]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/md.c
Send RESYNCING while performing resync start/stop
[mirror_ubuntu-jammy-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 struct module *md_cluster_mod;
72 EXPORT_SYMBOL(md_cluster_mod);
73
74 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
75 static struct workqueue_struct *md_wq;
76 static struct workqueue_struct *md_misc_wq;
77
78 static int remove_and_add_spares(struct mddev *mddev,
79 struct md_rdev *this);
80 static void mddev_detach(struct mddev *mddev);
81
82 /*
83 * Default number of read corrections we'll attempt on an rdev
84 * before ejecting it from the array. We divide the read error
85 * count by 2 for every hour elapsed between read errors.
86 */
87 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
88 /*
89 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
90 * is 1000 KB/sec, so the extra system load does not show up that much.
91 * Increase it if you want to have more _guaranteed_ speed. Note that
92 * the RAID driver will use the maximum available bandwidth if the IO
93 * subsystem is idle. There is also an 'absolute maximum' reconstruction
94 * speed limit - in case reconstruction slows down your system despite
95 * idle IO detection.
96 *
97 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
98 * or /sys/block/mdX/md/sync_speed_{min,max}
99 */
100
101 static int sysctl_speed_limit_min = 1000;
102 static int sysctl_speed_limit_max = 200000;
103 static inline int speed_min(struct mddev *mddev)
104 {
105 return mddev->sync_speed_min ?
106 mddev->sync_speed_min : sysctl_speed_limit_min;
107 }
108
109 static inline int speed_max(struct mddev *mddev)
110 {
111 return mddev->sync_speed_max ?
112 mddev->sync_speed_max : sysctl_speed_limit_max;
113 }
114
115 static struct ctl_table_header *raid_table_header;
116
117 static struct ctl_table raid_table[] = {
118 {
119 .procname = "speed_limit_min",
120 .data = &sysctl_speed_limit_min,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
124 },
125 {
126 .procname = "speed_limit_max",
127 .data = &sysctl_speed_limit_max,
128 .maxlen = sizeof(int),
129 .mode = S_IRUGO|S_IWUSR,
130 .proc_handler = proc_dointvec,
131 },
132 { }
133 };
134
135 static struct ctl_table raid_dir_table[] = {
136 {
137 .procname = "raid",
138 .maxlen = 0,
139 .mode = S_IRUGO|S_IXUGO,
140 .child = raid_table,
141 },
142 { }
143 };
144
145 static struct ctl_table raid_root_table[] = {
146 {
147 .procname = "dev",
148 .maxlen = 0,
149 .mode = 0555,
150 .child = raid_dir_table,
151 },
152 { }
153 };
154
155 static const struct block_device_operations md_fops;
156
157 static int start_readonly;
158
159 /* bio_clone_mddev
160 * like bio_clone, but with a local bio set
161 */
162
163 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
164 struct mddev *mddev)
165 {
166 struct bio *b;
167
168 if (!mddev || !mddev->bio_set)
169 return bio_alloc(gfp_mask, nr_iovecs);
170
171 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
172 if (!b)
173 return NULL;
174 return b;
175 }
176 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
177
178 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
179 struct mddev *mddev)
180 {
181 if (!mddev || !mddev->bio_set)
182 return bio_clone(bio, gfp_mask);
183
184 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
185 }
186 EXPORT_SYMBOL_GPL(bio_clone_mddev);
187
188 /*
189 * We have a system wide 'event count' that is incremented
190 * on any 'interesting' event, and readers of /proc/mdstat
191 * can use 'poll' or 'select' to find out when the event
192 * count increases.
193 *
194 * Events are:
195 * start array, stop array, error, add device, remove device,
196 * start build, activate spare
197 */
198 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
199 static atomic_t md_event_count;
200 void md_new_event(struct mddev *mddev)
201 {
202 atomic_inc(&md_event_count);
203 wake_up(&md_event_waiters);
204 }
205 EXPORT_SYMBOL_GPL(md_new_event);
206
207 /* Alternate version that can be called from interrupts
208 * when calling sysfs_notify isn't needed.
209 */
210 static void md_new_event_inintr(struct mddev *mddev)
211 {
212 atomic_inc(&md_event_count);
213 wake_up(&md_event_waiters);
214 }
215
216 /*
217 * Enables to iterate over all existing md arrays
218 * all_mddevs_lock protects this list.
219 */
220 static LIST_HEAD(all_mddevs);
221 static DEFINE_SPINLOCK(all_mddevs_lock);
222
223 /*
224 * iterates through all used mddevs in the system.
225 * We take care to grab the all_mddevs_lock whenever navigating
226 * the list, and to always hold a refcount when unlocked.
227 * Any code which breaks out of this loop while own
228 * a reference to the current mddev and must mddev_put it.
229 */
230 #define for_each_mddev(_mddev,_tmp) \
231 \
232 for (({ spin_lock(&all_mddevs_lock); \
233 _tmp = all_mddevs.next; \
234 _mddev = NULL;}); \
235 ({ if (_tmp != &all_mddevs) \
236 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
237 spin_unlock(&all_mddevs_lock); \
238 if (_mddev) mddev_put(_mddev); \
239 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
240 _tmp != &all_mddevs;}); \
241 ({ spin_lock(&all_mddevs_lock); \
242 _tmp = _tmp->next;}) \
243 )
244
245 /* Rather than calling directly into the personality make_request function,
246 * IO requests come here first so that we can check if the device is
247 * being suspended pending a reconfiguration.
248 * We hold a refcount over the call to ->make_request. By the time that
249 * call has finished, the bio has been linked into some internal structure
250 * and so is visible to ->quiesce(), so we don't need the refcount any more.
251 */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 const int rw = bio_data_dir(bio);
255 struct mddev *mddev = q->queuedata;
256 unsigned int sectors;
257
258 if (mddev == NULL || mddev->pers == NULL
259 || !mddev->ready) {
260 bio_io_error(bio);
261 return;
262 }
263 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
264 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
265 return;
266 }
267 smp_rmb(); /* Ensure implications of 'active' are visible */
268 rcu_read_lock();
269 if (mddev->suspended) {
270 DEFINE_WAIT(__wait);
271 for (;;) {
272 prepare_to_wait(&mddev->sb_wait, &__wait,
273 TASK_UNINTERRUPTIBLE);
274 if (!mddev->suspended)
275 break;
276 rcu_read_unlock();
277 schedule();
278 rcu_read_lock();
279 }
280 finish_wait(&mddev->sb_wait, &__wait);
281 }
282 atomic_inc(&mddev->active_io);
283 rcu_read_unlock();
284
285 /*
286 * save the sectors now since our bio can
287 * go away inside make_request
288 */
289 sectors = bio_sectors(bio);
290 mddev->pers->make_request(mddev, bio);
291
292 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
293
294 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
295 wake_up(&mddev->sb_wait);
296 }
297
298 /* mddev_suspend makes sure no new requests are submitted
299 * to the device, and that any requests that have been submitted
300 * are completely handled.
301 * Once mddev_detach() is called and completes, the module will be
302 * completely unused.
303 */
304 void mddev_suspend(struct mddev *mddev)
305 {
306 BUG_ON(mddev->suspended);
307 mddev->suspended = 1;
308 synchronize_rcu();
309 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
310 mddev->pers->quiesce(mddev, 1);
311
312 del_timer_sync(&mddev->safemode_timer);
313 }
314 EXPORT_SYMBOL_GPL(mddev_suspend);
315
316 void mddev_resume(struct mddev *mddev)
317 {
318 mddev->suspended = 0;
319 wake_up(&mddev->sb_wait);
320 mddev->pers->quiesce(mddev, 0);
321
322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
323 md_wakeup_thread(mddev->thread);
324 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
325 }
326 EXPORT_SYMBOL_GPL(mddev_resume);
327
328 int mddev_congested(struct mddev *mddev, int bits)
329 {
330 struct md_personality *pers = mddev->pers;
331 int ret = 0;
332
333 rcu_read_lock();
334 if (mddev->suspended)
335 ret = 1;
336 else if (pers && pers->congested)
337 ret = pers->congested(mddev, bits);
338 rcu_read_unlock();
339 return ret;
340 }
341 EXPORT_SYMBOL_GPL(mddev_congested);
342 static int md_congested(void *data, int bits)
343 {
344 struct mddev *mddev = data;
345 return mddev_congested(mddev, bits);
346 }
347
348 static int md_mergeable_bvec(struct request_queue *q,
349 struct bvec_merge_data *bvm,
350 struct bio_vec *biovec)
351 {
352 struct mddev *mddev = q->queuedata;
353 int ret;
354 rcu_read_lock();
355 if (mddev->suspended) {
356 /* Must always allow one vec */
357 if (bvm->bi_size == 0)
358 ret = biovec->bv_len;
359 else
360 ret = 0;
361 } else {
362 struct md_personality *pers = mddev->pers;
363 if (pers && pers->mergeable_bvec)
364 ret = pers->mergeable_bvec(mddev, bvm, biovec);
365 else
366 ret = biovec->bv_len;
367 }
368 rcu_read_unlock();
369 return ret;
370 }
371 /*
372 * Generic flush handling for md
373 */
374
375 static void md_end_flush(struct bio *bio, int err)
376 {
377 struct md_rdev *rdev = bio->bi_private;
378 struct mddev *mddev = rdev->mddev;
379
380 rdev_dec_pending(rdev, mddev);
381
382 if (atomic_dec_and_test(&mddev->flush_pending)) {
383 /* The pre-request flush has finished */
384 queue_work(md_wq, &mddev->flush_work);
385 }
386 bio_put(bio);
387 }
388
389 static void md_submit_flush_data(struct work_struct *ws);
390
391 static void submit_flushes(struct work_struct *ws)
392 {
393 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 struct md_rdev *rdev;
395
396 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
397 atomic_set(&mddev->flush_pending, 1);
398 rcu_read_lock();
399 rdev_for_each_rcu(rdev, mddev)
400 if (rdev->raid_disk >= 0 &&
401 !test_bit(Faulty, &rdev->flags)) {
402 /* Take two references, one is dropped
403 * when request finishes, one after
404 * we reclaim rcu_read_lock
405 */
406 struct bio *bi;
407 atomic_inc(&rdev->nr_pending);
408 atomic_inc(&rdev->nr_pending);
409 rcu_read_unlock();
410 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
411 bi->bi_end_io = md_end_flush;
412 bi->bi_private = rdev;
413 bi->bi_bdev = rdev->bdev;
414 atomic_inc(&mddev->flush_pending);
415 submit_bio(WRITE_FLUSH, bi);
416 rcu_read_lock();
417 rdev_dec_pending(rdev, mddev);
418 }
419 rcu_read_unlock();
420 if (atomic_dec_and_test(&mddev->flush_pending))
421 queue_work(md_wq, &mddev->flush_work);
422 }
423
424 static void md_submit_flush_data(struct work_struct *ws)
425 {
426 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
427 struct bio *bio = mddev->flush_bio;
428
429 if (bio->bi_iter.bi_size == 0)
430 /* an empty barrier - all done */
431 bio_endio(bio, 0);
432 else {
433 bio->bi_rw &= ~REQ_FLUSH;
434 mddev->pers->make_request(mddev, bio);
435 }
436
437 mddev->flush_bio = NULL;
438 wake_up(&mddev->sb_wait);
439 }
440
441 void md_flush_request(struct mddev *mddev, struct bio *bio)
442 {
443 spin_lock_irq(&mddev->lock);
444 wait_event_lock_irq(mddev->sb_wait,
445 !mddev->flush_bio,
446 mddev->lock);
447 mddev->flush_bio = bio;
448 spin_unlock_irq(&mddev->lock);
449
450 INIT_WORK(&mddev->flush_work, submit_flushes);
451 queue_work(md_wq, &mddev->flush_work);
452 }
453 EXPORT_SYMBOL(md_flush_request);
454
455 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
456 {
457 struct mddev *mddev = cb->data;
458 md_wakeup_thread(mddev->thread);
459 kfree(cb);
460 }
461 EXPORT_SYMBOL(md_unplug);
462
463 static inline struct mddev *mddev_get(struct mddev *mddev)
464 {
465 atomic_inc(&mddev->active);
466 return mddev;
467 }
468
469 static void mddev_delayed_delete(struct work_struct *ws);
470
471 static void mddev_put(struct mddev *mddev)
472 {
473 struct bio_set *bs = NULL;
474
475 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
476 return;
477 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
478 mddev->ctime == 0 && !mddev->hold_active) {
479 /* Array is not configured at all, and not held active,
480 * so destroy it */
481 list_del_init(&mddev->all_mddevs);
482 bs = mddev->bio_set;
483 mddev->bio_set = NULL;
484 if (mddev->gendisk) {
485 /* We did a probe so need to clean up. Call
486 * queue_work inside the spinlock so that
487 * flush_workqueue() after mddev_find will
488 * succeed in waiting for the work to be done.
489 */
490 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
491 queue_work(md_misc_wq, &mddev->del_work);
492 } else
493 kfree(mddev);
494 }
495 spin_unlock(&all_mddevs_lock);
496 if (bs)
497 bioset_free(bs);
498 }
499
500 void mddev_init(struct mddev *mddev)
501 {
502 mutex_init(&mddev->open_mutex);
503 mutex_init(&mddev->reconfig_mutex);
504 mutex_init(&mddev->bitmap_info.mutex);
505 INIT_LIST_HEAD(&mddev->disks);
506 INIT_LIST_HEAD(&mddev->all_mddevs);
507 init_timer(&mddev->safemode_timer);
508 atomic_set(&mddev->active, 1);
509 atomic_set(&mddev->openers, 0);
510 atomic_set(&mddev->active_io, 0);
511 spin_lock_init(&mddev->lock);
512 atomic_set(&mddev->flush_pending, 0);
513 init_waitqueue_head(&mddev->sb_wait);
514 init_waitqueue_head(&mddev->recovery_wait);
515 mddev->reshape_position = MaxSector;
516 mddev->reshape_backwards = 0;
517 mddev->last_sync_action = "none";
518 mddev->resync_min = 0;
519 mddev->resync_max = MaxSector;
520 mddev->level = LEVEL_NONE;
521 }
522 EXPORT_SYMBOL_GPL(mddev_init);
523
524 static struct mddev *mddev_find(dev_t unit)
525 {
526 struct mddev *mddev, *new = NULL;
527
528 if (unit && MAJOR(unit) != MD_MAJOR)
529 unit &= ~((1<<MdpMinorShift)-1);
530
531 retry:
532 spin_lock(&all_mddevs_lock);
533
534 if (unit) {
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == unit) {
537 mddev_get(mddev);
538 spin_unlock(&all_mddevs_lock);
539 kfree(new);
540 return mddev;
541 }
542
543 if (new) {
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
546 new->hold_active = UNTIL_IOCTL;
547 return new;
548 }
549 } else if (new) {
550 /* find an unused unit number */
551 static int next_minor = 512;
552 int start = next_minor;
553 int is_free = 0;
554 int dev = 0;
555 while (!is_free) {
556 dev = MKDEV(MD_MAJOR, next_minor);
557 next_minor++;
558 if (next_minor > MINORMASK)
559 next_minor = 0;
560 if (next_minor == start) {
561 /* Oh dear, all in use. */
562 spin_unlock(&all_mddevs_lock);
563 kfree(new);
564 return NULL;
565 }
566
567 is_free = 1;
568 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
569 if (mddev->unit == dev) {
570 is_free = 0;
571 break;
572 }
573 }
574 new->unit = dev;
575 new->md_minor = MINOR(dev);
576 new->hold_active = UNTIL_STOP;
577 list_add(&new->all_mddevs, &all_mddevs);
578 spin_unlock(&all_mddevs_lock);
579 return new;
580 }
581 spin_unlock(&all_mddevs_lock);
582
583 new = kzalloc(sizeof(*new), GFP_KERNEL);
584 if (!new)
585 return NULL;
586
587 new->unit = unit;
588 if (MAJOR(unit) == MD_MAJOR)
589 new->md_minor = MINOR(unit);
590 else
591 new->md_minor = MINOR(unit) >> MdpMinorShift;
592
593 mddev_init(new);
594
595 goto retry;
596 }
597
598 static struct attribute_group md_redundancy_group;
599
600 void mddev_unlock(struct mddev *mddev)
601 {
602 if (mddev->to_remove) {
603 /* These cannot be removed under reconfig_mutex as
604 * an access to the files will try to take reconfig_mutex
605 * while holding the file unremovable, which leads to
606 * a deadlock.
607 * So hold set sysfs_active while the remove in happeing,
608 * and anything else which might set ->to_remove or my
609 * otherwise change the sysfs namespace will fail with
610 * -EBUSY if sysfs_active is still set.
611 * We set sysfs_active under reconfig_mutex and elsewhere
612 * test it under the same mutex to ensure its correct value
613 * is seen.
614 */
615 struct attribute_group *to_remove = mddev->to_remove;
616 mddev->to_remove = NULL;
617 mddev->sysfs_active = 1;
618 mutex_unlock(&mddev->reconfig_mutex);
619
620 if (mddev->kobj.sd) {
621 if (to_remove != &md_redundancy_group)
622 sysfs_remove_group(&mddev->kobj, to_remove);
623 if (mddev->pers == NULL ||
624 mddev->pers->sync_request == NULL) {
625 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
626 if (mddev->sysfs_action)
627 sysfs_put(mddev->sysfs_action);
628 mddev->sysfs_action = NULL;
629 }
630 }
631 mddev->sysfs_active = 0;
632 } else
633 mutex_unlock(&mddev->reconfig_mutex);
634
635 /* As we've dropped the mutex we need a spinlock to
636 * make sure the thread doesn't disappear
637 */
638 spin_lock(&pers_lock);
639 md_wakeup_thread(mddev->thread);
640 spin_unlock(&pers_lock);
641 }
642 EXPORT_SYMBOL_GPL(mddev_unlock);
643
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 struct md_rdev *rdev;
647
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
650 return rdev;
651
652 return NULL;
653 }
654
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657 struct md_rdev *rdev;
658
659 rdev_for_each(rdev, mddev)
660 if (rdev->bdev->bd_dev == dev)
661 return rdev;
662
663 return NULL;
664 }
665
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668 struct md_rdev *rdev;
669
670 rdev_for_each_rcu(rdev, mddev)
671 if (rdev->bdev->bd_dev == dev)
672 return rdev;
673
674 return NULL;
675 }
676
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679 struct md_personality *pers;
680 list_for_each_entry(pers, &pers_list, list) {
681 if (level != LEVEL_NONE && pers->level == level)
682 return pers;
683 if (strcmp(pers->name, clevel)==0)
684 return pers;
685 }
686 return NULL;
687 }
688
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693 return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695
696 static int alloc_disk_sb(struct md_rdev *rdev)
697 {
698 rdev->sb_page = alloc_page(GFP_KERNEL);
699 if (!rdev->sb_page) {
700 printk(KERN_ALERT "md: out of memory.\n");
701 return -ENOMEM;
702 }
703
704 return 0;
705 }
706
707 void md_rdev_clear(struct md_rdev *rdev)
708 {
709 if (rdev->sb_page) {
710 put_page(rdev->sb_page);
711 rdev->sb_loaded = 0;
712 rdev->sb_page = NULL;
713 rdev->sb_start = 0;
714 rdev->sectors = 0;
715 }
716 if (rdev->bb_page) {
717 put_page(rdev->bb_page);
718 rdev->bb_page = NULL;
719 }
720 kfree(rdev->badblocks.page);
721 rdev->badblocks.page = NULL;
722 }
723 EXPORT_SYMBOL_GPL(md_rdev_clear);
724
725 static void super_written(struct bio *bio, int error)
726 {
727 struct md_rdev *rdev = bio->bi_private;
728 struct mddev *mddev = rdev->mddev;
729
730 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
731 printk("md: super_written gets error=%d, uptodate=%d\n",
732 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
733 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
734 md_error(mddev, rdev);
735 }
736
737 if (atomic_dec_and_test(&mddev->pending_writes))
738 wake_up(&mddev->sb_wait);
739 bio_put(bio);
740 }
741
742 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
743 sector_t sector, int size, struct page *page)
744 {
745 /* write first size bytes of page to sector of rdev
746 * Increment mddev->pending_writes before returning
747 * and decrement it on completion, waking up sb_wait
748 * if zero is reached.
749 * If an error occurred, call md_error
750 */
751 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
752
753 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
754 bio->bi_iter.bi_sector = sector;
755 bio_add_page(bio, page, size, 0);
756 bio->bi_private = rdev;
757 bio->bi_end_io = super_written;
758
759 atomic_inc(&mddev->pending_writes);
760 submit_bio(WRITE_FLUSH_FUA, bio);
761 }
762
763 void md_super_wait(struct mddev *mddev)
764 {
765 /* wait for all superblock writes that were scheduled to complete */
766 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
767 }
768
769 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
770 struct page *page, int rw, bool metadata_op)
771 {
772 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
773 int ret;
774
775 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
776 rdev->meta_bdev : rdev->bdev;
777 if (metadata_op)
778 bio->bi_iter.bi_sector = sector + rdev->sb_start;
779 else if (rdev->mddev->reshape_position != MaxSector &&
780 (rdev->mddev->reshape_backwards ==
781 (sector >= rdev->mddev->reshape_position)))
782 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
783 else
784 bio->bi_iter.bi_sector = sector + rdev->data_offset;
785 bio_add_page(bio, page, size, 0);
786 submit_bio_wait(rw, bio);
787
788 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
789 bio_put(bio);
790 return ret;
791 }
792 EXPORT_SYMBOL_GPL(sync_page_io);
793
794 static int read_disk_sb(struct md_rdev *rdev, int size)
795 {
796 char b[BDEVNAME_SIZE];
797
798 if (rdev->sb_loaded)
799 return 0;
800
801 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
802 goto fail;
803 rdev->sb_loaded = 1;
804 return 0;
805
806 fail:
807 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
808 bdevname(rdev->bdev,b));
809 return -EINVAL;
810 }
811
812 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
813 {
814 return sb1->set_uuid0 == sb2->set_uuid0 &&
815 sb1->set_uuid1 == sb2->set_uuid1 &&
816 sb1->set_uuid2 == sb2->set_uuid2 &&
817 sb1->set_uuid3 == sb2->set_uuid3;
818 }
819
820 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
821 {
822 int ret;
823 mdp_super_t *tmp1, *tmp2;
824
825 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
826 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
827
828 if (!tmp1 || !tmp2) {
829 ret = 0;
830 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
831 goto abort;
832 }
833
834 *tmp1 = *sb1;
835 *tmp2 = *sb2;
836
837 /*
838 * nr_disks is not constant
839 */
840 tmp1->nr_disks = 0;
841 tmp2->nr_disks = 0;
842
843 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
844 abort:
845 kfree(tmp1);
846 kfree(tmp2);
847 return ret;
848 }
849
850 static u32 md_csum_fold(u32 csum)
851 {
852 csum = (csum & 0xffff) + (csum >> 16);
853 return (csum & 0xffff) + (csum >> 16);
854 }
855
856 static unsigned int calc_sb_csum(mdp_super_t *sb)
857 {
858 u64 newcsum = 0;
859 u32 *sb32 = (u32*)sb;
860 int i;
861 unsigned int disk_csum, csum;
862
863 disk_csum = sb->sb_csum;
864 sb->sb_csum = 0;
865
866 for (i = 0; i < MD_SB_BYTES/4 ; i++)
867 newcsum += sb32[i];
868 csum = (newcsum & 0xffffffff) + (newcsum>>32);
869
870 #ifdef CONFIG_ALPHA
871 /* This used to use csum_partial, which was wrong for several
872 * reasons including that different results are returned on
873 * different architectures. It isn't critical that we get exactly
874 * the same return value as before (we always csum_fold before
875 * testing, and that removes any differences). However as we
876 * know that csum_partial always returned a 16bit value on
877 * alphas, do a fold to maximise conformity to previous behaviour.
878 */
879 sb->sb_csum = md_csum_fold(disk_csum);
880 #else
881 sb->sb_csum = disk_csum;
882 #endif
883 return csum;
884 }
885
886 /*
887 * Handle superblock details.
888 * We want to be able to handle multiple superblock formats
889 * so we have a common interface to them all, and an array of
890 * different handlers.
891 * We rely on user-space to write the initial superblock, and support
892 * reading and updating of superblocks.
893 * Interface methods are:
894 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
895 * loads and validates a superblock on dev.
896 * if refdev != NULL, compare superblocks on both devices
897 * Return:
898 * 0 - dev has a superblock that is compatible with refdev
899 * 1 - dev has a superblock that is compatible and newer than refdev
900 * so dev should be used as the refdev in future
901 * -EINVAL superblock incompatible or invalid
902 * -othererror e.g. -EIO
903 *
904 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
905 * Verify that dev is acceptable into mddev.
906 * The first time, mddev->raid_disks will be 0, and data from
907 * dev should be merged in. Subsequent calls check that dev
908 * is new enough. Return 0 or -EINVAL
909 *
910 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
911 * Update the superblock for rdev with data in mddev
912 * This does not write to disc.
913 *
914 */
915
916 struct super_type {
917 char *name;
918 struct module *owner;
919 int (*load_super)(struct md_rdev *rdev,
920 struct md_rdev *refdev,
921 int minor_version);
922 int (*validate_super)(struct mddev *mddev,
923 struct md_rdev *rdev);
924 void (*sync_super)(struct mddev *mddev,
925 struct md_rdev *rdev);
926 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
927 sector_t num_sectors);
928 int (*allow_new_offset)(struct md_rdev *rdev,
929 unsigned long long new_offset);
930 };
931
932 /*
933 * Check that the given mddev has no bitmap.
934 *
935 * This function is called from the run method of all personalities that do not
936 * support bitmaps. It prints an error message and returns non-zero if mddev
937 * has a bitmap. Otherwise, it returns 0.
938 *
939 */
940 int md_check_no_bitmap(struct mddev *mddev)
941 {
942 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
943 return 0;
944 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
945 mdname(mddev), mddev->pers->name);
946 return 1;
947 }
948 EXPORT_SYMBOL(md_check_no_bitmap);
949
950 /*
951 * load_super for 0.90.0
952 */
953 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
954 {
955 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
956 mdp_super_t *sb;
957 int ret;
958
959 /*
960 * Calculate the position of the superblock (512byte sectors),
961 * it's at the end of the disk.
962 *
963 * It also happens to be a multiple of 4Kb.
964 */
965 rdev->sb_start = calc_dev_sboffset(rdev);
966
967 ret = read_disk_sb(rdev, MD_SB_BYTES);
968 if (ret) return ret;
969
970 ret = -EINVAL;
971
972 bdevname(rdev->bdev, b);
973 sb = page_address(rdev->sb_page);
974
975 if (sb->md_magic != MD_SB_MAGIC) {
976 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
977 b);
978 goto abort;
979 }
980
981 if (sb->major_version != 0 ||
982 sb->minor_version < 90 ||
983 sb->minor_version > 91) {
984 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
985 sb->major_version, sb->minor_version,
986 b);
987 goto abort;
988 }
989
990 if (sb->raid_disks <= 0)
991 goto abort;
992
993 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
994 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
995 b);
996 goto abort;
997 }
998
999 rdev->preferred_minor = sb->md_minor;
1000 rdev->data_offset = 0;
1001 rdev->new_data_offset = 0;
1002 rdev->sb_size = MD_SB_BYTES;
1003 rdev->badblocks.shift = -1;
1004
1005 if (sb->level == LEVEL_MULTIPATH)
1006 rdev->desc_nr = -1;
1007 else
1008 rdev->desc_nr = sb->this_disk.number;
1009
1010 if (!refdev) {
1011 ret = 1;
1012 } else {
1013 __u64 ev1, ev2;
1014 mdp_super_t *refsb = page_address(refdev->sb_page);
1015 if (!uuid_equal(refsb, sb)) {
1016 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1017 b, bdevname(refdev->bdev,b2));
1018 goto abort;
1019 }
1020 if (!sb_equal(refsb, sb)) {
1021 printk(KERN_WARNING "md: %s has same UUID"
1022 " but different superblock to %s\n",
1023 b, bdevname(refdev->bdev, b2));
1024 goto abort;
1025 }
1026 ev1 = md_event(sb);
1027 ev2 = md_event(refsb);
1028 if (ev1 > ev2)
1029 ret = 1;
1030 else
1031 ret = 0;
1032 }
1033 rdev->sectors = rdev->sb_start;
1034 /* Limit to 4TB as metadata cannot record more than that.
1035 * (not needed for Linear and RAID0 as metadata doesn't
1036 * record this size)
1037 */
1038 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1039 rdev->sectors = (2ULL << 32) - 2;
1040
1041 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1042 /* "this cannot possibly happen" ... */
1043 ret = -EINVAL;
1044
1045 abort:
1046 return ret;
1047 }
1048
1049 /*
1050 * validate_super for 0.90.0
1051 */
1052 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1053 {
1054 mdp_disk_t *desc;
1055 mdp_super_t *sb = page_address(rdev->sb_page);
1056 __u64 ev1 = md_event(sb);
1057
1058 rdev->raid_disk = -1;
1059 clear_bit(Faulty, &rdev->flags);
1060 clear_bit(In_sync, &rdev->flags);
1061 clear_bit(Bitmap_sync, &rdev->flags);
1062 clear_bit(WriteMostly, &rdev->flags);
1063
1064 if (mddev->raid_disks == 0) {
1065 mddev->major_version = 0;
1066 mddev->minor_version = sb->minor_version;
1067 mddev->patch_version = sb->patch_version;
1068 mddev->external = 0;
1069 mddev->chunk_sectors = sb->chunk_size >> 9;
1070 mddev->ctime = sb->ctime;
1071 mddev->utime = sb->utime;
1072 mddev->level = sb->level;
1073 mddev->clevel[0] = 0;
1074 mddev->layout = sb->layout;
1075 mddev->raid_disks = sb->raid_disks;
1076 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1077 mddev->events = ev1;
1078 mddev->bitmap_info.offset = 0;
1079 mddev->bitmap_info.space = 0;
1080 /* bitmap can use 60 K after the 4K superblocks */
1081 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1082 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1083 mddev->reshape_backwards = 0;
1084
1085 if (mddev->minor_version >= 91) {
1086 mddev->reshape_position = sb->reshape_position;
1087 mddev->delta_disks = sb->delta_disks;
1088 mddev->new_level = sb->new_level;
1089 mddev->new_layout = sb->new_layout;
1090 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1091 if (mddev->delta_disks < 0)
1092 mddev->reshape_backwards = 1;
1093 } else {
1094 mddev->reshape_position = MaxSector;
1095 mddev->delta_disks = 0;
1096 mddev->new_level = mddev->level;
1097 mddev->new_layout = mddev->layout;
1098 mddev->new_chunk_sectors = mddev->chunk_sectors;
1099 }
1100
1101 if (sb->state & (1<<MD_SB_CLEAN))
1102 mddev->recovery_cp = MaxSector;
1103 else {
1104 if (sb->events_hi == sb->cp_events_hi &&
1105 sb->events_lo == sb->cp_events_lo) {
1106 mddev->recovery_cp = sb->recovery_cp;
1107 } else
1108 mddev->recovery_cp = 0;
1109 }
1110
1111 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1112 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1113 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1114 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1115
1116 mddev->max_disks = MD_SB_DISKS;
1117
1118 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1119 mddev->bitmap_info.file == NULL) {
1120 mddev->bitmap_info.offset =
1121 mddev->bitmap_info.default_offset;
1122 mddev->bitmap_info.space =
1123 mddev->bitmap_info.default_space;
1124 }
1125
1126 } else if (mddev->pers == NULL) {
1127 /* Insist on good event counter while assembling, except
1128 * for spares (which don't need an event count) */
1129 ++ev1;
1130 if (sb->disks[rdev->desc_nr].state & (
1131 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1132 if (ev1 < mddev->events)
1133 return -EINVAL;
1134 } else if (mddev->bitmap) {
1135 /* if adding to array with a bitmap, then we can accept an
1136 * older device ... but not too old.
1137 */
1138 if (ev1 < mddev->bitmap->events_cleared)
1139 return 0;
1140 if (ev1 < mddev->events)
1141 set_bit(Bitmap_sync, &rdev->flags);
1142 } else {
1143 if (ev1 < mddev->events)
1144 /* just a hot-add of a new device, leave raid_disk at -1 */
1145 return 0;
1146 }
1147
1148 if (mddev->level != LEVEL_MULTIPATH) {
1149 desc = sb->disks + rdev->desc_nr;
1150
1151 if (desc->state & (1<<MD_DISK_FAULTY))
1152 set_bit(Faulty, &rdev->flags);
1153 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1154 desc->raid_disk < mddev->raid_disks */) {
1155 set_bit(In_sync, &rdev->flags);
1156 rdev->raid_disk = desc->raid_disk;
1157 rdev->saved_raid_disk = desc->raid_disk;
1158 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1159 /* active but not in sync implies recovery up to
1160 * reshape position. We don't know exactly where
1161 * that is, so set to zero for now */
1162 if (mddev->minor_version >= 91) {
1163 rdev->recovery_offset = 0;
1164 rdev->raid_disk = desc->raid_disk;
1165 }
1166 }
1167 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1168 set_bit(WriteMostly, &rdev->flags);
1169 } else /* MULTIPATH are always insync */
1170 set_bit(In_sync, &rdev->flags);
1171 return 0;
1172 }
1173
1174 /*
1175 * sync_super for 0.90.0
1176 */
1177 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1178 {
1179 mdp_super_t *sb;
1180 struct md_rdev *rdev2;
1181 int next_spare = mddev->raid_disks;
1182
1183 /* make rdev->sb match mddev data..
