode_delay = 0;
3899 else {
3900 unsigned long old_delay = mddev->safemode_delay;
3901 unsigned long new_delay = (msec*HZ)/1000;
3902
3903 if (new_delay == 0)
3904 new_delay = 1;
3905 mddev->safemode_delay = new_delay;
3906 if (new_delay < old_delay || old_delay == 0)
3907 mod_timer(&mddev->safemode_timer, jiffies+1);
3908 }
3909 return len;
3910 }
3911 static struct md_sysfs_entry md_safe_delay =
3912 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3913
3914 static ssize_t
3915 level_show(struct mddev *mddev, char *page)
3916 {
3917 struct md_personality *p;
3918 int ret;
3919 spin_lock(&mddev->lock);
3920 p = mddev->pers;
3921 if (p)
3922 ret = sprintf(page, "%s\n", p->name);
3923 else if (mddev->clevel[0])
3924 ret = sprintf(page, "%s\n", mddev->clevel);
3925 else if (mddev->level != LEVEL_NONE)
3926 ret = sprintf(page, "%d\n", mddev->level);
3927 else
3928 ret = 0;
3929 spin_unlock(&mddev->lock);
3930 return ret;
3931 }
3932
3933 static ssize_t
3934 level_store(struct mddev *mddev, const char *buf, size_t len)
3935 {
3936 char clevel[16];
3937 ssize_t rv;
3938 size_t slen = len;
3939 struct md_personality *pers, *oldpers;
3940 long level;
3941 void *priv, *oldpriv;
3942 struct md_rdev *rdev;
3943
3944 if (slen == 0 || slen >= sizeof(clevel))
3945 return -EINVAL;
3946
3947 rv = mddev_lock(mddev);
3948 if (rv)
3949 return rv;
3950
3951 if (mddev->pers == NULL) {
3952 strncpy(mddev->clevel, buf, slen);
3953 if (mddev->clevel[slen-1] == '\n')
3954 slen--;
3955 mddev->clevel[slen] = 0;
3956 mddev->level = LEVEL_NONE;
3957 rv = len;
3958 goto out_unlock;
3959 }
3960 rv = -EROFS;
3961 if (mddev->ro)
3962 goto out_unlock;
3963
3964 /* request to change the personality. Need to ensure:
3965 * - array is not engaged in resync/recovery/reshape
3966 * - old personality can be suspended
3967 * - new personality will access other array.
3968 */
3969
3970 rv = -EBUSY;
3971 if (mddev->sync_thread ||
3972 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3973 mddev->reshape_position != MaxSector ||
3974 mddev->sysfs_active)
3975 goto out_unlock;
3976
3977 rv = -EINVAL;
3978 if (!mddev->pers->quiesce) {
3979 pr_warn("md: %s: %s does not support online personality change\n",
3980 mdname(mddev), mddev->pers->name);
3981 goto out_unlock;
3982 }
3983
3984 /* Now find the new personality */
3985 strncpy(clevel, buf, slen);
3986 if (clevel[slen-1] == '\n')
3987 slen--;
3988 clevel[slen] = 0;
3989 if (kstrtol(clevel, 10, &level))
3990 level = LEVEL_NONE;
3991
3992 if (request_module("md-%s", clevel) != 0)
3993 request_module("md-level-%s", clevel);
3994 spin_lock(&pers_lock);
3995 pers = find_pers(level, clevel);
3996 if (!pers || !try_module_get(pers->owner)) {
3997 spin_unlock(&pers_lock);
3998 pr_warn("md: personality %s not loaded\n", clevel);
3999 rv = -EINVAL;
4000 goto out_unlock;
4001 }
4002 spin_unlock(&pers_lock);
4003
4004 if (pers == mddev->pers) {
4005 /* Nothing to do! */
4006 module_put(pers->owner);
4007 rv = len;
4008 goto out_unlock;
4009 }
4010 if (!pers->takeover) {
4011 module_put(pers->owner);
4012 pr_warn("md: %s: %s does not support personality takeover\n",
4013 mdname(mddev), clevel);
4014 rv = -EINVAL;
4015 goto out_unlock;
4016 }
4017
4018 rdev_for_each(rdev, mddev)
4019 rdev->new_raid_disk = rdev->raid_disk;
4020
4021 /* ->takeover must set new_* and/or delta_disks
4022 * if it succeeds, and may set them when it fails.
4023 */
4024 priv = pers->takeover(mddev);
4025 if (IS_ERR(priv)) {
4026 mddev->new_level = mddev->level;
4027 mddev->new_layout = mddev->layout;
4028 mddev->new_chunk_sectors = mddev->chunk_sectors;
4029 mddev->raid_disks -= mddev->delta_disks;
4030 mddev->delta_disks = 0;
4031 mddev->reshape_backwards = 0;
4032 module_put(pers->owner);
4033 pr_warn("md: %s: %s would not accept array\n",
4034 mdname(mddev), clevel);
4035 rv = PTR_ERR(priv);
4036 goto out_unlock;
4037 }
4038
4039 /* Looks like we have a winner */
4040 mddev_suspend(mddev);
4041 mddev_detach(mddev);
4042
4043 spin_lock(&mddev->lock);
4044 oldpers = mddev->pers;
4045 oldpriv = mddev->private;
4046 mddev->pers = pers;
4047 mddev->private = priv;
4048 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4049 mddev->level = mddev->new_level;
4050 mddev->layout = mddev->new_layout;
4051 mddev->chunk_sectors = mddev->new_chunk_sectors;
4052 mddev->delta_disks = 0;
4053 mddev->reshape_backwards = 0;
4054 mddev->degraded = 0;
4055 spin_unlock(&mddev->lock);
4056
4057 if (oldpers->sync_request == NULL &&
4058 mddev->external) {
4059 /* We are converting from a no-redundancy array
4060 * to a redundancy array and metadata is managed
4061 * externally so we need to be sure that writes
4062 * won't block due to a need to transition
4063 * clean->dirty
4064 * until external management is started.
4065 */
4066 mddev->in_sync = 0;
4067 mddev->safemode_delay = 0;
4068 mddev->safemode = 0;
4069 }
4070
4071 oldpers->free(mddev, oldpriv);
4072
4073 if (oldpers->sync_request == NULL &&
4074 pers->sync_request != NULL) {
4075 /* need to add the md_redundancy_group */
4076 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4077 pr_warn("md: cannot register extra attributes for %s\n",
4078 mdname(mddev));
4079 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4080 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4081 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4082 }
4083 if (oldpers->sync_request != NULL &&
4084 pers->sync_request == NULL) {
4085 /* need to remove the md_redundancy_group */
4086 if (mddev->to_remove == NULL)
4087 mddev->to_remove = &md_redundancy_group;
4088 }
4089
4090 module_put(oldpers->owner);
4091
4092 rdev_for_each(rdev, mddev) {
4093 if (rdev->raid_disk < 0)
4094 continue;
4095 if (rdev->new_raid_disk >= mddev->raid_disks)
4096 rdev->new_raid_disk = -1;
4097 if (rdev->new_raid_disk == rdev->raid_disk)
4098 continue;
4099 sysfs_unlink_rdev(mddev, rdev);
4100 }
4101 rdev_for_each(rdev, mddev) {
4102 if (rdev->raid_disk < 0)
4103 continue;
4104 if (rdev->new_raid_disk == rdev->raid_disk)
4105 continue;
4106 rdev->raid_disk = rdev->new_raid_disk;
4107 if (rdev->raid_disk < 0)
4108 clear_bit(In_sync, &rdev->flags);
4109 else {
4110 if (sysfs_link_rdev(mddev, rdev))
4111 pr_warn("md: cannot register rd%d for %s after level change\n",
4112 rdev->raid_disk, mdname(mddev));
4113 }
4114 }
4115
4116 if (pers->sync_request == NULL) {
4117 /* this is now an array without redundancy, so
4118 * it must always be in_sync
4119 */
4120 mddev->in_sync = 1;
4121 del_timer_sync(&mddev->safemode_timer);
4122 }
4123 blk_set_stacking_limits(&mddev->queue->limits);
4124 pers->run(mddev);
4125 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4126 mddev_resume(mddev);
4127 if (!mddev->thread)
4128 md_update_sb(mddev, 1);
4129 sysfs_notify_dirent_safe(mddev->sysfs_level);
4130 md_new_event(mddev);
4131 rv = len;
4132 out_unlock:
4133 mddev_unlock(mddev);
4134 return rv;
4135 }
4136
4137 static struct md_sysfs_entry md_level =
4138 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4139
4140 static ssize_t
4141 layout_show(struct mddev *mddev, char *page)
4142 {
4143 /* just a number, not meaningful for all levels */
4144 if (mddev->reshape_position != MaxSector &&
4145 mddev->layout != mddev->new_layout)
4146 return sprintf(page, "%d (%d)\n",
4147 mddev->new_layout, mddev->layout);
4148 return sprintf(page, "%d\n", mddev->layout);
4149 }
4150
4151 static ssize_t
4152 layout_store(struct mddev *mddev, const char *buf, size_t len)
4153 {
4154 unsigned int n;
4155 int err;
4156
4157 err = kstrtouint(buf, 10, &n);
4158 if (err < 0)
4159 return err;
4160 err = mddev_lock(mddev);
4161 if (err)
4162 return err;
4163
4164 if (mddev->pers) {
4165 if (mddev->pers->check_reshape == NULL)
4166 err = -EBUSY;
4167 else if (mddev->ro)
4168 err = -EROFS;
4169 else {
4170 mddev->new_layout = n;
4171 err = mddev->pers->check_reshape(mddev);
4172 if (err)
4173 mddev->new_layout = mddev->layout;
4174 }
4175 } else {
4176 mddev->new_layout = n;
4177 if (mddev->reshape_position == MaxSector)
4178 mddev->layout = n;
4179 }
4180 mddev_unlock(mddev);
4181 return err ?: len;
4182 }
4183 static struct md_sysfs_entry md_layout =
4184 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4185
4186 static ssize_t
4187 raid_disks_show(struct mddev *mddev, char *page)
4188 {
4189 if (mddev->raid_disks == 0)
4190 return 0;
4191 if (mddev->reshape_position != MaxSector &&
4192 mddev->delta_disks != 0)
4193 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4194 mddev->raid_disks - mddev->delta_disks);
4195 return sprintf(page, "%d\n", mddev->raid_disks);
4196 }
4197
4198 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4199
4200 static ssize_t
4201 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4202 {
4203 unsigned int n;
4204 int err;
4205
4206 err = kstrtouint(buf, 10, &n);
4207 if (err < 0)
4208 return err;
4209
4210 err = mddev_lock(mddev);
4211 if (err)
4212 return err;
4213 if (mddev->pers)
4214 err = update_raid_disks(mddev, n);
4215 else if (mddev->reshape_position != MaxSector) {
4216 struct md_rdev *rdev;
4217 int olddisks = mddev->raid_disks - mddev->delta_disks;
4218
4219 err = -EINVAL;
4220 rdev_for_each(rdev, mddev) {
4221 if (olddisks < n &&
4222 rdev->data_offset < rdev->new_data_offset)
4223 goto out_unlock;
4224 if (olddisks > n &&
4225 rdev->data_offset > rdev->new_data_offset)
4226 goto out_unlock;
4227 }
4228 err = 0;
4229 mddev->delta_disks = n - olddisks;
4230 mddev->raid_disks = n;
4231 mddev->reshape_backwards = (mddev->delta_disks < 0);
4232 } else
4233 mddev->raid_disks = n;
4234 out_unlock:
4235 mddev_unlock(mddev);
4236 return err ? err : len;
4237 }
4238 static struct md_sysfs_entry md_raid_disks =
4239 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4240
4241 static ssize_t
4242 uuid_show(struct mddev *mddev, char *page)
4243 {
4244 return sprintf(page, "%pU\n", mddev->uuid);
4245 }
4246 static struct md_sysfs_entry md_uuid =
4247 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4248
4249 static ssize_t
4250 chunk_size_show(struct mddev *mddev, char *page)
4251 {
4252 if (mddev->reshape_position != MaxSector &&
4253 mddev->chunk_sectors != mddev->new_chunk_sectors)
4254 return sprintf(page, "%d (%d)\n",
4255 mddev->new_chunk_sectors << 9,
4256 mddev->chunk_sectors << 9);
4257 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4258 }
4259
4260 static ssize_t
4261 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4262 {
4263 unsigned long n;
4264 int err;
4265
4266 err = kstrtoul(buf, 10, &n);
4267 if (err < 0)
4268 return err;
4269
4270 err = mddev_lock(mddev);
4271 if (err)
4272 return err;
4273 if (mddev->pers) {
4274 if (mddev->pers->check_reshape == NULL)
4275 err = -EBUSY;
4276 else if (mddev->ro)
4277 err = -EROFS;
4278 else {
4279 mddev->new_chunk_sectors = n >> 9;
4280 err = mddev->pers->check_reshape(mddev);
4281 if (err)
4282 mddev->new_chunk_sectors = mddev->chunk_sectors;
4283 }
4284 } else {
4285 mddev->new_chunk_sectors = n >> 9;
4286 if (mddev->reshape_position == MaxSector)
4287 mddev->chunk_sectors = n >> 9;
4288 }
4289 mddev_unlock(mddev);
4290 return err ?: len;
4291 }
4292 static struct md_sysfs_entry md_chunk_size =
4293 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4294
4295 static ssize_t
4296 resync_start_show(struct mddev *mddev, char *page)
4297 {
4298 if (mddev->recovery_cp == MaxSector)
4299 return sprintf(page, "none\n");
4300 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4301 }
4302
4303 static ssize_t
4304 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4305 {
4306 unsigned long long n;
4307 int err;
4308
4309 if (cmd_match(buf, "none"))
4310 n = MaxSector;
4311 else {
4312 err = kstrtoull(buf, 10, &n);
4313 if (err < 0)
4314 return err;
4315 if (n != (sector_t)n)
4316 return -EINVAL;
4317 }
4318
4319 err = mddev_lock(mddev);
4320 if (err)
4321 return err;
4322 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4323 err = -EBUSY;
4324
4325 if (!err) {
4326 mddev->recovery_cp = n;
4327 if (mddev->pers)
4328 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4329 }
4330 mddev_unlock(mddev);
4331 return err ?: len;
4332 }
4333 static struct md_sysfs_entry md_resync_start =
4334 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4335 resync_start_show, resync_start_store);
4336
4337 /*
4338 * The array state can be:
4339 *
4340 * clear
4341 * No devices, no size, no level
4342 * Equivalent to STOP_ARRAY ioctl
4343 * inactive
4344 * May have some settings, but array is not active
4345 * all IO results in error
4346 * When written, doesn't tear down array, but just stops it
4347 * suspended (not supported yet)
4348 * All IO requests will block. The array can be reconfigured.
4349 * Writing this, if accepted, will block until array is quiescent
4350 * readonly
4351 * no resync can happen. no superblocks get written.
4352 * write requests fail
4353 * read-auto
4354 * like readonly, but behaves like 'clean' on a write request.
4355 *
4356 * clean - no pending writes, but otherwise active.
4357 * When written to inactive array, starts without resync
4358 * If a write request arrives then
4359 * if metadata is known, mark 'dirty' and switch to 'active'.
4360 * if not known, block and switch to write-pending
4361 * If written to an active array that has pending writes, then fails.
4362 * active
4363 * fully active: IO and resync can be happening.
4364 * When written to inactive array, starts with resync
4365 *
4366 * write-pending
4367 * clean, but writes are blocked waiting for 'active' to be written.
4368 *
4369 * active-idle
4370 * like active, but no writes have been seen for a while (100msec).
4371 *
4372 * broken
4373 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4374 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4375 * when a member is gone, so this state will at least alert the
4376 * user that something is wrong.
4377 */
4378 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4379 write_pending, active_idle, broken, bad_word};
4380 static char *array_states[] = {
4381 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4382 "write-pending", "active-idle", "broken", NULL };
4383
4384 static int match_word(const char *word, char **list)
4385 {
4386 int n;
4387 for (n=0; list[n]; n++)
4388 if (cmd_match(word, list[n]))
4389 break;
4390 return n;
4391 }
4392
4393 static ssize_t
4394 array_state_show(struct mddev *mddev, char *page)
4395 {
4396 enum array_state st = inactive;
4397
4398 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4399 switch(mddev->ro) {
4400 case 1:
4401 st = readonly;
4402 break;
4403 case 2:
4404 st = read_auto;
4405 break;
4406 case 0:
4407 spin_lock(&mddev->lock);
4408 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4409 st = write_pending;
4410 else if (mddev->in_sync)
4411 st = clean;
4412 else if (mddev->safemode)
4413 st = active_idle;
4414 else
4415 st = active;
4416 spin_unlock(&mddev->lock);
4417 }
4418
4419 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4420 st = broken;
4421 } else {
4422 if (list_empty(&mddev->disks) &&
4423 mddev->raid_disks == 0 &&
4424 mddev->dev_sectors == 0)
4425 st = clear;
4426 else
4427 st = inactive;
4428 }
4429 return sprintf(page, "%s\n", array_states[st]);
4430 }
4431
4432 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4433 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4434 static int restart_array(struct mddev *mddev);
4435
4436 static ssize_t
4437 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439 int err = 0;
4440 enum array_state st = match_word(buf, array_states);
4441
4442 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4443 /* don't take reconfig_mutex when toggling between
4444 * clean and active
4445 */
4446 spin_lock(&mddev->lock);
4447 if (st == active) {
4448 restart_array(mddev);
4449 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4450 md_wakeup_thread(mddev->thread);
4451 wake_up(&mddev->sb_wait);
4452 } else /* st == clean */ {
4453 restart_array(mddev);
4454 if (!set_in_sync(mddev))
4455 err = -EBUSY;
4456 }
4457 if (!err)
4458 sysfs_notify_dirent_safe(mddev->sysfs_state);
4459 spin_unlock(&mddev->lock);
4460 return err ?: len;
4461 }
4462 err = mddev_lock(mddev);
4463 if (err)
4464 return err;
4465 err = -EINVAL;
4466 switch(st) {
4467 case bad_word:
4468 break;
4469 case clear:
4470 /* stopping an active array */
4471 err = do_md_stop(mddev, 0, NULL);
4472 break;
4473 case inactive:
4474 /* stopping an active array */
4475 if (mddev->pers)
4476 err = do_md_stop(mddev, 2, NULL);
4477 else
4478 err = 0; /* already inactive */
4479 break;
4480 case suspended:
4481 break; /* not supported yet */
4482 case readonly:
4483 if (mddev->pers)
4484 err = md_set_readonly(mddev, NULL);
4485 else {
4486 mddev->ro = 1;
4487 set_disk_ro(mddev->gendisk, 1);
4488 err = do_md_run(mddev);
4489 }
4490 break;
4491 case read_auto:
4492 if (mddev->pers) {
4493 if (mddev->ro == 0)
4494 err = md_set_readonly(mddev, NULL);
4495 else if (mddev->ro == 1)
4496 err = restart_array(mddev);
4497 if (err == 0) {
4498 mddev->ro = 2;
4499 set_disk_ro(mddev->gendisk, 0);
4500 }
4501 } else {
4502 mddev->ro = 2;
4503 err = do_md_run(mddev);
4504 }
4505 break;
4506 case clean:
4507 if (mddev->pers) {
4508 err = restart_array(mddev);
4509 if (err)
4510 break;
4511 spin_lock(&mddev->lock);
4512 if (!set_in_sync(mddev))
4513 err = -EBUSY;
4514 spin_unlock(&mddev->lock);
4515 } else
4516 err = -EINVAL;
4517 break;
4518 case active:
4519 if (mddev->pers) {
4520 err = restart_array(mddev);
4521 if (err)
4522 break;
4523 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4524 wake_up(&mddev->sb_wait);
4525 err = 0;
4526 } else {
4527 mddev->ro = 0;
4528 set_disk_ro(mddev->gendisk, 0);
4529 err = do_md_run(mddev);
4530 }
4531 break;
4532 case write_pending:
4533 case active_idle:
4534 case broken:
4535 /* these cannot be set */
4536 break;
4537 }
4538
4539 if (!err) {
4540 if (mddev->hold_active == UNTIL_IOCTL)
4541 mddev->hold_active = 0;
4542 sysfs_notify_dirent_safe(mddev->sysfs_state);
4543 }
4544 mddev_unlock(mddev);
4545 return err ?: len;
4546 }
4547 static struct md_sysfs_entry md_array_state =
4548 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4549
4550 static ssize_t
4551 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4552 return sprintf(page, "%d\n",
4553 atomic_read(&mddev->max_corr_read_errors));
4554 }
4555
4556 static ssize_t
4557 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4558 {
4559 unsigned int n;
4560 int rv;
4561
4562 rv = kstrtouint(buf, 10, &n);
4563 if (rv < 0)
4564 return rv;
4565 atomic_set(&mddev->max_corr_read_errors, n);
4566 return len;
4567 }
4568
4569 static struct md_sysfs_entry max_corr_read_errors =
4570 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4571 max_corrected_read_errors_store);
4572
4573 static ssize_t
4574 null_show(struct mddev *mddev, char *page)
4575 {
4576 return -EINVAL;
4577 }
4578
4579 /* need to ensure rdev_delayed_delete() has completed */
4580 static void flush_rdev_wq(struct mddev *mddev)
4581 {
4582 struct md_rdev *rdev;
4583
4584 rcu_read_lock();
4585 rdev_for_each_rcu(rdev, mddev)
4586 if (work_pending(&rdev->del_work)) {
4587 flush_workqueue(md_rdev_misc_wq);
4588 break;
4589 }
4590 rcu_read_unlock();
4591 }
4592
4593 static ssize_t
4594 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4595 {
4596 /* buf must be %d:%d\n? giving major and minor numbers */
4597 /* The new device is added to the array.
4598 * If the array has a persistent superblock, we read the
4599 * superblock to initialise info and check validity.
4600 * Otherwise, only checking done is that in bind_rdev_to_array,
4601 * which mainly checks size.
