]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/md.c
md: remove unnecessary test for MD_MAJOR in md_ioctl()
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187 * We have a system wide 'event count' that is incremented
188 * on any 'interesting' event, and readers of /proc/mdstat
189 * can use 'poll' or 'select' to find out when the event
190 * count increases.
191 *
192 * Events are:
193 * start array, stop array, error, add device, remove device,
194 * start build, activate spare
195 */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 atomic_inc(&md_event_count);
201 wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206 * when calling sysfs_notify isn't needed.
207 */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 atomic_inc(&md_event_count);
211 wake_up(&md_event_waiters);
212 }
213
214 /*
215 * Enables to iterate over all existing md arrays
216 * all_mddevs_lock protects this list.
217 */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221 /*
222 * iterates through all used mddevs in the system.
223 * We take care to grab the all_mddevs_lock whenever navigating
224 * the list, and to always hold a refcount when unlocked.
225 * Any code which breaks out of this loop while own
226 * a reference to the current mddev and must mddev_put it.
227 */
228 #define for_each_mddev(_mddev,_tmp) \
229 \
230 for (({ spin_lock(&all_mddevs_lock); \
231 _tmp = all_mddevs.next; \
232 _mddev = NULL;}); \
233 ({ if (_tmp != &all_mddevs) \
234 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
235 spin_unlock(&all_mddevs_lock); \
236 if (_mddev) mddev_put(_mddev); \
237 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
238 _tmp != &all_mddevs;}); \
239 ({ spin_lock(&all_mddevs_lock); \
240 _tmp = _tmp->next;}) \
241 )
242
243 /* Rather than calling directly into the personality make_request function,
244 * IO requests come here first so that we can check if the device is
245 * being suspended pending a reconfiguration.
246 * We hold a refcount over the call to ->make_request. By the time that
247 * call has finished, the bio has been linked into some internal structure
248 * and so is visible to ->quiesce(), so we don't need the refcount any more.
249 */
250 static void md_make_request(struct request_queue *q, struct bio *bio)
251 {
252 const int rw = bio_data_dir(bio);
253 struct mddev *mddev = q->queuedata;
254 int cpu;
255 unsigned int sectors;
256
257 if (mddev == NULL || mddev->pers == NULL
258 || !mddev->ready) {
259 bio_io_error(bio);
260 return;
261 }
262 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
263 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
264 return;
265 }
266 smp_rmb(); /* Ensure implications of 'active' are visible */
267 rcu_read_lock();
268 if (mddev->suspended) {
269 DEFINE_WAIT(__wait);
270 for (;;) {
271 prepare_to_wait(&mddev->sb_wait, &__wait,
272 TASK_UNINTERRUPTIBLE);
273 if (!mddev->suspended)
274 break;
275 rcu_read_unlock();
276 schedule();
277 rcu_read_lock();
278 }
279 finish_wait(&mddev->sb_wait, &__wait);
280 }
281 atomic_inc(&mddev->active_io);
282 rcu_read_unlock();
283
284 /*
285 * save the sectors now since our bio can
286 * go away inside make_request
287 */
288 sectors = bio_sectors(bio);
289 mddev->pers->make_request(mddev, bio);
290
291 cpu = part_stat_lock();
292 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294 part_stat_unlock();
295
296 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297 wake_up(&mddev->sb_wait);
298 }
299
300 /* mddev_suspend makes sure no new requests are submitted
301 * to the device, and that any requests that have been submitted
302 * are completely handled.
303 * Once ->stop is called and completes, the module will be completely
304 * unused.
305 */
306 void mddev_suspend(struct mddev *mddev)
307 {
308 BUG_ON(mddev->suspended);
309 mddev->suspended = 1;
310 synchronize_rcu();
311 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
312 mddev->pers->quiesce(mddev, 1);
313
314 del_timer_sync(&mddev->safemode_timer);
315 }
316 EXPORT_SYMBOL_GPL(mddev_suspend);
317
318 void mddev_resume(struct mddev *mddev)
319 {
320 mddev->suspended = 0;
321 wake_up(&mddev->sb_wait);
322 mddev->pers->quiesce(mddev, 0);
323
324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
325 md_wakeup_thread(mddev->thread);
326 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
327 }
328 EXPORT_SYMBOL_GPL(mddev_resume);
329
330 int mddev_congested(struct mddev *mddev, int bits)
331 {
332 return mddev->suspended;
333 }
334 EXPORT_SYMBOL(mddev_congested);
335
336 /*
337 * Generic flush handling for md
338 */
339
340 static void md_end_flush(struct bio *bio, int err)
341 {
342 struct md_rdev *rdev = bio->bi_private;
343 struct mddev *mddev = rdev->mddev;
344
345 rdev_dec_pending(rdev, mddev);
346
347 if (atomic_dec_and_test(&mddev->flush_pending)) {
348 /* The pre-request flush has finished */
349 queue_work(md_wq, &mddev->flush_work);
350 }
351 bio_put(bio);
352 }
353
354 static void md_submit_flush_data(struct work_struct *ws);
355
356 static void submit_flushes(struct work_struct *ws)
357 {
358 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
359 struct md_rdev *rdev;
360
361 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
362 atomic_set(&mddev->flush_pending, 1);
363 rcu_read_lock();
364 rdev_for_each_rcu(rdev, mddev)
365 if (rdev->raid_disk >= 0 &&
366 !test_bit(Faulty, &rdev->flags)) {
367 /* Take two references, one is dropped
368 * when request finishes, one after
369 * we reclaim rcu_read_lock
370 */
371 struct bio *bi;
372 atomic_inc(&rdev->nr_pending);
373 atomic_inc(&rdev->nr_pending);
374 rcu_read_unlock();
375 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
376 bi->bi_end_io = md_end_flush;
377 bi->bi_private = rdev;
378 bi->bi_bdev = rdev->bdev;
379 atomic_inc(&mddev->flush_pending);
380 submit_bio(WRITE_FLUSH, bi);
381 rcu_read_lock();
382 rdev_dec_pending(rdev, mddev);
383 }
384 rcu_read_unlock();
385 if (atomic_dec_and_test(&mddev->flush_pending))
386 queue_work(md_wq, &mddev->flush_work);
387 }
388
389 static void md_submit_flush_data(struct work_struct *ws)
390 {
391 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
392 struct bio *bio = mddev->flush_bio;
393
394 if (bio->bi_iter.bi_size == 0)
395 /* an empty barrier - all done */
396 bio_endio(bio, 0);
397 else {
398 bio->bi_rw &= ~REQ_FLUSH;
399 mddev->pers->make_request(mddev, bio);
400 }
401
402 mddev->flush_bio = NULL;
403 wake_up(&mddev->sb_wait);
404 }
405
406 void md_flush_request(struct mddev *mddev, struct bio *bio)
407 {
408 spin_lock_irq(&mddev->write_lock);
409 wait_event_lock_irq(mddev->sb_wait,
410 !mddev->flush_bio,
411 mddev->write_lock);
412 mddev->flush_bio = bio;
413 spin_unlock_irq(&mddev->write_lock);
414
415 INIT_WORK(&mddev->flush_work, submit_flushes);
416 queue_work(md_wq, &mddev->flush_work);
417 }
418 EXPORT_SYMBOL(md_flush_request);
419
420 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
421 {
422 struct mddev *mddev = cb->data;
423 md_wakeup_thread(mddev->thread);
424 kfree(cb);
425 }
426 EXPORT_SYMBOL(md_unplug);
427
428 static inline struct mddev *mddev_get(struct mddev *mddev)
429 {
430 atomic_inc(&mddev->active);
431 return mddev;
432 }
433
434 static void mddev_delayed_delete(struct work_struct *ws);
435
436 static void mddev_put(struct mddev *mddev)
437 {
438 struct bio_set *bs = NULL;
439
440 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
441 return;
442 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
443 mddev->ctime == 0 && !mddev->hold_active) {
444 /* Array is not configured at all, and not held active,
445 * so destroy it */
446 list_del_init(&mddev->all_mddevs);
447 bs = mddev->bio_set;
448 mddev->bio_set = NULL;
449 if (mddev->gendisk) {
450 /* We did a probe so need to clean up. Call
451 * queue_work inside the spinlock so that
452 * flush_workqueue() after mddev_find will
453 * succeed in waiting for the work to be done.
454 */
455 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
456 queue_work(md_misc_wq, &mddev->del_work);
457 } else
458 kfree(mddev);
459 }
460 spin_unlock(&all_mddevs_lock);
461 if (bs)
462 bioset_free(bs);
463 }
464
465 void mddev_init(struct mddev *mddev)
466 {
467 mutex_init(&mddev->open_mutex);
468 mutex_init(&mddev->reconfig_mutex);
469 mutex_init(&mddev->bitmap_info.mutex);
470 INIT_LIST_HEAD(&mddev->disks);
471 INIT_LIST_HEAD(&mddev->all_mddevs);
472 init_timer(&mddev->safemode_timer);
473 atomic_set(&mddev->active, 1);
474 atomic_set(&mddev->openers, 0);
475 atomic_set(&mddev->active_io, 0);
476 spin_lock_init(&mddev->write_lock);
477 atomic_set(&mddev->flush_pending, 0);
478 init_waitqueue_head(&mddev->sb_wait);
479 init_waitqueue_head(&mddev->recovery_wait);
480 mddev->reshape_position = MaxSector;
481 mddev->reshape_backwards = 0;
482 mddev->last_sync_action = "none";
483 mddev->resync_min = 0;
484 mddev->resync_max = MaxSector;
485 mddev->level = LEVEL_NONE;
486 }
487 EXPORT_SYMBOL_GPL(mddev_init);
488
489 static struct mddev *mddev_find(dev_t unit)
490 {
491 struct mddev *mddev, *new = NULL;
492
493 if (unit && MAJOR(unit) != MD_MAJOR)
494 unit &= ~((1<<MdpMinorShift)-1);
495
496 retry:
497 spin_lock(&all_mddevs_lock);
498
499 if (unit) {
500 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
501 if (mddev->unit == unit) {
502 mddev_get(mddev);
503 spin_unlock(&all_mddevs_lock);
504 kfree(new);
505 return mddev;
506 }
507
508 if (new) {
509 list_add(&new->all_mddevs, &all_mddevs);
510 spin_unlock(&all_mddevs_lock);
511 new->hold_active = UNTIL_IOCTL;
512 return new;
513 }
514 } else if (new) {
515 /* find an unused unit number */
516 static int next_minor = 512;
517 int start = next_minor;
518 int is_free = 0;
519 int dev = 0;
520 while (!is_free) {
521 dev = MKDEV(MD_MAJOR, next_minor);
522 next_minor++;
523 if (next_minor > MINORMASK)
524 next_minor = 0;
525 if (next_minor == start) {
526 /* Oh dear, all in use. */
527 spin_unlock(&all_mddevs_lock);
528 kfree(new);
529 return NULL;
530 }
531
532 is_free = 1;
533 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
534 if (mddev->unit == dev) {
535 is_free = 0;
536 break;
537 }
538 }
539 new->unit = dev;
540 new->md_minor = MINOR(dev);
541 new->hold_active = UNTIL_STOP;
542 list_add(&new->all_mddevs, &all_mddevs);
543 spin_unlock(&all_mddevs_lock);
544 return new;
545 }
546 spin_unlock(&all_mddevs_lock);
547
548 new = kzalloc(sizeof(*new), GFP_KERNEL);
549 if (!new)
550 return NULL;
551
552 new->unit = unit;
553 if (MAJOR(unit) == MD_MAJOR)
554 new->md_minor = MINOR(unit);
555 else
556 new->md_minor = MINOR(unit) >> MdpMinorShift;
557
558 mddev_init(new);
559
560 goto retry;
561 }
562
563 static inline int __must_check mddev_lock(struct mddev *mddev)
564 {
565 return mutex_lock_interruptible(&mddev->reconfig_mutex);
566 }
567
568 /* Sometimes we need to take the lock in a situation where
569 * failure due to interrupts is not acceptable.
570 */
571 static inline void mddev_lock_nointr(struct mddev *mddev)
572 {
573 mutex_lock(&mddev->reconfig_mutex);
574 }
575
576 static inline int mddev_is_locked(struct mddev *mddev)
577 {
578 return mutex_is_locked(&mddev->reconfig_mutex);
579 }
580
581 static inline int mddev_trylock(struct mddev *mddev)
582 {
583 return mutex_trylock(&mddev->reconfig_mutex);
584 }
585
586 static struct attribute_group md_redundancy_group;
587
588 static void mddev_unlock(struct mddev *mddev)
589 {
590 if (mddev->to_remove) {
591 /* These cannot be removed under reconfig_mutex as
592 * an access to the files will try to take reconfig_mutex
593 * while holding the file unremovable, which leads to
594 * a deadlock.
595 * So hold set sysfs_active while the remove in happeing,
596 * and anything else which might set ->to_remove or my
597 * otherwise change the sysfs namespace will fail with
598 * -EBUSY if sysfs_active is still set.
599 * We set sysfs_active under reconfig_mutex and elsewhere
600 * test it under the same mutex to ensure its correct value
601 * is seen.
602 */
603 struct attribute_group *to_remove = mddev->to_remove;
604 mddev->to_remove = NULL;
605 mddev->sysfs_active = 1;
606 mutex_unlock(&mddev->reconfig_mutex);
607
608 if (mddev->kobj.sd) {
609 if (to_remove != &md_redundancy_group)
610 sysfs_remove_group(&mddev->kobj, to_remove);
611 if (mddev->pers == NULL ||
612 mddev->pers->sync_request == NULL) {
613 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
614 if (mddev->sysfs_action)
615 sysfs_put(mddev->sysfs_action);
616 mddev->sysfs_action = NULL;
617 }
618 }
619 mddev->sysfs_active = 0;
620 } else
621 mutex_unlock(&mddev->reconfig_mutex);
622
623 /* As we've dropped the mutex we need a spinlock to
624 * make sure the thread doesn't disappear
625 */
626 spin_lock(&pers_lock);
627 md_wakeup_thread(mddev->thread);
628 spin_unlock(&pers_lock);
629 }
630
631 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
632 {
633 struct md_rdev *rdev;
634
635 rdev_for_each_rcu(rdev, mddev)
636 if (rdev->desc_nr == nr)
637 return rdev;
638
639 return NULL;
640 }
641
642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
643 {
644 struct md_rdev *rdev;
645
646 rdev_for_each(rdev, mddev)
647 if (rdev->bdev->bd_dev == dev)
648 return rdev;
649
650 return NULL;
651 }
652
653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
654 {
655 struct md_rdev *rdev;
656
657 rdev_for_each_rcu(rdev, mddev)
658 if (rdev->bdev->bd_dev == dev)
659 return rdev;
660
661 return NULL;
662 }
663
664 static struct md_personality *find_pers(int level, char *clevel)
665 {
666 struct md_personality *pers;
667 list_for_each_entry(pers, &pers_list, list) {
668 if (level != LEVEL_NONE && pers->level == level)
669 return pers;
670 if (strcmp(pers->name, clevel)==0)
671 return pers;
672 }
673 return NULL;
674 }
675
676 /* return the offset of the super block in 512byte sectors */
677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
678 {
679 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
680 return MD_NEW_SIZE_SECTORS(num_sectors);
681 }
682
683 static int alloc_disk_sb(struct md_rdev *rdev)
684 {
685 if (rdev->sb_page)
686 MD_BUG();
687
688 rdev->sb_page = alloc_page(GFP_KERNEL);
689 if (!rdev->sb_page) {
690 printk(KERN_ALERT "md: out of memory.\n");
691 return -ENOMEM;
692 }
693
694 return 0;
695 }
696
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699 if (rdev->sb_page) {
700 put_page(rdev->sb_page);
701 rdev->sb_loaded = 0;
702 rdev->sb_page = NULL;
703 rdev->sb_start = 0;
704 rdev->sectors = 0;
705 }
706 if (rdev->bb_page) {
707 put_page(rdev->bb_page);
708 rdev->bb_page = NULL;
709 }
710 kfree(rdev->badblocks.page);
711 rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714
715 static void super_written(struct bio *bio, int error)
716 {
717 struct md_rdev *rdev = bio->bi_private;
718 struct mddev *mddev = rdev->mddev;
719
720 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
721 printk("md: super_written gets error=%d, uptodate=%d\n",
722 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
723 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
724 md_error(mddev, rdev);
725 }
726
727 if (atomic_dec_and_test(&mddev->pending_writes))
728 wake_up(&mddev->sb_wait);
729 bio_put(bio);
730 }
731
732 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
733 sector_t sector, int size, struct page *page)
734 {
735 /* write first size bytes of page to sector of rdev
736 * Increment mddev->pending_writes before returning
737 * and decrement it on completion, waking up sb_wait
738 * if zero is reached.
739 * If an error occurred, call md_error
740 */
741 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
742
743 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
744 bio->bi_iter.bi_sector = sector;
745 bio_add_page(bio, page, size, 0);
746 bio->bi_private = rdev;
747 bio->bi_end_io = super_written;
748
749 atomic_inc(&mddev->pending_writes);
750 submit_bio(WRITE_FLUSH_FUA, bio);
751 }
752
753 void md_super_wait(struct mddev *mddev)
754 {
755 /* wait for all superblock writes that were scheduled to complete */
756 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
757 }
758
759 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
760 struct page *page, int rw, bool metadata_op)
761 {
762 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
763 int ret;
764
765 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
766 rdev->meta_bdev : rdev->bdev;
767 if (metadata_op)
768 bio->bi_iter.bi_sector = sector + rdev->sb_start;
769 else if (rdev->mddev->reshape_position != MaxSector &&
770 (rdev->mddev->reshape_backwards ==
771 (sector >= rdev->mddev->reshape_position)))
772 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
773 else
774 bio->bi_iter.bi_sector = sector + rdev->data_offset;
775 bio_add_page(bio, page, size, 0);
776 submit_bio_wait(rw, bio);
777
778 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
779 bio_put(bio);
780 return ret;
781 }
782 EXPORT_SYMBOL_GPL(sync_page_io);
783
784 static int read_disk_sb(struct md_rdev *rdev, int size)
785 {
786 char b[BDEVNAME_SIZE];
787 if (!rdev->sb_page) {
788 MD_BUG();
789 return -EINVAL;
790 }
791 if (rdev->sb_loaded)
792 return 0;
793
794 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
795 goto fail;
796 rdev->sb_loaded = 1;
797 return 0;
798
799 fail:
800 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
801 bdevname(rdev->bdev,b));
802 return -EINVAL;
803 }
804
805 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
806 {
807 return sb1->set_uuid0 == sb2->set_uuid0 &&
808 sb1->set_uuid1 == sb2->set_uuid1 &&
809 sb1->set_uuid2 == sb2->set_uuid2 &&
810 sb1->set_uuid3 == sb2->set_uuid3;
811 }
812
813 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
814 {
815 int ret;
816 mdp_super_t *tmp1, *tmp2;
817
818 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
819 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
820
821 if (!tmp1 || !tmp2) {
822 ret = 0;
823 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
824 goto abort;
825 }
826
827 *tmp1 = *sb1;
828 *tmp2 = *sb2;
829
830 /*
831 * nr_disks is not constant
832 */
833 tmp1->nr_disks = 0;
834 tmp2->nr_disks = 0;
835
836 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
837 abort:
838 kfree(tmp1);
839 kfree(tmp2);
840 return ret;
841 }
842
843 static u32 md_csum_fold(u32 csum)
844 {
845 csum = (csum & 0xffff) + (csum >> 16);
846 return (csum & 0xffff) + (csum >> 16);
847 }
848
849 static unsigned int calc_sb_csum(mdp_super_t *sb)
850 {
851 u64 newcsum = 0;
852 u32 *sb32 = (u32*)sb;
853 int i;
854 unsigned int disk_csum, csum;
855
856 disk_csum = sb->sb_csum;
857 sb->sb_csum = 0;
858
859 for (i = 0; i < MD_SB_BYTES/4 ; i++)
860 newcsum += sb32[i];
861 csum = (newcsum & 0xffffffff) + (newcsum>>32);
862
863 #ifdef CONFIG_ALPHA
864 /* This used to use csum_partial, which was wrong for several
865 * reasons including that different results are returned on
866 * different architectures. It isn't critical that we get exactly
867 * the same return value as before (we always csum_fold before
868 * testing, and that removes any differences). However as we
869 * know that csum_partial always returned a 16bit value on
870 * alphas, do a fold to maximise conformity to previous behaviour.
871 */
872 sb->sb_csum = md_csum_fold(disk_csum);
873 #else
874 sb->sb_csum = disk_csum;
875 #endif
876 return csum;
877 }
878
879 /*
880 * Handle superblock details.
881 * We want to be able to handle multiple superblock formats
882 * so we have a common interface to them all, and an array of
883 * different handlers.
884 * We rely on user-space to write the initial superblock, and support
885 * reading and updating of superblocks.
886 * Interface methods are:
887 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
888 * loads and validates a superblock on dev.
889 * if refdev != NULL, compare superblocks on both devices
890 * Return:
891 * 0 - dev has a superblock that is compatible with refdev
892 * 1 - dev has a superblock that is compatible and newer than refdev
893 * so dev should be used as the refdev in future
894 * -EINVAL superblock incompatible or invalid
895 * -othererror e.g. -EIO
896 *
897 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
898 * Verify that dev is acceptable into mddev.
899 * The first time, mddev->raid_disks will be 0, and data from
900 * dev should be merged in. Subsequent calls check that dev
901 * is new enough. Return 0 or -EINVAL
902 *
903 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
904 * Update the superblock for rdev with data in mddev
905 * This does not write to disc.
906 *
907 */
908
909 struct super_type {
910 char *name;
911 struct module *owner;
912 int (*load_super)(struct md_rdev *rdev,
913 struct md_rdev *refdev,
914 int minor_version);
915 int (*validate_super)(struct mddev *mddev,
916 struct md_rdev *rdev);
917 void (*sync_super)(struct mddev *mddev,
918 struct md_rdev *rdev);
919 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
920 sector_t num_sectors);
921 int (*allow_new_offset)(struct md_rdev *rdev,
922 unsigned long long new_offset);
923 };
924
925 /*
926 * Check that the given mddev has no bitmap.
927 *
928 * This function is called from the run method of all personalities that do not
929 * support bitmaps. It prints an error message and returns non-zero if mddev
930 * has a bitmap. Otherwise, it returns 0.
931 *
932 */
933 int md_check_no_bitmap(struct mddev *mddev)
934 {
935 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
936 return 0;
937 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
938 mdname(mddev), mddev->pers->name);
939 return 1;
940 }
941 EXPORT_SYMBOL(md_check_no_bitmap);
942
943 /*
944 * load_super for 0.90.0
945 */
946 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
947 {
948 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
949 mdp_super_t *sb;
950 int ret;
951
952 /*
953 * Calculate the position of the superblock (512byte sectors),
954 * it's at the end of the disk.
955 *
956 * It also happens to be a multiple of 4Kb.
957 */
958 rdev->sb_start = calc_dev_sboffset(rdev);
959
960 ret = read_disk_sb(rdev, MD_SB_BYTES);
961 if (ret) return ret;
962
963 ret = -EINVAL;
964
965 bdevname(rdev->bdev, b);
966 sb = page_address(rdev->sb_page);
967
968 if (sb->md_magic != MD_SB_MAGIC) {
969 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
970 b);
971 goto abort;
972 }
973
974 if (sb->major_version != 0 ||
975 sb->minor_version < 90 ||
976 sb->minor_version > 91) {
977 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
978 sb->major_version, sb->minor_version,
979 b);
980 goto abort;
981 }
982
983 if (sb->raid_disks <= 0)
984 goto abort;
985
986 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
987 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
988 b);
989 goto abort;
990 }
991
992 rdev->preferred_minor = sb->md_minor;
993 rdev->data_offset = 0;
994 rdev->new_data_offset = 0;
995 rdev->sb_size = MD_SB_BYTES;
996 rdev->badblocks.shift = -1;
997
998 if (sb->level == LEVEL_MULTIPATH)
999 rdev->desc_nr = -1;
1000 else
1001 rdev->desc_nr = sb->this_disk.number;
1002
1003 if (!refdev) {
1004 ret = 1;
1005 } else {
1006 __u64 ev1, ev2;
1007 mdp_super_t *refsb = page_address(refdev->sb_page);
1008 if (!uuid_equal(refsb, sb)) {
1009 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1010 b, bdevname(refdev->bdev,b2));
1011 goto abort;
1012 }
1013 if (!sb_equal(refsb, sb)) {
1014 printk(KERN_WARNING "md: %s has same UUID"
1015 " but different superblock to %s\n",
1016 b, bdevname(refdev->bdev, b2));
1017 goto abort;
1018 }
1019 ev1 = md_event(sb);
1020 ev2 = md_event(refsb);
1021 if (ev1 > ev2)
1022 ret = 1;
1023 else
1024 ret = 0;
1025 }
1026 rdev->sectors = rdev->sb_start;
1027 /* Limit to 4TB as metadata cannot record more than that.
1028 * (not needed for Linear and RAID0 as metadata doesn't
1029 * record this size)
1030 */
1031 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1032 rdev->sectors = (2ULL << 32) - 2;
1033
1034 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1035 /* "this cannot possibly happen" ... */
1036 ret = -EINVAL;
1037
1038 abort:
1039 return ret;
1040 }
1041
1042 /*
1043 * validate_super for 0.90.0
1044 */
1045 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1046 {
1047 mdp_disk_t *desc;
1048 mdp_super_t *sb = page_address(rdev->sb_page);
1049 __u64 ev1 = md_event(sb);
1050
1051 rdev->raid_disk = -1;
1052 clear_bit(Faulty, &rdev->flags);
1053 clear_bit(In_sync, &rdev->flags);
1054 clear_bit(Bitmap_sync, &rdev->flags);
1055 clear_bit(WriteMostly, &rdev->flags);
1056
1057 if (mddev->raid_disks == 0) {
1058 mddev->major_version = 0;
1059 mddev->minor_version = sb->minor_version;
1060 mddev->patch_version = sb->patch_version;
1061 mddev->external = 0;
1062 mddev->chunk_sectors = sb->chunk_size >> 9;
1063 mddev->ctime = sb->ctime;
1064 mddev->utime = sb->utime;
1065 mddev->level = sb->level;
1066 mddev->clevel[0] = 0;
1067 mddev->layout = sb->layout;
1068 mddev->raid_disks = sb->raid_disks;
1069 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1070 mddev->events = ev1;
1071 mddev->bitmap_info.offset = 0;
1072 mddev->bitmap_info.space = 0;
1073 /* bitmap can use 60 K after the 4K superblocks */
1074 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1075 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1076 mddev->reshape_backwards = 0;
1077
1078 if (mddev->minor_version >= 91) {
1079 mddev->reshape_position = sb->reshape_position;
1080 mddev->delta_disks = sb->delta_disks;
1081 mddev->new_level = sb->new_level;
1082 mddev->new_layout = sb->new_layout;
1083 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1084 if (mddev->delta_disks < 0)
1085 mddev->reshape_backwards = 1;
1086 } else {
1087 mddev->reshape_position = MaxSector;
1088 mddev->delta_disks = 0;
1089 mddev->new_level = mddev->level;
1090 mddev->new_layout = mddev->layout;
1091 mddev->new_chunk_sectors = mddev->chunk_sectors;
1092 }
1093
1094 if (sb->state & (1<<MD_SB_CLEAN))
1095 mddev->recovery_cp = MaxSector;
1096 else {
1097 if (sb->events_hi == sb->cp_events_hi &&
1098 sb->events_lo == sb->cp_events_lo) {
1099 mddev->recovery_cp = sb->recovery_cp;
1100 } else
1101 mddev->recovery_cp = 0;
1102 }
1103
1104 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1105 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1106 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1107 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1108
1109 mddev->max_disks = MD_SB_DISKS;
1110
1111 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1112 mddev->bitmap_info.file == NULL) {
1113 mddev->bitmap_info.offset =
1114 mddev->bitmap_info.default_offset;
1115 mddev->bitmap_info.space =
1116 mddev->bitmap_info.default_space;
1117 }
1118
1119 } else if (mddev->pers == NULL) {
1120 /* Insist on good event counter while assembling, except
1121 * for spares (which don't need an event count) */
1122 ++ev1;
1123 if (sb->disks[rdev->desc_nr].state & (
1124 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1125 if (ev1 < mddev->events)
1126 return -EINVAL;
1127 } else if (mddev->bitmap) {
1128 /* if adding to array with a bitmap, then we can accept an
1129 * older device ... but not too old.
1130 */
1131 if (ev1 < mddev->bitmap->events_cleared)
1132 return 0;
1133 if (ev1 < mddev->events)
1134 set_bit(Bitmap_sync, &rdev->flags);
1135 } else {
1136 if (ev1 < mddev->events)
1137 /* just a hot-add of a new device, leave raid_disk at -1 */
1138 return 0;
1139 }
1140
1141 if (mddev->level != LEVEL_MULTIPATH) {
1142 desc = sb->disks + rdev->desc_nr;
1143
1144 if (desc->state & (1<<MD_DISK_FAULTY))
1145 set_bit(Faulty, &rdev->flags);
1146 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1147 desc->raid_disk < mddev->raid_disks */) {
1148 set_bit(In_sync, &rdev->flags);
1149 rdev->raid_disk = desc->raid_disk;
1150 rdev->saved_raid_disk = desc->raid_disk;
1151 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1152 /* active but not in sync implies recovery up to
1153 * reshape position. We don't know exactly where
1154 * that is, so set to zero for now */
1155 if (mddev->minor_version >= 91) {
1156 rdev->recovery_offset = 0;
1157 rdev->raid_disk = desc->raid_disk;
1158 }
1159 }
1160 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1161 set_bit(WriteMostly, &rdev->flags);
1162 } else /* MULTIPATH are always insync */
1163 set_bit(In_sync, &rdev->flags);
1164 return 0;
1165 }
1166
1167 /*
1168 * sync_super for 0.90.0
1169 */
1170 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1171 {
1172 mdp_super_t *sb;
1173 struct md_rdev *rdev2;
1174 int next_spare = mddev->raid_disks;
1175
1176 /* make rdev->sb match mddev data..
1177 *
1178 * 1/ zero out disks
1179 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1180 * 3/ any empty disks < next_spare become removed
1181 *
1182 * disks[0] gets initialised to REMOVED because
1183 * we cannot be sure from other fields if it has
1184 * been initialised or not.
1185 */
1186 int i;
1187 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1188
1189 rdev->sb_size = MD_SB_BYTES;
1190
1191 sb = page_address(rdev->sb_page);
1192
1193 memset(sb, 0, sizeof(*sb));
1194
1195 sb->md_magic = MD_SB_MAGIC;
1196 sb->major_version = mddev->major_version;
1197 sb->patch_version = mddev->patch_version;
1198 sb->gvalid_words = 0; /* ignored */
1199 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1200 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1201 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1202 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1203
1204 sb->ctime = mddev->ctime;
1205 sb->level = mddev->level;
1206 sb->size = mddev->dev_sectors / 2;
1207 sb->raid_disks = mddev->raid_disks;
1208 sb->md_minor = mddev->md_minor;
1209 sb->not_persistent = 0;
1210 sb->utime = mddev->utime;
1211 sb->state = 0;
1212 sb->events_hi = (mddev->events>>32);
1213 sb->events_lo = (u32)mddev->events;
1214
1215 if (mddev->reshape_position == MaxSector)
1216 sb->minor_version = 90;
1217 else {
1218 sb->minor_version = 91;
1219 sb->reshape_position = mddev->reshape_position;
1220 sb->new_level = mddev->new_level;
1221 sb->delta_disks = mddev->delta_disks;
1222 sb->new_layout = mddev->new_layout;
1223 sb->new_chunk = mddev->new_chunk_sectors << 9;
1224 }
1225 mddev->minor_version = sb->minor_version;
1226 if (mddev->in_sync)
1227 {
1228 sb->recovery_cp = mddev->recovery_cp;
1229 sb->cp_events_hi = (mddev->events>>32);
1230 sb->cp_events_lo = (u32)mddev->events;
1231 if (mddev->recovery_cp == MaxSector)
1232 sb->state = (1<< MD_SB_CLEAN);
1233 } else
1234 sb->recovery_cp = 0;
1235
1236 sb->layout = mddev->layout;
1237 sb->chunk_size = mddev->chunk_sectors << 9;
1238
1239 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1240 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1241
1242 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1243 rdev_for_each(rdev2, mddev) {
1244 mdp_disk_t *d;
1245 int desc_nr;
1246 int is_active = test_bit(In_sync, &rdev2->flags);
1247
1248 if (rdev2->raid_disk >= 0 &&
1249 sb->minor_version >= 91)
1250 /* we have nowhere to store the recovery_offset,
1251 * but if it is not below the reshape_position,
1252 * we can piggy-back on that.