1184 *
1185 * 1/ zero out disks
1186 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 * 3/ any empty disks < next_spare become removed
1188 *
1189 * disks[0] gets initialised to REMOVED because
1190 * we cannot be sure from other fields if it has
1191 * been initialised or not.
1192 */
1193 int i;
1194 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195
1196 rdev->sb_size = MD_SB_BYTES;
1197
1198 sb = page_address(rdev->sb_page);
1199
1200 memset(sb, 0, sizeof(*sb));
1201
1202 sb->md_magic = MD_SB_MAGIC;
1203 sb->major_version = mddev->major_version;
1204 sb->patch_version = mddev->patch_version;
1205 sb->gvalid_words = 0; /* ignored */
1206 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210
1211 sb->ctime = mddev->ctime;
1212 sb->level = mddev->level;
1213 sb->size = mddev->dev_sectors / 2;
1214 sb->raid_disks = mddev->raid_disks;
1215 sb->md_minor = mddev->md_minor;
1216 sb->not_persistent = 0;
1217 sb->utime = mddev->utime;
1218 sb->state = 0;
1219 sb->events_hi = (mddev->events>>32);
1220 sb->events_lo = (u32)mddev->events;
1221
1222 if (mddev->reshape_position == MaxSector)
1223 sb->minor_version = 90;
1224 else {
1225 sb->minor_version = 91;
1226 sb->reshape_position = mddev->reshape_position;
1227 sb->new_level = mddev->new_level;
1228 sb->delta_disks = mddev->delta_disks;
1229 sb->new_layout = mddev->new_layout;
1230 sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 }
1232 mddev->minor_version = sb->minor_version;
1233 if (mddev->in_sync)
1234 {
1235 sb->recovery_cp = mddev->recovery_cp;
1236 sb->cp_events_hi = (mddev->events>>32);
1237 sb->cp_events_lo = (u32)mddev->events;
1238 if (mddev->recovery_cp == MaxSector)
1239 sb->state = (1<< MD_SB_CLEAN);
1240 } else
1241 sb->recovery_cp = 0;
1242
1243 sb->layout = mddev->layout;
1244 sb->chunk_size = mddev->chunk_sectors << 9;
1245
1246 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248
1249 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 rdev_for_each(rdev2, mddev) {
1251 mdp_disk_t *d;
1252 int desc_nr;
1253 int is_active = test_bit(In_sync, &rdev2->flags);
1254
1255 if (rdev2->raid_disk >= 0 &&
1256 sb->minor_version >= 91)
1257 /* we have nowhere to store the recovery_offset,
1258 * but if it is not below the reshape_position,
1259 * we can piggy-back on that.
1260 */
1261 is_active = 1;
1262 if (rdev2->raid_disk < 0 ||
1263 test_bit(Faulty, &rdev2->flags))
1264 is_active = 0;
1265 if (is_active)
1266 desc_nr = rdev2->raid_disk;
1267 else
1268 desc_nr = next_spare++;
1269 rdev2->desc_nr = desc_nr;
1270 d = &sb->disks[rdev2->desc_nr];
1271 nr_disks++;
1272 d->number = rdev2->desc_nr;
1273 d->major = MAJOR(rdev2->bdev->bd_dev);
1274 d->minor = MINOR(rdev2->bdev->bd_dev);
1275 if (is_active)
1276 d->raid_disk = rdev2->raid_disk;
1277 else
1278 d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 if (test_bit(Faulty, &rdev2->flags))
1280 d->state = (1<<MD_DISK_FAULTY);
1281 else if (is_active) {
1282 d->state = (1<<MD_DISK_ACTIVE);
1283 if (test_bit(In_sync, &rdev2->flags))
1284 d->state |= (1<<MD_DISK_SYNC);
1285 active++;
1286 working++;
1287 } else {
1288 d->state = 0;
1289 spare++;
1290 working++;
1291 }
1292 if (test_bit(WriteMostly, &rdev2->flags))
1293 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 }
1295 /* now set the "removed" and "faulty" bits on any missing devices */
1296 for (i=0 ; i < mddev->raid_disks ; i++) {
1297 mdp_disk_t *d = &sb->disks[i];
1298 if (d->state == 0 && d->number == 0) {
1299 d->number = i;
1300 d->raid_disk = i;
1301 d->state = (1<<MD_DISK_REMOVED);
1302 d->state |= (1<<MD_DISK_FAULTY);
1303 failed++;
1304 }
1305 }
1306 sb->nr_disks = nr_disks;
1307 sb->active_disks = active;
1308 sb->working_disks = working;
1309 sb->failed_disks = failed;
1310 sb->spare_disks = spare;
1311
1312 sb->this_disk = sb->disks[rdev->desc_nr];
1313 sb->sb_csum = calc_sb_csum(sb);
1314 }
1315
1316 /*
1317 * rdev_size_change for 0.90.0
1318 */
1319 static unsigned long long
1320 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1321 {
1322 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 return 0; /* component must fit device */
1324 if (rdev->mddev->bitmap_info.offset)
1325 return 0; /* can't move bitmap */
1326 rdev->sb_start = calc_dev_sboffset(rdev);
1327 if (!num_sectors || num_sectors > rdev->sb_start)
1328 num_sectors = rdev->sb_start;
1329 /* Limit to 4TB as metadata cannot record more than that.
1330 * 4TB == 2^32 KB, or 2*2^32 sectors.
1331 */
1332 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1333 num_sectors = (2ULL << 32) - 2;
1334 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1335 rdev->sb_page);
1336 md_super_wait(rdev->mddev);
1337 return num_sectors;
1338 }
1339
1340 static int
1341 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1342 {
1343 /* non-zero offset changes not possible with v0.90 */
1344 return new_offset == 0;
1345 }
1346
1347 /*
1348 * version 1 superblock
1349 */
1350
1351 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1352 {
1353 __le32 disk_csum;
1354 u32 csum;
1355 unsigned long long newcsum;
1356 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1357 __le32 *isuper = (__le32*)sb;
1358
1359 disk_csum = sb->sb_csum;
1360 sb->sb_csum = 0;
1361 newcsum = 0;
1362 for (; size >= 4; size -= 4)
1363 newcsum += le32_to_cpu(*isuper++);
1364
1365 if (size == 2)
1366 newcsum += le16_to_cpu(*(__le16*) isuper);
1367
1368 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1369 sb->sb_csum = disk_csum;
1370 return cpu_to_le32(csum);
1371 }
1372
1373 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1374 int acknowledged);
1375 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1376 {
1377 struct mdp_superblock_1 *sb;
1378 int ret;
1379 sector_t sb_start;
1380 sector_t sectors;
1381 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1382 int bmask;
1383
1384 /*
1385 * Calculate the position of the superblock in 512byte sectors.
1386 * It is always aligned to a 4K boundary and
1387 * depeding on minor_version, it can be:
1388 * 0: At least 8K, but less than 12K, from end of device
1389 * 1: At start of device
1390 * 2: 4K from start of device.
1391 */
1392 switch(minor_version) {
1393 case 0:
1394 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1395 sb_start -= 8*2;
1396 sb_start &= ~(sector_t)(4*2-1);
1397 break;
1398 case 1:
1399 sb_start = 0;
1400 break;
1401 case 2:
1402 sb_start = 8;
1403 break;
1404 default:
1405 return -EINVAL;
1406 }
1407 rdev->sb_start = sb_start;
1408
1409 /* superblock is rarely larger than 1K, but it can be larger,
1410 * and it is safe to read 4k, so we do that
1411 */
1412 ret = read_disk_sb(rdev, 4096);
1413 if (ret) return ret;
1414
1415 sb = page_address(rdev->sb_page);
1416
1417 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1418 sb->major_version != cpu_to_le32(1) ||
1419 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1420 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1421 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1422 return -EINVAL;
1423
1424 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1425 printk("md: invalid superblock checksum on %s\n",
1426 bdevname(rdev->bdev,b));
1427 return -EINVAL;
1428 }
1429 if (le64_to_cpu(sb->data_size) < 10) {
1430 printk("md: data_size too small on %s\n",
1431 bdevname(rdev->bdev,b));
1432 return -EINVAL;
1433 }
1434 if (sb->pad0 ||
1435 sb->pad3[0] ||
1436 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1437 /* Some padding is non-zero, might be a new feature */
1438 return -EINVAL;
1439
1440 rdev->preferred_minor = 0xffff;
1441 rdev->data_offset = le64_to_cpu(sb->data_offset);
1442 rdev->new_data_offset = rdev->data_offset;
1443 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1444 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1445 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1446 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1447
1448 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1449 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1450 if (rdev->sb_size & bmask)
1451 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1452
1453 if (minor_version
1454 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1455 return -EINVAL;
1456 if (minor_version
1457 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1458 return -EINVAL;
1459
1460 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1461 rdev->desc_nr = -1;
1462 else
1463 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1464
1465 if (!rdev->bb_page) {
1466 rdev->bb_page = alloc_page(GFP_KERNEL);
1467 if (!rdev->bb_page)
1468 return -ENOMEM;
1469 }
1470 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1471 rdev->badblocks.count == 0) {
1472 /* need to load the bad block list.
1473 * Currently we limit it to one page.
1474 */
1475 s32 offset;
1476 sector_t bb_sector;
1477 u64 *bbp;
1478 int i;
1479 int sectors = le16_to_cpu(sb->bblog_size);
1480 if (sectors > (PAGE_SIZE / 512))
1481 return -EINVAL;
1482 offset = le32_to_cpu(sb->bblog_offset);
1483 if (offset == 0)
1484 return -EINVAL;
1485 bb_sector = (long long)offset;
1486 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1487 rdev->bb_page, READ, true))
1488 return -EIO;
1489 bbp = (u64 *)page_address(rdev->bb_page);
1490 rdev->badblocks.shift = sb->bblog_shift;
1491 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1492 u64 bb = le64_to_cpu(*bbp);
1493 int count = bb & (0x3ff);
1494 u64 sector = bb >> 10;
1495 sector <<= sb->bblog_shift;
1496 count <<= sb->bblog_shift;
1497 if (bb + 1 == 0)
1498 break;
1499 if (md_set_badblocks(&rdev->badblocks,
1500 sector, count, 1) == 0)
1501 return -EINVAL;
1502 }
1503 } else if (sb->bblog_offset != 0)
1504 rdev->badblocks.shift = 0;
1505
1506 if (!refdev) {
1507 ret = 1;
1508 } else {
1509 __u64 ev1, ev2;
1510 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1511
1512 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1513 sb->level != refsb->level ||
1514 sb->layout != refsb->layout ||
1515 sb->chunksize != refsb->chunksize) {
1516 printk(KERN_WARNING "md: %s has strangely different"
1517 " superblock to %s\n",
1518 bdevname(rdev->bdev,b),
1519 bdevname(refdev->bdev,b2));
1520 return -EINVAL;
1521 }
1522 ev1 = le64_to_cpu(sb->events);
1523 ev2 = le64_to_cpu(refsb->events);
1524
1525 if (ev1 > ev2)
1526 ret = 1;
1527 else
1528 ret = 0;
1529 }
1530 if (minor_version) {
1531 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1532 sectors -= rdev->data_offset;
1533 } else
1534 sectors = rdev->sb_start;
1535 if (sectors < le64_to_cpu(sb->data_size))
1536 return -EINVAL;
1537 rdev->sectors = le64_to_cpu(sb->data_size);
1538 return ret;
1539 }
1540
1541 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1542 {
1543 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1544 __u64 ev1 = le64_to_cpu(sb->events);
1545
1546 rdev->raid_disk = -1;
1547 clear_bit(Faulty, &rdev->flags);
1548 clear_bit(In_sync, &rdev->flags);
1549 clear_bit(Bitmap_sync, &rdev->flags);
1550 clear_bit(WriteMostly, &rdev->flags);
1551
1552 if (mddev->raid_disks == 0) {
1553 mddev->major_version = 1;
1554 mddev->patch_version = 0;
1555 mddev->external = 0;
1556 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1557 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1558 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1559 mddev->level = le32_to_cpu(sb->level);
1560 mddev->clevel[0] = 0;
1561 mddev->layout = le32_to_cpu(sb->layout);
1562 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1563 mddev->dev_sectors = le64_to_cpu(sb->size);
1564 mddev->events = ev1;
1565 mddev->bitmap_info.offset = 0;
1566 mddev->bitmap_info.space = 0;
1567 /* Default location for bitmap is 1K after superblock
1568 * using 3K - total of 4K
1569 */
1570 mddev->bitmap_info.default_offset = 1024 >> 9;
1571 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1572 mddev->reshape_backwards = 0;
1573
1574 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1575 memcpy(mddev->uuid, sb->set_uuid, 16);
1576
1577 mddev->max_disks = (4096-256)/2;
1578
1579 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1580 mddev->bitmap_info.file == NULL) {
1581 mddev->bitmap_info.offset =
1582 (__s32)le32_to_cpu(sb->bitmap_offset);
1583 /* Metadata doesn't record how much space is available.
1584 * For 1.0, we assume we can use up to the superblock
1585 * if before, else to 4K beyond superblock.
1586 * For others, assume no change is possible.
1587 */
1588 if (mddev->minor_version > 0)
1589 mddev->bitmap_info.space = 0;
1590 else if (mddev->bitmap_info.offset > 0)
1591 mddev->bitmap_info.space =
1592 8 - mddev->bitmap_info.offset;
1593 else
1594 mddev->bitmap_info.space =
1595 -mddev->bitmap_info.offset;
1596 }
1597
1598 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1599 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1600 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1601 mddev->new_level = le32_to_cpu(sb->new_level);
1602 mddev->new_layout = le32_to_cpu(sb->new_layout);
1603 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1604 if (mddev->delta_disks < 0 ||
1605 (mddev->delta_disks == 0 &&
1606 (le32_to_cpu(sb->feature_map)
1607 & MD_FEATURE_RESHAPE_BACKWARDS)))
1608 mddev->reshape_backwards = 1;
1609 } else {
1610 mddev->reshape_position = MaxSector;
1611 mddev->delta_disks = 0;
1612 mddev->new_level = mddev->level;
1613 mddev->new_layout = mddev->layout;
1614 mddev->new_chunk_sectors = mddev->chunk_sectors;
1615 }
1616
1617 } else if (mddev->pers == NULL) {
1618 /* Insist of good event counter while assembling, except for
1619 * spares (which don't need an event count) */
1620 ++ev1;
1621 if (rdev->desc_nr >= 0 &&
1622 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1623 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1624 if (ev1 < mddev->events)
1625 return -EINVAL;
1626 } else if (mddev->bitmap) {
1627 /* If adding to array with a bitmap, then we can accept an
1628 * older device, but not too old.
1629 */
1630 if (ev1 < mddev->bitmap->events_cleared)
1631 return 0;
1632 if (ev1 < mddev->events)
1633 set_bit(Bitmap_sync, &rdev->flags);
1634 } else {
1635 if (ev1 < mddev->events)
1636 /* just a hot-add of a new device, leave raid_disk at -1 */
1637 return 0;
1638 }
1639 if (mddev->level != LEVEL_MULTIPATH) {
1640 int role;
1641 if (rdev->desc_nr < 0 ||
1642 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1643 role = 0xffff;
1644 rdev->desc_nr = -1;
1645 } else
1646 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1647 switch(role) {
1648 case 0xffff: /* spare */
1649 break;
1650 case 0xfffe: /* faulty */
1651 set_bit(Faulty, &rdev->flags);
1652 break;
1653 default:
1654 rdev->saved_raid_disk = role;
1655 if ((le32_to_cpu(sb->feature_map) &
1656 MD_FEATURE_RECOVERY_OFFSET)) {
1657 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1658 if (!(le32_to_cpu(sb->feature_map) &
1659 MD_FEATURE_RECOVERY_BITMAP))
1660 rdev->saved_raid_disk = -1;
1661 } else
1662 set_bit(In_sync, &rdev->flags);
1663 rdev->raid_disk = role;
1664 break;
1665 }
1666 if (sb->devflags & WriteMostly1)
1667 set_bit(WriteMostly, &rdev->flags);
1668 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1669 set_bit(Replacement, &rdev->flags);
1670 } else /* MULTIPATH are always insync */
1671 set_bit(In_sync, &rdev->flags);
1672
1673 return 0;
1674 }
1675
1676 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1677 {
1678 struct mdp_superblock_1 *sb;
1679 struct md_rdev *rdev2;
1680 int max_dev, i;
1681 /* make rdev->sb match mddev and rdev data. */
1682
1683 sb = page_address(rdev->sb_page);
1684
1685 sb->feature_map = 0;
1686 sb->pad0 = 0;
1687 sb->recovery_offset = cpu_to_le64(0);
1688 memset(sb->pad3, 0, sizeof(sb->pad3));
1689
1690 sb->utime = cpu_to_le64((__u64)mddev->utime);
1691 sb->events = cpu_to_le64(mddev->events);
1692 if (mddev->in_sync)
1693 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1694 else
1695 sb->resync_offset = cpu_to_le64(0);
1696
1697 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1698
1699 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1700 sb->size = cpu_to_le64(mddev->dev_sectors);
1701 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1702 sb->level = cpu_to_le32(mddev->level);
1703 sb->layout = cpu_to_le32(mddev->layout);
1704
1705 if (test_bit(WriteMostly, &rdev->flags))
1706 sb->devflags |= WriteMostly1;
1707 else
1708 sb->devflags &= ~WriteMostly1;
1709 sb->data_offset = cpu_to_le64(rdev->data_offset);
1710 sb->data_size = cpu_to_le64(rdev->sectors);
1711
1712 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1713 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1714 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1715 }
1716
1717 if (rdev->raid_disk >= 0 &&
1718 !test_bit(In_sync, &rdev->flags)) {
1719 sb->feature_map |=
1720 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1721 sb->recovery_offset =
1722 cpu_to_le64(rdev->recovery_offset);
1723 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1724 sb->feature_map |=
1725 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1726 }
1727 if (test_bit(Replacement, &rdev->flags))
1728 sb->feature_map |=
1729 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1730
1731 if (mddev->reshape_position != MaxSector) {
1732 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1733 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1734 sb->new_layout = cpu_to_le32(mddev->new_layout);
1735 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1736 sb->new_level = cpu_to_le32(mddev->new_level);
1737 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1738 if (mddev->delta_disks == 0 &&
1739 mddev->reshape_backwards)
1740 sb->feature_map
1741 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1742 if (rdev->new_data_offset != rdev->data_offset) {
1743 sb->feature_map
1744 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1745 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1746 - rdev->data_offset));
1747 }
1748 }
1749
1750 if (rdev->badblocks.count == 0)
1751 /* Nothing to do for bad blocks*/ ;
1752 else if (sb->bblog_offset == 0)
1753 /* Cannot record bad blocks on this device */
1754 md_error(mddev, rdev);
1755 else {
1756 struct badblocks *bb = &rdev->badblocks;
1757 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1758 u64 *p = bb->page;
1759 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1760 if (bb->changed) {
1761 unsigned seq;
1762
1763 retry:
1764 seq = read_seqbegin(&bb->lock);
1765
1766 memset(bbp, 0xff, PAGE_SIZE);
1767
1768 for (i = 0 ; i < bb->count ; i++) {
1769 u64 internal_bb = p[i];
1770 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1771 | BB_LEN(internal_bb));
1772 bbp[i] = cpu_to_le64(store_bb);
1773 }
1774 bb->changed = 0;
1775 if (read_seqretry(&bb->lock, seq))
1776 goto retry;
1777
1778 bb->sector = (rdev->sb_start +
1779 (int)le32_to_cpu(sb->bblog_offset));
1780 bb->size = le16_to_cpu(sb->bblog_size);
1781 }
1782 }
1783
1784 max_dev = 0;
1785 rdev_for_each(rdev2, mddev)
1786 if (rdev2->desc_nr+1 > max_dev)
1787 max_dev = rdev2->desc_nr+1;
1788
1789 if (max_dev > le32_to_cpu(sb->max_dev)) {
1790 int bmask;
1791 sb->max_dev = cpu_to_le32(max_dev);
1792 rdev->sb_size = max_dev * 2 + 256;
1793 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1794 if (rdev->sb_size & bmask)
1795 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1796 } else
1797 max_dev = le32_to_cpu(sb->max_dev);
1798
1799 for (i=0; i<max_dev;i++)
1800 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1801
1802 rdev_for_each(rdev2, mddev) {
1803 i = rdev2->desc_nr;
1804 if (test_bit(Faulty, &rdev2->flags))
1805 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1806 else if (test_bit(In_sync, &rdev2->flags))
1807 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1808 else if (rdev2->raid_disk >= 0)
1809 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1810 else
1811 sb->dev_roles[i] = cpu_to_le16(0xffff);
1812 }
1813
1814 sb->sb_csum = calc_sb_1_csum(sb);
1815 }
1816
1817 static unsigned long long
1818 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1819 {
1820 struct mdp_superblock_1 *sb;
1821 sector_t max_sectors;
1822 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1823 return 0; /* component must fit device */
1824 if (rdev->data_offset != rdev->new_data_offset)
1825 return 0; /* too confusing */
1826 if (rdev->sb_start < rdev->data_offset) {
1827 /* minor versions 1 and 2; superblock before data */
1828 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1829 max_sectors -= rdev->data_offset;
1830 if (!num_sectors || num_sectors > max_sectors)
1831 num_sectors = max_sectors;
1832 } else if (rdev->mddev->bitmap_info.offset) {
1833 /* minor version 0 with bitmap we can't move */
1834 return 0;
1835 } else {
1836 /* minor version 0; superblock after data */
1837 sector_t sb_start;
1838 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1839 sb_start &= ~(sector_t)(4*2 - 1);
1840 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1841 if (!num_sectors || num_sectors > max_sectors)
1842 num_sectors = max_sectors;
1843 rdev->sb_start = sb_start;
1844 }
1845 sb = page_address(rdev->sb_page);
1846 sb->data_size = cpu_to_le64(num_sectors);
1847 sb->super_offset = rdev->sb_start;
1848 sb->sb_csum = calc_sb_1_csum(sb);
1849 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1850 rdev->sb_page);
1851 md_super_wait(rdev->mddev);
1852 return num_sectors;
1853
1854 }
1855
1856 static int
1857 super_1_allow_new_offset(struct md_rdev *rdev,
1858 unsigned long long new_offset)
1859 {
1860 /* All necessary checks on new >= old have been done */
1861 struct bitmap *bitmap;
1862 if (new_offset >= rdev->data_offset)
1863 return 1;
1864
1865 /* with 1.0 metadata, there is no metadata to tread on
1866 * so we can always move back */
1867 if (rdev->mddev->minor_version == 0)
1868 return 1;
1869
1870 /* otherwise we must be sure not to step on
1871 * any metadata, so stay:
1872 * 36K beyond start of superblock
1873 * beyond end of badblocks
1874 * beyond write-intent bitmap
1875 */
1876 if (rdev->sb_start + (32+4)*2 > new_offset)
1877 return 0;
1878 bitmap = rdev->mddev->bitmap;
1879 if (bitmap && !rdev->mddev->bitmap_info.file &&
1880 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1881 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1882 return 0;
1883 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1884 return 0;
1885
1886 return 1;
1887 }
1888
1889 static struct super_type super_types[] = {
1890 [0] = {
1891 .name = "0.90.0",
1892 .owner = THIS_MODULE,
1893 .load_super = super_90_load,
1894 .validate_super = super_90_validate,
1895 .sync_super = super_90_sync,
1896 .rdev_size_change = super_90_rdev_size_change,
1897 .allow_new_offset = super_90_allow_new_offset,
1898 },
1899 [1] = {
1900 .name = "md-1",
1901 .owner = THIS_MODULE,
1902 .load_super = super_1_load,
1903 .validate_super = super_1_validate,
1904 .sync_super = super_1_sync,
1905 .rdev_size_change = super_1_rdev_size_change,
1906 .allow_new_offset = super_1_allow_new_offset,
1907 },
1908 };
1909
1910 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1911 {
1912 if (mddev->sync_super) {
1913 mddev->sync_super(mddev, rdev);
1914 return;
1915 }
1916
1917 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1918
1919 super_types[mddev->major_version].sync_super(mddev, rdev);
1920 }
1921
1922 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1923 {
1924 struct md_rdev *rdev, *rdev2;
1925
1926 rcu_read_lock();
1927 rdev_for_each_rcu(rdev, mddev1)
1928 rdev_for_each_rcu(rdev2, mddev2)
1929 if (rdev->bdev->bd_contains ==
1930 rdev2->bdev->bd_contains) {
1931 rcu_read_unlock();
1932 return 1;
1933 }
1934 rcu_read_unlock();
1935 return 0;
1936 }
1937
1938 static LIST_HEAD(pending_raid_disks);
1939
1940 /*
1941 * Try to register data integrity profile for an mddev
1942 *
1943 * This is called when an array is started and after a disk has been kicked
1944 * from the array. It only succeeds if all working and active component devices
1945 * are integrity capable with matching profiles.
1946 */
1947 int md_integrity_register(struct mddev *mddev)
1948 {
1949 struct md_rdev *rdev, *reference = NULL;
1950
1951 if (list_empty(&mddev->disks))
1952 return 0; /* nothing to do */
1953 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1954 return 0; /* shouldn't register, or already is */
1955 rdev_for_each(rdev, mddev) {
1956 /* skip spares and non-functional disks */
1957 if (test_bit(Faulty, &rdev->flags))
1958 continue;
1959 if (rdev->raid_disk < 0)
1960 continue;
1961 if (!reference) {
1962 /* Use the first rdev as the reference */
1963 reference = rdev;
1964 continue;
1965 }
1966 /* does this rdev's profile match the reference profile? */
1967 if (blk_integrity_compare(reference->bdev->bd_disk,
1968 rdev->bdev->bd_disk) < 0)
1969 return -EINVAL;
1970 }
1971 if (!reference || !bdev_get_integrity(reference->bdev))
1972 return 0;
1973 /*
1974 * All component devices are integrity capable and have matching
1975 * profiles, register the common profile for the md device.
1976 */
1977 if (blk_integrity_register(mddev->gendisk,
1978 bdev_get_integrity(reference->bdev)) != 0) {
1979 printk(KERN_ERR "md: failed to register integrity for %s\n",
1980 mdname(mddev));
1981 return -EINVAL;
1982 }
1983 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1984 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1985 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1986 mdname(mddev));
1987 return -EINVAL;
1988 }
1989 return 0;
1990 }
1991 EXPORT_SYMBOL(md_integrity_register);
1992
1993 /* Disable data integrity if non-capable/non-matching disk is being added */
1994 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1995 {
1996 struct blk_integrity *bi_rdev;
1997 struct blk_integrity *bi_mddev;
1998
1999 if (!mddev->gendisk)
2000 return;
2001
2002 bi_rdev = bdev_get_integrity(rdev->bdev);
2003 bi_mddev = blk_get_integrity(mddev->gendisk);
2004
2005 if (!bi_mddev) /* nothing to do */
2006 return;
2007 if (rdev->raid_disk < 0) /* skip spares */
2008 return;
2009 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2010 rdev->bdev->bd_disk) >= 0)
2011 return;
2012 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2013 blk_integrity_unregister(mddev->gendisk);
2014 }
2015 EXPORT_SYMBOL(md_integrity_add_rdev);
2016
2017 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2018 {
2019 char b[BDEVNAME_SIZE];
2020 struct kobject *ko;
2021 char *s;
2022 int err;
2023
2024 /* prevent duplicates */
2025 if (find_rdev(mddev, rdev->bdev->bd_dev))
2026 return -EEXIST;
2027
2028 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2029 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2030 rdev->sectors < mddev->dev_sectors)) {
2031 if (mddev->pers) {
2032 /* Cannot change size, so fail
2033 * If mddev->level <= 0, then we don't care
2034 * about aligning sizes (e.g. linear)
2035 */
2036 if (mddev->level > 0)
2037 return -ENOSPC;
2038 } else
2039 mddev->dev_sectors = rdev->sectors;
2040 }
2041
2042 /* Verify rdev->desc_nr is unique.
2043 * If it is -1, assign a free number, else
2044 * check number is not in use
2045 */
2046 rcu_read_lock();
2047 if (rdev->desc_nr < 0) {
2048 int choice = 0;
2049 if (mddev->pers)
2050 choice = mddev->raid_disks;
2051 while (find_rdev_nr_rcu(mddev, choice))
2052 choice++;
2053 rdev->desc_nr = choice;
2054 } else {
2055 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2056 rcu_read_unlock();
2057 return -EBUSY;
2058 }
2059 }
2060 rcu_read_unlock();
2061 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2062 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2063 mdname(mddev), mddev->max_disks);
2064 return -EBUSY;
2065 }
2066 bdevname(rdev->bdev,b);
2067 while ( (s=strchr(b, '/')) != NULL)
2068 *s = '!';
2069
2070 rdev->mddev = mddev;
2071 printk(KERN_INFO "md: bind<%s>\n", b);
2072
2073 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2074 goto fail;
2075
2076 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2077 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2078 /* failure here is OK */;
2079 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2080
2081 list_add_rcu(&rdev->same_set, &mddev->disks);
2082 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2083
2084 /* May as well allow recovery to be retried once */
2085 mddev->recovery_disabled++;
2086
2087 return 0;
2088
2089 fail:
2090 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2091 b, mdname(mddev));
2092 return err;
2093 }
2094
2095 static void md_delayed_delete(struct work_struct *ws)
2096 {
2097 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2098 kobject_del(&rdev->kobj);
2099 kobject_put(&rdev->kobj);
2100 }
2101
2102 static void unbind_rdev_from_array(struct md_rdev *rdev)
2103 {
2104 char b[BDEVNAME_SIZE];
2105
2106 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2107 list_del_rcu(&rdev->same_set);
2108 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2109 rdev->mddev = NULL;
2110 sysfs_remove_link(&rdev->kobj, "block");
2111 sysfs_put(rdev->sysfs_state);
2112 rdev->sysfs_state = NULL;
2113 rdev->badblocks.count = 0;
2114 /* We need to delay this, otherwise we can deadlock when
2115 * writing to 'remove' to "dev/state". We also need
2116 * to delay it due to rcu usage.
2117 */
2118 synchronize_rcu();
2119 INIT_WORK(&rdev->del_work, md_delayed_delete);
2120 kobject_get(&rdev->kobj);
2121 queue_work(md_misc_wq, &rdev->del_work);
2122 }
2123
2124 /*
2125 * prevent the device from being mounted, repartitioned or
2126 * otherwise reused by a RAID array (or any other kernel
2127 * subsystem), by bd_claiming the device.