4602 */
4603 char *e;
4604 int major = simple_strtoul(buf, &e, 10);
4605 int minor;
4606 dev_t dev;
4607 struct md_rdev *rdev;
4608 int err;
4609
4610 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4611 return -EINVAL;
4612 minor = simple_strtoul(e+1, &e, 10);
4613 if (*e && *e != '\n')
4614 return -EINVAL;
4615 dev = MKDEV(major, minor);
4616 if (major != MAJOR(dev) ||
4617 minor != MINOR(dev))
4618 return -EOVERFLOW;
4619
4620 flush_rdev_wq(mddev);
4621 err = mddev_lock(mddev);
4622 if (err)
4623 return err;
4624 if (mddev->persistent) {
4625 rdev = md_import_device(dev, mddev->major_version,
4626 mddev->minor_version);
4627 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4628 struct md_rdev *rdev0
4629 = list_entry(mddev->disks.next,
4630 struct md_rdev, same_set);
4631 err = super_types[mddev->major_version]
4632 .load_super(rdev, rdev0, mddev->minor_version);
4633 if (err < 0)
4634 goto out;
4635 }
4636 } else if (mddev->external)
4637 rdev = md_import_device(dev, -2, -1);
4638 else
4639 rdev = md_import_device(dev, -1, -1);
4640
4641 if (IS_ERR(rdev)) {
4642 mddev_unlock(mddev);
4643 return PTR_ERR(rdev);
4644 }
4645 err = bind_rdev_to_array(rdev, mddev);
4646 out:
4647 if (err)
4648 export_rdev(rdev);
4649 mddev_unlock(mddev);
4650 if (!err)
4651 md_new_event(mddev);
4652 return err ? err : len;
4653 }
4654
4655 static struct md_sysfs_entry md_new_device =
4656 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4657
4658 static ssize_t
4659 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4660 {
4661 char *end;
4662 unsigned long chunk, end_chunk;
4663 int err;
4664
4665 err = mddev_lock(mddev);
4666 if (err)
4667 return err;
4668 if (!mddev->bitmap)
4669 goto out;
4670 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4671 while (*buf) {
4672 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4673 if (buf == end) break;
4674 if (*end == '-') { /* range */
4675 buf = end + 1;
4676 end_chunk = simple_strtoul(buf, &end, 0);
4677 if (buf == end) break;
4678 }
4679 if (*end && !isspace(*end)) break;
4680 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4681 buf = skip_spaces(end);
4682 }
4683 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4684 out:
4685 mddev_unlock(mddev);
4686 return len;
4687 }
4688
4689 static struct md_sysfs_entry md_bitmap =
4690 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4691
4692 static ssize_t
4693 size_show(struct mddev *mddev, char *page)
4694 {
4695 return sprintf(page, "%llu\n",
4696 (unsigned long long)mddev->dev_sectors / 2);
4697 }
4698
4699 static int update_size(struct mddev *mddev, sector_t num_sectors);
4700
4701 static ssize_t
4702 size_store(struct mddev *mddev, const char *buf, size_t len)
4703 {
4704 /* If array is inactive, we can reduce the component size, but
4705 * not increase it (except from 0).
4706 * If array is active, we can try an on-line resize
4707 */
4708 sector_t sectors;
4709 int err = strict_blocks_to_sectors(buf, &sectors);
4710
4711 if (err < 0)
4712 return err;
4713 err = mddev_lock(mddev);
4714 if (err)
4715 return err;
4716 if (mddev->pers) {
4717 err = update_size(mddev, sectors);
4718 if (err == 0)
4719 md_update_sb(mddev, 1);
4720 } else {
4721 if (mddev->dev_sectors == 0 ||
4722 mddev->dev_sectors > sectors)
4723 mddev->dev_sectors = sectors;
4724 else
4725 err = -ENOSPC;
4726 }
4727 mddev_unlock(mddev);
4728 return err ? err : len;
4729 }
4730
4731 static struct md_sysfs_entry md_size =
4732 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4733
4734 /* Metadata version.
4735 * This is one of
4736 * 'none' for arrays with no metadata (good luck...)
4737 * 'external' for arrays with externally managed metadata,
4738 * or N.M for internally known formats
4739 */
4740 static ssize_t
4741 metadata_show(struct mddev *mddev, char *page)
4742 {
4743 if (mddev->persistent)
4744 return sprintf(page, "%d.%d\n",
4745 mddev->major_version, mddev->minor_version);
4746 else if (mddev->external)
4747 return sprintf(page, "external:%s\n", mddev->metadata_type);
4748 else
4749 return sprintf(page, "none\n");
4750 }
4751
4752 static ssize_t
4753 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4754 {
4755 int major, minor;
4756 char *e;
4757 int err;
4758 /* Changing the details of 'external' metadata is
4759 * always permitted. Otherwise there must be
4760 * no devices attached to the array.
4761 */
4762
4763 err = mddev_lock(mddev);
4764 if (err)
4765 return err;
4766 err = -EBUSY;
4767 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4768 ;
4769 else if (!list_empty(&mddev->disks))
4770 goto out_unlock;
4771
4772 err = 0;
4773 if (cmd_match(buf, "none")) {
4774 mddev->persistent = 0;
4775 mddev->external = 0;
4776 mddev->major_version = 0;
4777 mddev->minor_version = 90;
4778 goto out_unlock;
4779 }
4780 if (strncmp(buf, "external:", 9) == 0) {
4781 size_t namelen = len-9;
4782 if (namelen >= sizeof(mddev->metadata_type))
4783 namelen = sizeof(mddev->metadata_type)-1;
4784 strncpy(mddev->metadata_type, buf+9, namelen);
4785 mddev->metadata_type[namelen] = 0;
4786 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4787 mddev->metadata_type[--namelen] = 0;
4788 mddev->persistent = 0;
4789 mddev->external = 1;
4790 mddev->major_version = 0;
4791 mddev->minor_version = 90;
4792 goto out_unlock;
4793 }
4794 major = simple_strtoul(buf, &e, 10);
4795 err = -EINVAL;
4796 if (e==buf || *e != '.')
4797 goto out_unlock;
4798 buf = e+1;
4799 minor = simple_strtoul(buf, &e, 10);
4800 if (e==buf || (*e && *e != '\n') )
4801 goto out_unlock;
4802 err = -ENOENT;
4803 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4804 goto out_unlock;
4805 mddev->major_version = major;
4806 mddev->minor_version = minor;
4807 mddev->persistent = 1;
4808 mddev->external = 0;
4809 err = 0;
4810 out_unlock:
4811 mddev_unlock(mddev);
4812 return err ?: len;
4813 }
4814
4815 static struct md_sysfs_entry md_metadata =
4816 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4817
4818 static ssize_t
4819 action_show(struct mddev *mddev, char *page)
4820 {
4821 char *type = "idle";
4822 unsigned long recovery = mddev->recovery;
4823 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4824 type = "frozen";
4825 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4826 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4827 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4828 type = "reshape";
4829 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4830 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4831 type = "resync";
4832 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4833 type = "check";
4834 else
4835 type = "repair";
4836 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4837 type = "recover";
4838 else if (mddev->reshape_position != MaxSector)
4839 type = "reshape";
4840 }
4841 return sprintf(page, "%s\n", type);
4842 }
4843
4844 static ssize_t
4845 action_store(struct mddev *mddev, const char *page, size_t len)
4846 {
4847 if (!mddev->pers || !mddev->pers->sync_request)
4848 return -EINVAL;
4849
4850
4851 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4852 if (cmd_match(page, "frozen"))
4853 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4854 else
4855 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4856 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4857 mddev_lock(mddev) == 0) {
4858 if (work_pending(&mddev->del_work))
4859 flush_workqueue(md_misc_wq);
4860 if (mddev->sync_thread) {
4861 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4862 md_reap_sync_thread(mddev);
4863 }
4864 mddev_unlock(mddev);
4865 }
4866 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4867 return -EBUSY;
4868 else if (cmd_match(page, "resync"))
4869 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4870 else if (cmd_match(page, "recover")) {
4871 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4872 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4873 } else if (cmd_match(page, "reshape")) {
4874 int err;
4875 if (mddev->pers->start_reshape == NULL)
4876 return -EINVAL;
4877 err = mddev_lock(mddev);
4878 if (!err) {
4879 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4880 err = -EBUSY;
4881 else {
4882 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4883 err = mddev->pers->start_reshape(mddev);
4884 }
4885 mddev_unlock(mddev);
4886 }
4887 if (err)
4888 return err;
4889 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4890 } else {
4891 if (cmd_match(page, "check"))
4892 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4893 else if (!cmd_match(page, "repair"))
4894 return -EINVAL;
4895 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4896 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4897 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4898 }
4899 if (mddev->ro == 2) {
4900 /* A write to sync_action is enough to justify
4901 * canceling read-auto mode
4902 */
4903 mddev->ro = 0;
4904 md_wakeup_thread(mddev->sync_thread);
4905 }
4906 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4907 md_wakeup_thread(mddev->thread);
4908 sysfs_notify_dirent_safe(mddev->sysfs_action);
4909 return len;
4910 }
4911
4912 static struct md_sysfs_entry md_scan_mode =
4913 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4914
4915 static ssize_t
4916 last_sync_action_show(struct mddev *mddev, char *page)
4917 {
4918 return sprintf(page, "%s\n", mddev->last_sync_action);
4919 }
4920
4921 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4922
4923 static ssize_t
4924 mismatch_cnt_show(struct mddev *mddev, char *page)
4925 {
4926 return sprintf(page, "%llu\n",
4927 (unsigned long long)
4928 atomic64_read(&mddev->resync_mismatches));
4929 }
4930
4931 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4932
4933 static ssize_t
4934 sync_min_show(struct mddev *mddev, char *page)
4935 {
4936 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4937 mddev->sync_speed_min ? "local": "system");
4938 }
4939
4940 static ssize_t
4941 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4942 {
4943 unsigned int min;
4944 int rv;
4945
4946 if (strncmp(buf, "system", 6)==0) {
4947 min = 0;
4948 } else {
4949 rv = kstrtouint(buf, 10, &min);
4950 if (rv < 0)
4951 return rv;
4952 if (min == 0)
4953 return -EINVAL;
4954 }
4955 mddev->sync_speed_min = min;
4956 return len;
4957 }
4958
4959 static struct md_sysfs_entry md_sync_min =
4960 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4961
4962 static ssize_t
4963 sync_max_show(struct mddev *mddev, char *page)
4964 {
4965 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4966 mddev->sync_speed_max ? "local": "system");
4967 }
4968
4969 static ssize_t
4970 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4971 {
4972 unsigned int max;
4973 int rv;
4974
4975 if (strncmp(buf, "system", 6)==0) {
4976 max = 0;
4977 } else {
4978 rv = kstrtouint(buf, 10, &max);
4979 if (rv < 0)
4980 return rv;
4981 if (max == 0)
4982 return -EINVAL;
4983 }
4984 mddev->sync_speed_max = max;
4985 return len;
4986 }
4987
4988 static struct md_sysfs_entry md_sync_max =
4989 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4990
4991 static ssize_t
4992 degraded_show(struct mddev *mddev, char *page)
4993 {
4994 return sprintf(page, "%d\n", mddev->degraded);
4995 }
4996 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4997
4998 static ssize_t
4999 sync_force_parallel_show(struct mddev *mddev, char *page)
5000 {
5001 return sprintf(page, "%d\n", mddev->parallel_resync);
5002 }
5003
5004 static ssize_t
5005 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5006 {
5007 long n;
5008
5009 if (kstrtol(buf, 10, &n))
5010 return -EINVAL;
5011
5012 if (n != 0 && n != 1)
5013 return -EINVAL;
5014
5015 mddev->parallel_resync = n;
5016
5017 if (mddev->sync_thread)
5018 wake_up(&resync_wait);
5019
5020 return len;
5021 }
5022
5023 /* force parallel resync, even with shared block devices */
5024 static struct md_sysfs_entry md_sync_force_parallel =
5025 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5026 sync_force_parallel_show, sync_force_parallel_store);
5027
5028 static ssize_t
5029 sync_speed_show(struct mddev *mddev, char *page)
5030 {
5031 unsigned long resync, dt, db;
5032 if (mddev->curr_resync == 0)
5033 return sprintf(page, "none\n");
5034 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5035 dt = (jiffies - mddev->resync_mark) / HZ;
5036 if (!dt) dt++;
5037 db = resync - mddev->resync_mark_cnt;
5038 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5039 }
5040
5041 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5042
5043 static ssize_t
5044 sync_completed_show(struct mddev *mddev, char *page)
5045 {
5046 unsigned long long max_sectors, resync;
5047
5048 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5049 return sprintf(page, "none\n");
5050
5051 if (mddev->curr_resync == 1 ||
5052 mddev->curr_resync == 2)
5053 return sprintf(page, "delayed\n");
5054
5055 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5056 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5057 max_sectors = mddev->resync_max_sectors;
5058 else
5059 max_sectors = mddev->dev_sectors;
5060
5061 resync = mddev->curr_resync_completed;
5062 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5063 }
5064
5065 static struct md_sysfs_entry md_sync_completed =
5066 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5067
5068 static ssize_t
5069 min_sync_show(struct mddev *mddev, char *page)
5070 {
5071 return sprintf(page, "%llu\n",
5072 (unsigned long long)mddev->resync_min);
5073 }
5074 static ssize_t
5075 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5076 {
5077 unsigned long long min;
5078 int err;
5079
5080 if (kstrtoull(buf, 10, &min))
5081 return -EINVAL;
5082
5083 spin_lock(&mddev->lock);
5084 err = -EINVAL;
5085 if (min > mddev->resync_max)
5086 goto out_unlock;
5087
5088 err = -EBUSY;
5089 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5090 goto out_unlock;
5091
5092 /* Round down to multiple of 4K for safety */
5093 mddev->resync_min = round_down(min, 8);
5094 err = 0;
5095
5096 out_unlock:
5097 spin_unlock(&mddev->lock);
5098 return err ?: len;
5099 }
5100
5101 static struct md_sysfs_entry md_min_sync =
5102 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5103
5104 static ssize_t
5105 max_sync_show(struct mddev *mddev, char *page)
5106 {
5107 if (mddev->resync_max == MaxSector)
5108 return sprintf(page, "max\n");
5109 else
5110 return sprintf(page, "%llu\n",
5111 (unsigned long long)mddev->resync_max);
5112 }
5113 static ssize_t
5114 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5115 {
5116 int err;
5117 spin_lock(&mddev->lock);
5118 if (strncmp(buf, "max", 3) == 0)
5119 mddev->resync_max = MaxSector;
5120 else {
5121 unsigned long long max;
5122 int chunk;
5123
5124 err = -EINVAL;
5125 if (kstrtoull(buf, 10, &max))
5126 goto out_unlock;
5127 if (max < mddev->resync_min)
5128 goto out_unlock;
5129
5130 err = -EBUSY;
5131 if (max < mddev->resync_max &&
5132 mddev->ro == 0 &&
5133 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5134 goto out_unlock;
5135
5136 /* Must be a multiple of chunk_size */
5137 chunk = mddev->chunk_sectors;
5138 if (chunk) {
5139 sector_t temp = max;
5140
5141 err = -EINVAL;
5142 if (sector_div(temp, chunk))
5143 goto out_unlock;
5144 }
5145 mddev->resync_max = max;
5146 }
5147 wake_up(&mddev->recovery_wait);
5148 err = 0;
5149 out_unlock:
5150 spin_unlock(&mddev->lock);
5151 return err ?: len;
5152 }
5153
5154 static struct md_sysfs_entry md_max_sync =
5155 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5156
5157 static ssize_t
5158 suspend_lo_show(struct mddev *mddev, char *page)
5159 {
5160 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5161 }
5162
5163 static ssize_t
5164 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5165 {
5166 unsigned long long new;
5167 int err;
5168
5169 err = kstrtoull(buf, 10, &new);
5170 if (err < 0)
5171 return err;
5172 if (new != (sector_t)new)
5173 return -EINVAL;
5174
5175 err = mddev_lock(mddev);
5176 if (err)
5177 return err;
5178 err = -EINVAL;
5179 if (mddev->pers == NULL ||
5180 mddev->pers->quiesce == NULL)
5181 goto unlock;
5182 mddev_suspend(mddev);
5183 mddev->suspend_lo = new;
5184 mddev_resume(mddev);
5185
5186 err = 0;
5187 unlock:
5188 mddev_unlock(mddev);
5189 return err ?: len;
5190 }
5191 static struct md_sysfs_entry md_suspend_lo =
5192 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5193
5194 static ssize_t
5195 suspend_hi_show(struct mddev *mddev, char *page)
5196 {
5197 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5198 }
5199
5200 static ssize_t
5201 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5202 {
5203 unsigned long long new;
5204 int err;
5205
5206 err = kstrtoull(buf, 10, &new);
5207 if (err < 0)
5208 return err;
5209 if (new != (sector_t)new)
5210 return -EINVAL;
5211
5212 err = mddev_lock(mddev);
5213 if (err)
5214 return err;
5215 err = -EINVAL;
5216 if (mddev->pers == NULL)
5217 goto unlock;
5218
5219 mddev_suspend(mddev);
5220 mddev->suspend_hi = new;
5221 mddev_resume(mddev);
5222
5223 err = 0;
5224 unlock:
5225 mddev_unlock(mddev);
5226 return err ?: len;
5227 }
5228 static struct md_sysfs_entry md_suspend_hi =
5229 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5230
5231 static ssize_t
5232 reshape_position_show(struct mddev *mddev, char *page)
5233 {
5234 if (mddev->reshape_position != MaxSector)
5235 return sprintf(page, "%llu\n",
5236 (unsigned long long)mddev->reshape_position);
5237 strcpy(page, "none\n");
5238 return 5;
5239 }
5240
5241 static ssize_t
5242 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5243 {
5244 struct md_rdev *rdev;
5245 unsigned long long new;
5246 int err;
5247
5248 err = kstrtoull(buf, 10, &new);
5249 if (err < 0)
5250 return err;
5251 if (new != (sector_t)new)
5252 return -EINVAL;
5253 err = mddev_lock(mddev);
5254 if (err)
5255 return err;
5256 err = -EBUSY;
5257 if (mddev->pers)
5258 goto unlock;
5259 mddev->reshape_position = new;
5260 mddev->delta_disks = 0;
5261 mddev->reshape_backwards = 0;
5262 mddev->new_level = mddev->level;
5263 mddev->new_layout = mddev->layout;
5264 mddev->new_chunk_sectors = mddev->chunk_sectors;
5265 rdev_for_each(rdev, mddev)
5266 rdev->new_data_offset = rdev->data_offset;
5267 err = 0;
5268 unlock:
5269 mddev_unlock(mddev);
5270 return err ?: len;
5271 }
5272
5273 static struct md_sysfs_entry md_reshape_position =
5274 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5275 reshape_position_store);
5276
5277 static ssize_t
5278 reshape_direction_show(struct mddev *mddev, char *page)
5279 {
5280 return sprintf(page, "%s\n",
5281 mddev->reshape_backwards ? "backwards" : "forwards");
5282 }
5283
5284 static ssize_t
5285 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5286 {
5287 int backwards = 0;
5288 int err;
5289
5290 if (cmd_match(buf, "forwards"))
5291 backwards = 0;
5292 else if (cmd_match(buf, "backwards"))
5293 backwards = 1;
5294 else
5295 return -EINVAL;
5296 if (mddev->reshape_backwards == backwards)
5297 return len;
5298
5299 err = mddev_lock(mddev);
5300 if (err)
5301 return err;
5302 /* check if we are allowed to change */
5303 if (mddev->delta_disks)
5304 err = -EBUSY;
5305 else if (mddev->persistent &&
5306 mddev->major_version == 0)
5307 err = -EINVAL;
5308 else
5309 mddev->reshape_backwards = backwards;
5310 mddev_unlock(mddev);
5311 return err ?: len;
5312 }
5313
5314 static struct md_sysfs_entry md_reshape_direction =
5315 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5316 reshape_direction_store);
5317
5318 static ssize_t
5319 array_size_show(struct mddev *mddev, char *page)
5320 {
5321 if (mddev->external_size)
5322 return sprintf(page, "%llu\n",
5323 (unsigned long long)mddev->array_sectors/2);
5324 else
5325 return sprintf(page, "default\n");
5326 }
5327
5328 static ssize_t
5329 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5330 {
5331 sector_t sectors;
5332 int err;
5333
5334 err = mddev_lock(mddev);
5335 if (err)
5336 return err;
5337
5338 /* cluster raid doesn't support change array_sectors */
5339 if (mddev_is_clustered(mddev)) {
5340 mddev_unlock(mddev);
5341 return -EINVAL;
5342 }
5343
5344 if (strncmp(buf, "default", 7) == 0) {
5345 if (mddev->pers)
5346 sectors = mddev->pers->size(mddev, 0, 0);
5347 else
5348 sectors = mddev->array_sectors;
5349
5350 mddev->external_size = 0;
5351 } else {
5352 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5353 err = -EINVAL;
5354 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5355 err = -E2BIG;
5356 else
5357 mddev->external_size = 1;
5358 }
5359
5360 if (!err) {
5361 mddev->array_sectors = sectors;
5362 if (mddev->pers)
5363 set_capacity_and_notify(mddev->gendisk,
5364 mddev->array_sectors);
5365 }
5366 mddev_unlock(mddev);
5367 return err ?: len;
5368 }
5369
5370 static struct md_sysfs_entry md_array_size =
5371 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5372 array_size_store);
5373
5374 static ssize_t
5375 consistency_policy_show(struct mddev *mddev, char *page)
5376 {
5377 int ret;
5378
5379 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5380 ret = sprintf(page, "journal\n");
5381 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5382 ret = sprintf(page, "ppl\n");
5383 } else if (mddev->bitmap) {
5384 ret = sprintf(page, "bitmap\n");
5385 } else if (mddev->pers) {
5386 if (mddev->pers->sync_request)
5387 ret = sprintf(page, "resync\n");
5388 else
5389 ret = sprintf(page, "none\n");
5390 } else {
5391 ret = sprintf(page, "unknown\n");
5392 }
5393
5394 return ret;
5395 }
5396
5397 static ssize_t
5398 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5399 {
5400 int err = 0;
5401
5402 if (mddev->pers) {
5403 if (mddev->pers->change_consistency_policy)
5404 err = mddev->pers->change_consistency_policy(mddev, buf);
5405 else
5406 err = -EBUSY;
5407 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5408 set_bit(MD_HAS_PPL, &mddev->flags);
5409 } else {
5410 err = -EINVAL;
5411 }
5412
5413 return err ? err : len;
5414 }
5415
5416 static struct md_sysfs_entry md_consistency_policy =
5417 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5418 consistency_policy_store);
5419
5420 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5421 {
5422 return sprintf(page, "%d\n", mddev->fail_last_dev);
5423 }
5424
5425 /*
5426 * Setting fail_last_dev to true to allow last device to be forcibly removed
5427 * from RAID1/RAID10.
5428 */
5429 static ssize_t
5430 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5431 {
5432 int ret;
5433 bool value;
5434
5435 ret = kstrtobool(buf, &value);
5436 if (ret)
5437 return ret;
5438
5439 if (value != mddev->fail_last_dev)
5440 mddev->fail_last_dev = value;
5441
5442 return len;
5443 }
5444 static struct md_sysfs_entry md_fail_last_dev =
5445 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5446 fail_last_dev_store);
5447
5448 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5449 {
5450 if (mddev->pers == NULL || (mddev->pers->level != 1))
5451 return sprintf(page, "n/a\n");
5452 else
5453 return sprintf(page, "%d\n", mddev->serialize_policy);
5454 }
5455
5456 /*
5457 * Setting serialize_policy to true to enforce write IO is not reordered
5458 * for raid1.