1253 */
1254 is_active = 1;
1255 if (rdev2->raid_disk < 0 ||
1256 test_bit(Faulty, &rdev2->flags))
1257 is_active = 0;
1258 if (is_active)
1259 desc_nr = rdev2->raid_disk;
1260 else
1261 desc_nr = next_spare++;
1262 rdev2->desc_nr = desc_nr;
1263 d = &sb->disks[rdev2->desc_nr];
1264 nr_disks++;
1265 d->number = rdev2->desc_nr;
1266 d->major = MAJOR(rdev2->bdev->bd_dev);
1267 d->minor = MINOR(rdev2->bdev->bd_dev);
1268 if (is_active)
1269 d->raid_disk = rdev2->raid_disk;
1270 else
1271 d->raid_disk = rdev2->desc_nr; /* compatibility */
1272 if (test_bit(Faulty, &rdev2->flags))
1273 d->state = (1<<MD_DISK_FAULTY);
1274 else if (is_active) {
1275 d->state = (1<<MD_DISK_ACTIVE);
1276 if (test_bit(In_sync, &rdev2->flags))
1277 d->state |= (1<<MD_DISK_SYNC);
1278 active++;
1279 working++;
1280 } else {
1281 d->state = 0;
1282 spare++;
1283 working++;
1284 }
1285 if (test_bit(WriteMostly, &rdev2->flags))
1286 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1287 }
1288 /* now set the "removed" and "faulty" bits on any missing devices */
1289 for (i=0 ; i < mddev->raid_disks ; i++) {
1290 mdp_disk_t *d = &sb->disks[i];
1291 if (d->state == 0 && d->number == 0) {
1292 d->number = i;
1293 d->raid_disk = i;
1294 d->state = (1<<MD_DISK_REMOVED);
1295 d->state |= (1<<MD_DISK_FAULTY);
1296 failed++;
1297 }
1298 }
1299 sb->nr_disks = nr_disks;
1300 sb->active_disks = active;
1301 sb->working_disks = working;
1302 sb->failed_disks = failed;
1303 sb->spare_disks = spare;
1304
1305 sb->this_disk = sb->disks[rdev->desc_nr];
1306 sb->sb_csum = calc_sb_csum(sb);
1307 }
1308
1309 /*
1310 * rdev_size_change for 0.90.0
1311 */
1312 static unsigned long long
1313 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1314 {
1315 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1316 return 0; /* component must fit device */
1317 if (rdev->mddev->bitmap_info.offset)
1318 return 0; /* can't move bitmap */
1319 rdev->sb_start = calc_dev_sboffset(rdev);
1320 if (!num_sectors || num_sectors > rdev->sb_start)
1321 num_sectors = rdev->sb_start;
1322 /* Limit to 4TB as metadata cannot record more than that.
1323 * 4TB == 2^32 KB, or 2*2^32 sectors.
1324 */
1325 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1326 num_sectors = (2ULL << 32) - 2;
1327 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1328 rdev->sb_page);
1329 md_super_wait(rdev->mddev);
1330 return num_sectors;
1331 }
1332
1333 static int
1334 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1335 {
1336 /* non-zero offset changes not possible with v0.90 */
1337 return new_offset == 0;
1338 }
1339
1340 /*
1341 * version 1 superblock
1342 */
1343
1344 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1345 {
1346 __le32 disk_csum;
1347 u32 csum;
1348 unsigned long long newcsum;
1349 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1350 __le32 *isuper = (__le32*)sb;
1351
1352 disk_csum = sb->sb_csum;
1353 sb->sb_csum = 0;
1354 newcsum = 0;
1355 for (; size >= 4; size -= 4)
1356 newcsum += le32_to_cpu(*isuper++);
1357
1358 if (size == 2)
1359 newcsum += le16_to_cpu(*(__le16*) isuper);
1360
1361 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1362 sb->sb_csum = disk_csum;
1363 return cpu_to_le32(csum);
1364 }
1365
1366 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1367 int acknowledged);
1368 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1369 {
1370 struct mdp_superblock_1 *sb;
1371 int ret;
1372 sector_t sb_start;
1373 sector_t sectors;
1374 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1375 int bmask;
1376
1377 /*
1378 * Calculate the position of the superblock in 512byte sectors.
1379 * It is always aligned to a 4K boundary and
1380 * depeding on minor_version, it can be:
1381 * 0: At least 8K, but less than 12K, from end of device
1382 * 1: At start of device
1383 * 2: 4K from start of device.
1384 */
1385 switch(minor_version) {
1386 case 0:
1387 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1388 sb_start -= 8*2;
1389 sb_start &= ~(sector_t)(4*2-1);
1390 break;
1391 case 1:
1392 sb_start = 0;
1393 break;
1394 case 2:
1395 sb_start = 8;
1396 break;
1397 default:
1398 return -EINVAL;
1399 }
1400 rdev->sb_start = sb_start;
1401
1402 /* superblock is rarely larger than 1K, but it can be larger,
1403 * and it is safe to read 4k, so we do that
1404 */
1405 ret = read_disk_sb(rdev, 4096);
1406 if (ret) return ret;
1407
1408 sb = page_address(rdev->sb_page);
1409
1410 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1411 sb->major_version != cpu_to_le32(1) ||
1412 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1413 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1414 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1415 return -EINVAL;
1416
1417 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1418 printk("md: invalid superblock checksum on %s\n",
1419 bdevname(rdev->bdev,b));
1420 return -EINVAL;
1421 }
1422 if (le64_to_cpu(sb->data_size) < 10) {
1423 printk("md: data_size too small on %s\n",
1424 bdevname(rdev->bdev,b));
1425 return -EINVAL;
1426 }
1427 if (sb->pad0 ||
1428 sb->pad3[0] ||
1429 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1430 /* Some padding is non-zero, might be a new feature */
1431 return -EINVAL;
1432
1433 rdev->preferred_minor = 0xffff;
1434 rdev->data_offset = le64_to_cpu(sb->data_offset);
1435 rdev->new_data_offset = rdev->data_offset;
1436 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1437 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1438 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1439 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1440
1441 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1442 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1443 if (rdev->sb_size & bmask)
1444 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1445
1446 if (minor_version
1447 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1448 return -EINVAL;
1449 if (minor_version
1450 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1451 return -EINVAL;
1452
1453 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1454 rdev->desc_nr = -1;
1455 else
1456 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1457
1458 if (!rdev->bb_page) {
1459 rdev->bb_page = alloc_page(GFP_KERNEL);
1460 if (!rdev->bb_page)
1461 return -ENOMEM;
1462 }
1463 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1464 rdev->badblocks.count == 0) {
1465 /* need to load the bad block list.
1466 * Currently we limit it to one page.
1467 */
1468 s32 offset;
1469 sector_t bb_sector;
1470 u64 *bbp;
1471 int i;
1472 int sectors = le16_to_cpu(sb->bblog_size);
1473 if (sectors > (PAGE_SIZE / 512))
1474 return -EINVAL;
1475 offset = le32_to_cpu(sb->bblog_offset);
1476 if (offset == 0)
1477 return -EINVAL;
1478 bb_sector = (long long)offset;
1479 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1480 rdev->bb_page, READ, true))
1481 return -EIO;
1482 bbp = (u64 *)page_address(rdev->bb_page);
1483 rdev->badblocks.shift = sb->bblog_shift;
1484 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1485 u64 bb = le64_to_cpu(*bbp);
1486 int count = bb & (0x3ff);
1487 u64 sector = bb >> 10;
1488 sector <<= sb->bblog_shift;
1489 count <<= sb->bblog_shift;
1490 if (bb + 1 == 0)
1491 break;
1492 if (md_set_badblocks(&rdev->badblocks,
1493 sector, count, 1) == 0)
1494 return -EINVAL;
1495 }
1496 } else if (sb->bblog_offset != 0)
1497 rdev->badblocks.shift = 0;
1498
1499 if (!refdev) {
1500 ret = 1;
1501 } else {
1502 __u64 ev1, ev2;
1503 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1504
1505 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1506 sb->level != refsb->level ||
1507 sb->layout != refsb->layout ||
1508 sb->chunksize != refsb->chunksize) {
1509 printk(KERN_WARNING "md: %s has strangely different"
1510 " superblock to %s\n",
1511 bdevname(rdev->bdev,b),
1512 bdevname(refdev->bdev,b2));
1513 return -EINVAL;
1514 }
1515 ev1 = le64_to_cpu(sb->events);
1516 ev2 = le64_to_cpu(refsb->events);
1517
1518 if (ev1 > ev2)
1519 ret = 1;
1520 else
1521 ret = 0;
1522 }
1523 if (minor_version) {
1524 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1525 sectors -= rdev->data_offset;
1526 } else
1527 sectors = rdev->sb_start;
1528 if (sectors < le64_to_cpu(sb->data_size))
1529 return -EINVAL;
1530 rdev->sectors = le64_to_cpu(sb->data_size);
1531 return ret;
1532 }
1533
1534 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1535 {
1536 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1537 __u64 ev1 = le64_to_cpu(sb->events);
1538
1539 rdev->raid_disk = -1;
1540 clear_bit(Faulty, &rdev->flags);
1541 clear_bit(In_sync, &rdev->flags);
1542 clear_bit(Bitmap_sync, &rdev->flags);
1543 clear_bit(WriteMostly, &rdev->flags);
1544
1545 if (mddev->raid_disks == 0) {
1546 mddev->major_version = 1;
1547 mddev->patch_version = 0;
1548 mddev->external = 0;
1549 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1550 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1551 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1552 mddev->level = le32_to_cpu(sb->level);
1553 mddev->clevel[0] = 0;
1554 mddev->layout = le32_to_cpu(sb->layout);
1555 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1556 mddev->dev_sectors = le64_to_cpu(sb->size);
1557 mddev->events = ev1;
1558 mddev->bitmap_info.offset = 0;
1559 mddev->bitmap_info.space = 0;
1560 /* Default location for bitmap is 1K after superblock
1561 * using 3K - total of 4K
1562 */
1563 mddev->bitmap_info.default_offset = 1024 >> 9;
1564 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1565 mddev->reshape_backwards = 0;
1566
1567 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1568 memcpy(mddev->uuid, sb->set_uuid, 16);
1569
1570 mddev->max_disks = (4096-256)/2;
1571
1572 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1573 mddev->bitmap_info.file == NULL) {
1574 mddev->bitmap_info.offset =
1575 (__s32)le32_to_cpu(sb->bitmap_offset);
1576 /* Metadata doesn't record how much space is available.
1577 * For 1.0, we assume we can use up to the superblock
1578 * if before, else to 4K beyond superblock.
1579 * For others, assume no change is possible.
1580 */
1581 if (mddev->minor_version > 0)
1582 mddev->bitmap_info.space = 0;
1583 else if (mddev->bitmap_info.offset > 0)
1584 mddev->bitmap_info.space =
1585 8 - mddev->bitmap_info.offset;
1586 else
1587 mddev->bitmap_info.space =
1588 -mddev->bitmap_info.offset;
1589 }
1590
1591 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1592 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1593 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1594 mddev->new_level = le32_to_cpu(sb->new_level);
1595 mddev->new_layout = le32_to_cpu(sb->new_layout);
1596 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1597 if (mddev->delta_disks < 0 ||
1598 (mddev->delta_disks == 0 &&
1599 (le32_to_cpu(sb->feature_map)
1600 & MD_FEATURE_RESHAPE_BACKWARDS)))
1601 mddev->reshape_backwards = 1;
1602 } else {
1603 mddev->reshape_position = MaxSector;
1604 mddev->delta_disks = 0;
1605 mddev->new_level = mddev->level;
1606 mddev->new_layout = mddev->layout;
1607 mddev->new_chunk_sectors = mddev->chunk_sectors;
1608 }
1609
1610 } else if (mddev->pers == NULL) {
1611 /* Insist of good event counter while assembling, except for
1612 * spares (which don't need an event count) */
1613 ++ev1;
1614 if (rdev->desc_nr >= 0 &&
1615 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1616 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1617 if (ev1 < mddev->events)
1618 return -EINVAL;
1619 } else if (mddev->bitmap) {
1620 /* If adding to array with a bitmap, then we can accept an
1621 * older device, but not too old.
1622 */
1623 if (ev1 < mddev->bitmap->events_cleared)
1624 return 0;
1625 if (ev1 < mddev->events)
1626 set_bit(Bitmap_sync, &rdev->flags);
1627 } else {
1628 if (ev1 < mddev->events)
1629 /* just a hot-add of a new device, leave raid_disk at -1 */
1630 return 0;
1631 }
1632 if (mddev->level != LEVEL_MULTIPATH) {
1633 int role;
1634 if (rdev->desc_nr < 0 ||
1635 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1636 role = 0xffff;
1637 rdev->desc_nr = -1;
1638 } else
1639 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1640 switch(role) {
1641 case 0xffff: /* spare */
1642 break;
1643 case 0xfffe: /* faulty */
1644 set_bit(Faulty, &rdev->flags);
1645 break;
1646 default:
1647 rdev->saved_raid_disk = role;
1648 if ((le32_to_cpu(sb->feature_map) &
1649 MD_FEATURE_RECOVERY_OFFSET)) {
1650 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1651 if (!(le32_to_cpu(sb->feature_map) &
1652 MD_FEATURE_RECOVERY_BITMAP))
1653 rdev->saved_raid_disk = -1;
1654 } else
1655 set_bit(In_sync, &rdev->flags);
1656 rdev->raid_disk = role;
1657 break;
1658 }
1659 if (sb->devflags & WriteMostly1)
1660 set_bit(WriteMostly, &rdev->flags);
1661 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1662 set_bit(Replacement, &rdev->flags);
1663 } else /* MULTIPATH are always insync */
1664 set_bit(In_sync, &rdev->flags);
1665
1666 return 0;
1667 }
1668
1669 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1670 {
1671 struct mdp_superblock_1 *sb;
1672 struct md_rdev *rdev2;
1673 int max_dev, i;
1674 /* make rdev->sb match mddev and rdev data. */
1675
1676 sb = page_address(rdev->sb_page);
1677
1678 sb->feature_map = 0;
1679 sb->pad0 = 0;
1680 sb->recovery_offset = cpu_to_le64(0);
1681 memset(sb->pad3, 0, sizeof(sb->pad3));
1682
1683 sb->utime = cpu_to_le64((__u64)mddev->utime);
1684 sb->events = cpu_to_le64(mddev->events);
1685 if (mddev->in_sync)
1686 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1687 else
1688 sb->resync_offset = cpu_to_le64(0);
1689
1690 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1691
1692 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1693 sb->size = cpu_to_le64(mddev->dev_sectors);
1694 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1695 sb->level = cpu_to_le32(mddev->level);
1696 sb->layout = cpu_to_le32(mddev->layout);
1697
1698 if (test_bit(WriteMostly, &rdev->flags))
1699 sb->devflags |= WriteMostly1;
1700 else
1701 sb->devflags &= ~WriteMostly1;
1702 sb->data_offset = cpu_to_le64(rdev->data_offset);
1703 sb->data_size = cpu_to_le64(rdev->sectors);
1704
1705 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1706 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1707 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1708 }
1709
1710 if (rdev->raid_disk >= 0 &&
1711 !test_bit(In_sync, &rdev->flags)) {
1712 sb->feature_map |=
1713 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1714 sb->recovery_offset =
1715 cpu_to_le64(rdev->recovery_offset);
1716 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1717 sb->feature_map |=
1718 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1719 }
1720 if (test_bit(Replacement, &rdev->flags))
1721 sb->feature_map |=
1722 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1723
1724 if (mddev->reshape_position != MaxSector) {
1725 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1726 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1727 sb->new_layout = cpu_to_le32(mddev->new_layout);
1728 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1729 sb->new_level = cpu_to_le32(mddev->new_level);
1730 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1731 if (mddev->delta_disks == 0 &&
1732 mddev->reshape_backwards)
1733 sb->feature_map
1734 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1735 if (rdev->new_data_offset != rdev->data_offset) {
1736 sb->feature_map
1737 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1738 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1739 - rdev->data_offset));
1740 }
1741 }
1742
1743 if (rdev->badblocks.count == 0)
1744 /* Nothing to do for bad blocks*/ ;
1745 else if (sb->bblog_offset == 0)
1746 /* Cannot record bad blocks on this device */
1747 md_error(mddev, rdev);
1748 else {
1749 struct badblocks *bb = &rdev->badblocks;
1750 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1751 u64 *p = bb->page;
1752 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1753 if (bb->changed) {
1754 unsigned seq;
1755
1756 retry:
1757 seq = read_seqbegin(&bb->lock);
1758
1759 memset(bbp, 0xff, PAGE_SIZE);
1760
1761 for (i = 0 ; i < bb->count ; i++) {
1762 u64 internal_bb = p[i];
1763 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1764 | BB_LEN(internal_bb));
1765 bbp[i] = cpu_to_le64(store_bb);
1766 }
1767 bb->changed = 0;
1768 if (read_seqretry(&bb->lock, seq))
1769 goto retry;
1770
1771 bb->sector = (rdev->sb_start +
1772 (int)le32_to_cpu(sb->bblog_offset));
1773 bb->size = le16_to_cpu(sb->bblog_size);
1774 }
1775 }
1776
1777 max_dev = 0;
1778 rdev_for_each(rdev2, mddev)
1779 if (rdev2->desc_nr+1 > max_dev)
1780 max_dev = rdev2->desc_nr+1;
1781
1782 if (max_dev > le32_to_cpu(sb->max_dev)) {
1783 int bmask;
1784 sb->max_dev = cpu_to_le32(max_dev);
1785 rdev->sb_size = max_dev * 2 + 256;
1786 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1787 if (rdev->sb_size & bmask)
1788 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1789 } else
1790 max_dev = le32_to_cpu(sb->max_dev);
1791
1792 for (i=0; i<max_dev;i++)
1793 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1794
1795 rdev_for_each(rdev2, mddev) {
1796 i = rdev2->desc_nr;
1797 if (test_bit(Faulty, &rdev2->flags))
1798 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1799 else if (test_bit(In_sync, &rdev2->flags))
1800 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1801 else if (rdev2->raid_disk >= 0)
1802 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1803 else
1804 sb->dev_roles[i] = cpu_to_le16(0xffff);
1805 }
1806
1807 sb->sb_csum = calc_sb_1_csum(sb);
1808 }
1809
1810 static unsigned long long
1811 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1812 {
1813 struct mdp_superblock_1 *sb;
1814 sector_t max_sectors;
1815 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1816 return 0; /* component must fit device */
1817 if (rdev->data_offset != rdev->new_data_offset)
1818 return 0; /* too confusing */
1819 if (rdev->sb_start < rdev->data_offset) {
1820 /* minor versions 1 and 2; superblock before data */
1821 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1822 max_sectors -= rdev->data_offset;
1823 if (!num_sectors || num_sectors > max_sectors)
1824 num_sectors = max_sectors;
1825 } else if (rdev->mddev->bitmap_info.offset) {
1826 /* minor version 0 with bitmap we can't move */
1827 return 0;
1828 } else {
1829 /* minor version 0; superblock after data */
1830 sector_t sb_start;
1831 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1832 sb_start &= ~(sector_t)(4*2 - 1);
1833 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1834 if (!num_sectors || num_sectors > max_sectors)
1835 num_sectors = max_sectors;
1836 rdev->sb_start = sb_start;
1837 }
1838 sb = page_address(rdev->sb_page);
1839 sb->data_size = cpu_to_le64(num_sectors);
1840 sb->super_offset = rdev->sb_start;
1841 sb->sb_csum = calc_sb_1_csum(sb);
1842 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1843 rdev->sb_page);
1844 md_super_wait(rdev->mddev);
1845 return num_sectors;
1846
1847 }
1848
1849 static int
1850 super_1_allow_new_offset(struct md_rdev *rdev,
1851 unsigned long long new_offset)
1852 {
1853 /* All necessary checks on new >= old have been done */
1854 struct bitmap *bitmap;
1855 if (new_offset >= rdev->data_offset)
1856 return 1;
1857
1858 /* with 1.0 metadata, there is no metadata to tread on
1859 * so we can always move back */
1860 if (rdev->mddev->minor_version == 0)
1861 return 1;
1862
1863 /* otherwise we must be sure not to step on
1864 * any metadata, so stay:
1865 * 36K beyond start of superblock
1866 * beyond end of badblocks
1867 * beyond write-intent bitmap
1868 */
1869 if (rdev->sb_start + (32+4)*2 > new_offset)
1870 return 0;
1871 bitmap = rdev->mddev->bitmap;
1872 if (bitmap && !rdev->mddev->bitmap_info.file &&
1873 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1874 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1875 return 0;
1876 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1877 return 0;
1878
1879 return 1;
1880 }
1881
1882 static struct super_type super_types[] = {
1883 [0] = {
1884 .name = "0.90.0",
1885 .owner = THIS_MODULE,
1886 .load_super = super_90_load,
1887 .validate_super = super_90_validate,
1888 .sync_super = super_90_sync,
1889 .rdev_size_change = super_90_rdev_size_change,
1890 .allow_new_offset = super_90_allow_new_offset,
1891 },
1892 [1] = {
1893 .name = "md-1",
1894 .owner = THIS_MODULE,
1895 .load_super = super_1_load,
1896 .validate_super = super_1_validate,
1897 .sync_super = super_1_sync,
1898 .rdev_size_change = super_1_rdev_size_change,
1899 .allow_new_offset = super_1_allow_new_offset,
1900 },
1901 };
1902
1903 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1904 {
1905 if (mddev->sync_super) {
1906 mddev->sync_super(mddev, rdev);
1907 return;
1908 }
1909
1910 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1911
1912 super_types[mddev->major_version].sync_super(mddev, rdev);
1913 }
1914
1915 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1916 {
1917 struct md_rdev *rdev, *rdev2;
1918
1919 rcu_read_lock();
1920 rdev_for_each_rcu(rdev, mddev1)
1921 rdev_for_each_rcu(rdev2, mddev2)
1922 if (rdev->bdev->bd_contains ==
1923 rdev2->bdev->bd_contains) {
1924 rcu_read_unlock();
1925 return 1;
1926 }
1927 rcu_read_unlock();
1928 return 0;
1929 }
1930
1931 static LIST_HEAD(pending_raid_disks);
1932
1933 /*
1934 * Try to register data integrity profile for an mddev
1935 *
1936 * This is called when an array is started and after a disk has been kicked
1937 * from the array. It only succeeds if all working and active component devices
1938 * are integrity capable with matching profiles.
1939 */
1940 int md_integrity_register(struct mddev *mddev)
1941 {
1942 struct md_rdev *rdev, *reference = NULL;
1943
1944 if (list_empty(&mddev->disks))
1945 return 0; /* nothing to do */
1946 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1947 return 0; /* shouldn't register, or already is */
1948 rdev_for_each(rdev, mddev) {
1949 /* skip spares and non-functional disks */
1950 if (test_bit(Faulty, &rdev->flags))
1951 continue;
1952 if (rdev->raid_disk < 0)
1953 continue;
1954 if (!reference) {
1955 /* Use the first rdev as the reference */
1956 reference = rdev;
1957 continue;
1958 }
1959 /* does this rdev's profile match the reference profile? */
1960 if (blk_integrity_compare(reference->bdev->bd_disk,
1961 rdev->bdev->bd_disk) < 0)
1962 return -EINVAL;
1963 }
1964 if (!reference || !bdev_get_integrity(reference->bdev))
1965 return 0;
1966 /*
1967 * All component devices are integrity capable and have matching
1968 * profiles, register the common profile for the md device.
1969 */
1970 if (blk_integrity_register(mddev->gendisk,
1971 bdev_get_integrity(reference->bdev)) != 0) {
1972 printk(KERN_ERR "md: failed to register integrity for %s\n",
1973 mdname(mddev));
1974 return -EINVAL;
1975 }
1976 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1977 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1978 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1979 mdname(mddev));
1980 return -EINVAL;
1981 }
1982 return 0;
1983 }
1984 EXPORT_SYMBOL(md_integrity_register);
1985
1986 /* Disable data integrity if non-capable/non-matching disk is being added */
1987 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1988 {
1989 struct blk_integrity *bi_rdev;
1990 struct blk_integrity *bi_mddev;
1991
1992 if (!mddev->gendisk)
1993 return;
1994
1995 bi_rdev = bdev_get_integrity(rdev->bdev);
1996 bi_mddev = blk_get_integrity(mddev->gendisk);
1997
1998 if (!bi_mddev) /* nothing to do */
1999 return;
2000 if (rdev->raid_disk < 0) /* skip spares */
2001 return;
2002 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2003 rdev->bdev->bd_disk) >= 0)
2004 return;
2005 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2006 blk_integrity_unregister(mddev->gendisk);
2007 }
2008 EXPORT_SYMBOL(md_integrity_add_rdev);
2009
2010 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2011 {
2012 char b[BDEVNAME_SIZE];
2013 struct kobject *ko;
2014 char *s;
2015 int err;
2016
2017 if (rdev->mddev) {
2018 MD_BUG();
2019 return -EINVAL;
2020 }
2021
2022 /* prevent duplicates */
2023 if (find_rdev(mddev, rdev->bdev->bd_dev))
2024 return -EEXIST;
2025
2026 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2027 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2028 rdev->sectors < mddev->dev_sectors)) {
2029 if (mddev->pers) {
2030 /* Cannot change size, so fail
2031 * If mddev->level <= 0, then we don't care
2032 * about aligning sizes (e.g. linear)
2033 */
2034 if (mddev->level > 0)
2035 return -ENOSPC;
2036 } else
2037 mddev->dev_sectors = rdev->sectors;
2038 }
2039
2040 /* Verify rdev->desc_nr is unique.
2041 * If it is -1, assign a free number, else
2042 * check number is not in use
2043 */
2044 rcu_read_lock();
2045 if (rdev->desc_nr < 0) {
2046 int choice = 0;
2047 if (mddev->pers)
2048 choice = mddev->raid_disks;
2049 while (find_rdev_nr_rcu(mddev, choice))
2050 choice++;
2051 rdev->desc_nr = choice;
2052 } else {
2053 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2054 rcu_read_unlock();
2055 return -EBUSY;
2056 }
2057 }
2058 rcu_read_unlock();
2059 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2060 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2061 mdname(mddev), mddev->max_disks);
2062 return -EBUSY;
2063 }
2064 bdevname(rdev->bdev,b);
2065 while ( (s=strchr(b, '/')) != NULL)
2066 *s = '!';
2067
2068 rdev->mddev = mddev;
2069 printk(KERN_INFO "md: bind<%s>\n", b);
2070
2071 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2072 goto fail;
2073
2074 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2075 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2076 /* failure here is OK */;
2077 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2078
2079 list_add_rcu(&rdev->same_set, &mddev->disks);
2080 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2081
2082 /* May as well allow recovery to be retried once */
2083 mddev->recovery_disabled++;
2084
2085 return 0;
2086
2087 fail:
2088 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2089 b, mdname(mddev));
2090 return err;
2091 }
2092
2093 static void md_delayed_delete(struct work_struct *ws)
2094 {
2095 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2096 kobject_del(&rdev->kobj);
2097 kobject_put(&rdev->kobj);
2098 }
2099
2100 static void unbind_rdev_from_array(struct md_rdev *rdev)
2101 {
2102 char b[BDEVNAME_SIZE];
2103 if (!rdev->mddev) {
2104 MD_BUG();
2105 return;
2106 }
2107 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2108 list_del_rcu(&rdev->same_set);
2109 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2110 rdev->mddev = NULL;
2111 sysfs_remove_link(&rdev->kobj, "block");
2112 sysfs_put(rdev->sysfs_state);
2113 rdev->sysfs_state = NULL;
2114 rdev->badblocks.count = 0;
2115 /* We need to delay this, otherwise we can deadlock when
2116 * writing to 'remove' to "dev/state". We also need
2117 * to delay it due to rcu usage.
2118 */
2119 synchronize_rcu();
2120 INIT_WORK(&rdev->del_work, md_delayed_delete);
2121 kobject_get(&rdev->kobj);
2122 queue_work(md_misc_wq, &rdev->del_work);
2123 }
2124
2125 /*
2126 * prevent the device from being mounted, repartitioned or
2127 * otherwise reused by a RAID array (or any other kernel
2128 * subsystem), by bd_claiming the device.
2129 */
2130 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2131 {
2132 int err = 0;
2133 struct block_device *bdev;
2134 char b[BDEVNAME_SIZE];
2135
2136 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2137 shared ? (struct md_rdev *)lock_rdev : rdev);
2138 if (IS_ERR(bdev)) {
2139 printk(KERN_ERR "md: could not open %s.\n",
2140 __bdevname(dev, b));
2141 return PTR_ERR(bdev);
2142 }
2143 rdev->bdev = bdev;
2144 return err;
2145 }
2146
2147 static void unlock_rdev(struct md_rdev *rdev)
2148 {
2149 struct block_device *bdev = rdev->bdev;
2150 rdev->bdev = NULL;
2151 if (!bdev)
2152 MD_BUG();
2153 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2154 }
2155
2156 void md_autodetect_dev(dev_t dev);
2157
2158 static void export_rdev(struct md_rdev *rdev)
2159 {
2160 char b[BDEVNAME_SIZE];
2161 printk(KERN_INFO "md: export_rdev(%s)\n",
2162 bdevname(rdev->bdev,b));
2163 if (rdev->mddev)
2164 MD_BUG();
2165 md_rdev_clear(rdev);
2166 #ifndef MODULE
2167 if (test_bit(AutoDetected, &rdev->flags))
2168 md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170 unlock_rdev(rdev);
2171 kobject_put(&rdev->kobj);
2172 }
2173
2174 static void kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176 unbind_rdev_from_array(rdev);
2177 export_rdev(rdev);
2178 }
2179
2180 static void export_array(struct mddev *mddev)
2181 {
2182 struct md_rdev *rdev;
2183
2184 while (!list_empty(&mddev->disks)) {
2185 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2186 same_set);
2187 kick_rdev_from_array(rdev);
2188 }
2189 mddev->raid_disks = 0;
2190 mddev->major_version = 0;
2191 }
2192
2193 static void print_desc(mdp_disk_t *desc)
2194 {
2195 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2196 desc->major,desc->minor,desc->raid_disk,desc->state);
2197 }
2198
2199 static void print_sb_90(mdp_super_t *sb)
2200 {
2201 int i;
2202
2203 printk(KERN_INFO
2204 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2205 sb->major_version, sb->minor_version, sb->patch_version,
2206 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207 sb->ctime);
2208 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2209 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2210 sb->md_minor, sb->layout, sb->chunk_size);
2211 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2212 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2213 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2214 sb->failed_disks, sb->spare_disks,
2215 sb->sb_csum, (unsigned long)sb->events_lo);
2216
2217 printk(KERN_INFO);
2218 for (i = 0; i < MD_SB_DISKS; i++) {
2219 mdp_disk_t *desc;
2220
2221 desc = sb->disks + i;
2222 if (desc->number || desc->major || desc->minor ||
2223 desc->raid_disk || (desc->state && (desc->state != 4))) {
2224 printk(" D %2d: ", i);
2225 print_desc(desc);
2226 }
2227 }
2228 printk(KERN_INFO "md: THIS: ");
2229 print_desc(&sb->this_disk);
2230 }
2231
2232 static void print_sb_1(struct mdp_superblock_1 *sb)
2233 {
2234 __u8 *uuid;
2235
2236 uuid = sb->set_uuid;
2237 printk(KERN_INFO
2238 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2239 "md: Name: \"%s\" CT:%llu\n",
2240 le32_to_cpu(sb->major_version),
2241 le32_to_cpu(sb->feature_map),
2242 uuid,
2243 sb->set_name,
2244 (unsigned long long)le64_to_cpu(sb->ctime)
2245 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2246
2247 uuid = sb->device_uuid;
2248 printk(KERN_INFO
2249 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250 " RO:%llu\n"
2251 "md: Dev:%08x UUID: %pU\n"
2252 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2253 "md: (MaxDev:%u) \n",
2254 le32_to_cpu(sb->level),
2255 (unsigned long long)le64_to_cpu(sb->size),
2256 le32_to_cpu(sb->raid_disks),
2257 le32_to_cpu(sb->layout),
2258 le32_to_cpu(sb->chunksize),
2259 (unsigned long long)le64_to_cpu(sb->data_offset),
2260 (unsigned long long)le64_to_cpu(sb->data_size),
2261 (unsigned long long)le64_to_cpu(sb->super_offset),
2262 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2263 le32_to_cpu(sb->dev_number),
2264 uuid,
2265 sb->devflags,
2266 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2267 (unsigned long long)le64_to_cpu(sb->events),
2268 (unsigned long long)le64_to_cpu(sb->resync_offset),
2269 le32_to_cpu(sb->sb_csum),
2270 le32_to_cpu(sb->max_dev)
2271 );
2272 }
2273
2274 static void print_rdev(struct md_rdev *rdev, int major_version)
2275 {
2276 char b[BDEVNAME_SIZE];
2277 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2278 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2279 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280 rdev->desc_nr);
2281 if (rdev->sb_loaded) {
2282 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2283 switch (major_version) {
2284 case 0:
2285 print_sb_90(page_address(rdev->sb_page));
2286 break;
2287 case 1:
2288 print_sb_1(page_address(rdev->sb_page));
2289 break;
2290 }
2291 } else
2292 printk(KERN_INFO "md: no rdev superblock!\n");
2293 }
2294
2295 static void md_print_devices(void)
2296 {
2297 struct list_head *tmp;
2298 struct md_rdev *rdev;
2299 struct mddev *mddev;
2300 char b[BDEVNAME_SIZE];
2301
2302 printk("\n");
2303 printk("md: **********************************\n");
2304 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2305 printk("md: **********************************\n");
2306 for_each_mddev(mddev, tmp) {
2307
2308 if (mddev->bitmap)
2309 bitmap_print_sb(mddev->bitmap);
2310 else
2311 printk("%s: ", mdname(mddev));
2312 rdev_for_each(rdev, mddev)
2313 printk("<%s>", bdevname(rdev->bdev,b));
2314 printk("\n");
2315
2316 rdev_for_each(rdev, mddev)
2317 print_rdev(rdev, mddev->major_version);
2318 }
2319 printk("md: **********************************\n");
2320 printk("\n");
2321 }
2322
2323 static void sync_sbs(struct mddev *mddev, int nospares)
2324 {
2325 /* Update each superblock (in-memory image), but
2326 * if we are allowed to, skip spares which already
2327 * have the right event counter, or have one earlier
2328 * (which would mean they aren't being marked as dirty
2329 * with the rest of the array)
2330 */
2331 struct md_rdev *rdev;
2332 rdev_for_each(rdev, mddev) {
2333 if (rdev->sb_events == mddev->events ||
2334 (nospares &&
2335 rdev->raid_disk < 0 &&
2336 rdev->sb_events+1 == mddev->events)) {
2337 /* Don't update this superblock */
2338 rdev->sb_loaded = 2;
2339 } else {
2340 sync_super(mddev, rdev);
2341 rdev->sb_loaded = 1;
2342 }
2343 }
2344 }
2345
2346 static void md_update_sb(struct mddev *mddev, int force_change)
2347 {
2348 struct md_rdev *rdev;
2349 int sync_req;
2350 int nospares = 0;
2351 int any_badblocks_changed = 0;
2352
2353 if (mddev->ro) {
2354 if (force_change)
2355 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2356 return;
2357 }
2358 repeat:
2359 /* First make sure individual recovery_offsets are correct */
2360 rdev_for_each(rdev, mddev) {
2361 if (rdev->raid_disk >= 0 &&
2362 mddev->delta_disks >= 0 &&
2363 !test_bit(In_sync, &rdev->flags) &&
2364 mddev->curr_resync_completed > rdev->recovery_offset)
2365 rdev->recovery_offset = mddev->curr_resync_completed;
2366
2367 }
2368 if (!mddev->persistent) {
2369 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2370 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2371 if (!mddev->external) {
2372 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2373 rdev_for_each(rdev, mddev) {
2374 if (rdev->badblocks.changed) {
2375 rdev->badblocks.changed = 0;
2376 md_ack_all_badblocks(&rdev->badblocks);
2377 md_error(mddev, rdev);
2378 }
2379 clear_bit(Blocked, &rdev->flags);
2380 clear_bit(BlockedBadBlocks, &rdev->flags);
2381 wake_up(&rdev->blocked_wait);
2382 }
2383 }
2384 wake_up(&mddev->sb_wait);
2385 return;
2386 }
2387
2388 spin_lock_irq(&mddev->write_lock);
2389
2390 mddev->utime = get_seconds();
2391
2392 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2393 force_change = 1;
2394 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2395 /* just a clean<-> dirty transition, possibly leave spares alone,
2396 * though if events isn't the right even/odd, we will have to do
2397 * spares after all
2398 */
2399 nospares = 1;
2400 if (force_change)
2401 nospares = 0;
2402 if (mddev->degraded)
2403 /* If the array is degraded, then skipping spares is both
2404 * dangerous and fairly pointless.