2128 */
2129 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2130 {
2131 int err = 0;
2132 struct block_device *bdev;
2133 char b[BDEVNAME_SIZE];
2134
2135 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2136 shared ? (struct md_rdev *)lock_rdev : rdev);
2137 if (IS_ERR(bdev)) {
2138 printk(KERN_ERR "md: could not open %s.\n",
2139 __bdevname(dev, b));
2140 return PTR_ERR(bdev);
2141 }
2142 rdev->bdev = bdev;
2143 return err;
2144 }
2145
2146 static void unlock_rdev(struct md_rdev *rdev)
2147 {
2148 struct block_device *bdev = rdev->bdev;
2149 rdev->bdev = NULL;
2150 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2151 }
2152
2153 void md_autodetect_dev(dev_t dev);
2154
2155 static void export_rdev(struct md_rdev *rdev)
2156 {
2157 char b[BDEVNAME_SIZE];
2158
2159 printk(KERN_INFO "md: export_rdev(%s)\n",
2160 bdevname(rdev->bdev,b));
2161 md_rdev_clear(rdev);
2162 #ifndef MODULE
2163 if (test_bit(AutoDetected, &rdev->flags))
2164 md_autodetect_dev(rdev->bdev->bd_dev);
2165 #endif
2166 unlock_rdev(rdev);
2167 kobject_put(&rdev->kobj);
2168 }
2169
2170 static void kick_rdev_from_array(struct md_rdev *rdev)
2171 {
2172 unbind_rdev_from_array(rdev);
2173 export_rdev(rdev);
2174 }
2175
2176 static void export_array(struct mddev *mddev)
2177 {
2178 struct md_rdev *rdev;
2179
2180 while (!list_empty(&mddev->disks)) {
2181 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2182 same_set);
2183 kick_rdev_from_array(rdev);
2184 }
2185 mddev->raid_disks = 0;
2186 mddev->major_version = 0;
2187 }
2188
2189 static void sync_sbs(struct mddev *mddev, int nospares)
2190 {
2191 /* Update each superblock (in-memory image), but
2192 * if we are allowed to, skip spares which already
2193 * have the right event counter, or have one earlier
2194 * (which would mean they aren't being marked as dirty
2195 * with the rest of the array)
2196 */
2197 struct md_rdev *rdev;
2198 rdev_for_each(rdev, mddev) {
2199 if (rdev->sb_events == mddev->events ||
2200 (nospares &&
2201 rdev->raid_disk < 0 &&
2202 rdev->sb_events+1 == mddev->events)) {
2203 /* Don't update this superblock */
2204 rdev->sb_loaded = 2;
2205 } else {
2206 sync_super(mddev, rdev);
2207 rdev->sb_loaded = 1;
2208 }
2209 }
2210 }
2211
2212 static void md_update_sb(struct mddev *mddev, int force_change)
2213 {
2214 struct md_rdev *rdev;
2215 int sync_req;
2216 int nospares = 0;
2217 int any_badblocks_changed = 0;
2218
2219 if (mddev->ro) {
2220 if (force_change)
2221 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2222 return;
2223 }
2224 repeat:
2225 /* First make sure individual recovery_offsets are correct */
2226 rdev_for_each(rdev, mddev) {
2227 if (rdev->raid_disk >= 0 &&
2228 mddev->delta_disks >= 0 &&
2229 !test_bit(In_sync, &rdev->flags) &&
2230 mddev->curr_resync_completed > rdev->recovery_offset)
2231 rdev->recovery_offset = mddev->curr_resync_completed;
2232
2233 }
2234 if (!mddev->persistent) {
2235 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2236 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2237 if (!mddev->external) {
2238 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2239 rdev_for_each(rdev, mddev) {
2240 if (rdev->badblocks.changed) {
2241 rdev->badblocks.changed = 0;
2242 md_ack_all_badblocks(&rdev->badblocks);
2243 md_error(mddev, rdev);
2244 }
2245 clear_bit(Blocked, &rdev->flags);
2246 clear_bit(BlockedBadBlocks, &rdev->flags);
2247 wake_up(&rdev->blocked_wait);
2248 }
2249 }
2250 wake_up(&mddev->sb_wait);
2251 return;
2252 }
2253
2254 spin_lock(&mddev->lock);
2255
2256 mddev->utime = get_seconds();
2257
2258 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2259 force_change = 1;
2260 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2261 /* just a clean<-> dirty transition, possibly leave spares alone,
2262 * though if events isn't the right even/odd, we will have to do
2263 * spares after all
2264 */
2265 nospares = 1;
2266 if (force_change)
2267 nospares = 0;
2268 if (mddev->degraded)
2269 /* If the array is degraded, then skipping spares is both
2270 * dangerous and fairly pointless.
2271 * Dangerous because a device that was removed from the array
2272 * might have a event_count that still looks up-to-date,
2273 * so it can be re-added without a resync.
2274 * Pointless because if there are any spares to skip,
2275 * then a recovery will happen and soon that array won't
2276 * be degraded any more and the spare can go back to sleep then.
2277 */
2278 nospares = 0;
2279
2280 sync_req = mddev->in_sync;
2281
2282 /* If this is just a dirty<->clean transition, and the array is clean
2283 * and 'events' is odd, we can roll back to the previous clean state */
2284 if (nospares
2285 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2286 && mddev->can_decrease_events
2287 && mddev->events != 1) {
2288 mddev->events--;
2289 mddev->can_decrease_events = 0;
2290 } else {
2291 /* otherwise we have to go forward and ... */
2292 mddev->events ++;
2293 mddev->can_decrease_events = nospares;
2294 }
2295
2296 /*
2297 * This 64-bit counter should never wrap.
2298 * Either we are in around ~1 trillion A.C., assuming
2299 * 1 reboot per second, or we have a bug...
2300 */
2301 WARN_ON(mddev->events == 0);
2302
2303 rdev_for_each(rdev, mddev) {
2304 if (rdev->badblocks.changed)
2305 any_badblocks_changed++;
2306 if (test_bit(Faulty, &rdev->flags))
2307 set_bit(FaultRecorded, &rdev->flags);
2308 }
2309
2310 sync_sbs(mddev, nospares);
2311 spin_unlock(&mddev->lock);
2312
2313 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2314 mdname(mddev), mddev->in_sync);
2315
2316 bitmap_update_sb(mddev->bitmap);
2317 rdev_for_each(rdev, mddev) {
2318 char b[BDEVNAME_SIZE];
2319
2320 if (rdev->sb_loaded != 1)
2321 continue; /* no noise on spare devices */
2322
2323 if (!test_bit(Faulty, &rdev->flags)) {
2324 md_super_write(mddev,rdev,
2325 rdev->sb_start, rdev->sb_size,
2326 rdev->sb_page);
2327 pr_debug("md: (write) %s's sb offset: %llu\n",
2328 bdevname(rdev->bdev, b),
2329 (unsigned long long)rdev->sb_start);
2330 rdev->sb_events = mddev->events;
2331 if (rdev->badblocks.size) {
2332 md_super_write(mddev, rdev,
2333 rdev->badblocks.sector,
2334 rdev->badblocks.size << 9,
2335 rdev->bb_page);
2336 rdev->badblocks.size = 0;
2337 }
2338
2339 } else
2340 pr_debug("md: %s (skipping faulty)\n",
2341 bdevname(rdev->bdev, b));
2342
2343 if (mddev->level == LEVEL_MULTIPATH)
2344 /* only need to write one superblock... */
2345 break;
2346 }
2347 md_super_wait(mddev);
2348 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2349
2350 spin_lock(&mddev->lock);
2351 if (mddev->in_sync != sync_req ||
2352 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2353 /* have to write it out again */
2354 spin_unlock(&mddev->lock);
2355 goto repeat;
2356 }
2357 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2358 spin_unlock(&mddev->lock);
2359 wake_up(&mddev->sb_wait);
2360 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2361 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2362
2363 rdev_for_each(rdev, mddev) {
2364 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2365 clear_bit(Blocked, &rdev->flags);
2366
2367 if (any_badblocks_changed)
2368 md_ack_all_badblocks(&rdev->badblocks);
2369 clear_bit(BlockedBadBlocks, &rdev->flags);
2370 wake_up(&rdev->blocked_wait);
2371 }
2372 }
2373
2374 /* words written to sysfs files may, or may not, be \n terminated.
2375 * We want to accept with case. For this we use cmd_match.
2376 */
2377 static int cmd_match(const char *cmd, const char *str)
2378 {
2379 /* See if cmd, written into a sysfs file, matches
2380 * str. They must either be the same, or cmd can
2381 * have a trailing newline
2382 */
2383 while (*cmd && *str && *cmd == *str) {
2384 cmd++;
2385 str++;
2386 }
2387 if (*cmd == '\n')
2388 cmd++;
2389 if (*str || *cmd)
2390 return 0;
2391 return 1;
2392 }
2393
2394 struct rdev_sysfs_entry {
2395 struct attribute attr;
2396 ssize_t (*show)(struct md_rdev *, char *);
2397 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2398 };
2399
2400 static ssize_t
2401 state_show(struct md_rdev *rdev, char *page)
2402 {
2403 char *sep = "";
2404 size_t len = 0;
2405 unsigned long flags = ACCESS_ONCE(rdev->flags);
2406
2407 if (test_bit(Faulty, &flags) ||
2408 rdev->badblocks.unacked_exist) {
2409 len+= sprintf(page+len, "%sfaulty",sep);
2410 sep = ",";
2411 }
2412 if (test_bit(In_sync, &flags)) {
2413 len += sprintf(page+len, "%sin_sync",sep);
2414 sep = ",";
2415 }
2416 if (test_bit(WriteMostly, &flags)) {
2417 len += sprintf(page+len, "%swrite_mostly",sep);
2418 sep = ",";
2419 }
2420 if (test_bit(Blocked, &flags) ||
2421 (rdev->badblocks.unacked_exist
2422 && !test_bit(Faulty, &flags))) {
2423 len += sprintf(page+len, "%sblocked", sep);
2424 sep = ",";
2425 }
2426 if (!test_bit(Faulty, &flags) &&
2427 !test_bit(In_sync, &flags)) {
2428 len += sprintf(page+len, "%sspare", sep);
2429 sep = ",";
2430 }
2431 if (test_bit(WriteErrorSeen, &flags)) {
2432 len += sprintf(page+len, "%swrite_error", sep);
2433 sep = ",";
2434 }
2435 if (test_bit(WantReplacement, &flags)) {
2436 len += sprintf(page+len, "%swant_replacement", sep);
2437 sep = ",";
2438 }
2439 if (test_bit(Replacement, &flags)) {
2440 len += sprintf(page+len, "%sreplacement", sep);
2441 sep = ",";
2442 }
2443
2444 return len+sprintf(page+len, "\n");
2445 }
2446
2447 static ssize_t
2448 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2449 {
2450 /* can write
2451 * faulty - simulates an error
2452 * remove - disconnects the device
2453 * writemostly - sets write_mostly
2454 * -writemostly - clears write_mostly
2455 * blocked - sets the Blocked flags
2456 * -blocked - clears the Blocked and possibly simulates an error
2457 * insync - sets Insync providing device isn't active
2458 * -insync - clear Insync for a device with a slot assigned,
2459 * so that it gets rebuilt based on bitmap
2460 * write_error - sets WriteErrorSeen
2461 * -write_error - clears WriteErrorSeen
2462 */
2463 int err = -EINVAL;
2464 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2465 md_error(rdev->mddev, rdev);
2466 if (test_bit(Faulty, &rdev->flags))
2467 err = 0;
2468 else
2469 err = -EBUSY;
2470 } else if (cmd_match(buf, "remove")) {
2471 if (rdev->raid_disk >= 0)
2472 err = -EBUSY;
2473 else {
2474 struct mddev *mddev = rdev->mddev;
2475 if (mddev_is_clustered(mddev))
2476 md_cluster_ops->metadata_update_start(mddev);
2477 kick_rdev_from_array(rdev);
2478 if (mddev->pers)
2479 md_update_sb(mddev, 1);
2480 md_new_event(mddev);
2481 if (mddev_is_clustered(mddev))
2482 md_cluster_ops->metadata_update_finish(mddev);
2483 err = 0;
2484 }
2485 } else if (cmd_match(buf, "writemostly")) {
2486 set_bit(WriteMostly, &rdev->flags);
2487 err = 0;
2488 } else if (cmd_match(buf, "-writemostly")) {
2489 clear_bit(WriteMostly, &rdev->flags);
2490 err = 0;
2491 } else if (cmd_match(buf, "blocked")) {
2492 set_bit(Blocked, &rdev->flags);
2493 err = 0;
2494 } else if (cmd_match(buf, "-blocked")) {
2495 if (!test_bit(Faulty, &rdev->flags) &&
2496 rdev->badblocks.unacked_exist) {
2497 /* metadata handler doesn't understand badblocks,
2498 * so we need to fail the device
2499 */
2500 md_error(rdev->mddev, rdev);
2501 }
2502 clear_bit(Blocked, &rdev->flags);
2503 clear_bit(BlockedBadBlocks, &rdev->flags);
2504 wake_up(&rdev->blocked_wait);
2505 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2506 md_wakeup_thread(rdev->mddev->thread);
2507
2508 err = 0;
2509 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2510 set_bit(In_sync, &rdev->flags);
2511 err = 0;
2512 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2513 if (rdev->mddev->pers == NULL) {
2514 clear_bit(In_sync, &rdev->flags);
2515 rdev->saved_raid_disk = rdev->raid_disk;
2516 rdev->raid_disk = -1;
2517 err = 0;
2518 }
2519 } else if (cmd_match(buf, "write_error")) {
2520 set_bit(WriteErrorSeen, &rdev->flags);
2521 err = 0;
2522 } else if (cmd_match(buf, "-write_error")) {
2523 clear_bit(WriteErrorSeen, &rdev->flags);
2524 err = 0;
2525 } else if (cmd_match(buf, "want_replacement")) {
2526 /* Any non-spare device that is not a replacement can
2527 * become want_replacement at any time, but we then need to
2528 * check if recovery is needed.
2529 */
2530 if (rdev->raid_disk >= 0 &&
2531 !test_bit(Replacement, &rdev->flags))
2532 set_bit(WantReplacement, &rdev->flags);
2533 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2534 md_wakeup_thread(rdev->mddev->thread);
2535 err = 0;
2536 } else if (cmd_match(buf, "-want_replacement")) {
2537 /* Clearing 'want_replacement' is always allowed.
2538 * Once replacements starts it is too late though.
2539 */
2540 err = 0;
2541 clear_bit(WantReplacement, &rdev->flags);
2542 } else if (cmd_match(buf, "replacement")) {
2543 /* Can only set a device as a replacement when array has not
2544 * yet been started. Once running, replacement is automatic
2545 * from spares, or by assigning 'slot'.
2546 */
2547 if (rdev->mddev->pers)
2548 err = -EBUSY;
2549 else {
2550 set_bit(Replacement, &rdev->flags);
2551 err = 0;
2552 }
2553 } else if (cmd_match(buf, "-replacement")) {
2554 /* Similarly, can only clear Replacement before start */
2555 if (rdev->mddev->pers)
2556 err = -EBUSY;
2557 else {
2558 clear_bit(Replacement, &rdev->flags);
2559 err = 0;
2560 }
2561 }
2562 if (!err)
2563 sysfs_notify_dirent_safe(rdev->sysfs_state);
2564 return err ? err : len;
2565 }
2566 static struct rdev_sysfs_entry rdev_state =
2567 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2568
2569 static ssize_t
2570 errors_show(struct md_rdev *rdev, char *page)
2571 {
2572 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2573 }
2574
2575 static ssize_t
2576 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2577 {
2578 char *e;
2579 unsigned long n = simple_strtoul(buf, &e, 10);
2580 if (*buf && (*e == 0 || *e == '\n')) {
2581 atomic_set(&rdev->corrected_errors, n);
2582 return len;
2583 }
2584 return -EINVAL;
2585 }
2586 static struct rdev_sysfs_entry rdev_errors =
2587 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2588
2589 static ssize_t
2590 slot_show(struct md_rdev *rdev, char *page)
2591 {
2592 if (rdev->raid_disk < 0)
2593 return sprintf(page, "none\n");
2594 else
2595 return sprintf(page, "%d\n", rdev->raid_disk);
2596 }
2597
2598 static ssize_t
2599 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2600 {
2601 char *e;
2602 int err;
2603 int slot = simple_strtoul(buf, &e, 10);
2604 if (strncmp(buf, "none", 4)==0)
2605 slot = -1;
2606 else if (e==buf || (*e && *e!= '\n'))
2607 return -EINVAL;
2608 if (rdev->mddev->pers && slot == -1) {
2609 /* Setting 'slot' on an active array requires also
2610 * updating the 'rd%d' link, and communicating
2611 * with the personality with ->hot_*_disk.
2612 * For now we only support removing
2613 * failed/spare devices. This normally happens automatically,
2614 * but not when the metadata is externally managed.
2615 */
2616 if (rdev->raid_disk == -1)
2617 return -EEXIST;
2618 /* personality does all needed checks */
2619 if (rdev->mddev->pers->hot_remove_disk == NULL)
2620 return -EINVAL;
2621 clear_bit(Blocked, &rdev->flags);
2622 remove_and_add_spares(rdev->mddev, rdev);
2623 if (rdev->raid_disk >= 0)
2624 return -EBUSY;
2625 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2626 md_wakeup_thread(rdev->mddev->thread);
2627 } else if (rdev->mddev->pers) {
2628 /* Activating a spare .. or possibly reactivating
2629 * if we ever get bitmaps working here.
2630 */
2631
2632 if (rdev->raid_disk != -1)
2633 return -EBUSY;
2634
2635 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2636 return -EBUSY;
2637
2638 if (rdev->mddev->pers->hot_add_disk == NULL)
2639 return -EINVAL;
2640
2641 if (slot >= rdev->mddev->raid_disks &&
2642 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2643 return -ENOSPC;
2644
2645 rdev->raid_disk = slot;
2646 if (test_bit(In_sync, &rdev->flags))
2647 rdev->saved_raid_disk = slot;
2648 else
2649 rdev->saved_raid_disk = -1;
2650 clear_bit(In_sync, &rdev->flags);
2651 clear_bit(Bitmap_sync, &rdev->flags);
2652 err = rdev->mddev->pers->
2653 hot_add_disk(rdev->mddev, rdev);
2654 if (err) {
2655 rdev->raid_disk = -1;
2656 return err;
2657 } else
2658 sysfs_notify_dirent_safe(rdev->sysfs_state);
2659 if (sysfs_link_rdev(rdev->mddev, rdev))
2660 /* failure here is OK */;
2661 /* don't wakeup anyone, leave that to userspace. */
2662 } else {
2663 if (slot >= rdev->mddev->raid_disks &&
2664 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2665 return -ENOSPC;
2666 rdev->raid_disk = slot;
2667 /* assume it is working */
2668 clear_bit(Faulty, &rdev->flags);
2669 clear_bit(WriteMostly, &rdev->flags);
2670 set_bit(In_sync, &rdev->flags);
2671 sysfs_notify_dirent_safe(rdev->sysfs_state);
2672 }
2673 return len;
2674 }
2675
2676 static struct rdev_sysfs_entry rdev_slot =
2677 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2678
2679 static ssize_t
2680 offset_show(struct md_rdev *rdev, char *page)
2681 {
2682 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2683 }
2684
2685 static ssize_t
2686 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2687 {
2688 unsigned long long offset;
2689 if (kstrtoull(buf, 10, &offset) < 0)
2690 return -EINVAL;
2691 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2692 return -EBUSY;
2693 if (rdev->sectors && rdev->mddev->external)
2694 /* Must set offset before size, so overlap checks
2695 * can be sane */
2696 return -EBUSY;
2697 rdev->data_offset = offset;
2698 rdev->new_data_offset = offset;
2699 return len;
2700 }
2701
2702 static struct rdev_sysfs_entry rdev_offset =
2703 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2704
2705 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2706 {
2707 return sprintf(page, "%llu\n",
2708 (unsigned long long)rdev->new_data_offset);
2709 }
2710
2711 static ssize_t new_offset_store(struct md_rdev *rdev,
2712 const char *buf, size_t len)
2713 {
2714 unsigned long long new_offset;
2715 struct mddev *mddev = rdev->mddev;
2716
2717 if (kstrtoull(buf, 10, &new_offset) < 0)
2718 return -EINVAL;
2719
2720 if (mddev->sync_thread ||
2721 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2722 return -EBUSY;
2723 if (new_offset == rdev->data_offset)
2724 /* reset is always permitted */
2725 ;
2726 else if (new_offset > rdev->data_offset) {
2727 /* must not push array size beyond rdev_sectors */
2728 if (new_offset - rdev->data_offset
2729 + mddev->dev_sectors > rdev->sectors)
2730 return -E2BIG;
2731 }
2732 /* Metadata worries about other space details. */
2733
2734 /* decreasing the offset is inconsistent with a backwards
2735 * reshape.
2736 */
2737 if (new_offset < rdev->data_offset &&
2738 mddev->reshape_backwards)
2739 return -EINVAL;
2740 /* Increasing offset is inconsistent with forwards
2741 * reshape. reshape_direction should be set to
2742 * 'backwards' first.
2743 */
2744 if (new_offset > rdev->data_offset &&
2745 !mddev->reshape_backwards)
2746 return -EINVAL;
2747
2748 if (mddev->pers && mddev->persistent &&
2749 !super_types[mddev->major_version]
2750 .allow_new_offset(rdev, new_offset))
2751 return -E2BIG;
2752 rdev->new_data_offset = new_offset;
2753 if (new_offset > rdev->data_offset)
2754 mddev->reshape_backwards = 1;
2755 else if (new_offset < rdev->data_offset)
2756 mddev->reshape_backwards = 0;
2757
2758 return len;
2759 }
2760 static struct rdev_sysfs_entry rdev_new_offset =
2761 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2762
2763 static ssize_t
2764 rdev_size_show(struct md_rdev *rdev, char *page)
2765 {
2766 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2767 }
2768
2769 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2770 {
2771 /* check if two start/length pairs overlap */
2772 if (s1+l1 <= s2)
2773 return 0;
2774 if (s2+l2 <= s1)
2775 return 0;
2776 return 1;
2777 }
2778
2779 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2780 {
2781 unsigned long long blocks;
2782 sector_t new;
2783
2784 if (kstrtoull(buf, 10, &blocks) < 0)
2785 return -EINVAL;
2786
2787 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2788 return -EINVAL; /* sector conversion overflow */
2789
2790 new = blocks * 2;
2791 if (new != blocks * 2)
2792 return -EINVAL; /* unsigned long long to sector_t overflow */
2793
2794 *sectors = new;
2795 return 0;
2796 }
2797
2798 static ssize_t
2799 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2800 {
2801 struct mddev *my_mddev = rdev->mddev;
2802 sector_t oldsectors = rdev->sectors;
2803 sector_t sectors;
2804
2805 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2806 return -EINVAL;
2807 if (rdev->data_offset != rdev->new_data_offset)
2808 return -EINVAL; /* too confusing */
2809 if (my_mddev->pers && rdev->raid_disk >= 0) {
2810 if (my_mddev->persistent) {
2811 sectors = super_types[my_mddev->major_version].
2812 rdev_size_change(rdev, sectors);
2813 if (!sectors)
2814 return -EBUSY;
2815 } else if (!sectors)
2816 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2817 rdev->data_offset;
2818 if (!my_mddev->pers->resize)
2819 /* Cannot change size for RAID0 or Linear etc */
2820 return -EINVAL;
2821 }
2822 if (sectors < my_mddev->dev_sectors)
2823 return -EINVAL; /* component must fit device */
2824
2825 rdev->sectors = sectors;
2826 if (sectors > oldsectors && my_mddev->external) {
2827 /* Need to check that all other rdevs with the same
2828 * ->bdev do not overlap. 'rcu' is sufficient to walk
2829 * the rdev lists safely.
2830 * This check does not provide a hard guarantee, it
2831 * just helps avoid dangerous mistakes.
2832 */
2833 struct mddev *mddev;
2834 int overlap = 0;
2835 struct list_head *tmp;
2836
2837 rcu_read_lock();
2838 for_each_mddev(mddev, tmp) {
2839 struct md_rdev *rdev2;
2840
2841 rdev_for_each(rdev2, mddev)
2842 if (rdev->bdev == rdev2->bdev &&
2843 rdev != rdev2 &&
2844 overlaps(rdev->data_offset, rdev->sectors,
2845 rdev2->data_offset,
2846 rdev2->sectors)) {
2847 overlap = 1;
2848 break;
2849 }
2850 if (overlap) {
2851 mddev_put(mddev);
2852 break;
2853 }
2854 }
2855 rcu_read_unlock();
2856 if (overlap) {
2857 /* Someone else could have slipped in a size
2858 * change here, but doing so is just silly.
2859 * We put oldsectors back because we *know* it is
2860 * safe, and trust userspace not to race with
2861 * itself
2862 */
2863 rdev->sectors = oldsectors;
2864 return -EBUSY;
2865 }
2866 }
2867 return len;
2868 }
2869
2870 static struct rdev_sysfs_entry rdev_size =
2871 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2872
2873 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2874 {
2875 unsigned long long recovery_start = rdev->recovery_offset;
2876
2877 if (test_bit(In_sync, &rdev->flags) ||
2878 recovery_start == MaxSector)
2879 return sprintf(page, "none\n");
2880
2881 return sprintf(page, "%llu\n", recovery_start);
2882 }
2883
2884 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2885 {
2886 unsigned long long recovery_start;
2887
2888 if (cmd_match(buf, "none"))
2889 recovery_start = MaxSector;
2890 else if (kstrtoull(buf, 10, &recovery_start))
2891 return -EINVAL;
2892
2893 if (rdev->mddev->pers &&
2894 rdev->raid_disk >= 0)
2895 return -EBUSY;
2896
2897 rdev->recovery_offset = recovery_start;
2898 if (recovery_start == MaxSector)
2899 set_bit(In_sync, &rdev->flags);
2900 else
2901 clear_bit(In_sync, &rdev->flags);
2902 return len;
2903 }
2904
2905 static struct rdev_sysfs_entry rdev_recovery_start =
2906 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2907
2908 static ssize_t
2909 badblocks_show(struct badblocks *bb, char *page, int unack);
2910 static ssize_t
2911 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2912
2913 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2914 {
2915 return badblocks_show(&rdev->badblocks, page, 0);
2916 }
2917 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2918 {
2919 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2920 /* Maybe that ack was all we needed */
2921 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2922 wake_up(&rdev->blocked_wait);
2923 return rv;
2924 }
2925 static struct rdev_sysfs_entry rdev_bad_blocks =
2926 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2927
2928 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2929 {
2930 return badblocks_show(&rdev->badblocks, page, 1);
2931 }
2932 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2933 {
2934 return badblocks_store(&rdev->badblocks, page, len, 1);
2935 }
2936 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2937 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2938
2939 static struct attribute *rdev_default_attrs[] = {
2940 &rdev_state.attr,
2941 &rdev_errors.attr,
2942 &rdev_slot.attr,
2943 &rdev_offset.attr,
2944 &rdev_new_offset.attr,
2945 &rdev_size.attr,
2946 &rdev_recovery_start.attr,
2947 &rdev_bad_blocks.attr,
2948 &rdev_unack_bad_blocks.attr,
2949 NULL,
2950 };
2951 static ssize_t
2952 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2953 {
2954 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2955 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2956
2957 if (!entry->show)
2958 return -EIO;
2959 if (!rdev->mddev)
2960 return -EBUSY;
2961 return entry->show(rdev, page);
2962 }
2963
2964 static ssize_t
2965 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2966 const char *page, size_t length)
2967 {
2968 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2969 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2970 ssize_t rv;
2971 struct mddev *mddev = rdev->mddev;
2972
2973 if (!entry->store)
2974 return -EIO;
2975 if (!capable(CAP_SYS_ADMIN))
2976 return -EACCES;
2977 rv = mddev ? mddev_lock(mddev): -EBUSY;
2978 if (!rv) {
2979 if (rdev->mddev == NULL)
2980 rv = -EBUSY;
2981 else
2982 rv = entry->store(rdev, page, length);
2983 mddev_unlock(mddev);
2984 }
2985 return rv;
2986 }
2987
2988 static void rdev_free(struct kobject *ko)
2989 {
2990 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2991 kfree(rdev);
2992 }
2993 static const struct sysfs_ops rdev_sysfs_ops = {
2994 .show = rdev_attr_show,
2995 .store = rdev_attr_store,
2996 };
2997 static struct kobj_type rdev_ktype = {
2998 .release = rdev_free,
2999 .sysfs_ops = &rdev_sysfs_ops,
3000 .default_attrs = rdev_default_attrs,
3001 };
3002
3003 int md_rdev_init(struct md_rdev *rdev)
3004 {
3005 rdev->desc_nr = -1;
3006 rdev->saved_raid_disk = -1;
3007 rdev->raid_disk = -1;
3008 rdev->flags = 0;
3009 rdev->data_offset = 0;
3010 rdev->new_data_offset = 0;
3011 rdev->sb_events = 0;
3012 rdev->last_read_error.tv_sec = 0;
3013 rdev->last_read_error.tv_nsec = 0;
3014 rdev->sb_loaded = 0;
3015 rdev->bb_page = NULL;
3016 atomic_set(&rdev->nr_pending, 0);
3017 atomic_set(&rdev->read_errors, 0);
3018 atomic_set(&rdev->corrected_errors, 0);
3019
3020 INIT_LIST_HEAD(&rdev->same_set);
3021 init_waitqueue_head(&rdev->blocked_wait);
3022
3023 /* Add space to store bad block list.
3024 * This reserves the space even on arrays where it cannot
3025 * be used - I wonder if that matters
3026 */
3027 rdev->badblocks.count = 0;
3028 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3029 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3030 seqlock_init(&rdev->badblocks.lock);
3031 if (rdev->badblocks.page == NULL)
3032 return -ENOMEM;
3033
3034 return 0;
3035 }
3036 EXPORT_SYMBOL_GPL(md_rdev_init);
3037 /*
3038 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3039 *
3040 * mark the device faulty if:
3041 *
3042 * - the device is nonexistent (zero size)
3043 * - the device has no valid superblock
3044 *
3045 * a faulty rdev _never_ has rdev->sb set.
3046 */
3047 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3048 {
3049 char b[BDEVNAME_SIZE];
3050 int err;
3051 struct md_rdev *rdev;
3052 sector_t size;
3053
3054 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3055 if (!rdev) {
3056 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3057 return ERR_PTR(-ENOMEM);
3058 }
3059
3060 err = md_rdev_init(rdev);
3061 if (err)
3062 goto abort_free;
3063 err = alloc_disk_sb(rdev);
3064 if (err)
3065 goto abort_free;
3066
3067 err = lock_rdev(rdev, newdev, super_format == -2);
3068 if (err)
3069 goto abort_free;
3070
3071 kobject_init(&rdev->kobj, &rdev_ktype);
3072
3073 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3074 if (!size) {
3075 printk(KERN_WARNING
3076 "md: %s has zero or unknown size, marking faulty!\n",
3077 bdevname(rdev->bdev,b));
3078 err = -EINVAL;
3079 goto abort_free;
3080 }
3081
3082 if (super_format >= 0) {
3083 err = super_types[super_format].
3084 load_super(rdev, NULL, super_minor);
3085 if (err == -EINVAL) {
3086 printk(KERN_WARNING
3087 "md: %s does not have a valid v%d.%d "
3088 "superblock, not importing!\n",
3089 bdevname(rdev->bdev,b),
3090 super_format, super_minor);
3091 goto abort_free;
3092 }
3093 if (err < 0) {
3094 printk(KERN_WARNING
3095 "md: could not read %s's sb, not importing!\n",
3096 bdevname(rdev->bdev,b));
3097 goto abort_free;
3098 }
3099 }
3100
3101 return rdev;
3102
3103 abort_free:
3104 if (rdev->bdev)
3105 unlock_rdev(rdev);
3106 md_rdev_clear(rdev);
3107 kfree(rdev);
3108 return ERR_PTR(err);
3109 }
3110
3111 /*
3112 * Check a full RAID array for plausibility
3113 */
3114
3115 static void analyze_sbs(struct mddev *mddev)
3116 {
3117 int i;
3118 struct md_rdev *rdev, *freshest, *tmp;
3119 char b[BDEVNAME_SIZE];
3120
3121 freshest = NULL;
3122 rdev_for_each_safe(rdev, tmp, mddev)
3123 switch (super_types[mddev->major_version].
3124 load_super(rdev, freshest, mddev->minor_version)) {
3125 case 1:
3126 freshest = rdev;
3127 break;
3128 case 0:
3129 break;
3130 default:
3131 printk( KERN_ERR \
3132 "md: fatal superblock inconsistency in %s"
3133 " -- removing from array\n",
3134 bdevname(rdev->bdev,b));
3135 kick_rdev_from_array(rdev);
3136 }
3137
3138 super_types[mddev->major_version].
3139 validate_super(mddev, freshest);
3140
3141 i = 0;
3142 rdev_for_each_safe(rdev, tmp, mddev) {
3143 if (mddev->max_disks &&
3144 (rdev->desc_nr >= mddev->max_disks ||
3145 i > mddev->max_disks)) {
3146 printk(KERN_WARNING
3147 "md: %s: %s: only %d devices permitted\n",
3148 mdname(mddev), bdevname(rdev->bdev, b),
3149 mddev->max_disks);
3150 kick_rdev_from_array(rdev);
3151 continue;
3152 }
3153 if (rdev != freshest)
3154 if (super_types[mddev->major_version].
3155 validate_super(mddev, rdev)) {
3156 printk(KERN_WARNING "md: kicking non-fresh %s"
3157 " from array!\n",
3158 bdevname(rdev->bdev,b));
3159 kick_rdev_from_array(rdev);
3160 continue;
3161 }
3162 if (mddev->level == LEVEL_MULTIPATH) {
3163 rdev->desc_nr = i++;
3164 rdev->raid_disk = rdev->desc_nr;
3165 set_bit(In_sync, &rdev->flags);
3166 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3167 rdev->raid_disk = -1;
3168 clear_bit(In_sync, &rdev->flags);
3169 }
3170 }
3171 }
3172
3173 /* Read a fixed-point number.
3174 * Numbers in sysfs attributes should be in "standard" units where
3175 * possible, so time should be in seconds.