5459 */
5460 static ssize_t
5461 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5462 {
5463 int err;
5464 bool value;
5465
5466 err = kstrtobool(buf, &value);
5467 if (err)
5468 return err;
5469
5470 if (value == mddev->serialize_policy)
5471 return len;
5472
5473 err = mddev_lock(mddev);
5474 if (err)
5475 return err;
5476 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5477 pr_err("md: serialize_policy is only effective for raid1\n");
5478 err = -EINVAL;
5479 goto unlock;
5480 }
5481
5482 mddev_suspend(mddev);
5483 if (value)
5484 mddev_create_serial_pool(mddev, NULL, true);
5485 else
5486 mddev_destroy_serial_pool(mddev, NULL, true);
5487 mddev->serialize_policy = value;
5488 mddev_resume(mddev);
5489 unlock:
5490 mddev_unlock(mddev);
5491 return err ?: len;
5492 }
5493
5494 static struct md_sysfs_entry md_serialize_policy =
5495 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5496 serialize_policy_store);
5497
5498
5499 static struct attribute *md_default_attrs[] = {
5500 &md_level.attr,
5501 &md_layout.attr,
5502 &md_raid_disks.attr,
5503 &md_uuid.attr,
5504 &md_chunk_size.attr,
5505 &md_size.attr,
5506 &md_resync_start.attr,
5507 &md_metadata.attr,
5508 &md_new_device.attr,
5509 &md_safe_delay.attr,
5510 &md_array_state.attr,
5511 &md_reshape_position.attr,
5512 &md_reshape_direction.attr,
5513 &md_array_size.attr,
5514 &max_corr_read_errors.attr,
5515 &md_consistency_policy.attr,
5516 &md_fail_last_dev.attr,
5517 &md_serialize_policy.attr,
5518 NULL,
5519 };
5520
5521 static struct attribute *md_redundancy_attrs[] = {
5522 &md_scan_mode.attr,
5523 &md_last_scan_mode.attr,
5524 &md_mismatches.attr,
5525 &md_sync_min.attr,
5526 &md_sync_max.attr,
5527 &md_sync_speed.attr,
5528 &md_sync_force_parallel.attr,
5529 &md_sync_completed.attr,
5530 &md_min_sync.attr,
5531 &md_max_sync.attr,
5532 &md_suspend_lo.attr,
5533 &md_suspend_hi.attr,
5534 &md_bitmap.attr,
5535 &md_degraded.attr,
5536 NULL,
5537 };
5538 static struct attribute_group md_redundancy_group = {
5539 .name = NULL,
5540 .attrs = md_redundancy_attrs,
5541 };
5542
5543 static ssize_t
5544 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5545 {
5546 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5547 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5548 ssize_t rv;
5549
5550 if (!entry->show)
5551 return -EIO;
5552 spin_lock(&all_mddevs_lock);
5553 if (list_empty(&mddev->all_mddevs)) {
5554 spin_unlock(&all_mddevs_lock);
5555 return -EBUSY;
5556 }
5557 mddev_get(mddev);
5558 spin_unlock(&all_mddevs_lock);
5559
5560 rv = entry->show(mddev, page);
5561 mddev_put(mddev);
5562 return rv;
5563 }
5564
5565 static ssize_t
5566 md_attr_store(struct kobject *kobj, struct attribute *attr,
5567 const char *page, size_t length)
5568 {
5569 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5570 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5571 ssize_t rv;
5572
5573 if (!entry->store)
5574 return -EIO;
5575 if (!capable(CAP_SYS_ADMIN))
5576 return -EACCES;
5577 spin_lock(&all_mddevs_lock);
5578 if (list_empty(&mddev->all_mddevs)) {
5579 spin_unlock(&all_mddevs_lock);
5580 return -EBUSY;
5581 }
5582 mddev_get(mddev);
5583 spin_unlock(&all_mddevs_lock);
5584 rv = entry->store(mddev, page, length);
5585 mddev_put(mddev);
5586 return rv;
5587 }
5588
5589 static void md_free(struct kobject *ko)
5590 {
5591 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5592
5593 if (mddev->sysfs_state)
5594 sysfs_put(mddev->sysfs_state);
5595 if (mddev->sysfs_level)
5596 sysfs_put(mddev->sysfs_level);
5597
5598 if (mddev->gendisk)
5599 del_gendisk(mddev->gendisk);
5600 if (mddev->queue)
5601 blk_cleanup_queue(mddev->queue);
5602 if (mddev->gendisk)
5603 put_disk(mddev->gendisk);
5604 percpu_ref_exit(&mddev->writes_pending);
5605
5606 bioset_exit(&mddev->bio_set);
5607 bioset_exit(&mddev->sync_set);
5608 mempool_exit(&mddev->md_io_pool);
5609 kfree(mddev);
5610 }
5611
5612 static const struct sysfs_ops md_sysfs_ops = {
5613 .show = md_attr_show,
5614 .store = md_attr_store,
5615 };
5616 static struct kobj_type md_ktype = {
5617 .release = md_free,
5618 .sysfs_ops = &md_sysfs_ops,
5619 .default_attrs = md_default_attrs,
5620 };
5621
5622 int mdp_major = 0;
5623
5624 static void mddev_delayed_delete(struct work_struct *ws)
5625 {
5626 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5627
5628 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5629 kobject_del(&mddev->kobj);
5630 kobject_put(&mddev->kobj);
5631 }
5632
5633 static void no_op(struct percpu_ref *r) {}
5634
5635 int mddev_init_writes_pending(struct mddev *mddev)
5636 {
5637 if (mddev->writes_pending.percpu_count_ptr)
5638 return 0;
5639 if (percpu_ref_init(&mddev->writes_pending, no_op,
5640 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5641 return -ENOMEM;
5642 /* We want to start with the refcount at zero */
5643 percpu_ref_put(&mddev->writes_pending);
5644 return 0;
5645 }
5646 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5647
5648 static int md_alloc(dev_t dev, char *name)
5649 {
5650 /*
5651 * If dev is zero, name is the name of a device to allocate with
5652 * an arbitrary minor number. It will be "md_???"
5653 * If dev is non-zero it must be a device number with a MAJOR of
5654 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5655 * the device is being created by opening a node in /dev.
5656 * If "name" is not NULL, the device is being created by
5657 * writing to /sys/module/md_mod/parameters/new_array.
5658 */
5659 static DEFINE_MUTEX(disks_mutex);
5660 struct mddev *mddev = mddev_find(dev);
5661 struct gendisk *disk;
5662 int partitioned;
5663 int shift;
5664 int unit;
5665 int error;
5666
5667 if (!mddev)
5668 return -ENODEV;
5669
5670 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5671 shift = partitioned ? MdpMinorShift : 0;
5672 unit = MINOR(mddev->unit) >> shift;
5673
5674 /* wait for any previous instance of this device to be
5675 * completely removed (mddev_delayed_delete).
5676 */
5677 flush_workqueue(md_misc_wq);
5678
5679 mutex_lock(&disks_mutex);
5680 error = -EEXIST;
5681 if (mddev->gendisk)
5682 goto abort;
5683
5684 if (name && !dev) {
5685 /* Need to ensure that 'name' is not a duplicate.
5686 */
5687 struct mddev *mddev2;
5688 spin_lock(&all_mddevs_lock);
5689
5690 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5691 if (mddev2->gendisk &&
5692 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5693 spin_unlock(&all_mddevs_lock);
5694 goto abort;
5695 }
5696 spin_unlock(&all_mddevs_lock);
5697 }
5698 if (name && dev)
5699 /*
5700 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5701 */
5702 mddev->hold_active = UNTIL_STOP;
5703
5704 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE,
5705 sizeof(struct md_io));
5706 if (error)
5707 goto abort;
5708
5709 error = -ENOMEM;
5710 mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5711 if (!mddev->queue)
5712 goto abort;
5713
5714 blk_set_stacking_limits(&mddev->queue->limits);
5715
5716 disk = alloc_disk(1 << shift);
5717 if (!disk) {
5718 blk_cleanup_queue(mddev->queue);
5719 mddev->queue = NULL;
5720 goto abort;
5721 }
5722 disk->major = MAJOR(mddev->unit);
5723 disk->first_minor = unit << shift;
5724 if (name)
5725 strcpy(disk->disk_name, name);
5726 else if (partitioned)
5727 sprintf(disk->disk_name, "md_d%d", unit);
5728 else
5729 sprintf(disk->disk_name, "md%d", unit);
5730 disk->fops = &md_fops;
5731 disk->private_data = mddev;
5732 disk->queue = mddev->queue;
5733 blk_queue_write_cache(mddev->queue, true, true);
5734 /* Allow extended partitions. This makes the
5735 * 'mdp' device redundant, but we can't really
5736 * remove it now.
5737 */
5738 disk->flags |= GENHD_FL_EXT_DEVT;
5739 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5740 mddev->gendisk = disk;
5741 /* As soon as we call add_disk(), another thread could get
5742 * through to md_open, so make sure it doesn't get too far
5743 */
5744 mutex_lock(&mddev->open_mutex);
5745 add_disk(disk);
5746
5747 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5748 if (error) {
5749 /* This isn't possible, but as kobject_init_and_add is marked
5750 * __must_check, we must do something with the result
5751 */
5752 pr_debug("md: cannot register %s/md - name in use\n",
5753 disk->disk_name);
5754 error = 0;
5755 }
5756 if (mddev->kobj.sd &&
5757 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5758 pr_debug("pointless warning\n");
5759 mutex_unlock(&mddev->open_mutex);
5760 abort:
5761 mutex_unlock(&disks_mutex);
5762 if (!error && mddev->kobj.sd) {
5763 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5764 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5765 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5766 }
5767 mddev_put(mddev);
5768 return error;
5769 }
5770
5771 static void md_probe(dev_t dev)
5772 {
5773 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5774 return;
5775 if (create_on_open)
5776 md_alloc(dev, NULL);
5777 }
5778
5779 static int add_named_array(const char *val, const struct kernel_param *kp)
5780 {
5781 /*
5782 * val must be "md_*" or "mdNNN".
5783 * For "md_*" we allocate an array with a large free minor number, and
5784 * set the name to val. val must not already be an active name.
5785 * For "mdNNN" we allocate an array with the minor number NNN
5786 * which must not already be in use.
5787 */
5788 int len = strlen(val);
5789 char buf[DISK_NAME_LEN];
5790 unsigned long devnum;
5791
5792 while (len && val[len-1] == '\n')
5793 len--;
5794 if (len >= DISK_NAME_LEN)
5795 return -E2BIG;
5796 strlcpy(buf, val, len+1);
5797 if (strncmp(buf, "md_", 3) == 0)
5798 return md_alloc(0, buf);
5799 if (strncmp(buf, "md", 2) == 0 &&
5800 isdigit(buf[2]) &&
5801 kstrtoul(buf+2, 10, &devnum) == 0 &&
5802 devnum <= MINORMASK)
5803 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5804
5805 return -EINVAL;
5806 }
5807
5808 static void md_safemode_timeout(struct timer_list *t)
5809 {
5810 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5811
5812 mddev->safemode = 1;
5813 if (mddev->external)
5814 sysfs_notify_dirent_safe(mddev->sysfs_state);
5815
5816 md_wakeup_thread(mddev->thread);
5817 }
5818
5819 static int start_dirty_degraded;
5820
5821 int md_run(struct mddev *mddev)
5822 {
5823 int err;
5824 struct md_rdev *rdev;
5825 struct md_personality *pers;
5826
5827 if (list_empty(&mddev->disks))
5828 /* cannot run an array with no devices.. */
5829 return -EINVAL;
5830
5831 if (mddev->pers)
5832 return -EBUSY;
5833 /* Cannot run until previous stop completes properly */
5834 if (mddev->sysfs_active)
5835 return -EBUSY;
5836
5837 /*
5838 * Analyze all RAID superblock(s)
5839 */
5840 if (!mddev->raid_disks) {
5841 if (!mddev->persistent)
5842 return -EINVAL;
5843 err = analyze_sbs(mddev);
5844 if (err)
5845 return -EINVAL;
5846 }
5847
5848 if (mddev->level != LEVEL_NONE)
5849 request_module("md-level-%d", mddev->level);
5850 else if (mddev->clevel[0])
5851 request_module("md-%s", mddev->clevel);
5852
5853 /*
5854 * Drop all container device buffers, from now on
5855 * the only valid external interface is through the md
5856 * device.
5857 */
5858 mddev->has_superblocks = false;
5859 rdev_for_each(rdev, mddev) {
5860 if (test_bit(Faulty, &rdev->flags))
5861 continue;
5862 sync_blockdev(rdev->bdev);
5863 invalidate_bdev(rdev->bdev);
5864 if (mddev->ro != 1 &&
5865 (bdev_read_only(rdev->bdev) ||
5866 bdev_read_only(rdev->meta_bdev))) {
5867 mddev->ro = 1;
5868 if (mddev->gendisk)
5869 set_disk_ro(mddev->gendisk, 1);
5870 }
5871
5872 if (rdev->sb_page)
5873 mddev->has_superblocks = true;
5874
5875 /* perform some consistency tests on the device.
5876 * We don't want the data to overlap the metadata,
5877 * Internal Bitmap issues have been handled elsewhere.
5878 */
5879 if (rdev->meta_bdev) {
5880 /* Nothing to check */;
5881 } else if (rdev->data_offset < rdev->sb_start) {
5882 if (mddev->dev_sectors &&
5883 rdev->data_offset + mddev->dev_sectors
5884 > rdev->sb_start) {
5885 pr_warn("md: %s: data overlaps metadata\n",
5886 mdname(mddev));
5887 return -EINVAL;
5888 }
5889 } else {
5890 if (rdev->sb_start + rdev->sb_size/512
5891 > rdev->data_offset) {
5892 pr_warn("md: %s: metadata overlaps data\n",
5893 mdname(mddev));
5894 return -EINVAL;
5895 }
5896 }
5897 sysfs_notify_dirent_safe(rdev->sysfs_state);
5898 }
5899
5900 if (!bioset_initialized(&mddev->bio_set)) {
5901 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5902 if (err)
5903 return err;
5904 }
5905 if (!bioset_initialized(&mddev->sync_set)) {
5906 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5907 if (err)
5908 return err;
5909 }
5910
5911 spin_lock(&pers_lock);
5912 pers = find_pers(mddev->level, mddev->clevel);
5913 if (!pers || !try_module_get(pers->owner)) {
5914 spin_unlock(&pers_lock);
5915 if (mddev->level != LEVEL_NONE)
5916 pr_warn("md: personality for level %d is not loaded!\n",
5917 mddev->level);
5918 else
5919 pr_warn("md: personality for level %s is not loaded!\n",
5920 mddev->clevel);
5921 err = -EINVAL;
5922 goto abort;
5923 }
5924 spin_unlock(&pers_lock);
5925 if (mddev->level != pers->level) {
5926 mddev->level = pers->level;
5927 mddev->new_level = pers->level;
5928 }
5929 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5930
5931 if (mddev->reshape_position != MaxSector &&
5932 pers->start_reshape == NULL) {
5933 /* This personality cannot handle reshaping... */
5934 module_put(pers->owner);
5935 err = -EINVAL;
5936 goto abort;
5937 }
5938
5939 if (pers->sync_request) {
5940 /* Warn if this is a potentially silly
5941 * configuration.
5942 */
5943 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5944 struct md_rdev *rdev2;
5945 int warned = 0;
5946
5947 rdev_for_each(rdev, mddev)
5948 rdev_for_each(rdev2, mddev) {
5949 if (rdev < rdev2 &&
5950 rdev->bdev->bd_disk ==
5951 rdev2->bdev->bd_disk) {
5952 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5953 mdname(mddev),
5954 bdevname(rdev->bdev,b),
5955 bdevname(rdev2->bdev,b2));
5956 warned = 1;
5957 }
5958 }
5959
5960 if (warned)
5961 pr_warn("True protection against single-disk failure might be compromised.\n");
5962 }
5963
5964 mddev->recovery = 0;
5965 /* may be over-ridden by personality */
5966 mddev->resync_max_sectors = mddev->dev_sectors;
5967
5968 mddev->ok_start_degraded = start_dirty_degraded;
5969
5970 if (start_readonly && mddev->ro == 0)
5971 mddev->ro = 2; /* read-only, but switch on first write */
5972
5973 err = pers->run(mddev);
5974 if (err)
5975 pr_warn("md: pers->run() failed ...\n");
5976 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5977 WARN_ONCE(!mddev->external_size,
5978 "%s: default size too small, but 'external_size' not in effect?\n",
5979 __func__);
5980 pr_warn("md: invalid array_size %llu > default size %llu\n",
5981 (unsigned long long)mddev->array_sectors / 2,
5982 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5983 err = -EINVAL;
5984 }
5985 if (err == 0 && pers->sync_request &&
5986 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5987 struct bitmap *bitmap;
5988
5989 bitmap = md_bitmap_create(mddev, -1);
5990 if (IS_ERR(bitmap)) {
5991 err = PTR_ERR(bitmap);
5992 pr_warn("%s: failed to create bitmap (%d)\n",
5993 mdname(mddev), err);
5994 } else
5995 mddev->bitmap = bitmap;
5996
5997 }
5998 if (err)
5999 goto bitmap_abort;
6000
6001 if (mddev->bitmap_info.max_write_behind > 0) {
6002 bool create_pool = false;
6003
6004 rdev_for_each(rdev, mddev) {
6005 if (test_bit(WriteMostly, &rdev->flags) &&
6006 rdev_init_serial(rdev))
6007 create_pool = true;
6008 }
6009 if (create_pool && mddev->serial_info_pool == NULL) {
6010 mddev->serial_info_pool =
6011 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6012 sizeof(struct serial_info));
6013 if (!mddev->serial_info_pool) {
6014 err = -ENOMEM;
6015 goto bitmap_abort;
6016 }
6017 }
6018 }
6019
6020 if (mddev->queue) {
6021 bool nonrot = true;
6022
6023 rdev_for_each(rdev, mddev) {
6024 if (rdev->raid_disk >= 0 &&
6025 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6026 nonrot = false;
6027 break;
6028 }
6029 }
6030 if (mddev->degraded)
6031 nonrot = false;
6032 if (nonrot)
6033 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6034 else
6035 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6036 }
6037 if (pers->sync_request) {
6038 if (mddev->kobj.sd &&
6039 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6040 pr_warn("md: cannot register extra attributes for %s\n",
6041 mdname(mddev));
6042 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6043 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6044 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6045 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6046 mddev->ro = 0;
6047
6048 atomic_set(&mddev->max_corr_read_errors,
6049 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6050 mddev->safemode = 0;
6051 if (mddev_is_clustered(mddev))
6052 mddev->safemode_delay = 0;
6053 else
6054 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6055 mddev->in_sync = 1;
6056 smp_wmb();
6057 spin_lock(&mddev->lock);
6058 mddev->pers = pers;
6059 spin_unlock(&mddev->lock);
6060 rdev_for_each(rdev, mddev)
6061 if (rdev->raid_disk >= 0)
6062 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6063
6064 if (mddev->degraded && !mddev->ro)
6065 /* This ensures that recovering status is reported immediately
6066 * via sysfs - until a lack of spares is confirmed.
6067 */
6068 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6069 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6070
6071 if (mddev->sb_flags)
6072 md_update_sb(mddev, 0);
6073
6074 md_new_event(mddev);
6075 return 0;
6076
6077 bitmap_abort:
6078 mddev_detach(mddev);
6079 if (mddev->private)
6080 pers->free(mddev, mddev->private);
6081 mddev->private = NULL;
6082 module_put(pers->owner);
6083 md_bitmap_destroy(mddev);
6084 abort:
6085 bioset_exit(&mddev->bio_set);
6086 bioset_exit(&mddev->sync_set);
6087 return err;
6088 }
6089 EXPORT_SYMBOL_GPL(md_run);
6090
6091 int do_md_run(struct mddev *mddev)
6092 {
6093 int err;
6094
6095 set_bit(MD_NOT_READY, &mddev->flags);
6096 err = md_run(mddev);
6097 if (err)
6098 goto out;
6099 err = md_bitmap_load(mddev);
6100 if (err) {
6101 md_bitmap_destroy(mddev);
6102 goto out;
6103 }
6104
6105 if (mddev_is_clustered(mddev))
6106 md_allow_write(mddev);
6107
6108 /* run start up tasks that require md_thread */
6109 md_start(mddev);
6110
6111 md_wakeup_thread(mddev->thread);
6112 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6113
6114 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6115 clear_bit(MD_NOT_READY, &mddev->flags);
6116 mddev->changed = 1;
6117 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6118 sysfs_notify_dirent_safe(mddev->sysfs_state);
6119 sysfs_notify_dirent_safe(mddev->sysfs_action);
6120 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6121 out:
6122 clear_bit(MD_NOT_READY, &mddev->flags);
6123 return err;
6124 }
6125
6126 int md_start(struct mddev *mddev)
6127 {
6128 int ret = 0;
6129
6130 if (mddev->pers->start) {
6131 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6132 md_wakeup_thread(mddev->thread);
6133 ret = mddev->pers->start(mddev);
6134 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6135 md_wakeup_thread(mddev->sync_thread);
6136 }
6137 return ret;
6138 }
6139 EXPORT_SYMBOL_GPL(md_start);
6140
6141 static int restart_array(struct mddev *mddev)
6142 {
6143 struct gendisk *disk = mddev->gendisk;
6144 struct md_rdev *rdev;
6145 bool has_journal = false;
6146 bool has_readonly = false;
6147
6148 /* Complain if it has no devices */
6149 if (list_empty(&mddev->disks))
6150 return -ENXIO;
6151 if (!mddev->pers)
6152 return -EINVAL;
6153 if (!mddev->ro)
6154 return -EBUSY;
6155
6156 rcu_read_lock();
6157 rdev_for_each_rcu(rdev, mddev) {
6158 if (test_bit(Journal, &rdev->flags) &&
6159 !test_bit(Faulty, &rdev->flags))
6160 has_journal = true;
6161 if (bdev_read_only(rdev->bdev))
6162 has_readonly = true;
6163 }
6164 rcu_read_unlock();
6165 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6166 /* Don't restart rw with journal missing/faulty */
6167 return -EINVAL;
6168 if (has_readonly)
6169 return -EROFS;
6170
6171 mddev->safemode = 0;
6172 mddev->ro = 0;
6173 set_disk_ro(disk, 0);
6174 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6175 /* Kick recovery or resync if necessary */
6176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6177 md_wakeup_thread(mddev->thread);
6178 md_wakeup_thread(mddev->sync_thread);
6179 sysfs_notify_dirent_safe(mddev->sysfs_state);
6180 return 0;
6181 }
6182
6183 static void md_clean(struct mddev *mddev)
6184 {
6185 mddev->array_sectors = 0;
6186 mddev->external_size = 0;
6187 mddev->dev_sectors = 0;
6188 mddev->raid_disks = 0;
6189 mddev->recovery_cp = 0;
6190 mddev->resync_min = 0;
6191 mddev->resync_max = MaxSector;
6192 mddev->reshape_position = MaxSector;
6193 mddev->external = 0;
6194 mddev->persistent = 0;
6195 mddev->level = LEVEL_NONE;
6196 mddev->clevel[0] = 0;
6197 mddev->flags = 0;
6198 mddev->sb_flags = 0;
6199 mddev->ro = 0;
6200 mddev->metadata_type[0] = 0;
6201 mddev->chunk_sectors = 0;
6202 mddev->ctime = mddev->utime = 0;
6203 mddev->layout = 0;
6204 mddev->max_disks = 0;
6205 mddev->events = 0;
6206 mddev->can_decrease_events = 0;
6207 mddev->delta_disks = 0;
6208 mddev->reshape_backwards = 0;
6209 mddev->new_level = LEVEL_NONE;
6210 mddev->new_layout = 0;
6211 mddev->new_chunk_sectors = 0;
6212 mddev->curr_resync = 0;
6213 atomic64_set(&mddev->resync_mismatches, 0);
6214 mddev->suspend_lo = mddev->suspend_hi = 0;
6215 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6216 mddev->recovery = 0;
6217 mddev->in_sync = 0;
6218 mddev->changed = 0;
6219 mddev->degraded = 0;
6220 mddev->safemode = 0;
6221 mddev->private = NULL;
6222 mddev->cluster_info = NULL;
6223 mddev->bitmap_info.offset = 0;
6224 mddev->bitmap_info.default_offset = 0;
6225 mddev->bitmap_info.default_space = 0;
6226 mddev->bitmap_info.chunksize = 0;
6227 mddev->bitmap_info.daemon_sleep = 0;
6228 mddev->bitmap_info.max_write_behind = 0;
6229 mddev->bitmap_info.nodes = 0;
6230 }
6231
6232 static void __md_stop_writes(struct mddev *mddev)
6233 {
6234 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6235 if (work_pending(&mddev->del_work))
6236 flush_workqueue(md_misc_wq);
6237 if (mddev->sync_thread) {
6238 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6239 md_reap_sync_thread(mddev);
6240 }
6241
6242 del_timer_sync(&mddev->safemode_timer);
6243
6244 if (mddev->pers && mddev->pers->quiesce) {
6245 mddev->pers->quiesce(mddev, 1);
6246 mddev->pers->quiesce(mddev, 0);
6247 }
6248 md_bitmap_flush(mddev);
6249
6250 if (mddev->ro == 0 &&
6251 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6252 mddev->sb_flags)) {
6253 /* mark array as shutdown cleanly */
6254 if (!mddev_is_clustered(mddev))
6255 mddev->in_sync = 1;
6256 md_update_sb(mddev, 1);
6257 }
6258 /* disable policy to guarantee rdevs free resources for serialization */
6259 mddev->serialize_policy = 0;
6260 mddev_destroy_serial_pool(mddev, NULL, true);
6261 }
6262
6263 void md_stop_writes(struct mddev *mddev)
6264 {
6265 mddev_lock_nointr(mddev);
6266 __md_stop_writes(mddev);
6267 mddev_unlock(mddev);
6268 }
6269 EXPORT_SYMBOL_GPL(md_stop_writes);
6270
6271 static void mddev_detach(struct mddev *mddev)
6272 {
6273 md_bitmap_wait_behind_writes(mddev);
6274 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6275 mddev->pers->quiesce(mddev, 1);
6276 mddev->pers->quiesce(mddev, 0);
6277 }
6278 md_unregister_thread(&mddev->thread);
6279 if (mddev->queue)
6280 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6281 }
6282
6283 static void __md_stop(struct mddev *mddev)
6284 {
6285 struct md_personality *pers = mddev->pers;
6286 md_bitmap_destroy(mddev);
6287 mddev_detach(mddev);
6288 /* Ensure ->event_work is done */
6289 if (mddev->event_work.func)
6290 flush_workqueue(md_misc_wq);
6291 spin_lock(&mddev->lock);
6292 mddev->pers = NULL;
6293 spin_unlock(&mddev->lock);
6294 pers->free(mddev, mddev->private);
6295 mddev->private = NULL;
6296 if (pers->sync_request && mddev->to_remove == NULL)
6297 mddev->to_remove = &md_redundancy_group;
6298 module_put(pers->owner);
6299 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6300 }
6301
6302 void md_stop(struct mddev *mddev)
6303 {
6304 /* stop the array and free an attached data structures.