2405 * Dangerous because a device that was removed from the array
2406 * might have a event_count that still looks up-to-date,
2407 * so it can be re-added without a resync.
2408 * Pointless because if there are any spares to skip,
2409 * then a recovery will happen and soon that array won't
2410 * be degraded any more and the spare can go back to sleep then.
2411 */
2412 nospares = 0;
2413
2414 sync_req = mddev->in_sync;
2415
2416 /* If this is just a dirty<->clean transition, and the array is clean
2417 * and 'events' is odd, we can roll back to the previous clean state */
2418 if (nospares
2419 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2420 && mddev->can_decrease_events
2421 && mddev->events != 1) {
2422 mddev->events--;
2423 mddev->can_decrease_events = 0;
2424 } else {
2425 /* otherwise we have to go forward and ... */
2426 mddev->events ++;
2427 mddev->can_decrease_events = nospares;
2428 }
2429
2430 if (!mddev->events) {
2431 /*
2432 * oops, this 64-bit counter should never wrap.
2433 * Either we are in around ~1 trillion A.C., assuming
2434 * 1 reboot per second, or we have a bug:
2435 */
2436 MD_BUG();
2437 mddev->events --;
2438 }
2439
2440 rdev_for_each(rdev, mddev) {
2441 if (rdev->badblocks.changed)
2442 any_badblocks_changed++;
2443 if (test_bit(Faulty, &rdev->flags))
2444 set_bit(FaultRecorded, &rdev->flags);
2445 }
2446
2447 sync_sbs(mddev, nospares);
2448 spin_unlock_irq(&mddev->write_lock);
2449
2450 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2451 mdname(mddev), mddev->in_sync);
2452
2453 bitmap_update_sb(mddev->bitmap);
2454 rdev_for_each(rdev, mddev) {
2455 char b[BDEVNAME_SIZE];
2456
2457 if (rdev->sb_loaded != 1)
2458 continue; /* no noise on spare devices */
2459
2460 if (!test_bit(Faulty, &rdev->flags)) {
2461 md_super_write(mddev,rdev,
2462 rdev->sb_start, rdev->sb_size,
2463 rdev->sb_page);
2464 pr_debug("md: (write) %s's sb offset: %llu\n",
2465 bdevname(rdev->bdev, b),
2466 (unsigned long long)rdev->sb_start);
2467 rdev->sb_events = mddev->events;
2468 if (rdev->badblocks.size) {
2469 md_super_write(mddev, rdev,
2470 rdev->badblocks.sector,
2471 rdev->badblocks.size << 9,
2472 rdev->bb_page);
2473 rdev->badblocks.size = 0;
2474 }
2475
2476 } else
2477 pr_debug("md: %s (skipping faulty)\n",
2478 bdevname(rdev->bdev, b));
2479
2480 if (mddev->level == LEVEL_MULTIPATH)
2481 /* only need to write one superblock... */
2482 break;
2483 }
2484 md_super_wait(mddev);
2485 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2486
2487 spin_lock_irq(&mddev->write_lock);
2488 if (mddev->in_sync != sync_req ||
2489 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2490 /* have to write it out again */
2491 spin_unlock_irq(&mddev->write_lock);
2492 goto repeat;
2493 }
2494 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2495 spin_unlock_irq(&mddev->write_lock);
2496 wake_up(&mddev->sb_wait);
2497 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2498 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2499
2500 rdev_for_each(rdev, mddev) {
2501 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2502 clear_bit(Blocked, &rdev->flags);
2503
2504 if (any_badblocks_changed)
2505 md_ack_all_badblocks(&rdev->badblocks);
2506 clear_bit(BlockedBadBlocks, &rdev->flags);
2507 wake_up(&rdev->blocked_wait);
2508 }
2509 }
2510
2511 /* words written to sysfs files may, or may not, be \n terminated.
2512 * We want to accept with case. For this we use cmd_match.
2513 */
2514 static int cmd_match(const char *cmd, const char *str)
2515 {
2516 /* See if cmd, written into a sysfs file, matches
2517 * str. They must either be the same, or cmd can
2518 * have a trailing newline
2519 */
2520 while (*cmd && *str && *cmd == *str) {
2521 cmd++;
2522 str++;
2523 }
2524 if (*cmd == '\n')
2525 cmd++;
2526 if (*str || *cmd)
2527 return 0;
2528 return 1;
2529 }
2530
2531 struct rdev_sysfs_entry {
2532 struct attribute attr;
2533 ssize_t (*show)(struct md_rdev *, char *);
2534 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2535 };
2536
2537 static ssize_t
2538 state_show(struct md_rdev *rdev, char *page)
2539 {
2540 char *sep = "";
2541 size_t len = 0;
2542
2543 if (test_bit(Faulty, &rdev->flags) ||
2544 rdev->badblocks.unacked_exist) {
2545 len+= sprintf(page+len, "%sfaulty",sep);
2546 sep = ",";
2547 }
2548 if (test_bit(In_sync, &rdev->flags)) {
2549 len += sprintf(page+len, "%sin_sync",sep);
2550 sep = ",";
2551 }
2552 if (test_bit(WriteMostly, &rdev->flags)) {
2553 len += sprintf(page+len, "%swrite_mostly",sep);
2554 sep = ",";
2555 }
2556 if (test_bit(Blocked, &rdev->flags) ||
2557 (rdev->badblocks.unacked_exist
2558 && !test_bit(Faulty, &rdev->flags))) {
2559 len += sprintf(page+len, "%sblocked", sep);
2560 sep = ",";
2561 }
2562 if (!test_bit(Faulty, &rdev->flags) &&
2563 !test_bit(In_sync, &rdev->flags)) {
2564 len += sprintf(page+len, "%sspare", sep);
2565 sep = ",";
2566 }
2567 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2568 len += sprintf(page+len, "%swrite_error", sep);
2569 sep = ",";
2570 }
2571 if (test_bit(WantReplacement, &rdev->flags)) {
2572 len += sprintf(page+len, "%swant_replacement", sep);
2573 sep = ",";
2574 }
2575 if (test_bit(Replacement, &rdev->flags)) {
2576 len += sprintf(page+len, "%sreplacement", sep);
2577 sep = ",";
2578 }
2579
2580 return len+sprintf(page+len, "\n");
2581 }
2582
2583 static ssize_t
2584 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2585 {
2586 /* can write
2587 * faulty - simulates an error
2588 * remove - disconnects the device
2589 * writemostly - sets write_mostly
2590 * -writemostly - clears write_mostly
2591 * blocked - sets the Blocked flags
2592 * -blocked - clears the Blocked and possibly simulates an error
2593 * insync - sets Insync providing device isn't active
2594 * -insync - clear Insync for a device with a slot assigned,
2595 * so that it gets rebuilt based on bitmap
2596 * write_error - sets WriteErrorSeen
2597 * -write_error - clears WriteErrorSeen
2598 */
2599 int err = -EINVAL;
2600 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2601 md_error(rdev->mddev, rdev);
2602 if (test_bit(Faulty, &rdev->flags))
2603 err = 0;
2604 else
2605 err = -EBUSY;
2606 } else if (cmd_match(buf, "remove")) {
2607 if (rdev->raid_disk >= 0)
2608 err = -EBUSY;
2609 else {
2610 struct mddev *mddev = rdev->mddev;
2611 kick_rdev_from_array(rdev);
2612 if (mddev->pers)
2613 md_update_sb(mddev, 1);
2614 md_new_event(mddev);
2615 err = 0;
2616 }
2617 } else if (cmd_match(buf, "writemostly")) {
2618 set_bit(WriteMostly, &rdev->flags);
2619 err = 0;
2620 } else if (cmd_match(buf, "-writemostly")) {
2621 clear_bit(WriteMostly, &rdev->flags);
2622 err = 0;
2623 } else if (cmd_match(buf, "blocked")) {
2624 set_bit(Blocked, &rdev->flags);
2625 err = 0;
2626 } else if (cmd_match(buf, "-blocked")) {
2627 if (!test_bit(Faulty, &rdev->flags) &&
2628 rdev->badblocks.unacked_exist) {
2629 /* metadata handler doesn't understand badblocks,
2630 * so we need to fail the device
2631 */
2632 md_error(rdev->mddev, rdev);
2633 }
2634 clear_bit(Blocked, &rdev->flags);
2635 clear_bit(BlockedBadBlocks, &rdev->flags);
2636 wake_up(&rdev->blocked_wait);
2637 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2638 md_wakeup_thread(rdev->mddev->thread);
2639
2640 err = 0;
2641 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2642 set_bit(In_sync, &rdev->flags);
2643 err = 0;
2644 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2645 if (rdev->mddev->pers == NULL) {
2646 clear_bit(In_sync, &rdev->flags);
2647 rdev->saved_raid_disk = rdev->raid_disk;
2648 rdev->raid_disk = -1;
2649 err = 0;
2650 }
2651 } else if (cmd_match(buf, "write_error")) {
2652 set_bit(WriteErrorSeen, &rdev->flags);
2653 err = 0;
2654 } else if (cmd_match(buf, "-write_error")) {
2655 clear_bit(WriteErrorSeen, &rdev->flags);
2656 err = 0;
2657 } else if (cmd_match(buf, "want_replacement")) {
2658 /* Any non-spare device that is not a replacement can
2659 * become want_replacement at any time, but we then need to
2660 * check if recovery is needed.
2661 */
2662 if (rdev->raid_disk >= 0 &&
2663 !test_bit(Replacement, &rdev->flags))
2664 set_bit(WantReplacement, &rdev->flags);
2665 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2666 md_wakeup_thread(rdev->mddev->thread);
2667 err = 0;
2668 } else if (cmd_match(buf, "-want_replacement")) {
2669 /* Clearing 'want_replacement' is always allowed.
2670 * Once replacements starts it is too late though.
2671 */
2672 err = 0;
2673 clear_bit(WantReplacement, &rdev->flags);
2674 } else if (cmd_match(buf, "replacement")) {
2675 /* Can only set a device as a replacement when array has not
2676 * yet been started. Once running, replacement is automatic
2677 * from spares, or by assigning 'slot'.
2678 */
2679 if (rdev->mddev->pers)
2680 err = -EBUSY;
2681 else {
2682 set_bit(Replacement, &rdev->flags);
2683 err = 0;
2684 }
2685 } else if (cmd_match(buf, "-replacement")) {
2686 /* Similarly, can only clear Replacement before start */
2687 if (rdev->mddev->pers)
2688 err = -EBUSY;
2689 else {
2690 clear_bit(Replacement, &rdev->flags);
2691 err = 0;
2692 }
2693 }
2694 if (!err)
2695 sysfs_notify_dirent_safe(rdev->sysfs_state);
2696 return err ? err : len;
2697 }
2698 static struct rdev_sysfs_entry rdev_state =
2699 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2700
2701 static ssize_t
2702 errors_show(struct md_rdev *rdev, char *page)
2703 {
2704 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2705 }
2706
2707 static ssize_t
2708 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2709 {
2710 char *e;
2711 unsigned long n = simple_strtoul(buf, &e, 10);
2712 if (*buf && (*e == 0 || *e == '\n')) {
2713 atomic_set(&rdev->corrected_errors, n);
2714 return len;
2715 }
2716 return -EINVAL;
2717 }
2718 static struct rdev_sysfs_entry rdev_errors =
2719 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2720
2721 static ssize_t
2722 slot_show(struct md_rdev *rdev, char *page)
2723 {
2724 if (rdev->raid_disk < 0)
2725 return sprintf(page, "none\n");
2726 else
2727 return sprintf(page, "%d\n", rdev->raid_disk);
2728 }
2729
2730 static ssize_t
2731 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2732 {
2733 char *e;
2734 int err;
2735 int slot = simple_strtoul(buf, &e, 10);
2736 if (strncmp(buf, "none", 4)==0)
2737 slot = -1;
2738 else if (e==buf || (*e && *e!= '\n'))
2739 return -EINVAL;
2740 if (rdev->mddev->pers && slot == -1) {
2741 /* Setting 'slot' on an active array requires also
2742 * updating the 'rd%d' link, and communicating
2743 * with the personality with ->hot_*_disk.
2744 * For now we only support removing
2745 * failed/spare devices. This normally happens automatically,
2746 * but not when the metadata is externally managed.
2747 */
2748 if (rdev->raid_disk == -1)
2749 return -EEXIST;
2750 /* personality does all needed checks */
2751 if (rdev->mddev->pers->hot_remove_disk == NULL)
2752 return -EINVAL;
2753 clear_bit(Blocked, &rdev->flags);
2754 remove_and_add_spares(rdev->mddev, rdev);
2755 if (rdev->raid_disk >= 0)
2756 return -EBUSY;
2757 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2758 md_wakeup_thread(rdev->mddev->thread);
2759 } else if (rdev->mddev->pers) {
2760 /* Activating a spare .. or possibly reactivating
2761 * if we ever get bitmaps working here.
2762 */
2763
2764 if (rdev->raid_disk != -1)
2765 return -EBUSY;
2766
2767 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2768 return -EBUSY;
2769
2770 if (rdev->mddev->pers->hot_add_disk == NULL)
2771 return -EINVAL;
2772
2773 if (slot >= rdev->mddev->raid_disks &&
2774 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2775 return -ENOSPC;
2776
2777 rdev->raid_disk = slot;
2778 if (test_bit(In_sync, &rdev->flags))
2779 rdev->saved_raid_disk = slot;
2780 else
2781 rdev->saved_raid_disk = -1;
2782 clear_bit(In_sync, &rdev->flags);
2783 clear_bit(Bitmap_sync, &rdev->flags);
2784 err = rdev->mddev->pers->
2785 hot_add_disk(rdev->mddev, rdev);
2786 if (err) {
2787 rdev->raid_disk = -1;
2788 return err;
2789 } else
2790 sysfs_notify_dirent_safe(rdev->sysfs_state);
2791 if (sysfs_link_rdev(rdev->mddev, rdev))
2792 /* failure here is OK */;
2793 /* don't wakeup anyone, leave that to userspace. */
2794 } else {
2795 if (slot >= rdev->mddev->raid_disks &&
2796 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2797 return -ENOSPC;
2798 rdev->raid_disk = slot;
2799 /* assume it is working */
2800 clear_bit(Faulty, &rdev->flags);
2801 clear_bit(WriteMostly, &rdev->flags);
2802 set_bit(In_sync, &rdev->flags);
2803 sysfs_notify_dirent_safe(rdev->sysfs_state);
2804 }
2805 return len;
2806 }
2807
2808 static struct rdev_sysfs_entry rdev_slot =
2809 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2810
2811 static ssize_t
2812 offset_show(struct md_rdev *rdev, char *page)
2813 {
2814 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2815 }
2816
2817 static ssize_t
2818 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2819 {
2820 unsigned long long offset;
2821 if (kstrtoull(buf, 10, &offset) < 0)
2822 return -EINVAL;
2823 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2824 return -EBUSY;
2825 if (rdev->sectors && rdev->mddev->external)
2826 /* Must set offset before size, so overlap checks
2827 * can be sane */
2828 return -EBUSY;
2829 rdev->data_offset = offset;
2830 rdev->new_data_offset = offset;
2831 return len;
2832 }
2833
2834 static struct rdev_sysfs_entry rdev_offset =
2835 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2836
2837 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2838 {
2839 return sprintf(page, "%llu\n",
2840 (unsigned long long)rdev->new_data_offset);
2841 }
2842
2843 static ssize_t new_offset_store(struct md_rdev *rdev,
2844 const char *buf, size_t len)
2845 {
2846 unsigned long long new_offset;
2847 struct mddev *mddev = rdev->mddev;
2848
2849 if (kstrtoull(buf, 10, &new_offset) < 0)
2850 return -EINVAL;
2851
2852 if (mddev->sync_thread)
2853 return -EBUSY;
2854 if (new_offset == rdev->data_offset)
2855 /* reset is always permitted */
2856 ;
2857 else if (new_offset > rdev->data_offset) {
2858 /* must not push array size beyond rdev_sectors */
2859 if (new_offset - rdev->data_offset
2860 + mddev->dev_sectors > rdev->sectors)
2861 return -E2BIG;
2862 }
2863 /* Metadata worries about other space details. */
2864
2865 /* decreasing the offset is inconsistent with a backwards
2866 * reshape.
2867 */
2868 if (new_offset < rdev->data_offset &&
2869 mddev->reshape_backwards)
2870 return -EINVAL;
2871 /* Increasing offset is inconsistent with forwards
2872 * reshape. reshape_direction should be set to
2873 * 'backwards' first.
2874 */
2875 if (new_offset > rdev->data_offset &&
2876 !mddev->reshape_backwards)
2877 return -EINVAL;
2878
2879 if (mddev->pers && mddev->persistent &&
2880 !super_types[mddev->major_version]
2881 .allow_new_offset(rdev, new_offset))
2882 return -E2BIG;
2883 rdev->new_data_offset = new_offset;
2884 if (new_offset > rdev->data_offset)
2885 mddev->reshape_backwards = 1;
2886 else if (new_offset < rdev->data_offset)
2887 mddev->reshape_backwards = 0;
2888
2889 return len;
2890 }
2891 static struct rdev_sysfs_entry rdev_new_offset =
2892 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2893
2894 static ssize_t
2895 rdev_size_show(struct md_rdev *rdev, char *page)
2896 {
2897 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2898 }
2899
2900 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2901 {
2902 /* check if two start/length pairs overlap */
2903 if (s1+l1 <= s2)
2904 return 0;
2905 if (s2+l2 <= s1)
2906 return 0;
2907 return 1;
2908 }
2909
2910 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2911 {
2912 unsigned long long blocks;
2913 sector_t new;
2914
2915 if (kstrtoull(buf, 10, &blocks) < 0)
2916 return -EINVAL;
2917
2918 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2919 return -EINVAL; /* sector conversion overflow */
2920
2921 new = blocks * 2;
2922 if (new != blocks * 2)
2923 return -EINVAL; /* unsigned long long to sector_t overflow */
2924
2925 *sectors = new;
2926 return 0;
2927 }
2928
2929 static ssize_t
2930 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2931 {
2932 struct mddev *my_mddev = rdev->mddev;
2933 sector_t oldsectors = rdev->sectors;
2934 sector_t sectors;
2935
2936 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2937 return -EINVAL;
2938 if (rdev->data_offset != rdev->new_data_offset)
2939 return -EINVAL; /* too confusing */
2940 if (my_mddev->pers && rdev->raid_disk >= 0) {
2941 if (my_mddev->persistent) {
2942 sectors = super_types[my_mddev->major_version].
2943 rdev_size_change(rdev, sectors);
2944 if (!sectors)
2945 return -EBUSY;
2946 } else if (!sectors)
2947 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2948 rdev->data_offset;
2949 if (!my_mddev->pers->resize)
2950 /* Cannot change size for RAID0 or Linear etc */
2951 return -EINVAL;
2952 }
2953 if (sectors < my_mddev->dev_sectors)
2954 return -EINVAL; /* component must fit device */
2955
2956 rdev->sectors = sectors;
2957 if (sectors > oldsectors && my_mddev->external) {
2958 /* Need to check that all other rdevs with the same
2959 * ->bdev do not overlap. 'rcu' is sufficient to walk
2960 * the rdev lists safely.
2961 * This check does not provide a hard guarantee, it
2962 * just helps avoid dangerous mistakes.
2963 */
2964 struct mddev *mddev;
2965 int overlap = 0;
2966 struct list_head *tmp;
2967
2968 rcu_read_lock();
2969 for_each_mddev(mddev, tmp) {
2970 struct md_rdev *rdev2;
2971
2972 rdev_for_each(rdev2, mddev)
2973 if (rdev->bdev == rdev2->bdev &&
2974 rdev != rdev2 &&
2975 overlaps(rdev->data_offset, rdev->sectors,
2976 rdev2->data_offset,
2977 rdev2->sectors)) {
2978 overlap = 1;
2979 break;
2980 }
2981 if (overlap) {
2982 mddev_put(mddev);
2983 break;
2984 }
2985 }
2986 rcu_read_unlock();
2987 if (overlap) {
2988 /* Someone else could have slipped in a size
2989 * change here, but doing so is just silly.
2990 * We put oldsectors back because we *know* it is
2991 * safe, and trust userspace not to race with
2992 * itself
2993 */
2994 rdev->sectors = oldsectors;
2995 return -EBUSY;
2996 }
2997 }
2998 return len;
2999 }
3000
3001 static struct rdev_sysfs_entry rdev_size =
3002 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3003
3004 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3005 {
3006 unsigned long long recovery_start = rdev->recovery_offset;
3007
3008 if (test_bit(In_sync, &rdev->flags) ||
3009 recovery_start == MaxSector)
3010 return sprintf(page, "none\n");
3011
3012 return sprintf(page, "%llu\n", recovery_start);
3013 }
3014
3015 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3016 {
3017 unsigned long long recovery_start;
3018
3019 if (cmd_match(buf, "none"))
3020 recovery_start = MaxSector;
3021 else if (kstrtoull(buf, 10, &recovery_start))
3022 return -EINVAL;
3023
3024 if (rdev->mddev->pers &&
3025 rdev->raid_disk >= 0)
3026 return -EBUSY;
3027
3028 rdev->recovery_offset = recovery_start;
3029 if (recovery_start == MaxSector)
3030 set_bit(In_sync, &rdev->flags);
3031 else
3032 clear_bit(In_sync, &rdev->flags);
3033 return len;
3034 }
3035
3036 static struct rdev_sysfs_entry rdev_recovery_start =
3037 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3038
3039 static ssize_t
3040 badblocks_show(struct badblocks *bb, char *page, int unack);
3041 static ssize_t
3042 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3043
3044 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3045 {
3046 return badblocks_show(&rdev->badblocks, page, 0);
3047 }
3048 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3049 {
3050 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3051 /* Maybe that ack was all we needed */
3052 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3053 wake_up(&rdev->blocked_wait);
3054 return rv;
3055 }
3056 static struct rdev_sysfs_entry rdev_bad_blocks =
3057 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3058
3059 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3060 {
3061 return badblocks_show(&rdev->badblocks, page, 1);
3062 }
3063 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3064 {
3065 return badblocks_store(&rdev->badblocks, page, len, 1);
3066 }
3067 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3068 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3069
3070 static struct attribute *rdev_default_attrs[] = {
3071 &rdev_state.attr,
3072 &rdev_errors.attr,
3073 &rdev_slot.attr,
3074 &rdev_offset.attr,
3075 &rdev_new_offset.attr,
3076 &rdev_size.attr,
3077 &rdev_recovery_start.attr,
3078 &rdev_bad_blocks.attr,
3079 &rdev_unack_bad_blocks.attr,
3080 NULL,
3081 };
3082 static ssize_t
3083 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3084 {
3085 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3086 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3087 struct mddev *mddev = rdev->mddev;
3088 ssize_t rv;
3089
3090 if (!entry->show)
3091 return -EIO;
3092
3093 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3094 if (!rv) {
3095 if (rdev->mddev == NULL)
3096 rv = -EBUSY;
3097 else
3098 rv = entry->show(rdev, page);
3099 mddev_unlock(mddev);
3100 }
3101 return rv;
3102 }
3103
3104 static ssize_t
3105 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3106 const char *page, size_t length)
3107 {
3108 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3109 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3110 ssize_t rv;
3111 struct mddev *mddev = rdev->mddev;
3112
3113 if (!entry->store)
3114 return -EIO;
3115 if (!capable(CAP_SYS_ADMIN))
3116 return -EACCES;
3117 rv = mddev ? mddev_lock(mddev): -EBUSY;
3118 if (!rv) {
3119 if (rdev->mddev == NULL)
3120 rv = -EBUSY;
3121 else
3122 rv = entry->store(rdev, page, length);
3123 mddev_unlock(mddev);
3124 }
3125 return rv;
3126 }
3127
3128 static void rdev_free(struct kobject *ko)
3129 {
3130 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3131 kfree(rdev);
3132 }
3133 static const struct sysfs_ops rdev_sysfs_ops = {
3134 .show = rdev_attr_show,
3135 .store = rdev_attr_store,
3136 };
3137 static struct kobj_type rdev_ktype = {
3138 .release = rdev_free,
3139 .sysfs_ops = &rdev_sysfs_ops,
3140 .default_attrs = rdev_default_attrs,
3141 };
3142
3143 int md_rdev_init(struct md_rdev *rdev)
3144 {
3145 rdev->desc_nr = -1;
3146 rdev->saved_raid_disk = -1;
3147 rdev->raid_disk = -1;
3148 rdev->flags = 0;
3149 rdev->data_offset = 0;
3150 rdev->new_data_offset = 0;
3151 rdev->sb_events = 0;
3152 rdev->last_read_error.tv_sec = 0;
3153 rdev->last_read_error.tv_nsec = 0;
3154 rdev->sb_loaded = 0;
3155 rdev->bb_page = NULL;
3156 atomic_set(&rdev->nr_pending, 0);
3157 atomic_set(&rdev->read_errors, 0);
3158 atomic_set(&rdev->corrected_errors, 0);
3159
3160 INIT_LIST_HEAD(&rdev->same_set);
3161 init_waitqueue_head(&rdev->blocked_wait);
3162
3163 /* Add space to store bad block list.
3164 * This reserves the space even on arrays where it cannot
3165 * be used - I wonder if that matters
3166 */
3167 rdev->badblocks.count = 0;
3168 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3169 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3170 seqlock_init(&rdev->badblocks.lock);
3171 if (rdev->badblocks.page == NULL)
3172 return -ENOMEM;
3173
3174 return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(md_rdev_init);
3177 /*
3178 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3179 *
3180 * mark the device faulty if:
3181 *
3182 * - the device is nonexistent (zero size)
3183 * - the device has no valid superblock
3184 *
3185 * a faulty rdev _never_ has rdev->sb set.
3186 */
3187 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3188 {
3189 char b[BDEVNAME_SIZE];
3190 int err;
3191 struct md_rdev *rdev;
3192 sector_t size;
3193
3194 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3195 if (!rdev) {
3196 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3197 return ERR_PTR(-ENOMEM);
3198 }
3199
3200 err = md_rdev_init(rdev);
3201 if (err)
3202 goto abort_free;
3203 err = alloc_disk_sb(rdev);
3204 if (err)
3205 goto abort_free;
3206
3207 err = lock_rdev(rdev, newdev, super_format == -2);
3208 if (err)
3209 goto abort_free;
3210
3211 kobject_init(&rdev->kobj, &rdev_ktype);
3212
3213 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3214 if (!size) {
3215 printk(KERN_WARNING
3216 "md: %s has zero or unknown size, marking faulty!\n",
3217 bdevname(rdev->bdev,b));
3218 err = -EINVAL;
3219 goto abort_free;
3220 }
3221
3222 if (super_format >= 0) {
3223 err = super_types[super_format].
3224 load_super(rdev, NULL, super_minor);
3225 if (err == -EINVAL) {
3226 printk(KERN_WARNING
3227 "md: %s does not have a valid v%d.%d "
3228 "superblock, not importing!\n",
3229 bdevname(rdev->bdev,b),
3230 super_format, super_minor);
3231 goto abort_free;
3232 }
3233 if (err < 0) {
3234 printk(KERN_WARNING
3235 "md: could not read %s's sb, not importing!\n",
3236 bdevname(rdev->bdev,b));
3237 goto abort_free;
3238 }
3239 }
3240
3241 return rdev;
3242
3243 abort_free:
3244 if (rdev->bdev)
3245 unlock_rdev(rdev);
3246 md_rdev_clear(rdev);
3247 kfree(rdev);
3248 return ERR_PTR(err);
3249 }
3250
3251 /*
3252 * Check a full RAID array for plausibility
3253 */
3254
3255 static void analyze_sbs(struct mddev *mddev)
3256 {
3257 int i;
3258 struct md_rdev *rdev, *freshest, *tmp;
3259 char b[BDEVNAME_SIZE];
3260
3261 freshest = NULL;
3262 rdev_for_each_safe(rdev, tmp, mddev)
3263 switch (super_types[mddev->major_version].
3264 load_super(rdev, freshest, mddev->minor_version)) {
3265 case 1:
3266 freshest = rdev;
3267 break;
3268 case 0:
3269 break;
3270 default:
3271 printk( KERN_ERR \
3272 "md: fatal superblock inconsistency in %s"
3273 " -- removing from array\n",
3274 bdevname(rdev->bdev,b));
3275 kick_rdev_from_array(rdev);
3276 }
3277
3278 super_types[mddev->major_version].
3279 validate_super(mddev, freshest);
3280
3281 i = 0;
3282 rdev_for_each_safe(rdev, tmp, mddev) {
3283 if (mddev->max_disks &&
3284 (rdev->desc_nr >= mddev->max_disks ||
3285 i > mddev->max_disks)) {
3286 printk(KERN_WARNING
3287 "md: %s: %s: only %d devices permitted\n",
3288 mdname(mddev), bdevname(rdev->bdev, b),
3289 mddev->max_disks);
3290 kick_rdev_from_array(rdev);
3291 continue;
3292 }
3293 if (rdev != freshest)
3294 if (super_types[mddev->major_version].
3295 validate_super(mddev, rdev)) {
3296 printk(KERN_WARNING "md: kicking non-fresh %s"
3297 " from array!\n",
3298 bdevname(rdev->bdev,b));
3299 kick_rdev_from_array(rdev);
3300 continue;
3301 }
3302 if (mddev->level == LEVEL_MULTIPATH) {
3303 rdev->desc_nr = i++;
3304 rdev->raid_disk = rdev->desc_nr;
3305 set_bit(In_sync, &rdev->flags);
3306 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3307 rdev->raid_disk = -1;
3308 clear_bit(In_sync, &rdev->flags);
3309 }
3310 }
3311 }
3312
3313 /* Read a fixed-point number.
3314 * Numbers in sysfs attributes should be in "standard" units where
3315 * possible, so time should be in seconds.
3316 * However we internally use a a much smaller unit such as
3317 * milliseconds or jiffies.
3318 * This function takes a decimal number with a possible fractional
3319 * component, and produces an integer which is the result of
3320 * multiplying that number by 10^'scale'.
3321 * all without any floating-point arithmetic.
3322 */
3323 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3324 {
3325 unsigned long result = 0;
3326 long decimals = -1;
3327 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3328 if (*cp == '.')