3176 * However we internally use a a much smaller unit such as
3177 * milliseconds or jiffies.
3178 * This function takes a decimal number with a possible fractional
3179 * component, and produces an integer which is the result of
3180 * multiplying that number by 10^'scale'.
3181 * all without any floating-point arithmetic.
3182 */
3183 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3184 {
3185 unsigned long result = 0;
3186 long decimals = -1;
3187 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3188 if (*cp == '.')
3189 decimals = 0;
3190 else if (decimals < scale) {
3191 unsigned int value;
3192 value = *cp - '0';
3193 result = result * 10 + value;
3194 if (decimals >= 0)
3195 decimals++;
3196 }
3197 cp++;
3198 }
3199 if (*cp == '\n')
3200 cp++;
3201 if (*cp)
3202 return -EINVAL;
3203 if (decimals < 0)
3204 decimals = 0;
3205 while (decimals < scale) {
3206 result *= 10;
3207 decimals ++;
3208 }
3209 *res = result;
3210 return 0;
3211 }
3212
3213 static void md_safemode_timeout(unsigned long data);
3214
3215 static ssize_t
3216 safe_delay_show(struct mddev *mddev, char *page)
3217 {
3218 int msec = (mddev->safemode_delay*1000)/HZ;
3219 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3220 }
3221 static ssize_t
3222 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3223 {
3224 unsigned long msec;
3225
3226 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3227 return -EINVAL;
3228 if (msec == 0)
3229 mddev->safemode_delay = 0;
3230 else {
3231 unsigned long old_delay = mddev->safemode_delay;
3232 unsigned long new_delay = (msec*HZ)/1000;
3233
3234 if (new_delay == 0)
3235 new_delay = 1;
3236 mddev->safemode_delay = new_delay;
3237 if (new_delay < old_delay || old_delay == 0)
3238 mod_timer(&mddev->safemode_timer, jiffies+1);
3239 }
3240 return len;
3241 }
3242 static struct md_sysfs_entry md_safe_delay =
3243 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3244
3245 static ssize_t
3246 level_show(struct mddev *mddev, char *page)
3247 {
3248 struct md_personality *p;
3249 int ret;
3250 spin_lock(&mddev->lock);
3251 p = mddev->pers;
3252 if (p)
3253 ret = sprintf(page, "%s\n", p->name);
3254 else if (mddev->clevel[0])
3255 ret = sprintf(page, "%s\n", mddev->clevel);
3256 else if (mddev->level != LEVEL_NONE)
3257 ret = sprintf(page, "%d\n", mddev->level);
3258 else
3259 ret = 0;
3260 spin_unlock(&mddev->lock);
3261 return ret;
3262 }
3263
3264 static ssize_t
3265 level_store(struct mddev *mddev, const char *buf, size_t len)
3266 {
3267 char clevel[16];
3268 ssize_t rv;
3269 size_t slen = len;
3270 struct md_personality *pers, *oldpers;
3271 long level;
3272 void *priv, *oldpriv;
3273 struct md_rdev *rdev;
3274
3275 if (slen == 0 || slen >= sizeof(clevel))
3276 return -EINVAL;
3277
3278 rv = mddev_lock(mddev);
3279 if (rv)
3280 return rv;
3281
3282 if (mddev->pers == NULL) {
3283 strncpy(mddev->clevel, buf, slen);
3284 if (mddev->clevel[slen-1] == '\n')
3285 slen--;
3286 mddev->clevel[slen] = 0;
3287 mddev->level = LEVEL_NONE;
3288 rv = len;
3289 goto out_unlock;
3290 }
3291 rv = -EROFS;
3292 if (mddev->ro)
3293 goto out_unlock;
3294
3295 /* request to change the personality. Need to ensure:
3296 * - array is not engaged in resync/recovery/reshape
3297 * - old personality can be suspended
3298 * - new personality will access other array.
3299 */
3300
3301 rv = -EBUSY;
3302 if (mddev->sync_thread ||
3303 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3304 mddev->reshape_position != MaxSector ||
3305 mddev->sysfs_active)
3306 goto out_unlock;
3307
3308 rv = -EINVAL;
3309 if (!mddev->pers->quiesce) {
3310 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3311 mdname(mddev), mddev->pers->name);
3312 goto out_unlock;
3313 }
3314
3315 /* Now find the new personality */
3316 strncpy(clevel, buf, slen);
3317 if (clevel[slen-1] == '\n')
3318 slen--;
3319 clevel[slen] = 0;
3320 if (kstrtol(clevel, 10, &level))
3321 level = LEVEL_NONE;
3322
3323 if (request_module("md-%s", clevel) != 0)
3324 request_module("md-level-%s", clevel);
3325 spin_lock(&pers_lock);
3326 pers = find_pers(level, clevel);
3327 if (!pers || !try_module_get(pers->owner)) {
3328 spin_unlock(&pers_lock);
3329 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3330 rv = -EINVAL;
3331 goto out_unlock;
3332 }
3333 spin_unlock(&pers_lock);
3334
3335 if (pers == mddev->pers) {
3336 /* Nothing to do! */
3337 module_put(pers->owner);
3338 rv = len;
3339 goto out_unlock;
3340 }
3341 if (!pers->takeover) {
3342 module_put(pers->owner);
3343 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3344 mdname(mddev), clevel);
3345 rv = -EINVAL;
3346 goto out_unlock;
3347 }
3348
3349 rdev_for_each(rdev, mddev)
3350 rdev->new_raid_disk = rdev->raid_disk;
3351
3352 /* ->takeover must set new_* and/or delta_disks
3353 * if it succeeds, and may set them when it fails.
3354 */
3355 priv = pers->takeover(mddev);
3356 if (IS_ERR(priv)) {
3357 mddev->new_level = mddev->level;
3358 mddev->new_layout = mddev->layout;
3359 mddev->new_chunk_sectors = mddev->chunk_sectors;
3360 mddev->raid_disks -= mddev->delta_disks;
3361 mddev->delta_disks = 0;
3362 mddev->reshape_backwards = 0;
3363 module_put(pers->owner);
3364 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3365 mdname(mddev), clevel);
3366 rv = PTR_ERR(priv);
3367 goto out_unlock;
3368 }
3369
3370 /* Looks like we have a winner */
3371 mddev_suspend(mddev);
3372 mddev_detach(mddev);
3373
3374 spin_lock(&mddev->lock);
3375 oldpers = mddev->pers;
3376 oldpriv = mddev->private;
3377 mddev->pers = pers;
3378 mddev->private = priv;
3379 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3380 mddev->level = mddev->new_level;
3381 mddev->layout = mddev->new_layout;
3382 mddev->chunk_sectors = mddev->new_chunk_sectors;
3383 mddev->delta_disks = 0;
3384 mddev->reshape_backwards = 0;
3385 mddev->degraded = 0;
3386 spin_unlock(&mddev->lock);
3387
3388 if (oldpers->sync_request == NULL &&
3389 mddev->external) {
3390 /* We are converting from a no-redundancy array
3391 * to a redundancy array and metadata is managed
3392 * externally so we need to be sure that writes
3393 * won't block due to a need to transition
3394 * clean->dirty
3395 * until external management is started.
3396 */
3397 mddev->in_sync = 0;
3398 mddev->safemode_delay = 0;
3399 mddev->safemode = 0;
3400 }
3401
3402 oldpers->free(mddev, oldpriv);
3403
3404 if (oldpers->sync_request == NULL &&
3405 pers->sync_request != NULL) {
3406 /* need to add the md_redundancy_group */
3407 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3408 printk(KERN_WARNING
3409 "md: cannot register extra attributes for %s\n",
3410 mdname(mddev));
3411 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3412 }
3413 if (oldpers->sync_request != NULL &&
3414 pers->sync_request == NULL) {
3415 /* need to remove the md_redundancy_group */
3416 if (mddev->to_remove == NULL)
3417 mddev->to_remove = &md_redundancy_group;
3418 }
3419
3420 rdev_for_each(rdev, mddev) {
3421 if (rdev->raid_disk < 0)
3422 continue;
3423 if (rdev->new_raid_disk >= mddev->raid_disks)
3424 rdev->new_raid_disk = -1;
3425 if (rdev->new_raid_disk == rdev->raid_disk)
3426 continue;
3427 sysfs_unlink_rdev(mddev, rdev);
3428 }
3429 rdev_for_each(rdev, mddev) {
3430 if (rdev->raid_disk < 0)
3431 continue;
3432 if (rdev->new_raid_disk == rdev->raid_disk)
3433 continue;
3434 rdev->raid_disk = rdev->new_raid_disk;
3435 if (rdev->raid_disk < 0)
3436 clear_bit(In_sync, &rdev->flags);
3437 else {
3438 if (sysfs_link_rdev(mddev, rdev))
3439 printk(KERN_WARNING "md: cannot register rd%d"
3440 " for %s after level change\n",
3441 rdev->raid_disk, mdname(mddev));
3442 }
3443 }
3444
3445 if (pers->sync_request == NULL) {
3446 /* this is now an array without redundancy, so
3447 * it must always be in_sync
3448 */
3449 mddev->in_sync = 1;
3450 del_timer_sync(&mddev->safemode_timer);
3451 }
3452 blk_set_stacking_limits(&mddev->queue->limits);
3453 pers->run(mddev);
3454 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3455 mddev_resume(mddev);
3456 if (!mddev->thread)
3457 md_update_sb(mddev, 1);
3458 sysfs_notify(&mddev->kobj, NULL, "level");
3459 md_new_event(mddev);
3460 rv = len;
3461 out_unlock:
3462 mddev_unlock(mddev);
3463 return rv;
3464 }
3465
3466 static struct md_sysfs_entry md_level =
3467 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3468
3469 static ssize_t
3470 layout_show(struct mddev *mddev, char *page)
3471 {
3472 /* just a number, not meaningful for all levels */
3473 if (mddev->reshape_position != MaxSector &&
3474 mddev->layout != mddev->new_layout)
3475 return sprintf(page, "%d (%d)\n",
3476 mddev->new_layout, mddev->layout);
3477 return sprintf(page, "%d\n", mddev->layout);
3478 }
3479
3480 static ssize_t
3481 layout_store(struct mddev *mddev, const char *buf, size_t len)
3482 {
3483 char *e;
3484 unsigned long n = simple_strtoul(buf, &e, 10);
3485 int err;
3486
3487 if (!*buf || (*e && *e != '\n'))
3488 return -EINVAL;
3489 err = mddev_lock(mddev);
3490 if (err)
3491 return err;
3492
3493 if (mddev->pers) {
3494 if (mddev->pers->check_reshape == NULL)
3495 err = -EBUSY;
3496 else if (mddev->ro)
3497 err = -EROFS;
3498 else {
3499 mddev->new_layout = n;
3500 err = mddev->pers->check_reshape(mddev);
3501 if (err)
3502 mddev->new_layout = mddev->layout;
3503 }
3504 } else {
3505 mddev->new_layout = n;
3506 if (mddev->reshape_position == MaxSector)
3507 mddev->layout = n;
3508 }
3509 mddev_unlock(mddev);
3510 return err ?: len;
3511 }
3512 static struct md_sysfs_entry md_layout =
3513 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3514
3515 static ssize_t
3516 raid_disks_show(struct mddev *mddev, char *page)
3517 {
3518 if (mddev->raid_disks == 0)
3519 return 0;
3520 if (mddev->reshape_position != MaxSector &&
3521 mddev->delta_disks != 0)
3522 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3523 mddev->raid_disks - mddev->delta_disks);
3524 return sprintf(page, "%d\n", mddev->raid_disks);
3525 }
3526
3527 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3528
3529 static ssize_t
3530 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3531 {
3532 char *e;
3533 int err;
3534 unsigned long n = simple_strtoul(buf, &e, 10);
3535
3536 if (!*buf || (*e && *e != '\n'))
3537 return -EINVAL;
3538
3539 err = mddev_lock(mddev);
3540 if (err)
3541 return err;
3542 if (mddev->pers)
3543 err = update_raid_disks(mddev, n);
3544 else if (mddev->reshape_position != MaxSector) {
3545 struct md_rdev *rdev;
3546 int olddisks = mddev->raid_disks - mddev->delta_disks;
3547
3548 err = -EINVAL;
3549 rdev_for_each(rdev, mddev) {
3550 if (olddisks < n &&
3551 rdev->data_offset < rdev->new_data_offset)
3552 goto out_unlock;
3553 if (olddisks > n &&
3554 rdev->data_offset > rdev->new_data_offset)
3555 goto out_unlock;
3556 }
3557 err = 0;
3558 mddev->delta_disks = n - olddisks;
3559 mddev->raid_disks = n;
3560 mddev->reshape_backwards = (mddev->delta_disks < 0);
3561 } else
3562 mddev->raid_disks = n;
3563 out_unlock:
3564 mddev_unlock(mddev);
3565 return err ? err : len;
3566 }
3567 static struct md_sysfs_entry md_raid_disks =
3568 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3569
3570 static ssize_t
3571 chunk_size_show(struct mddev *mddev, char *page)
3572 {
3573 if (mddev->reshape_position != MaxSector &&
3574 mddev->chunk_sectors != mddev->new_chunk_sectors)
3575 return sprintf(page, "%d (%d)\n",
3576 mddev->new_chunk_sectors << 9,
3577 mddev->chunk_sectors << 9);
3578 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3579 }
3580
3581 static ssize_t
3582 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3583 {
3584 int err;
3585 char *e;
3586 unsigned long n = simple_strtoul(buf, &e, 10);
3587
3588 if (!*buf || (*e && *e != '\n'))
3589 return -EINVAL;
3590
3591 err = mddev_lock(mddev);
3592 if (err)
3593 return err;
3594 if (mddev->pers) {
3595 if (mddev->pers->check_reshape == NULL)
3596 err = -EBUSY;
3597 else if (mddev->ro)
3598 err = -EROFS;
3599 else {
3600 mddev->new_chunk_sectors = n >> 9;
3601 err = mddev->pers->check_reshape(mddev);
3602 if (err)
3603 mddev->new_chunk_sectors = mddev->chunk_sectors;
3604 }
3605 } else {
3606 mddev->new_chunk_sectors = n >> 9;
3607 if (mddev->reshape_position == MaxSector)
3608 mddev->chunk_sectors = n >> 9;
3609 }
3610 mddev_unlock(mddev);
3611 return err ?: len;
3612 }
3613 static struct md_sysfs_entry md_chunk_size =
3614 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3615
3616 static ssize_t
3617 resync_start_show(struct mddev *mddev, char *page)
3618 {
3619 if (mddev->recovery_cp == MaxSector)
3620 return sprintf(page, "none\n");
3621 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3622 }
3623
3624 static ssize_t
3625 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3626 {
3627 int err;
3628 char *e;
3629 unsigned long long n = simple_strtoull(buf, &e, 10);
3630
3631 err = mddev_lock(mddev);
3632 if (err)
3633 return err;
3634 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3635 err = -EBUSY;
3636 else if (cmd_match(buf, "none"))
3637 n = MaxSector;
3638 else if (!*buf || (*e && *e != '\n'))
3639 err = -EINVAL;
3640
3641 if (!err) {
3642 mddev->recovery_cp = n;
3643 if (mddev->pers)
3644 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3645 }
3646 mddev_unlock(mddev);
3647 return err ?: len;
3648 }
3649 static struct md_sysfs_entry md_resync_start =
3650 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3651
3652 /*
3653 * The array state can be:
3654 *
3655 * clear
3656 * No devices, no size, no level
3657 * Equivalent to STOP_ARRAY ioctl
3658 * inactive
3659 * May have some settings, but array is not active
3660 * all IO results in error
3661 * When written, doesn't tear down array, but just stops it
3662 * suspended (not supported yet)
3663 * All IO requests will block. The array can be reconfigured.
3664 * Writing this, if accepted, will block until array is quiescent
3665 * readonly
3666 * no resync can happen. no superblocks get written.
3667 * write requests fail
3668 * read-auto
3669 * like readonly, but behaves like 'clean' on a write request.
3670 *
3671 * clean - no pending writes, but otherwise active.
3672 * When written to inactive array, starts without resync
3673 * If a write request arrives then
3674 * if metadata is known, mark 'dirty' and switch to 'active'.
3675 * if not known, block and switch to write-pending
3676 * If written to an active array that has pending writes, then fails.
3677 * active
3678 * fully active: IO and resync can be happening.
3679 * When written to inactive array, starts with resync
3680 *
3681 * write-pending
3682 * clean, but writes are blocked waiting for 'active' to be written.
3683 *
3684 * active-idle
3685 * like active, but no writes have been seen for a while (100msec).
3686 *
3687 */
3688 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3689 write_pending, active_idle, bad_word};
3690 static char *array_states[] = {
3691 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3692 "write-pending", "active-idle", NULL };
3693
3694 static int match_word(const char *word, char **list)
3695 {
3696 int n;
3697 for (n=0; list[n]; n++)
3698 if (cmd_match(word, list[n]))
3699 break;
3700 return n;
3701 }
3702
3703 static ssize_t
3704 array_state_show(struct mddev *mddev, char *page)
3705 {
3706 enum array_state st = inactive;
3707
3708 if (mddev->pers)
3709 switch(mddev->ro) {
3710 case 1:
3711 st = readonly;
3712 break;
3713 case 2:
3714 st = read_auto;
3715 break;
3716 case 0:
3717 if (mddev->in_sync)
3718 st = clean;
3719 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3720 st = write_pending;
3721 else if (mddev->safemode)
3722 st = active_idle;
3723 else
3724 st = active;
3725 }
3726 else {
3727 if (list_empty(&mddev->disks) &&
3728 mddev->raid_disks == 0 &&
3729 mddev->dev_sectors == 0)
3730 st = clear;
3731 else
3732 st = inactive;
3733 }
3734 return sprintf(page, "%s\n", array_states[st]);
3735 }
3736
3737 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3738 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3739 static int do_md_run(struct mddev *mddev);
3740 static int restart_array(struct mddev *mddev);
3741
3742 static ssize_t
3743 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3744 {
3745 int err;
3746 enum array_state st = match_word(buf, array_states);
3747
3748 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3749 /* don't take reconfig_mutex when toggling between
3750 * clean and active
3751 */
3752 spin_lock(&mddev->lock);
3753 if (st == active) {
3754 restart_array(mddev);
3755 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3756 wake_up(&mddev->sb_wait);
3757 err = 0;
3758 } else /* st == clean */ {
3759 restart_array(mddev);
3760 if (atomic_read(&mddev->writes_pending) == 0) {
3761 if (mddev->in_sync == 0) {
3762 mddev->in_sync = 1;
3763 if (mddev->safemode == 1)
3764 mddev->safemode = 0;
3765 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3766 }
3767 err = 0;
3768 } else
3769 err = -EBUSY;
3770 }
3771 spin_unlock(&mddev->lock);
3772 return err;
3773 }
3774 err = mddev_lock(mddev);
3775 if (err)
3776 return err;
3777 err = -EINVAL;
3778 switch(st) {
3779 case bad_word:
3780 break;
3781 case clear:
3782 /* stopping an active array */
3783 err = do_md_stop(mddev, 0, NULL);
3784 break;
3785 case inactive:
3786 /* stopping an active array */
3787 if (mddev->pers)
3788 err = do_md_stop(mddev, 2, NULL);
3789 else
3790 err = 0; /* already inactive */
3791 break;
3792 case suspended:
3793 break; /* not supported yet */
3794 case readonly:
3795 if (mddev->pers)
3796 err = md_set_readonly(mddev, NULL);
3797 else {
3798 mddev->ro = 1;
3799 set_disk_ro(mddev->gendisk, 1);
3800 err = do_md_run(mddev);
3801 }
3802 break;
3803 case read_auto:
3804 if (mddev->pers) {
3805 if (mddev->ro == 0)
3806 err = md_set_readonly(mddev, NULL);
3807 else if (mddev->ro == 1)
3808 err = restart_array(mddev);
3809 if (err == 0) {
3810 mddev->ro = 2;
3811 set_disk_ro(mddev->gendisk, 0);
3812 }
3813 } else {
3814 mddev->ro = 2;
3815 err = do_md_run(mddev);
3816 }
3817 break;
3818 case clean:
3819 if (mddev->pers) {
3820 restart_array(mddev);
3821 spin_lock(&mddev->lock);
3822 if (atomic_read(&mddev->writes_pending) == 0) {
3823 if (mddev->in_sync == 0) {
3824 mddev->in_sync = 1;
3825 if (mddev->safemode == 1)
3826 mddev->safemode = 0;
3827 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3828 }
3829 err = 0;
3830 } else
3831 err = -EBUSY;
3832 spin_unlock(&mddev->lock);
3833 } else
3834 err = -EINVAL;
3835 break;
3836 case active:
3837 if (mddev->pers) {
3838 restart_array(mddev);
3839 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3840 wake_up(&mddev->sb_wait);
3841 err = 0;
3842 } else {
3843 mddev->ro = 0;
3844 set_disk_ro(mddev->gendisk, 0);
3845 err = do_md_run(mddev);
3846 }
3847 break;
3848 case write_pending:
3849 case active_idle:
3850 /* these cannot be set */
3851 break;
3852 }
3853
3854 if (!err) {
3855 if (mddev->hold_active == UNTIL_IOCTL)
3856 mddev->hold_active = 0;
3857 sysfs_notify_dirent_safe(mddev->sysfs_state);
3858 }
3859 mddev_unlock(mddev);
3860 return err ?: len;
3861 }
3862 static struct md_sysfs_entry md_array_state =
3863 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3864
3865 static ssize_t
3866 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3867 return sprintf(page, "%d\n",
3868 atomic_read(&mddev->max_corr_read_errors));
3869 }
3870
3871 static ssize_t
3872 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3873 {
3874 char *e;
3875 unsigned long n = simple_strtoul(buf, &e, 10);
3876
3877 if (*buf && (*e == 0 || *e == '\n')) {
3878 atomic_set(&mddev->max_corr_read_errors, n);
3879 return len;
3880 }
3881 return -EINVAL;
3882 }
3883
3884 static struct md_sysfs_entry max_corr_read_errors =
3885 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3886 max_corrected_read_errors_store);
3887
3888 static ssize_t
3889 null_show(struct mddev *mddev, char *page)
3890 {
3891 return -EINVAL;
3892 }
3893
3894 static ssize_t
3895 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3896 {
3897 /* buf must be %d:%d\n? giving major and minor numbers */
3898 /* The new device is added to the array.
3899 * If the array has a persistent superblock, we read the
3900 * superblock to initialise info and check validity.
3901 * Otherwise, only checking done is that in bind_rdev_to_array,
3902 * which mainly checks size.
3903 */
3904 char *e;
3905 int major = simple_strtoul(buf, &e, 10);
3906 int minor;
3907 dev_t dev;
3908 struct md_rdev *rdev;
3909 int err;
3910
3911 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3912 return -EINVAL;
3913 minor = simple_strtoul(e+1, &e, 10);
3914 if (*e && *e != '\n')
3915 return -EINVAL;
3916 dev = MKDEV(major, minor);
3917 if (major != MAJOR(dev) ||
3918 minor != MINOR(dev))
3919 return -EOVERFLOW;
3920
3921 flush_workqueue(md_misc_wq);
3922
3923 err = mddev_lock(mddev);
3924 if (err)
3925 return err;
3926 if (mddev->persistent) {
3927 rdev = md_import_device(dev, mddev->major_version,
3928 mddev->minor_version);
3929 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3930 struct md_rdev *rdev0
3931 = list_entry(mddev->disks.next,
3932 struct md_rdev, same_set);
3933 err = super_types[mddev->major_version]
3934 .load_super(rdev, rdev0, mddev->minor_version);
3935 if (err < 0)
3936 goto out;
3937 }
3938 } else if (mddev->external)
3939 rdev = md_import_device(dev, -2, -1);
3940 else
3941 rdev = md_import_device(dev, -1, -1);
3942
3943 if (IS_ERR(rdev))
3944 return PTR_ERR(rdev);
3945 err = bind_rdev_to_array(rdev, mddev);
3946 out:
3947 if (err)
3948 export_rdev(rdev);
3949 mddev_unlock(mddev);
3950 return err ? err : len;
3951 }
3952
3953 static struct md_sysfs_entry md_new_device =
3954 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3955
3956 static ssize_t
3957 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3958 {
3959 char *end;
3960 unsigned long chunk, end_chunk;
3961 int err;
3962
3963 err = mddev_lock(mddev);
3964 if (err)
3965 return err;
3966 if (!mddev->bitmap)
3967 goto out;
3968 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3969 while (*buf) {
3970 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3971 if (buf == end) break;
3972 if (*end == '-') { /* range */
3973 buf = end + 1;
3974 end_chunk = simple_strtoul(buf, &end, 0);
3975 if (buf == end) break;
3976 }
3977 if (*end && !isspace(*end)) break;
3978 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3979 buf = skip_spaces(end);
3980 }
3981 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3982 out:
3983 mddev_unlock(mddev);
3984 return len;
3985 }
3986
3987 static struct md_sysfs_entry md_bitmap =
3988 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3989
3990 static ssize_t
3991 size_show(struct mddev *mddev, char *page)
3992 {
3993 return sprintf(page, "%llu\n",
3994 (unsigned long long)mddev->dev_sectors / 2);
3995 }
3996
3997 static int update_size(struct mddev *mddev, sector_t num_sectors);
3998
3999 static ssize_t
4000 size_store(struct mddev *mddev, const char *buf, size_t len)
4001 {
4002 /* If array is inactive, we can reduce the component size, but
4003 * not increase it (except from 0).
4004 * If array is active, we can try an on-line resize
4005 */
4006 sector_t sectors;
4007 int err = strict_blocks_to_sectors(buf, &sectors);
4008
4009 if (err < 0)
4010 return err;
4011 err = mddev_lock(mddev);
4012 if (err)
4013 return err;
4014 if (mddev->pers) {
4015 if (mddev_is_clustered(mddev))
4016 md_cluster_ops->metadata_update_start(mddev);
4017 err = update_size(mddev, sectors);
4018 md_update_sb(mddev, 1);
4019 if (mddev_is_clustered(mddev))
4020 md_cluster_ops->metadata_update_finish(mddev);
4021 } else {
4022 if (mddev->dev_sectors == 0 ||
4023 mddev->dev_sectors > sectors)
4024 mddev->dev_sectors = sectors;
4025 else
4026 err = -ENOSPC;
4027 }
4028 mddev_unlock(mddev);
4029 return err ? err : len;
4030 }
4031
4032 static struct md_sysfs_entry md_size =
4033 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4034
4035 /* Metadata version.
4036 * This is one of
4037 * 'none' for arrays with no metadata (good luck...)
4038 * 'external' for arrays with externally managed metadata,
4039 * or N.M for internally known formats
4040 */
4041 static ssize_t
4042 metadata_show(struct mddev *mddev, char *page)
4043 {
4044 if (mddev->persistent)
4045 return sprintf(page, "%d.%d\n",
4046 mddev->major_version, mddev->minor_version);
4047 else if (mddev->external)
4048 return sprintf(page, "external:%s\n", mddev->metadata_type);
4049 else
4050 return sprintf(page, "none\n");
4051 }
4052
4053 static ssize_t
4054 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4055 {
4056 int major, minor;
4057 char *e;
4058 int err;
4059 /* Changing the details of 'external' metadata is
4060 * always permitted. Otherwise there must be
4061 * no devices attached to the array.
4062 */
4063
4064 err = mddev_lock(mddev);
4065 if (err)
4066 return err;
4067 err = -EBUSY;
4068 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4069 ;
4070 else if (!list_empty(&mddev->disks))
4071 goto out_unlock;
4072
4073 err = 0;
4074 if (cmd_match(buf, "none")) {
4075 mddev->persistent = 0;
4076 mddev->external = 0;
4077 mddev->major_version = 0;
4078 mddev->minor_version = 90;
4079 goto out_unlock;
4080 }
4081 if (strncmp(buf, "external:", 9) == 0) {
4082 size_t namelen = len-9;
4083 if (namelen >= sizeof(mddev->metadata_type))
4084 namelen = sizeof(mddev->metadata_type)-1;
4085 strncpy(mddev->metadata_type, buf+9, namelen);
4086 mddev->metadata_type[namelen] = 0;
4087 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4088 mddev->metadata_type[--namelen] = 0;
4089 mddev->persistent = 0;
4090 mddev->external = 1;
4091 mddev->major_version = 0;
4092 mddev->minor_version = 90;
4093 goto out_unlock;
4094 }
4095 major = simple_strtoul(buf, &e, 10);
4096 err = -EINVAL;
4097 if (e==buf || *e != '.')