6305 * This is called from dm-raid
6306 */
6307 __md_stop(mddev);
6308 bioset_exit(&mddev->bio_set);
6309 bioset_exit(&mddev->sync_set);
6310 }
6311
6312 EXPORT_SYMBOL_GPL(md_stop);
6313
6314 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6315 {
6316 int err = 0;
6317 int did_freeze = 0;
6318
6319 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6320 did_freeze = 1;
6321 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6322 md_wakeup_thread(mddev->thread);
6323 }
6324 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6325 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6326 if (mddev->sync_thread)
6327 /* Thread might be blocked waiting for metadata update
6328 * which will now never happen */
6329 wake_up_process(mddev->sync_thread->tsk);
6330
6331 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6332 return -EBUSY;
6333 mddev_unlock(mddev);
6334 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6335 &mddev->recovery));
6336 wait_event(mddev->sb_wait,
6337 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6338 mddev_lock_nointr(mddev);
6339
6340 mutex_lock(&mddev->open_mutex);
6341 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6342 mddev->sync_thread ||
6343 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6344 pr_warn("md: %s still in use.\n",mdname(mddev));
6345 if (did_freeze) {
6346 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6347 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6348 md_wakeup_thread(mddev->thread);
6349 }
6350 err = -EBUSY;
6351 goto out;
6352 }
6353 if (mddev->pers) {
6354 __md_stop_writes(mddev);
6355
6356 err = -ENXIO;
6357 if (mddev->ro==1)
6358 goto out;
6359 mddev->ro = 1;
6360 set_disk_ro(mddev->gendisk, 1);
6361 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6362 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6363 md_wakeup_thread(mddev->thread);
6364 sysfs_notify_dirent_safe(mddev->sysfs_state);
6365 err = 0;
6366 }
6367 out:
6368 mutex_unlock(&mddev->open_mutex);
6369 return err;
6370 }
6371
6372 /* mode:
6373 * 0 - completely stop and dis-assemble array
6374 * 2 - stop but do not disassemble array
6375 */
6376 static int do_md_stop(struct mddev *mddev, int mode,
6377 struct block_device *bdev)
6378 {
6379 struct gendisk *disk = mddev->gendisk;
6380 struct md_rdev *rdev;
6381 int did_freeze = 0;
6382
6383 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6384 did_freeze = 1;
6385 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6386 md_wakeup_thread(mddev->thread);
6387 }
6388 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6389 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6390 if (mddev->sync_thread)
6391 /* Thread might be blocked waiting for metadata update
6392 * which will now never happen */
6393 wake_up_process(mddev->sync_thread->tsk);
6394
6395 mddev_unlock(mddev);
6396 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6397 !test_bit(MD_RECOVERY_RUNNING,
6398 &mddev->recovery)));
6399 mddev_lock_nointr(mddev);
6400
6401 mutex_lock(&mddev->open_mutex);
6402 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6403 mddev->sysfs_active ||
6404 mddev->sync_thread ||
6405 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6406 pr_warn("md: %s still in use.\n",mdname(mddev));
6407 mutex_unlock(&mddev->open_mutex);
6408 if (did_freeze) {
6409 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6410 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6411 md_wakeup_thread(mddev->thread);
6412 }
6413 return -EBUSY;
6414 }
6415 if (mddev->pers) {
6416 if (mddev->ro)
6417 set_disk_ro(disk, 0);
6418
6419 __md_stop_writes(mddev);
6420 __md_stop(mddev);
6421
6422 /* tell userspace to handle 'inactive' */
6423 sysfs_notify_dirent_safe(mddev->sysfs_state);
6424
6425 rdev_for_each(rdev, mddev)
6426 if (rdev->raid_disk >= 0)
6427 sysfs_unlink_rdev(mddev, rdev);
6428
6429 set_capacity_and_notify(disk, 0);
6430 mutex_unlock(&mddev->open_mutex);
6431 mddev->changed = 1;
6432
6433 if (mddev->ro)
6434 mddev->ro = 0;
6435 } else
6436 mutex_unlock(&mddev->open_mutex);
6437 /*
6438 * Free resources if final stop
6439 */
6440 if (mode == 0) {
6441 pr_info("md: %s stopped.\n", mdname(mddev));
6442
6443 if (mddev->bitmap_info.file) {
6444 struct file *f = mddev->bitmap_info.file;
6445 spin_lock(&mddev->lock);
6446 mddev->bitmap_info.file = NULL;
6447 spin_unlock(&mddev->lock);
6448 fput(f);
6449 }
6450 mddev->bitmap_info.offset = 0;
6451
6452 export_array(mddev);
6453
6454 md_clean(mddev);
6455 if (mddev->hold_active == UNTIL_STOP)
6456 mddev->hold_active = 0;
6457 }
6458 md_new_event(mddev);
6459 sysfs_notify_dirent_safe(mddev->sysfs_state);
6460 return 0;
6461 }
6462
6463 #ifndef MODULE
6464 static void autorun_array(struct mddev *mddev)
6465 {
6466 struct md_rdev *rdev;
6467 int err;
6468
6469 if (list_empty(&mddev->disks))
6470 return;
6471
6472 pr_info("md: running: ");
6473
6474 rdev_for_each(rdev, mddev) {
6475 char b[BDEVNAME_SIZE];
6476 pr_cont("<%s>", bdevname(rdev->bdev,b));
6477 }
6478 pr_cont("\n");
6479
6480 err = do_md_run(mddev);
6481 if (err) {
6482 pr_warn("md: do_md_run() returned %d\n", err);
6483 do_md_stop(mddev, 0, NULL);
6484 }
6485 }
6486
6487 /*
6488 * lets try to run arrays based on all disks that have arrived
6489 * until now. (those are in pending_raid_disks)
6490 *
6491 * the method: pick the first pending disk, collect all disks with
6492 * the same UUID, remove all from the pending list and put them into
6493 * the 'same_array' list. Then order this list based on superblock
6494 * update time (freshest comes first), kick out 'old' disks and
6495 * compare superblocks. If everything's fine then run it.
6496 *
6497 * If "unit" is allocated, then bump its reference count
6498 */
6499 static void autorun_devices(int part)
6500 {
6501 struct md_rdev *rdev0, *rdev, *tmp;
6502 struct mddev *mddev;
6503 char b[BDEVNAME_SIZE];
6504
6505 pr_info("md: autorun ...\n");
6506 while (!list_empty(&pending_raid_disks)) {
6507 int unit;
6508 dev_t dev;
6509 LIST_HEAD(candidates);
6510 rdev0 = list_entry(pending_raid_disks.next,
6511 struct md_rdev, same_set);
6512
6513 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6514 INIT_LIST_HEAD(&candidates);
6515 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6516 if (super_90_load(rdev, rdev0, 0) >= 0) {
6517 pr_debug("md: adding %s ...\n",
6518 bdevname(rdev->bdev,b));
6519 list_move(&rdev->same_set, &candidates);
6520 }
6521 /*
6522 * now we have a set of devices, with all of them having
6523 * mostly sane superblocks. It's time to allocate the
6524 * mddev.
6525 */
6526 if (part) {
6527 dev = MKDEV(mdp_major,
6528 rdev0->preferred_minor << MdpMinorShift);
6529 unit = MINOR(dev) >> MdpMinorShift;
6530 } else {
6531 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6532 unit = MINOR(dev);
6533 }
6534 if (rdev0->preferred_minor != unit) {
6535 pr_warn("md: unit number in %s is bad: %d\n",
6536 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6537 break;
6538 }
6539
6540 md_probe(dev);
6541 mddev = mddev_find(dev);
6542 if (!mddev || !mddev->gendisk) {
6543 if (mddev)
6544 mddev_put(mddev);
6545 break;
6546 }
6547 if (mddev_lock(mddev))
6548 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6549 else if (mddev->raid_disks || mddev->major_version
6550 || !list_empty(&mddev->disks)) {
6551 pr_warn("md: %s already running, cannot run %s\n",
6552 mdname(mddev), bdevname(rdev0->bdev,b));
6553 mddev_unlock(mddev);
6554 } else {
6555 pr_debug("md: created %s\n", mdname(mddev));
6556 mddev->persistent = 1;
6557 rdev_for_each_list(rdev, tmp, &candidates) {
6558 list_del_init(&rdev->same_set);
6559 if (bind_rdev_to_array(rdev, mddev))
6560 export_rdev(rdev);
6561 }
6562 autorun_array(mddev);
6563 mddev_unlock(mddev);
6564 }
6565 /* on success, candidates will be empty, on error
6566 * it won't...
6567 */
6568 rdev_for_each_list(rdev, tmp, &candidates) {
6569 list_del_init(&rdev->same_set);
6570 export_rdev(rdev);
6571 }
6572 mddev_put(mddev);
6573 }
6574 pr_info("md: ... autorun DONE.\n");
6575 }
6576 #endif /* !MODULE */
6577
6578 static int get_version(void __user *arg)
6579 {
6580 mdu_version_t ver;
6581
6582 ver.major = MD_MAJOR_VERSION;
6583 ver.minor = MD_MINOR_VERSION;
6584 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6585
6586 if (copy_to_user(arg, &ver, sizeof(ver)))
6587 return -EFAULT;
6588
6589 return 0;
6590 }
6591
6592 static int get_array_info(struct mddev *mddev, void __user *arg)
6593 {
6594 mdu_array_info_t info;
6595 int nr,working,insync,failed,spare;
6596 struct md_rdev *rdev;
6597
6598 nr = working = insync = failed = spare = 0;
6599 rcu_read_lock();
6600 rdev_for_each_rcu(rdev, mddev) {
6601 nr++;
6602 if (test_bit(Faulty, &rdev->flags))
6603 failed++;
6604 else {
6605 working++;
6606 if (test_bit(In_sync, &rdev->flags))
6607 insync++;
6608 else if (test_bit(Journal, &rdev->flags))
6609 /* TODO: add journal count to md_u.h */
6610 ;
6611 else
6612 spare++;
6613 }
6614 }
6615 rcu_read_unlock();
6616
6617 info.major_version = mddev->major_version;
6618 info.minor_version = mddev->minor_version;
6619 info.patch_version = MD_PATCHLEVEL_VERSION;
6620 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6621 info.level = mddev->level;
6622 info.size = mddev->dev_sectors / 2;
6623 if (info.size != mddev->dev_sectors / 2) /* overflow */
6624 info.size = -1;
6625 info.nr_disks = nr;
6626 info.raid_disks = mddev->raid_disks;
6627 info.md_minor = mddev->md_minor;
6628 info.not_persistent= !mddev->persistent;
6629
6630 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6631 info.state = 0;
6632 if (mddev->in_sync)
6633 info.state = (1<<MD_SB_CLEAN);
6634 if (mddev->bitmap && mddev->bitmap_info.offset)
6635 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6636 if (mddev_is_clustered(mddev))
6637 info.state |= (1<<MD_SB_CLUSTERED);
6638 info.active_disks = insync;
6639 info.working_disks = working;
6640 info.failed_disks = failed;
6641 info.spare_disks = spare;
6642
6643 info.layout = mddev->layout;
6644 info.chunk_size = mddev->chunk_sectors << 9;
6645
6646 if (copy_to_user(arg, &info, sizeof(info)))
6647 return -EFAULT;
6648
6649 return 0;
6650 }
6651
6652 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6653 {
6654 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6655 char *ptr;
6656 int err;
6657
6658 file = kzalloc(sizeof(*file), GFP_NOIO);
6659 if (!file)
6660 return -ENOMEM;
6661
6662 err = 0;
6663 spin_lock(&mddev->lock);
6664 /* bitmap enabled */
6665 if (mddev->bitmap_info.file) {
6666 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6667 sizeof(file->pathname));
6668 if (IS_ERR(ptr))
6669 err = PTR_ERR(ptr);
6670 else
6671 memmove(file->pathname, ptr,
6672 sizeof(file->pathname)-(ptr-file->pathname));
6673 }
6674 spin_unlock(&mddev->lock);
6675
6676 if (err == 0 &&
6677 copy_to_user(arg, file, sizeof(*file)))
6678 err = -EFAULT;
6679
6680 kfree(file);
6681 return err;
6682 }
6683
6684 static int get_disk_info(struct mddev *mddev, void __user * arg)
6685 {
6686 mdu_disk_info_t info;
6687 struct md_rdev *rdev;
6688
6689 if (copy_from_user(&info, arg, sizeof(info)))
6690 return -EFAULT;
6691
6692 rcu_read_lock();
6693 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6694 if (rdev) {
6695 info.major = MAJOR(rdev->bdev->bd_dev);
6696 info.minor = MINOR(rdev->bdev->bd_dev);
6697 info.raid_disk = rdev->raid_disk;
6698 info.state = 0;
6699 if (test_bit(Faulty, &rdev->flags))
6700 info.state |= (1<<MD_DISK_FAULTY);
6701 else if (test_bit(In_sync, &rdev->flags)) {
6702 info.state |= (1<<MD_DISK_ACTIVE);
6703 info.state |= (1<<MD_DISK_SYNC);
6704 }
6705 if (test_bit(Journal, &rdev->flags))
6706 info.state |= (1<<MD_DISK_JOURNAL);
6707 if (test_bit(WriteMostly, &rdev->flags))
6708 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6709 if (test_bit(FailFast, &rdev->flags))
6710 info.state |= (1<<MD_DISK_FAILFAST);
6711 } else {
6712 info.major = info.minor = 0;
6713 info.raid_disk = -1;
6714 info.state = (1<<MD_DISK_REMOVED);
6715 }
6716 rcu_read_unlock();
6717
6718 if (copy_to_user(arg, &info, sizeof(info)))
6719 return -EFAULT;
6720
6721 return 0;
6722 }
6723
6724 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6725 {
6726 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6727 struct md_rdev *rdev;
6728 dev_t dev = MKDEV(info->major,info->minor);
6729
6730 if (mddev_is_clustered(mddev) &&
6731 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6732 pr_warn("%s: Cannot add to clustered mddev.\n",
6733 mdname(mddev));
6734 return -EINVAL;
6735 }
6736
6737 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6738 return -EOVERFLOW;
6739
6740 if (!mddev->raid_disks) {
6741 int err;
6742 /* expecting a device which has a superblock */
6743 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6744 if (IS_ERR(rdev)) {
6745 pr_warn("md: md_import_device returned %ld\n",
6746 PTR_ERR(rdev));
6747 return PTR_ERR(rdev);
6748 }
6749 if (!list_empty(&mddev->disks)) {
6750 struct md_rdev *rdev0
6751 = list_entry(mddev->disks.next,
6752 struct md_rdev, same_set);
6753 err = super_types[mddev->major_version]
6754 .load_super(rdev, rdev0, mddev->minor_version);
6755 if (err < 0) {
6756 pr_warn("md: %s has different UUID to %s\n",
6757 bdevname(rdev->bdev,b),
6758 bdevname(rdev0->bdev,b2));
6759 export_rdev(rdev);
6760 return -EINVAL;
6761 }
6762 }
6763 err = bind_rdev_to_array(rdev, mddev);
6764 if (err)
6765 export_rdev(rdev);
6766 return err;
6767 }
6768
6769 /*
6770 * md_add_new_disk can be used once the array is assembled
6771 * to add "hot spares". They must already have a superblock
6772 * written
6773 */
6774 if (mddev->pers) {
6775 int err;
6776 if (!mddev->pers->hot_add_disk) {
6777 pr_warn("%s: personality does not support diskops!\n",
6778 mdname(mddev));
6779 return -EINVAL;
6780 }
6781 if (mddev->persistent)
6782 rdev = md_import_device(dev, mddev->major_version,
6783 mddev->minor_version);
6784 else
6785 rdev = md_import_device(dev, -1, -1);
6786 if (IS_ERR(rdev)) {
6787 pr_warn("md: md_import_device returned %ld\n",
6788 PTR_ERR(rdev));
6789 return PTR_ERR(rdev);
6790 }
6791 /* set saved_raid_disk if appropriate */
6792 if (!mddev->persistent) {
6793 if (info->state & (1<<MD_DISK_SYNC) &&
6794 info->raid_disk < mddev->raid_disks) {
6795 rdev->raid_disk = info->raid_disk;
6796 set_bit(In_sync, &rdev->flags);
6797 clear_bit(Bitmap_sync, &rdev->flags);
6798 } else
6799 rdev->raid_disk = -1;
6800 rdev->saved_raid_disk = rdev->raid_disk;
6801 } else
6802 super_types[mddev->major_version].
6803 validate_super(mddev, rdev);
6804 if ((info->state & (1<<MD_DISK_SYNC)) &&
6805 rdev->raid_disk != info->raid_disk) {
6806 /* This was a hot-add request, but events doesn't
6807 * match, so reject it.
6808 */
6809 export_rdev(rdev);
6810 return -EINVAL;
6811 }
6812
6813 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6814 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6815 set_bit(WriteMostly, &rdev->flags);
6816 else
6817 clear_bit(WriteMostly, &rdev->flags);
6818 if (info->state & (1<<MD_DISK_FAILFAST))
6819 set_bit(FailFast, &rdev->flags);
6820 else
6821 clear_bit(FailFast, &rdev->flags);
6822
6823 if (info->state & (1<<MD_DISK_JOURNAL)) {
6824 struct md_rdev *rdev2;
6825 bool has_journal = false;
6826
6827 /* make sure no existing journal disk */
6828 rdev_for_each(rdev2, mddev) {
6829 if (test_bit(Journal, &rdev2->flags)) {
6830 has_journal = true;
6831 break;
6832 }
6833 }
6834 if (has_journal || mddev->bitmap) {
6835 export_rdev(rdev);
6836 return -EBUSY;
6837 }
6838 set_bit(Journal, &rdev->flags);
6839 }
6840 /*
6841 * check whether the device shows up in other nodes
6842 */
6843 if (mddev_is_clustered(mddev)) {
6844 if (info->state & (1 << MD_DISK_CANDIDATE))
6845 set_bit(Candidate, &rdev->flags);
6846 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6847 /* --add initiated by this node */
6848 err = md_cluster_ops->add_new_disk(mddev, rdev);
6849 if (err) {
6850 export_rdev(rdev);
6851 return err;
6852 }
6853 }
6854 }
6855
6856 rdev->raid_disk = -1;
6857 err = bind_rdev_to_array(rdev, mddev);
6858
6859 if (err)
6860 export_rdev(rdev);
6861
6862 if (mddev_is_clustered(mddev)) {
6863 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6864 if (!err) {
6865 err = md_cluster_ops->new_disk_ack(mddev,
6866 err == 0);
6867 if (err)
6868 md_kick_rdev_from_array(rdev);
6869 }
6870 } else {
6871 if (err)
6872 md_cluster_ops->add_new_disk_cancel(mddev);
6873 else
6874 err = add_bound_rdev(rdev);
6875 }
6876
6877 } else if (!err)
6878 err = add_bound_rdev(rdev);
6879
6880 return err;
6881 }
6882
6883 /* otherwise, md_add_new_disk is only allowed
6884 * for major_version==0 superblocks
6885 */
6886 if (mddev->major_version != 0) {
6887 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6888 return -EINVAL;
6889 }
6890
6891 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6892 int err;
6893 rdev = md_import_device(dev, -1, 0);
6894 if (IS_ERR(rdev)) {
6895 pr_warn("md: error, md_import_device() returned %ld\n",
6896 PTR_ERR(rdev));
6897 return PTR_ERR(rdev);
6898 }
6899 rdev->desc_nr = info->number;
6900 if (info->raid_disk < mddev->raid_disks)
6901 rdev->raid_disk = info->raid_disk;
6902 else
6903 rdev->raid_disk = -1;
6904
6905 if (rdev->raid_disk < mddev->raid_disks)
6906 if (info->state & (1<<MD_DISK_SYNC))
6907 set_bit(In_sync, &rdev->flags);
6908
6909 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6910 set_bit(WriteMostly, &rdev->flags);
6911 if (info->state & (1<<MD_DISK_FAILFAST))
6912 set_bit(FailFast, &rdev->flags);
6913
6914 if (!mddev->persistent) {
6915 pr_debug("md: nonpersistent superblock ...\n");
6916 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6917 } else
6918 rdev->sb_start = calc_dev_sboffset(rdev);
6919 rdev->sectors = rdev->sb_start;
6920
6921 err = bind_rdev_to_array(rdev, mddev);
6922 if (err) {
6923 export_rdev(rdev);
6924 return err;
6925 }
6926 }
6927
6928 return 0;
6929 }
6930
6931 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6932 {
6933 char b[BDEVNAME_SIZE];
6934 struct md_rdev *rdev;
6935
6936 if (!mddev->pers)
6937 return -ENODEV;
6938
6939 rdev = find_rdev(mddev, dev);
6940 if (!rdev)
6941 return -ENXIO;
6942
6943 if (rdev->raid_disk < 0)
6944 goto kick_rdev;
6945
6946 clear_bit(Blocked, &rdev->flags);
6947 remove_and_add_spares(mddev, rdev);
6948
6949 if (rdev->raid_disk >= 0)
6950 goto busy;
6951
6952 kick_rdev:
6953 if (mddev_is_clustered(mddev)) {
6954 if (md_cluster_ops->remove_disk(mddev, rdev))
6955 goto busy;
6956 }
6957
6958 md_kick_rdev_from_array(rdev);
6959 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6960 if (mddev->thread)
6961 md_wakeup_thread(mddev->thread);
6962 else
6963 md_update_sb(mddev, 1);
6964 md_new_event(mddev);
6965
6966 return 0;
6967 busy:
6968 pr_debug("md: cannot remove active disk %s from %s ...\n",
6969 bdevname(rdev->bdev,b), mdname(mddev));
6970 return -EBUSY;
6971 }
6972
6973 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6974 {
6975 char b[BDEVNAME_SIZE];
6976 int err;
6977 struct md_rdev *rdev;
6978
6979 if (!mddev->pers)
6980 return -ENODEV;
6981
6982 if (mddev->major_version != 0) {
6983 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6984 mdname(mddev));
6985 return -EINVAL;
6986 }
6987 if (!mddev->pers->hot_add_disk) {
6988 pr_warn("%s: personality does not support diskops!\n",
6989 mdname(mddev));
6990 return -EINVAL;
6991 }
6992
6993 rdev = md_import_device(dev, -1, 0);
6994 if (IS_ERR(rdev)) {
6995 pr_warn("md: error, md_import_device() returned %ld\n",
6996 PTR_ERR(rdev));
6997 return -EINVAL;
6998 }
6999
7000 if (mddev->persistent)
7001 rdev->sb_start = calc_dev_sboffset(rdev);
7002 else
7003 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7004
7005 rdev->sectors = rdev->sb_start;
7006
7007 if (test_bit(Faulty, &rdev->flags)) {
7008 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7009 bdevname(rdev->bdev,b), mdname(mddev));
7010 err = -EINVAL;
7011 goto abort_export;
7012 }
7013
7014 clear_bit(In_sync, &rdev->flags);
7015 rdev->desc_nr = -1;
7016 rdev->saved_raid_disk = -1;
7017 err = bind_rdev_to_array(rdev, mddev);
7018 if (err)
7019 goto abort_export;
7020
7021 /*
7022 * The rest should better be atomic, we can have disk failures
7023 * noticed in interrupt contexts ...