3329 decimals = 0;
3330 else if (decimals < scale) {
3331 unsigned int value;
3332 value = *cp - '0';
3333 result = result * 10 + value;
3334 if (decimals >= 0)
3335 decimals++;
3336 }
3337 cp++;
3338 }
3339 if (*cp == '\n')
3340 cp++;
3341 if (*cp)
3342 return -EINVAL;
3343 if (decimals < 0)
3344 decimals = 0;
3345 while (decimals < scale) {
3346 result *= 10;
3347 decimals ++;
3348 }
3349 *res = result;
3350 return 0;
3351 }
3352
3353 static void md_safemode_timeout(unsigned long data);
3354
3355 static ssize_t
3356 safe_delay_show(struct mddev *mddev, char *page)
3357 {
3358 int msec = (mddev->safemode_delay*1000)/HZ;
3359 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3360 }
3361 static ssize_t
3362 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3363 {
3364 unsigned long msec;
3365
3366 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3367 return -EINVAL;
3368 if (msec == 0)
3369 mddev->safemode_delay = 0;
3370 else {
3371 unsigned long old_delay = mddev->safemode_delay;
3372 mddev->safemode_delay = (msec*HZ)/1000;
3373 if (mddev->safemode_delay == 0)
3374 mddev->safemode_delay = 1;
3375 if (mddev->safemode_delay < old_delay || old_delay == 0)
3376 md_safemode_timeout((unsigned long)mddev);
3377 }
3378 return len;
3379 }
3380 static struct md_sysfs_entry md_safe_delay =
3381 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3382
3383 static ssize_t
3384 level_show(struct mddev *mddev, char *page)
3385 {
3386 struct md_personality *p = mddev->pers;
3387 if (p)
3388 return sprintf(page, "%s\n", p->name);
3389 else if (mddev->clevel[0])
3390 return sprintf(page, "%s\n", mddev->clevel);
3391 else if (mddev->level != LEVEL_NONE)
3392 return sprintf(page, "%d\n", mddev->level);
3393 else
3394 return 0;
3395 }
3396
3397 static ssize_t
3398 level_store(struct mddev *mddev, const char *buf, size_t len)
3399 {
3400 char clevel[16];
3401 ssize_t rv = len;
3402 struct md_personality *pers;
3403 long level;
3404 void *priv;
3405 struct md_rdev *rdev;
3406
3407 if (mddev->pers == NULL) {
3408 if (len == 0)
3409 return 0;
3410 if (len >= sizeof(mddev->clevel))
3411 return -ENOSPC;
3412 strncpy(mddev->clevel, buf, len);
3413 if (mddev->clevel[len-1] == '\n')
3414 len--;
3415 mddev->clevel[len] = 0;
3416 mddev->level = LEVEL_NONE;
3417 return rv;
3418 }
3419 if (mddev->ro)
3420 return -EROFS;
3421
3422 /* request to change the personality. Need to ensure:
3423 * - array is not engaged in resync/recovery/reshape
3424 * - old personality can be suspended
3425 * - new personality will access other array.
3426 */
3427
3428 if (mddev->sync_thread ||
3429 mddev->reshape_position != MaxSector ||
3430 mddev->sysfs_active)
3431 return -EBUSY;
3432
3433 if (!mddev->pers->quiesce) {
3434 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3435 mdname(mddev), mddev->pers->name);
3436 return -EINVAL;
3437 }
3438
3439 /* Now find the new personality */
3440 if (len == 0 || len >= sizeof(clevel))
3441 return -EINVAL;
3442 strncpy(clevel, buf, len);
3443 if (clevel[len-1] == '\n')
3444 len--;
3445 clevel[len] = 0;
3446 if (kstrtol(clevel, 10, &level))
3447 level = LEVEL_NONE;
3448
3449 if (request_module("md-%s", clevel) != 0)
3450 request_module("md-level-%s", clevel);
3451 spin_lock(&pers_lock);
3452 pers = find_pers(level, clevel);
3453 if (!pers || !try_module_get(pers->owner)) {
3454 spin_unlock(&pers_lock);
3455 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3456 return -EINVAL;
3457 }
3458 spin_unlock(&pers_lock);
3459
3460 if (pers == mddev->pers) {
3461 /* Nothing to do! */
3462 module_put(pers->owner);
3463 return rv;
3464 }
3465 if (!pers->takeover) {
3466 module_put(pers->owner);
3467 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3468 mdname(mddev), clevel);
3469 return -EINVAL;
3470 }
3471
3472 rdev_for_each(rdev, mddev)
3473 rdev->new_raid_disk = rdev->raid_disk;
3474
3475 /* ->takeover must set new_* and/or delta_disks
3476 * if it succeeds, and may set them when it fails.
3477 */
3478 priv = pers->takeover(mddev);
3479 if (IS_ERR(priv)) {
3480 mddev->new_level = mddev->level;
3481 mddev->new_layout = mddev->layout;
3482 mddev->new_chunk_sectors = mddev->chunk_sectors;
3483 mddev->raid_disks -= mddev->delta_disks;
3484 mddev->delta_disks = 0;
3485 mddev->reshape_backwards = 0;
3486 module_put(pers->owner);
3487 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3488 mdname(mddev), clevel);
3489 return PTR_ERR(priv);
3490 }
3491
3492 /* Looks like we have a winner */
3493 mddev_suspend(mddev);
3494 mddev->pers->stop(mddev);
3495
3496 if (mddev->pers->sync_request == NULL &&
3497 pers->sync_request != NULL) {
3498 /* need to add the md_redundancy_group */
3499 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3500 printk(KERN_WARNING
3501 "md: cannot register extra attributes for %s\n",
3502 mdname(mddev));
3503 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3504 }
3505 if (mddev->pers->sync_request != NULL &&
3506 pers->sync_request == NULL) {
3507 /* need to remove the md_redundancy_group */
3508 if (mddev->to_remove == NULL)
3509 mddev->to_remove = &md_redundancy_group;
3510 }
3511
3512 if (mddev->pers->sync_request == NULL &&
3513 mddev->external) {
3514 /* We are converting from a no-redundancy array
3515 * to a redundancy array and metadata is managed
3516 * externally so we need to be sure that writes
3517 * won't block due to a need to transition
3518 * clean->dirty
3519 * until external management is started.
3520 */
3521 mddev->in_sync = 0;
3522 mddev->safemode_delay = 0;
3523 mddev->safemode = 0;
3524 }
3525
3526 rdev_for_each(rdev, mddev) {
3527 if (rdev->raid_disk < 0)
3528 continue;
3529 if (rdev->new_raid_disk >= mddev->raid_disks)
3530 rdev->new_raid_disk = -1;
3531 if (rdev->new_raid_disk == rdev->raid_disk)
3532 continue;
3533 sysfs_unlink_rdev(mddev, rdev);
3534 }
3535 rdev_for_each(rdev, mddev) {
3536 if (rdev->raid_disk < 0)
3537 continue;
3538 if (rdev->new_raid_disk == rdev->raid_disk)
3539 continue;
3540 rdev->raid_disk = rdev->new_raid_disk;
3541 if (rdev->raid_disk < 0)
3542 clear_bit(In_sync, &rdev->flags);
3543 else {
3544 if (sysfs_link_rdev(mddev, rdev))
3545 printk(KERN_WARNING "md: cannot register rd%d"
3546 " for %s after level change\n",
3547 rdev->raid_disk, mdname(mddev));
3548 }
3549 }
3550
3551 module_put(mddev->pers->owner);
3552 mddev->pers = pers;
3553 mddev->private = priv;
3554 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3555 mddev->level = mddev->new_level;
3556 mddev->layout = mddev->new_layout;
3557 mddev->chunk_sectors = mddev->new_chunk_sectors;
3558 mddev->delta_disks = 0;
3559 mddev->reshape_backwards = 0;
3560 mddev->degraded = 0;
3561 if (mddev->pers->sync_request == NULL) {
3562 /* this is now an array without redundancy, so
3563 * it must always be in_sync
3564 */
3565 mddev->in_sync = 1;
3566 del_timer_sync(&mddev->safemode_timer);
3567 }
3568 blk_set_stacking_limits(&mddev->queue->limits);
3569 pers->run(mddev);
3570 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3571 mddev_resume(mddev);
3572 if (!mddev->thread)
3573 md_update_sb(mddev, 1);
3574 sysfs_notify(&mddev->kobj, NULL, "level");
3575 md_new_event(mddev);
3576 return rv;
3577 }
3578
3579 static struct md_sysfs_entry md_level =
3580 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3581
3582 static ssize_t
3583 layout_show(struct mddev *mddev, char *page)
3584 {
3585 /* just a number, not meaningful for all levels */
3586 if (mddev->reshape_position != MaxSector &&
3587 mddev->layout != mddev->new_layout)
3588 return sprintf(page, "%d (%d)\n",
3589 mddev->new_layout, mddev->layout);
3590 return sprintf(page, "%d\n", mddev->layout);
3591 }
3592
3593 static ssize_t
3594 layout_store(struct mddev *mddev, const char *buf, size_t len)
3595 {
3596 char *e;
3597 unsigned long n = simple_strtoul(buf, &e, 10);
3598
3599 if (!*buf || (*e && *e != '\n'))
3600 return -EINVAL;
3601
3602 if (mddev->pers) {
3603 int err;
3604 if (mddev->pers->check_reshape == NULL)
3605 return -EBUSY;
3606 if (mddev->ro)
3607 return -EROFS;
3608 mddev->new_layout = n;
3609 err = mddev->pers->check_reshape(mddev);
3610 if (err) {
3611 mddev->new_layout = mddev->layout;
3612 return err;
3613 }
3614 } else {
3615 mddev->new_layout = n;
3616 if (mddev->reshape_position == MaxSector)
3617 mddev->layout = n;
3618 }
3619 return len;
3620 }
3621 static struct md_sysfs_entry md_layout =
3622 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3623
3624 static ssize_t
3625 raid_disks_show(struct mddev *mddev, char *page)
3626 {
3627 if (mddev->raid_disks == 0)
3628 return 0;
3629 if (mddev->reshape_position != MaxSector &&
3630 mddev->delta_disks != 0)
3631 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3632 mddev->raid_disks - mddev->delta_disks);
3633 return sprintf(page, "%d\n", mddev->raid_disks);
3634 }
3635
3636 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3637
3638 static ssize_t
3639 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3640 {
3641 char *e;
3642 int rv = 0;
3643 unsigned long n = simple_strtoul(buf, &e, 10);
3644
3645 if (!*buf || (*e && *e != '\n'))
3646 return -EINVAL;
3647
3648 if (mddev->pers)
3649 rv = update_raid_disks(mddev, n);
3650 else if (mddev->reshape_position != MaxSector) {
3651 struct md_rdev *rdev;
3652 int olddisks = mddev->raid_disks - mddev->delta_disks;
3653
3654 rdev_for_each(rdev, mddev) {
3655 if (olddisks < n &&
3656 rdev->data_offset < rdev->new_data_offset)
3657 return -EINVAL;
3658 if (olddisks > n &&
3659 rdev->data_offset > rdev->new_data_offset)
3660 return -EINVAL;
3661 }
3662 mddev->delta_disks = n - olddisks;
3663 mddev->raid_disks = n;
3664 mddev->reshape_backwards = (mddev->delta_disks < 0);
3665 } else
3666 mddev->raid_disks = n;
3667 return rv ? rv : len;
3668 }
3669 static struct md_sysfs_entry md_raid_disks =
3670 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3671
3672 static ssize_t
3673 chunk_size_show(struct mddev *mddev, char *page)
3674 {
3675 if (mddev->reshape_position != MaxSector &&
3676 mddev->chunk_sectors != mddev->new_chunk_sectors)
3677 return sprintf(page, "%d (%d)\n",
3678 mddev->new_chunk_sectors << 9,
3679 mddev->chunk_sectors << 9);
3680 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3681 }
3682
3683 static ssize_t
3684 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3685 {
3686 char *e;
3687 unsigned long n = simple_strtoul(buf, &e, 10);
3688
3689 if (!*buf || (*e && *e != '\n'))
3690 return -EINVAL;
3691
3692 if (mddev->pers) {
3693 int err;
3694 if (mddev->pers->check_reshape == NULL)
3695 return -EBUSY;
3696 if (mddev->ro)
3697 return -EROFS;
3698 mddev->new_chunk_sectors = n >> 9;
3699 err = mddev->pers->check_reshape(mddev);
3700 if (err) {
3701 mddev->new_chunk_sectors = mddev->chunk_sectors;
3702 return err;
3703 }
3704 } else {
3705 mddev->new_chunk_sectors = n >> 9;
3706 if (mddev->reshape_position == MaxSector)
3707 mddev->chunk_sectors = n >> 9;
3708 }
3709 return len;
3710 }
3711 static struct md_sysfs_entry md_chunk_size =
3712 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3713
3714 static ssize_t
3715 resync_start_show(struct mddev *mddev, char *page)
3716 {
3717 if (mddev->recovery_cp == MaxSector)
3718 return sprintf(page, "none\n");
3719 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3720 }
3721
3722 static ssize_t
3723 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3724 {
3725 char *e;
3726 unsigned long long n = simple_strtoull(buf, &e, 10);
3727
3728 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3729 return -EBUSY;
3730 if (cmd_match(buf, "none"))
3731 n = MaxSector;
3732 else if (!*buf || (*e && *e != '\n'))
3733 return -EINVAL;
3734
3735 mddev->recovery_cp = n;
3736 if (mddev->pers)
3737 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3738 return len;
3739 }
3740 static struct md_sysfs_entry md_resync_start =
3741 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3742
3743 /*
3744 * The array state can be:
3745 *
3746 * clear
3747 * No devices, no size, no level
3748 * Equivalent to STOP_ARRAY ioctl
3749 * inactive
3750 * May have some settings, but array is not active
3751 * all IO results in error
3752 * When written, doesn't tear down array, but just stops it
3753 * suspended (not supported yet)
3754 * All IO requests will block. The array can be reconfigured.
3755 * Writing this, if accepted, will block until array is quiescent
3756 * readonly
3757 * no resync can happen. no superblocks get written.
3758 * write requests fail
3759 * read-auto
3760 * like readonly, but behaves like 'clean' on a write request.
3761 *
3762 * clean - no pending writes, but otherwise active.
3763 * When written to inactive array, starts without resync
3764 * If a write request arrives then
3765 * if metadata is known, mark 'dirty' and switch to 'active'.
3766 * if not known, block and switch to write-pending
3767 * If written to an active array that has pending writes, then fails.
3768 * active
3769 * fully active: IO and resync can be happening.
3770 * When written to inactive array, starts with resync
3771 *
3772 * write-pending
3773 * clean, but writes are blocked waiting for 'active' to be written.
3774 *
3775 * active-idle
3776 * like active, but no writes have been seen for a while (100msec).
3777 *
3778 */
3779 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3780 write_pending, active_idle, bad_word};
3781 static char *array_states[] = {
3782 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3783 "write-pending", "active-idle", NULL };
3784
3785 static int match_word(const char *word, char **list)
3786 {
3787 int n;
3788 for (n=0; list[n]; n++)
3789 if (cmd_match(word, list[n]))
3790 break;
3791 return n;
3792 }
3793
3794 static ssize_t
3795 array_state_show(struct mddev *mddev, char *page)
3796 {
3797 enum array_state st = inactive;
3798
3799 if (mddev->pers)
3800 switch(mddev->ro) {
3801 case 1:
3802 st = readonly;
3803 break;
3804 case 2:
3805 st = read_auto;
3806 break;
3807 case 0:
3808 if (mddev->in_sync)
3809 st = clean;
3810 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3811 st = write_pending;
3812 else if (mddev->safemode)
3813 st = active_idle;
3814 else
3815 st = active;
3816 }
3817 else {
3818 if (list_empty(&mddev->disks) &&
3819 mddev->raid_disks == 0 &&
3820 mddev->dev_sectors == 0)
3821 st = clear;
3822 else
3823 st = inactive;
3824 }
3825 return sprintf(page, "%s\n", array_states[st]);
3826 }
3827
3828 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3829 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3830 static int do_md_run(struct mddev *mddev);
3831 static int restart_array(struct mddev *mddev);
3832
3833 static ssize_t
3834 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3835 {
3836 int err = -EINVAL;
3837 enum array_state st = match_word(buf, array_states);
3838 switch(st) {
3839 case bad_word:
3840 break;
3841 case clear:
3842 /* stopping an active array */
3843 err = do_md_stop(mddev, 0, NULL);
3844 break;
3845 case inactive:
3846 /* stopping an active array */
3847 if (mddev->pers)
3848 err = do_md_stop(mddev, 2, NULL);
3849 else
3850 err = 0; /* already inactive */
3851 break;
3852 case suspended:
3853 break; /* not supported yet */
3854 case readonly:
3855 if (mddev->pers)
3856 err = md_set_readonly(mddev, NULL);
3857 else {
3858 mddev->ro = 1;
3859 set_disk_ro(mddev->gendisk, 1);
3860 err = do_md_run(mddev);
3861 }
3862 break;
3863 case read_auto:
3864 if (mddev->pers) {
3865 if (mddev->ro == 0)
3866 err = md_set_readonly(mddev, NULL);
3867 else if (mddev->ro == 1)
3868 err = restart_array(mddev);
3869 if (err == 0) {
3870 mddev->ro = 2;
3871 set_disk_ro(mddev->gendisk, 0);
3872 }
3873 } else {
3874 mddev->ro = 2;
3875 err = do_md_run(mddev);
3876 }
3877 break;
3878 case clean:
3879 if (mddev->pers) {
3880 restart_array(mddev);
3881 spin_lock_irq(&mddev->write_lock);
3882 if (atomic_read(&mddev->writes_pending) == 0) {
3883 if (mddev->in_sync == 0) {
3884 mddev->in_sync = 1;
3885 if (mddev->safemode == 1)
3886 mddev->safemode = 0;
3887 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3888 }
3889 err = 0;
3890 } else
3891 err = -EBUSY;
3892 spin_unlock_irq(&mddev->write_lock);
3893 } else
3894 err = -EINVAL;
3895 break;
3896 case active:
3897 if (mddev->pers) {
3898 restart_array(mddev);
3899 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3900 wake_up(&mddev->sb_wait);
3901 err = 0;
3902 } else {
3903 mddev->ro = 0;
3904 set_disk_ro(mddev->gendisk, 0);
3905 err = do_md_run(mddev);
3906 }
3907 break;
3908 case write_pending:
3909 case active_idle:
3910 /* these cannot be set */
3911 break;
3912 }
3913 if (err)
3914 return err;
3915 else {
3916 if (mddev->hold_active == UNTIL_IOCTL)
3917 mddev->hold_active = 0;
3918 sysfs_notify_dirent_safe(mddev->sysfs_state);
3919 return len;
3920 }
3921 }
3922 static struct md_sysfs_entry md_array_state =
3923 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3924
3925 static ssize_t
3926 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3927 return sprintf(page, "%d\n",
3928 atomic_read(&mddev->max_corr_read_errors));
3929 }
3930
3931 static ssize_t
3932 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934 char *e;
3935 unsigned long n = simple_strtoul(buf, &e, 10);
3936
3937 if (*buf && (*e == 0 || *e == '\n')) {
3938 atomic_set(&mddev->max_corr_read_errors, n);
3939 return len;
3940 }
3941 return -EINVAL;
3942 }
3943
3944 static struct md_sysfs_entry max_corr_read_errors =
3945 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3946 max_corrected_read_errors_store);
3947
3948 static ssize_t
3949 null_show(struct mddev *mddev, char *page)
3950 {
3951 return -EINVAL;
3952 }
3953
3954 static ssize_t
3955 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3956 {
3957 /* buf must be %d:%d\n? giving major and minor numbers */
3958 /* The new device is added to the array.
3959 * If the array has a persistent superblock, we read the
3960 * superblock to initialise info and check validity.
3961 * Otherwise, only checking done is that in bind_rdev_to_array,
3962 * which mainly checks size.
3963 */
3964 char *e;
3965 int major = simple_strtoul(buf, &e, 10);
3966 int minor;
3967 dev_t dev;
3968 struct md_rdev *rdev;
3969 int err;
3970
3971 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3972 return -EINVAL;
3973 minor = simple_strtoul(e+1, &e, 10);
3974 if (*e && *e != '\n')
3975 return -EINVAL;
3976 dev = MKDEV(major, minor);
3977 if (major != MAJOR(dev) ||
3978 minor != MINOR(dev))
3979 return -EOVERFLOW;
3980
3981 if (mddev->persistent) {
3982 rdev = md_import_device(dev, mddev->major_version,
3983 mddev->minor_version);
3984 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3985 struct md_rdev *rdev0
3986 = list_entry(mddev->disks.next,
3987 struct md_rdev, same_set);
3988 err = super_types[mddev->major_version]
3989 .load_super(rdev, rdev0, mddev->minor_version);
3990 if (err < 0)
3991 goto out;
3992 }
3993 } else if (mddev->external)
3994 rdev = md_import_device(dev, -2, -1);
3995 else
3996 rdev = md_import_device(dev, -1, -1);
3997
3998 if (IS_ERR(rdev))
3999 return PTR_ERR(rdev);
4000 err = bind_rdev_to_array(rdev, mddev);
4001 out:
4002 if (err)
4003 export_rdev(rdev);
4004 return err ? err : len;
4005 }
4006
4007 static struct md_sysfs_entry md_new_device =
4008 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4009
4010 static ssize_t
4011 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4012 {
4013 char *end;
4014 unsigned long chunk, end_chunk;
4015
4016 if (!mddev->bitmap)
4017 goto out;
4018 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4019 while (*buf) {
4020 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4021 if (buf == end) break;
4022 if (*end == '-') { /* range */
4023 buf = end + 1;
4024 end_chunk = simple_strtoul(buf, &end, 0);
4025 if (buf == end) break;
4026 }
4027 if (*end && !isspace(*end)) break;
4028 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4029 buf = skip_spaces(end);
4030 }
4031 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4032 out:
4033 return len;
4034 }
4035
4036 static struct md_sysfs_entry md_bitmap =
4037 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4038
4039 static ssize_t
4040 size_show(struct mddev *mddev, char *page)
4041 {
4042 return sprintf(page, "%llu\n",
4043 (unsigned long long)mddev->dev_sectors / 2);
4044 }
4045
4046 static int update_size(struct mddev *mddev, sector_t num_sectors);
4047
4048 static ssize_t
4049 size_store(struct mddev *mddev, const char *buf, size_t len)
4050 {
4051 /* If array is inactive, we can reduce the component size, but
4052 * not increase it (except from 0).
4053 * If array is active, we can try an on-line resize
4054 */
4055 sector_t sectors;
4056 int err = strict_blocks_to_sectors(buf, &sectors);
4057
4058 if (err < 0)
4059 return err;
4060 if (mddev->pers) {
4061 err = update_size(mddev, sectors);
4062 md_update_sb(mddev, 1);
4063 } else {
4064 if (mddev->dev_sectors == 0 ||
4065 mddev->dev_sectors > sectors)
4066 mddev->dev_sectors = sectors;
4067 else
4068 err = -ENOSPC;
4069 }
4070 return err ? err : len;
4071 }
4072
4073 static struct md_sysfs_entry md_size =
4074 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4075
4076 /* Metadata version.
4077 * This is one of
4078 * 'none' for arrays with no metadata (good luck...)
4079 * 'external' for arrays with externally managed metadata,
4080 * or N.M for internally known formats
4081 */
4082 static ssize_t
4083 metadata_show(struct mddev *mddev, char *page)
4084 {
4085 if (mddev->persistent)
4086 return sprintf(page, "%d.%d\n",
4087 mddev->major_version, mddev->minor_version);
4088 else if (mddev->external)
4089 return sprintf(page, "external:%s\n", mddev->metadata_type);
4090 else
4091 return sprintf(page, "none\n");
4092 }
4093
4094 static ssize_t
4095 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4096 {
4097 int major, minor;
4098 char *e;
4099 /* Changing the details of 'external' metadata is
4100 * always permitted. Otherwise there must be
4101 * no devices attached to the array.
4102 */
4103 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4104 ;
4105 else if (!list_empty(&mddev->disks))
4106 return -EBUSY;
4107
4108 if (cmd_match(buf, "none")) {
4109 mddev->persistent = 0;
4110 mddev->external = 0;
4111 mddev->major_version = 0;
4112 mddev->minor_version = 90;
4113 return len;
4114 }
4115 if (strncmp(buf, "external:", 9) == 0) {
4116 size_t namelen = len-9;
4117 if (namelen >= sizeof(mddev->metadata_type))
4118 namelen = sizeof(mddev->metadata_type)-1;
4119 strncpy(mddev->metadata_type, buf+9, namelen);
4120 mddev->metadata_type[namelen] = 0;
4121 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4122 mddev->metadata_type[--namelen] = 0;
4123 mddev->persistent = 0;
4124 mddev->external = 1;
4125 mddev->major_version = 0;
4126 mddev->minor_version = 90;
4127 return len;
4128 }
4129 major = simple_strtoul(buf, &e, 10);
4130 if (e==buf || *e != '.')