4098 goto out_unlock;
4099 buf = e+1;
4100 minor = simple_strtoul(buf, &e, 10);
4101 if (e==buf || (*e && *e != '\n') )
4102 goto out_unlock;
4103 err = -ENOENT;
4104 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4105 goto out_unlock;
4106 mddev->major_version = major;
4107 mddev->minor_version = minor;
4108 mddev->persistent = 1;
4109 mddev->external = 0;
4110 err = 0;
4111 out_unlock:
4112 mddev_unlock(mddev);
4113 return err ?: len;
4114 }
4115
4116 static struct md_sysfs_entry md_metadata =
4117 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4118
4119 static ssize_t
4120 action_show(struct mddev *mddev, char *page)
4121 {
4122 char *type = "idle";
4123 unsigned long recovery = mddev->recovery;
4124 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4125 type = "frozen";
4126 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4127 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4128 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4129 type = "reshape";
4130 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4131 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4132 type = "resync";
4133 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4134 type = "check";
4135 else
4136 type = "repair";
4137 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4138 type = "recover";
4139 }
4140 return sprintf(page, "%s\n", type);
4141 }
4142
4143 static ssize_t
4144 action_store(struct mddev *mddev, const char *page, size_t len)
4145 {
4146 if (!mddev->pers || !mddev->pers->sync_request)
4147 return -EINVAL;
4148
4149 if (cmd_match(page, "frozen"))
4150 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4151 else
4152 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4153
4154 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4155 flush_workqueue(md_misc_wq);
4156 if (mddev->sync_thread) {
4157 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4158 if (mddev_lock(mddev) == 0) {
4159 md_reap_sync_thread(mddev);
4160 mddev_unlock(mddev);
4161 }
4162 }
4163 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4164 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4165 return -EBUSY;
4166 else if (cmd_match(page, "resync"))
4167 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4168 else if (cmd_match(page, "recover")) {
4169 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4170 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4171 } else if (cmd_match(page, "reshape")) {
4172 int err;
4173 if (mddev->pers->start_reshape == NULL)
4174 return -EINVAL;
4175 err = mddev_lock(mddev);
4176 if (!err) {
4177 err = mddev->pers->start_reshape(mddev);
4178 mddev_unlock(mddev);
4179 }
4180 if (err)
4181 return err;
4182 sysfs_notify(&mddev->kobj, NULL, "degraded");
4183 } else {
4184 if (cmd_match(page, "check"))
4185 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4186 else if (!cmd_match(page, "repair"))
4187 return -EINVAL;
4188 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4189 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4190 }
4191 if (mddev->ro == 2) {
4192 /* A write to sync_action is enough to justify
4193 * canceling read-auto mode
4194 */
4195 mddev->ro = 0;
4196 md_wakeup_thread(mddev->sync_thread);
4197 }
4198 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4199 md_wakeup_thread(mddev->thread);
4200 sysfs_notify_dirent_safe(mddev->sysfs_action);
4201 return len;
4202 }
4203
4204 static struct md_sysfs_entry md_scan_mode =
4205 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4206
4207 static ssize_t
4208 last_sync_action_show(struct mddev *mddev, char *page)
4209 {
4210 return sprintf(page, "%s\n", mddev->last_sync_action);
4211 }
4212
4213 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4214
4215 static ssize_t
4216 mismatch_cnt_show(struct mddev *mddev, char *page)
4217 {
4218 return sprintf(page, "%llu\n",
4219 (unsigned long long)
4220 atomic64_read(&mddev->resync_mismatches));
4221 }
4222
4223 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4224
4225 static ssize_t
4226 sync_min_show(struct mddev *mddev, char *page)
4227 {
4228 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4229 mddev->sync_speed_min ? "local": "system");
4230 }
4231
4232 static ssize_t
4233 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4234 {
4235 int min;
4236 char *e;
4237 if (strncmp(buf, "system", 6)==0) {
4238 mddev->sync_speed_min = 0;
4239 return len;
4240 }
4241 min = simple_strtoul(buf, &e, 10);
4242 if (buf == e || (*e && *e != '\n') || min <= 0)
4243 return -EINVAL;
4244 mddev->sync_speed_min = min;
4245 return len;
4246 }
4247
4248 static struct md_sysfs_entry md_sync_min =
4249 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4250
4251 static ssize_t
4252 sync_max_show(struct mddev *mddev, char *page)
4253 {
4254 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4255 mddev->sync_speed_max ? "local": "system");
4256 }
4257
4258 static ssize_t
4259 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4260 {
4261 int max;
4262 char *e;
4263 if (strncmp(buf, "system", 6)==0) {
4264 mddev->sync_speed_max = 0;
4265 return len;
4266 }
4267 max = simple_strtoul(buf, &e, 10);
4268 if (buf == e || (*e && *e != '\n') || max <= 0)
4269 return -EINVAL;
4270 mddev->sync_speed_max = max;
4271 return len;
4272 }
4273
4274 static struct md_sysfs_entry md_sync_max =
4275 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4276
4277 static ssize_t
4278 degraded_show(struct mddev *mddev, char *page)
4279 {
4280 return sprintf(page, "%d\n", mddev->degraded);
4281 }
4282 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4283
4284 static ssize_t
4285 sync_force_parallel_show(struct mddev *mddev, char *page)
4286 {
4287 return sprintf(page, "%d\n", mddev->parallel_resync);
4288 }
4289
4290 static ssize_t
4291 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4292 {
4293 long n;
4294
4295 if (kstrtol(buf, 10, &n))
4296 return -EINVAL;
4297
4298 if (n != 0 && n != 1)
4299 return -EINVAL;
4300
4301 mddev->parallel_resync = n;
4302
4303 if (mddev->sync_thread)
4304 wake_up(&resync_wait);
4305
4306 return len;
4307 }
4308
4309 /* force parallel resync, even with shared block devices */
4310 static struct md_sysfs_entry md_sync_force_parallel =
4311 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4312 sync_force_parallel_show, sync_force_parallel_store);
4313
4314 static ssize_t
4315 sync_speed_show(struct mddev *mddev, char *page)
4316 {
4317 unsigned long resync, dt, db;
4318 if (mddev->curr_resync == 0)
4319 return sprintf(page, "none\n");
4320 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4321 dt = (jiffies - mddev->resync_mark) / HZ;
4322 if (!dt) dt++;
4323 db = resync - mddev->resync_mark_cnt;
4324 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4325 }
4326
4327 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4328
4329 static ssize_t
4330 sync_completed_show(struct mddev *mddev, char *page)
4331 {
4332 unsigned long long max_sectors, resync;
4333
4334 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4335 return sprintf(page, "none\n");
4336
4337 if (mddev->curr_resync == 1 ||
4338 mddev->curr_resync == 2)
4339 return sprintf(page, "delayed\n");
4340
4341 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4342 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4343 max_sectors = mddev->resync_max_sectors;
4344 else
4345 max_sectors = mddev->dev_sectors;
4346
4347 resync = mddev->curr_resync_completed;
4348 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4349 }
4350
4351 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4352
4353 static ssize_t
4354 min_sync_show(struct mddev *mddev, char *page)
4355 {
4356 return sprintf(page, "%llu\n",
4357 (unsigned long long)mddev->resync_min);
4358 }
4359 static ssize_t
4360 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4361 {
4362 unsigned long long min;
4363 int err;
4364 int chunk;
4365
4366 if (kstrtoull(buf, 10, &min))
4367 return -EINVAL;
4368
4369 spin_lock(&mddev->lock);
4370 err = -EINVAL;
4371 if (min > mddev->resync_max)
4372 goto out_unlock;
4373
4374 err = -EBUSY;
4375 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4376 goto out_unlock;
4377
4378 /* Must be a multiple of chunk_size */
4379 chunk = mddev->chunk_sectors;
4380 if (chunk) {
4381 sector_t temp = min;
4382
4383 err = -EINVAL;
4384 if (sector_div(temp, chunk))
4385 goto out_unlock;
4386 }
4387 mddev->resync_min = min;
4388 err = 0;
4389
4390 out_unlock:
4391 spin_unlock(&mddev->lock);
4392 return err ?: len;
4393 }
4394
4395 static struct md_sysfs_entry md_min_sync =
4396 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4397
4398 static ssize_t
4399 max_sync_show(struct mddev *mddev, char *page)
4400 {
4401 if (mddev->resync_max == MaxSector)
4402 return sprintf(page, "max\n");
4403 else
4404 return sprintf(page, "%llu\n",
4405 (unsigned long long)mddev->resync_max);
4406 }
4407 static ssize_t
4408 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4409 {
4410 int err;
4411 spin_lock(&mddev->lock);
4412 if (strncmp(buf, "max", 3) == 0)
4413 mddev->resync_max = MaxSector;
4414 else {
4415 unsigned long long max;
4416 int chunk;
4417
4418 err = -EINVAL;
4419 if (kstrtoull(buf, 10, &max))
4420 goto out_unlock;
4421 if (max < mddev->resync_min)
4422 goto out_unlock;
4423
4424 err = -EBUSY;
4425 if (max < mddev->resync_max &&
4426 mddev->ro == 0 &&
4427 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4428 goto out_unlock;
4429
4430 /* Must be a multiple of chunk_size */
4431 chunk = mddev->chunk_sectors;
4432 if (chunk) {
4433 sector_t temp = max;
4434
4435 err = -EINVAL;
4436 if (sector_div(temp, chunk))
4437 goto out_unlock;
4438 }
4439 mddev->resync_max = max;
4440 }
4441 wake_up(&mddev->recovery_wait);
4442 err = 0;
4443 out_unlock:
4444 spin_unlock(&mddev->lock);
4445 return err ?: len;
4446 }
4447
4448 static struct md_sysfs_entry md_max_sync =
4449 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4450
4451 static ssize_t
4452 suspend_lo_show(struct mddev *mddev, char *page)
4453 {
4454 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4455 }
4456
4457 static ssize_t
4458 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460 char *e;
4461 unsigned long long new = simple_strtoull(buf, &e, 10);
4462 unsigned long long old;
4463 int err;
4464
4465 if (buf == e || (*e && *e != '\n'))
4466 return -EINVAL;
4467
4468 err = mddev_lock(mddev);
4469 if (err)
4470 return err;
4471 err = -EINVAL;
4472 if (mddev->pers == NULL ||
4473 mddev->pers->quiesce == NULL)
4474 goto unlock;
4475 old = mddev->suspend_lo;
4476 mddev->suspend_lo = new;
4477 if (new >= old)
4478 /* Shrinking suspended region */
4479 mddev->pers->quiesce(mddev, 2);
4480 else {
4481 /* Expanding suspended region - need to wait */
4482 mddev->pers->quiesce(mddev, 1);
4483 mddev->pers->quiesce(mddev, 0);
4484 }
4485 err = 0;
4486 unlock:
4487 mddev_unlock(mddev);
4488 return err ?: len;
4489 }
4490 static struct md_sysfs_entry md_suspend_lo =
4491 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4492
4493 static ssize_t
4494 suspend_hi_show(struct mddev *mddev, char *page)
4495 {
4496 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4497 }
4498
4499 static ssize_t
4500 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4501 {
4502 char *e;
4503 unsigned long long new = simple_strtoull(buf, &e, 10);
4504 unsigned long long old;
4505 int err;
4506
4507 if (buf == e || (*e && *e != '\n'))
4508 return -EINVAL;
4509
4510 err = mddev_lock(mddev);
4511 if (err)
4512 return err;
4513 err = -EINVAL;
4514 if (mddev->pers == NULL ||
4515 mddev->pers->quiesce == NULL)
4516 goto unlock;
4517 old = mddev->suspend_hi;
4518 mddev->suspend_hi = new;
4519 if (new <= old)
4520 /* Shrinking suspended region */
4521 mddev->pers->quiesce(mddev, 2);
4522 else {
4523 /* Expanding suspended region - need to wait */
4524 mddev->pers->quiesce(mddev, 1);
4525 mddev->pers->quiesce(mddev, 0);
4526 }
4527 err = 0;
4528 unlock:
4529 mddev_unlock(mddev);
4530 return err ?: len;
4531 }
4532 static struct md_sysfs_entry md_suspend_hi =
4533 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4534
4535 static ssize_t
4536 reshape_position_show(struct mddev *mddev, char *page)
4537 {
4538 if (mddev->reshape_position != MaxSector)
4539 return sprintf(page, "%llu\n",
4540 (unsigned long long)mddev->reshape_position);
4541 strcpy(page, "none\n");
4542 return 5;
4543 }
4544
4545 static ssize_t
4546 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4547 {
4548 struct md_rdev *rdev;
4549 char *e;
4550 int err;
4551 unsigned long long new = simple_strtoull(buf, &e, 10);
4552
4553 if (buf == e || (*e && *e != '\n'))
4554 return -EINVAL;
4555 err = mddev_lock(mddev);
4556 if (err)
4557 return err;
4558 err = -EBUSY;
4559 if (mddev->pers)
4560 goto unlock;
4561 mddev->reshape_position = new;
4562 mddev->delta_disks = 0;
4563 mddev->reshape_backwards = 0;
4564 mddev->new_level = mddev->level;
4565 mddev->new_layout = mddev->layout;
4566 mddev->new_chunk_sectors = mddev->chunk_sectors;
4567 rdev_for_each(rdev, mddev)
4568 rdev->new_data_offset = rdev->data_offset;
4569 err = 0;
4570 unlock:
4571 mddev_unlock(mddev);
4572 return err ?: len;
4573 }
4574
4575 static struct md_sysfs_entry md_reshape_position =
4576 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4577 reshape_position_store);
4578
4579 static ssize_t
4580 reshape_direction_show(struct mddev *mddev, char *page)
4581 {
4582 return sprintf(page, "%s\n",
4583 mddev->reshape_backwards ? "backwards" : "forwards");
4584 }
4585
4586 static ssize_t
4587 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4588 {
4589 int backwards = 0;
4590 int err;
4591
4592 if (cmd_match(buf, "forwards"))
4593 backwards = 0;
4594 else if (cmd_match(buf, "backwards"))
4595 backwards = 1;
4596 else
4597 return -EINVAL;
4598 if (mddev->reshape_backwards == backwards)
4599 return len;
4600
4601 err = mddev_lock(mddev);
4602 if (err)
4603 return err;
4604 /* check if we are allowed to change */
4605 if (mddev->delta_disks)
4606 err = -EBUSY;
4607 else if (mddev->persistent &&
4608 mddev->major_version == 0)
4609 err = -EINVAL;
4610 else
4611 mddev->reshape_backwards = backwards;
4612 mddev_unlock(mddev);
4613 return err ?: len;
4614 }
4615
4616 static struct md_sysfs_entry md_reshape_direction =
4617 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4618 reshape_direction_store);
4619
4620 static ssize_t
4621 array_size_show(struct mddev *mddev, char *page)
4622 {
4623 if (mddev->external_size)
4624 return sprintf(page, "%llu\n",
4625 (unsigned long long)mddev->array_sectors/2);
4626 else
4627 return sprintf(page, "default\n");
4628 }
4629
4630 static ssize_t
4631 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633 sector_t sectors;
4634 int err;
4635
4636 err = mddev_lock(mddev);
4637 if (err)
4638 return err;
4639
4640 if (strncmp(buf, "default", 7) == 0) {
4641 if (mddev->pers)
4642 sectors = mddev->pers->size(mddev, 0, 0);
4643 else
4644 sectors = mddev->array_sectors;
4645
4646 mddev->external_size = 0;
4647 } else {
4648 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4649 err = -EINVAL;
4650 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4651 err = -E2BIG;
4652 else
4653 mddev->external_size = 1;
4654 }
4655
4656 if (!err) {
4657 mddev->array_sectors = sectors;
4658 if (mddev->pers) {
4659 set_capacity(mddev->gendisk, mddev->array_sectors);
4660 revalidate_disk(mddev->gendisk);
4661 }
4662 }
4663 mddev_unlock(mddev);
4664 return err ?: len;
4665 }
4666
4667 static struct md_sysfs_entry md_array_size =
4668 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4669 array_size_store);
4670
4671 static struct attribute *md_default_attrs[] = {
4672 &md_level.attr,
4673 &md_layout.attr,
4674 &md_raid_disks.attr,
4675 &md_chunk_size.attr,
4676 &md_size.attr,
4677 &md_resync_start.attr,
4678 &md_metadata.attr,
4679 &md_new_device.attr,
4680 &md_safe_delay.attr,
4681 &md_array_state.attr,
4682 &md_reshape_position.attr,
4683 &md_reshape_direction.attr,
4684 &md_array_size.attr,
4685 &max_corr_read_errors.attr,
4686 NULL,
4687 };
4688
4689 static struct attribute *md_redundancy_attrs[] = {
4690 &md_scan_mode.attr,
4691 &md_last_scan_mode.attr,
4692 &md_mismatches.attr,
4693 &md_sync_min.attr,
4694 &md_sync_max.attr,
4695 &md_sync_speed.attr,
4696 &md_sync_force_parallel.attr,
4697 &md_sync_completed.attr,
4698 &md_min_sync.attr,
4699 &md_max_sync.attr,
4700 &md_suspend_lo.attr,
4701 &md_suspend_hi.attr,
4702 &md_bitmap.attr,
4703 &md_degraded.attr,
4704 NULL,
4705 };
4706 static struct attribute_group md_redundancy_group = {
4707 .name = NULL,
4708 .attrs = md_redundancy_attrs,
4709 };
4710
4711 static ssize_t
4712 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4713 {
4714 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4715 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4716 ssize_t rv;
4717
4718 if (!entry->show)
4719 return -EIO;
4720 spin_lock(&all_mddevs_lock);
4721 if (list_empty(&mddev->all_mddevs)) {
4722 spin_unlock(&all_mddevs_lock);
4723 return -EBUSY;
4724 }
4725 mddev_get(mddev);
4726 spin_unlock(&all_mddevs_lock);
4727
4728 rv = entry->show(mddev, page);
4729 mddev_put(mddev);
4730 return rv;
4731 }
4732
4733 static ssize_t
4734 md_attr_store(struct kobject *kobj, struct attribute *attr,
4735 const char *page, size_t length)
4736 {
4737 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4738 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4739 ssize_t rv;
4740
4741 if (!entry->store)
4742 return -EIO;
4743 if (!capable(CAP_SYS_ADMIN))
4744 return -EACCES;
4745 spin_lock(&all_mddevs_lock);
4746 if (list_empty(&mddev->all_mddevs)) {
4747 spin_unlock(&all_mddevs_lock);
4748 return -EBUSY;
4749 }
4750 mddev_get(mddev);
4751 spin_unlock(&all_mddevs_lock);
4752 rv = entry->store(mddev, page, length);
4753 mddev_put(mddev);
4754 return rv;
4755 }
4756
4757 static void md_free(struct kobject *ko)
4758 {
4759 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4760
4761 if (mddev->sysfs_state)
4762 sysfs_put(mddev->sysfs_state);
4763
4764 if (mddev->gendisk) {
4765 del_gendisk(mddev->gendisk);
4766 put_disk(mddev->gendisk);
4767 }
4768 if (mddev->queue)
4769 blk_cleanup_queue(mddev->queue);
4770
4771 kfree(mddev);
4772 }
4773
4774 static const struct sysfs_ops md_sysfs_ops = {
4775 .show = md_attr_show,
4776 .store = md_attr_store,
4777 };
4778 static struct kobj_type md_ktype = {
4779 .release = md_free,
4780 .sysfs_ops = &md_sysfs_ops,
4781 .default_attrs = md_default_attrs,
4782 };
4783
4784 int mdp_major = 0;
4785
4786 static void mddev_delayed_delete(struct work_struct *ws)
4787 {
4788 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4789
4790 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4791 kobject_del(&mddev->kobj);
4792 kobject_put(&mddev->kobj);
4793 }
4794
4795 static int md_alloc(dev_t dev, char *name)
4796 {
4797 static DEFINE_MUTEX(disks_mutex);
4798 struct mddev *mddev = mddev_find(dev);
4799 struct gendisk *disk;
4800 int partitioned;
4801 int shift;
4802 int unit;
4803 int error;
4804
4805 if (!mddev)
4806 return -ENODEV;
4807
4808 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4809 shift = partitioned ? MdpMinorShift : 0;
4810 unit = MINOR(mddev->unit) >> shift;
4811
4812 /* wait for any previous instance of this device to be
4813 * completely removed (mddev_delayed_delete).
4814 */
4815 flush_workqueue(md_misc_wq);
4816
4817 mutex_lock(&disks_mutex);
4818 error = -EEXIST;
4819 if (mddev->gendisk)
4820 goto abort;
4821
4822 if (name) {
4823 /* Need to ensure that 'name' is not a duplicate.
4824 */
4825 struct mddev *mddev2;
4826 spin_lock(&all_mddevs_lock);
4827
4828 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4829 if (mddev2->gendisk &&
4830 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4831 spin_unlock(&all_mddevs_lock);
4832 goto abort;
4833 }
4834 spin_unlock(&all_mddevs_lock);
4835 }
4836
4837 error = -ENOMEM;
4838 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4839 if (!mddev->queue)
4840 goto abort;
4841 mddev->queue->queuedata = mddev;
4842
4843 blk_queue_make_request(mddev->queue, md_make_request);
4844 blk_set_stacking_limits(&mddev->queue->limits);
4845
4846 disk = alloc_disk(1 << shift);
4847 if (!disk) {
4848 blk_cleanup_queue(mddev->queue);
4849 mddev->queue = NULL;
4850 goto abort;
4851 }
4852 disk->major = MAJOR(mddev->unit);
4853 disk->first_minor = unit << shift;
4854 if (name)
4855 strcpy(disk->disk_name, name);
4856 else if (partitioned)
4857 sprintf(disk->disk_name, "md_d%d", unit);
4858 else
4859 sprintf(disk->disk_name, "md%d", unit);
4860 disk->fops = &md_fops;
4861 disk->private_data = mddev;
4862 disk->queue = mddev->queue;
4863 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4864 /* Allow extended partitions. This makes the
4865 * 'mdp' device redundant, but we can't really
4866 * remove it now.
4867 */
4868 disk->flags |= GENHD_FL_EXT_DEVT;
4869 mddev->gendisk = disk;
4870 /* As soon as we call add_disk(), another thread could get
4871 * through to md_open, so make sure it doesn't get too far
4872 */
4873 mutex_lock(&mddev->open_mutex);
4874 add_disk(disk);
4875
4876 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4877 &disk_to_dev(disk)->kobj, "%s", "md");
4878 if (error) {
4879 /* This isn't possible, but as kobject_init_and_add is marked
4880 * __must_check, we must do something with the result
4881 */
4882 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4883 disk->disk_name);
4884 error = 0;
4885 }
4886 if (mddev->kobj.sd &&
4887 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4888 printk(KERN_DEBUG "pointless warning\n");
4889 mutex_unlock(&mddev->open_mutex);
4890 abort:
4891 mutex_unlock(&disks_mutex);
4892 if (!error && mddev->kobj.sd) {
4893 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4894 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4895 }
4896 mddev_put(mddev);
4897 return error;
4898 }
4899
4900 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4901 {
4902 md_alloc(dev, NULL);
4903 return NULL;
4904 }
4905
4906 static int add_named_array(const char *val, struct kernel_param *kp)
4907 {
4908 /* val must be "md_*" where * is not all digits.
4909 * We allocate an array with a large free minor number, and
4910 * set the name to val. val must not already be an active name.
4911 */
4912 int len = strlen(val);
4913 char buf[DISK_NAME_LEN];
4914
4915 while (len && val[len-1] == '\n')
4916 len--;
4917 if (len >= DISK_NAME_LEN)
4918 return -E2BIG;
4919 strlcpy(buf, val, len+1);
4920 if (strncmp(buf, "md_", 3) != 0)
4921 return -EINVAL;
4922 return md_alloc(0, buf);
4923 }
4924
4925 static void md_safemode_timeout(unsigned long data)
4926 {
4927 struct mddev *mddev = (struct mddev *) data;
4928
4929 if (!atomic_read(&mddev->writes_pending)) {
4930 mddev->safemode = 1;
4931 if (mddev->external)
4932 sysfs_notify_dirent_safe(mddev->sysfs_state);
4933 }
4934 md_wakeup_thread(mddev->thread);
4935 }
4936
4937 static int start_dirty_degraded;
4938
4939 int md_run(struct mddev *mddev)
4940 {
4941 int err;
4942 struct md_rdev *rdev;
4943 struct md_personality *pers;
4944
4945 if (list_empty(&mddev->disks))
4946 /* cannot run an array with no devices.. */
4947 return -EINVAL;
4948
4949 if (mddev->pers)
4950 return -EBUSY;
4951 /* Cannot run until previous stop completes properly */
4952 if (mddev->sysfs_active)
4953 return -EBUSY;
4954
4955 /*
4956 * Analyze all RAID superblock(s)
4957 */
4958 if (!mddev->raid_disks) {
4959 if (!mddev->persistent)
4960 return -EINVAL;
4961 analyze_sbs(mddev);
4962 }
4963
4964 if (mddev->level != LEVEL_NONE)
4965 request_module("md-level-%d", mddev->level);
4966 else if (mddev->clevel[0])
4967 request_module("md-%s", mddev->clevel);
4968
4969 /*
4970 * Drop all container device buffers, from now on
4971 * the only valid external interface is through the md
4972 * device.
4973 */
4974 rdev_for_each(rdev, mddev) {
4975 if (test_bit(Faulty, &rdev->flags))
4976 continue;
4977 sync_blockdev(rdev->bdev);
4978 invalidate_bdev(rdev->bdev);
4979
4980 /* perform some consistency tests on the device.
4981 * We don't want the data to overlap the metadata,
4982 * Internal Bitmap issues have been handled elsewhere.
4983 */
4984 if (rdev->meta_bdev) {
4985 /* Nothing to check */;
4986 } else if (rdev->data_offset < rdev->sb_start) {
4987 if (mddev->dev_sectors &&
4988 rdev->data_offset + mddev->dev_sectors
4989 > rdev->sb_start) {
4990 printk("md: %s: data overlaps metadata\n",
4991 mdname(mddev));
4992 return -EINVAL;
4993 }
4994 } else {
4995 if (rdev->sb_start + rdev->sb_size/512
4996 > rdev->data_offset) {
4997 printk("md: %s: metadata overlaps data\n",
4998 mdname(mddev));
4999 return -EINVAL;
5000 }
5001 }
5002 sysfs_notify_dirent_safe(rdev->sysfs_state);
5003 }
5004
5005 if (mddev->bio_set == NULL)
5006 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5007
5008 spin_lock(&pers_lock);
5009 pers = find_pers(mddev->level, mddev->clevel);
5010 if (!pers || !try_module_get(pers->owner)) {
5011 spin_unlock(&pers_lock);
5012 if (mddev->level != LEVEL_NONE)
5013 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5014 mddev->level);
5015 else
5016 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5017 mddev->clevel);
5018 return -EINVAL;
5019 }
5020 spin_unlock(&pers_lock);
5021 if (mddev->level != pers->level) {
5022 mddev->level = pers->level;
5023 mddev->new_level = pers->level;
5024 }
5025 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5026
5027 if (mddev->reshape_position != MaxSector &&
5028 pers->start_reshape == NULL) {
5029 /* This personality cannot handle reshaping... */
5030 module_put(pers->owner);
5031 return -EINVAL;
5032 }
5033
5034 if (pers->sync_request) {
5035 /* Warn if this is a potentially silly
5036 * configuration.
5037 */
5038 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5039 struct md_rdev *rdev2;
5040 int warned = 0;
5041
5042 rdev_for_each(rdev, mddev)
5043 rdev_for_each(rdev2, mddev) {
5044 if (rdev < rdev2 &&
5045 rdev->bdev->bd_contains ==
5046 rdev2->bdev->bd_contains) {
5047 printk(KERN_WARNING
5048 "%s: WARNING: %s appears to be"
5049 " on the same physical disk as"
5050 " %s.\n",
5051 mdname(mddev),
5052 bdevname(rdev->bdev,b),
5053 bdevname(rdev2->bdev,b2));
5054 warned = 1;
5055 }
5056 }
5057
5058 if (warned)
5059 printk(KERN_WARNING
5060 "True protection against single-disk"
5061 " failure might be compromised.\n");
5062 }
5063
5064 mddev->recovery = 0;
5065 /* may be over-ridden by personality */
5066 mddev->resync_max_sectors = mddev->dev_sectors;
5067
5068 mddev->ok_start_degraded = start_dirty_degraded;
5069
5070 if (start_readonly && mddev->ro == 0)
5071 mddev->ro = 2; /* read-only, but switch on first write */
5072
5073 err = pers->run(mddev);
5074 if (err)
5075 printk(KERN_ERR "md: pers->run() failed ...\n");
5076 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5077 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5078 " but 'external_size' not in effect?\n", __func__);
5079 printk(KERN_ERR
5080 "md: invalid array_size %llu > default size %llu\n",
5081 (unsigned long long)mddev->array_sectors / 2,
5082 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5083 err = -EINVAL;
5084 }
5085 if (err == 0 && pers->sync_request &&
5086 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5087 struct bitmap *bitmap;
5088
5089 bitmap = bitmap_create(mddev, -1);
5090 if (IS_ERR(bitmap)) {
5091 err = PTR_ERR(bitmap);
5092 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5093 mdname(mddev), err);
5094 } else
5095 mddev->bitmap = bitmap;
5096
5097 }
5098 if (err) {
5099 mddev_detach(mddev);
5100 pers->free(mddev, mddev->private);
5101 module_put(pers->owner);
5102 bitmap_destroy(mddev);
5103 return err;
5104 }
5105 if (mddev->queue) {
5106 mddev->queue->backing_dev_info.congested_data = mddev;
5107 mddev->queue->backing_dev_info.congested_fn = md_congested;
5108 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5109 }
5110 if (pers->sync_request) {
5111 if (mddev->kobj.sd &&
5112 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5113 printk(KERN_WARNING
5114 "md: cannot register extra attributes for %s\n",
5115 mdname(mddev));
5116 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5117 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5118 mddev->ro = 0;
5119
5120 atomic_set(&mddev->writes_pending,0);
5121 atomic_set(&mddev->max_corr_read_errors,
5122 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5123 mddev->safemode = 0;
5124 mddev->safemode_timer.function = md_safemode_timeout;
5125 mddev->safemode_timer.data = (unsigned long) mddev;
5126 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5127 mddev->in_sync = 1;
5128 smp_wmb();
5129 spin_lock(&mddev->lock);
5130 mddev->pers = pers;
5131 mddev->ready = 1;
5132 spin_unlock(&mddev->lock);
5133 rdev_for_each(rdev, mddev)
5134 if (rdev->raid_disk >= 0)
5135 if (sysfs_link_rdev(mddev, rdev))
5136 /* failure here is OK */;
5137
5138 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5139
5140 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5141 md_update_sb(mddev, 0);
5142
5143 md_new_event(mddev);
5144 sysfs_notify_dirent_safe(mddev->sysfs_state);
5145 sysfs_notify_dirent_safe(mddev->sysfs_action);
5146 sysfs_notify(&mddev->kobj, NULL, "degraded");
5147 return 0;
5148 }
5149 EXPORT_SYMBOL_GPL(md_run);
5150
5151 static int do_md_run(struct mddev *mddev)
5152 {
5153 int err;
5154
5155 err = md_run(mddev);
5156 if (err)
5157 goto out;
5158 err = bitmap_load(mddev);
5159 if (err) {
5160 bitmap_destroy(mddev);
5161 goto out;
5162 }
5163
5164 md_wakeup_thread(mddev->thread);
5165 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5166
5167 set_capacity(mddev->gendisk, mddev->array_sectors);
5168 revalidate_disk(mddev->gendisk);
5169 mddev->changed = 1;
5170 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5171 out:
5172 return err;
5173 }
5174
5175 static int restart_array(struct mddev *mddev)
5176 {
5177 struct gendisk *disk = mddev->gendisk;
5178
5179 /* Complain if it has no devices */
5180 if (list_empty(&mddev->disks))
5181 return -ENXIO;
5182 if (!mddev->pers)
5183 return -EINVAL;
5184 if (!mddev->ro)
5185 return -EBUSY;
5186 mddev->safemode = 0;
5187 mddev->ro = 0;
5188 set_disk_ro(disk, 0);
5189 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5190 mdname(mddev));
5191 /* Kick recovery or resync if necessary */
5192 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5193 md_wakeup_thread(mddev->thread);
5194 md_wakeup_thread(mddev->sync_thread);
5195 sysfs_notify_dirent_safe(mddev->sysfs_state);
5196 return 0;
5197 }
5198
5199 static void md_clean(struct mddev *mddev)
5200 {
5201 mddev->array_sectors = 0;
5202 mddev->external_size = 0;
5203 mddev->dev_sectors = 0;
5204 mddev->raid_disks = 0;
5205 mddev->recovery_cp = 0;
5206 mddev->resync_min = 0;
5207 mddev->resync_max = MaxSector;
5208 mddev->reshape_position = MaxSector;
5209 mddev->external = 0;
5210 mddev->persistent = 0;
5211 mddev->level = LEVEL_NONE;
5212 mddev->clevel[0] = 0;
5213 mddev->flags = 0;
5214 mddev->ro = 0;
5215 mddev->metadata_type[0] = 0;
5216 mddev->chunk_sectors = 0;
5217 mddev->ctime = mddev->utime = 0;
5218 mddev->layout = 0;
5219 mddev->max_disks = 0;
5220 mddev->events = 0;
5221 mddev->can_decrease_events = 0;
5222 mddev->delta_disks = 0;
5223 mddev->reshape_backwards = 0;
5224 mddev->new_level = LEVEL_NONE;
5225 mddev->new_layout = 0;
5226 mddev->new_chunk_sectors = 0;
5227 mddev->curr_resync = 0;
5228 atomic64_set(&mddev->resync_mismatches, 0);
5229 mddev->suspend_lo = mddev->suspend_hi = 0;
5230 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5231 mddev->recovery = 0;
5232 mddev->in_sync = 0;
5233 mddev->changed = 0;
5234 mddev->degraded = 0;
5235 mddev->safemode = 0;
5236 mddev->merge_check_needed = 0;
5237 mddev->bitmap_info.offset = 0;
5238 mddev->bitmap_info.default_offset = 0;
5239 mddev->bitmap_info.default_space = 0;
5240 mddev->bitmap_info.chunksize = 0;
5241 mddev->bitmap_info.daemon_sleep = 0;
5242 mddev->bitmap_info.max_write_behind = 0;
5243 }
5244
5245 static void __md_stop_writes(struct mddev *mddev)
5246 {
5247 if (mddev_is_clustered(mddev))
5248 md_cluster_ops->metadata_update_start(mddev);
5249 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5250 flush_workqueue(md_misc_wq);
5251 if (mddev->sync_thread) {
5252 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5253 md_reap_sync_thread(mddev);
5254 }
5255
5256 del_timer_sync(&mddev->safemode_timer);
5257
5258 bitmap_flush(mddev);
5259 md_super_wait(mddev);
5260
5261 if (mddev->ro == 0 &&
5262 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5263 /* mark array as shutdown cleanly */
5264 mddev->in_sync = 1;
5265 md_update_sb(mddev, 1);
5266 }
5267 if (mddev_is_clustered(mddev))
5268 md_cluster_ops->metadata_update_finish(mddev);
5269 }
5270
5271 void md_stop_writes(struct mddev *mddev)
5272 {
5273 mddev_lock_nointr(mddev);
5274 __md_stop_writes(mddev);
5275 mddev_unlock(mddev);
5276 }
5277 EXPORT_SYMBOL_GPL(md_stop_writes);
5278
5279 static void mddev_detach(struct mddev *mddev)
5280 {
5281 struct bitmap *bitmap = mddev->bitmap;
5282 /* wait for behind writes to complete */
5283 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5284 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5285 mdname(mddev));
5286 /* need to kick something here to make sure I/O goes? */
5287 wait_event(bitmap->behind_wait,
5288 atomic_read(&bitmap->behind_writes) == 0);
5289 }
5290 if (mddev->pers && mddev->pers->quiesce) {
5291 mddev->pers->quiesce(mddev, 1);
5292 mddev->pers->quiesce(mddev, 0);
5293 }
5294 md_unregister_thread(&mddev->thread);
5295 if (mddev->queue)
5296 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5297 }
5298
5299 static void __md_stop(struct mddev *mddev)
5300 {
5301 struct md_personality *pers = mddev->pers;
5302 mddev_detach(mddev);
5303 spin_lock(&mddev->lock);
5304 mddev->ready = 0;
5305 mddev->pers = NULL;
5306 spin_unlock(&mddev->lock);
5307 pers->free(mddev, mddev->private);
5308 if (pers->sync_request && mddev->to_remove == NULL)
5309 mddev->to_remove = &md_redundancy_group;
5310 module_put(pers->owner);
5311 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5312 }
5313
5314 void md_stop(struct mddev *mddev)
5315 {
5316 /* stop the array and free an attached data structures.