7024 */
7025
7026 rdev->raid_disk = -1;
7027
7028 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7029 if (!mddev->thread)
7030 md_update_sb(mddev, 1);
7031 /*
7032 * Kick recovery, maybe this spare has to be added to the
7033 * array immediately.
7034 */
7035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7036 md_wakeup_thread(mddev->thread);
7037 md_new_event(mddev);
7038 return 0;
7039
7040 abort_export:
7041 export_rdev(rdev);
7042 return err;
7043 }
7044
7045 static int set_bitmap_file(struct mddev *mddev, int fd)
7046 {
7047 int err = 0;
7048
7049 if (mddev->pers) {
7050 if (!mddev->pers->quiesce || !mddev->thread)
7051 return -EBUSY;
7052 if (mddev->recovery || mddev->sync_thread)
7053 return -EBUSY;
7054 /* we should be able to change the bitmap.. */
7055 }
7056
7057 if (fd >= 0) {
7058 struct inode *inode;
7059 struct file *f;
7060
7061 if (mddev->bitmap || mddev->bitmap_info.file)
7062 return -EEXIST; /* cannot add when bitmap is present */
7063 f = fget(fd);
7064
7065 if (f == NULL) {
7066 pr_warn("%s: error: failed to get bitmap file\n",
7067 mdname(mddev));
7068 return -EBADF;
7069 }
7070
7071 inode = f->f_mapping->host;
7072 if (!S_ISREG(inode->i_mode)) {
7073 pr_warn("%s: error: bitmap file must be a regular file\n",
7074 mdname(mddev));
7075 err = -EBADF;
7076 } else if (!(f->f_mode & FMODE_WRITE)) {
7077 pr_warn("%s: error: bitmap file must open for write\n",
7078 mdname(mddev));
7079 err = -EBADF;
7080 } else if (atomic_read(&inode->i_writecount) != 1) {
7081 pr_warn("%s: error: bitmap file is already in use\n",
7082 mdname(mddev));
7083 err = -EBUSY;
7084 }
7085 if (err) {
7086 fput(f);
7087 return err;
7088 }
7089 mddev->bitmap_info.file = f;
7090 mddev->bitmap_info.offset = 0; /* file overrides offset */
7091 } else if (mddev->bitmap == NULL)
7092 return -ENOENT; /* cannot remove what isn't there */
7093 err = 0;
7094 if (mddev->pers) {
7095 if (fd >= 0) {
7096 struct bitmap *bitmap;
7097
7098 bitmap = md_bitmap_create(mddev, -1);
7099 mddev_suspend(mddev);
7100 if (!IS_ERR(bitmap)) {
7101 mddev->bitmap = bitmap;
7102 err = md_bitmap_load(mddev);
7103 } else
7104 err = PTR_ERR(bitmap);
7105 if (err) {
7106 md_bitmap_destroy(mddev);
7107 fd = -1;
7108 }
7109 mddev_resume(mddev);
7110 } else if (fd < 0) {
7111 mddev_suspend(mddev);
7112 md_bitmap_destroy(mddev);
7113 mddev_resume(mddev);
7114 }
7115 }
7116 if (fd < 0) {
7117 struct file *f = mddev->bitmap_info.file;
7118 if (f) {
7119 spin_lock(&mddev->lock);
7120 mddev->bitmap_info.file = NULL;
7121 spin_unlock(&mddev->lock);
7122 fput(f);
7123 }
7124 }
7125
7126 return err;
7127 }
7128
7129 /*
7130 * md_set_array_info is used two different ways
7131 * The original usage is when creating a new array.
7132 * In this usage, raid_disks is > 0 and it together with
7133 * level, size, not_persistent,layout,chunksize determine the
7134 * shape of the array.
7135 * This will always create an array with a type-0.90.0 superblock.
7136 * The newer usage is when assembling an array.
7137 * In this case raid_disks will be 0, and the major_version field is
7138 * use to determine which style super-blocks are to be found on the devices.
7139 * The minor and patch _version numbers are also kept incase the
7140 * super_block handler wishes to interpret them.
7141 */
7142 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7143 {
7144 if (info->raid_disks == 0) {
7145 /* just setting version number for superblock loading */
7146 if (info->major_version < 0 ||
7147 info->major_version >= ARRAY_SIZE(super_types) ||
7148 super_types[info->major_version].name == NULL) {
7149 /* maybe try to auto-load a module? */
7150 pr_warn("md: superblock version %d not known\n",
7151 info->major_version);
7152 return -EINVAL;
7153 }
7154 mddev->major_version = info->major_version;
7155 mddev->minor_version = info->minor_version;
7156 mddev->patch_version = info->patch_version;
7157 mddev->persistent = !info->not_persistent;
7158 /* ensure mddev_put doesn't delete this now that there
7159 * is some minimal configuration.
7160 */
7161 mddev->ctime = ktime_get_real_seconds();
7162 return 0;
7163 }
7164 mddev->major_version = MD_MAJOR_VERSION;
7165 mddev->minor_version = MD_MINOR_VERSION;
7166 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7167 mddev->ctime = ktime_get_real_seconds();
7168
7169 mddev->level = info->level;
7170 mddev->clevel[0] = 0;
7171 mddev->dev_sectors = 2 * (sector_t)info->size;
7172 mddev->raid_disks = info->raid_disks;
7173 /* don't set md_minor, it is determined by which /dev/md* was
7174 * openned
7175 */
7176 if (info->state & (1<<MD_SB_CLEAN))
7177 mddev->recovery_cp = MaxSector;
7178 else
7179 mddev->recovery_cp = 0;
7180 mddev->persistent = ! info->not_persistent;
7181 mddev->external = 0;
7182
7183 mddev->layout = info->layout;
7184 if (mddev->level == 0)
7185 /* Cannot trust RAID0 layout info here */
7186 mddev->layout = -1;
7187 mddev->chunk_sectors = info->chunk_size >> 9;
7188
7189 if (mddev->persistent) {
7190 mddev->max_disks = MD_SB_DISKS;
7191 mddev->flags = 0;
7192 mddev->sb_flags = 0;
7193 }
7194 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7195
7196 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7197 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7198 mddev->bitmap_info.offset = 0;
7199
7200 mddev->reshape_position = MaxSector;
7201
7202 /*
7203 * Generate a 128 bit UUID
7204 */
7205 get_random_bytes(mddev->uuid, 16);
7206
7207 mddev->new_level = mddev->level;
7208 mddev->new_chunk_sectors = mddev->chunk_sectors;
7209 mddev->new_layout = mddev->layout;
7210 mddev->delta_disks = 0;
7211 mddev->reshape_backwards = 0;
7212
7213 return 0;
7214 }
7215
7216 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7217 {
7218 lockdep_assert_held(&mddev->reconfig_mutex);
7219
7220 if (mddev->external_size)
7221 return;
7222
7223 mddev->array_sectors = array_sectors;
7224 }
7225 EXPORT_SYMBOL(md_set_array_sectors);
7226
7227 static int update_size(struct mddev *mddev, sector_t num_sectors)
7228 {
7229 struct md_rdev *rdev;
7230 int rv;
7231 int fit = (num_sectors == 0);
7232 sector_t old_dev_sectors = mddev->dev_sectors;
7233
7234 if (mddev->pers->resize == NULL)
7235 return -EINVAL;
7236 /* The "num_sectors" is the number of sectors of each device that
7237 * is used. This can only make sense for arrays with redundancy.
7238 * linear and raid0 always use whatever space is available. We can only
7239 * consider changing this number if no resync or reconstruction is
7240 * happening, and if the new size is acceptable. It must fit before the
7241 * sb_start or, if that is <data_offset, it must fit before the size
7242 * of each device. If num_sectors is zero, we find the largest size
7243 * that fits.
7244 */
7245 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7246 mddev->sync_thread)
7247 return -EBUSY;
7248 if (mddev->ro)
7249 return -EROFS;
7250
7251 rdev_for_each(rdev, mddev) {
7252 sector_t avail = rdev->sectors;
7253
7254 if (fit && (num_sectors == 0 || num_sectors > avail))
7255 num_sectors = avail;
7256 if (avail < num_sectors)
7257 return -ENOSPC;
7258 }
7259 rv = mddev->pers->resize(mddev, num_sectors);
7260 if (!rv) {
7261 if (mddev_is_clustered(mddev))
7262 md_cluster_ops->update_size(mddev, old_dev_sectors);
7263 else if (mddev->queue) {
7264 set_capacity_and_notify(mddev->gendisk,
7265 mddev->array_sectors);
7266 }
7267 }
7268 return rv;
7269 }
7270
7271 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7272 {
7273 int rv;
7274 struct md_rdev *rdev;
7275 /* change the number of raid disks */
7276 if (mddev->pers->check_reshape == NULL)
7277 return -EINVAL;
7278 if (mddev->ro)
7279 return -EROFS;
7280 if (raid_disks <= 0 ||
7281 (mddev->max_disks && raid_disks >= mddev->max_disks))
7282 return -EINVAL;
7283 if (mddev->sync_thread ||
7284 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7285 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7286 mddev->reshape_position != MaxSector)
7287 return -EBUSY;
7288
7289 rdev_for_each(rdev, mddev) {
7290 if (mddev->raid_disks < raid_disks &&
7291 rdev->data_offset < rdev->new_data_offset)
7292 return -EINVAL;
7293 if (mddev->raid_disks > raid_disks &&
7294 rdev->data_offset > rdev->new_data_offset)
7295 return -EINVAL;
7296 }
7297
7298 mddev->delta_disks = raid_disks - mddev->raid_disks;
7299 if (mddev->delta_disks < 0)
7300 mddev->reshape_backwards = 1;
7301 else if (mddev->delta_disks > 0)
7302 mddev->reshape_backwards = 0;
7303
7304 rv = mddev->pers->check_reshape(mddev);
7305 if (rv < 0) {
7306 mddev->delta_disks = 0;
7307 mddev->reshape_backwards = 0;
7308 }
7309 return rv;
7310 }
7311
7312 /*
7313 * update_array_info is used to change the configuration of an
7314 * on-line array.
7315 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7316 * fields in the info are checked against the array.
7317 * Any differences that cannot be handled will cause an error.
7318 * Normally, only one change can be managed at a time.
7319 */
7320 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7321 {
7322 int rv = 0;
7323 int cnt = 0;
7324 int state = 0;
7325
7326 /* calculate expected state,ignoring low bits */
7327 if (mddev->bitmap && mddev->bitmap_info.offset)
7328 state |= (1 << MD_SB_BITMAP_PRESENT);
7329
7330 if (mddev->major_version != info->major_version ||
7331 mddev->minor_version != info->minor_version ||
7332 /* mddev->patch_version != info->patch_version || */
7333 mddev->ctime != info->ctime ||
7334 mddev->level != info->level ||
7335 /* mddev->layout != info->layout || */
7336 mddev->persistent != !info->not_persistent ||
7337 mddev->chunk_sectors != info->chunk_size >> 9 ||
7338 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7339 ((state^info->state) & 0xfffffe00)
7340 )
7341 return -EINVAL;
7342 /* Check there is only one change */
7343 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7344 cnt++;
7345 if (mddev->raid_disks != info->raid_disks)
7346 cnt++;
7347 if (mddev->layout != info->layout)
7348 cnt++;
7349 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7350 cnt++;
7351 if (cnt == 0)
7352 return 0;
7353 if (cnt > 1)
7354 return -EINVAL;
7355
7356 if (mddev->layout != info->layout) {
7357 /* Change layout
7358 * we don't need to do anything at the md level, the
7359 * personality will take care of it all.
7360 */
7361 if (mddev->pers->check_reshape == NULL)
7362 return -EINVAL;
7363 else {
7364 mddev->new_layout = info->layout;
7365 rv = mddev->pers->check_reshape(mddev);
7366 if (rv)
7367 mddev->new_layout = mddev->layout;
7368 return rv;
7369 }
7370 }
7371 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7372 rv = update_size(mddev, (sector_t)info->size * 2);
7373
7374 if (mddev->raid_disks != info->raid_disks)
7375 rv = update_raid_disks(mddev, info->raid_disks);
7376
7377 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7378 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7379 rv = -EINVAL;
7380 goto err;
7381 }
7382 if (mddev->recovery || mddev->sync_thread) {
7383 rv = -EBUSY;
7384 goto err;
7385 }
7386 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7387 struct bitmap *bitmap;
7388 /* add the bitmap */
7389 if (mddev->bitmap) {
7390 rv = -EEXIST;
7391 goto err;
7392 }
7393 if (mddev->bitmap_info.default_offset == 0) {
7394 rv = -EINVAL;
7395 goto err;
7396 }
7397 mddev->bitmap_info.offset =
7398 mddev->bitmap_info.default_offset;
7399 mddev->bitmap_info.space =
7400 mddev->bitmap_info.default_space;
7401 bitmap = md_bitmap_create(mddev, -1);
7402 mddev_suspend(mddev);
7403 if (!IS_ERR(bitmap)) {
7404 mddev->bitmap = bitmap;
7405 rv = md_bitmap_load(mddev);
7406 } else
7407 rv = PTR_ERR(bitmap);
7408 if (rv)
7409 md_bitmap_destroy(mddev);
7410 mddev_resume(mddev);
7411 } else {
7412 /* remove the bitmap */
7413 if (!mddev->bitmap) {
7414 rv = -ENOENT;
7415 goto err;
7416 }
7417 if (mddev->bitmap->storage.file) {
7418 rv = -EINVAL;
7419 goto err;
7420 }
7421 if (mddev->bitmap_info.nodes) {
7422 /* hold PW on all the bitmap lock */
7423 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7424 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7425 rv = -EPERM;
7426 md_cluster_ops->unlock_all_bitmaps(mddev);
7427 goto err;
7428 }
7429
7430 mddev->bitmap_info.nodes = 0;
7431 md_cluster_ops->leave(mddev);
7432 module_put(md_cluster_mod);
7433 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7434 }
7435 mddev_suspend(mddev);
7436 md_bitmap_destroy(mddev);
7437 mddev_resume(mddev);
7438 mddev->bitmap_info.offset = 0;
7439 }
7440 }
7441 md_update_sb(mddev, 1);
7442 return rv;
7443 err:
7444 return rv;
7445 }
7446
7447 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7448 {
7449 struct md_rdev *rdev;
7450 int err = 0;
7451
7452 if (mddev->pers == NULL)
7453 return -ENODEV;
7454
7455 rcu_read_lock();
7456 rdev = md_find_rdev_rcu(mddev, dev);
7457 if (!rdev)
7458 err = -ENODEV;
7459 else {
7460 md_error(mddev, rdev);
7461 if (!test_bit(Faulty, &rdev->flags))
7462 err = -EBUSY;
7463 }
7464 rcu_read_unlock();
7465 return err;
7466 }
7467
7468 /*
7469 * We have a problem here : there is no easy way to give a CHS
7470 * virtual geometry. We currently pretend that we have a 2 heads
7471 * 4 sectors (with a BIG number of cylinders...). This drives
7472 * dosfs just mad... ;-)
7473 */
7474 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7475 {
7476 struct mddev *mddev = bdev->bd_disk->private_data;
7477
7478 geo->heads = 2;
7479 geo->sectors = 4;
7480 geo->cylinders = mddev->array_sectors / 8;
7481 return 0;
7482 }
7483
7484 static inline bool md_ioctl_valid(unsigned int cmd)
7485 {
7486 switch (cmd) {
7487 case ADD_NEW_DISK:
7488 case GET_ARRAY_INFO:
7489 case GET_BITMAP_FILE:
7490 case GET_DISK_INFO:
7491 case HOT_ADD_DISK:
7492 case HOT_REMOVE_DISK:
7493 case RAID_VERSION:
7494 case RESTART_ARRAY_RW:
7495 case RUN_ARRAY:
7496 case SET_ARRAY_INFO:
7497 case SET_BITMAP_FILE:
7498 case SET_DISK_FAULTY:
7499 case STOP_ARRAY:
7500 case STOP_ARRAY_RO:
7501 case CLUSTERED_DISK_NACK:
7502 return true;
7503 default:
7504 return false;
7505 }
7506 }
7507
7508 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7509 unsigned int cmd, unsigned long arg)
7510 {
7511 int err = 0;
7512 void __user *argp = (void __user *)arg;
7513 struct mddev *mddev = NULL;
7514 bool did_set_md_closing = false;
7515
7516 if (!md_ioctl_valid(cmd))
7517 return -ENOTTY;
7518
7519 switch (cmd) {
7520 case RAID_VERSION:
7521 case GET_ARRAY_INFO:
7522 case GET_DISK_INFO:
7523 break;
7524 default:
7525 if (!capable(CAP_SYS_ADMIN))
7526 return -EACCES;
7527 }
7528
7529 /*
7530 * Commands dealing with the RAID driver but not any
7531 * particular array:
7532 */
7533 switch (cmd) {
7534 case RAID_VERSION:
7535 err = get_version(argp);
7536 goto out;
7537 default:;
7538 }
7539
7540 /*
7541 * Commands creating/starting a new array:
7542 */
7543
7544 mddev = bdev->bd_disk->private_data;
7545
7546 if (!mddev) {
7547 BUG();
7548 goto out;
7549 }
7550
7551 /* Some actions do not requires the mutex */
7552 switch (cmd) {
7553 case GET_ARRAY_INFO:
7554 if (!mddev->raid_disks && !mddev->external)
7555 err = -ENODEV;
7556 else
7557 err = get_array_info(mddev, argp);
7558 goto out;
7559
7560 case GET_DISK_INFO:
7561 if (!mddev->raid_disks && !mddev->external)
7562 err = -ENODEV;
7563 else
7564 err = get_disk_info(mddev, argp);
7565 goto out;
7566
7567 case SET_DISK_FAULTY:
7568 err = set_disk_faulty(mddev, new_decode_dev(arg));
7569 goto out;
7570
7571 case GET_BITMAP_FILE:
7572 err = get_bitmap_file(mddev, argp);
7573 goto out;
7574
7575 }
7576
7577 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7578 flush_rdev_wq(mddev);
7579
7580 if (cmd == HOT_REMOVE_DISK)
7581 /* need to ensure recovery thread has run */
7582 wait_event_interruptible_timeout(mddev->sb_wait,
7583 !test_bit(MD_RECOVERY_NEEDED,
7584 &mddev->recovery),
7585 msecs_to_jiffies(5000));
7586 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7587 /* Need to flush page cache, and ensure no-one else opens
7588 * and writes
7589 */
7590 mutex_lock(&mddev->open_mutex);
7591 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7592 mutex_unlock(&mddev->open_mutex);
7593 err = -EBUSY;
7594 goto out;
7595 }
7596 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7597 mutex_unlock(&mddev->open_mutex);
7598 err = -EBUSY;
7599 goto out;
7600 }
7601 did_set_md_closing = true;
7602 mutex_unlock(&mddev->open_mutex);
7603 sync_blockdev(bdev);
7604 }
7605 err = mddev_lock(mddev);
7606 if (err) {
7607 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7608 err, cmd);
7609 goto out;
7610 }
7611
7612 if (cmd == SET_ARRAY_INFO) {
7613 mdu_array_info_t info;
7614 if (!arg)
7615 memset(&info, 0, sizeof(info));
7616 else if (copy_from_user(&info, argp, sizeof(info))) {
7617 err = -EFAULT;
7618 goto unlock;
7619 }
7620 if (mddev->pers) {
7621 err = update_array_info(mddev, &info);
7622 if (err) {
7623 pr_warn("md: couldn't update array info. %d\n", err);
7624 goto unlock;
7625 }
7626 goto unlock;
7627 }
7628 if (!list_empty(&mddev->disks)) {
7629 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7630 err = -EBUSY;
7631 goto unlock;
7632 }
7633 if (mddev->raid_disks) {
7634 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7635 err = -EBUSY;
7636 goto unlock;
7637 }
7638 err = md_set_array_info(mddev, &info);
7639 if (err) {
7640 pr_warn("md: couldn't set array info. %d\n", err);
7641 goto unlock;
7642 }
7643 goto unlock;
7644 }
7645
7646 /*
7647 * Commands querying/configuring an existing array:
7648 */
7649 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7650 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7651 if ((!mddev->raid_disks && !mddev->external)
7652 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7653 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7654 && cmd != GET_BITMAP_FILE) {
7655 err = -ENODEV;
7656 goto unlock;
7657 }
7658
7659 /*
7660 * Commands even a read-only array can execute:
7661 */
7662 switch (cmd) {
7663 case RESTART_ARRAY_RW:
7664 err = restart_array(mddev);
7665 goto unlock;
7666
7667 case STOP_ARRAY:
7668 err = do_md_stop(mddev, 0, bdev);
7669 goto unlock;
7670
7671 case STOP_ARRAY_RO:
7672 err = md_set_readonly(mddev, bdev);
7673 goto unlock;
7674
7675 case HOT_REMOVE_DISK:
7676 err = hot_remove_disk(mddev, new_decode_dev(arg));
7677 goto unlock;
7678
7679 case ADD_NEW_DISK:
7680 /* We can support ADD_NEW_DISK on read-only arrays
7681 * only if we are re-adding a preexisting device.