4131 return -EINVAL;
4132 buf = e+1;
4133 minor = simple_strtoul(buf, &e, 10);
4134 if (e==buf || (*e && *e != '\n') )
4135 return -EINVAL;
4136 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4137 return -ENOENT;
4138 mddev->major_version = major;
4139 mddev->minor_version = minor;
4140 mddev->persistent = 1;
4141 mddev->external = 0;
4142 return len;
4143 }
4144
4145 static struct md_sysfs_entry md_metadata =
4146 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4147
4148 static ssize_t
4149 action_show(struct mddev *mddev, char *page)
4150 {
4151 char *type = "idle";
4152 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4153 type = "frozen";
4154 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4155 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4156 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4157 type = "reshape";
4158 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4159 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4160 type = "resync";
4161 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4162 type = "check";
4163 else
4164 type = "repair";
4165 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4166 type = "recover";
4167 }
4168 return sprintf(page, "%s\n", type);
4169 }
4170
4171 static ssize_t
4172 action_store(struct mddev *mddev, const char *page, size_t len)
4173 {
4174 if (!mddev->pers || !mddev->pers->sync_request)
4175 return -EINVAL;
4176
4177 if (cmd_match(page, "frozen"))
4178 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4179 else
4180 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4181
4182 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4183 if (mddev->sync_thread) {
4184 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4185 md_reap_sync_thread(mddev);
4186 }
4187 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4188 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4189 return -EBUSY;
4190 else if (cmd_match(page, "resync"))
4191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4192 else if (cmd_match(page, "recover")) {
4193 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4194 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4195 } else if (cmd_match(page, "reshape")) {
4196 int err;
4197 if (mddev->pers->start_reshape == NULL)
4198 return -EINVAL;
4199 err = mddev->pers->start_reshape(mddev);
4200 if (err)
4201 return err;
4202 sysfs_notify(&mddev->kobj, NULL, "degraded");
4203 } else {
4204 if (cmd_match(page, "check"))
4205 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4206 else if (!cmd_match(page, "repair"))
4207 return -EINVAL;
4208 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4209 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4210 }
4211 if (mddev->ro == 2) {
4212 /* A write to sync_action is enough to justify
4213 * canceling read-auto mode
4214 */
4215 mddev->ro = 0;
4216 md_wakeup_thread(mddev->sync_thread);
4217 }
4218 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4219 md_wakeup_thread(mddev->thread);
4220 sysfs_notify_dirent_safe(mddev->sysfs_action);
4221 return len;
4222 }
4223
4224 static struct md_sysfs_entry md_scan_mode =
4225 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4226
4227 static ssize_t
4228 last_sync_action_show(struct mddev *mddev, char *page)
4229 {
4230 return sprintf(page, "%s\n", mddev->last_sync_action);
4231 }
4232
4233 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4234
4235 static ssize_t
4236 mismatch_cnt_show(struct mddev *mddev, char *page)
4237 {
4238 return sprintf(page, "%llu\n",
4239 (unsigned long long)
4240 atomic64_read(&mddev->resync_mismatches));
4241 }
4242
4243 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4244
4245 static ssize_t
4246 sync_min_show(struct mddev *mddev, char *page)
4247 {
4248 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4249 mddev->sync_speed_min ? "local": "system");
4250 }
4251
4252 static ssize_t
4253 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4254 {
4255 int min;
4256 char *e;
4257 if (strncmp(buf, "system", 6)==0) {
4258 mddev->sync_speed_min = 0;
4259 return len;
4260 }
4261 min = simple_strtoul(buf, &e, 10);
4262 if (buf == e || (*e && *e != '\n') || min <= 0)
4263 return -EINVAL;
4264 mddev->sync_speed_min = min;
4265 return len;
4266 }
4267
4268 static struct md_sysfs_entry md_sync_min =
4269 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4270
4271 static ssize_t
4272 sync_max_show(struct mddev *mddev, char *page)
4273 {
4274 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4275 mddev->sync_speed_max ? "local": "system");
4276 }
4277
4278 static ssize_t
4279 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4280 {
4281 int max;
4282 char *e;
4283 if (strncmp(buf, "system", 6)==0) {
4284 mddev->sync_speed_max = 0;
4285 return len;
4286 }
4287 max = simple_strtoul(buf, &e, 10);
4288 if (buf == e || (*e && *e != '\n') || max <= 0)
4289 return -EINVAL;
4290 mddev->sync_speed_max = max;
4291 return len;
4292 }
4293
4294 static struct md_sysfs_entry md_sync_max =
4295 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4296
4297 static ssize_t
4298 degraded_show(struct mddev *mddev, char *page)
4299 {
4300 return sprintf(page, "%d\n", mddev->degraded);
4301 }
4302 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4303
4304 static ssize_t
4305 sync_force_parallel_show(struct mddev *mddev, char *page)
4306 {
4307 return sprintf(page, "%d\n", mddev->parallel_resync);
4308 }
4309
4310 static ssize_t
4311 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4312 {
4313 long n;
4314
4315 if (kstrtol(buf, 10, &n))
4316 return -EINVAL;
4317
4318 if (n != 0 && n != 1)
4319 return -EINVAL;
4320
4321 mddev->parallel_resync = n;
4322
4323 if (mddev->sync_thread)
4324 wake_up(&resync_wait);
4325
4326 return len;
4327 }
4328
4329 /* force parallel resync, even with shared block devices */
4330 static struct md_sysfs_entry md_sync_force_parallel =
4331 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4332 sync_force_parallel_show, sync_force_parallel_store);
4333
4334 static ssize_t
4335 sync_speed_show(struct mddev *mddev, char *page)
4336 {
4337 unsigned long resync, dt, db;
4338 if (mddev->curr_resync == 0)
4339 return sprintf(page, "none\n");
4340 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4341 dt = (jiffies - mddev->resync_mark) / HZ;
4342 if (!dt) dt++;
4343 db = resync - mddev->resync_mark_cnt;
4344 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4345 }
4346
4347 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4348
4349 static ssize_t
4350 sync_completed_show(struct mddev *mddev, char *page)
4351 {
4352 unsigned long long max_sectors, resync;
4353
4354 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4355 return sprintf(page, "none\n");
4356
4357 if (mddev->curr_resync == 1 ||
4358 mddev->curr_resync == 2)
4359 return sprintf(page, "delayed\n");
4360
4361 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4362 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4363 max_sectors = mddev->resync_max_sectors;
4364 else
4365 max_sectors = mddev->dev_sectors;
4366
4367 resync = mddev->curr_resync_completed;
4368 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4369 }
4370
4371 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4372
4373 static ssize_t
4374 min_sync_show(struct mddev *mddev, char *page)
4375 {
4376 return sprintf(page, "%llu\n",
4377 (unsigned long long)mddev->resync_min);
4378 }
4379 static ssize_t
4380 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4381 {
4382 unsigned long long min;
4383 if (kstrtoull(buf, 10, &min))
4384 return -EINVAL;
4385 if (min > mddev->resync_max)
4386 return -EINVAL;
4387 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4388 return -EBUSY;
4389
4390 /* Must be a multiple of chunk_size */
4391 if (mddev->chunk_sectors) {
4392 sector_t temp = min;
4393 if (sector_div(temp, mddev->chunk_sectors))
4394 return -EINVAL;
4395 }
4396 mddev->resync_min = min;
4397
4398 return len;
4399 }
4400
4401 static struct md_sysfs_entry md_min_sync =
4402 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4403
4404 static ssize_t
4405 max_sync_show(struct mddev *mddev, char *page)
4406 {
4407 if (mddev->resync_max == MaxSector)
4408 return sprintf(page, "max\n");
4409 else
4410 return sprintf(page, "%llu\n",
4411 (unsigned long long)mddev->resync_max);
4412 }
4413 static ssize_t
4414 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4415 {
4416 if (strncmp(buf, "max", 3) == 0)
4417 mddev->resync_max = MaxSector;
4418 else {
4419 unsigned long long max;
4420 if (kstrtoull(buf, 10, &max))
4421 return -EINVAL;
4422 if (max < mddev->resync_min)
4423 return -EINVAL;
4424 if (max < mddev->resync_max &&
4425 mddev->ro == 0 &&
4426 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4427 return -EBUSY;
4428
4429 /* Must be a multiple of chunk_size */
4430 if (mddev->chunk_sectors) {
4431 sector_t temp = max;
4432 if (sector_div(temp, mddev->chunk_sectors))
4433 return -EINVAL;
4434 }
4435 mddev->resync_max = max;
4436 }
4437 wake_up(&mddev->recovery_wait);
4438 return len;
4439 }
4440
4441 static struct md_sysfs_entry md_max_sync =
4442 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4443
4444 static ssize_t
4445 suspend_lo_show(struct mddev *mddev, char *page)
4446 {
4447 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4448 }
4449
4450 static ssize_t
4451 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4452 {
4453 char *e;
4454 unsigned long long new = simple_strtoull(buf, &e, 10);
4455 unsigned long long old = mddev->suspend_lo;
4456
4457 if (mddev->pers == NULL ||
4458 mddev->pers->quiesce == NULL)
4459 return -EINVAL;
4460 if (buf == e || (*e && *e != '\n'))
4461 return -EINVAL;
4462
4463 mddev->suspend_lo = new;
4464 if (new >= old)
4465 /* Shrinking suspended region */
4466 mddev->pers->quiesce(mddev, 2);
4467 else {
4468 /* Expanding suspended region - need to wait */
4469 mddev->pers->quiesce(mddev, 1);
4470 mddev->pers->quiesce(mddev, 0);
4471 }
4472 return len;
4473 }
4474 static struct md_sysfs_entry md_suspend_lo =
4475 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4476
4477 static ssize_t
4478 suspend_hi_show(struct mddev *mddev, char *page)
4479 {
4480 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4481 }
4482
4483 static ssize_t
4484 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4485 {
4486 char *e;
4487 unsigned long long new = simple_strtoull(buf, &e, 10);
4488 unsigned long long old = mddev->suspend_hi;
4489
4490 if (mddev->pers == NULL ||
4491 mddev->pers->quiesce == NULL)
4492 return -EINVAL;
4493 if (buf == e || (*e && *e != '\n'))
4494 return -EINVAL;
4495
4496 mddev->suspend_hi = new;
4497 if (new <= old)
4498 /* Shrinking suspended region */
4499 mddev->pers->quiesce(mddev, 2);
4500 else {
4501 /* Expanding suspended region - need to wait */
4502 mddev->pers->quiesce(mddev, 1);
4503 mddev->pers->quiesce(mddev, 0);
4504 }
4505 return len;
4506 }
4507 static struct md_sysfs_entry md_suspend_hi =
4508 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4509
4510 static ssize_t
4511 reshape_position_show(struct mddev *mddev, char *page)
4512 {
4513 if (mddev->reshape_position != MaxSector)
4514 return sprintf(page, "%llu\n",
4515 (unsigned long long)mddev->reshape_position);
4516 strcpy(page, "none\n");
4517 return 5;
4518 }
4519
4520 static ssize_t
4521 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4522 {
4523 struct md_rdev *rdev;
4524 char *e;
4525 unsigned long long new = simple_strtoull(buf, &e, 10);
4526 if (mddev->pers)
4527 return -EBUSY;
4528 if (buf == e || (*e && *e != '\n'))
4529 return -EINVAL;
4530 mddev->reshape_position = new;
4531 mddev->delta_disks = 0;
4532 mddev->reshape_backwards = 0;
4533 mddev->new_level = mddev->level;
4534 mddev->new_layout = mddev->layout;
4535 mddev->new_chunk_sectors = mddev->chunk_sectors;
4536 rdev_for_each(rdev, mddev)
4537 rdev->new_data_offset = rdev->data_offset;
4538 return len;
4539 }
4540
4541 static struct md_sysfs_entry md_reshape_position =
4542 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4543 reshape_position_store);
4544
4545 static ssize_t
4546 reshape_direction_show(struct mddev *mddev, char *page)
4547 {
4548 return sprintf(page, "%s\n",
4549 mddev->reshape_backwards ? "backwards" : "forwards");
4550 }
4551
4552 static ssize_t
4553 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4554 {
4555 int backwards = 0;
4556 if (cmd_match(buf, "forwards"))
4557 backwards = 0;
4558 else if (cmd_match(buf, "backwards"))
4559 backwards = 1;
4560 else
4561 return -EINVAL;
4562 if (mddev->reshape_backwards == backwards)
4563 return len;
4564
4565 /* check if we are allowed to change */
4566 if (mddev->delta_disks)
4567 return -EBUSY;
4568
4569 if (mddev->persistent &&
4570 mddev->major_version == 0)
4571 return -EINVAL;
4572
4573 mddev->reshape_backwards = backwards;
4574 return len;
4575 }
4576
4577 static struct md_sysfs_entry md_reshape_direction =
4578 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4579 reshape_direction_store);
4580
4581 static ssize_t
4582 array_size_show(struct mddev *mddev, char *page)
4583 {
4584 if (mddev->external_size)
4585 return sprintf(page, "%llu\n",
4586 (unsigned long long)mddev->array_sectors/2);
4587 else
4588 return sprintf(page, "default\n");
4589 }
4590
4591 static ssize_t
4592 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4593 {
4594 sector_t sectors;
4595
4596 if (strncmp(buf, "default", 7) == 0) {
4597 if (mddev->pers)
4598 sectors = mddev->pers->size(mddev, 0, 0);
4599 else
4600 sectors = mddev->array_sectors;
4601
4602 mddev->external_size = 0;
4603 } else {
4604 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4605 return -EINVAL;
4606 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4607 return -E2BIG;
4608
4609 mddev->external_size = 1;
4610 }
4611
4612 mddev->array_sectors = sectors;
4613 if (mddev->pers) {
4614 set_capacity(mddev->gendisk, mddev->array_sectors);
4615 revalidate_disk(mddev->gendisk);
4616 }
4617 return len;
4618 }
4619
4620 static struct md_sysfs_entry md_array_size =
4621 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4622 array_size_store);
4623
4624 static struct attribute *md_default_attrs[] = {
4625 &md_level.attr,
4626 &md_layout.attr,
4627 &md_raid_disks.attr,
4628 &md_chunk_size.attr,
4629 &md_size.attr,
4630 &md_resync_start.attr,
4631 &md_metadata.attr,
4632 &md_new_device.attr,
4633 &md_safe_delay.attr,
4634 &md_array_state.attr,
4635 &md_reshape_position.attr,
4636 &md_reshape_direction.attr,
4637 &md_array_size.attr,
4638 &max_corr_read_errors.attr,
4639 NULL,
4640 };
4641
4642 static struct attribute *md_redundancy_attrs[] = {
4643 &md_scan_mode.attr,
4644 &md_last_scan_mode.attr,
4645 &md_mismatches.attr,
4646 &md_sync_min.attr,
4647 &md_sync_max.attr,
4648 &md_sync_speed.attr,
4649 &md_sync_force_parallel.attr,
4650 &md_sync_completed.attr,
4651 &md_min_sync.attr,
4652 &md_max_sync.attr,
4653 &md_suspend_lo.attr,
4654 &md_suspend_hi.attr,
4655 &md_bitmap.attr,
4656 &md_degraded.attr,
4657 NULL,
4658 };
4659 static struct attribute_group md_redundancy_group = {
4660 .name = NULL,
4661 .attrs = md_redundancy_attrs,
4662 };
4663
4664 static ssize_t
4665 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4666 {
4667 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4668 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4669 ssize_t rv;
4670
4671 if (!entry->show)
4672 return -EIO;
4673 spin_lock(&all_mddevs_lock);
4674 if (list_empty(&mddev->all_mddevs)) {
4675 spin_unlock(&all_mddevs_lock);
4676 return -EBUSY;
4677 }
4678 mddev_get(mddev);
4679 spin_unlock(&all_mddevs_lock);
4680
4681 rv = mddev_lock(mddev);
4682 if (!rv) {
4683 rv = entry->show(mddev, page);
4684 mddev_unlock(mddev);
4685 }
4686 mddev_put(mddev);
4687 return rv;
4688 }
4689
4690 static ssize_t
4691 md_attr_store(struct kobject *kobj, struct attribute *attr,
4692 const char *page, size_t length)
4693 {
4694 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4695 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4696 ssize_t rv;
4697
4698 if (!entry->store)
4699 return -EIO;
4700 if (!capable(CAP_SYS_ADMIN))
4701 return -EACCES;
4702 spin_lock(&all_mddevs_lock);
4703 if (list_empty(&mddev->all_mddevs)) {
4704 spin_unlock(&all_mddevs_lock);
4705 return -EBUSY;
4706 }
4707 mddev_get(mddev);
4708 spin_unlock(&all_mddevs_lock);
4709 if (entry->store == new_dev_store)
4710 flush_workqueue(md_misc_wq);
4711 rv = mddev_lock(mddev);
4712 if (!rv) {
4713 rv = entry->store(mddev, page, length);
4714 mddev_unlock(mddev);
4715 }
4716 mddev_put(mddev);
4717 return rv;
4718 }
4719
4720 static void md_free(struct kobject *ko)
4721 {
4722 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4723
4724 if (mddev->sysfs_state)
4725 sysfs_put(mddev->sysfs_state);
4726
4727 if (mddev->gendisk) {
4728 del_gendisk(mddev->gendisk);
4729 put_disk(mddev->gendisk);
4730 }
4731 if (mddev->queue)
4732 blk_cleanup_queue(mddev->queue);
4733
4734 kfree(mddev);
4735 }
4736
4737 static const struct sysfs_ops md_sysfs_ops = {
4738 .show = md_attr_show,
4739 .store = md_attr_store,
4740 };
4741 static struct kobj_type md_ktype = {
4742 .release = md_free,
4743 .sysfs_ops = &md_sysfs_ops,
4744 .default_attrs = md_default_attrs,
4745 };
4746
4747 int mdp_major = 0;
4748
4749 static void mddev_delayed_delete(struct work_struct *ws)
4750 {
4751 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4752
4753 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4754 kobject_del(&mddev->kobj);
4755 kobject_put(&mddev->kobj);
4756 }
4757
4758 static int md_alloc(dev_t dev, char *name)
4759 {
4760 static DEFINE_MUTEX(disks_mutex);
4761 struct mddev *mddev = mddev_find(dev);
4762 struct gendisk *disk;
4763 int partitioned;
4764 int shift;
4765 int unit;
4766 int error;
4767
4768 if (!mddev)
4769 return -ENODEV;
4770
4771 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4772 shift = partitioned ? MdpMinorShift : 0;
4773 unit = MINOR(mddev->unit) >> shift;
4774
4775 /* wait for any previous instance of this device to be
4776 * completely removed (mddev_delayed_delete).
4777 */
4778 flush_workqueue(md_misc_wq);
4779
4780 mutex_lock(&disks_mutex);
4781 error = -EEXIST;
4782 if (mddev->gendisk)
4783 goto abort;
4784
4785 if (name) {
4786 /* Need to ensure that 'name' is not a duplicate.
4787 */
4788 struct mddev *mddev2;
4789 spin_lock(&all_mddevs_lock);
4790
4791 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4792 if (mddev2->gendisk &&
4793 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4794 spin_unlock(&all_mddevs_lock);
4795 goto abort;
4796 }
4797 spin_unlock(&all_mddevs_lock);
4798 }
4799
4800 error = -ENOMEM;
4801 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4802 if (!mddev->queue)
4803 goto abort;
4804 mddev->queue->queuedata = mddev;
4805
4806 blk_queue_make_request(mddev->queue, md_make_request);
4807 blk_set_stacking_limits(&mddev->queue->limits);
4808
4809 disk = alloc_disk(1 << shift);
4810 if (!disk) {
4811 blk_cleanup_queue(mddev->queue);
4812 mddev->queue = NULL;
4813 goto abort;
4814 }
4815 disk->major = MAJOR(mddev->unit);
4816 disk->first_minor = unit << shift;
4817 if (name)
4818 strcpy(disk->disk_name, name);
4819 else if (partitioned)
4820 sprintf(disk->disk_name, "md_d%d", unit);
4821 else
4822 sprintf(disk->disk_name, "md%d", unit);
4823 disk->fops = &md_fops;
4824 disk->private_data = mddev;
4825 disk->queue = mddev->queue;
4826 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4827 /* Allow extended partitions. This makes the
4828 * 'mdp' device redundant, but we can't really
4829 * remove it now.
4830 */
4831 disk->flags |= GENHD_FL_EXT_DEVT;
4832 mddev->gendisk = disk;
4833 /* As soon as we call add_disk(), another thread could get
4834 * through to md_open, so make sure it doesn't get too far
4835 */
4836 mutex_lock(&mddev->open_mutex);
4837 add_disk(disk);
4838
4839 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4840 &disk_to_dev(disk)->kobj, "%s", "md");
4841 if (error) {
4842 /* This isn't possible, but as kobject_init_and_add is marked
4843 * __must_check, we must do something with the result
4844 */
4845 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4846 disk->disk_name);
4847 error = 0;
4848 }
4849 if (mddev->kobj.sd &&
4850 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4851 printk(KERN_DEBUG "pointless warning\n");
4852 mutex_unlock(&mddev->open_mutex);
4853 abort:
4854 mutex_unlock(&disks_mutex);
4855 if (!error && mddev->kobj.sd) {
4856 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4857 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4858 }
4859 mddev_put(mddev);
4860 return error;
4861 }
4862
4863 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4864 {
4865 md_alloc(dev, NULL);
4866 return NULL;
4867 }
4868
4869 static int add_named_array(const char *val, struct kernel_param *kp)
4870 {
4871 /* val must be "md_*" where * is not all digits.
4872 * We allocate an array with a large free minor number, and
4873 * set the name to val. val must not already be an active name.
4874 */
4875 int len = strlen(val);
4876 char buf[DISK_NAME_LEN];
4877
4878 while (len && val[len-1] == '\n')
4879 len--;
4880 if (len >= DISK_NAME_LEN)
4881 return -E2BIG;
4882 strlcpy(buf, val, len+1);
4883 if (strncmp(buf, "md_", 3) != 0)
4884 return -EINVAL;
4885 return md_alloc(0, buf);
4886 }
4887
4888 static void md_safemode_timeout(unsigned long data)
4889 {
4890 struct mddev *mddev = (struct mddev *) data;
4891
4892 if (!atomic_read(&mddev->writes_pending)) {
4893 mddev->safemode = 1;
4894 if (mddev->external)
4895 sysfs_notify_dirent_safe(mddev->sysfs_state);
4896 }
4897 md_wakeup_thread(mddev->thread);
4898 }
4899
4900 static int start_dirty_degraded;
4901
4902 int md_run(struct mddev *mddev)
4903 {
4904 int err;
4905 struct md_rdev *rdev;
4906 struct md_personality *pers;
4907
4908 if (list_empty(&mddev->disks))
4909 /* cannot run an array with no devices.. */
4910 return -EINVAL;
4911
4912 if (mddev->pers)
4913 return -EBUSY;
4914 /* Cannot run until previous stop completes properly */
4915 if (mddev->sysfs_active)
4916 return -EBUSY;
4917
4918 /*
4919 * Analyze all RAID superblock(s)
4920 */
4921 if (!mddev->raid_disks) {
4922 if (!mddev->persistent)
4923 return -EINVAL;
4924 analyze_sbs(mddev);
4925 }
4926
4927 if (mddev->level != LEVEL_NONE)
4928 request_module("md-level-%d", mddev->level);
4929 else if (mddev->clevel[0])
4930 request_module("md-%s", mddev->clevel);
4931
4932 /*
4933 * Drop all container device buffers, from now on
4934 * the only valid external interface is through the md
4935 * device.
4936 */
4937 rdev_for_each(rdev, mddev) {
4938 if (test_bit(Faulty, &rdev->flags))
4939 continue;
4940 sync_blockdev(rdev->bdev);
4941 invalidate_bdev(rdev->bdev);
4942
4943 /* perform some consistency tests on the device.
4944 * We don't want the data to overlap the metadata,
4945 * Internal Bitmap issues have been handled elsewhere.
4946 */
4947 if (rdev->meta_bdev) {
4948 /* Nothing to check */;
4949 } else if (rdev->data_offset < rdev->sb_start) {
4950 if (mddev->dev_sectors &&
4951 rdev->data_offset + mddev->dev_sectors
4952 > rdev->sb_start) {
4953 printk("md: %s: data overlaps metadata\n",
4954 mdname(mddev));
4955 return -EINVAL;
4956 }
4957 } else {
4958 if (rdev->sb_start + rdev->sb_size/512
4959 > rdev->data_offset) {
4960 printk("md: %s: metadata overlaps data\n",
4961 mdname(mddev));
4962 return -EINVAL;
4963 }
4964 }
4965 sysfs_notify_dirent_safe(rdev->sysfs_state);
4966 }
4967
4968 if (mddev->bio_set == NULL)
4969 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4970
4971 spin_lock(&pers_lock);
4972 pers = find_pers(mddev->level, mddev->clevel);
4973 if (!pers || !try_module_get(pers->owner)) {
4974 spin_unlock(&pers_lock);
4975 if (mddev->level != LEVEL_NONE)
4976 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4977 mddev->level);
4978 else
4979 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4980 mddev->clevel);
4981 return -EINVAL;
4982 }
4983 mddev->pers = pers;
4984 spin_unlock(&pers_lock);
4985 if (mddev->level != pers->level) {
4986 mddev->level = pers->level;
4987 mddev->new_level = pers->level;
4988 }
4989 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4990
4991 if (mddev->reshape_position != MaxSector &&
4992 pers->start_reshape == NULL) {
4993 /* This personality cannot handle reshaping... */
4994 mddev->pers = NULL;
4995 module_put(pers->owner);
4996 return -EINVAL;
4997 }
4998
4999 if (pers->sync_request) {
5000 /* Warn if this is a potentially silly
5001 * configuration.
5002 */
5003 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5004 struct md_rdev *rdev2;
5005 int warned = 0;
5006
5007 rdev_for_each(rdev, mddev)
5008 rdev_for_each(rdev2, mddev) {
5009 if (rdev < rdev2 &&
5010 rdev->bdev->bd_contains ==
5011 rdev2->bdev->bd_contains) {
5012 printk(KERN_WARNING
5013 "%s: WARNING: %s appears to be"
5014 " on the same physical disk as"
5015 " %s.\n",
5016 mdname(mddev),
5017 bdevname(rdev->bdev,b),
5018 bdevname(rdev2->bdev,b2));
5019 warned = 1;
5020 }
5021 }
5022
5023 if (warned)
5024 printk(KERN_WARNING
5025 "True protection against single-disk"
5026 " failure might be compromised.\n");
5027 }
5028
5029 mddev->recovery = 0;
5030 /* may be over-ridden by personality */
5031 mddev->resync_max_sectors = mddev->dev_sectors;
5032
5033 mddev->ok_start_degraded = start_dirty_degraded;
5034
5035 if (start_readonly && mddev->ro == 0)
5036 mddev->ro = 2; /* read-only, but switch on first write */
5037
5038 err = mddev->pers->run(mddev);
5039 if (err)
5040 printk(KERN_ERR "md: pers->run() failed ...\n");
5041 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5042 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5043 " but 'external_size' not in effect?\n", __func__);
5044 printk(KERN_ERR
5045 "md: invalid array_size %llu > default size %llu\n",
5046 (unsigned long long)mddev->array_sectors / 2,
5047 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5048 err = -EINVAL;
5049 mddev->pers->stop(mddev);
5050 }
5051 if (err == 0 && mddev->pers->sync_request &&
5052 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5053 err = bitmap_create(mddev);
5054 if (err) {
5055 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5056 mdname(mddev), err);
5057 mddev->pers->stop(mddev);
5058 }
5059 }
5060 if (err) {
5061 module_put(mddev->pers->owner);
5062 mddev->pers = NULL;
5063 bitmap_destroy(mddev);
5064 return err;
5065 }
5066 if (mddev->pers->sync_request) {
5067 if (mddev->kobj.sd &&
5068 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5069 printk(KERN_WARNING
5070 "md: cannot register extra attributes for %s\n",
5071 mdname(mddev));
5072 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5073 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5074 mddev->ro = 0;
5075
5076 atomic_set(&mddev->writes_pending,0);
5077 atomic_set(&mddev->max_corr_read_errors,
5078 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5079 mddev->safemode = 0;
5080 mddev->safemode_timer.function = md_safemode_timeout;
5081 mddev->safemode_timer.data = (unsigned long) mddev;
5082 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5083 mddev->in_sync = 1;
5084 smp_wmb();
5085 mddev->ready = 1;
5086 rdev_for_each(rdev, mddev)
5087 if (rdev->raid_disk >= 0)
5088 if (sysfs_link_rdev(mddev, rdev))
5089 /* failure here is OK */;
5090
5091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5092
5093 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5094 md_update_sb(mddev, 0);
5095
5096 md_new_event(mddev);
5097 sysfs_notify_dirent_safe(mddev->sysfs_state);
5098 sysfs_notify_dirent_safe(mddev->sysfs_action);
5099 sysfs_notify(&mddev->kobj, NULL, "degraded");
5100 return 0;
5101 }
5102 EXPORT_SYMBOL_GPL(md_run);
5103
5104 static int do_md_run(struct mddev *mddev)
5105 {
5106 int err;
5107
5108 err = md_run(mddev);
5109 if (err)
5110 goto out;
5111 err = bitmap_load(mddev);
5112 if (err) {
5113 bitmap_destroy(mddev);
5114 goto out;
5115 }
5116
5117 md_wakeup_thread(mddev->thread);
5118 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5119
5120 set_capacity(mddev->gendisk, mddev->array_sectors);
5121 revalidate_disk(mddev->gendisk);
5122 mddev->changed = 1;
5123 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5124 out:
5125 return err;
5126 }
5127
5128 static int restart_array(struct mddev *mddev)
5129 {
5130 struct gendisk *disk = mddev->gendisk;
5131
5132 /* Complain if it has no devices */
5133 if (list_empty(&mddev->disks))
5134 return -ENXIO;
5135 if (!mddev->pers)
5136 return -EINVAL;
5137 if (!mddev->ro)
5138 return -EBUSY;
5139 mddev->safemode = 0;
5140 mddev->ro = 0;
5141 set_disk_ro(disk, 0);
5142 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5143 mdname(mddev));
5144 /* Kick recovery or resync if necessary */
5145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5146 md_wakeup_thread(mddev->thread);
5147 md_wakeup_thread(mddev->sync_thread);
5148 sysfs_notify_dirent_safe(mddev->sysfs_state);
5149 return 0;
5150 }
5151
5152 static void md_clean(struct mddev *mddev)
5153 {
5154 mddev->array_sectors = 0;
5155 mddev->external_size = 0;
5156 mddev->dev_sectors = 0;
5157 mddev->raid_disks = 0;
5158 mddev->recovery_cp = 0;
5159 mddev->resync_min = 0;
5160 mddev->resync_max = MaxSector;
5161 mddev->reshape_position = MaxSector;
5162 mddev->external = 0;
5163 mddev->persistent = 0;
5164 mddev->level = LEVEL_NONE;
5165 mddev->clevel[0] = 0;
5166 mddev->flags = 0;
5167 mddev->ro = 0;
5168 mddev->metadata_type[0] = 0;
5169 mddev->chunk_sectors = 0;
5170 mddev->ctime = mddev->utime = 0;
5171 mddev->layout = 0;
5172 mddev->max_disks = 0;
5173 mddev->events = 0;
5174 mddev->can_decrease_events = 0;
5175 mddev->delta_disks = 0;
5176 mddev->reshape_backwards = 0;
5177 mddev->new_level = LEVEL_NONE;
5178 mddev->new_layout = 0;
5179 mddev->new_chunk_sectors = 0;
5180 mddev->curr_resync = 0;
5181 atomic64_set(&mddev->resync_mismatches, 0);
5182 mddev->suspend_lo = mddev->suspend_hi = 0;
5183 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5184 mddev->recovery = 0;
5185 mddev->in_sync = 0;
5186 mddev->changed = 0;
5187 mddev->degraded = 0;
5188 mddev->safemode = 0;
5189 mddev->merge_check_needed = 0;
5190 mddev->bitmap_info.offset = 0;
5191 mddev->bitmap_info.default_offset = 0;
5192 mddev->bitmap_info.default_space = 0;
5193 mddev->bitmap_info.chunksize = 0;
5194 mddev->bitmap_info.daemon_sleep = 0;
5195 mddev->bitmap_info.max_write_behind = 0;
5196 }
5197
5198 static void __md_stop_writes(struct mddev *mddev)
5199 {
5200 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5201 if (mddev->sync_thread) {
5202 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5203 md_reap_sync_thread(mddev);
5204 }
5205
5206 del_timer_sync(&mddev->safemode_timer);
5207
5208 bitmap_flush(mddev);
5209 md_super_wait(mddev);
5210
5211 if (mddev->ro == 0 &&
5212 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5213 /* mark array as shutdown cleanly */
5214 mddev->in_sync = 1;
5215 md_update_sb(mddev, 1);
5216 }
5217 }
5218
5219 void md_stop_writes(struct mddev *mddev)
5220 {
5221 mddev_lock_nointr(mddev);
5222 __md_stop_writes(mddev);
5223 mddev_unlock(mddev);
5224 }
5225 EXPORT_SYMBOL_GPL(md_stop_writes);
5226
5227 static void __md_stop(struct mddev *mddev)
5228 {
5229 mddev->ready = 0;
5230 mddev->pers->stop(mddev);
5231 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5232 mddev->to_remove = &md_redundancy_group;
5233 module_put(mddev->pers->owner);
5234 mddev->pers = NULL;
5235 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5236 }
5237
5238 void md_stop(struct mddev *mddev)
5239 {
5240 /* stop the array and free an attached data structures.
5241 * This is called from dm-raid
5242 */
5243 __md_stop(mddev);
5244 bitmap_destroy(mddev);
5245 if (mddev->bio_set)
5246 bioset_free(mddev->bio_set);
5247 }
5248
5249 EXPORT_SYMBOL_GPL(md_stop);
5250
5251 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5252 {
5253 int err = 0;
5254 int did_freeze = 0;
5255
5256 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5257 did_freeze = 1;
5258 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5259 md_wakeup_thread(mddev->thread);
5260 }
5261 if (mddev->sync_thread) {
5262 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5263 /* Thread might be blocked waiting for metadata update
5264 * which will now never happen */
5265 wake_up_process(mddev->sync_thread->tsk);
5266 }
5267 mddev_unlock(mddev);
5268 wait_event(resync_wait, mddev->sync_thread == NULL);
5269 mddev_lock_nointr(mddev);
5270
5271 mutex_lock(&mddev->open_mutex);
5272 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5273 mddev->sync_thread ||
5274 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5275 printk("md: %s still in use.\n",mdname(mddev));
5276 if (did_freeze) {
5277 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5278 md_wakeup_thread(mddev->thread);
5279 }
5280 err = -EBUSY;
5281 goto out;
5282 }
5283 if (mddev->pers) {
5284 __md_stop_writes(mddev);
5285
5286 err = -ENXIO;
5287 if (mddev->ro==1)
5288 goto out;
5289 mddev->ro = 1;
5290 set_disk_ro(mddev->gendisk, 1);
5291 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5292 sysfs_notify_dirent_safe(mddev->sysfs_state);
5293 err = 0;
5294 }
5295 out:
5296 mutex_unlock(&mddev->open_mutex);
5297 return err;
5298 }
5299
5300 /* mode:
5301 * 0 - completely stop and dis-assemble array
5302 * 2 - stop but do not disassemble array
5303 */
5304 static int do_md_stop(struct mddev *mddev, int mode,
5305 struct block_device *bdev)
5306 {
5307 struct gendisk *disk = mddev->gendisk;
5308 struct md_rdev *rdev;
5309 int did_freeze = 0;
5310
5311 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5312 did_freeze = 1;
5313 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5314 md_wakeup_thread(mddev->thread);
5315 }
5316 if (mddev->sync_thread) {
5317 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5318 /* Thread might be blocked waiting for metadata update
5319 * which will now never happen */
5320 wake_up_process(mddev->sync_thread->tsk);
5321 }
5322 mddev_unlock(mddev);
5323 wait_event(resync_wait, mddev->sync_thread == NULL);
5324 mddev_lock_nointr(mddev);
5325
5326 mutex_lock(&mddev->open_mutex);
5327 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5328 mddev->sysfs_active ||
5329 mddev->sync_thread ||
5330 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5331 printk("md: %s still in use.\n",mdname(mddev));
5332 mutex_unlock(&mddev->open_mutex);
5333 if (did_freeze) {
5334 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5335 md_wakeup_thread(mddev->thread);
5336 }
5337 return -EBUSY;
5338 }
5339 if (mddev->pers) {
5340 if (mddev->ro)
5341 set_disk_ro(disk, 0);
5342
5343 __md_stop_writes(mddev);
5344 __md_stop(mddev);
5345 mddev->queue->merge_bvec_fn = NULL;
5346 mddev->queue->backing_dev_info.congested_fn = NULL;
5347
5348 /* tell userspace to handle 'inactive' */
5349 sysfs_notify_dirent_safe(mddev->sysfs_state);
5350
5351 rdev_for_each(rdev, mddev)
5352 if (rdev->raid_disk >= 0)
5353 sysfs_unlink_rdev(mddev, rdev);
5354
5355 set_capacity(disk, 0);
5356 mutex_unlock(&mddev->open_mutex);
5357 mddev->changed = 1;
5358 revalidate_disk(disk);
5359
5360 if (mddev->ro)
5361 mddev->ro = 0;
5362 } else
5363 mutex_unlock(&mddev->open_mutex);
5364 /*
5365 * Free resources if final stop
5366 */
5367 if (mode == 0) {
5368 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5369
5370 bitmap_destroy(mddev);
5371 if (mddev->bitmap_info.file) {
5372 fput(mddev->bitmap_info.file);
5373 mddev->bitmap_info.file = NULL;
5374 }
5375 mddev->bitmap_info.offset = 0;
5376
5377 export_array(mddev);
5378
5379 md_clean(mddev);
5380 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5381 if (mddev->hold_active == UNTIL_STOP)
5382 mddev->hold_active = 0;
5383 }
5384 blk_integrity_unregister(disk);
5385 md_new_event(mddev);
5386 sysfs_notify_dirent_safe(mddev->sysfs_state);
5387 return 0;
5388 }
5389
5390 #ifndef MODULE
5391 static void autorun_array(struct mddev *mddev)
5392 {
5393 struct md_rdev *rdev;
5394 int err;
5395
5396 if (list_empty(&mddev->disks))
5397 return;
5398
5399 printk(KERN_INFO "md: running: ");
5400
5401 rdev_for_each(rdev, mddev) {
5402 char b[BDEVNAME_SIZE];
5403 printk("<%s>", bdevname(rdev->bdev,b));
5404 }
5405 printk("\n");
5406
5407 err = do_md_run(mddev);
5408 if (err) {
5409 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5410 do_md_stop(mddev, 0, NULL);
5411 }
5412 }
5413
5414 /*
5415 * lets try to run arrays based on all disks that have arrived
5416 * until now. (those are in pending_raid_disks)
5417 *
5418 * the method: pick the first pending disk, collect all disks with
5419 * the same UUID, remove all from the pending list and put them into
5420 * the 'same_array' list. Then order this list based on superblock
5421 * update time (freshest comes first), kick out 'old' disks and
5422 * compare superblocks. If everything's fine then run it.
5423 *
5424 * If "unit" is allocated, then bump its reference count
5425 */
5426 static void autorun_devices(int part)
5427 {
5428 struct md_rdev *rdev0, *rdev, *tmp;
5429 struct mddev *mddev;
5430 char b[BDEVNAME_SIZE];
5431
5432 printk(KERN_INFO "md: autorun ...\n");
5433 while (!list_empty(&pending_raid_disks)) {
5434 int unit;
5435 dev_t dev;
5436 LIST_HEAD(candidates);
5437 rdev0 = list_entry(pending_raid_disks.next,
5438 struct md_rdev, same_set);
5439
5440 printk(KERN_INFO "md: considering %s ...\n",
5441 bdevname(rdev0->bdev,b));
5442 INIT_LIST_HEAD(&candidates);
5443 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5444 if (super_90_load(rdev, rdev0, 0) >= 0) {
5445 printk(KERN_INFO "md: adding %s ...\n",
5446 bdevname(rdev->bdev,b));
5447 list_move(&rdev->same_set, &candidates);
5448 }
5449 /*
5450 * now we have a set of devices, with all of them having
5451 * mostly sane superblocks. It's time to allocate the
5452 * mddev.
5453 */
5454 if (part) {
5455 dev = MKDEV(mdp_major,
5456 rdev0->preferred_minor << MdpMinorShift);
5457 unit = MINOR(dev) >> MdpMinorShift;
5458 } else {
5459 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5460 unit = MINOR(dev);
5461 }
5462 if (rdev0->preferred_minor != unit) {
5463 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5464 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5465 break;
5466 }
5467
5468 md_probe(dev, NULL, NULL);
5469 mddev = mddev_find(dev);
5470 if (!mddev || !mddev->gendisk) {
5471 if (mddev)
5472 mddev_put(mddev);
5473 printk(KERN_ERR
5474 "md: cannot allocate memory for md drive.\n");
5475 break;
5476 }
5477 if (mddev_lock(mddev))
5478 printk(KERN_WARNING "md: %s locked, cannot run\n",
5479 mdname(mddev));
5480 else if (mddev->raid_disks || mddev->major_version
5481 || !list_empty(&mddev->disks)) {
5482 printk(KERN_WARNING
5483 "md: %s already running, cannot run %s\n",
5484 mdname(mddev), bdevname(rdev0->bdev,b));
5485 mddev_unlock(mddev);
5486 } else {
5487 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5488 mddev->persistent = 1;
5489 rdev_for_each_list(rdev, tmp, &candidates) {
5490 list_del_init(&rdev->same_set);
5491 if (bind_rdev_to_array(rdev, mddev))
5492 export_rdev(rdev);
5493 }
5494 autorun_array(mddev);
5495 mddev_unlock(mddev);
5496 }
5497 /* on success, candidates will be empty, on error
5498 * it won't...