5317 * This is called from dm-raid
5318 */
5319 __md_stop(mddev);
5320 bitmap_destroy(mddev);
5321 if (mddev->bio_set)
5322 bioset_free(mddev->bio_set);
5323 }
5324
5325 EXPORT_SYMBOL_GPL(md_stop);
5326
5327 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5328 {
5329 int err = 0;
5330 int did_freeze = 0;
5331
5332 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5333 did_freeze = 1;
5334 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5335 md_wakeup_thread(mddev->thread);
5336 }
5337 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5338 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5339 if (mddev->sync_thread)
5340 /* Thread might be blocked waiting for metadata update
5341 * which will now never happen */
5342 wake_up_process(mddev->sync_thread->tsk);
5343
5344 mddev_unlock(mddev);
5345 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5346 &mddev->recovery));
5347 mddev_lock_nointr(mddev);
5348
5349 mutex_lock(&mddev->open_mutex);
5350 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5351 mddev->sync_thread ||
5352 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5353 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5354 printk("md: %s still in use.\n",mdname(mddev));
5355 if (did_freeze) {
5356 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5358 md_wakeup_thread(mddev->thread);
5359 }
5360 err = -EBUSY;
5361 goto out;
5362 }
5363 if (mddev->pers) {
5364 __md_stop_writes(mddev);
5365
5366 err = -ENXIO;
5367 if (mddev->ro==1)
5368 goto out;
5369 mddev->ro = 1;
5370 set_disk_ro(mddev->gendisk, 1);
5371 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5372 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5373 md_wakeup_thread(mddev->thread);
5374 sysfs_notify_dirent_safe(mddev->sysfs_state);
5375 err = 0;
5376 }
5377 out:
5378 mutex_unlock(&mddev->open_mutex);
5379 return err;
5380 }
5381
5382 /* mode:
5383 * 0 - completely stop and dis-assemble array
5384 * 2 - stop but do not disassemble array
5385 */
5386 static int do_md_stop(struct mddev *mddev, int mode,
5387 struct block_device *bdev)
5388 {
5389 struct gendisk *disk = mddev->gendisk;
5390 struct md_rdev *rdev;
5391 int did_freeze = 0;
5392
5393 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5394 did_freeze = 1;
5395 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5396 md_wakeup_thread(mddev->thread);
5397 }
5398 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5399 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5400 if (mddev->sync_thread)
5401 /* Thread might be blocked waiting for metadata update
5402 * which will now never happen */
5403 wake_up_process(mddev->sync_thread->tsk);
5404
5405 mddev_unlock(mddev);
5406 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5407 !test_bit(MD_RECOVERY_RUNNING,
5408 &mddev->recovery)));
5409 mddev_lock_nointr(mddev);
5410
5411 mutex_lock(&mddev->open_mutex);
5412 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5413 mddev->sysfs_active ||
5414 mddev->sync_thread ||
5415 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5416 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5417 printk("md: %s still in use.\n",mdname(mddev));
5418 mutex_unlock(&mddev->open_mutex);
5419 if (did_freeze) {
5420 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5421 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5422 md_wakeup_thread(mddev->thread);
5423 }
5424 return -EBUSY;
5425 }
5426 if (mddev->pers) {
5427 if (mddev->ro)
5428 set_disk_ro(disk, 0);
5429
5430 __md_stop_writes(mddev);
5431 __md_stop(mddev);
5432 mddev->queue->merge_bvec_fn = NULL;
5433 mddev->queue->backing_dev_info.congested_fn = NULL;
5434
5435 /* tell userspace to handle 'inactive' */
5436 sysfs_notify_dirent_safe(mddev->sysfs_state);
5437
5438 rdev_for_each(rdev, mddev)
5439 if (rdev->raid_disk >= 0)
5440 sysfs_unlink_rdev(mddev, rdev);
5441
5442 set_capacity(disk, 0);
5443 mutex_unlock(&mddev->open_mutex);
5444 mddev->changed = 1;
5445 revalidate_disk(disk);
5446
5447 if (mddev->ro)
5448 mddev->ro = 0;
5449 } else
5450 mutex_unlock(&mddev->open_mutex);
5451 /*
5452 * Free resources if final stop
5453 */
5454 if (mode == 0) {
5455 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5456
5457 bitmap_destroy(mddev);
5458 if (mddev->bitmap_info.file) {
5459 struct file *f = mddev->bitmap_info.file;
5460 spin_lock(&mddev->lock);
5461 mddev->bitmap_info.file = NULL;
5462 spin_unlock(&mddev->lock);
5463 fput(f);
5464 }
5465 mddev->bitmap_info.offset = 0;
5466
5467 export_array(mddev);
5468
5469 md_clean(mddev);
5470 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5471 if (mddev->hold_active == UNTIL_STOP)
5472 mddev->hold_active = 0;
5473 }
5474 blk_integrity_unregister(disk);
5475 md_new_event(mddev);
5476 sysfs_notify_dirent_safe(mddev->sysfs_state);
5477 return 0;
5478 }
5479
5480 #ifndef MODULE
5481 static void autorun_array(struct mddev *mddev)
5482 {
5483 struct md_rdev *rdev;
5484 int err;
5485
5486 if (list_empty(&mddev->disks))
5487 return;
5488
5489 printk(KERN_INFO "md: running: ");
5490
5491 rdev_for_each(rdev, mddev) {
5492 char b[BDEVNAME_SIZE];
5493 printk("<%s>", bdevname(rdev->bdev,b));
5494 }
5495 printk("\n");
5496
5497 err = do_md_run(mddev);
5498 if (err) {
5499 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5500 do_md_stop(mddev, 0, NULL);
5501 }
5502 }
5503
5504 /*
5505 * lets try to run arrays based on all disks that have arrived
5506 * until now. (those are in pending_raid_disks)
5507 *
5508 * the method: pick the first pending disk, collect all disks with
5509 * the same UUID, remove all from the pending list and put them into
5510 * the 'same_array' list. Then order this list based on superblock
5511 * update time (freshest comes first), kick out 'old' disks and
5512 * compare superblocks. If everything's fine then run it.
5513 *
5514 * If "unit" is allocated, then bump its reference count
5515 */
5516 static void autorun_devices(int part)
5517 {
5518 struct md_rdev *rdev0, *rdev, *tmp;
5519 struct mddev *mddev;
5520 char b[BDEVNAME_SIZE];
5521
5522 printk(KERN_INFO "md: autorun ...\n");
5523 while (!list_empty(&pending_raid_disks)) {
5524 int unit;
5525 dev_t dev;
5526 LIST_HEAD(candidates);
5527 rdev0 = list_entry(pending_raid_disks.next,
5528 struct md_rdev, same_set);
5529
5530 printk(KERN_INFO "md: considering %s ...\n",
5531 bdevname(rdev0->bdev,b));
5532 INIT_LIST_HEAD(&candidates);
5533 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5534 if (super_90_load(rdev, rdev0, 0) >= 0) {
5535 printk(KERN_INFO "md: adding %s ...\n",
5536 bdevname(rdev->bdev,b));
5537 list_move(&rdev->same_set, &candidates);
5538 }
5539 /*
5540 * now we have a set of devices, with all of them having
5541 * mostly sane superblocks. It's time to allocate the
5542 * mddev.
5543 */
5544 if (part) {
5545 dev = MKDEV(mdp_major,
5546 rdev0->preferred_minor << MdpMinorShift);
5547 unit = MINOR(dev) >> MdpMinorShift;
5548 } else {
5549 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5550 unit = MINOR(dev);
5551 }
5552 if (rdev0->preferred_minor != unit) {
5553 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5554 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5555 break;
5556 }
5557
5558 md_probe(dev, NULL, NULL);
5559 mddev = mddev_find(dev);
5560 if (!mddev || !mddev->gendisk) {
5561 if (mddev)
5562 mddev_put(mddev);
5563 printk(KERN_ERR
5564 "md: cannot allocate memory for md drive.\n");
5565 break;
5566 }
5567 if (mddev_lock(mddev))
5568 printk(KERN_WARNING "md: %s locked, cannot run\n",
5569 mdname(mddev));
5570 else if (mddev->raid_disks || mddev->major_version
5571 || !list_empty(&mddev->disks)) {
5572 printk(KERN_WARNING
5573 "md: %s already running, cannot run %s\n",
5574 mdname(mddev), bdevname(rdev0->bdev,b));
5575 mddev_unlock(mddev);
5576 } else {
5577 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5578 mddev->persistent = 1;
5579 rdev_for_each_list(rdev, tmp, &candidates) {
5580 list_del_init(&rdev->same_set);
5581 if (bind_rdev_to_array(rdev, mddev))
5582 export_rdev(rdev);
5583 }
5584 autorun_array(mddev);
5585 mddev_unlock(mddev);
5586 }
5587 /* on success, candidates will be empty, on error
5588 * it won't...
5589 */
5590 rdev_for_each_list(rdev, tmp, &candidates) {
5591 list_del_init(&rdev->same_set);
5592 export_rdev(rdev);
5593 }
5594 mddev_put(mddev);
5595 }
5596 printk(KERN_INFO "md: ... autorun DONE.\n");
5597 }
5598 #endif /* !MODULE */
5599
5600 static int get_version(void __user *arg)
5601 {
5602 mdu_version_t ver;
5603
5604 ver.major = MD_MAJOR_VERSION;
5605 ver.minor = MD_MINOR_VERSION;
5606 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5607
5608 if (copy_to_user(arg, &ver, sizeof(ver)))
5609 return -EFAULT;
5610
5611 return 0;
5612 }
5613
5614 static int get_array_info(struct mddev *mddev, void __user *arg)
5615 {
5616 mdu_array_info_t info;
5617 int nr,working,insync,failed,spare;
5618 struct md_rdev *rdev;
5619
5620 nr = working = insync = failed = spare = 0;
5621 rcu_read_lock();
5622 rdev_for_each_rcu(rdev, mddev) {
5623 nr++;
5624 if (test_bit(Faulty, &rdev->flags))
5625 failed++;
5626 else {
5627 working++;
5628 if (test_bit(In_sync, &rdev->flags))
5629 insync++;
5630 else
5631 spare++;
5632 }
5633 }
5634 rcu_read_unlock();
5635
5636 info.major_version = mddev->major_version;
5637 info.minor_version = mddev->minor_version;
5638 info.patch_version = MD_PATCHLEVEL_VERSION;
5639 info.ctime = mddev->ctime;
5640 info.level = mddev->level;
5641 info.size = mddev->dev_sectors / 2;
5642 if (info.size != mddev->dev_sectors / 2) /* overflow */
5643 info.size = -1;
5644 info.nr_disks = nr;
5645 info.raid_disks = mddev->raid_disks;
5646 info.md_minor = mddev->md_minor;
5647 info.not_persistent= !mddev->persistent;
5648
5649 info.utime = mddev->utime;
5650 info.state = 0;
5651 if (mddev->in_sync)
5652 info.state = (1<<MD_SB_CLEAN);
5653 if (mddev->bitmap && mddev->bitmap_info.offset)
5654 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5655 if (mddev_is_clustered(mddev))
5656 info.state |= (1<<MD_SB_CLUSTERED);
5657
5658 info.active_disks = insync;
5659 info.working_disks = working;
5660 info.failed_disks = failed;
5661 info.spare_disks = spare;
5662
5663 info.layout = mddev->layout;
5664 info.chunk_size = mddev->chunk_sectors << 9;
5665
5666 if (copy_to_user(arg, &info, sizeof(info)))
5667 return -EFAULT;
5668
5669 return 0;
5670 }
5671
5672 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5673 {
5674 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5675 char *ptr;
5676 int err;
5677
5678 file = kmalloc(sizeof(*file), GFP_NOIO);
5679 if (!file)
5680 return -ENOMEM;
5681
5682 err = 0;
5683 spin_lock(&mddev->lock);
5684 /* bitmap disabled, zero the first byte and copy out */
5685 if (!mddev->bitmap_info.file)
5686 file->pathname[0] = '\0';
5687 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5688 file->pathname, sizeof(file->pathname))),
5689 IS_ERR(ptr))
5690 err = PTR_ERR(ptr);
5691 else
5692 memmove(file->pathname, ptr,
5693 sizeof(file->pathname)-(ptr-file->pathname));
5694 spin_unlock(&mddev->lock);
5695
5696 if (err == 0 &&
5697 copy_to_user(arg, file, sizeof(*file)))
5698 err = -EFAULT;
5699
5700 kfree(file);
5701 return err;
5702 }
5703
5704 static int get_disk_info(struct mddev *mddev, void __user * arg)
5705 {
5706 mdu_disk_info_t info;
5707 struct md_rdev *rdev;
5708
5709 if (copy_from_user(&info, arg, sizeof(info)))
5710 return -EFAULT;
5711
5712 rcu_read_lock();
5713 rdev = find_rdev_nr_rcu(mddev, info.number);
5714 if (rdev) {
5715 info.major = MAJOR(rdev->bdev->bd_dev);
5716 info.minor = MINOR(rdev->bdev->bd_dev);
5717 info.raid_disk = rdev->raid_disk;
5718 info.state = 0;
5719 if (test_bit(Faulty, &rdev->flags))
5720 info.state |= (1<<MD_DISK_FAULTY);
5721 else if (test_bit(In_sync, &rdev->flags)) {
5722 info.state |= (1<<MD_DISK_ACTIVE);
5723 info.state |= (1<<MD_DISK_SYNC);
5724 }
5725 if (test_bit(WriteMostly, &rdev->flags))
5726 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5727 } else {
5728 info.major = info.minor = 0;
5729 info.raid_disk = -1;
5730 info.state = (1<<MD_DISK_REMOVED);
5731 }
5732 rcu_read_unlock();
5733
5734 if (copy_to_user(arg, &info, sizeof(info)))
5735 return -EFAULT;
5736
5737 return 0;
5738 }
5739
5740 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5741 {
5742 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5743 struct md_rdev *rdev;
5744 dev_t dev = MKDEV(info->major,info->minor);
5745
5746 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5747 return -EOVERFLOW;
5748
5749 if (!mddev->raid_disks) {
5750 int err;
5751 /* expecting a device which has a superblock */
5752 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5753 if (IS_ERR(rdev)) {
5754 printk(KERN_WARNING
5755 "md: md_import_device returned %ld\n",
5756 PTR_ERR(rdev));
5757 return PTR_ERR(rdev);
5758 }
5759 if (!list_empty(&mddev->disks)) {
5760 struct md_rdev *rdev0
5761 = list_entry(mddev->disks.next,
5762 struct md_rdev, same_set);
5763 err = super_types[mddev->major_version]
5764 .load_super(rdev, rdev0, mddev->minor_version);
5765 if (err < 0) {
5766 printk(KERN_WARNING
5767 "md: %s has different UUID to %s\n",
5768 bdevname(rdev->bdev,b),
5769 bdevname(rdev0->bdev,b2));
5770 export_rdev(rdev);
5771 return -EINVAL;
5772 }
5773 }
5774 err = bind_rdev_to_array(rdev, mddev);
5775 if (err)
5776 export_rdev(rdev);
5777 return err;
5778 }
5779
5780 /*
5781 * add_new_disk can be used once the array is assembled
5782 * to add "hot spares". They must already have a superblock
5783 * written
5784 */
5785 if (mddev->pers) {
5786 int err;
5787 if (!mddev->pers->hot_add_disk) {
5788 printk(KERN_WARNING
5789 "%s: personality does not support diskops!\n",
5790 mdname(mddev));
5791 return -EINVAL;
5792 }
5793 if (mddev->persistent)
5794 rdev = md_import_device(dev, mddev->major_version,
5795 mddev->minor_version);
5796 else
5797 rdev = md_import_device(dev, -1, -1);
5798 if (IS_ERR(rdev)) {
5799 printk(KERN_WARNING
5800 "md: md_import_device returned %ld\n",
5801 PTR_ERR(rdev));
5802 return PTR_ERR(rdev);
5803 }
5804 /* set saved_raid_disk if appropriate */
5805 if (!mddev->persistent) {
5806 if (info->state & (1<<MD_DISK_SYNC) &&
5807 info->raid_disk < mddev->raid_disks) {
5808 rdev->raid_disk = info->raid_disk;
5809 set_bit(In_sync, &rdev->flags);
5810 clear_bit(Bitmap_sync, &rdev->flags);
5811 } else
5812 rdev->raid_disk = -1;
5813 rdev->saved_raid_disk = rdev->raid_disk;
5814 } else
5815 super_types[mddev->major_version].
5816 validate_super(mddev, rdev);
5817 if ((info->state & (1<<MD_DISK_SYNC)) &&
5818 rdev->raid_disk != info->raid_disk) {
5819 /* This was a hot-add request, but events doesn't
5820 * match, so reject it.
5821 */
5822 export_rdev(rdev);
5823 return -EINVAL;
5824 }
5825
5826 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5827 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5828 set_bit(WriteMostly, &rdev->flags);
5829 else
5830 clear_bit(WriteMostly, &rdev->flags);
5831
5832 rdev->raid_disk = -1;
5833 err = bind_rdev_to_array(rdev, mddev);
5834 if (!err && !mddev->pers->hot_remove_disk) {
5835 /* If there is hot_add_disk but no hot_remove_disk
5836 * then added disks for geometry changes,
5837 * and should be added immediately.
5838 */
5839 super_types[mddev->major_version].
5840 validate_super(mddev, rdev);
5841 err = mddev->pers->hot_add_disk(mddev, rdev);
5842 if (err)
5843 unbind_rdev_from_array(rdev);
5844 }
5845 if (err)
5846 export_rdev(rdev);
5847 else
5848 sysfs_notify_dirent_safe(rdev->sysfs_state);
5849
5850 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5851 if (mddev->degraded)
5852 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5853 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5854 if (!err)
5855 md_new_event(mddev);
5856 md_wakeup_thread(mddev->thread);
5857 return err;
5858 }
5859
5860 /* otherwise, add_new_disk is only allowed
5861 * for major_version==0 superblocks
5862 */
5863 if (mddev->major_version != 0) {
5864 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5865 mdname(mddev));
5866 return -EINVAL;
5867 }
5868
5869 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5870 int err;
5871 rdev = md_import_device(dev, -1, 0);
5872 if (IS_ERR(rdev)) {
5873 printk(KERN_WARNING
5874 "md: error, md_import_device() returned %ld\n",
5875 PTR_ERR(rdev));
5876 return PTR_ERR(rdev);
5877 }
5878 rdev->desc_nr = info->number;
5879 if (info->raid_disk < mddev->raid_disks)
5880 rdev->raid_disk = info->raid_disk;
5881 else
5882 rdev->raid_disk = -1;
5883
5884 if (rdev->raid_disk < mddev->raid_disks)
5885 if (info->state & (1<<MD_DISK_SYNC))
5886 set_bit(In_sync, &rdev->flags);
5887
5888 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5889 set_bit(WriteMostly, &rdev->flags);
5890
5891 if (!mddev->persistent) {
5892 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5893 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5894 } else
5895 rdev->sb_start = calc_dev_sboffset(rdev);
5896 rdev->sectors = rdev->sb_start;
5897
5898 err = bind_rdev_to_array(rdev, mddev);
5899 if (err) {
5900 export_rdev(rdev);
5901 return err;
5902 }
5903 }
5904
5905 return 0;
5906 }
5907
5908 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5909 {
5910 char b[BDEVNAME_SIZE];
5911 struct md_rdev *rdev;
5912
5913 rdev = find_rdev(mddev, dev);
5914 if (!rdev)
5915 return -ENXIO;
5916
5917 if (mddev_is_clustered(mddev))
5918 md_cluster_ops->metadata_update_start(mddev);
5919
5920 clear_bit(Blocked, &rdev->flags);
5921 remove_and_add_spares(mddev, rdev);
5922
5923 if (rdev->raid_disk >= 0)
5924 goto busy;
5925
5926 kick_rdev_from_array(rdev);
5927 md_update_sb(mddev, 1);
5928 md_new_event(mddev);
5929
5930 if (mddev_is_clustered(mddev))
5931 md_cluster_ops->metadata_update_finish(mddev);
5932
5933 return 0;
5934 busy:
5935 if (mddev_is_clustered(mddev))
5936 md_cluster_ops->metadata_update_cancel(mddev);
5937 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5938 bdevname(rdev->bdev,b), mdname(mddev));
5939 return -EBUSY;
5940 }
5941
5942 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5943 {
5944 char b[BDEVNAME_SIZE];
5945 int err;
5946 struct md_rdev *rdev;
5947
5948 if (!mddev->pers)
5949 return -ENODEV;
5950
5951 if (mddev->major_version != 0) {
5952 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5953 " version-0 superblocks.\n",
5954 mdname(mddev));
5955 return -EINVAL;
5956 }
5957 if (!mddev->pers->hot_add_disk) {
5958 printk(KERN_WARNING
5959 "%s: personality does not support diskops!\n",
5960 mdname(mddev));
5961 return -EINVAL;
5962 }
5963
5964 rdev = md_import_device(dev, -1, 0);
5965 if (IS_ERR(rdev)) {
5966 printk(KERN_WARNING
5967 "md: error, md_import_device() returned %ld\n",
5968 PTR_ERR(rdev));
5969 return -EINVAL;
5970 }
5971
5972 if (mddev->persistent)
5973 rdev->sb_start = calc_dev_sboffset(rdev);
5974 else
5975 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5976
5977 rdev->sectors = rdev->sb_start;
5978
5979 if (test_bit(Faulty, &rdev->flags)) {
5980 printk(KERN_WARNING
5981 "md: can not hot-add faulty %s disk to %s!\n",
5982 bdevname(rdev->bdev,b), mdname(mddev));
5983 err = -EINVAL;
5984 goto abort_export;
5985 }
5986
5987 if (mddev_is_clustered(mddev))
5988 md_cluster_ops->metadata_update_start(mddev);
5989 clear_bit(In_sync, &rdev->flags);
5990 rdev->desc_nr = -1;
5991 rdev->saved_raid_disk = -1;
5992 err = bind_rdev_to_array(rdev, mddev);
5993 if (err)
5994 goto abort_clustered;
5995
5996 /*
5997 * The rest should better be atomic, we can have disk failures
5998 * noticed in interrupt contexts ...
5999 */
6000
6001 rdev->raid_disk = -1;
6002
6003 md_update_sb(mddev, 1);
6004
6005 if (mddev_is_clustered(mddev))
6006 md_cluster_ops->metadata_update_finish(mddev);
6007 /*
6008 * Kick recovery, maybe this spare has to be added to the
6009 * array immediately.
6010 */
6011 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6012 md_wakeup_thread(mddev->thread);
6013 md_new_event(mddev);
6014 return 0;
6015
6016 abort_clustered:
6017 if (mddev_is_clustered(mddev))
6018 md_cluster_ops->metadata_update_cancel(mddev);
6019 abort_export:
6020 export_rdev(rdev);
6021 return err;
6022 }
6023
6024 static int set_bitmap_file(struct mddev *mddev, int fd)
6025 {
6026 int err = 0;
6027
6028 if (mddev->pers) {
6029 if (!mddev->pers->quiesce || !mddev->thread)
6030 return -EBUSY;
6031 if (mddev->recovery || mddev->sync_thread)
6032 return -EBUSY;
6033 /* we should be able to change the bitmap.. */
6034 }
6035
6036 if (fd >= 0) {
6037 struct inode *inode;
6038 struct file *f;
6039
6040 if (mddev->bitmap || mddev->bitmap_info.file)
6041 return -EEXIST; /* cannot add when bitmap is present */
6042 f = fget(fd);
6043
6044 if (f == NULL) {
6045 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6046 mdname(mddev));
6047 return -EBADF;
6048 }
6049
6050 inode = f->f_mapping->host;
6051 if (!S_ISREG(inode->i_mode)) {
6052 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6053 mdname(mddev));
6054 err = -EBADF;
6055 } else if (!(f->f_mode & FMODE_WRITE)) {
6056 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6057 mdname(mddev));
6058 err = -EBADF;
6059 } else if (atomic_read(&inode->i_writecount) != 1) {
6060 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6061 mdname(mddev));
6062 err = -EBUSY;
6063 }
6064 if (err) {
6065 fput(f);
6066 return err;
6067 }
6068 mddev->bitmap_info.file = f;
6069 mddev->bitmap_info.offset = 0; /* file overrides offset */
6070 } else if (mddev->bitmap == NULL)
6071 return -ENOENT; /* cannot remove what isn't there */
6072 err = 0;
6073 if (mddev->pers) {
6074 mddev->pers->quiesce(mddev, 1);
6075 if (fd >= 0) {
6076 struct bitmap *bitmap;
6077
6078 bitmap = bitmap_create(mddev, -1);
6079 if (!IS_ERR(bitmap)) {
6080 mddev->bitmap = bitmap;
6081 err = bitmap_load(mddev);
6082 }
6083 }
6084 if (fd < 0 || err) {
6085 bitmap_destroy(mddev);
6086 fd = -1; /* make sure to put the file */
6087 }
6088 mddev->pers->quiesce(mddev, 0);
6089 }
6090 if (fd < 0) {
6091 struct file *f = mddev->bitmap_info.file;
6092 if (f) {
6093 spin_lock(&mddev->lock);
6094 mddev->bitmap_info.file = NULL;
6095 spin_unlock(&mddev->lock);
6096 fput(f);
6097 }
6098 }
6099
6100 return err;
6101 }
6102
6103 /*
6104 * set_array_info is used two different ways
6105 * The original usage is when creating a new array.
6106 * In this usage, raid_disks is > 0 and it together with
6107 * level, size, not_persistent,layout,chunksize determine the
6108 * shape of the array.
6109 * This will always create an array with a type-0.90.0 superblock.
6110 * The newer usage is when assembling an array.
6111 * In this case raid_disks will be 0, and the major_version field is
6112 * use to determine which style super-blocks are to be found on the devices.
6113 * The minor and patch _version numbers are also kept incase the
6114 * super_block handler wishes to interpret them.
6115 */
6116 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6117 {
6118
6119 if (info->raid_disks == 0) {
6120 /* just setting version number for superblock loading */
6121 if (info->major_version < 0 ||
6122 info->major_version >= ARRAY_SIZE(super_types) ||
6123 super_types[info->major_version].name == NULL) {
6124 /* maybe try to auto-load a module? */
6125 printk(KERN_INFO
6126 "md: superblock version %d not known\n",
6127 info->major_version);
6128 return -EINVAL;
6129 }
6130 mddev->major_version = info->major_version;
6131 mddev->minor_version = info->minor_version;
6132 mddev->patch_version = info->patch_version;
6133 mddev->persistent = !info->not_persistent;
6134 /* ensure mddev_put doesn't delete this now that there
6135 * is some minimal configuration.
6136 */
6137 mddev->ctime = get_seconds();
6138 return 0;
6139 }
6140 mddev->major_version = MD_MAJOR_VERSION;
6141 mddev->minor_version = MD_MINOR_VERSION;
6142 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6143 mddev->ctime = get_seconds();
6144
6145 mddev->level = info->level;
6146 mddev->clevel[0] = 0;
6147 mddev->dev_sectors = 2 * (sector_t)info->size;
6148 mddev->raid_disks = info->raid_disks;
6149 /* don't set md_minor, it is determined by which /dev/md* was
6150 * openned
6151 */
6152 if (info->state & (1<<MD_SB_CLEAN))
6153 mddev->recovery_cp = MaxSector;
6154 else
6155 mddev->recovery_cp = 0;
6156 mddev->persistent = ! info->not_persistent;
6157 mddev->external = 0;
6158
6159 mddev->layout = info->layout;
6160 mddev->chunk_sectors = info->chunk_size >> 9;
6161
6162 mddev->max_disks = MD_SB_DISKS;
6163
6164 if (mddev->persistent)
6165 mddev->flags = 0;
6166 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6167
6168 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6169 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6170 mddev->bitmap_info.offset = 0;
6171
6172 mddev->reshape_position = MaxSector;
6173
6174 /*
6175 * Generate a 128 bit UUID
6176 */
6177 get_random_bytes(mddev->uuid, 16);
6178
6179 mddev->new_level = mddev->level;
6180 mddev->new_chunk_sectors = mddev->chunk_sectors;
6181 mddev->new_layout = mddev->layout;
6182 mddev->delta_disks = 0;
6183 mddev->reshape_backwards = 0;
6184
6185 return 0;
6186 }
6187
6188 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6189 {
6190 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6191
6192 if (mddev->external_size)
6193 return;
6194
6195 mddev->array_sectors = array_sectors;
6196 }
6197 EXPORT_SYMBOL(md_set_array_sectors);
6198
6199 static int update_size(struct mddev *mddev, sector_t num_sectors)
6200 {
6201 struct md_rdev *rdev;
6202 int rv;
6203 int fit = (num_sectors == 0);
6204
6205 if (mddev->pers->resize == NULL)
6206 return -EINVAL;
6207 /* The "num_sectors" is the number of sectors of each device that
6208 * is used. This can only make sense for arrays with redundancy.
6209 * linear and raid0 always use whatever space is available. We can only
6210 * consider changing this number if no resync or reconstruction is
6211 * happening, and if the new size is acceptable. It must fit before the
6212 * sb_start or, if that is <data_offset, it must fit before the size
6213 * of each device. If num_sectors is zero, we find the largest size
6214 * that fits.
6215 */
6216 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6217 mddev->sync_thread)
6218 return -EBUSY;
6219 if (mddev->ro)
6220 return -EROFS;
6221
6222 rdev_for_each(rdev, mddev) {
6223 sector_t avail = rdev->sectors;
6224
6225 if (fit && (num_sectors == 0 || num_sectors > avail))
6226 num_sectors = avail;
6227 if (avail < num_sectors)
6228 return -ENOSPC;
6229 }
6230 rv = mddev->pers->resize(mddev, num_sectors);
6231 if (!rv)
6232 revalidate_disk(mddev->gendisk);
6233 return rv;
6234 }
6235
6236 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6237 {
6238 int rv;
6239 struct md_rdev *rdev;
6240 /* change the number of raid disks */
6241 if (mddev->pers->check_reshape == NULL)
6242 return -EINVAL;
6243 if (mddev->ro)
6244 return -EROFS;
6245 if (raid_disks <= 0 ||
6246 (mddev->max_disks && raid_disks >= mddev->max_disks))
6247 return -EINVAL;
6248 if (mddev->sync_thread ||
6249 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6250 mddev->reshape_position != MaxSector)
6251 return -EBUSY;
6252
6253 rdev_for_each(rdev, mddev) {
6254 if (mddev->raid_disks < raid_disks &&
6255 rdev->data_offset < rdev->new_data_offset)
6256 return -EINVAL;
6257 if (mddev->raid_disks > raid_disks &&
6258 rdev->data_offset > rdev->new_data_offset)
6259 return -EINVAL;
6260 }
6261
6262 mddev->delta_disks = raid_disks - mddev->raid_disks;
6263 if (mddev->delta_disks < 0)
6264 mddev->reshape_backwards = 1;
6265 else if (mddev->delta_disks > 0)
6266 mddev->reshape_backwards = 0;
6267
6268 rv = mddev->pers->check_reshape(mddev);
6269 if (rv < 0) {
6270 mddev->delta_disks = 0;
6271 mddev->reshape_backwards = 0;
6272 }
6273 return rv;
6274 }
6275
6276 /*
6277 * update_array_info is used to change the configuration of an
6278 * on-line array.
6279 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6280 * fields in the info are checked against the array.
6281 * Any differences that cannot be handled will cause an error.
6282 * Normally, only one change can be managed at a time.
6283 */
6284 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6285 {
6286 int rv = 0;
6287 int cnt = 0;
6288 int state = 0;
6289
6290 /* calculate expected state,ignoring low bits */
6291 if (mddev->bitmap && mddev->bitmap_info.offset)
6292 state |= (1 << MD_SB_BITMAP_PRESENT);
6293
6294 if (mddev->major_version != info->major_version ||
6295 mddev->minor_version != info->minor_version ||
6296 /* mddev->patch_version != info->patch_version || */
6297 mddev->ctime != info->ctime ||
6298 mddev->level != info->level ||
6299 /* mddev->layout != info->layout || */
6300 !mddev->persistent != info->not_persistent||
6301 mddev->chunk_sectors != info->chunk_size >> 9 ||
6302 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6303 ((state^info->state) & 0xfffffe00)
6304 )
6305 return -EINVAL;
6306 /* Check there is only one change */
6307 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6308 cnt++;
6309 if (mddev->raid_disks != info->raid_disks)
6310 cnt++;
6311 if (mddev->layout != info->layout)
6312 cnt++;
6313 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6314 cnt++;
6315 if (cnt == 0)
6316 return 0;
6317 if (cnt > 1)
6318 return -EINVAL;
6319
6320 if (mddev->layout != info->layout) {
6321 /* Change layout
6322 * we don't need to do anything at the md level, the
6323 * personality will take care of it all.