7682 * So require mddev->pers and MD_DISK_SYNC.
7683 */
7684 if (mddev->pers) {
7685 mdu_disk_info_t info;
7686 if (copy_from_user(&info, argp, sizeof(info)))
7687 err = -EFAULT;
7688 else if (!(info.state & (1<<MD_DISK_SYNC)))
7689 /* Need to clear read-only for this */
7690 break;
7691 else
7692 err = md_add_new_disk(mddev, &info);
7693 goto unlock;
7694 }
7695 break;
7696 }
7697
7698 /*
7699 * The remaining ioctls are changing the state of the
7700 * superblock, so we do not allow them on read-only arrays.
7701 */
7702 if (mddev->ro && mddev->pers) {
7703 if (mddev->ro == 2) {
7704 mddev->ro = 0;
7705 sysfs_notify_dirent_safe(mddev->sysfs_state);
7706 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7707 /* mddev_unlock will wake thread */
7708 /* If a device failed while we were read-only, we
7709 * need to make sure the metadata is updated now.
7710 */
7711 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7712 mddev_unlock(mddev);
7713 wait_event(mddev->sb_wait,
7714 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7715 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7716 mddev_lock_nointr(mddev);
7717 }
7718 } else {
7719 err = -EROFS;
7720 goto unlock;
7721 }
7722 }
7723
7724 switch (cmd) {
7725 case ADD_NEW_DISK:
7726 {
7727 mdu_disk_info_t info;
7728 if (copy_from_user(&info, argp, sizeof(info)))
7729 err = -EFAULT;
7730 else
7731 err = md_add_new_disk(mddev, &info);
7732 goto unlock;
7733 }
7734
7735 case CLUSTERED_DISK_NACK:
7736 if (mddev_is_clustered(mddev))
7737 md_cluster_ops->new_disk_ack(mddev, false);
7738 else
7739 err = -EINVAL;
7740 goto unlock;
7741
7742 case HOT_ADD_DISK:
7743 err = hot_add_disk(mddev, new_decode_dev(arg));
7744 goto unlock;
7745
7746 case RUN_ARRAY:
7747 err = do_md_run(mddev);
7748 goto unlock;
7749
7750 case SET_BITMAP_FILE:
7751 err = set_bitmap_file(mddev, (int)arg);
7752 goto unlock;
7753
7754 default:
7755 err = -EINVAL;
7756 goto unlock;
7757 }
7758
7759 unlock:
7760 if (mddev->hold_active == UNTIL_IOCTL &&
7761 err != -EINVAL)
7762 mddev->hold_active = 0;
7763 mddev_unlock(mddev);
7764 out:
7765 if(did_set_md_closing)
7766 clear_bit(MD_CLOSING, &mddev->flags);
7767 return err;
7768 }
7769 #ifdef CONFIG_COMPAT
7770 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7771 unsigned int cmd, unsigned long arg)
7772 {
7773 switch (cmd) {
7774 case HOT_REMOVE_DISK:
7775 case HOT_ADD_DISK:
7776 case SET_DISK_FAULTY:
7777 case SET_BITMAP_FILE:
7778 /* These take in integer arg, do not convert */
7779 break;
7780 default:
7781 arg = (unsigned long)compat_ptr(arg);
7782 break;
7783 }
7784
7785 return md_ioctl(bdev, mode, cmd, arg);
7786 }
7787 #endif /* CONFIG_COMPAT */
7788
7789 static int md_set_read_only(struct block_device *bdev, bool ro)
7790 {
7791 struct mddev *mddev = bdev->bd_disk->private_data;
7792 int err;
7793
7794 err = mddev_lock(mddev);
7795 if (err)
7796 return err;
7797
7798 if (!mddev->raid_disks && !mddev->external) {
7799 err = -ENODEV;
7800 goto out_unlock;
7801 }
7802
7803 /*
7804 * Transitioning to read-auto need only happen for arrays that call
7805 * md_write_start and which are not ready for writes yet.
7806 */
7807 if (!ro && mddev->ro == 1 && mddev->pers) {
7808 err = restart_array(mddev);
7809 if (err)
7810 goto out_unlock;
7811 mddev->ro = 2;
7812 }
7813
7814 out_unlock:
7815 mddev_unlock(mddev);
7816 return err;
7817 }
7818
7819 static int md_open(struct block_device *bdev, fmode_t mode)
7820 {
7821 /*
7822 * Succeed if we can lock the mddev, which confirms that
7823 * it isn't being stopped right now.
7824 */
7825 struct mddev *mddev = mddev_find(bdev->bd_dev);
7826 int err;
7827
7828 if (!mddev)
7829 return -ENODEV;
7830
7831 if (mddev->gendisk != bdev->bd_disk) {
7832 /* we are racing with mddev_put which is discarding this
7833 * bd_disk.
7834 */
7835 mddev_put(mddev);
7836 /* Wait until bdev->bd_disk is definitely gone */
7837 if (work_pending(&mddev->del_work))
7838 flush_workqueue(md_misc_wq);
7839 /* Then retry the open from the top */
7840 return -ERESTARTSYS;
7841 }
7842 BUG_ON(mddev != bdev->bd_disk->private_data);
7843
7844 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7845 goto out;
7846
7847 if (test_bit(MD_CLOSING, &mddev->flags)) {
7848 mutex_unlock(&mddev->open_mutex);
7849 err = -ENODEV;
7850 goto out;
7851 }
7852
7853 err = 0;
7854 atomic_inc(&mddev->openers);
7855 mutex_unlock(&mddev->open_mutex);
7856
7857 bdev_check_media_change(bdev);
7858 out:
7859 if (err)
7860 mddev_put(mddev);
7861 return err;
7862 }
7863
7864 static void md_release(struct gendisk *disk, fmode_t mode)
7865 {
7866 struct mddev *mddev = disk->private_data;
7867
7868 BUG_ON(!mddev);
7869 atomic_dec(&mddev->openers);
7870 mddev_put(mddev);
7871 }
7872
7873 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7874 {
7875 struct mddev *mddev = disk->private_data;
7876 unsigned int ret = 0;
7877
7878 if (mddev->changed)
7879 ret = DISK_EVENT_MEDIA_CHANGE;
7880 mddev->changed = 0;
7881 return ret;
7882 }
7883
7884 const struct block_device_operations md_fops =
7885 {
7886 .owner = THIS_MODULE,
7887 .submit_bio = md_submit_bio,
7888 .open = md_open,
7889 .release = md_release,
7890 .ioctl = md_ioctl,
7891 #ifdef CONFIG_COMPAT
7892 .compat_ioctl = md_compat_ioctl,
7893 #endif
7894 .getgeo = md_getgeo,
7895 .check_events = md_check_events,
7896 .set_read_only = md_set_read_only,
7897 };
7898
7899 static int md_thread(void *arg)
7900 {
7901 struct md_thread *thread = arg;
7902
7903 /*
7904 * md_thread is a 'system-thread', it's priority should be very
7905 * high. We avoid resource deadlocks individually in each
7906 * raid personality. (RAID5 does preallocation) We also use RR and
7907 * the very same RT priority as kswapd, thus we will never get
7908 * into a priority inversion deadlock.
7909 *
7910 * we definitely have to have equal or higher priority than
7911 * bdflush, otherwise bdflush will deadlock if there are too
7912 * many dirty RAID5 blocks.
7913 */
7914
7915 allow_signal(SIGKILL);
7916 while (!kthread_should_stop()) {
7917
7918 /* We need to wait INTERRUPTIBLE so that
7919 * we don't add to the load-average.
7920 * That means we need to be sure no signals are
7921 * pending
7922 */
7923 if (signal_pending(current))
7924 flush_signals(current);
7925
7926 wait_event_interruptible_timeout
7927 (thread->wqueue,
7928 test_bit(THREAD_WAKEUP, &thread->flags)
7929 || kthread_should_stop() || kthread_should_park(),
7930 thread->timeout);
7931
7932 clear_bit(THREAD_WAKEUP, &thread->flags);
7933 if (kthread_should_park())
7934 kthread_parkme();
7935 if (!kthread_should_stop())
7936 thread->run(thread);
7937 }
7938
7939 return 0;
7940 }
7941
7942 void md_wakeup_thread(struct md_thread *thread)
7943 {
7944 if (thread) {
7945 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7946 set_bit(THREAD_WAKEUP, &thread->flags);
7947 wake_up(&thread->wqueue);
7948 }
7949 }
7950 EXPORT_SYMBOL(md_wakeup_thread);
7951
7952 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7953 struct mddev *mddev, const char *name)
7954 {
7955 struct md_thread *thread;
7956
7957 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7958 if (!thread)
7959 return NULL;
7960
7961 init_waitqueue_head(&thread->wqueue);
7962
7963 thread->run = run;
7964 thread->mddev = mddev;
7965 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7966 thread->tsk = kthread_run(md_thread, thread,
7967 "%s_%s",
7968 mdname(thread->mddev),
7969 name);
7970 if (IS_ERR(thread->tsk)) {
7971 kfree(thread);
7972 return NULL;
7973 }
7974 return thread;
7975 }
7976 EXPORT_SYMBOL(md_register_thread);
7977
7978 void md_unregister_thread(struct md_thread **threadp)
7979 {
7980 struct md_thread *thread = *threadp;
7981 if (!thread)
7982 return;
7983 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7984 /* Locking ensures that mddev_unlock does not wake_up a
7985 * non-existent thread
7986 */
7987 spin_lock(&pers_lock);
7988 *threadp = NULL;
7989 spin_unlock(&pers_lock);
7990
7991 kthread_stop(thread->tsk);
7992 kfree(thread);
7993 }
7994 EXPORT_SYMBOL(md_unregister_thread);
7995
7996 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7997 {
7998 if (!rdev || test_bit(Faulty, &rdev->flags))
7999 return;
8000
8001 if (!mddev->pers || !mddev->pers->error_handler)
8002 return;
8003 mddev->pers->error_handler(mddev,rdev);
8004 if (mddev->degraded)
8005 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8006 sysfs_notify_dirent_safe(rdev->sysfs_state);
8007 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8009 md_wakeup_thread(mddev->thread);
8010 if (mddev->event_work.func)
8011 queue_work(md_misc_wq, &mddev->event_work);
8012 md_new_event(mddev);
8013 }
8014 EXPORT_SYMBOL(md_error);
8015
8016 /* seq_file implementation /proc/mdstat */
8017
8018 static void status_unused(struct seq_file *seq)
8019 {
8020 int i = 0;
8021 struct md_rdev *rdev;
8022
8023 seq_printf(seq, "unused devices: ");
8024
8025 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8026 char b[BDEVNAME_SIZE];
8027 i++;
8028 seq_printf(seq, "%s ",
8029 bdevname(rdev->bdev,b));
8030 }
8031 if (!i)
8032 seq_printf(seq, "<none>");
8033
8034 seq_printf(seq, "\n");
8035 }
8036
8037 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8038 {
8039 sector_t max_sectors, resync, res;
8040 unsigned long dt, db = 0;
8041 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8042 int scale, recovery_active;
8043 unsigned int per_milli;
8044
8045 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8046 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8047 max_sectors = mddev->resync_max_sectors;
8048 else
8049 max_sectors = mddev->dev_sectors;
8050
8051 resync = mddev->curr_resync;
8052 if (resync <= 3) {
8053 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8054 /* Still cleaning up */
8055 resync = max_sectors;
8056 } else if (resync > max_sectors)
8057 resync = max_sectors;
8058 else
8059 resync -= atomic_read(&mddev->recovery_active);
8060
8061 if (resync == 0) {
8062 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8063 struct md_rdev *rdev;
8064
8065 rdev_for_each(rdev, mddev)
8066 if (rdev->raid_disk >= 0 &&
8067 !test_bit(Faulty, &rdev->flags) &&
8068 rdev->recovery_offset != MaxSector &&
8069 rdev->recovery_offset) {
8070 seq_printf(seq, "\trecover=REMOTE");
8071 return 1;
8072 }
8073 if (mddev->reshape_position != MaxSector)
8074 seq_printf(seq, "\treshape=REMOTE");
8075 else
8076 seq_printf(seq, "\tresync=REMOTE");
8077 return 1;
8078 }
8079 if (mddev->recovery_cp < MaxSector) {
8080 seq_printf(seq, "\tresync=PENDING");
8081 return 1;
8082 }
8083 return 0;
8084 }
8085 if (resync < 3) {
8086 seq_printf(seq, "\tresync=DELAYED");
8087 return 1;
8088 }
8089
8090 WARN_ON(max_sectors == 0);
8091 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8092 * in a sector_t, and (max_sectors>>scale) will fit in a
8093 * u32, as those are the requirements for sector_div.
8094 * Thus 'scale' must be at least 10
8095 */
8096 scale = 10;
8097 if (sizeof(sector_t) > sizeof(unsigned long)) {
8098 while ( max_sectors/2 > (1ULL<<(scale+32)))
8099 scale++;
8100 }
8101 res = (resync>>scale)*1000;
8102 sector_div(res, (u32)((max_sectors>>scale)+1));
8103
8104 per_milli = res;
8105 {
8106 int i, x = per_milli/50, y = 20-x;
8107 seq_printf(seq, "[");
8108 for (i = 0; i < x; i++)
8109 seq_printf(seq, "=");
8110 seq_printf(seq, ">");
8111 for (i = 0; i < y; i++)
8112 seq_printf(seq, ".");
8113 seq_printf(seq, "] ");
8114 }
8115 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8116 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8117 "reshape" :
8118 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8119 "check" :
8120 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8121 "resync" : "recovery"))),
8122 per_milli/10, per_milli % 10,
8123 (unsigned long long) resync/2,
8124 (unsigned long long) max_sectors/2);
8125
8126 /*
8127 * dt: time from mark until now
8128 * db: blocks written from mark until now
8129 * rt: remaining time
8130 *
8131 * rt is a sector_t, which is always 64bit now. We are keeping
8132 * the original algorithm, but it is not really necessary.
8133 *
8134 * Original algorithm:
8135 * So we divide before multiply in case it is 32bit and close
8136 * to the limit.
8137 * We scale the divisor (db) by 32 to avoid losing precision
8138 * near the end of resync when the number of remaining sectors
8139 * is close to 'db'.
8140 * We then divide rt by 32 after multiplying by db to compensate.
8141 * The '+1' avoids division by zero if db is very small.
8142 */
8143 dt = ((jiffies - mddev->resync_mark) / HZ);
8144 if (!dt) dt++;
8145
8146 curr_mark_cnt = mddev->curr_mark_cnt;
8147 recovery_active = atomic_read(&mddev->recovery_active);
8148 resync_mark_cnt = mddev->resync_mark_cnt;
8149
8150 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8151 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8152
8153 rt = max_sectors - resync; /* number of remaining sectors */
8154 rt = div64_u64(rt, db/32+1);
8155 rt *= dt;
8156 rt >>= 5;
8157
8158 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8159 ((unsigned long)rt % 60)/6);
8160
8161 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8162 return 1;
8163 }
8164
8165 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8166 {
8167 struct list_head *tmp;
8168 loff_t l = *pos;
8169 struct mddev *mddev;
8170
8171 if (l >= 0x10000)
8172 return NULL;
8173 if (!l--)
8174 /* header */
8175 return (void*)1;
8176
8177 spin_lock(&all_mddevs_lock);
8178 list_for_each(tmp,&all_mddevs)
8179 if (!l--) {
8180 mddev = list_entry(tmp, struct mddev, all_mddevs);
8181 mddev_get(mddev);
8182 spin_unlock(&all_mddevs_lock);
8183 return mddev;
8184 }
8185 spin_unlock(&all_mddevs_lock);
8186 if (!l--)
8187 return (void*)2;/* tail */
8188 return NULL;
8189 }
8190
8191 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8192 {
8193 struct list_head *tmp;
8194 struct mddev *next_mddev, *mddev = v;
8195
8196 ++*pos;
8197 if (v == (void*)2)
8198 return NULL;
8199
8200 spin_lock(&all_mddevs_lock);
8201 if (v == (void*)1)
8202 tmp = all_mddevs.next;
8203 else
8204 tmp = mddev->all_mddevs.next;
8205 if (tmp != &all_mddevs)
8206 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8207 else {
8208 next_mddev = (void*)2;
8209 *pos = 0x10000;
8210 }
8211 spin_unlock(&all_mddevs_lock);
8212
8213 if (v != (void*)1)
8214 mddev_put(mddev);
8215 return next_mddev;
8216
8217 }
8218
8219 static void md_seq_stop(struct seq_file *seq, void *v)
8220 {
8221 struct mddev *mddev = v;
8222
8223 if (mddev && v != (void*)1 && v != (void*)2)
8224 mddev_put(mddev);
8225 }
8226
8227 static int md_seq_show(struct seq_file *seq, void *v)
8228 {
8229 struct mddev *mddev = v;
8230 sector_t sectors;
8231 struct md_rdev *rdev;
8232
8233 if (v == (void*)1) {
8234 struct md_personality *pers;
8235 seq_printf(seq, "Personalities : ");
8236 spin_lock(&pers_lock);
8237 list_for_each_entry(pers, &pers_list, list)
8238 seq_printf(seq, "[%s] ", pers->name);
8239
8240 spin_unlock(&pers_lock);
8241 seq_printf(seq, "\n");
8242 seq->poll_event = atomic_read(&md_event_count);
8243 return 0;
8244 }
8245 if (v == (void*)2) {
8246 status_unused(seq);
8247 return 0;
8248 }
8249
8250 spin_lock(&mddev->lock);
8251 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8252 seq_printf(seq, "%s : %sactive", mdname(mddev),
8253 mddev->pers ? "" : "in");
8254 if (mddev->pers) {
8255 if (mddev->ro==1)
8256 seq_printf(seq, " (read-only)");
8257 if (mddev->ro==2)
8258 seq_printf(seq, " (auto-read-only)");
8259 seq_printf(seq, " %s", mddev->pers->name);
8260 }
8261
8262 sectors = 0;
8263 rcu_read_lock();
8264 rdev_for_each_rcu(rdev, mddev) {
8265 char b[BDEVNAME_SIZE];
8266 seq_printf(seq, " %s[%d]",
8267 bdevname(rdev->bdev,b), rdev->desc_nr);
8268 if (test_bit(WriteMostly, &rdev->flags))
8269 seq_printf(seq, "(W)");
8270 if (test_bit(Journal, &rdev->flags))
8271 seq_printf(seq, "(J)");
8272 if (test_bit(Faulty, &rdev->flags)) {
8273 seq_printf(seq, "(F)");
8274 continue;
8275 }
8276 if (rdev->raid_disk < 0)
8277 seq_printf(seq, "(S)"); /* spare */
8278 if (test_bit(Replacement, &rdev->flags))
8279 seq_printf(seq, "(R)");
8280 sectors += rdev->sectors;
8281 }
8282 rcu_read_unlock();
8283
8284 if (!list_empty(&mddev->disks)) {
8285 if (mddev->pers)
8286 seq_printf(seq, "\n %llu blocks",
8287 (unsigned long long)
8288 mddev->array_sectors / 2);
8289 else
8290 seq_printf(seq, "\n %llu blocks",
8291 (unsigned long long)sectors / 2);
8292 }
8293 if (mddev->persistent) {
8294 if (mddev->major_version != 0 ||
8295 mddev->minor_version != 90) {
8296 seq_printf(seq," super %d.%d",
8297 mddev->major_version,
8298 mddev->minor_version);
8299 }
8300 } else if (mddev->external)
8301 seq_printf(seq, " super external:%s",
8302 mddev->metadata_type);
8303 else
8304 seq_printf(seq, " super non-persistent");
8305
8306 if (mddev->pers) {
8307 mddev->pers->status(seq, mddev);
8308 seq_printf(seq, "\n ");
8309 if (mddev->pers->sync_request) {
8310 if (status_resync(seq, mddev))
8311 seq_printf(seq, "\n ");
8312 }
8313 } else
8314 seq_printf(seq, "\n ");
8315
8316 md_bitmap_status(seq, mddev->bitmap);
8317
8318 seq_printf(seq, "\n");
8319 }
8320 spin_unlock(&mddev->lock);
8321
8322 return 0;
8323 }
8324
8325 static const struct seq_operations md_seq_ops = {
8326 .start = md_seq_start,
8327 .next = md_seq_next,
8328 .stop = md_seq_stop,
8329 .show = md_seq_show,
8330 };
8331
8332 static int md_seq_open(struct inode *inode, struct file *file)
8333 {
8334 struct seq_file *seq;
8335 int error;
8336
8337 error = seq_open(file, &md_seq_ops);
8338 if (error)
8339 return error;
8340
8341 seq = file->private_data;
8342 seq->poll_event = atomic_read(&md_event_count);
8343 return error;
8344 }
8345
8346 static int md_unloading;
8347 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8348 {
8349 struct seq_file *seq = filp->private_data;
8350 __poll_t mask;
8351
8352 if (md_unloading)
8353 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8354 poll_wait(filp, &md_event_waiters, wait);
8355
8356 /* always allow read */
8357 mask = EPOLLIN | EPOLLRDNORM;
8358
8359 if (seq->poll_event != atomic_read(&md_event_count))
8360 mask |= EPOLLERR | EPOLLPRI;
8361 return mask;
8362 }
8363
8364 static const struct proc_ops mdstat_proc_ops = {
8365 .proc_open = md_seq_open,
8366 .proc_read = seq_read,
8367 .proc_lseek = seq_lseek,
8368 .proc_release = seq_release,
8369 .proc_poll = mdstat_poll,
8370 };
8371
8372 int register_md_personality(struct md_personality *p)
8373 {
8374 pr_debug("md: %s personality registered for level %d\n",
8375 p->name, p->level);
8376 spin_lock(&pers_lock);
8377 list_add_tail(&p->list, &pers_list);
8378 spin_unlock(&pers_lock);
8379 return 0;
8380 }
8381 EXPORT_SYMBOL(register_md_personality);
8382
8383 int unregister_md_personality(struct md_personality *p)
8384 {
8385 pr_debug("md: %s personality unregistered\n", p->name);
8386 spin_lock(&pers_lock);
8387 list_del_init(&p->list);
8388 spin_unlock(&pers_lock);
8389 return 0;
8390 }
8391 EXPORT_SYMBOL(unregister_md_personality);
8392
8393 int register_md_cluster_operations(struct md_cluster_operations *ops,
8394 struct module *module)
8395 {
8396 int ret = 0;
8397 spin_lock(&pers_lock);
8398 if (md_cluster_ops != NULL)
8399 ret = -EALREADY;
8400 else {
8401 md_cluster_ops = ops;
8402 md_cluster_mod = module;
8403 }
8404 spin_unlock(&pers_lock);
8405 return ret;
8406 }
8407 EXPORT_SYMBOL(register_md_cluster_operations);
8408
8409 int unregister_md_cluster_operations(void)
8410 {
8411 spin_lock(&pers_lock);
8412 md_cluster_ops = NULL;
8413 spin_unlock(&pers_lock);
8414 return 0;
8415 }
8416 EXPORT_SYMBOL(unregister_md_cluster_operations);
8417
8418 int md_setup_cluster(struct mddev *mddev, int nodes)
8419 {
8420 int ret;
8421 if (!md_cluster_ops)
8422 request_module("md-cluster");
8423 spin_lock(&pers_lock);
8424 /* ensure module won't be unloaded */
8425 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8426 pr_warn("can't find md-cluster module or get it's reference.\n");
8427 spin_unlock(&pers_lock);
8428 return -ENOENT;
8429 }
8430 spin_unlock(&pers_lock);
8431
8432 ret = md_cluster_ops->join(mddev, nodes);
8433 if (!ret)
8434 mddev->safemode_delay = 0;
8435 return ret;
8436 }
8437
8438 void md_cluster_stop(struct mddev *mddev)
8439 {
8440 if (!md_cluster_ops)
8441 return;
8442 md_cluster_ops->leave(mddev);
8443 module_put(md_cluster_mod);
8444 }
8445
8446 static int is_mddev_idle(struct mddev *mddev, int init)
8447 {
8448 struct md_rdev *rdev;
8449 int idle;
8450 int curr_events;
8451
8452 idle = 1;
8453 rcu_read_lock();
8454 rdev_for_each_rcu(rdev, mddev) {
8455 struct gendisk *disk = rdev->bdev->bd_disk;
8456 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8457 atomic_read(&disk->sync_io);
8458 /* sync IO will cause sync_io to increase before the disk_stats
8459 * as sync_io is counted when a request starts, and
8460 * disk_stats is counted when it completes.