5499 */
5500 rdev_for_each_list(rdev, tmp, &candidates) {
5501 list_del_init(&rdev->same_set);
5502 export_rdev(rdev);
5503 }
5504 mddev_put(mddev);
5505 }
5506 printk(KERN_INFO "md: ... autorun DONE.\n");
5507 }
5508 #endif /* !MODULE */
5509
5510 static int get_version(void __user *arg)
5511 {
5512 mdu_version_t ver;
5513
5514 ver.major = MD_MAJOR_VERSION;
5515 ver.minor = MD_MINOR_VERSION;
5516 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5517
5518 if (copy_to_user(arg, &ver, sizeof(ver)))
5519 return -EFAULT;
5520
5521 return 0;
5522 }
5523
5524 static int get_array_info(struct mddev *mddev, void __user *arg)
5525 {
5526 mdu_array_info_t info;
5527 int nr,working,insync,failed,spare;
5528 struct md_rdev *rdev;
5529
5530 nr = working = insync = failed = spare = 0;
5531 rcu_read_lock();
5532 rdev_for_each_rcu(rdev, mddev) {
5533 nr++;
5534 if (test_bit(Faulty, &rdev->flags))
5535 failed++;
5536 else {
5537 working++;
5538 if (test_bit(In_sync, &rdev->flags))
5539 insync++;
5540 else
5541 spare++;
5542 }
5543 }
5544 rcu_read_unlock();
5545
5546 info.major_version = mddev->major_version;
5547 info.minor_version = mddev->minor_version;
5548 info.patch_version = MD_PATCHLEVEL_VERSION;
5549 info.ctime = mddev->ctime;
5550 info.level = mddev->level;
5551 info.size = mddev->dev_sectors / 2;
5552 if (info.size != mddev->dev_sectors / 2) /* overflow */
5553 info.size = -1;
5554 info.nr_disks = nr;
5555 info.raid_disks = mddev->raid_disks;
5556 info.md_minor = mddev->md_minor;
5557 info.not_persistent= !mddev->persistent;
5558
5559 info.utime = mddev->utime;
5560 info.state = 0;
5561 if (mddev->in_sync)
5562 info.state = (1<<MD_SB_CLEAN);
5563 if (mddev->bitmap && mddev->bitmap_info.offset)
5564 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5565 info.active_disks = insync;
5566 info.working_disks = working;
5567 info.failed_disks = failed;
5568 info.spare_disks = spare;
5569
5570 info.layout = mddev->layout;
5571 info.chunk_size = mddev->chunk_sectors << 9;
5572
5573 if (copy_to_user(arg, &info, sizeof(info)))
5574 return -EFAULT;
5575
5576 return 0;
5577 }
5578
5579 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5580 {
5581 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5582 char *ptr, *buf = NULL;
5583 int err = -ENOMEM;
5584
5585 file = kmalloc(sizeof(*file), GFP_NOIO);
5586
5587 if (!file)
5588 goto out;
5589
5590 /* bitmap disabled, zero the first byte and copy out */
5591 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5592 file->pathname[0] = '\0';
5593 goto copy_out;
5594 }
5595
5596 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5597 if (!buf)
5598 goto out;
5599
5600 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5601 buf, sizeof(file->pathname));
5602 if (IS_ERR(ptr))
5603 goto out;
5604
5605 strcpy(file->pathname, ptr);
5606
5607 copy_out:
5608 err = 0;
5609 if (copy_to_user(arg, file, sizeof(*file)))
5610 err = -EFAULT;
5611 out:
5612 kfree(buf);
5613 kfree(file);
5614 return err;
5615 }
5616
5617 static int get_disk_info(struct mddev *mddev, void __user * arg)
5618 {
5619 mdu_disk_info_t info;
5620 struct md_rdev *rdev;
5621
5622 if (copy_from_user(&info, arg, sizeof(info)))
5623 return -EFAULT;
5624
5625 rcu_read_lock();
5626 rdev = find_rdev_nr_rcu(mddev, info.number);
5627 if (rdev) {
5628 info.major = MAJOR(rdev->bdev->bd_dev);
5629 info.minor = MINOR(rdev->bdev->bd_dev);
5630 info.raid_disk = rdev->raid_disk;
5631 info.state = 0;
5632 if (test_bit(Faulty, &rdev->flags))
5633 info.state |= (1<<MD_DISK_FAULTY);
5634 else if (test_bit(In_sync, &rdev->flags)) {
5635 info.state |= (1<<MD_DISK_ACTIVE);
5636 info.state |= (1<<MD_DISK_SYNC);
5637 }
5638 if (test_bit(WriteMostly, &rdev->flags))
5639 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5640 } else {
5641 info.major = info.minor = 0;
5642 info.raid_disk = -1;
5643 info.state = (1<<MD_DISK_REMOVED);
5644 }
5645 rcu_read_unlock();
5646
5647 if (copy_to_user(arg, &info, sizeof(info)))
5648 return -EFAULT;
5649
5650 return 0;
5651 }
5652
5653 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5654 {
5655 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5656 struct md_rdev *rdev;
5657 dev_t dev = MKDEV(info->major,info->minor);
5658
5659 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5660 return -EOVERFLOW;
5661
5662 if (!mddev->raid_disks) {
5663 int err;
5664 /* expecting a device which has a superblock */
5665 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5666 if (IS_ERR(rdev)) {
5667 printk(KERN_WARNING
5668 "md: md_import_device returned %ld\n",
5669 PTR_ERR(rdev));
5670 return PTR_ERR(rdev);
5671 }
5672 if (!list_empty(&mddev->disks)) {
5673 struct md_rdev *rdev0
5674 = list_entry(mddev->disks.next,
5675 struct md_rdev, same_set);
5676 err = super_types[mddev->major_version]
5677 .load_super(rdev, rdev0, mddev->minor_version);
5678 if (err < 0) {
5679 printk(KERN_WARNING
5680 "md: %s has different UUID to %s\n",
5681 bdevname(rdev->bdev,b),
5682 bdevname(rdev0->bdev,b2));
5683 export_rdev(rdev);
5684 return -EINVAL;
5685 }
5686 }
5687 err = bind_rdev_to_array(rdev, mddev);
5688 if (err)
5689 export_rdev(rdev);
5690 return err;
5691 }
5692
5693 /*
5694 * add_new_disk can be used once the array is assembled
5695 * to add "hot spares". They must already have a superblock
5696 * written
5697 */
5698 if (mddev->pers) {
5699 int err;
5700 if (!mddev->pers->hot_add_disk) {
5701 printk(KERN_WARNING
5702 "%s: personality does not support diskops!\n",
5703 mdname(mddev));
5704 return -EINVAL;
5705 }
5706 if (mddev->persistent)
5707 rdev = md_import_device(dev, mddev->major_version,
5708 mddev->minor_version);
5709 else
5710 rdev = md_import_device(dev, -1, -1);
5711 if (IS_ERR(rdev)) {
5712 printk(KERN_WARNING
5713 "md: md_import_device returned %ld\n",
5714 PTR_ERR(rdev));
5715 return PTR_ERR(rdev);
5716 }
5717 /* set saved_raid_disk if appropriate */
5718 if (!mddev->persistent) {
5719 if (info->state & (1<<MD_DISK_SYNC) &&
5720 info->raid_disk < mddev->raid_disks) {
5721 rdev->raid_disk = info->raid_disk;
5722 set_bit(In_sync, &rdev->flags);
5723 clear_bit(Bitmap_sync, &rdev->flags);
5724 } else
5725 rdev->raid_disk = -1;
5726 rdev->saved_raid_disk = rdev->raid_disk;
5727 } else
5728 super_types[mddev->major_version].
5729 validate_super(mddev, rdev);
5730 if ((info->state & (1<<MD_DISK_SYNC)) &&
5731 rdev->raid_disk != info->raid_disk) {
5732 /* This was a hot-add request, but events doesn't
5733 * match, so reject it.
5734 */
5735 export_rdev(rdev);
5736 return -EINVAL;
5737 }
5738
5739 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5740 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5741 set_bit(WriteMostly, &rdev->flags);
5742 else
5743 clear_bit(WriteMostly, &rdev->flags);
5744
5745 rdev->raid_disk = -1;
5746 err = bind_rdev_to_array(rdev, mddev);
5747 if (!err && !mddev->pers->hot_remove_disk) {
5748 /* If there is hot_add_disk but no hot_remove_disk
5749 * then added disks for geometry changes,
5750 * and should be added immediately.
5751 */
5752 super_types[mddev->major_version].
5753 validate_super(mddev, rdev);
5754 err = mddev->pers->hot_add_disk(mddev, rdev);
5755 if (err)
5756 unbind_rdev_from_array(rdev);
5757 }
5758 if (err)
5759 export_rdev(rdev);
5760 else
5761 sysfs_notify_dirent_safe(rdev->sysfs_state);
5762
5763 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5764 if (mddev->degraded)
5765 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5766 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5767 if (!err)
5768 md_new_event(mddev);
5769 md_wakeup_thread(mddev->thread);
5770 return err;
5771 }
5772
5773 /* otherwise, add_new_disk is only allowed
5774 * for major_version==0 superblocks
5775 */
5776 if (mddev->major_version != 0) {
5777 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5778 mdname(mddev));
5779 return -EINVAL;
5780 }
5781
5782 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5783 int err;
5784 rdev = md_import_device(dev, -1, 0);
5785 if (IS_ERR(rdev)) {
5786 printk(KERN_WARNING
5787 "md: error, md_import_device() returned %ld\n",
5788 PTR_ERR(rdev));
5789 return PTR_ERR(rdev);
5790 }
5791 rdev->desc_nr = info->number;
5792 if (info->raid_disk < mddev->raid_disks)
5793 rdev->raid_disk = info->raid_disk;
5794 else
5795 rdev->raid_disk = -1;
5796
5797 if (rdev->raid_disk < mddev->raid_disks)
5798 if (info->state & (1<<MD_DISK_SYNC))
5799 set_bit(In_sync, &rdev->flags);
5800
5801 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5802 set_bit(WriteMostly, &rdev->flags);
5803
5804 if (!mddev->persistent) {
5805 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5806 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5807 } else
5808 rdev->sb_start = calc_dev_sboffset(rdev);
5809 rdev->sectors = rdev->sb_start;
5810
5811 err = bind_rdev_to_array(rdev, mddev);
5812 if (err) {
5813 export_rdev(rdev);
5814 return err;
5815 }
5816 }
5817
5818 return 0;
5819 }
5820
5821 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5822 {
5823 char b[BDEVNAME_SIZE];
5824 struct md_rdev *rdev;
5825
5826 rdev = find_rdev(mddev, dev);
5827 if (!rdev)
5828 return -ENXIO;
5829
5830 clear_bit(Blocked, &rdev->flags);
5831 remove_and_add_spares(mddev, rdev);
5832
5833 if (rdev->raid_disk >= 0)
5834 goto busy;
5835
5836 kick_rdev_from_array(rdev);
5837 md_update_sb(mddev, 1);
5838 md_new_event(mddev);
5839
5840 return 0;
5841 busy:
5842 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5843 bdevname(rdev->bdev,b), mdname(mddev));
5844 return -EBUSY;
5845 }
5846
5847 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5848 {
5849 char b[BDEVNAME_SIZE];
5850 int err;
5851 struct md_rdev *rdev;
5852
5853 if (!mddev->pers)
5854 return -ENODEV;
5855
5856 if (mddev->major_version != 0) {
5857 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5858 " version-0 superblocks.\n",
5859 mdname(mddev));
5860 return -EINVAL;
5861 }
5862 if (!mddev->pers->hot_add_disk) {
5863 printk(KERN_WARNING
5864 "%s: personality does not support diskops!\n",
5865 mdname(mddev));
5866 return -EINVAL;
5867 }
5868
5869 rdev = md_import_device(dev, -1, 0);
5870 if (IS_ERR(rdev)) {
5871 printk(KERN_WARNING
5872 "md: error, md_import_device() returned %ld\n",
5873 PTR_ERR(rdev));
5874 return -EINVAL;
5875 }
5876
5877 if (mddev->persistent)
5878 rdev->sb_start = calc_dev_sboffset(rdev);
5879 else
5880 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5881
5882 rdev->sectors = rdev->sb_start;
5883
5884 if (test_bit(Faulty, &rdev->flags)) {
5885 printk(KERN_WARNING
5886 "md: can not hot-add faulty %s disk to %s!\n",
5887 bdevname(rdev->bdev,b), mdname(mddev));
5888 err = -EINVAL;
5889 goto abort_export;
5890 }
5891 clear_bit(In_sync, &rdev->flags);
5892 rdev->desc_nr = -1;
5893 rdev->saved_raid_disk = -1;
5894 err = bind_rdev_to_array(rdev, mddev);
5895 if (err)
5896 goto abort_export;
5897
5898 /*
5899 * The rest should better be atomic, we can have disk failures
5900 * noticed in interrupt contexts ...
5901 */
5902
5903 rdev->raid_disk = -1;
5904
5905 md_update_sb(mddev, 1);
5906
5907 /*
5908 * Kick recovery, maybe this spare has to be added to the
5909 * array immediately.
5910 */
5911 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5912 md_wakeup_thread(mddev->thread);
5913 md_new_event(mddev);
5914 return 0;
5915
5916 abort_export:
5917 export_rdev(rdev);
5918 return err;
5919 }
5920
5921 static int set_bitmap_file(struct mddev *mddev, int fd)
5922 {
5923 int err = 0;
5924
5925 if (mddev->pers) {
5926 if (!mddev->pers->quiesce || !mddev->thread)
5927 return -EBUSY;
5928 if (mddev->recovery || mddev->sync_thread)
5929 return -EBUSY;
5930 /* we should be able to change the bitmap.. */
5931 }
5932
5933 if (fd >= 0) {
5934 struct inode *inode;
5935 if (mddev->bitmap)
5936 return -EEXIST; /* cannot add when bitmap is present */
5937 mddev->bitmap_info.file = fget(fd);
5938
5939 if (mddev->bitmap_info.file == NULL) {
5940 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5941 mdname(mddev));
5942 return -EBADF;
5943 }
5944
5945 inode = mddev->bitmap_info.file->f_mapping->host;
5946 if (!S_ISREG(inode->i_mode)) {
5947 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5948 mdname(mddev));
5949 err = -EBADF;
5950 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5951 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5952 mdname(mddev));
5953 err = -EBADF;
5954 } else if (atomic_read(&inode->i_writecount) != 1) {
5955 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5956 mdname(mddev));
5957 err = -EBUSY;
5958 }
5959 if (err) {
5960 fput(mddev->bitmap_info.file);
5961 mddev->bitmap_info.file = NULL;
5962 return err;
5963 }
5964 mddev->bitmap_info.offset = 0; /* file overrides offset */
5965 } else if (mddev->bitmap == NULL)
5966 return -ENOENT; /* cannot remove what isn't there */
5967 err = 0;
5968 if (mddev->pers) {
5969 mddev->pers->quiesce(mddev, 1);
5970 if (fd >= 0) {
5971 err = bitmap_create(mddev);
5972 if (!err)
5973 err = bitmap_load(mddev);
5974 }
5975 if (fd < 0 || err) {
5976 bitmap_destroy(mddev);
5977 fd = -1; /* make sure to put the file */
5978 }
5979 mddev->pers->quiesce(mddev, 0);
5980 }
5981 if (fd < 0) {
5982 if (mddev->bitmap_info.file)
5983 fput(mddev->bitmap_info.file);
5984 mddev->bitmap_info.file = NULL;
5985 }
5986
5987 return err;
5988 }
5989
5990 /*
5991 * set_array_info is used two different ways
5992 * The original usage is when creating a new array.
5993 * In this usage, raid_disks is > 0 and it together with
5994 * level, size, not_persistent,layout,chunksize determine the
5995 * shape of the array.
5996 * This will always create an array with a type-0.90.0 superblock.
5997 * The newer usage is when assembling an array.
5998 * In this case raid_disks will be 0, and the major_version field is
5999 * use to determine which style super-blocks are to be found on the devices.
6000 * The minor and patch _version numbers are also kept incase the
6001 * super_block handler wishes to interpret them.
6002 */
6003 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6004 {
6005
6006 if (info->raid_disks == 0) {
6007 /* just setting version number for superblock loading */
6008 if (info->major_version < 0 ||
6009 info->major_version >= ARRAY_SIZE(super_types) ||
6010 super_types[info->major_version].name == NULL) {
6011 /* maybe try to auto-load a module? */
6012 printk(KERN_INFO
6013 "md: superblock version %d not known\n",
6014 info->major_version);
6015 return -EINVAL;
6016 }
6017 mddev->major_version = info->major_version;
6018 mddev->minor_version = info->minor_version;
6019 mddev->patch_version = info->patch_version;
6020 mddev->persistent = !info->not_persistent;
6021 /* ensure mddev_put doesn't delete this now that there
6022 * is some minimal configuration.
6023 */
6024 mddev->ctime = get_seconds();
6025 return 0;
6026 }
6027 mddev->major_version = MD_MAJOR_VERSION;
6028 mddev->minor_version = MD_MINOR_VERSION;
6029 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6030 mddev->ctime = get_seconds();
6031
6032 mddev->level = info->level;
6033 mddev->clevel[0] = 0;
6034 mddev->dev_sectors = 2 * (sector_t)info->size;
6035 mddev->raid_disks = info->raid_disks;
6036 /* don't set md_minor, it is determined by which /dev/md* was
6037 * openned
6038 */
6039 if (info->state & (1<<MD_SB_CLEAN))
6040 mddev->recovery_cp = MaxSector;
6041 else
6042 mddev->recovery_cp = 0;
6043 mddev->persistent = ! info->not_persistent;
6044 mddev->external = 0;
6045
6046 mddev->layout = info->layout;
6047 mddev->chunk_sectors = info->chunk_size >> 9;
6048
6049 mddev->max_disks = MD_SB_DISKS;
6050
6051 if (mddev->persistent)
6052 mddev->flags = 0;
6053 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6054
6055 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6056 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6057 mddev->bitmap_info.offset = 0;
6058
6059 mddev->reshape_position = MaxSector;
6060
6061 /*
6062 * Generate a 128 bit UUID
6063 */
6064 get_random_bytes(mddev->uuid, 16);
6065
6066 mddev->new_level = mddev->level;
6067 mddev->new_chunk_sectors = mddev->chunk_sectors;
6068 mddev->new_layout = mddev->layout;
6069 mddev->delta_disks = 0;
6070 mddev->reshape_backwards = 0;
6071
6072 return 0;
6073 }
6074
6075 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6076 {
6077 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6078
6079 if (mddev->external_size)
6080 return;
6081
6082 mddev->array_sectors = array_sectors;
6083 }
6084 EXPORT_SYMBOL(md_set_array_sectors);
6085
6086 static int update_size(struct mddev *mddev, sector_t num_sectors)
6087 {
6088 struct md_rdev *rdev;
6089 int rv;
6090 int fit = (num_sectors == 0);
6091
6092 if (mddev->pers->resize == NULL)
6093 return -EINVAL;
6094 /* The "num_sectors" is the number of sectors of each device that
6095 * is used. This can only make sense for arrays with redundancy.
6096 * linear and raid0 always use whatever space is available. We can only
6097 * consider changing this number if no resync or reconstruction is
6098 * happening, and if the new size is acceptable. It must fit before the
6099 * sb_start or, if that is <data_offset, it must fit before the size
6100 * of each device. If num_sectors is zero, we find the largest size
6101 * that fits.
6102 */
6103 if (mddev->sync_thread)
6104 return -EBUSY;
6105 if (mddev->ro)
6106 return -EROFS;
6107
6108 rdev_for_each(rdev, mddev) {
6109 sector_t avail = rdev->sectors;
6110
6111 if (fit && (num_sectors == 0 || num_sectors > avail))
6112 num_sectors = avail;
6113 if (avail < num_sectors)
6114 return -ENOSPC;
6115 }
6116 rv = mddev->pers->resize(mddev, num_sectors);
6117 if (!rv)
6118 revalidate_disk(mddev->gendisk);
6119 return rv;
6120 }
6121
6122 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6123 {
6124 int rv;
6125 struct md_rdev *rdev;
6126 /* change the number of raid disks */
6127 if (mddev->pers->check_reshape == NULL)
6128 return -EINVAL;
6129 if (mddev->ro)
6130 return -EROFS;
6131 if (raid_disks <= 0 ||
6132 (mddev->max_disks && raid_disks >= mddev->max_disks))
6133 return -EINVAL;
6134 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6135 return -EBUSY;
6136
6137 rdev_for_each(rdev, mddev) {
6138 if (mddev->raid_disks < raid_disks &&
6139 rdev->data_offset < rdev->new_data_offset)
6140 return -EINVAL;
6141 if (mddev->raid_disks > raid_disks &&
6142 rdev->data_offset > rdev->new_data_offset)
6143 return -EINVAL;
6144 }
6145
6146 mddev->delta_disks = raid_disks - mddev->raid_disks;
6147 if (mddev->delta_disks < 0)
6148 mddev->reshape_backwards = 1;
6149 else if (mddev->delta_disks > 0)
6150 mddev->reshape_backwards = 0;
6151
6152 rv = mddev->pers->check_reshape(mddev);
6153 if (rv < 0) {
6154 mddev->delta_disks = 0;
6155 mddev->reshape_backwards = 0;
6156 }
6157 return rv;
6158 }
6159
6160 /*
6161 * update_array_info is used to change the configuration of an
6162 * on-line array.
6163 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6164 * fields in the info are checked against the array.
6165 * Any differences that cannot be handled will cause an error.
6166 * Normally, only one change can be managed at a time.
6167 */
6168 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6169 {
6170 int rv = 0;
6171 int cnt = 0;
6172 int state = 0;
6173
6174 /* calculate expected state,ignoring low bits */
6175 if (mddev->bitmap && mddev->bitmap_info.offset)
6176 state |= (1 << MD_SB_BITMAP_PRESENT);
6177
6178 if (mddev->major_version != info->major_version ||
6179 mddev->minor_version != info->minor_version ||
6180 /* mddev->patch_version != info->patch_version || */
6181 mddev->ctime != info->ctime ||
6182 mddev->level != info->level ||
6183 /* mddev->layout != info->layout || */
6184 !mddev->persistent != info->not_persistent||
6185 mddev->chunk_sectors != info->chunk_size >> 9 ||
6186 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6187 ((state^info->state) & 0xfffffe00)
6188 )
6189 return -EINVAL;
6190 /* Check there is only one change */
6191 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6192 cnt++;
6193 if (mddev->raid_disks != info->raid_disks)
6194 cnt++;
6195 if (mddev->layout != info->layout)
6196 cnt++;
6197 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6198 cnt++;
6199 if (cnt == 0)
6200 return 0;
6201 if (cnt > 1)
6202 return -EINVAL;
6203
6204 if (mddev->layout != info->layout) {
6205 /* Change layout
6206 * we don't need to do anything at the md level, the
6207 * personality will take care of it all.
6208 */
6209 if (mddev->pers->check_reshape == NULL)
6210 return -EINVAL;
6211 else {
6212 mddev->new_layout = info->layout;
6213 rv = mddev->pers->check_reshape(mddev);
6214 if (rv)
6215 mddev->new_layout = mddev->layout;
6216 return rv;
6217 }
6218 }
6219 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6220 rv = update_size(mddev, (sector_t)info->size * 2);
6221
6222 if (mddev->raid_disks != info->raid_disks)
6223 rv = update_raid_disks(mddev, info->raid_disks);
6224
6225 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6226 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6227 return -EINVAL;
6228 if (mddev->recovery || mddev->sync_thread)
6229 return -EBUSY;
6230 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6231 /* add the bitmap */
6232 if (mddev->bitmap)
6233 return -EEXIST;
6234 if (mddev->bitmap_info.default_offset == 0)
6235 return -EINVAL;
6236 mddev->bitmap_info.offset =
6237 mddev->bitmap_info.default_offset;
6238 mddev->bitmap_info.space =
6239 mddev->bitmap_info.default_space;
6240 mddev->pers->quiesce(mddev, 1);
6241 rv = bitmap_create(mddev);
6242 if (!rv)
6243 rv = bitmap_load(mddev);
6244 if (rv)
6245 bitmap_destroy(mddev);
6246 mddev->pers->quiesce(mddev, 0);
6247 } else {
6248 /* remove the bitmap */
6249 if (!mddev->bitmap)
6250 return -ENOENT;
6251 if (mddev->bitmap->storage.file)
6252 return -EINVAL;
6253 mddev->pers->quiesce(mddev, 1);
6254 bitmap_destroy(mddev);
6255 mddev->pers->quiesce(mddev, 0);
6256 mddev->bitmap_info.offset = 0;
6257 }
6258 }
6259 md_update_sb(mddev, 1);
6260 return rv;
6261 }
6262
6263 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6264 {
6265 struct md_rdev *rdev;
6266 int err = 0;
6267
6268 if (mddev->pers == NULL)
6269 return -ENODEV;
6270
6271 rcu_read_lock();
6272 rdev = find_rdev_rcu(mddev, dev);
6273 if (!rdev)
6274 err = -ENODEV;
6275 else {
6276 md_error(mddev, rdev);
6277 if (!test_bit(Faulty, &rdev->flags))
6278 err = -EBUSY;
6279 }
6280 rcu_read_unlock();
6281 return err;
6282 }
6283
6284 /*
6285 * We have a problem here : there is no easy way to give a CHS
6286 * virtual geometry. We currently pretend that we have a 2 heads
6287 * 4 sectors (with a BIG number of cylinders...). This drives
6288 * dosfs just mad... ;-)
6289 */
6290 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6291 {
6292 struct mddev *mddev = bdev->bd_disk->private_data;
6293
6294 geo->heads = 2;
6295 geo->sectors = 4;
6296 geo->cylinders = mddev->array_sectors / 8;
6297 return 0;
6298 }
6299
6300 static inline bool md_ioctl_valid(unsigned int cmd)
6301 {
6302 switch (cmd) {
6303 case ADD_NEW_DISK:
6304 case BLKROSET:
6305 case GET_ARRAY_INFO:
6306 case GET_BITMAP_FILE:
6307 case GET_DISK_INFO:
6308 case HOT_ADD_DISK:
6309 case HOT_REMOVE_DISK:
6310 case PRINT_RAID_DEBUG:
6311 case RAID_AUTORUN:
6312 case RAID_VERSION:
6313 case RESTART_ARRAY_RW:
6314 case RUN_ARRAY:
6315 case SET_ARRAY_INFO:
6316 case SET_BITMAP_FILE:
6317 case SET_DISK_FAULTY:
6318 case STOP_ARRAY:
6319 case STOP_ARRAY_RO:
6320 return true;
6321 default:
6322 return false;
6323 }
6324 }
6325
6326 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6327 unsigned int cmd, unsigned long arg)
6328 {
6329 int err = 0;
6330 void __user *argp = (void __user *)arg;
6331 struct mddev *mddev = NULL;
6332 int ro;
6333
6334 if (!md_ioctl_valid(cmd))
6335 return -ENOTTY;
6336
6337 switch (cmd) {
6338 case RAID_VERSION:
6339 case GET_ARRAY_INFO:
6340 case GET_DISK_INFO:
6341 break;
6342 default:
6343 if (!capable(CAP_SYS_ADMIN))
6344 return -EACCES;
6345 }
6346
6347 /*
6348 * Commands dealing with the RAID driver but not any
6349 * particular array:
6350 */
6351 switch (cmd) {
6352 case RAID_VERSION:
6353 err = get_version(argp);
6354 goto done;
6355
6356 case PRINT_RAID_DEBUG:
6357 err = 0;
6358 md_print_devices();
6359 goto done;
6360
6361 #ifndef MODULE
6362 case RAID_AUTORUN:
6363 err = 0;
6364 autostart_arrays(arg);
6365 goto done;
6366 #endif
6367 default:;
6368 }
6369
6370 /*
6371 * Commands creating/starting a new array:
6372 */
6373
6374 mddev = bdev->bd_disk->private_data;
6375
6376 if (!mddev) {
6377 BUG();
6378 goto abort;
6379 }
6380
6381 /* Some actions do not requires the mutex */
6382 switch (cmd) {
6383 case GET_ARRAY_INFO:
6384 if (!mddev->raid_disks && !mddev->external)
6385 err = -ENODEV;
6386 else
6387 err = get_array_info(mddev, argp);
6388 goto abort;
6389
6390 case GET_DISK_INFO:
6391 if (!mddev->raid_disks && !mddev->external)
6392 err = -ENODEV;
6393 else
6394 err = get_disk_info(mddev, argp);
6395 goto abort;
6396
6397 case SET_DISK_FAULTY:
6398 err = set_disk_faulty(mddev, new_decode_dev(arg));
6399 goto abort;
6400 }
6401
6402 if (cmd == ADD_NEW_DISK)
6403 /* need to ensure md_delayed_delete() has completed */
6404 flush_workqueue(md_misc_wq);
6405
6406 if (cmd == HOT_REMOVE_DISK)
6407 /* need to ensure recovery thread has run */
6408 wait_event_interruptible_timeout(mddev->sb_wait,
6409 !test_bit(MD_RECOVERY_NEEDED,
6410 &mddev->flags),
6411 msecs_to_jiffies(5000));
6412 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6413 /* Need to flush page cache, and ensure no-one else opens
6414 * and writes
6415 */
6416 mutex_lock(&mddev->open_mutex);
6417 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6418 mutex_unlock(&mddev->open_mutex);
6419 err = -EBUSY;
6420 goto abort;
6421 }
6422 set_bit(MD_STILL_CLOSED, &mddev->flags);
6423 mutex_unlock(&mddev->open_mutex);
6424 sync_blockdev(bdev);
6425 }
6426 err = mddev_lock(mddev);
6427 if (err) {
6428 printk(KERN_INFO
6429 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6430 err, cmd);
6431 goto abort;
6432 }
6433
6434 if (cmd == SET_ARRAY_INFO) {
6435 mdu_array_info_t info;
6436 if (!arg)
6437 memset(&info, 0, sizeof(info));
6438 else if (copy_from_user(&info, argp, sizeof(info))) {
6439 err = -EFAULT;
6440 goto abort_unlock;
6441 }
6442 if (mddev->pers) {
6443 err = update_array_info(mddev, &info);
6444 if (err) {
6445 printk(KERN_WARNING "md: couldn't update"
6446 " array info. %d\n", err);
6447 goto abort_unlock;
6448 }
6449 goto done_unlock;
6450 }
6451 if (!list_empty(&mddev->disks)) {
6452 printk(KERN_WARNING
6453 "md: array %s already has disks!\n",
6454 mdname(mddev));
6455 err = -EBUSY;
6456 goto abort_unlock;
6457 }
6458 if (mddev->raid_disks) {
6459 printk(KERN_WARNING
6460 "md: array %s already initialised!\n",
6461 mdname(mddev));
6462 err = -EBUSY;
6463 goto abort_unlock;
6464 }
6465 err = set_array_info(mddev, &info);
6466 if (err) {
6467 printk(KERN_WARNING "md: couldn't set"
6468 " array info. %d\n", err);
6469 goto abort_unlock;
6470 }
6471 goto done_unlock;
6472 }
6473
6474 /*
6475 * Commands querying/configuring an existing array:
6476 */
6477 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6478 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6479 if ((!mddev->raid_disks && !mddev->external)
6480 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6481 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6482 && cmd != GET_BITMAP_FILE) {
6483 err = -ENODEV;
6484 goto abort_unlock;
6485 }
6486
6487 /*
6488 * Commands even a read-only array can execute:
6489 */
6490 switch (cmd) {
6491 case GET_BITMAP_FILE:
6492 err = get_bitmap_file(mddev, argp);
6493 goto done_unlock;
6494
6495 case RESTART_ARRAY_RW:
6496 err = restart_array(mddev);
6497 goto done_unlock;
6498
6499 case STOP_ARRAY:
6500 err = do_md_stop(mddev, 0, bdev);
6501 goto done_unlock;
6502
6503 case STOP_ARRAY_RO:
6504 err = md_set_readonly(mddev, bdev);
6505 goto done_unlock;
6506
6507 case HOT_REMOVE_DISK:
6508 err = hot_remove_disk(mddev, new_decode_dev(arg));
6509 goto done_unlock;
6510
6511 case ADD_NEW_DISK:
6512 /* We can support ADD_NEW_DISK on read-only arrays
6513 * on if we are re-adding a preexisting device.
6514 * So require mddev->pers and MD_DISK_SYNC.
6515 */
6516 if (mddev->pers) {
6517 mdu_disk_info_t info;
6518 if (copy_from_user(&info, argp, sizeof(info)))
6519 err = -EFAULT;
6520 else if (!(info.state & (1<<MD_DISK_SYNC)))
6521 /* Need to clear read-only for this */
6522 break;
6523 else
6524 err = add_new_disk(mddev, &info);
6525 goto done_unlock;
6526 }
6527 break;
6528
6529 case BLKROSET:
6530 if (get_user(ro, (int __user *)(arg))) {
6531 err = -EFAULT;
6532 goto done_unlock;
6533 }
6534 err = -EINVAL;
6535
6536 /* if the bdev is going readonly the value of mddev->ro
6537 * does not matter, no writes are coming
6538 */
6539 if (ro)
6540 goto done_unlock;
6541
6542 /* are we are already prepared for writes? */
6543 if (mddev->ro != 1)
6544 goto done_unlock;
6545
6546 /* transitioning to readauto need only happen for
6547 * arrays that call md_write_start
6548 */
6549 if (mddev->pers) {
6550 err = restart_array(mddev);
6551 if (err == 0) {
6552 mddev->ro = 2;
6553 set_disk_ro(mddev->gendisk, 0);
6554 }
6555 }
6556 goto done_unlock;
6557 }
6558
6559 /*
6560 * The remaining ioctls are changing the state of the
6561 * superblock, so we do not allow them on read-only arrays.