6324 */
6325 if (mddev->pers->check_reshape == NULL)
6326 return -EINVAL;
6327 else {
6328 mddev->new_layout = info->layout;
6329 rv = mddev->pers->check_reshape(mddev);
6330 if (rv)
6331 mddev->new_layout = mddev->layout;
6332 return rv;
6333 }
6334 }
6335 if (mddev_is_clustered(mddev))
6336 md_cluster_ops->metadata_update_start(mddev);
6337 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6338 rv = update_size(mddev, (sector_t)info->size * 2);
6339
6340 if (mddev->raid_disks != info->raid_disks)
6341 rv = update_raid_disks(mddev, info->raid_disks);
6342
6343 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6344 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6345 rv = -EINVAL;
6346 goto err;
6347 }
6348 if (mddev->recovery || mddev->sync_thread) {
6349 rv = -EBUSY;
6350 goto err;
6351 }
6352 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6353 struct bitmap *bitmap;
6354 /* add the bitmap */
6355 if (mddev->bitmap) {
6356 rv = -EEXIST;
6357 goto err;
6358 }
6359 if (mddev->bitmap_info.default_offset == 0) {
6360 rv = -EINVAL;
6361 goto err;
6362 }
6363 mddev->bitmap_info.offset =
6364 mddev->bitmap_info.default_offset;
6365 mddev->bitmap_info.space =
6366 mddev->bitmap_info.default_space;
6367 mddev->pers->quiesce(mddev, 1);
6368 bitmap = bitmap_create(mddev, -1);
6369 if (!IS_ERR(bitmap)) {
6370 mddev->bitmap = bitmap;
6371 rv = bitmap_load(mddev);
6372 }
6373 if (rv)
6374 bitmap_destroy(mddev);
6375 mddev->pers->quiesce(mddev, 0);
6376 } else {
6377 /* remove the bitmap */
6378 if (!mddev->bitmap) {
6379 rv = -ENOENT;
6380 goto err;
6381 }
6382 if (mddev->bitmap->storage.file) {
6383 rv = -EINVAL;
6384 goto err;
6385 }
6386 mddev->pers->quiesce(mddev, 1);
6387 bitmap_destroy(mddev);
6388 mddev->pers->quiesce(mddev, 0);
6389 mddev->bitmap_info.offset = 0;
6390 }
6391 }
6392 md_update_sb(mddev, 1);
6393 if (mddev_is_clustered(mddev))
6394 md_cluster_ops->metadata_update_finish(mddev);
6395 return rv;
6396 err:
6397 if (mddev_is_clustered(mddev))
6398 md_cluster_ops->metadata_update_cancel(mddev);
6399 return rv;
6400 }
6401
6402 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6403 {
6404 struct md_rdev *rdev;
6405 int err = 0;
6406
6407 if (mddev->pers == NULL)
6408 return -ENODEV;
6409
6410 rcu_read_lock();
6411 rdev = find_rdev_rcu(mddev, dev);
6412 if (!rdev)
6413 err = -ENODEV;
6414 else {
6415 md_error(mddev, rdev);
6416 if (!test_bit(Faulty, &rdev->flags))
6417 err = -EBUSY;
6418 }
6419 rcu_read_unlock();
6420 return err;
6421 }
6422
6423 /*
6424 * We have a problem here : there is no easy way to give a CHS
6425 * virtual geometry. We currently pretend that we have a 2 heads
6426 * 4 sectors (with a BIG number of cylinders...). This drives
6427 * dosfs just mad... ;-)
6428 */
6429 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6430 {
6431 struct mddev *mddev = bdev->bd_disk->private_data;
6432
6433 geo->heads = 2;
6434 geo->sectors = 4;
6435 geo->cylinders = mddev->array_sectors / 8;
6436 return 0;
6437 }
6438
6439 static inline bool md_ioctl_valid(unsigned int cmd)
6440 {
6441 switch (cmd) {
6442 case ADD_NEW_DISK:
6443 case BLKROSET:
6444 case GET_ARRAY_INFO:
6445 case GET_BITMAP_FILE:
6446 case GET_DISK_INFO:
6447 case HOT_ADD_DISK:
6448 case HOT_REMOVE_DISK:
6449 case RAID_AUTORUN:
6450 case RAID_VERSION:
6451 case RESTART_ARRAY_RW:
6452 case RUN_ARRAY:
6453 case SET_ARRAY_INFO:
6454 case SET_BITMAP_FILE:
6455 case SET_DISK_FAULTY:
6456 case STOP_ARRAY:
6457 case STOP_ARRAY_RO:
6458 return true;
6459 default:
6460 return false;
6461 }
6462 }
6463
6464 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6465 unsigned int cmd, unsigned long arg)
6466 {
6467 int err = 0;
6468 void __user *argp = (void __user *)arg;
6469 struct mddev *mddev = NULL;
6470 int ro;
6471
6472 if (!md_ioctl_valid(cmd))
6473 return -ENOTTY;
6474
6475 switch (cmd) {
6476 case RAID_VERSION:
6477 case GET_ARRAY_INFO:
6478 case GET_DISK_INFO:
6479 break;
6480 default:
6481 if (!capable(CAP_SYS_ADMIN))
6482 return -EACCES;
6483 }
6484
6485 /*
6486 * Commands dealing with the RAID driver but not any
6487 * particular array:
6488 */
6489 switch (cmd) {
6490 case RAID_VERSION:
6491 err = get_version(argp);
6492 goto out;
6493
6494 #ifndef MODULE
6495 case RAID_AUTORUN:
6496 err = 0;
6497 autostart_arrays(arg);
6498 goto out;
6499 #endif
6500 default:;
6501 }
6502
6503 /*
6504 * Commands creating/starting a new array:
6505 */
6506
6507 mddev = bdev->bd_disk->private_data;
6508
6509 if (!mddev) {
6510 BUG();
6511 goto out;
6512 }
6513
6514 /* Some actions do not requires the mutex */
6515 switch (cmd) {
6516 case GET_ARRAY_INFO:
6517 if (!mddev->raid_disks && !mddev->external)
6518 err = -ENODEV;
6519 else
6520 err = get_array_info(mddev, argp);
6521 goto out;
6522
6523 case GET_DISK_INFO:
6524 if (!mddev->raid_disks && !mddev->external)
6525 err = -ENODEV;
6526 else
6527 err = get_disk_info(mddev, argp);
6528 goto out;
6529
6530 case SET_DISK_FAULTY:
6531 err = set_disk_faulty(mddev, new_decode_dev(arg));
6532 goto out;
6533
6534 case GET_BITMAP_FILE:
6535 err = get_bitmap_file(mddev, argp);
6536 goto out;
6537
6538 }
6539
6540 if (cmd == ADD_NEW_DISK)
6541 /* need to ensure md_delayed_delete() has completed */
6542 flush_workqueue(md_misc_wq);
6543
6544 if (cmd == HOT_REMOVE_DISK)
6545 /* need to ensure recovery thread has run */
6546 wait_event_interruptible_timeout(mddev->sb_wait,
6547 !test_bit(MD_RECOVERY_NEEDED,
6548 &mddev->flags),
6549 msecs_to_jiffies(5000));
6550 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6551 /* Need to flush page cache, and ensure no-one else opens
6552 * and writes
6553 */
6554 mutex_lock(&mddev->open_mutex);
6555 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6556 mutex_unlock(&mddev->open_mutex);
6557 err = -EBUSY;
6558 goto out;
6559 }
6560 set_bit(MD_STILL_CLOSED, &mddev->flags);
6561 mutex_unlock(&mddev->open_mutex);
6562 sync_blockdev(bdev);
6563 }
6564 err = mddev_lock(mddev);
6565 if (err) {
6566 printk(KERN_INFO
6567 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6568 err, cmd);
6569 goto out;
6570 }
6571
6572 if (cmd == SET_ARRAY_INFO) {
6573 mdu_array_info_t info;
6574 if (!arg)
6575 memset(&info, 0, sizeof(info));
6576 else if (copy_from_user(&info, argp, sizeof(info))) {
6577 err = -EFAULT;
6578 goto unlock;
6579 }
6580 if (mddev->pers) {
6581 err = update_array_info(mddev, &info);
6582 if (err) {
6583 printk(KERN_WARNING "md: couldn't update"
6584 " array info. %d\n", err);
6585 goto unlock;
6586 }
6587 goto unlock;
6588 }
6589 if (!list_empty(&mddev->disks)) {
6590 printk(KERN_WARNING
6591 "md: array %s already has disks!\n",
6592 mdname(mddev));
6593 err = -EBUSY;
6594 goto unlock;
6595 }
6596 if (mddev->raid_disks) {
6597 printk(KERN_WARNING
6598 "md: array %s already initialised!\n",
6599 mdname(mddev));
6600 err = -EBUSY;
6601 goto unlock;
6602 }
6603 err = set_array_info(mddev, &info);
6604 if (err) {
6605 printk(KERN_WARNING "md: couldn't set"
6606 " array info. %d\n", err);
6607 goto unlock;
6608 }
6609 goto unlock;
6610 }
6611
6612 /*
6613 * Commands querying/configuring an existing array:
6614 */
6615 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6616 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6617 if ((!mddev->raid_disks && !mddev->external)
6618 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6619 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6620 && cmd != GET_BITMAP_FILE) {
6621 err = -ENODEV;
6622 goto unlock;
6623 }
6624
6625 /*
6626 * Commands even a read-only array can execute:
6627 */
6628 switch (cmd) {
6629 case RESTART_ARRAY_RW:
6630 err = restart_array(mddev);
6631 goto unlock;
6632
6633 case STOP_ARRAY:
6634 err = do_md_stop(mddev, 0, bdev);
6635 goto unlock;
6636
6637 case STOP_ARRAY_RO:
6638 err = md_set_readonly(mddev, bdev);
6639 goto unlock;
6640
6641 case HOT_REMOVE_DISK:
6642 err = hot_remove_disk(mddev, new_decode_dev(arg));
6643 goto unlock;
6644
6645 case ADD_NEW_DISK:
6646 /* We can support ADD_NEW_DISK on read-only arrays
6647 * on if we are re-adding a preexisting device.
6648 * So require mddev->pers and MD_DISK_SYNC.
6649 */
6650 if (mddev->pers) {
6651 mdu_disk_info_t info;
6652 if (copy_from_user(&info, argp, sizeof(info)))
6653 err = -EFAULT;
6654 else if (!(info.state & (1<<MD_DISK_SYNC)))
6655 /* Need to clear read-only for this */
6656 break;
6657 else
6658 err = add_new_disk(mddev, &info);
6659 goto unlock;
6660 }
6661 break;
6662
6663 case BLKROSET:
6664 if (get_user(ro, (int __user *)(arg))) {
6665 err = -EFAULT;
6666 goto unlock;
6667 }
6668 err = -EINVAL;
6669
6670 /* if the bdev is going readonly the value of mddev->ro
6671 * does not matter, no writes are coming
6672 */
6673 if (ro)
6674 goto unlock;
6675
6676 /* are we are already prepared for writes? */
6677 if (mddev->ro != 1)
6678 goto unlock;
6679
6680 /* transitioning to readauto need only happen for
6681 * arrays that call md_write_start
6682 */
6683 if (mddev->pers) {
6684 err = restart_array(mddev);
6685 if (err == 0) {
6686 mddev->ro = 2;
6687 set_disk_ro(mddev->gendisk, 0);
6688 }
6689 }
6690 goto unlock;
6691 }
6692
6693 /*
6694 * The remaining ioctls are changing the state of the
6695 * superblock, so we do not allow them on read-only arrays.
6696 */
6697 if (mddev->ro && mddev->pers) {
6698 if (mddev->ro == 2) {
6699 mddev->ro = 0;
6700 sysfs_notify_dirent_safe(mddev->sysfs_state);
6701 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6702 /* mddev_unlock will wake thread */
6703 /* If a device failed while we were read-only, we
6704 * need to make sure the metadata is updated now.
6705 */
6706 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6707 mddev_unlock(mddev);
6708 wait_event(mddev->sb_wait,
6709 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6710 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6711 mddev_lock_nointr(mddev);
6712 }
6713 } else {
6714 err = -EROFS;
6715 goto unlock;
6716 }
6717 }
6718
6719 switch (cmd) {
6720 case ADD_NEW_DISK:
6721 {
6722 mdu_disk_info_t info;
6723 if (copy_from_user(&info, argp, sizeof(info)))
6724 err = -EFAULT;
6725 else
6726 err = add_new_disk(mddev, &info);
6727 goto unlock;
6728 }
6729
6730 case HOT_ADD_DISK:
6731 err = hot_add_disk(mddev, new_decode_dev(arg));
6732 goto unlock;
6733
6734 case RUN_ARRAY:
6735 err = do_md_run(mddev);
6736 goto unlock;
6737
6738 case SET_BITMAP_FILE:
6739 err = set_bitmap_file(mddev, (int)arg);
6740 goto unlock;
6741
6742 default:
6743 err = -EINVAL;
6744 goto unlock;
6745 }
6746
6747 unlock:
6748 if (mddev->hold_active == UNTIL_IOCTL &&
6749 err != -EINVAL)
6750 mddev->hold_active = 0;
6751 mddev_unlock(mddev);
6752 out:
6753 return err;
6754 }
6755 #ifdef CONFIG_COMPAT
6756 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6757 unsigned int cmd, unsigned long arg)
6758 {
6759 switch (cmd) {
6760 case HOT_REMOVE_DISK:
6761 case HOT_ADD_DISK:
6762 case SET_DISK_FAULTY:
6763 case SET_BITMAP_FILE:
6764 /* These take in integer arg, do not convert */
6765 break;
6766 default:
6767 arg = (unsigned long)compat_ptr(arg);
6768 break;
6769 }
6770
6771 return md_ioctl(bdev, mode, cmd, arg);
6772 }
6773 #endif /* CONFIG_COMPAT */
6774
6775 static int md_open(struct block_device *bdev, fmode_t mode)
6776 {
6777 /*
6778 * Succeed if we can lock the mddev, which confirms that
6779 * it isn't being stopped right now.
6780 */
6781 struct mddev *mddev = mddev_find(bdev->bd_dev);
6782 int err;
6783
6784 if (!mddev)
6785 return -ENODEV;
6786
6787 if (mddev->gendisk != bdev->bd_disk) {
6788 /* we are racing with mddev_put which is discarding this
6789 * bd_disk.
6790 */
6791 mddev_put(mddev);
6792 /* Wait until bdev->bd_disk is definitely gone */
6793 flush_workqueue(md_misc_wq);
6794 /* Then retry the open from the top */
6795 return -ERESTARTSYS;
6796 }
6797 BUG_ON(mddev != bdev->bd_disk->private_data);
6798
6799 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6800 goto out;
6801
6802 err = 0;
6803 atomic_inc(&mddev->openers);
6804 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6805 mutex_unlock(&mddev->open_mutex);
6806
6807 check_disk_change(bdev);
6808 out:
6809 return err;
6810 }
6811
6812 static void md_release(struct gendisk *disk, fmode_t mode)
6813 {
6814 struct mddev *mddev = disk->private_data;
6815
6816 BUG_ON(!mddev);
6817 atomic_dec(&mddev->openers);
6818 mddev_put(mddev);
6819 }
6820
6821 static int md_media_changed(struct gendisk *disk)
6822 {
6823 struct mddev *mddev = disk->private_data;
6824
6825 return mddev->changed;
6826 }
6827
6828 static int md_revalidate(struct gendisk *disk)
6829 {
6830 struct mddev *mddev = disk->private_data;
6831
6832 mddev->changed = 0;
6833 return 0;
6834 }
6835 static const struct block_device_operations md_fops =
6836 {
6837 .owner = THIS_MODULE,
6838 .open = md_open,
6839 .release = md_release,
6840 .ioctl = md_ioctl,
6841 #ifdef CONFIG_COMPAT
6842 .compat_ioctl = md_compat_ioctl,
6843 #endif
6844 .getgeo = md_getgeo,
6845 .media_changed = md_media_changed,
6846 .revalidate_disk= md_revalidate,
6847 };
6848
6849 static int md_thread(void *arg)
6850 {
6851 struct md_thread *thread = arg;
6852
6853 /*
6854 * md_thread is a 'system-thread', it's priority should be very
6855 * high. We avoid resource deadlocks individually in each
6856 * raid personality. (RAID5 does preallocation) We also use RR and
6857 * the very same RT priority as kswapd, thus we will never get
6858 * into a priority inversion deadlock.
6859 *
6860 * we definitely have to have equal or higher priority than
6861 * bdflush, otherwise bdflush will deadlock if there are too
6862 * many dirty RAID5 blocks.
6863 */
6864
6865 allow_signal(SIGKILL);
6866 while (!kthread_should_stop()) {
6867
6868 /* We need to wait INTERRUPTIBLE so that
6869 * we don't add to the load-average.
6870 * That means we need to be sure no signals are
6871 * pending
6872 */
6873 if (signal_pending(current))
6874 flush_signals(current);
6875
6876 wait_event_interruptible_timeout
6877 (thread->wqueue,
6878 test_bit(THREAD_WAKEUP, &thread->flags)
6879 || kthread_should_stop(),
6880 thread->timeout);
6881
6882 clear_bit(THREAD_WAKEUP, &thread->flags);
6883 if (!kthread_should_stop())
6884 thread->run(thread);
6885 }
6886
6887 return 0;
6888 }
6889
6890 void md_wakeup_thread(struct md_thread *thread)
6891 {
6892 if (thread) {
6893 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6894 set_bit(THREAD_WAKEUP, &thread->flags);
6895 wake_up(&thread->wqueue);
6896 }
6897 }
6898 EXPORT_SYMBOL(md_wakeup_thread);
6899
6900 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6901 struct mddev *mddev, const char *name)
6902 {
6903 struct md_thread *thread;
6904
6905 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6906 if (!thread)
6907 return NULL;
6908
6909 init_waitqueue_head(&thread->wqueue);
6910
6911 thread->run = run;
6912 thread->mddev = mddev;
6913 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6914 thread->tsk = kthread_run(md_thread, thread,
6915 "%s_%s",
6916 mdname(thread->mddev),
6917 name);
6918 if (IS_ERR(thread->tsk)) {
6919 kfree(thread);
6920 return NULL;
6921 }
6922 return thread;
6923 }
6924 EXPORT_SYMBOL(md_register_thread);
6925
6926 void md_unregister_thread(struct md_thread **threadp)
6927 {
6928 struct md_thread *thread = *threadp;
6929 if (!thread)
6930 return;
6931 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6932 /* Locking ensures that mddev_unlock does not wake_up a
6933 * non-existent thread
6934 */
6935 spin_lock(&pers_lock);
6936 *threadp = NULL;
6937 spin_unlock(&pers_lock);
6938
6939 kthread_stop(thread->tsk);
6940 kfree(thread);
6941 }
6942 EXPORT_SYMBOL(md_unregister_thread);
6943
6944 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6945 {
6946 if (!rdev || test_bit(Faulty, &rdev->flags))
6947 return;
6948
6949 if (!mddev->pers || !mddev->pers->error_handler)
6950 return;
6951 mddev->pers->error_handler(mddev,rdev);
6952 if (mddev->degraded)
6953 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6954 sysfs_notify_dirent_safe(rdev->sysfs_state);
6955 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6956 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6957 md_wakeup_thread(mddev->thread);
6958 if (mddev->event_work.func)
6959 queue_work(md_misc_wq, &mddev->event_work);
6960 md_new_event_inintr(mddev);
6961 }
6962 EXPORT_SYMBOL(md_error);
6963
6964 /* seq_file implementation /proc/mdstat */
6965
6966 static void status_unused(struct seq_file *seq)
6967 {
6968 int i = 0;
6969 struct md_rdev *rdev;
6970
6971 seq_printf(seq, "unused devices: ");
6972
6973 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6974 char b[BDEVNAME_SIZE];
6975 i++;
6976 seq_printf(seq, "%s ",
6977 bdevname(rdev->bdev,b));
6978 }
6979 if (!i)
6980 seq_printf(seq, "<none>");
6981
6982 seq_printf(seq, "\n");
6983 }
6984
6985 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6986 {
6987 sector_t max_sectors, resync, res;
6988 unsigned long dt, db;
6989 sector_t rt;
6990 int scale;
6991 unsigned int per_milli;
6992
6993 if (mddev->curr_resync <= 3)
6994 resync = 0;
6995 else
6996 resync = mddev->curr_resync
6997 - atomic_read(&mddev->recovery_active);
6998
6999 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7000 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7001 max_sectors = mddev->resync_max_sectors;
7002 else
7003 max_sectors = mddev->dev_sectors;
7004
7005 WARN_ON(max_sectors == 0);
7006 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7007 * in a sector_t, and (max_sectors>>scale) will fit in a
7008 * u32, as those are the requirements for sector_div.
7009 * Thus 'scale' must be at least 10
7010 */
7011 scale = 10;
7012 if (sizeof(sector_t) > sizeof(unsigned long)) {
7013 while ( max_sectors/2 > (1ULL<<(scale+32)))
7014 scale++;
7015 }
7016 res = (resync>>scale)*1000;
7017 sector_div(res, (u32)((max_sectors>>scale)+1));
7018
7019 per_milli = res;
7020 {
7021 int i, x = per_milli/50, y = 20-x;
7022 seq_printf(seq, "[");
7023 for (i = 0; i < x; i++)
7024 seq_printf(seq, "=");
7025 seq_printf(seq, ">");
7026 for (i = 0; i < y; i++)
7027 seq_printf(seq, ".");
7028 seq_printf(seq, "] ");
7029 }
7030 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7031 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7032 "reshape" :
7033 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7034 "check" :
7035 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7036 "resync" : "recovery"))),
7037 per_milli/10, per_milli % 10,
7038 (unsigned long long) resync/2,
7039 (unsigned long long) max_sectors/2);
7040
7041 /*
7042 * dt: time from mark until now
7043 * db: blocks written from mark until now
7044 * rt: remaining time
7045 *
7046 * rt is a sector_t, so could be 32bit or 64bit.
7047 * So we divide before multiply in case it is 32bit and close
7048 * to the limit.
7049 * We scale the divisor (db) by 32 to avoid losing precision
7050 * near the end of resync when the number of remaining sectors
7051 * is close to 'db'.
7052 * We then divide rt by 32 after multiplying by db to compensate.
7053 * The '+1' avoids division by zero if db is very small.
7054 */
7055 dt = ((jiffies - mddev->resync_mark) / HZ);
7056 if (!dt) dt++;
7057 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7058 - mddev->resync_mark_cnt;
7059
7060 rt = max_sectors - resync; /* number of remaining sectors */
7061 sector_div(rt, db/32+1);
7062 rt *= dt;
7063 rt >>= 5;
7064
7065 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7066 ((unsigned long)rt % 60)/6);
7067
7068 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7069 }
7070
7071 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7072 {
7073 struct list_head *tmp;
7074 loff_t l = *pos;
7075 struct mddev *mddev;
7076
7077 if (l >= 0x10000)
7078 return NULL;
7079 if (!l--)
7080 /* header */
7081 return (void*)1;
7082
7083 spin_lock(&all_mddevs_lock);
7084 list_for_each(tmp,&all_mddevs)
7085 if (!l--) {
7086 mddev = list_entry(tmp, struct mddev, all_mddevs);
7087 mddev_get(mddev);
7088 spin_unlock(&all_mddevs_lock);
7089 return mddev;
7090 }
7091 spin_unlock(&all_mddevs_lock);
7092 if (!l--)
7093 return (void*)2;/* tail */
7094 return NULL;
7095 }
7096
7097 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7098 {
7099 struct list_head *tmp;
7100 struct mddev *next_mddev, *mddev = v;
7101
7102 ++*pos;
7103 if (v == (void*)2)
7104 return NULL;
7105
7106 spin_lock(&all_mddevs_lock);
7107 if (v == (void*)1)
7108 tmp = all_mddevs.next;
7109 else
7110 tmp = mddev->all_mddevs.next;
7111 if (tmp != &all_mddevs)
7112 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7113 else {
7114 next_mddev = (void*)2;
7115 *pos = 0x10000;
7116 }
7117 spin_unlock(&all_mddevs_lock);
7118
7119 if (v != (void*)1)
7120 mddev_put(mddev);
7121 return next_mddev;
7122
7123 }
7124
7125 static void md_seq_stop(struct seq_file *seq, void *v)
7126 {
7127 struct mddev *mddev = v;
7128
7129 if (mddev && v != (void*)1 && v != (void*)2)
7130 mddev_put(mddev);
7131 }
7132
7133 static int md_seq_show(struct seq_file *seq, void *v)
7134 {
7135 struct mddev *mddev = v;
7136 sector_t sectors;
7137 struct md_rdev *rdev;
7138
7139 if (v == (void*)1) {
7140 struct md_personality *pers;
7141 seq_printf(seq, "Personalities : ");
7142 spin_lock(&pers_lock);
7143 list_for_each_entry(pers, &pers_list, list)
7144 seq_printf(seq, "[%s] ", pers->name);
7145
7146 spin_unlock(&pers_lock);
7147 seq_printf(seq, "\n");
7148 seq->poll_event = atomic_read(&md_event_count);
7149 return 0;
7150 }
7151 if (v == (void*)2) {
7152 status_unused(seq);
7153 return 0;
7154 }
7155
7156 spin_lock(&mddev->lock);
7157 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7158 seq_printf(seq, "%s : %sactive", mdname(mddev),
7159 mddev->pers ? "" : "in");
7160 if (mddev->pers) {
7161 if (mddev->ro==1)
7162 seq_printf(seq, " (read-only)");
7163 if (mddev->ro==2)
7164 seq_printf(seq, " (auto-read-only)");
7165 seq_printf(seq, " %s", mddev->pers->name);
7166 }
7167
7168 sectors = 0;
7169 rcu_read_lock();
7170 rdev_for_each_rcu(rdev, mddev) {
7171 char b[BDEVNAME_SIZE];
7172 seq_printf(seq, " %s[%d]",
7173 bdevname(rdev->bdev,b), rdev->desc_nr);
7174 if (test_bit(WriteMostly, &rdev->flags))
7175 seq_printf(seq, "(W)");
7176 if (test_bit(Faulty, &rdev->flags)) {
7177 seq_printf(seq, "(F)");
7178 continue;
7179 }
7180 if (rdev->raid_disk < 0)
7181 seq_printf(seq, "(S)"); /* spare */
7182 if (test_bit(Replacement, &rdev->flags))
7183 seq_printf(seq, "(R)");
7184 sectors += rdev->sectors;
7185 }
7186 rcu_read_unlock();
7187
7188 if (!list_empty(&mddev->disks)) {
7189 if (mddev->pers)
7190 seq_printf(seq, "\n %llu blocks",
7191 (unsigned long long)
7192 mddev->array_sectors / 2);
7193 else
7194 seq_printf(seq, "\n %llu blocks",
7195 (unsigned long long)sectors / 2);
7196 }
7197 if (mddev->persistent) {
7198 if (mddev->major_version != 0 ||
7199 mddev->minor_version != 90) {
7200 seq_printf(seq," super %d.%d",
7201 mddev->major_version,
7202 mddev->minor_version);
7203 }
7204 } else if (mddev->external)
7205 seq_printf(seq, " super external:%s",
7206 mddev->metadata_type);
7207 else
7208 seq_printf(seq, " super non-persistent");
7209
7210 if (mddev->pers) {
7211 mddev->pers->status(seq, mddev);
7212 seq_printf(seq, "\n ");
7213 if (mddev->pers->sync_request) {
7214 if (mddev->curr_resync > 2) {
7215 status_resync(seq, mddev);
7216 seq_printf(seq, "\n ");
7217 } else if (mddev->curr_resync >= 1)
7218 seq_printf(seq, "\tresync=DELAYED\n ");
7219 else if (mddev->recovery_cp < MaxSector)
7220 seq_printf(seq, "\tresync=PENDING\n ");
7221 }
7222 } else
7223 seq_printf(seq, "\n ");
7224
7225 bitmap_status(seq, mddev->bitmap);
7226
7227 seq_printf(seq, "\n");
7228 }
7229 spin_unlock(&mddev->lock);
7230
7231 return 0;
7232 }
7233
7234 static const struct seq_operations md_seq_ops = {
7235 .start = md_seq_start,
7236 .next = md_seq_next,
7237 .stop = md_seq_stop,
7238 .show = md_seq_show,
7239 };
7240
7241 static int md_seq_open(struct inode *inode, struct file *file)
7242 {
7243 struct seq_file *seq;
7244 int error;
7245
7246 error = seq_open(file, &md_seq_ops);
7247 if (error)
7248 return error;
7249
7250 seq = file->private_data;
7251 seq->poll_event = atomic_read(&md_event_count);
7252 return error;
7253 }
7254
7255 static int md_unloading;
7256 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7257 {
7258 struct seq_file *seq = filp->private_data;
7259 int mask;
7260
7261 if (md_unloading)
7262 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7263 poll_wait(filp, &md_event_waiters, wait);
7264
7265 /* always allow read */
7266 mask = POLLIN | POLLRDNORM;
7267
7268 if (seq->poll_event != atomic_read(&md_event_count))
7269 mask |= POLLERR | POLLPRI;
7270 return mask;
7271 }
7272
7273 static const struct file_operations md_seq_fops = {
7274 .owner = THIS_MODULE,
7275 .open = md_seq_open,
7276 .read = seq_read,
7277 .llseek = seq_lseek,
7278 .release = seq_release_private,
7279 .poll = mdstat_poll,
7280 };
7281
7282 int register_md_personality(struct md_personality *p)
7283 {
7284 printk(KERN_INFO "md: %s personality registered for level %d\n",
7285 p->name, p->level);
7286 spin_lock(&pers_lock);
7287 list_add_tail(&p->list, &pers_list);
7288 spin_unlock(&pers_lock);
7289 return 0;
7290 }
7291 EXPORT_SYMBOL(register_md_personality);
7292
7293 int unregister_md_personality(struct md_personality *p)
7294 {
7295 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7296 spin_lock(&pers_lock);
7297 list_del_init(&p->list);
7298 spin_unlock(&pers_lock);
7299 return 0;
7300 }
7301 EXPORT_SYMBOL(unregister_md_personality);
7302
7303 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7304 {
7305 if (md_cluster_ops != NULL)
7306 return -EALREADY;
7307 spin_lock(&pers_lock);
7308 md_cluster_ops = ops;
7309 md_cluster_mod = module;
7310 spin_unlock(&pers_lock);
7311 return 0;
7312 }
7313 EXPORT_SYMBOL(register_md_cluster_operations);
7314
7315 int unregister_md_cluster_operations(void)
7316 {
7317 spin_lock(&pers_lock);
7318 md_cluster_ops = NULL;
7319 spin_unlock(&pers_lock);
7320 return 0;
7321 }
7322 EXPORT_SYMBOL(unregister_md_cluster_operations);
7323
7324 int md_setup_cluster(struct mddev *mddev, int nodes)
7325 {
7326 int err;
7327
7328 err = request_module("md-cluster");
7329 if (err) {
7330 pr_err("md-cluster module not found.\n");
7331 return err;
7332 }
7333
7334 spin_lock(&pers_lock);
7335 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7336 spin_unlock(&pers_lock);
7337 return -ENOENT;
7338 }
7339 spin_unlock(&pers_lock);
7340
7341 return md_cluster_ops->join(mddev, nodes);
7342 }
7343
7344 void md_cluster_stop(struct mddev *mddev)
7345 {
7346 if (!md_cluster_ops)
7347 return;
7348 md_cluster_ops->leave(mddev);
7349 module_put(md_cluster_mod);
7350 }
7351
7352 static int is_mddev_idle(struct mddev *mddev, int init)
7353 {
7354 struct md_rdev *rdev;
7355 int idle;
7356 int curr_events;
7357
7358 idle = 1;
7359 rcu_read_lock();
7360 rdev_for_each_rcu(rdev, mddev) {
7361 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7362 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7363 (int)part_stat_read(&disk->part0, sectors[1]) -
7364 atomic_read(&disk->sync_io);
7365 /* sync IO will cause sync_io to increase before the disk_stats
7366 * as sync_io is counted when a request starts, and
7367 * disk_stats is counted when it completes.
7368 * So resync activity will cause curr_events to be smaller than
7369 * when there was no such activity.
7370 * non-sync IO will cause disk_stat to increase without
7371 * increasing sync_io so curr_events will (eventually)
7372 * be larger than it was before. Once it becomes
7373 * substantially larger, the test below will cause
7374 * the array to appear non-idle, and resync will slow
7375 * down.
7376 * If there is a lot of outstanding resync activity when
7377 * we set last_event to curr_events, then all that activity
7378 * completing might cause the array to appear non-idle
7379 * and resync will be slowed down even though there might
7380 * not have been non-resync activity. This will only
7381 * happen once though. 'last_events' will soon reflect
7382 * the state where there is little or no outstanding
7383 * resync requests, and further resync activity will
7384 * always make curr_events less than last_events.