8461 * So resync activity will cause curr_events to be smaller than
8462 * when there was no such activity.
8463 * non-sync IO will cause disk_stat to increase without
8464 * increasing sync_io so curr_events will (eventually)
8465 * be larger than it was before. Once it becomes
8466 * substantially larger, the test below will cause
8467 * the array to appear non-idle, and resync will slow
8468 * down.
8469 * If there is a lot of outstanding resync activity when
8470 * we set last_event to curr_events, then all that activity
8471 * completing might cause the array to appear non-idle
8472 * and resync will be slowed down even though there might
8473 * not have been non-resync activity. This will only
8474 * happen once though. 'last_events' will soon reflect
8475 * the state where there is little or no outstanding
8476 * resync requests, and further resync activity will
8477 * always make curr_events less than last_events.
8478 *
8479 */
8480 if (init || curr_events - rdev->last_events > 64) {
8481 rdev->last_events = curr_events;
8482 idle = 0;
8483 }
8484 }
8485 rcu_read_unlock();
8486 return idle;
8487 }
8488
8489 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8490 {
8491 /* another "blocks" (512byte) blocks have been synced */
8492 atomic_sub(blocks, &mddev->recovery_active);
8493 wake_up(&mddev->recovery_wait);
8494 if (!ok) {
8495 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8496 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8497 md_wakeup_thread(mddev->thread);
8498 // stop recovery, signal do_sync ....
8499 }
8500 }
8501 EXPORT_SYMBOL(md_done_sync);
8502
8503 /* md_write_start(mddev, bi)
8504 * If we need to update some array metadata (e.g. 'active' flag
8505 * in superblock) before writing, schedule a superblock update
8506 * and wait for it to complete.
8507 * A return value of 'false' means that the write wasn't recorded
8508 * and cannot proceed as the array is being suspend.
8509 */
8510 bool md_write_start(struct mddev *mddev, struct bio *bi)
8511 {
8512 int did_change = 0;
8513
8514 if (bio_data_dir(bi) != WRITE)
8515 return true;
8516
8517 BUG_ON(mddev->ro == 1);
8518 if (mddev->ro == 2) {
8519 /* need to switch to read/write */
8520 mddev->ro = 0;
8521 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8522 md_wakeup_thread(mddev->thread);
8523 md_wakeup_thread(mddev->sync_thread);
8524 did_change = 1;
8525 }
8526 rcu_read_lock();
8527 percpu_ref_get(&mddev->writes_pending);
8528 smp_mb(); /* Match smp_mb in set_in_sync() */
8529 if (mddev->safemode == 1)
8530 mddev->safemode = 0;
8531 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8532 if (mddev->in_sync || mddev->sync_checkers) {
8533 spin_lock(&mddev->lock);
8534 if (mddev->in_sync) {
8535 mddev->in_sync = 0;
8536 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8537 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8538 md_wakeup_thread(mddev->thread);
8539 did_change = 1;
8540 }
8541 spin_unlock(&mddev->lock);
8542 }
8543 rcu_read_unlock();
8544 if (did_change)
8545 sysfs_notify_dirent_safe(mddev->sysfs_state);
8546 if (!mddev->has_superblocks)
8547 return true;
8548 wait_event(mddev->sb_wait,
8549 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8550 mddev->suspended);
8551 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8552 percpu_ref_put(&mddev->writes_pending);
8553 return false;
8554 }
8555 return true;
8556 }
8557 EXPORT_SYMBOL(md_write_start);
8558
8559 /* md_write_inc can only be called when md_write_start() has
8560 * already been called at least once of the current request.
8561 * It increments the counter and is useful when a single request
8562 * is split into several parts. Each part causes an increment and
8563 * so needs a matching md_write_end().
8564 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8565 * a spinlocked region.
8566 */
8567 void md_write_inc(struct mddev *mddev, struct bio *bi)
8568 {
8569 if (bio_data_dir(bi) != WRITE)
8570 return;
8571 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8572 percpu_ref_get(&mddev->writes_pending);
8573 }
8574 EXPORT_SYMBOL(md_write_inc);
8575
8576 void md_write_end(struct mddev *mddev)
8577 {
8578 percpu_ref_put(&mddev->writes_pending);
8579
8580 if (mddev->safemode == 2)
8581 md_wakeup_thread(mddev->thread);
8582 else if (mddev->safemode_delay)
8583 /* The roundup() ensures this only performs locking once
8584 * every ->safemode_delay jiffies
8585 */
8586 mod_timer(&mddev->safemode_timer,
8587 roundup(jiffies, mddev->safemode_delay) +
8588 mddev->safemode_delay);
8589 }
8590
8591 EXPORT_SYMBOL(md_write_end);
8592
8593 /* md_allow_write(mddev)
8594 * Calling this ensures that the array is marked 'active' so that writes
8595 * may proceed without blocking. It is important to call this before
8596 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8597 * Must be called with mddev_lock held.
8598 */
8599 void md_allow_write(struct mddev *mddev)
8600 {
8601 if (!mddev->pers)
8602 return;
8603 if (mddev->ro)
8604 return;
8605 if (!mddev->pers->sync_request)
8606 return;
8607
8608 spin_lock(&mddev->lock);
8609 if (mddev->in_sync) {
8610 mddev->in_sync = 0;
8611 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8612 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8613 if (mddev->safemode_delay &&
8614 mddev->safemode == 0)
8615 mddev->safemode = 1;
8616 spin_unlock(&mddev->lock);
8617 md_update_sb(mddev, 0);
8618 sysfs_notify_dirent_safe(mddev->sysfs_state);
8619 /* wait for the dirty state to be recorded in the metadata */
8620 wait_event(mddev->sb_wait,
8621 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8622 } else
8623 spin_unlock(&mddev->lock);
8624 }
8625 EXPORT_SYMBOL_GPL(md_allow_write);
8626
8627 #define SYNC_MARKS 10
8628 #define SYNC_MARK_STEP (3*HZ)
8629 #define UPDATE_FREQUENCY (5*60*HZ)
8630 void md_do_sync(struct md_thread *thread)
8631 {
8632 struct mddev *mddev = thread->mddev;
8633 struct mddev *mddev2;
8634 unsigned int currspeed = 0, window;
8635 sector_t max_sectors,j, io_sectors, recovery_done;
8636 unsigned long mark[SYNC_MARKS];
8637 unsigned long update_time;
8638 sector_t mark_cnt[SYNC_MARKS];
8639 int last_mark,m;
8640 struct list_head *tmp;
8641 sector_t last_check;
8642 int skipped = 0;
8643 struct md_rdev *rdev;
8644 char *desc, *action = NULL;
8645 struct blk_plug plug;
8646 int ret;
8647
8648 /* just incase thread restarts... */
8649 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8650 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8651 return;
8652 if (mddev->ro) {/* never try to sync a read-only array */
8653 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8654 return;
8655 }
8656
8657 if (mddev_is_clustered(mddev)) {
8658 ret = md_cluster_ops->resync_start(mddev);
8659 if (ret)
8660 goto skip;
8661
8662 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8663 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8664 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8665 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8666 && ((unsigned long long)mddev->curr_resync_completed
8667 < (unsigned long long)mddev->resync_max_sectors))
8668 goto skip;
8669 }
8670
8671 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8672 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8673 desc = "data-check";
8674 action = "check";
8675 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8676 desc = "requested-resync";
8677 action = "repair";
8678 } else
8679 desc = "resync";
8680 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8681 desc = "reshape";
8682 else
8683 desc = "recovery";
8684
8685 mddev->last_sync_action = action ?: desc;
8686
8687 /* we overload curr_resync somewhat here.
8688 * 0 == not engaged in resync at all
8689 * 2 == checking that there is no conflict with another sync
8690 * 1 == like 2, but have yielded to allow conflicting resync to
8691 * commence
8692 * other == active in resync - this many blocks
8693 *
8694 * Before starting a resync we must have set curr_resync to
8695 * 2, and then checked that every "conflicting" array has curr_resync
8696 * less than ours. When we find one that is the same or higher
8697 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8698 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8699 * This will mean we have to start checking from the beginning again.
8700 *
8701 */
8702
8703 do {
8704 int mddev2_minor = -1;
8705 mddev->curr_resync = 2;
8706
8707 try_again:
8708 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8709 goto skip;
8710 for_each_mddev(mddev2, tmp) {
8711 if (mddev2 == mddev)
8712 continue;
8713 if (!mddev->parallel_resync
8714 && mddev2->curr_resync
8715 && match_mddev_units(mddev, mddev2)) {
8716 DEFINE_WAIT(wq);
8717 if (mddev < mddev2 && mddev->curr_resync == 2) {
8718 /* arbitrarily yield */
8719 mddev->curr_resync = 1;
8720 wake_up(&resync_wait);
8721 }
8722 if (mddev > mddev2 && mddev->curr_resync == 1)
8723 /* no need to wait here, we can wait the next
8724 * time 'round when curr_resync == 2
8725 */
8726 continue;
8727 /* We need to wait 'interruptible' so as not to
8728 * contribute to the load average, and not to
8729 * be caught by 'softlockup'
8730 */
8731 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8732 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8733 mddev2->curr_resync >= mddev->curr_resync) {
8734 if (mddev2_minor != mddev2->md_minor) {
8735 mddev2_minor = mddev2->md_minor;
8736 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8737 desc, mdname(mddev),
8738 mdname(mddev2));
8739 }
8740 mddev_put(mddev2);
8741 if (signal_pending(current))
8742 flush_signals(current);
8743 schedule();
8744 finish_wait(&resync_wait, &wq);
8745 goto try_again;
8746 }
8747 finish_wait(&resync_wait, &wq);
8748 }
8749 }
8750 } while (mddev->curr_resync < 2);
8751
8752 j = 0;
8753 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8754 /* resync follows the size requested by the personality,
8755 * which defaults to physical size, but can be virtual size
8756 */
8757 max_sectors = mddev->resync_max_sectors;
8758 atomic64_set(&mddev->resync_mismatches, 0);
8759 /* we don't use the checkpoint if there's a bitmap */
8760 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8761 j = mddev->resync_min;
8762 else if (!mddev->bitmap)
8763 j = mddev->recovery_cp;
8764
8765 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8766 max_sectors = mddev->resync_max_sectors;
8767 /*
8768 * If the original node aborts reshaping then we continue the
8769 * reshaping, so set j again to avoid restart reshape from the
8770 * first beginning
8771 */
8772 if (mddev_is_clustered(mddev) &&
8773 mddev->reshape_position != MaxSector)
8774 j = mddev->reshape_position;
8775 } else {
8776 /* recovery follows the physical size of devices */
8777 max_sectors = mddev->dev_sectors;
8778 j = MaxSector;
8779 rcu_read_lock();
8780 rdev_for_each_rcu(rdev, mddev)
8781 if (rdev->raid_disk >= 0 &&
8782 !test_bit(Journal, &rdev->flags) &&
8783 !test_bit(Faulty, &rdev->flags) &&
8784 !test_bit(In_sync, &rdev->flags) &&
8785 rdev->recovery_offset < j)
8786 j = rdev->recovery_offset;
8787 rcu_read_unlock();
8788
8789 /* If there is a bitmap, we need to make sure all
8790 * writes that started before we added a spare
8791 * complete before we start doing a recovery.
8792 * Otherwise the write might complete and (via
8793 * bitmap_endwrite) set a bit in the bitmap after the
8794 * recovery has checked that bit and skipped that
8795 * region.
8796 */
8797 if (mddev->bitmap) {
8798 mddev->pers->quiesce(mddev, 1);
8799 mddev->pers->quiesce(mddev, 0);
8800 }
8801 }
8802
8803 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8804 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8805 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8806 speed_max(mddev), desc);
8807
8808 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8809
8810 io_sectors = 0;
8811 for (m = 0; m < SYNC_MARKS; m++) {
8812 mark[m] = jiffies;
8813 mark_cnt[m] = io_sectors;
8814 }
8815 last_mark = 0;
8816 mddev->resync_mark = mark[last_mark];
8817 mddev->resync_mark_cnt = mark_cnt[last_mark];
8818
8819 /*
8820 * Tune reconstruction:
8821 */
8822 window = 32 * (PAGE_SIZE / 512);
8823 pr_debug("md: using %dk window, over a total of %lluk.\n",
8824 window/2, (unsigned long long)max_sectors/2);
8825
8826 atomic_set(&mddev->recovery_active, 0);
8827 last_check = 0;
8828
8829 if (j>2) {
8830 pr_debug("md: resuming %s of %s from checkpoint.\n",
8831 desc, mdname(mddev));
8832 mddev->curr_resync = j;
8833 } else
8834 mddev->curr_resync = 3; /* no longer delayed */
8835 mddev->curr_resync_completed = j;
8836 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8837 md_new_event(mddev);
8838 update_time = jiffies;
8839
8840 blk_start_plug(&plug);
8841 while (j < max_sectors) {
8842 sector_t sectors;
8843
8844 skipped = 0;
8845
8846 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8847 ((mddev->curr_resync > mddev->curr_resync_completed &&
8848 (mddev->curr_resync - mddev->curr_resync_completed)
8849 > (max_sectors >> 4)) ||
8850 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8851 (j - mddev->curr_resync_completed)*2
8852 >= mddev->resync_max - mddev->curr_resync_completed ||
8853 mddev->curr_resync_completed > mddev->resync_max
8854 )) {
8855 /* time to update curr_resync_completed */
8856 wait_event(mddev->recovery_wait,
8857 atomic_read(&mddev->recovery_active) == 0);
8858 mddev->curr_resync_completed = j;
8859 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8860 j > mddev->recovery_cp)
8861 mddev->recovery_cp = j;
8862 update_time = jiffies;
8863 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8864 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8865 }
8866
8867 while (j >= mddev->resync_max &&
8868 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8869 /* As this condition is controlled by user-space,
8870 * we can block indefinitely, so use '_interruptible'
8871 * to avoid triggering warnings.
8872 */
8873 flush_signals(current); /* just in case */
8874 wait_event_interruptible(mddev->recovery_wait,
8875 mddev->resync_max > j
8876 || test_bit(MD_RECOVERY_INTR,
8877 &mddev->recovery));
8878 }
8879
8880 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8881 break;
8882
8883 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8884 if (sectors == 0) {
8885 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8886 break;
8887 }
8888
8889 if (!skipped) { /* actual IO requested */
8890 io_sectors += sectors;
8891 atomic_add(sectors, &mddev->recovery_active);
8892 }
8893
8894 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8895 break;
8896
8897 j += sectors;
8898 if (j > max_sectors)
8899 /* when skipping, extra large numbers can be returned. */
8900 j = max_sectors;
8901 if (j > 2)
8902 mddev->curr_resync = j;
8903 mddev->curr_mark_cnt = io_sectors;
8904 if (last_check == 0)
8905 /* this is the earliest that rebuild will be
8906 * visible in /proc/mdstat
8907 */
8908 md_new_event(mddev);
8909
8910 if (last_check + window > io_sectors || j == max_sectors)
8911 continue;
8912
8913 last_check = io_sectors;
8914 repeat:
8915 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8916 /* step marks */
8917 int next = (last_mark+1) % SYNC_MARKS;
8918
8919 mddev->resync_mark = mark[next];
8920 mddev->resync_mark_cnt = mark_cnt[next];
8921 mark[next] = jiffies;
8922 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8923 last_mark = next;
8924 }
8925
8926 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8927 break;
8928
8929 /*
8930 * this loop exits only if either when we are slower than
8931 * the 'hard' speed limit, or the system was IO-idle for
8932 * a jiffy.
8933 * the system might be non-idle CPU-wise, but we only care
8934 * about not overloading the IO subsystem. (things like an
8935 * e2fsck being done on the RAID array should execute fast)
8936 */
8937 cond_resched();
8938
8939 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8940 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8941 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8942
8943 if (currspeed > speed_min(mddev)) {
8944 if (currspeed > speed_max(mddev)) {
8945 msleep(500);
8946 goto repeat;
8947 }
8948 if (!is_mddev_idle(mddev, 0)) {
8949 /*
8950 * Give other IO more of a chance.
8951 * The faster the devices, the less we wait.
8952 */
8953 wait_event(mddev->recovery_wait,
8954 !atomic_read(&mddev->recovery_active));
8955 }
8956 }
8957 }
8958 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8959 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8960 ? "interrupted" : "done");
8961 /*
8962 * this also signals 'finished resyncing' to md_stop
8963 */
8964 blk_finish_plug(&plug);
8965 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8966
8967 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8968 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8969 mddev->curr_resync > 3) {
8970 mddev->curr_resync_completed = mddev->curr_resync;
8971 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8972 }
8973 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8974
8975 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8976 mddev->curr_resync > 3) {
8977 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8978 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8979 if (mddev->curr_resync >= mddev->recovery_cp) {
8980 pr_debug("md: checkpointing %s of %s.\n",
8981 desc, mdname(mddev));
8982 if (test_bit(MD_RECOVERY_ERROR,
8983 &mddev->recovery))
8984 mddev->recovery_cp =
8985 mddev->curr_resync_completed;
8986 else
8987 mddev->recovery_cp =
8988 mddev->curr_resync;
8989 }
8990 } else
8991 mddev->recovery_cp = MaxSector;
8992 } else {
8993 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8994 mddev->curr_resync = MaxSector;
8995 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8996 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
8997 rcu_read_lock();
8998 rdev_for_each_rcu(rdev, mddev)
8999 if (rdev->raid_disk >= 0 &&
9000 mddev->delta_disks >= 0 &&
9001 !test_bit(Journal, &rdev->flags) &&
9002 !test_bit(Faulty, &rdev->flags) &&
9003 !test_bit(In_sync, &rdev->flags) &&
9004 rdev->recovery_offset < mddev->curr_resync)
9005 rdev->recovery_offset = mddev->curr_resync;
9006 rcu_read_unlock();
9007 }
9008 }
9009 }
9010 skip:
9011 /* set CHANGE_PENDING here since maybe another update is needed,
9012 * so other nodes are informed. It should be harmless for normal
9013 * raid */
9014 set_mask_bits(&mddev->sb_flags, 0,
9015 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9016
9017 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9018 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9019 mddev->delta_disks > 0 &&
9020 mddev->pers->finish_reshape &&
9021 mddev->pers->size &&
9022 mddev->queue) {
9023 mddev_lock_nointr(mddev);
9024 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9025 mddev_unlock(mddev);
9026 if (!mddev_is_clustered(mddev))
9027 set_capacity_and_notify(mddev->gendisk,
9028 mddev->array_sectors);
9029 }
9030
9031 spin_lock(&mddev->lock);
9032 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9033 /* We completed so min/max setting can be forgotten if used. */
9034 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9035 mddev->resync_min = 0;
9036 mddev->resync_max = MaxSector;
9037 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9038 mddev->resync_min = mddev->curr_resync_completed;
9039 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9040 mddev->curr_resync = 0;
9041 spin_unlock(&mddev->lock);
9042
9043 wake_up(&resync_wait);
9044 md_wakeup_thread(mddev->thread);
9045 return;
9046 }
9047 EXPORT_SYMBOL_GPL(md_do_sync);
9048
9049 static int remove_and_add_spares(struct mddev *mddev,
9050 struct md_rdev *this)
9051 {
9052 struct md_rdev *rdev;
9053 int spares = 0;
9054 int removed = 0;
9055 bool remove_some = false;
9056
9057 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9058 /* Mustn't remove devices when resync thread is running */
9059 return 0;
9060
9061 rdev_for_each(rdev, mddev) {
9062 if ((this == NULL || rdev == this) &&
9063 rdev->raid_disk >= 0 &&
9064 !test_bit(Blocked, &rdev->flags) &&
9065 test_bit(Faulty, &rdev->flags) &&
9066 atomic_read(&rdev->nr_pending)==0) {
9067 /* Faulty non-Blocked devices with nr_pending == 0
9068 * never get nr_pending incremented,
9069 * never get Faulty cleared, and never get Blocked set.