6562 */
6563 if (mddev->ro && mddev->pers) {
6564 if (mddev->ro == 2) {
6565 mddev->ro = 0;
6566 sysfs_notify_dirent_safe(mddev->sysfs_state);
6567 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6568 /* mddev_unlock will wake thread */
6569 /* If a device failed while we were read-only, we
6570 * need to make sure the metadata is updated now.
6571 */
6572 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6573 mddev_unlock(mddev);
6574 wait_event(mddev->sb_wait,
6575 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6576 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6577 mddev_lock_nointr(mddev);
6578 }
6579 } else {
6580 err = -EROFS;
6581 goto abort_unlock;
6582 }
6583 }
6584
6585 switch (cmd) {
6586 case ADD_NEW_DISK:
6587 {
6588 mdu_disk_info_t info;
6589 if (copy_from_user(&info, argp, sizeof(info)))
6590 err = -EFAULT;
6591 else
6592 err = add_new_disk(mddev, &info);
6593 goto done_unlock;
6594 }
6595
6596 case HOT_ADD_DISK:
6597 err = hot_add_disk(mddev, new_decode_dev(arg));
6598 goto done_unlock;
6599
6600 case RUN_ARRAY:
6601 err = do_md_run(mddev);
6602 goto done_unlock;
6603
6604 case SET_BITMAP_FILE:
6605 err = set_bitmap_file(mddev, (int)arg);
6606 goto done_unlock;
6607
6608 default:
6609 err = -EINVAL;
6610 goto abort_unlock;
6611 }
6612
6613 done_unlock:
6614 abort_unlock:
6615 if (mddev->hold_active == UNTIL_IOCTL &&
6616 err != -EINVAL)
6617 mddev->hold_active = 0;
6618 mddev_unlock(mddev);
6619
6620 return err;
6621 done:
6622 if (err)
6623 MD_BUG();
6624 abort:
6625 return err;
6626 }
6627 #ifdef CONFIG_COMPAT
6628 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6629 unsigned int cmd, unsigned long arg)
6630 {
6631 switch (cmd) {
6632 case HOT_REMOVE_DISK:
6633 case HOT_ADD_DISK:
6634 case SET_DISK_FAULTY:
6635 case SET_BITMAP_FILE:
6636 /* These take in integer arg, do not convert */
6637 break;
6638 default:
6639 arg = (unsigned long)compat_ptr(arg);
6640 break;
6641 }
6642
6643 return md_ioctl(bdev, mode, cmd, arg);
6644 }
6645 #endif /* CONFIG_COMPAT */
6646
6647 static int md_open(struct block_device *bdev, fmode_t mode)
6648 {
6649 /*
6650 * Succeed if we can lock the mddev, which confirms that
6651 * it isn't being stopped right now.
6652 */
6653 struct mddev *mddev = mddev_find(bdev->bd_dev);
6654 int err;
6655
6656 if (!mddev)
6657 return -ENODEV;
6658
6659 if (mddev->gendisk != bdev->bd_disk) {
6660 /* we are racing with mddev_put which is discarding this
6661 * bd_disk.
6662 */
6663 mddev_put(mddev);
6664 /* Wait until bdev->bd_disk is definitely gone */
6665 flush_workqueue(md_misc_wq);
6666 /* Then retry the open from the top */
6667 return -ERESTARTSYS;
6668 }
6669 BUG_ON(mddev != bdev->bd_disk->private_data);
6670
6671 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6672 goto out;
6673
6674 err = 0;
6675 atomic_inc(&mddev->openers);
6676 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6677 mutex_unlock(&mddev->open_mutex);
6678
6679 check_disk_change(bdev);
6680 out:
6681 return err;
6682 }
6683
6684 static void md_release(struct gendisk *disk, fmode_t mode)
6685 {
6686 struct mddev *mddev = disk->private_data;
6687
6688 BUG_ON(!mddev);
6689 atomic_dec(&mddev->openers);
6690 mddev_put(mddev);
6691 }
6692
6693 static int md_media_changed(struct gendisk *disk)
6694 {
6695 struct mddev *mddev = disk->private_data;
6696
6697 return mddev->changed;
6698 }
6699
6700 static int md_revalidate(struct gendisk *disk)
6701 {
6702 struct mddev *mddev = disk->private_data;
6703
6704 mddev->changed = 0;
6705 return 0;
6706 }
6707 static const struct block_device_operations md_fops =
6708 {
6709 .owner = THIS_MODULE,
6710 .open = md_open,
6711 .release = md_release,
6712 .ioctl = md_ioctl,
6713 #ifdef CONFIG_COMPAT
6714 .compat_ioctl = md_compat_ioctl,
6715 #endif
6716 .getgeo = md_getgeo,
6717 .media_changed = md_media_changed,
6718 .revalidate_disk= md_revalidate,
6719 };
6720
6721 static int md_thread(void *arg)
6722 {
6723 struct md_thread *thread = arg;
6724
6725 /*
6726 * md_thread is a 'system-thread', it's priority should be very
6727 * high. We avoid resource deadlocks individually in each
6728 * raid personality. (RAID5 does preallocation) We also use RR and
6729 * the very same RT priority as kswapd, thus we will never get
6730 * into a priority inversion deadlock.
6731 *
6732 * we definitely have to have equal or higher priority than
6733 * bdflush, otherwise bdflush will deadlock if there are too
6734 * many dirty RAID5 blocks.
6735 */
6736
6737 allow_signal(SIGKILL);
6738 while (!kthread_should_stop()) {
6739
6740 /* We need to wait INTERRUPTIBLE so that
6741 * we don't add to the load-average.
6742 * That means we need to be sure no signals are
6743 * pending
6744 */
6745 if (signal_pending(current))
6746 flush_signals(current);
6747
6748 wait_event_interruptible_timeout
6749 (thread->wqueue,
6750 test_bit(THREAD_WAKEUP, &thread->flags)
6751 || kthread_should_stop(),
6752 thread->timeout);
6753
6754 clear_bit(THREAD_WAKEUP, &thread->flags);
6755 if (!kthread_should_stop())
6756 thread->run(thread);
6757 }
6758
6759 return 0;
6760 }
6761
6762 void md_wakeup_thread(struct md_thread *thread)
6763 {
6764 if (thread) {
6765 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6766 set_bit(THREAD_WAKEUP, &thread->flags);
6767 wake_up(&thread->wqueue);
6768 }
6769 }
6770
6771 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6772 struct mddev *mddev, const char *name)
6773 {
6774 struct md_thread *thread;
6775
6776 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6777 if (!thread)
6778 return NULL;
6779
6780 init_waitqueue_head(&thread->wqueue);
6781
6782 thread->run = run;
6783 thread->mddev = mddev;
6784 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6785 thread->tsk = kthread_run(md_thread, thread,
6786 "%s_%s",
6787 mdname(thread->mddev),
6788 name);
6789 if (IS_ERR(thread->tsk)) {
6790 kfree(thread);
6791 return NULL;
6792 }
6793 return thread;
6794 }
6795
6796 void md_unregister_thread(struct md_thread **threadp)
6797 {
6798 struct md_thread *thread = *threadp;
6799 if (!thread)
6800 return;
6801 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6802 /* Locking ensures that mddev_unlock does not wake_up a
6803 * non-existent thread
6804 */
6805 spin_lock(&pers_lock);
6806 *threadp = NULL;
6807 spin_unlock(&pers_lock);
6808
6809 kthread_stop(thread->tsk);
6810 kfree(thread);
6811 }
6812
6813 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6814 {
6815 if (!mddev) {
6816 MD_BUG();
6817 return;
6818 }
6819
6820 if (!rdev || test_bit(Faulty, &rdev->flags))
6821 return;
6822
6823 if (!mddev->pers || !mddev->pers->error_handler)
6824 return;
6825 mddev->pers->error_handler(mddev,rdev);
6826 if (mddev->degraded)
6827 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6828 sysfs_notify_dirent_safe(rdev->sysfs_state);
6829 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6830 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6831 md_wakeup_thread(mddev->thread);
6832 if (mddev->event_work.func)
6833 queue_work(md_misc_wq, &mddev->event_work);
6834 md_new_event_inintr(mddev);
6835 }
6836
6837 /* seq_file implementation /proc/mdstat */
6838
6839 static void status_unused(struct seq_file *seq)
6840 {
6841 int i = 0;
6842 struct md_rdev *rdev;
6843
6844 seq_printf(seq, "unused devices: ");
6845
6846 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6847 char b[BDEVNAME_SIZE];
6848 i++;
6849 seq_printf(seq, "%s ",
6850 bdevname(rdev->bdev,b));
6851 }
6852 if (!i)
6853 seq_printf(seq, "<none>");
6854
6855 seq_printf(seq, "\n");
6856 }
6857
6858 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6859 {
6860 sector_t max_sectors, resync, res;
6861 unsigned long dt, db;
6862 sector_t rt;
6863 int scale;
6864 unsigned int per_milli;
6865
6866 if (mddev->curr_resync <= 3)
6867 resync = 0;
6868 else
6869 resync = mddev->curr_resync
6870 - atomic_read(&mddev->recovery_active);
6871
6872 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6873 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6874 max_sectors = mddev->resync_max_sectors;
6875 else
6876 max_sectors = mddev->dev_sectors;
6877
6878 /*
6879 * Should not happen.
6880 */
6881 if (!max_sectors) {
6882 MD_BUG();
6883 return;
6884 }
6885 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6886 * in a sector_t, and (max_sectors>>scale) will fit in a
6887 * u32, as those are the requirements for sector_div.
6888 * Thus 'scale' must be at least 10
6889 */
6890 scale = 10;
6891 if (sizeof(sector_t) > sizeof(unsigned long)) {
6892 while ( max_sectors/2 > (1ULL<<(scale+32)))
6893 scale++;
6894 }
6895 res = (resync>>scale)*1000;
6896 sector_div(res, (u32)((max_sectors>>scale)+1));
6897
6898 per_milli = res;
6899 {
6900 int i, x = per_milli/50, y = 20-x;
6901 seq_printf(seq, "[");
6902 for (i = 0; i < x; i++)
6903 seq_printf(seq, "=");
6904 seq_printf(seq, ">");
6905 for (i = 0; i < y; i++)
6906 seq_printf(seq, ".");
6907 seq_printf(seq, "] ");
6908 }
6909 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6910 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6911 "reshape" :
6912 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6913 "check" :
6914 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6915 "resync" : "recovery"))),
6916 per_milli/10, per_milli % 10,
6917 (unsigned long long) resync/2,
6918 (unsigned long long) max_sectors/2);
6919
6920 /*
6921 * dt: time from mark until now
6922 * db: blocks written from mark until now
6923 * rt: remaining time
6924 *
6925 * rt is a sector_t, so could be 32bit or 64bit.
6926 * So we divide before multiply in case it is 32bit and close
6927 * to the limit.
6928 * We scale the divisor (db) by 32 to avoid losing precision
6929 * near the end of resync when the number of remaining sectors
6930 * is close to 'db'.
6931 * We then divide rt by 32 after multiplying by db to compensate.
6932 * The '+1' avoids division by zero if db is very small.
6933 */
6934 dt = ((jiffies - mddev->resync_mark) / HZ);
6935 if (!dt) dt++;
6936 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6937 - mddev->resync_mark_cnt;
6938
6939 rt = max_sectors - resync; /* number of remaining sectors */
6940 sector_div(rt, db/32+1);
6941 rt *= dt;
6942 rt >>= 5;
6943
6944 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6945 ((unsigned long)rt % 60)/6);
6946
6947 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6948 }
6949
6950 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6951 {
6952 struct list_head *tmp;
6953 loff_t l = *pos;
6954 struct mddev *mddev;
6955
6956 if (l >= 0x10000)
6957 return NULL;
6958 if (!l--)
6959 /* header */
6960 return (void*)1;
6961
6962 spin_lock(&all_mddevs_lock);
6963 list_for_each(tmp,&all_mddevs)
6964 if (!l--) {
6965 mddev = list_entry(tmp, struct mddev, all_mddevs);
6966 mddev_get(mddev);
6967 spin_unlock(&all_mddevs_lock);
6968 return mddev;
6969 }
6970 spin_unlock(&all_mddevs_lock);
6971 if (!l--)
6972 return (void*)2;/* tail */
6973 return NULL;
6974 }
6975
6976 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6977 {
6978 struct list_head *tmp;
6979 struct mddev *next_mddev, *mddev = v;
6980
6981 ++*pos;
6982 if (v == (void*)2)
6983 return NULL;
6984
6985 spin_lock(&all_mddevs_lock);
6986 if (v == (void*)1)
6987 tmp = all_mddevs.next;
6988 else
6989 tmp = mddev->all_mddevs.next;
6990 if (tmp != &all_mddevs)
6991 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6992 else {
6993 next_mddev = (void*)2;
6994 *pos = 0x10000;
6995 }
6996 spin_unlock(&all_mddevs_lock);
6997
6998 if (v != (void*)1)
6999 mddev_put(mddev);
7000 return next_mddev;
7001
7002 }
7003
7004 static void md_seq_stop(struct seq_file *seq, void *v)
7005 {
7006 struct mddev *mddev = v;
7007
7008 if (mddev && v != (void*)1 && v != (void*)2)
7009 mddev_put(mddev);
7010 }
7011
7012 static int md_seq_show(struct seq_file *seq, void *v)
7013 {
7014 struct mddev *mddev = v;
7015 sector_t sectors;
7016 struct md_rdev *rdev;
7017
7018 if (v == (void*)1) {
7019 struct md_personality *pers;
7020 seq_printf(seq, "Personalities : ");
7021 spin_lock(&pers_lock);
7022 list_for_each_entry(pers, &pers_list, list)
7023 seq_printf(seq, "[%s] ", pers->name);
7024
7025 spin_unlock(&pers_lock);
7026 seq_printf(seq, "\n");
7027 seq->poll_event = atomic_read(&md_event_count);
7028 return 0;
7029 }
7030 if (v == (void*)2) {
7031 status_unused(seq);
7032 return 0;
7033 }
7034
7035 if (mddev_lock(mddev) < 0)
7036 return -EINTR;
7037
7038 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7039 seq_printf(seq, "%s : %sactive", mdname(mddev),
7040 mddev->pers ? "" : "in");
7041 if (mddev->pers) {
7042 if (mddev->ro==1)
7043 seq_printf(seq, " (read-only)");
7044 if (mddev->ro==2)
7045 seq_printf(seq, " (auto-read-only)");
7046 seq_printf(seq, " %s", mddev->pers->name);
7047 }
7048
7049 sectors = 0;
7050 rdev_for_each(rdev, mddev) {
7051 char b[BDEVNAME_SIZE];
7052 seq_printf(seq, " %s[%d]",
7053 bdevname(rdev->bdev,b), rdev->desc_nr);
7054 if (test_bit(WriteMostly, &rdev->flags))
7055 seq_printf(seq, "(W)");
7056 if (test_bit(Faulty, &rdev->flags)) {
7057 seq_printf(seq, "(F)");
7058 continue;
7059 }
7060 if (rdev->raid_disk < 0)
7061 seq_printf(seq, "(S)"); /* spare */
7062 if (test_bit(Replacement, &rdev->flags))
7063 seq_printf(seq, "(R)");
7064 sectors += rdev->sectors;
7065 }
7066
7067 if (!list_empty(&mddev->disks)) {
7068 if (mddev->pers)
7069 seq_printf(seq, "\n %llu blocks",
7070 (unsigned long long)
7071 mddev->array_sectors / 2);
7072 else
7073 seq_printf(seq, "\n %llu blocks",
7074 (unsigned long long)sectors / 2);
7075 }
7076 if (mddev->persistent) {
7077 if (mddev->major_version != 0 ||
7078 mddev->minor_version != 90) {
7079 seq_printf(seq," super %d.%d",
7080 mddev->major_version,
7081 mddev->minor_version);
7082 }
7083 } else if (mddev->external)
7084 seq_printf(seq, " super external:%s",
7085 mddev->metadata_type);
7086 else
7087 seq_printf(seq, " super non-persistent");
7088
7089 if (mddev->pers) {
7090 mddev->pers->status(seq, mddev);
7091 seq_printf(seq, "\n ");
7092 if (mddev->pers->sync_request) {
7093 if (mddev->curr_resync > 2) {
7094 status_resync(seq, mddev);
7095 seq_printf(seq, "\n ");
7096 } else if (mddev->curr_resync >= 1)
7097 seq_printf(seq, "\tresync=DELAYED\n ");
7098 else if (mddev->recovery_cp < MaxSector)
7099 seq_printf(seq, "\tresync=PENDING\n ");
7100 }
7101 } else
7102 seq_printf(seq, "\n ");
7103
7104 bitmap_status(seq, mddev->bitmap);
7105
7106 seq_printf(seq, "\n");
7107 }
7108 mddev_unlock(mddev);
7109
7110 return 0;
7111 }
7112
7113 static const struct seq_operations md_seq_ops = {
7114 .start = md_seq_start,
7115 .next = md_seq_next,
7116 .stop = md_seq_stop,
7117 .show = md_seq_show,
7118 };
7119
7120 static int md_seq_open(struct inode *inode, struct file *file)
7121 {
7122 struct seq_file *seq;
7123 int error;
7124
7125 error = seq_open(file, &md_seq_ops);
7126 if (error)
7127 return error;
7128
7129 seq = file->private_data;
7130 seq->poll_event = atomic_read(&md_event_count);
7131 return error;
7132 }
7133
7134 static int md_unloading;
7135 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7136 {
7137 struct seq_file *seq = filp->private_data;
7138 int mask;
7139
7140 if (md_unloading)
7141 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
7142 poll_wait(filp, &md_event_waiters, wait);
7143
7144 /* always allow read */
7145 mask = POLLIN | POLLRDNORM;
7146
7147 if (seq->poll_event != atomic_read(&md_event_count))
7148 mask |= POLLERR | POLLPRI;
7149 return mask;
7150 }
7151
7152 static const struct file_operations md_seq_fops = {
7153 .owner = THIS_MODULE,
7154 .open = md_seq_open,
7155 .read = seq_read,
7156 .llseek = seq_lseek,
7157 .release = seq_release_private,
7158 .poll = mdstat_poll,
7159 };
7160
7161 int register_md_personality(struct md_personality *p)
7162 {
7163 printk(KERN_INFO "md: %s personality registered for level %d\n",
7164 p->name, p->level);
7165 spin_lock(&pers_lock);
7166 list_add_tail(&p->list, &pers_list);
7167 spin_unlock(&pers_lock);
7168 return 0;
7169 }
7170
7171 int unregister_md_personality(struct md_personality *p)
7172 {
7173 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7174 spin_lock(&pers_lock);
7175 list_del_init(&p->list);
7176 spin_unlock(&pers_lock);
7177 return 0;
7178 }
7179
7180 static int is_mddev_idle(struct mddev *mddev, int init)
7181 {
7182 struct md_rdev *rdev;
7183 int idle;
7184 int curr_events;
7185
7186 idle = 1;
7187 rcu_read_lock();
7188 rdev_for_each_rcu(rdev, mddev) {
7189 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7190 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7191 (int)part_stat_read(&disk->part0, sectors[1]) -
7192 atomic_read(&disk->sync_io);
7193 /* sync IO will cause sync_io to increase before the disk_stats
7194 * as sync_io is counted when a request starts, and
7195 * disk_stats is counted when it completes.
7196 * So resync activity will cause curr_events to be smaller than
7197 * when there was no such activity.
7198 * non-sync IO will cause disk_stat to increase without
7199 * increasing sync_io so curr_events will (eventually)
7200 * be larger than it was before. Once it becomes
7201 * substantially larger, the test below will cause
7202 * the array to appear non-idle, and resync will slow
7203 * down.
7204 * If there is a lot of outstanding resync activity when
7205 * we set last_event to curr_events, then all that activity
7206 * completing might cause the array to appear non-idle
7207 * and resync will be slowed down even though there might
7208 * not have been non-resync activity. This will only
7209 * happen once though. 'last_events' will soon reflect
7210 * the state where there is little or no outstanding
7211 * resync requests, and further resync activity will
7212 * always make curr_events less than last_events.
7213 *
7214 */
7215 if (init || curr_events - rdev->last_events > 64) {
7216 rdev->last_events = curr_events;
7217 idle = 0;
7218 }
7219 }
7220 rcu_read_unlock();
7221 return idle;
7222 }
7223
7224 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7225 {
7226 /* another "blocks" (512byte) blocks have been synced */
7227 atomic_sub(blocks, &mddev->recovery_active);
7228 wake_up(&mddev->recovery_wait);
7229 if (!ok) {
7230 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7231 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7232 md_wakeup_thread(mddev->thread);
7233 // stop recovery, signal do_sync ....
7234 }
7235 }
7236
7237 /* md_write_start(mddev, bi)
7238 * If we need to update some array metadata (e.g. 'active' flag
7239 * in superblock) before writing, schedule a superblock update
7240 * and wait for it to complete.
7241 */
7242 void md_write_start(struct mddev *mddev, struct bio *bi)
7243 {
7244 int did_change = 0;
7245 if (bio_data_dir(bi) != WRITE)
7246 return;
7247
7248 BUG_ON(mddev->ro == 1);
7249 if (mddev->ro == 2) {
7250 /* need to switch to read/write */
7251 mddev->ro = 0;
7252 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7253 md_wakeup_thread(mddev->thread);
7254 md_wakeup_thread(mddev->sync_thread);
7255 did_change = 1;
7256 }
7257 atomic_inc(&mddev->writes_pending);
7258 if (mddev->safemode == 1)
7259 mddev->safemode = 0;
7260 if (mddev->in_sync) {
7261 spin_lock_irq(&mddev->write_lock);
7262 if (mddev->in_sync) {
7263 mddev->in_sync = 0;
7264 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7265 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7266 md_wakeup_thread(mddev->thread);
7267 did_change = 1;
7268 }
7269 spin_unlock_irq(&mddev->write_lock);
7270 }
7271 if (did_change)
7272 sysfs_notify_dirent_safe(mddev->sysfs_state);
7273 wait_event(mddev->sb_wait,
7274 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7275 }
7276
7277 void md_write_end(struct mddev *mddev)
7278 {
7279 if (atomic_dec_and_test(&mddev->writes_pending)) {
7280 if (mddev->safemode == 2)
7281 md_wakeup_thread(mddev->thread);
7282 else if (mddev->safemode_delay)
7283 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7284 }
7285 }
7286
7287 /* md_allow_write(mddev)
7288 * Calling this ensures that the array is marked 'active' so that writes
7289 * may proceed without blocking. It is important to call this before
7290 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7291 * Must be called with mddev_lock held.
7292 *
7293 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7294 * is dropped, so return -EAGAIN after notifying userspace.
7295 */
7296 int md_allow_write(struct mddev *mddev)
7297 {
7298 if (!mddev->pers)
7299 return 0;
7300 if (mddev->ro)
7301 return 0;
7302 if (!mddev->pers->sync_request)
7303 return 0;
7304
7305 spin_lock_irq(&mddev->write_lock);
7306 if (mddev->in_sync) {
7307 mddev->in_sync = 0;
7308 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7309 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7310 if (mddev->safemode_delay &&
7311 mddev->safemode == 0)
7312 mddev->safemode = 1;
7313 spin_unlock_irq(&mddev->write_lock);
7314 md_update_sb(mddev, 0);
7315 sysfs_notify_dirent_safe(mddev->sysfs_state);
7316 } else
7317 spin_unlock_irq(&mddev->write_lock);
7318
7319 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7320 return -EAGAIN;
7321 else
7322 return 0;
7323 }
7324 EXPORT_SYMBOL_GPL(md_allow_write);
7325
7326 #define SYNC_MARKS 10
7327 #define SYNC_MARK_STEP (3*HZ)
7328 #define UPDATE_FREQUENCY (5*60*HZ)
7329 void md_do_sync(struct md_thread *thread)
7330 {
7331 struct mddev *mddev = thread->mddev;
7332 struct mddev *mddev2;
7333 unsigned int currspeed = 0,
7334 window;
7335 sector_t max_sectors,j, io_sectors, recovery_done;
7336 unsigned long mark[SYNC_MARKS];
7337 unsigned long update_time;
7338 sector_t mark_cnt[SYNC_MARKS];
7339 int last_mark,m;
7340 struct list_head *tmp;
7341 sector_t last_check;
7342 int skipped = 0;
7343 struct md_rdev *rdev;
7344 char *desc, *action = NULL;
7345 struct blk_plug plug;
7346
7347 /* just incase thread restarts... */
7348 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7349 return;
7350 if (mddev->ro) {/* never try to sync a read-only array */
7351 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7352 return;
7353 }
7354
7355 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7356 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7357 desc = "data-check";
7358 action = "check";
7359 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7360 desc = "requested-resync";
7361 action = "repair";
7362 } else
7363 desc = "resync";
7364 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7365 desc = "reshape";
7366 else
7367 desc = "recovery";
7368
7369 mddev->last_sync_action = action ?: desc;
7370
7371 /* we overload curr_resync somewhat here.
7372 * 0 == not engaged in resync at all
7373 * 2 == checking that there is no conflict with another sync
7374 * 1 == like 2, but have yielded to allow conflicting resync to
7375 * commense
7376 * other == active in resync - this many blocks
7377 *
7378 * Before starting a resync we must have set curr_resync to
7379 * 2, and then checked that every "conflicting" array has curr_resync
7380 * less than ours. When we find one that is the same or higher
7381 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7382 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7383 * This will mean we have to start checking from the beginning again.
7384 *
7385 */
7386
7387 do {
7388 mddev->curr_resync = 2;
7389
7390 try_again:
7391 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7392 goto skip;
7393 for_each_mddev(mddev2, tmp) {
7394 if (mddev2 == mddev)
7395 continue;
7396 if (!mddev->parallel_resync
7397 && mddev2->curr_resync
7398 && match_mddev_units(mddev, mddev2)) {
7399 DEFINE_WAIT(wq);
7400 if (mddev < mddev2 && mddev->curr_resync == 2) {
7401 /* arbitrarily yield */
7402 mddev->curr_resync = 1;
7403 wake_up(&resync_wait);
7404 }
7405 if (mddev > mddev2 && mddev->curr_resync == 1)
7406 /* no need to wait here, we can wait the next
7407 * time 'round when curr_resync == 2
7408 */
7409 continue;
7410 /* We need to wait 'interruptible' so as not to
7411 * contribute to the load average, and not to
7412 * be caught by 'softlockup'
7413 */
7414 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7415 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7416 mddev2->curr_resync >= mddev->curr_resync) {
7417 printk(KERN_INFO "md: delaying %s of %s"
7418 " until %s has finished (they"
7419 " share one or more physical units)\n",
7420 desc, mdname(mddev), mdname(mddev2));
7421 mddev_put(mddev2);
7422 if (signal_pending(current))
7423 flush_signals(current);
7424 schedule();
7425 finish_wait(&resync_wait, &wq);
7426 goto try_again;
7427 }
7428 finish_wait(&resync_wait, &wq);
7429 }
7430 }
7431 } while (mddev->curr_resync < 2);
7432
7433 j = 0;
7434 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7435 /* resync follows the size requested by the personality,
7436 * which defaults to physical size, but can be virtual size
7437 */
7438 max_sectors = mddev->resync_max_sectors;
7439 atomic64_set(&mddev->resync_mismatches, 0);
7440 /* we don't use the checkpoint if there's a bitmap */
7441 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7442 j = mddev->resync_min;
7443 else if (!mddev->bitmap)
7444 j = mddev->recovery_cp;
7445
7446 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7447 max_sectors = mddev->resync_max_sectors;
7448 else {
7449 /* recovery follows the physical size of devices */
7450 max_sectors = mddev->dev_sectors;
7451 j = MaxSector;
7452 rcu_read_lock();
7453 rdev_for_each_rcu(rdev, mddev)
7454 if (rdev->raid_disk >= 0 &&
7455 !test_bit(Faulty, &rdev->flags) &&
7456 !test_bit(In_sync, &rdev->flags) &&
7457 rdev->recovery_offset < j)
7458 j = rdev->recovery_offset;
7459 rcu_read_unlock();
7460
7461 /* If there is a bitmap, we need to make sure all
7462 * writes that started before we added a spare
7463 * complete before we start doing a recovery.
7464 * Otherwise the write might complete and (via
7465 * bitmap_endwrite) set a bit in the bitmap after the
7466 * recovery has checked that bit and skipped that
7467 * region.
7468 */
7469 if (mddev->bitmap) {
7470 mddev->pers->quiesce(mddev, 1);
7471 mddev->pers->quiesce(mddev, 0);
7472 }
7473 }
7474
7475 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7476 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7477 " %d KB/sec/disk.\n", speed_min(mddev));
7478 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7479 "(but not more than %d KB/sec) for %s.\n",
7480 speed_max(mddev), desc);
7481
7482 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7483
7484 io_sectors = 0;
7485 for (m = 0; m < SYNC_MARKS; m++) {
7486 mark[m] = jiffies;
7487 mark_cnt[m] = io_sectors;
7488 }
7489 last_mark = 0;
7490 mddev->resync_mark = mark[last_mark];
7491 mddev->resync_mark_cnt = mark_cnt[last_mark];
7492
7493 /*
7494 * Tune reconstruction:
7495 */
7496 window = 32*(PAGE_SIZE/512);
7497 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7498 window/2, (unsigned long long)max_sectors/2);
7499
7500 atomic_set(&mddev->recovery_active, 0);
7501 last_check = 0;
7502
7503 if (j>2) {
7504 printk(KERN_INFO
7505 "md: resuming %s of %s from checkpoint.\n",
7506 desc, mdname(mddev));
7507 mddev->curr_resync = j;
7508 } else
7509 mddev->curr_resync = 3; /* no longer delayed */
7510 mddev->curr_resync_completed = j;
7511 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7512 md_new_event(mddev);
7513 update_time = jiffies;
7514
7515 blk_start_plug(&plug);
7516 while (j < max_sectors) {
7517 sector_t sectors;
7518
7519 skipped = 0;
7520
7521 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7522 ((mddev->curr_resync > mddev->curr_resync_completed &&
7523 (mddev->curr_resync - mddev->curr_resync_completed)
7524 > (max_sectors >> 4)) ||
7525 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7526 (j - mddev->curr_resync_completed)*2
7527 >= mddev->resync_max - mddev->curr_resync_completed
7528 )) {
7529 /* time to update curr_resync_completed */
7530 wait_event(mddev->recovery_wait,
7531 atomic_read(&mddev->recovery_active) == 0);
7532 mddev->curr_resync_completed = j;
7533 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7534 j > mddev->recovery_cp)
7535 mddev->recovery_cp = j;
7536 update_time = jiffies;
7537 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7538 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7539 }
7540
7541 while (j >= mddev->resync_max &&
7542 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7543 /* As this condition is controlled by user-space,
7544 * we can block indefinitely, so use '_interruptible'
7545 * to avoid triggering warnings.
7546 */
7547 flush_signals(current); /* just in case */
7548 wait_event_interruptible(mddev->recovery_wait,
7549 mddev->resync_max > j
7550 || test_bit(MD_RECOVERY_INTR,
7551 &mddev->recovery));
7552 }
7553
7554 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7555 break;
7556
7557 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7558 currspeed < speed_min(mddev));
7559 if (sectors == 0) {
7560 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7561 break;
7562 }
7563
7564 if (!skipped) { /* actual IO requested */
7565 io_sectors += sectors;
7566 atomic_add(sectors, &mddev->recovery_active);
7567 }
7568
7569 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7570 break;
7571
7572 j += sectors;
7573 if (j > 2)
7574 mddev->curr_resync = j;
7575 mddev->curr_mark_cnt = io_sectors;
7576 if (last_check == 0)
7577 /* this is the earliest that rebuild will be
7578 * visible in /proc/mdstat
7579 */
7580 md_new_event(mddev);
7581
7582 if (last_check + window > io_sectors || j == max_sectors)
7583 continue;
7584
7585 last_check = io_sectors;
7586 repeat:
7587 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7588 /* step marks */
7589 int next = (last_mark+1) % SYNC_MARKS;
7590
7591 mddev->resync_mark = mark[next];
7592 mddev->resync_mark_cnt = mark_cnt[next];
7593 mark[next] = jiffies;
7594 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7595 last_mark = next;
7596 }
7597
7598 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7599 break;
7600
7601 /*
7602 * this loop exits only if either when we are slower than
7603 * the 'hard' speed limit, or the system was IO-idle for
7604 * a jiffy.