9070 * So we can synchronize_rcu now rather than once per device
9071 */
9072 remove_some = true;
9073 set_bit(RemoveSynchronized, &rdev->flags);
9074 }
9075 }
9076
9077 if (remove_some)
9078 synchronize_rcu();
9079 rdev_for_each(rdev, mddev) {
9080 if ((this == NULL || rdev == this) &&
9081 rdev->raid_disk >= 0 &&
9082 !test_bit(Blocked, &rdev->flags) &&
9083 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9084 (!test_bit(In_sync, &rdev->flags) &&
9085 !test_bit(Journal, &rdev->flags))) &&
9086 atomic_read(&rdev->nr_pending)==0)) {
9087 if (mddev->pers->hot_remove_disk(
9088 mddev, rdev) == 0) {
9089 sysfs_unlink_rdev(mddev, rdev);
9090 rdev->saved_raid_disk = rdev->raid_disk;
9091 rdev->raid_disk = -1;
9092 removed++;
9093 }
9094 }
9095 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9096 clear_bit(RemoveSynchronized, &rdev->flags);
9097 }
9098
9099 if (removed && mddev->kobj.sd)
9100 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9101
9102 if (this && removed)
9103 goto no_add;
9104
9105 rdev_for_each(rdev, mddev) {
9106 if (this && this != rdev)
9107 continue;
9108 if (test_bit(Candidate, &rdev->flags))
9109 continue;
9110 if (rdev->raid_disk >= 0 &&
9111 !test_bit(In_sync, &rdev->flags) &&
9112 !test_bit(Journal, &rdev->flags) &&
9113 !test_bit(Faulty, &rdev->flags))
9114 spares++;
9115 if (rdev->raid_disk >= 0)
9116 continue;
9117 if (test_bit(Faulty, &rdev->flags))
9118 continue;
9119 if (!test_bit(Journal, &rdev->flags)) {
9120 if (mddev->ro &&
9121 ! (rdev->saved_raid_disk >= 0 &&
9122 !test_bit(Bitmap_sync, &rdev->flags)))
9123 continue;
9124
9125 rdev->recovery_offset = 0;
9126 }
9127 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9128 /* failure here is OK */
9129 sysfs_link_rdev(mddev, rdev);
9130 if (!test_bit(Journal, &rdev->flags))
9131 spares++;
9132 md_new_event(mddev);
9133 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9134 }
9135 }
9136 no_add:
9137 if (removed)
9138 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9139 return spares;
9140 }
9141
9142 static void md_start_sync(struct work_struct *ws)
9143 {
9144 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9145
9146 mddev->sync_thread = md_register_thread(md_do_sync,
9147 mddev,
9148 "resync");
9149 if (!mddev->sync_thread) {
9150 pr_warn("%s: could not start resync thread...\n",
9151 mdname(mddev));
9152 /* leave the spares where they are, it shouldn't hurt */
9153 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9154 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9155 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9156 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9157 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9158 wake_up(&resync_wait);
9159 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9160 &mddev->recovery))
9161 if (mddev->sysfs_action)
9162 sysfs_notify_dirent_safe(mddev->sysfs_action);
9163 } else
9164 md_wakeup_thread(mddev->sync_thread);
9165 sysfs_notify_dirent_safe(mddev->sysfs_action);
9166 md_new_event(mddev);
9167 }
9168
9169 /*
9170 * This routine is regularly called by all per-raid-array threads to
9171 * deal with generic issues like resync and super-block update.
9172 * Raid personalities that don't have a thread (linear/raid0) do not
9173 * need this as they never do any recovery or update the superblock.
9174 *
9175 * It does not do any resync itself, but rather "forks" off other threads
9176 * to do that as needed.
9177 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9178 * "->recovery" and create a thread at ->sync_thread.
9179 * When the thread finishes it sets MD_RECOVERY_DONE
9180 * and wakeups up this thread which will reap the thread and finish up.
9181 * This thread also removes any faulty devices (with nr_pending == 0).
9182 *
9183 * The overall approach is:
9184 * 1/ if the superblock needs updating, update it.
9185 * 2/ If a recovery thread is running, don't do anything else.
9186 * 3/ If recovery has finished, clean up, possibly marking spares active.
9187 * 4/ If there are any faulty devices, remove them.
9188 * 5/ If array is degraded, try to add spares devices
9189 * 6/ If array has spares or is not in-sync, start a resync thread.
9190 */
9191 void md_check_recovery(struct mddev *mddev)
9192 {
9193 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9194 /* Write superblock - thread that called mddev_suspend()
9195 * holds reconfig_mutex for us.
9196 */
9197 set_bit(MD_UPDATING_SB, &mddev->flags);
9198 smp_mb__after_atomic();
9199 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9200 md_update_sb(mddev, 0);
9201 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9202 wake_up(&mddev->sb_wait);
9203 }
9204
9205 if (mddev->suspended)
9206 return;
9207
9208 if (mddev->bitmap)
9209 md_bitmap_daemon_work(mddev);
9210
9211 if (signal_pending(current)) {
9212 if (mddev->pers->sync_request && !mddev->external) {
9213 pr_debug("md: %s in immediate safe mode\n",
9214 mdname(mddev));
9215 mddev->safemode = 2;
9216 }
9217 flush_signals(current);
9218 }
9219
9220 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9221 return;
9222 if ( ! (
9223 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9224 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9225 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9226 (mddev->external == 0 && mddev->safemode == 1) ||
9227 (mddev->safemode == 2
9228 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9229 ))
9230 return;
9231
9232 if (mddev_trylock(mddev)) {
9233 int spares = 0;
9234 bool try_set_sync = mddev->safemode != 0;
9235
9236 if (!mddev->external && mddev->safemode == 1)
9237 mddev->safemode = 0;
9238
9239 if (mddev->ro) {
9240 struct md_rdev *rdev;
9241 if (!mddev->external && mddev->in_sync)
9242 /* 'Blocked' flag not needed as failed devices
9243 * will be recorded if array switched to read/write.
9244 * Leaving it set will prevent the device
9245 * from being removed.
9246 */
9247 rdev_for_each(rdev, mddev)
9248 clear_bit(Blocked, &rdev->flags);
9249 /* On a read-only array we can:
9250 * - remove failed devices
9251 * - add already-in_sync devices if the array itself
9252 * is in-sync.
9253 * As we only add devices that are already in-sync,
9254 * we can activate the spares immediately.
9255 */
9256 remove_and_add_spares(mddev, NULL);
9257 /* There is no thread, but we need to call
9258 * ->spare_active and clear saved_raid_disk
9259 */
9260 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9261 md_reap_sync_thread(mddev);
9262 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9263 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9264 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9265 goto unlock;
9266 }
9267
9268 if (mddev_is_clustered(mddev)) {
9269 struct md_rdev *rdev;
9270 /* kick the device if another node issued a
9271 * remove disk.
9272 */
9273 rdev_for_each(rdev, mddev) {
9274 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9275 rdev->raid_disk < 0)
9276 md_kick_rdev_from_array(rdev);
9277 }
9278 }
9279
9280 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9281 spin_lock(&mddev->lock);
9282 set_in_sync(mddev);
9283 spin_unlock(&mddev->lock);
9284 }
9285
9286 if (mddev->sb_flags)
9287 md_update_sb(mddev, 0);
9288
9289 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9290 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9291 /* resync/recovery still happening */
9292 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9293 goto unlock;
9294 }
9295 if (mddev->sync_thread) {
9296 md_reap_sync_thread(mddev);
9297 goto unlock;
9298 }
9299 /* Set RUNNING before clearing NEEDED to avoid
9300 * any transients in the value of "sync_action".
9301 */
9302 mddev->curr_resync_completed = 0;
9303 spin_lock(&mddev->lock);
9304 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9305 spin_unlock(&mddev->lock);
9306 /* Clear some bits that don't mean anything, but
9307 * might be left set
9308 */
9309 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9310 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9311
9312 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9313 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9314 goto not_running;
9315 /* no recovery is running.
9316 * remove any failed drives, then
9317 * add spares if possible.
9318 * Spares are also removed and re-added, to allow
9319 * the personality to fail the re-add.
9320 */
9321
9322 if (mddev->reshape_position != MaxSector) {
9323 if (mddev->pers->check_reshape == NULL ||
9324 mddev->pers->check_reshape(mddev) != 0)
9325 /* Cannot proceed */
9326 goto not_running;
9327 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9328 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9329 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9330 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9331 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9332 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9333 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9334 } else if (mddev->recovery_cp < MaxSector) {
9335 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9336 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9337 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9338 /* nothing to be done ... */
9339 goto not_running;
9340
9341 if (mddev->pers->sync_request) {
9342 if (spares) {
9343 /* We are adding a device or devices to an array
9344 * which has the bitmap stored on all devices.
9345 * So make sure all bitmap pages get written
9346 */
9347 md_bitmap_write_all(mddev->bitmap);
9348 }
9349 INIT_WORK(&mddev->del_work, md_start_sync);
9350 queue_work(md_misc_wq, &mddev->del_work);
9351 goto unlock;
9352 }
9353 not_running:
9354 if (!mddev->sync_thread) {
9355 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9356 wake_up(&resync_wait);
9357 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9358 &mddev->recovery))
9359 if (mddev->sysfs_action)
9360 sysfs_notify_dirent_safe(mddev->sysfs_action);
9361 }
9362 unlock:
9363 wake_up(&mddev->sb_wait);
9364 mddev_unlock(mddev);
9365 }
9366 }
9367 EXPORT_SYMBOL(md_check_recovery);
9368
9369 void md_reap_sync_thread(struct mddev *mddev)
9370 {
9371 struct md_rdev *rdev;
9372 sector_t old_dev_sectors = mddev->dev_sectors;
9373 bool is_reshaped = false;
9374
9375 /* resync has finished, collect result */
9376 md_unregister_thread(&mddev->sync_thread);
9377 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9378 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9379 mddev->degraded != mddev->raid_disks) {
9380 /* success...*/
9381 /* activate any spares */
9382 if (mddev->pers->spare_active(mddev)) {
9383 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9384 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9385 }
9386 }
9387 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9388 mddev->pers->finish_reshape) {
9389 mddev->pers->finish_reshape(mddev);
9390 if (mddev_is_clustered(mddev))
9391 is_reshaped = true;
9392 }
9393
9394 /* If array is no-longer degraded, then any saved_raid_disk
9395 * information must be scrapped.
9396 */
9397 if (!mddev->degraded)
9398 rdev_for_each(rdev, mddev)
9399 rdev->saved_raid_disk = -1;
9400
9401 md_update_sb(mddev, 1);
9402 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9403 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9404 * clustered raid */
9405 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9406 md_cluster_ops->resync_finish(mddev);
9407 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9408 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9409 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9410 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9411 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9412 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9413 /*
9414 * We call md_cluster_ops->update_size here because sync_size could
9415 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9416 * so it is time to update size across cluster.
9417 */
9418 if (mddev_is_clustered(mddev) && is_reshaped
9419 && !test_bit(MD_CLOSING, &mddev->flags))
9420 md_cluster_ops->update_size(mddev, old_dev_sectors);
9421 wake_up(&resync_wait);
9422 /* flag recovery needed just to double check */
9423 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9424 sysfs_notify_dirent_safe(mddev->sysfs_action);
9425 md_new_event(mddev);
9426 if (mddev->event_work.func)
9427 queue_work(md_misc_wq, &mddev->event_work);
9428 }
9429 EXPORT_SYMBOL(md_reap_sync_thread);
9430
9431 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9432 {
9433 sysfs_notify_dirent_safe(rdev->sysfs_state);
9434 wait_event_timeout(rdev->blocked_wait,
9435 !test_bit(Blocked, &rdev->flags) &&
9436 !test_bit(BlockedBadBlocks, &rdev->flags),
9437 msecs_to_jiffies(5000));
9438 rdev_dec_pending(rdev, mddev);
9439 }
9440 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9441
9442 void md_finish_reshape(struct mddev *mddev)
9443 {
9444 /* called be personality module when reshape completes. */
9445 struct md_rdev *rdev;
9446
9447 rdev_for_each(rdev, mddev) {
9448 if (rdev->data_offset > rdev->new_data_offset)
9449 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9450 else
9451 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9452 rdev->data_offset = rdev->new_data_offset;
9453 }
9454 }
9455 EXPORT_SYMBOL(md_finish_reshape);
9456
9457 /* Bad block management */
9458
9459 /* Returns 1 on success, 0 on failure */
9460 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9461 int is_new)
9462 {
9463 struct mddev *mddev = rdev->mddev;
9464 int rv;
9465 if (is_new)
9466 s += rdev->new_data_offset;
9467 else
9468 s += rdev->data_offset;
9469 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9470 if (rv == 0) {
9471 /* Make sure they get written out promptly */
9472 if (test_bit(ExternalBbl, &rdev->flags))
9473 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9474 sysfs_notify_dirent_safe(rdev->sysfs_state);
9475 set_mask_bits(&mddev->sb_flags, 0,
9476 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9477 md_wakeup_thread(rdev->mddev->thread);
9478 return 1;
9479 } else
9480 return 0;
9481 }
9482 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9483
9484 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9485 int is_new)
9486 {
9487 int rv;
9488 if (is_new)
9489 s += rdev->new_data_offset;
9490 else
9491 s += rdev->data_offset;
9492 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9493 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9494 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9495 return rv;
9496 }
9497 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9498
9499 static int md_notify_reboot(struct notifier_block *this,
9500 unsigned long code, void *x)
9501 {
9502 struct list_head *tmp;
9503 struct mddev *mddev;
9504 int need_delay = 0;
9505
9506 for_each_mddev(mddev, tmp) {
9507 if (mddev_trylock(mddev)) {
9508 if (mddev->pers)
9509 __md_stop_writes(mddev);
9510 if (mddev->persistent)
9511 mddev->safemode = 2;
9512 mddev_unlock(mddev);
9513 }
9514 need_delay = 1;
9515 }
9516 /*
9517 * certain more exotic SCSI devices are known to be
9518 * volatile wrt too early system reboots. While the
9519 * right place to handle this issue is the given
9520 * driver, we do want to have a safe RAID driver ...
9521 */
9522 if (need_delay)
9523 mdelay(1000*1);
9524
9525 return NOTIFY_DONE;
9526 }
9527
9528 static struct notifier_block md_notifier = {
9529 .notifier_call = md_notify_reboot,
9530 .next = NULL,
9531 .priority = INT_MAX, /* before any real devices */
9532 };
9533
9534 static void md_geninit(void)
9535 {
9536 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9537
9538 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9539 }
9540
9541 static int __init md_init(void)
9542 {
9543 int ret = -ENOMEM;
9544
9545 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9546 if (!md_wq)
9547 goto err_wq;
9548
9549 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9550 if (!md_misc_wq)
9551 goto err_misc_wq;
9552
9553 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9554 if (!md_rdev_misc_wq)
9555 goto err_rdev_misc_wq;
9556
9557 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9558 if (ret < 0)
9559 goto err_md;
9560
9561 ret = __register_blkdev(0, "mdp", md_probe);
9562 if (ret < 0)
9563 goto err_mdp;
9564 mdp_major = ret;
9565
9566 register_reboot_notifier(&md_notifier);
9567 raid_table_header = register_sysctl_table(raid_root_table);
9568
9569 md_geninit();
9570 return 0;
9571
9572 err_mdp:
9573 unregister_blkdev(MD_MAJOR, "md");
9574 err_md:
9575 destroy_workqueue(md_rdev_misc_wq);
9576 err_rdev_misc_wq:
9577 destroy_workqueue(md_misc_wq);
9578 err_misc_wq:
9579 destroy_workqueue(md_wq);
9580 err_wq:
9581 return ret;
9582 }
9583
9584 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9585 {
9586 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9587 struct md_rdev *rdev2;
9588 int role, ret;
9589 char b[BDEVNAME_SIZE];
9590
9591 /*
9592 * If size is changed in another node then we need to
9593 * do resize as well.
9594 */
9595 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9596 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9597 if (ret)
9598 pr_info("md-cluster: resize failed\n");
9599 else
9600 md_bitmap_update_sb(mddev->bitmap);
9601 }
9602
9603 /* Check for change of roles in the active devices */
9604 rdev_for_each(rdev2, mddev) {
9605 if (test_bit(Faulty, &rdev2->flags))
9606 continue;
9607
9608 /* Check if the roles changed */
9609 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9610
9611 if (test_bit(Candidate, &rdev2->flags)) {
9612 if (role == 0xfffe) {
9613 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9614 md_kick_rdev_from_array(rdev2);
9615 continue;
9616 }
9617 else
9618 clear_bit(Candidate, &rdev2->flags);
9619 }
9620
9621 if (role != rdev2->raid_disk) {
9622 /*
9623 * got activated except reshape is happening.
9624 */
9625 if (rdev2->raid_disk == -1 && role != 0xffff &&
9626 !(le32_to_cpu(sb->feature_map) &
9627 MD_FEATURE_RESHAPE_ACTIVE)) {
9628 rdev2->saved_raid_disk = role;
9629 ret = remove_and_add_spares(mddev, rdev2);
9630 pr_info("Activated spare: %s\n",
9631 bdevname(rdev2->bdev,b));
9632 /* wakeup mddev->thread here, so array could
9633 * perform resync with the new activated disk */
9634 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9635 md_wakeup_thread(mddev->thread);
9636 }
9637 /* device faulty
9638 * We just want to do the minimum to mark the disk
9639 * as faulty. The recovery is performed by the
9640 * one who initiated the error.
9641 */
9642 if ((role == 0xfffe) || (role == 0xfffd)) {
9643 md_error(mddev, rdev2);
9644 clear_bit(Blocked, &rdev2->flags);
9645 }
9646 }
9647 }
9648
9649 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9650 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9651 if (ret)
9652 pr_warn("md: updating array disks failed. %d\n", ret);
9653 }
9654
9655 /*
9656 * Since mddev->delta_disks has already updated in update_raid_disks,
9657 * so it is time to check reshape.
9658 */
9659 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9660 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9661 /*
9662 * reshape is happening in the remote node, we need to
9663 * update reshape_position and call start_reshape.
9664 */
9665 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9666 if (mddev->pers->update_reshape_pos)
9667 mddev->pers->update_reshape_pos(mddev);
9668 if (mddev->pers->start_reshape)
9669 mddev->pers->start_reshape(mddev);
9670 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9671 mddev->reshape_position != MaxSector &&
9672 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9673 /* reshape is just done in another node. */
9674 mddev->reshape_position = MaxSector;
9675 if (mddev->pers->update_reshape_pos)
9676 mddev->pers->update_reshape_pos(mddev);
9677 }
9678
9679 /* Finally set the event to be up to date */
9680 mddev->events = le64_to_cpu(sb->events);
9681 }
9682
9683 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9684 {
9685 int err;
9686 struct page *swapout = rdev->sb_page;
9687 struct mdp_superblock_1 *sb;
9688
9689 /* Store the sb page of the rdev in the swapout temporary
9690 * variable in case we err in the future
9691 */
9692 rdev->sb_page = NULL;
9693 err = alloc_disk_sb(rdev);
9694 if (err == 0) {
9695 ClearPageUptodate(rdev->sb_page);
9696 rdev->sb_loaded = 0;
9697 err = super_types[mddev->major_version].
9698 load_super(rdev, NULL, mddev->minor_version);
9699 }
9700 if (err < 0) {
9701 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9702 __func__, __LINE__, rdev->desc_nr, err);
9703 if (rdev->sb_page)
9704 put_page(rdev->sb_page);
9705 rdev->sb_page = swapout;
9706 rdev->sb_loaded = 1;
9707 return err;
9708 }
9709
9710 sb = page_address(rdev->sb_page);
9711 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9712 * is not set
9713 */
9714
9715 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9716 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9717
9718 /* The other node finished recovery, call spare_active to set
9719 * device In_sync and mddev->degraded
9720 */
9721 if (rdev->recovery_offset == MaxSector &&
9722 !test_bit(In_sync, &rdev->flags) &&
9723 mddev->pers->spare_active(mddev))
9724 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9725
9726 put_page(swapout);
9727 return 0;
9728 }
9729
9730 void md_reload_sb(struct mddev *mddev, int nr)
9731 {
9732 struct md_rdev *rdev;
9733 int err;
9734
9735 /* Find the rdev */
9736 rdev_for_each_rcu(rdev, mddev) {
9737 if (rdev->desc_nr == nr)
9738 break;
9739 }
9740
9741 if (!rdev || rdev->desc_nr != nr) {
9742 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9743 return;
9744 }
9745
9746 err = read_rdev(mddev, rdev);
9747 if (err < 0)
9748 return;
9749
9750 check_sb_changes(mddev, rdev);
9751
9752 /* Read all rdev's to update recovery_offset */
9753 rdev_for_each_rcu(rdev, mddev) {
9754 if (!test_bit(Faulty, &rdev->flags))
9755 read_rdev(mddev, rdev);
9756 }
9757 }
9758 EXPORT_SYMBOL(md_reload_sb);
9759
9760 #ifndef MODULE
9761
9762 /*
9763 * Searches all registered partitions for autorun RAID arrays
9764 * at boot time.
9765 */
9766
9767 static DEFINE_MUTEX(detected_devices_mutex);
9768 static LIST_HEAD(all_detected_devices);
9769 struct detected_devices_node {
9770 struct list_head list;
9771 dev_t dev;
9772 };
9773
9774 void md_autodetect_dev(dev_t dev)
9775 {
9776 struct detected_devices_node *node_detected_dev;
9777
9778 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9779 if (node_detected_dev) {
9780 node_detected_dev->dev = dev;
9781 mutex_lock(&detected_devices_mutex);
9782 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9783 mutex_unlock(&detected_devices_mutex);
9784 }
9785 }
9786
9787 void md_autostart_arrays(int part)
9788 {
9789 struct md_rdev *rdev;
9790 struct detected_devices_node *node_detected_dev;
9791 dev_t dev;
9792 int i_scanned, i_passed;
9793
9794 i_scanned = 0;
9795 i_passed = 0;
9796
9797 pr_info("md: Autodetecting RAID arrays.\n");
9798
9799 mutex_lock(&detected_devices_mutex);
9800 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9801 i_scanned++;
9802 node_detected_dev = list_entry(all_detected_devices.next,
9803 struct detected_devices_node, list);
9804 list_del(&node_detected_dev->list);
9805 dev = node_detected_dev->dev;
9806 kfree(node_detected_dev);
9807 mutex_unlock(&detected_devices_mutex);
9808 rdev = md_import_device(dev,0, 90);
9809 mutex_lock(&detected_devices_mutex);
9810 if (IS_ERR(rdev))
9811 continue;
9812
9813 if (test_bit(Faulty, &rdev->flags))
9814 continue;
9815
9816 set_bit(AutoDetected, &rdev->flags);
9817 list_add(&rdev->same_set, &pending_raid_disks);
9818 i_passed++;
9819 }
9820 mutex_unlock(&detected_devices_mutex);
9821
9822 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9823
9824 autorun_devices(part);
9825 }
9826
9827 #endif /* !MODULE */
9828
9829 static __exit void md_exit(void)
9830 {
9831 struct mddev *mddev;
9832 struct list_head *tmp;
9833 int delay = 1;
9834
9835 unregister_blkdev(MD_MAJOR,"md");
9836 unregister_blkdev(mdp_major, "mdp");
9837 unregister_reboot_notifier(&md_notifier);
9838 unregister_sysctl_table(raid_table_header);
9839
9840 /* We cannot unload the modules while some process is
9841 * waiting for us in select() or poll() - wake them up
9842 */
9843 md_unloading = 1;
9844 while (waitqueue_active(&md_event_waiters)) {
9845 /* not safe to leave yet */
9846 wake_up(&md_event_waiters);
9847 msleep(delay);
9848 delay += delay;
9849 }
9850 remove_proc_entry("mdstat", NULL);
9851
9852 for_each_mddev(mddev, tmp) {
9853 export_array(mddev);
9854 mddev->ctime = 0;
9855 mddev->hold_active = 0;
9856 /*
9857 * for_each_mddev() will call mddev_put() at the end of each
9858 * iteration. As the mddev is now fully clear, this will
9859 * schedule the mddev for destruction by a workqueue, and the
9860 * destroy_workqueue() below will wait for that to complete.
9861 */
9862 }
9863 destroy_workqueue(md_rdev_misc_wq);
9864 destroy_workqueue(md_misc_wq);
9865 destroy_workqueue(md_wq);
9866 }
9867
9868 subsys_initcall(md_init);
9869 module_exit(md_exit)
9870
9871 static int get_ro(char *buffer, const struct kernel_param *kp)
9872 {
9873 return sprintf(buffer, "%d\n", start_readonly);
9874 }
9875 static int set_ro(const char *val, const struct kernel_param *kp)
9876 {
9877 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9878 }
9879
9880 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9881 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9882 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9883 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9884
9885 MODULE_LICENSE("GPL");
9886 MODULE_DESCRIPTION("MD RAID framework");
9887 MODULE_ALIAS("md");
9888 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);