7605 * the system might be non-idle CPU-wise, but we only care
7606 * about not overloading the IO subsystem. (things like an
7607 * e2fsck being done on the RAID array should execute fast)
7608 */
7609 cond_resched();
7610
7611 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7612 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7613 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7614
7615 if (currspeed > speed_min(mddev)) {
7616 if ((currspeed > speed_max(mddev)) ||
7617 !is_mddev_idle(mddev, 0)) {
7618 msleep(500);
7619 goto repeat;
7620 }
7621 }
7622 }
7623 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7624 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7625 ? "interrupted" : "done");
7626 /*
7627 * this also signals 'finished resyncing' to md_stop
7628 */
7629 blk_finish_plug(&plug);
7630 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7631
7632 /* tell personality that we are finished */
7633 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7634
7635 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7636 mddev->curr_resync > 2) {
7637 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7638 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7639 if (mddev->curr_resync >= mddev->recovery_cp) {
7640 printk(KERN_INFO
7641 "md: checkpointing %s of %s.\n",
7642 desc, mdname(mddev));
7643 if (test_bit(MD_RECOVERY_ERROR,
7644 &mddev->recovery))
7645 mddev->recovery_cp =
7646 mddev->curr_resync_completed;
7647 else
7648 mddev->recovery_cp =
7649 mddev->curr_resync;
7650 }
7651 } else
7652 mddev->recovery_cp = MaxSector;
7653 } else {
7654 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7655 mddev->curr_resync = MaxSector;
7656 rcu_read_lock();
7657 rdev_for_each_rcu(rdev, mddev)
7658 if (rdev->raid_disk >= 0 &&
7659 mddev->delta_disks >= 0 &&
7660 !test_bit(Faulty, &rdev->flags) &&
7661 !test_bit(In_sync, &rdev->flags) &&
7662 rdev->recovery_offset < mddev->curr_resync)
7663 rdev->recovery_offset = mddev->curr_resync;
7664 rcu_read_unlock();
7665 }
7666 }
7667 skip:
7668 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7669
7670 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7671 /* We completed so min/max setting can be forgotten if used. */
7672 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7673 mddev->resync_min = 0;
7674 mddev->resync_max = MaxSector;
7675 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7676 mddev->resync_min = mddev->curr_resync_completed;
7677 mddev->curr_resync = 0;
7678 wake_up(&resync_wait);
7679 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7680 md_wakeup_thread(mddev->thread);
7681 return;
7682 }
7683 EXPORT_SYMBOL_GPL(md_do_sync);
7684
7685 static int remove_and_add_spares(struct mddev *mddev,
7686 struct md_rdev *this)
7687 {
7688 struct md_rdev *rdev;
7689 int spares = 0;
7690 int removed = 0;
7691
7692 rdev_for_each(rdev, mddev)
7693 if ((this == NULL || rdev == this) &&
7694 rdev->raid_disk >= 0 &&
7695 !test_bit(Blocked, &rdev->flags) &&
7696 (test_bit(Faulty, &rdev->flags) ||
7697 ! test_bit(In_sync, &rdev->flags)) &&
7698 atomic_read(&rdev->nr_pending)==0) {
7699 if (mddev->pers->hot_remove_disk(
7700 mddev, rdev) == 0) {
7701 sysfs_unlink_rdev(mddev, rdev);
7702 rdev->raid_disk = -1;
7703 removed++;
7704 }
7705 }
7706 if (removed && mddev->kobj.sd)
7707 sysfs_notify(&mddev->kobj, NULL, "degraded");
7708
7709 if (this)
7710 goto no_add;
7711
7712 rdev_for_each(rdev, mddev) {
7713 if (rdev->raid_disk >= 0 &&
7714 !test_bit(In_sync, &rdev->flags) &&
7715 !test_bit(Faulty, &rdev->flags))
7716 spares++;
7717 if (rdev->raid_disk >= 0)
7718 continue;
7719 if (test_bit(Faulty, &rdev->flags))
7720 continue;
7721 if (mddev->ro &&
7722 ! (rdev->saved_raid_disk >= 0 &&
7723 !test_bit(Bitmap_sync, &rdev->flags)))
7724 continue;
7725
7726 if (rdev->saved_raid_disk < 0)
7727 rdev->recovery_offset = 0;
7728 if (mddev->pers->
7729 hot_add_disk(mddev, rdev) == 0) {
7730 if (sysfs_link_rdev(mddev, rdev))
7731 /* failure here is OK */;
7732 spares++;
7733 md_new_event(mddev);
7734 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7735 }
7736 }
7737 no_add:
7738 if (removed)
7739 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7740 return spares;
7741 }
7742
7743 static void md_start_sync(struct work_struct *ws)
7744 {
7745 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7746
7747 mddev->sync_thread = md_register_thread(md_do_sync,
7748 mddev,
7749 "resync");
7750 if (!mddev->sync_thread) {
7751 printk(KERN_ERR "%s: could not start resync"
7752 " thread...\n",
7753 mdname(mddev));
7754 /* leave the spares where they are, it shouldn't hurt */
7755 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7756 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7757 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7758 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7759 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7760 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7761 &mddev->recovery))
7762 if (mddev->sysfs_action)
7763 sysfs_notify_dirent_safe(mddev->sysfs_action);
7764 } else
7765 md_wakeup_thread(mddev->sync_thread);
7766 sysfs_notify_dirent_safe(mddev->sysfs_action);
7767 md_new_event(mddev);
7768 }
7769
7770 /*
7771 * This routine is regularly called by all per-raid-array threads to
7772 * deal with generic issues like resync and super-block update.
7773 * Raid personalities that don't have a thread (linear/raid0) do not
7774 * need this as they never do any recovery or update the superblock.
7775 *
7776 * It does not do any resync itself, but rather "forks" off other threads
7777 * to do that as needed.
7778 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7779 * "->recovery" and create a thread at ->sync_thread.
7780 * When the thread finishes it sets MD_RECOVERY_DONE
7781 * and wakeups up this thread which will reap the thread and finish up.
7782 * This thread also removes any faulty devices (with nr_pending == 0).
7783 *
7784 * The overall approach is:
7785 * 1/ if the superblock needs updating, update it.
7786 * 2/ If a recovery thread is running, don't do anything else.
7787 * 3/ If recovery has finished, clean up, possibly marking spares active.
7788 * 4/ If there are any faulty devices, remove them.
7789 * 5/ If array is degraded, try to add spares devices
7790 * 6/ If array has spares or is not in-sync, start a resync thread.
7791 */
7792 void md_check_recovery(struct mddev *mddev)
7793 {
7794 if (mddev->suspended)
7795 return;
7796
7797 if (mddev->bitmap)
7798 bitmap_daemon_work(mddev);
7799
7800 if (signal_pending(current)) {
7801 if (mddev->pers->sync_request && !mddev->external) {
7802 printk(KERN_INFO "md: %s in immediate safe mode\n",
7803 mdname(mddev));
7804 mddev->safemode = 2;
7805 }
7806 flush_signals(current);
7807 }
7808
7809 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7810 return;
7811 if ( ! (
7812 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7813 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7814 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7815 (mddev->external == 0 && mddev->safemode == 1) ||
7816 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7817 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7818 ))
7819 return;
7820
7821 if (mddev_trylock(mddev)) {
7822 int spares = 0;
7823
7824 if (mddev->ro) {
7825 /* On a read-only array we can:
7826 * - remove failed devices
7827 * - add already-in_sync devices if the array itself
7828 * is in-sync.
7829 * As we only add devices that are already in-sync,
7830 * we can activate the spares immediately.
7831 */
7832 remove_and_add_spares(mddev, NULL);
7833 /* There is no thread, but we need to call
7834 * ->spare_active and clear saved_raid_disk
7835 */
7836 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7837 md_reap_sync_thread(mddev);
7838 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7839 goto unlock;
7840 }
7841
7842 if (!mddev->external) {
7843 int did_change = 0;
7844 spin_lock_irq(&mddev->write_lock);
7845 if (mddev->safemode &&
7846 !atomic_read(&mddev->writes_pending) &&
7847 !mddev->in_sync &&
7848 mddev->recovery_cp == MaxSector) {
7849 mddev->in_sync = 1;
7850 did_change = 1;
7851 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7852 }
7853 if (mddev->safemode == 1)
7854 mddev->safemode = 0;
7855 spin_unlock_irq(&mddev->write_lock);
7856 if (did_change)
7857 sysfs_notify_dirent_safe(mddev->sysfs_state);
7858 }
7859
7860 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7861 md_update_sb(mddev, 0);
7862
7863 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7864 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7865 /* resync/recovery still happening */
7866 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7867 goto unlock;
7868 }
7869 if (mddev->sync_thread) {
7870 md_reap_sync_thread(mddev);
7871 goto unlock;
7872 }
7873 /* Set RUNNING before clearing NEEDED to avoid
7874 * any transients in the value of "sync_action".
7875 */
7876 mddev->curr_resync_completed = 0;
7877 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7878 /* Clear some bits that don't mean anything, but
7879 * might be left set
7880 */
7881 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7882 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7883
7884 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7885 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7886 goto not_running;
7887 /* no recovery is running.
7888 * remove any failed drives, then
7889 * add spares if possible.
7890 * Spares are also removed and re-added, to allow
7891 * the personality to fail the re-add.
7892 */
7893
7894 if (mddev->reshape_position != MaxSector) {
7895 if (mddev->pers->check_reshape == NULL ||
7896 mddev->pers->check_reshape(mddev) != 0)
7897 /* Cannot proceed */
7898 goto not_running;
7899 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7900 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7901 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7902 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7903 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7904 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7905 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7906 } else if (mddev->recovery_cp < MaxSector) {
7907 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7908 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7909 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7910 /* nothing to be done ... */
7911 goto not_running;
7912
7913 if (mddev->pers->sync_request) {
7914 if (spares) {
7915 /* We are adding a device or devices to an array
7916 * which has the bitmap stored on all devices.
7917 * So make sure all bitmap pages get written
7918 */
7919 bitmap_write_all(mddev->bitmap);
7920 }
7921 INIT_WORK(&mddev->del_work, md_start_sync);
7922 queue_work(md_misc_wq, &mddev->del_work);
7923 goto unlock;
7924 }
7925 not_running:
7926 if (!mddev->sync_thread) {
7927 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7928 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7929 &mddev->recovery))
7930 if (mddev->sysfs_action)
7931 sysfs_notify_dirent_safe(mddev->sysfs_action);
7932 }
7933 unlock:
7934 wake_up(&mddev->sb_wait);
7935 mddev_unlock(mddev);
7936 }
7937 }
7938
7939 void md_reap_sync_thread(struct mddev *mddev)
7940 {
7941 struct md_rdev *rdev;
7942
7943 /* resync has finished, collect result */
7944 md_unregister_thread(&mddev->sync_thread);
7945 wake_up(&resync_wait);
7946 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7947 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7948 /* success...*/
7949 /* activate any spares */
7950 if (mddev->pers->spare_active(mddev)) {
7951 sysfs_notify(&mddev->kobj, NULL,
7952 "degraded");
7953 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7954 }
7955 }
7956 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7957 mddev->pers->finish_reshape)
7958 mddev->pers->finish_reshape(mddev);
7959
7960 /* If array is no-longer degraded, then any saved_raid_disk
7961 * information must be scrapped.
7962 */
7963 if (!mddev->degraded)
7964 rdev_for_each(rdev, mddev)
7965 rdev->saved_raid_disk = -1;
7966
7967 md_update_sb(mddev, 1);
7968 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7969 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7970 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7971 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7972 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7973 /* flag recovery needed just to double check */
7974 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7975 sysfs_notify_dirent_safe(mddev->sysfs_action);
7976 md_new_event(mddev);
7977 if (mddev->event_work.func)
7978 queue_work(md_misc_wq, &mddev->event_work);
7979 }
7980
7981 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7982 {
7983 sysfs_notify_dirent_safe(rdev->sysfs_state);
7984 wait_event_timeout(rdev->blocked_wait,
7985 !test_bit(Blocked, &rdev->flags) &&
7986 !test_bit(BlockedBadBlocks, &rdev->flags),
7987 msecs_to_jiffies(5000));
7988 rdev_dec_pending(rdev, mddev);
7989 }
7990 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7991
7992 void md_finish_reshape(struct mddev *mddev)
7993 {
7994 /* called be personality module when reshape completes. */
7995 struct md_rdev *rdev;
7996
7997 rdev_for_each(rdev, mddev) {
7998 if (rdev->data_offset > rdev->new_data_offset)
7999 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8000 else
8001 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8002 rdev->data_offset = rdev->new_data_offset;
8003 }
8004 }
8005 EXPORT_SYMBOL(md_finish_reshape);
8006
8007 /* Bad block management.
8008 * We can record which blocks on each device are 'bad' and so just
8009 * fail those blocks, or that stripe, rather than the whole device.
8010 * Entries in the bad-block table are 64bits wide. This comprises:
8011 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8012 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8013 * A 'shift' can be set so that larger blocks are tracked and
8014 * consequently larger devices can be covered.
8015 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8016 *
8017 * Locking of the bad-block table uses a seqlock so md_is_badblock
8018 * might need to retry if it is very unlucky.
8019 * We will sometimes want to check for bad blocks in a bi_end_io function,
8020 * so we use the write_seqlock_irq variant.
8021 *
8022 * When looking for a bad block we specify a range and want to
8023 * know if any block in the range is bad. So we binary-search
8024 * to the last range that starts at-or-before the given endpoint,
8025 * (or "before the sector after the target range")
8026 * then see if it ends after the given start.
8027 * We return
8028 * 0 if there are no known bad blocks in the range
8029 * 1 if there are known bad block which are all acknowledged
8030 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8031 * plus the start/length of the first bad section we overlap.
8032 */
8033 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8034 sector_t *first_bad, int *bad_sectors)
8035 {
8036 int hi;
8037 int lo;
8038 u64 *p = bb->page;
8039 int rv;
8040 sector_t target = s + sectors;
8041 unsigned seq;
8042
8043 if (bb->shift > 0) {
8044 /* round the start down, and the end up */
8045 s >>= bb->shift;
8046 target += (1<<bb->shift) - 1;
8047 target >>= bb->shift;
8048 sectors = target - s;
8049 }
8050 /* 'target' is now the first block after the bad range */
8051
8052 retry:
8053 seq = read_seqbegin(&bb->lock);
8054 lo = 0;
8055 rv = 0;
8056 hi = bb->count;
8057
8058 /* Binary search between lo and hi for 'target'
8059 * i.e. for the last range that starts before 'target'
8060 */
8061 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8062 * are known not to be the last range before target.
8063 * VARIANT: hi-lo is the number of possible
8064 * ranges, and decreases until it reaches 1
8065 */
8066 while (hi - lo > 1) {
8067 int mid = (lo + hi) / 2;
8068 sector_t a = BB_OFFSET(p[mid]);
8069 if (a < target)
8070 /* This could still be the one, earlier ranges
8071 * could not. */
8072 lo = mid;
8073 else
8074 /* This and later ranges are definitely out. */
8075 hi = mid;
8076 }
8077 /* 'lo' might be the last that started before target, but 'hi' isn't */
8078 if (hi > lo) {
8079 /* need to check all range that end after 's' to see if
8080 * any are unacknowledged.
8081 */
8082 while (lo >= 0 &&
8083 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8084 if (BB_OFFSET(p[lo]) < target) {
8085 /* starts before the end, and finishes after
8086 * the start, so they must overlap
8087 */
8088 if (rv != -1 && BB_ACK(p[lo]))
8089 rv = 1;
8090 else
8091 rv = -1;
8092 *first_bad = BB_OFFSET(p[lo]);
8093 *bad_sectors = BB_LEN(p[lo]);
8094 }
8095 lo--;
8096 }
8097 }
8098
8099 if (read_seqretry(&bb->lock, seq))
8100 goto retry;
8101
8102 return rv;
8103 }
8104 EXPORT_SYMBOL_GPL(md_is_badblock);
8105
8106 /*
8107 * Add a range of bad blocks to the table.
8108 * This might extend the table, or might contract it
8109 * if two adjacent ranges can be merged.
8110 * We binary-search to find the 'insertion' point, then
8111 * decide how best to handle it.
8112 */
8113 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8114 int acknowledged)
8115 {
8116 u64 *p;
8117 int lo, hi;
8118 int rv = 1;
8119 unsigned long flags;
8120
8121 if (bb->shift < 0)
8122 /* badblocks are disabled */
8123 return 0;
8124
8125 if (bb->shift) {
8126 /* round the start down, and the end up */
8127 sector_t next = s + sectors;
8128 s >>= bb->shift;
8129 next += (1<<bb->shift) - 1;
8130 next >>= bb->shift;
8131 sectors = next - s;
8132 }
8133
8134 write_seqlock_irqsave(&bb->lock, flags);
8135
8136 p = bb->page;
8137 lo = 0;
8138 hi = bb->count;
8139 /* Find the last range that starts at-or-before 's' */
8140 while (hi - lo > 1) {
8141 int mid = (lo + hi) / 2;
8142 sector_t a = BB_OFFSET(p[mid]);
8143 if (a <= s)
8144 lo = mid;
8145 else
8146 hi = mid;
8147 }
8148 if (hi > lo && BB_OFFSET(p[lo]) > s)
8149 hi = lo;
8150
8151 if (hi > lo) {
8152 /* we found a range that might merge with the start
8153 * of our new range
8154 */
8155 sector_t a = BB_OFFSET(p[lo]);
8156 sector_t e = a + BB_LEN(p[lo]);
8157 int ack = BB_ACK(p[lo]);
8158 if (e >= s) {
8159 /* Yes, we can merge with a previous range */
8160 if (s == a && s + sectors >= e)
8161 /* new range covers old */
8162 ack = acknowledged;
8163 else
8164 ack = ack && acknowledged;
8165
8166 if (e < s + sectors)
8167 e = s + sectors;
8168 if (e - a <= BB_MAX_LEN) {
8169 p[lo] = BB_MAKE(a, e-a, ack);
8170 s = e;
8171 } else {
8172 /* does not all fit in one range,
8173 * make p[lo] maximal
8174 */
8175 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8176 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8177 s = a + BB_MAX_LEN;
8178 }
8179 sectors = e - s;
8180 }
8181 }
8182 if (sectors && hi < bb->count) {
8183 /* 'hi' points to the first range that starts after 's'.
8184 * Maybe we can merge with the start of that range */
8185 sector_t a = BB_OFFSET(p[hi]);
8186 sector_t e = a + BB_LEN(p[hi]);
8187 int ack = BB_ACK(p[hi]);
8188 if (a <= s + sectors) {
8189 /* merging is possible */
8190 if (e <= s + sectors) {
8191 /* full overlap */
8192 e = s + sectors;
8193 ack = acknowledged;
8194 } else
8195 ack = ack && acknowledged;
8196
8197 a = s;
8198 if (e - a <= BB_MAX_LEN) {
8199 p[hi] = BB_MAKE(a, e-a, ack);
8200 s = e;
8201 } else {
8202 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8203 s = a + BB_MAX_LEN;
8204 }
8205 sectors = e - s;
8206 lo = hi;
8207 hi++;
8208 }
8209 }
8210 if (sectors == 0 && hi < bb->count) {
8211 /* we might be able to combine lo and hi */
8212 /* Note: 's' is at the end of 'lo' */
8213 sector_t a = BB_OFFSET(p[hi]);
8214 int lolen = BB_LEN(p[lo]);
8215 int hilen = BB_LEN(p[hi]);
8216 int newlen = lolen + hilen - (s - a);
8217 if (s >= a && newlen < BB_MAX_LEN) {
8218 /* yes, we can combine them */
8219 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8220 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8221 memmove(p + hi, p + hi + 1,
8222 (bb->count - hi - 1) * 8);
8223 bb->count--;
8224 }
8225 }
8226 while (sectors) {
8227 /* didn't merge (it all).
8228 * Need to add a range just before 'hi' */
8229 if (bb->count >= MD_MAX_BADBLOCKS) {
8230 /* No room for more */
8231 rv = 0;
8232 break;
8233 } else {
8234 int this_sectors = sectors;
8235 memmove(p + hi + 1, p + hi,
8236 (bb->count - hi) * 8);
8237 bb->count++;
8238
8239 if (this_sectors > BB_MAX_LEN)
8240 this_sectors = BB_MAX_LEN;
8241 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8242 sectors -= this_sectors;
8243 s += this_sectors;
8244 }
8245 }
8246
8247 bb->changed = 1;
8248 if (!acknowledged)
8249 bb->unacked_exist = 1;
8250 write_sequnlock_irqrestore(&bb->lock, flags);
8251
8252 return rv;
8253 }
8254
8255 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8256 int is_new)
8257 {
8258 int rv;
8259 if (is_new)
8260 s += rdev->new_data_offset;
8261 else
8262 s += rdev->data_offset;
8263 rv = md_set_badblocks(&rdev->badblocks,
8264 s, sectors, 0);
8265 if (rv) {
8266 /* Make sure they get written out promptly */
8267 sysfs_notify_dirent_safe(rdev->sysfs_state);
8268 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8269 md_wakeup_thread(rdev->mddev->thread);
8270 }
8271 return rv;
8272 }
8273 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8274
8275 /*
8276 * Remove a range of bad blocks from the table.
8277 * This may involve extending the table if we spilt a region,
8278 * but it must not fail. So if the table becomes full, we just
8279 * drop the remove request.
8280 */
8281 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8282 {
8283 u64 *p;
8284 int lo, hi;
8285 sector_t target = s + sectors;
8286 int rv = 0;
8287
8288 if (bb->shift > 0) {
8289 /* When clearing we round the start up and the end down.
8290 * This should not matter as the shift should align with
8291 * the block size and no rounding should ever be needed.
8292 * However it is better the think a block is bad when it
8293 * isn't than to think a block is not bad when it is.
8294 */
8295 s += (1<<bb->shift) - 1;
8296 s >>= bb->shift;
8297 target >>= bb->shift;
8298 sectors = target - s;
8299 }
8300
8301 write_seqlock_irq(&bb->lock);
8302
8303 p = bb->page;
8304 lo = 0;
8305 hi = bb->count;
8306 /* Find the last range that starts before 'target' */
8307 while (hi - lo > 1) {
8308 int mid = (lo + hi) / 2;
8309 sector_t a = BB_OFFSET(p[mid]);
8310 if (a < target)
8311 lo = mid;
8312 else
8313 hi = mid;
8314 }
8315 if (hi > lo) {
8316 /* p[lo] is the last range that could overlap the
8317 * current range. Earlier ranges could also overlap,
8318 * but only this one can overlap the end of the range.
8319 */
8320 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8321 /* Partial overlap, leave the tail of this range */
8322 int ack = BB_ACK(p[lo]);
8323 sector_t a = BB_OFFSET(p[lo]);
8324 sector_t end = a + BB_LEN(p[lo]);
8325
8326 if (a < s) {
8327 /* we need to split this range */
8328 if (bb->count >= MD_MAX_BADBLOCKS) {
8329 rv = -ENOSPC;
8330 goto out;
8331 }
8332 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8333 bb->count++;
8334 p[lo] = BB_MAKE(a, s-a, ack);
8335 lo++;
8336 }
8337 p[lo] = BB_MAKE(target, end - target, ack);
8338 /* there is no longer an overlap */
8339 hi = lo;
8340 lo--;
8341 }
8342 while (lo >= 0 &&
8343 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8344 /* This range does overlap */
8345 if (BB_OFFSET(p[lo]) < s) {
8346 /* Keep the early parts of this range. */
8347 int ack = BB_ACK(p[lo]);
8348 sector_t start = BB_OFFSET(p[lo]);
8349 p[lo] = BB_MAKE(start, s - start, ack);
8350 /* now low doesn't overlap, so.. */
8351 break;
8352 }
8353 lo--;
8354 }
8355 /* 'lo' is strictly before, 'hi' is strictly after,
8356 * anything between needs to be discarded
8357 */
8358 if (hi - lo > 1) {
8359 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8360 bb->count -= (hi - lo - 1);
8361 }
8362 }
8363
8364 bb->changed = 1;
8365 out:
8366 write_sequnlock_irq(&bb->lock);
8367 return rv;
8368 }
8369
8370 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8371 int is_new)
8372 {
8373 if (is_new)
8374 s += rdev->new_data_offset;
8375 else
8376 s += rdev->data_offset;
8377 return md_clear_badblocks(&rdev->badblocks,
8378 s, sectors);
8379 }
8380 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8381
8382 /*
8383 * Acknowledge all bad blocks in a list.
8384 * This only succeeds if ->changed is clear. It is used by
8385 * in-kernel metadata updates
8386 */
8387 void md_ack_all_badblocks(struct badblocks *bb)
8388 {
8389 if (bb->page == NULL || bb->changed)
8390 /* no point even trying */
8391 return;
8392 write_seqlock_irq(&bb->lock);
8393
8394 if (bb->changed == 0 && bb->unacked_exist) {
8395 u64 *p = bb->page;
8396 int i;
8397 for (i = 0; i < bb->count ; i++) {
8398 if (!BB_ACK(p[i])) {
8399 sector_t start = BB_OFFSET(p[i]);
8400 int len = BB_LEN(p[i]);
8401 p[i] = BB_MAKE(start, len, 1);
8402 }
8403 }
8404 bb->unacked_exist = 0;
8405 }
8406 write_sequnlock_irq(&bb->lock);
8407 }
8408 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8409
8410 /* sysfs access to bad-blocks list.
8411 * We present two files.
8412 * 'bad-blocks' lists sector numbers and lengths of ranges that
8413 * are recorded as bad. The list is truncated to fit within
8414 * the one-page limit of sysfs.
8415 * Writing "sector length" to this file adds an acknowledged
8416 * bad block list.
8417 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8418 * been acknowledged. Writing to this file adds bad blocks
8419 * without acknowledging them. This is largely for testing.
8420 */
8421
8422 static ssize_t
8423 badblocks_show(struct badblocks *bb, char *page, int unack)
8424 {
8425 size_t len;
8426 int i;
8427 u64 *p = bb->page;
8428 unsigned seq;
8429
8430 if (bb->shift < 0)
8431 return 0;
8432
8433 retry:
8434 seq = read_seqbegin(&bb->lock);
8435
8436 len = 0;
8437 i = 0;
8438
8439 while (len < PAGE_SIZE && i < bb->count) {
8440 sector_t s = BB_OFFSET(p[i]);
8441 unsigned int length = BB_LEN(p[i]);
8442 int ack = BB_ACK(p[i]);
8443 i++;
8444
8445 if (unack && ack)
8446 continue;
8447
8448 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8449 (unsigned long long)s << bb->shift,
8450 length << bb->shift);
8451 }
8452 if (unack && len == 0)
8453 bb->unacked_exist = 0;
8454
8455 if (read_seqretry(&bb->lock, seq))
8456 goto retry;
8457
8458 return len;
8459 }
8460
8461 #define DO_DEBUG 1
8462
8463 static ssize_t
8464 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8465 {
8466 unsigned long long sector;
8467 int length;
8468 char newline;
8469 #ifdef DO_DEBUG
8470 /* Allow clearing via sysfs *only* for testing/debugging.
8471 * Normally only a successful write may clear a badblock
8472 */
8473 int clear = 0;
8474 if (page[0] == '-') {
8475 clear = 1;
8476 page++;
8477 }
8478 #endif /* DO_DEBUG */
8479
8480 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8481 case 3:
8482 if (newline != '\n')
8483 return -EINVAL;
8484 case 2:
8485 if (length <= 0)
8486 return -EINVAL;
8487 break;
8488 default:
8489 return -EINVAL;
8490 }
8491
8492 #ifdef DO_DEBUG
8493 if (clear) {
8494 md_clear_badblocks(bb, sector, length);
8495 return len;
8496 }
8497 #endif /* DO_DEBUG */
8498 if (md_set_badblocks(bb, sector, length, !unack))
8499 return len;
8500 else
8501 return -ENOSPC;
8502 }
8503
8504 static int md_notify_reboot(struct notifier_block *this,
8505 unsigned long code, void *x)
8506 {
8507 struct list_head *tmp;
8508 struct mddev *mddev;
8509 int need_delay = 0;
8510
8511 for_each_mddev(mddev, tmp) {
8512 if (mddev_trylock(mddev)) {
8513 if (mddev->pers)
8514 __md_stop_writes(mddev);
8515 if (mddev->persistent)
8516 mddev->safemode = 2;
8517 mddev_unlock(mddev);
8518 }
8519 need_delay = 1;
8520 }
8521 /*
8522 * certain more exotic SCSI devices are known to be
8523 * volatile wrt too early system reboots. While the
8524 * right place to handle this issue is the given
8525 * driver, we do want to have a safe RAID driver ...
8526 */
8527 if (need_delay)
8528 mdelay(1000*1);
8529
8530 return NOTIFY_DONE;
8531 }
8532
8533 static struct notifier_block md_notifier = {
8534 .notifier_call = md_notify_reboot,
8535 .next = NULL,
8536 .priority = INT_MAX, /* before any real devices */
8537 };
8538
8539 static void md_geninit(void)
8540 {
8541 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8542
8543 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8544 }
8545
8546 static int __init md_init(void)
8547 {
8548 int ret = -ENOMEM;
8549
8550 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8551 if (!md_wq)
8552 goto err_wq;
8553
8554 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8555 if (!md_misc_wq)
8556 goto err_misc_wq;
8557
8558 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8559 goto err_md;
8560
8561 if ((ret = register_blkdev(0, "mdp")) < 0)
8562 goto err_mdp;
8563 mdp_major = ret;
8564
8565 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8566 md_probe, NULL, NULL);
8567 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8568 md_probe, NULL, NULL);
8569
8570 register_reboot_notifier(&md_notifier);
8571 raid_table_header = register_sysctl_table(raid_root_table);
8572
8573 md_geninit();
8574 return 0;
8575
8576 err_mdp:
8577 unregister_blkdev(MD_MAJOR, "md");
8578 err_md:
8579 destroy_workqueue(md_misc_wq);
8580 err_misc_wq:
8581 destroy_workqueue(md_wq);
8582 err_wq:
8583 return ret;
8584 }
8585
8586 #ifndef MODULE
8587
8588 /*
8589 * Searches all registered partitions for autorun RAID arrays
8590 * at boot time.
8591 */
8592
8593 static LIST_HEAD(all_detected_devices);
8594 struct detected_devices_node {
8595 struct list_head list;
8596 dev_t dev;
8597 };
8598
8599 void md_autodetect_dev(dev_t dev)
8600 {
8601 struct detected_devices_node *node_detected_dev;
8602
8603 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8604 if (node_detected_dev) {
8605 node_detected_dev->dev = dev;
8606 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8607 } else {
8608 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8609 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8610 }
8611 }
8612
8613 static void autostart_arrays(int part)
8614 {
8615 struct md_rdev *rdev;
8616 struct detected_devices_node *node_detected_dev;
8617 dev_t dev;
8618 int i_scanned, i_passed;
8619
8620 i_scanned = 0;
8621 i_passed = 0;
8622
8623 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8624
8625 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8626 i_scanned++;
8627 node_detected_dev = list_entry(all_detected_devices.next,
8628 struct detected_devices_node, list);
8629 list_del(&node_detected_dev->list);
8630 dev = node_detected_dev->dev;
8631 kfree(node_detected_dev);
8632 rdev = md_import_device(dev,0, 90);
8633 if (IS_ERR(rdev))
8634 continue;
8635
8636 if (test_bit(Faulty, &rdev->flags)) {
8637 MD_BUG();
8638 continue;
8639 }
8640 set_bit(AutoDetected, &rdev->flags);
8641 list_add(&rdev->same_set, &pending_raid_disks);
8642 i_passed++;
8643 }
8644
8645 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8646 i_scanned, i_passed);
8647
8648 autorun_devices(part);
8649 }
8650
8651 #endif /* !MODULE */
8652
8653 static __exit void md_exit(void)
8654 {
8655 struct mddev *mddev;
8656 struct list_head *tmp;
8657 int delay = 1;
8658
8659 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8660 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8661
8662 unregister_blkdev(MD_MAJOR,"md");
8663 unregister_blkdev(mdp_major, "mdp");
8664 unregister_reboot_notifier(&md_notifier);
8665 unregister_sysctl_table(raid_table_header);
8666
8667 /* We cannot unload the modules while some process is
8668 * waiting for us in select() or poll() - wake them up
8669 */
8670 md_unloading = 1;
8671 while (waitqueue_active(&md_event_waiters)) {
8672 /* not safe to leave yet */
8673 wake_up(&md_event_waiters);
8674 msleep(delay);
8675 delay += delay;
8676 }
8677 remove_proc_entry("mdstat", NULL);
8678
8679 for_each_mddev(mddev, tmp) {
8680 export_array(mddev);
8681 mddev->hold_active = 0;
8682 }
8683 destroy_workqueue(md_misc_wq);
8684 destroy_workqueue(md_wq);
8685 }
8686
8687 subsys_initcall(md_init);
8688 module_exit(md_exit)
8689
8690 static int get_ro(char *buffer, struct kernel_param *kp)
8691 {
8692 return sprintf(buffer, "%d", start_readonly);
8693 }
8694 static int set_ro(const char *val, struct kernel_param *kp)
8695 {
8696 char *e;
8697 int num = simple_strtoul(val, &e, 10);
8698 if (*val && (*e == '\0' || *e == '\n')) {
8699 start_readonly = num;
8700 return 0;
8701 }
8702 return -EINVAL;
8703 }
8704
8705 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8706 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8707
8708 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8709
8710 EXPORT_SYMBOL(register_md_personality);
8711 EXPORT_SYMBOL(unregister_md_personality);
8712 EXPORT_SYMBOL(md_error);
8713 EXPORT_SYMBOL(md_done_sync);
8714 EXPORT_SYMBOL(md_write_start);
8715 EXPORT_SYMBOL(md_write_end);
8716 EXPORT_SYMBOL(md_register_thread);
8717 EXPORT_SYMBOL(md_unregister_thread);
8718 EXPORT_SYMBOL(md_wakeup_thread);
8719 EXPORT_SYMBOL(md_check_recovery);
8720 EXPORT_SYMBOL(md_reap_sync_thread);
8721 MODULE_LICENSE("GPL");
8722 MODULE_DESCRIPTION("MD RAID framework");
8723 MODULE_ALIAS("md");
8724 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);