7385 *
7386 */
7387 if (init || curr_events - rdev->last_events > 64) {
7388 rdev->last_events = curr_events;
7389 idle = 0;
7390 }
7391 }
7392 rcu_read_unlock();
7393 return idle;
7394 }
7395
7396 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7397 {
7398 /* another "blocks" (512byte) blocks have been synced */
7399 atomic_sub(blocks, &mddev->recovery_active);
7400 wake_up(&mddev->recovery_wait);
7401 if (!ok) {
7402 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7403 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7404 md_wakeup_thread(mddev->thread);
7405 // stop recovery, signal do_sync ....
7406 }
7407 }
7408 EXPORT_SYMBOL(md_done_sync);
7409
7410 /* md_write_start(mddev, bi)
7411 * If we need to update some array metadata (e.g. 'active' flag
7412 * in superblock) before writing, schedule a superblock update
7413 * and wait for it to complete.
7414 */
7415 void md_write_start(struct mddev *mddev, struct bio *bi)
7416 {
7417 int did_change = 0;
7418 if (bio_data_dir(bi) != WRITE)
7419 return;
7420
7421 BUG_ON(mddev->ro == 1);
7422 if (mddev->ro == 2) {
7423 /* need to switch to read/write */
7424 mddev->ro = 0;
7425 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7426 md_wakeup_thread(mddev->thread);
7427 md_wakeup_thread(mddev->sync_thread);
7428 did_change = 1;
7429 }
7430 atomic_inc(&mddev->writes_pending);
7431 if (mddev->safemode == 1)
7432 mddev->safemode = 0;
7433 if (mddev->in_sync) {
7434 spin_lock(&mddev->lock);
7435 if (mddev->in_sync) {
7436 mddev->in_sync = 0;
7437 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7438 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7439 md_wakeup_thread(mddev->thread);
7440 did_change = 1;
7441 }
7442 spin_unlock(&mddev->lock);
7443 }
7444 if (did_change)
7445 sysfs_notify_dirent_safe(mddev->sysfs_state);
7446 wait_event(mddev->sb_wait,
7447 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7448 }
7449 EXPORT_SYMBOL(md_write_start);
7450
7451 void md_write_end(struct mddev *mddev)
7452 {
7453 if (atomic_dec_and_test(&mddev->writes_pending)) {
7454 if (mddev->safemode == 2)
7455 md_wakeup_thread(mddev->thread);
7456 else if (mddev->safemode_delay)
7457 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7458 }
7459 }
7460 EXPORT_SYMBOL(md_write_end);
7461
7462 /* md_allow_write(mddev)
7463 * Calling this ensures that the array is marked 'active' so that writes
7464 * may proceed without blocking. It is important to call this before
7465 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7466 * Must be called with mddev_lock held.
7467 *
7468 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7469 * is dropped, so return -EAGAIN after notifying userspace.
7470 */
7471 int md_allow_write(struct mddev *mddev)
7472 {
7473 if (!mddev->pers)
7474 return 0;
7475 if (mddev->ro)
7476 return 0;
7477 if (!mddev->pers->sync_request)
7478 return 0;
7479
7480 spin_lock(&mddev->lock);
7481 if (mddev->in_sync) {
7482 mddev->in_sync = 0;
7483 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7484 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7485 if (mddev->safemode_delay &&
7486 mddev->safemode == 0)
7487 mddev->safemode = 1;
7488 spin_unlock(&mddev->lock);
7489 if (mddev_is_clustered(mddev))
7490 md_cluster_ops->metadata_update_start(mddev);
7491 md_update_sb(mddev, 0);
7492 if (mddev_is_clustered(mddev))
7493 md_cluster_ops->metadata_update_finish(mddev);
7494 sysfs_notify_dirent_safe(mddev->sysfs_state);
7495 } else
7496 spin_unlock(&mddev->lock);
7497
7498 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7499 return -EAGAIN;
7500 else
7501 return 0;
7502 }
7503 EXPORT_SYMBOL_GPL(md_allow_write);
7504
7505 #define SYNC_MARKS 10
7506 #define SYNC_MARK_STEP (3*HZ)
7507 #define UPDATE_FREQUENCY (5*60*HZ)
7508 void md_do_sync(struct md_thread *thread)
7509 {
7510 struct mddev *mddev = thread->mddev;
7511 struct mddev *mddev2;
7512 unsigned int currspeed = 0,
7513 window;
7514 sector_t max_sectors,j, io_sectors, recovery_done;
7515 unsigned long mark[SYNC_MARKS];
7516 unsigned long update_time;
7517 sector_t mark_cnt[SYNC_MARKS];
7518 int last_mark,m;
7519 struct list_head *tmp;
7520 sector_t last_check;
7521 int skipped = 0;
7522 struct md_rdev *rdev;
7523 char *desc, *action = NULL;
7524 struct blk_plug plug;
7525
7526 /* just incase thread restarts... */
7527 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7528 return;
7529 if (mddev->ro) {/* never try to sync a read-only array */
7530 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7531 return;
7532 }
7533
7534 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7535 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7536 desc = "data-check";
7537 action = "check";
7538 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7539 desc = "requested-resync";
7540 action = "repair";
7541 } else
7542 desc = "resync";
7543 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7544 desc = "reshape";
7545 else
7546 desc = "recovery";
7547
7548 mddev->last_sync_action = action ?: desc;
7549
7550 /* we overload curr_resync somewhat here.
7551 * 0 == not engaged in resync at all
7552 * 2 == checking that there is no conflict with another sync
7553 * 1 == like 2, but have yielded to allow conflicting resync to
7554 * commense
7555 * other == active in resync - this many blocks
7556 *
7557 * Before starting a resync we must have set curr_resync to
7558 * 2, and then checked that every "conflicting" array has curr_resync
7559 * less than ours. When we find one that is the same or higher
7560 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7561 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7562 * This will mean we have to start checking from the beginning again.
7563 *
7564 */
7565
7566 do {
7567 mddev->curr_resync = 2;
7568
7569 try_again:
7570 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7571 goto skip;
7572 for_each_mddev(mddev2, tmp) {
7573 if (mddev2 == mddev)
7574 continue;
7575 if (!mddev->parallel_resync
7576 && mddev2->curr_resync
7577 && match_mddev_units(mddev, mddev2)) {
7578 DEFINE_WAIT(wq);
7579 if (mddev < mddev2 && mddev->curr_resync == 2) {
7580 /* arbitrarily yield */
7581 mddev->curr_resync = 1;
7582 wake_up(&resync_wait);
7583 }
7584 if (mddev > mddev2 && mddev->curr_resync == 1)
7585 /* no need to wait here, we can wait the next
7586 * time 'round when curr_resync == 2
7587 */
7588 continue;
7589 /* We need to wait 'interruptible' so as not to
7590 * contribute to the load average, and not to
7591 * be caught by 'softlockup'
7592 */
7593 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7594 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7595 mddev2->curr_resync >= mddev->curr_resync) {
7596 printk(KERN_INFO "md: delaying %s of %s"
7597 " until %s has finished (they"
7598 " share one or more physical units)\n",
7599 desc, mdname(mddev), mdname(mddev2));
7600 mddev_put(mddev2);
7601 if (signal_pending(current))
7602 flush_signals(current);
7603 schedule();
7604 finish_wait(&resync_wait, &wq);
7605 goto try_again;
7606 }
7607 finish_wait(&resync_wait, &wq);
7608 }
7609 }
7610 } while (mddev->curr_resync < 2);
7611
7612 j = 0;
7613 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7614 /* resync follows the size requested by the personality,
7615 * which defaults to physical size, but can be virtual size
7616 */
7617 max_sectors = mddev->resync_max_sectors;
7618 atomic64_set(&mddev->resync_mismatches, 0);
7619 /* we don't use the checkpoint if there's a bitmap */
7620 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7621 j = mddev->resync_min;
7622 else if (!mddev->bitmap)
7623 j = mddev->recovery_cp;
7624
7625 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7626 max_sectors = mddev->resync_max_sectors;
7627 else {
7628 /* recovery follows the physical size of devices */
7629 max_sectors = mddev->dev_sectors;
7630 j = MaxSector;
7631 rcu_read_lock();
7632 rdev_for_each_rcu(rdev, mddev)
7633 if (rdev->raid_disk >= 0 &&
7634 !test_bit(Faulty, &rdev->flags) &&
7635 !test_bit(In_sync, &rdev->flags) &&
7636 rdev->recovery_offset < j)
7637 j = rdev->recovery_offset;
7638 rcu_read_unlock();
7639
7640 /* If there is a bitmap, we need to make sure all
7641 * writes that started before we added a spare
7642 * complete before we start doing a recovery.
7643 * Otherwise the write might complete and (via
7644 * bitmap_endwrite) set a bit in the bitmap after the
7645 * recovery has checked that bit and skipped that
7646 * region.
7647 */
7648 if (mddev->bitmap) {
7649 mddev->pers->quiesce(mddev, 1);
7650 mddev->pers->quiesce(mddev, 0);
7651 }
7652 }
7653
7654 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7655 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7656 " %d KB/sec/disk.\n", speed_min(mddev));
7657 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7658 "(but not more than %d KB/sec) for %s.\n",
7659 speed_max(mddev), desc);
7660
7661 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7662
7663 io_sectors = 0;
7664 for (m = 0; m < SYNC_MARKS; m++) {
7665 mark[m] = jiffies;
7666 mark_cnt[m] = io_sectors;
7667 }
7668 last_mark = 0;
7669 mddev->resync_mark = mark[last_mark];
7670 mddev->resync_mark_cnt = mark_cnt[last_mark];
7671
7672 /*
7673 * Tune reconstruction:
7674 */
7675 window = 32*(PAGE_SIZE/512);
7676 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7677 window/2, (unsigned long long)max_sectors/2);
7678
7679 atomic_set(&mddev->recovery_active, 0);
7680 last_check = 0;
7681
7682 if (j>2) {
7683 printk(KERN_INFO
7684 "md: resuming %s of %s from checkpoint.\n",
7685 desc, mdname(mddev));
7686 mddev->curr_resync = j;
7687 } else
7688 mddev->curr_resync = 3; /* no longer delayed */
7689 mddev->curr_resync_completed = j;
7690 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7691 md_new_event(mddev);
7692 update_time = jiffies;
7693
7694 if (mddev_is_clustered(mddev))
7695 md_cluster_ops->resync_start(mddev, j, max_sectors);
7696
7697 blk_start_plug(&plug);
7698 while (j < max_sectors) {
7699 sector_t sectors;
7700
7701 skipped = 0;
7702
7703 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7704 ((mddev->curr_resync > mddev->curr_resync_completed &&
7705 (mddev->curr_resync - mddev->curr_resync_completed)
7706 > (max_sectors >> 4)) ||
7707 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7708 (j - mddev->curr_resync_completed)*2
7709 >= mddev->resync_max - mddev->curr_resync_completed
7710 )) {
7711 /* time to update curr_resync_completed */
7712 wait_event(mddev->recovery_wait,
7713 atomic_read(&mddev->recovery_active) == 0);
7714 mddev->curr_resync_completed = j;
7715 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7716 j > mddev->recovery_cp)
7717 mddev->recovery_cp = j;
7718 update_time = jiffies;
7719 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7720 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7721 }
7722
7723 while (j >= mddev->resync_max &&
7724 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7725 /* As this condition is controlled by user-space,
7726 * we can block indefinitely, so use '_interruptible'
7727 * to avoid triggering warnings.
7728 */
7729 flush_signals(current); /* just in case */
7730 wait_event_interruptible(mddev->recovery_wait,
7731 mddev->resync_max > j
7732 || test_bit(MD_RECOVERY_INTR,
7733 &mddev->recovery));
7734 }
7735
7736 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7737 break;
7738
7739 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7740 currspeed < speed_min(mddev));
7741 if (sectors == 0) {
7742 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7743 break;
7744 }
7745
7746 if (!skipped) { /* actual IO requested */
7747 io_sectors += sectors;
7748 atomic_add(sectors, &mddev->recovery_active);
7749 }
7750
7751 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7752 break;
7753
7754 j += sectors;
7755 if (j > 2)
7756 mddev->curr_resync = j;
7757 if (mddev_is_clustered(mddev))
7758 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7759 mddev->curr_mark_cnt = io_sectors;
7760 if (last_check == 0)
7761 /* this is the earliest that rebuild will be
7762 * visible in /proc/mdstat
7763 */
7764 md_new_event(mddev);
7765
7766 if (last_check + window > io_sectors || j == max_sectors)
7767 continue;
7768
7769 last_check = io_sectors;
7770 repeat:
7771 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7772 /* step marks */
7773 int next = (last_mark+1) % SYNC_MARKS;
7774
7775 mddev->resync_mark = mark[next];
7776 mddev->resync_mark_cnt = mark_cnt[next];
7777 mark[next] = jiffies;
7778 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7779 last_mark = next;
7780 }
7781
7782 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7783 break;
7784
7785 /*
7786 * this loop exits only if either when we are slower than
7787 * the 'hard' speed limit, or the system was IO-idle for
7788 * a jiffy.
7789 * the system might be non-idle CPU-wise, but we only care
7790 * about not overloading the IO subsystem. (things like an
7791 * e2fsck being done on the RAID array should execute fast)
7792 */
7793 cond_resched();
7794
7795 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7796 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7797 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7798
7799 if (currspeed > speed_min(mddev)) {
7800 if ((currspeed > speed_max(mddev)) ||
7801 !is_mddev_idle(mddev, 0)) {
7802 msleep(500);
7803 goto repeat;
7804 }
7805 }
7806 }
7807 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7808 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7809 ? "interrupted" : "done");
7810 /*
7811 * this also signals 'finished resyncing' to md_stop
7812 */
7813 blk_finish_plug(&plug);
7814 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7815
7816 /* tell personality that we are finished */
7817 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7818
7819 if (mddev_is_clustered(mddev))
7820 md_cluster_ops->resync_finish(mddev);
7821
7822 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7823 mddev->curr_resync > 2) {
7824 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7825 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7826 if (mddev->curr_resync >= mddev->recovery_cp) {
7827 printk(KERN_INFO
7828 "md: checkpointing %s of %s.\n",
7829 desc, mdname(mddev));
7830 if (test_bit(MD_RECOVERY_ERROR,
7831 &mddev->recovery))
7832 mddev->recovery_cp =
7833 mddev->curr_resync_completed;
7834 else
7835 mddev->recovery_cp =
7836 mddev->curr_resync;
7837 }
7838 } else
7839 mddev->recovery_cp = MaxSector;
7840 } else {
7841 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7842 mddev->curr_resync = MaxSector;
7843 rcu_read_lock();
7844 rdev_for_each_rcu(rdev, mddev)
7845 if (rdev->raid_disk >= 0 &&
7846 mddev->delta_disks >= 0 &&
7847 !test_bit(Faulty, &rdev->flags) &&
7848 !test_bit(In_sync, &rdev->flags) &&
7849 rdev->recovery_offset < mddev->curr_resync)
7850 rdev->recovery_offset = mddev->curr_resync;
7851 rcu_read_unlock();
7852 }
7853 }
7854 skip:
7855 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7856
7857 spin_lock(&mddev->lock);
7858 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7859 /* We completed so min/max setting can be forgotten if used. */
7860 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7861 mddev->resync_min = 0;
7862 mddev->resync_max = MaxSector;
7863 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7864 mddev->resync_min = mddev->curr_resync_completed;
7865 mddev->curr_resync = 0;
7866 spin_unlock(&mddev->lock);
7867
7868 wake_up(&resync_wait);
7869 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7870 md_wakeup_thread(mddev->thread);
7871 return;
7872 }
7873 EXPORT_SYMBOL_GPL(md_do_sync);
7874
7875 static int remove_and_add_spares(struct mddev *mddev,
7876 struct md_rdev *this)
7877 {
7878 struct md_rdev *rdev;
7879 int spares = 0;
7880 int removed = 0;
7881
7882 rdev_for_each(rdev, mddev)
7883 if ((this == NULL || rdev == this) &&
7884 rdev->raid_disk >= 0 &&
7885 !test_bit(Blocked, &rdev->flags) &&
7886 (test_bit(Faulty, &rdev->flags) ||
7887 ! test_bit(In_sync, &rdev->flags)) &&
7888 atomic_read(&rdev->nr_pending)==0) {
7889 if (mddev->pers->hot_remove_disk(
7890 mddev, rdev) == 0) {
7891 sysfs_unlink_rdev(mddev, rdev);
7892 rdev->raid_disk = -1;
7893 removed++;
7894 }
7895 }
7896 if (removed && mddev->kobj.sd)
7897 sysfs_notify(&mddev->kobj, NULL, "degraded");
7898
7899 if (this)
7900 goto no_add;
7901
7902 rdev_for_each(rdev, mddev) {
7903 if (rdev->raid_disk >= 0 &&
7904 !test_bit(In_sync, &rdev->flags) &&
7905 !test_bit(Faulty, &rdev->flags))
7906 spares++;
7907 if (rdev->raid_disk >= 0)
7908 continue;
7909 if (test_bit(Faulty, &rdev->flags))
7910 continue;
7911 if (mddev->ro &&
7912 ! (rdev->saved_raid_disk >= 0 &&
7913 !test_bit(Bitmap_sync, &rdev->flags)))
7914 continue;
7915
7916 if (rdev->saved_raid_disk < 0)
7917 rdev->recovery_offset = 0;
7918 if (mddev->pers->
7919 hot_add_disk(mddev, rdev) == 0) {
7920 if (sysfs_link_rdev(mddev, rdev))
7921 /* failure here is OK */;
7922 spares++;
7923 md_new_event(mddev);
7924 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7925 }
7926 }
7927 no_add:
7928 if (removed)
7929 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7930 return spares;
7931 }
7932
7933 static void md_start_sync(struct work_struct *ws)
7934 {
7935 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7936
7937 mddev->sync_thread = md_register_thread(md_do_sync,
7938 mddev,
7939 "resync");
7940 if (!mddev->sync_thread) {
7941 printk(KERN_ERR "%s: could not start resync"
7942 " thread...\n",
7943 mdname(mddev));
7944 /* leave the spares where they are, it shouldn't hurt */
7945 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7946 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7947 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7948 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7949 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7950 wake_up(&resync_wait);
7951 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7952 &mddev->recovery))
7953 if (mddev->sysfs_action)
7954 sysfs_notify_dirent_safe(mddev->sysfs_action);
7955 } else
7956 md_wakeup_thread(mddev->sync_thread);
7957 sysfs_notify_dirent_safe(mddev->sysfs_action);
7958 md_new_event(mddev);
7959 }
7960
7961 /*
7962 * This routine is regularly called by all per-raid-array threads to
7963 * deal with generic issues like resync and super-block update.
7964 * Raid personalities that don't have a thread (linear/raid0) do not
7965 * need this as they never do any recovery or update the superblock.
7966 *
7967 * It does not do any resync itself, but rather "forks" off other threads
7968 * to do that as needed.
7969 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7970 * "->recovery" and create a thread at ->sync_thread.
7971 * When the thread finishes it sets MD_RECOVERY_DONE
7972 * and wakeups up this thread which will reap the thread and finish up.
7973 * This thread also removes any faulty devices (with nr_pending == 0).
7974 *
7975 * The overall approach is:
7976 * 1/ if the superblock needs updating, update it.
7977 * 2/ If a recovery thread is running, don't do anything else.
7978 * 3/ If recovery has finished, clean up, possibly marking spares active.
7979 * 4/ If there are any faulty devices, remove them.
7980 * 5/ If array is degraded, try to add spares devices
7981 * 6/ If array has spares or is not in-sync, start a resync thread.
7982 */
7983 void md_check_recovery(struct mddev *mddev)
7984 {
7985 if (mddev->suspended)
7986 return;
7987
7988 if (mddev->bitmap)
7989 bitmap_daemon_work(mddev);
7990
7991 if (signal_pending(current)) {
7992 if (mddev->pers->sync_request && !mddev->external) {
7993 printk(KERN_INFO "md: %s in immediate safe mode\n",
7994 mdname(mddev));
7995 mddev->safemode = 2;
7996 }
7997 flush_signals(current);
7998 }
7999
8000 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8001 return;
8002 if ( ! (
8003 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8004 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8005 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8006 (mddev->external == 0 && mddev->safemode == 1) ||
8007 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8008 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8009 ))
8010 return;
8011
8012 if (mddev_trylock(mddev)) {
8013 int spares = 0;
8014
8015 if (mddev->ro) {
8016 /* On a read-only array we can:
8017 * - remove failed devices
8018 * - add already-in_sync devices if the array itself
8019 * is in-sync.
8020 * As we only add devices that are already in-sync,
8021 * we can activate the spares immediately.
8022 */
8023 remove_and_add_spares(mddev, NULL);
8024 /* There is no thread, but we need to call
8025 * ->spare_active and clear saved_raid_disk
8026 */
8027 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8028 md_reap_sync_thread(mddev);
8029 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8030 goto unlock;
8031 }
8032
8033 if (!mddev->external) {
8034 int did_change = 0;
8035 spin_lock(&mddev->lock);
8036 if (mddev->safemode &&
8037 !atomic_read(&mddev->writes_pending) &&
8038 !mddev->in_sync &&
8039 mddev->recovery_cp == MaxSector) {
8040 mddev->in_sync = 1;
8041 did_change = 1;
8042 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8043 }
8044 if (mddev->safemode == 1)
8045 mddev->safemode = 0;
8046 spin_unlock(&mddev->lock);
8047 if (did_change)
8048 sysfs_notify_dirent_safe(mddev->sysfs_state);
8049 }
8050
8051 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8052 if (mddev_is_clustered(mddev))
8053 md_cluster_ops->metadata_update_start(mddev);
8054 md_update_sb(mddev, 0);
8055 if (mddev_is_clustered(mddev))
8056 md_cluster_ops->metadata_update_finish(mddev);
8057 }
8058
8059 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8060 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8061 /* resync/recovery still happening */
8062 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8063 goto unlock;
8064 }
8065 if (mddev->sync_thread) {
8066 md_reap_sync_thread(mddev);
8067 goto unlock;
8068 }
8069 /* Set RUNNING before clearing NEEDED to avoid
8070 * any transients in the value of "sync_action".
8071 */
8072 mddev->curr_resync_completed = 0;
8073 spin_lock(&mddev->lock);
8074 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8075 spin_unlock(&mddev->lock);
8076 /* Clear some bits that don't mean anything, but
8077 * might be left set
8078 */
8079 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8080 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8081
8082 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8083 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8084 goto not_running;
8085 /* no recovery is running.
8086 * remove any failed drives, then
8087 * add spares if possible.
8088 * Spares are also removed and re-added, to allow
8089 * the personality to fail the re-add.
8090 */
8091
8092 if (mddev->reshape_position != MaxSector) {
8093 if (mddev->pers->check_reshape == NULL ||
8094 mddev->pers->check_reshape(mddev) != 0)
8095 /* Cannot proceed */
8096 goto not_running;
8097 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8098 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8099 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8100 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8101 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8102 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8103 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8104 } else if (mddev->recovery_cp < MaxSector) {
8105 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8106 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8107 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8108 /* nothing to be done ... */
8109 goto not_running;
8110
8111 if (mddev->pers->sync_request) {
8112 if (spares) {
8113 /* We are adding a device or devices to an array
8114 * which has the bitmap stored on all devices.
8115 * So make sure all bitmap pages get written
8116 */
8117 bitmap_write_all(mddev->bitmap);
8118 }
8119 INIT_WORK(&mddev->del_work, md_start_sync);
8120 queue_work(md_misc_wq, &mddev->del_work);
8121 goto unlock;
8122 }
8123 not_running:
8124 if (!mddev->sync_thread) {
8125 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8126 wake_up(&resync_wait);
8127 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8128 &mddev->recovery))
8129 if (mddev->sysfs_action)
8130 sysfs_notify_dirent_safe(mddev->sysfs_action);
8131 }
8132 unlock:
8133 wake_up(&mddev->sb_wait);
8134 mddev_unlock(mddev);
8135 }
8136 }
8137 EXPORT_SYMBOL(md_check_recovery);
8138
8139 void md_reap_sync_thread(struct mddev *mddev)
8140 {
8141 struct md_rdev *rdev;
8142
8143 /* resync has finished, collect result */
8144 md_unregister_thread(&mddev->sync_thread);
8145 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8146 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8147 /* success...*/
8148 /* activate any spares */
8149 if (mddev->pers->spare_active(mddev)) {
8150 sysfs_notify(&mddev->kobj, NULL,
8151 "degraded");
8152 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8153 }
8154 }
8155 if (mddev_is_clustered(mddev))
8156 md_cluster_ops->metadata_update_start(mddev);
8157 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8158 mddev->pers->finish_reshape)
8159 mddev->pers->finish_reshape(mddev);
8160
8161 /* If array is no-longer degraded, then any saved_raid_disk
8162 * information must be scrapped.
8163 */
8164 if (!mddev->degraded)
8165 rdev_for_each(rdev, mddev)
8166 rdev->saved_raid_disk = -1;
8167
8168 md_update_sb(mddev, 1);
8169 if (mddev_is_clustered(mddev))
8170 md_cluster_ops->metadata_update_finish(mddev);
8171 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8172 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8173 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8174 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8175 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8176 wake_up(&resync_wait);
8177 /* flag recovery needed just to double check */
8178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8179 sysfs_notify_dirent_safe(mddev->sysfs_action);
8180 md_new_event(mddev);
8181 if (mddev->event_work.func)
8182 queue_work(md_misc_wq, &mddev->event_work);
8183 }
8184 EXPORT_SYMBOL(md_reap_sync_thread);
8185
8186 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8187 {
8188 sysfs_notify_dirent_safe(rdev->sysfs_state);
8189 wait_event_timeout(rdev->blocked_wait,
8190 !test_bit(Blocked, &rdev->flags) &&
8191 !test_bit(BlockedBadBlocks, &rdev->flags),
8192 msecs_to_jiffies(5000));
8193 rdev_dec_pending(rdev, mddev);
8194 }
8195 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8196
8197 void md_finish_reshape(struct mddev *mddev)
8198 {
8199 /* called be personality module when reshape completes. */
8200 struct md_rdev *rdev;
8201
8202 rdev_for_each(rdev, mddev) {
8203 if (rdev->data_offset > rdev->new_data_offset)
8204 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8205 else
8206 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8207 rdev->data_offset = rdev->new_data_offset;
8208 }
8209 }
8210 EXPORT_SYMBOL(md_finish_reshape);
8211
8212 /* Bad block management.
8213 * We can record which blocks on each device are 'bad' and so just
8214 * fail those blocks, or that stripe, rather than the whole device.
8215 * Entries in the bad-block table are 64bits wide. This comprises:
8216 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8217 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8218 * A 'shift' can be set so that larger blocks are tracked and
8219 * consequently larger devices can be covered.
8220 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8221 *
8222 * Locking of the bad-block table uses a seqlock so md_is_badblock
8223 * might need to retry if it is very unlucky.
8224 * We will sometimes want to check for bad blocks in a bi_end_io function,
8225 * so we use the write_seqlock_irq variant.
8226 *
8227 * When looking for a bad block we specify a range and want to
8228 * know if any block in the range is bad. So we binary-search
8229 * to the last range that starts at-or-before the given endpoint,
8230 * (or "before the sector after the target range")
8231 * then see if it ends after the given start.
8232 * We return
8233 * 0 if there are no known bad blocks in the range
8234 * 1 if there are known bad block which are all acknowledged
8235 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8236 * plus the start/length of the first bad section we overlap.
8237 */
8238 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8239 sector_t *first_bad, int *bad_sectors)
8240 {
8241 int hi;
8242 int lo;
8243 u64 *p = bb->page;
8244 int rv;
8245 sector_t target = s + sectors;
8246 unsigned seq;
8247
8248 if (bb->shift > 0) {
8249 /* round the start down, and the end up */
8250 s >>= bb->shift;
8251 target += (1<<bb->shift) - 1;
8252 target >>= bb->shift;
8253 sectors = target - s;
8254 }
8255 /* 'target' is now the first block after the bad range */
8256
8257 retry:
8258 seq = read_seqbegin(&bb->lock);
8259 lo = 0;
8260 rv = 0;
8261 hi = bb->count;
8262
8263 /* Binary search between lo and hi for 'target'
8264 * i.e. for the last range that starts before 'target'
8265 */
8266 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8267 * are known not to be the last range before target.
8268 * VARIANT: hi-lo is the number of possible
8269 * ranges, and decreases until it reaches 1
8270 */
8271 while (hi - lo > 1) {
8272 int mid = (lo + hi) / 2;
8273 sector_t a = BB_OFFSET(p[mid]);
8274 if (a < target)
8275 /* This could still be the one, earlier ranges
8276 * could not. */
8277 lo = mid;
8278 else
8279 /* This and later ranges are definitely out. */
8280 hi = mid;
8281 }
8282 /* 'lo' might be the last that started before target, but 'hi' isn't */
8283 if (hi > lo) {
8284 /* need to check all range that end after 's' to see if
8285 * any are unacknowledged.
8286 */
8287 while (lo >= 0 &&
8288 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8289 if (BB_OFFSET(p[lo]) < target) {
8290 /* starts before the end, and finishes after
8291 * the start, so they must overlap
8292 */
8293 if (rv != -1 && BB_ACK(p[lo]))
8294 rv = 1;
8295 else
8296 rv = -1;
8297 *first_bad = BB_OFFSET(p[lo]);
8298 *bad_sectors = BB_LEN(p[lo]);
8299 }
8300 lo--;
8301 }
8302 }
8303
8304 if (read_seqretry(&bb->lock, seq))
8305 goto retry;
8306
8307 return rv;
8308 }
8309 EXPORT_SYMBOL_GPL(md_is_badblock);
8310
8311 /*
8312 * Add a range of bad blocks to the table.
8313 * This might extend the table, or might contract it
8314 * if two adjacent ranges can be merged.
8315 * We binary-search to find the 'insertion' point, then
8316 * decide how best to handle it.
8317 */
8318 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8319 int acknowledged)
8320 {
8321 u64 *p;
8322 int lo, hi;
8323 int rv = 1;
8324 unsigned long flags;
8325
8326 if (bb->shift < 0)
8327 /* badblocks are disabled */
8328 return 0;
8329
8330 if (bb->shift) {
8331 /* round the start down, and the end up */
8332 sector_t next = s + sectors;
8333 s >>= bb->shift;
8334 next += (1<<bb->shift) - 1;
8335 next >>= bb->shift;
8336 sectors = next - s;
8337 }
8338
8339 write_seqlock_irqsave(&bb->lock, flags);
8340
8341 p = bb->page;
8342 lo = 0;
8343 hi = bb->count;
8344 /* Find the last range that starts at-or-before 's' */
8345 while (hi - lo > 1) {
8346 int mid = (lo + hi) / 2;
8347 sector_t a = BB_OFFSET(p[mid]);
8348 if (a <= s)
8349 lo = mid;
8350 else
8351 hi = mid;
8352 }
8353 if (hi > lo && BB_OFFSET(p[lo]) > s)
8354 hi = lo;
8355
8356 if (hi > lo) {
8357 /* we found a range that might merge with the start
8358 * of our new range
8359 */
8360 sector_t a = BB_OFFSET(p[lo]);
8361 sector_t e = a + BB_LEN(p[lo]);
8362 int ack = BB_ACK(p[lo]);
8363 if (e >= s) {
8364 /* Yes, we can merge with a previous range */
8365 if (s == a && s + sectors >= e)
8366 /* new range covers old */
8367 ack = acknowledged;
8368 else
8369 ack = ack && acknowledged;
8370
8371 if (e < s + sectors)
8372 e = s + sectors;
8373 if (e - a <= BB_MAX_LEN) {
8374 p[lo] = BB_MAKE(a, e-a, ack);
8375 s = e;
8376 } else {
8377 /* does not all fit in one range,
8378 * make p[lo] maximal
8379 */
8380 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8381 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8382 s = a + BB_MAX_LEN;
8383 }
8384 sectors = e - s;
8385 }
8386 }
8387 if (sectors && hi < bb->count) {
8388 /* 'hi' points to the first range that starts after 's'.
8389 * Maybe we can merge with the start of that range */
8390 sector_t a = BB_OFFSET(p[hi]);
8391 sector_t e = a + BB_LEN(p[hi]);
8392 int ack = BB_ACK(p[hi]);
8393 if (a <= s + sectors) {
8394 /* merging is possible */
8395 if (e <= s + sectors) {
8396 /* full overlap */
8397 e = s + sectors;
8398 ack = acknowledged;
8399 } else
8400 ack = ack && acknowledged;
8401
8402 a = s;
8403 if (e - a <= BB_MAX_LEN) {
8404 p[hi] = BB_MAKE(a, e-a, ack);
8405 s = e;
8406 } else {
8407 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8408 s = a + BB_MAX_LEN;
8409 }
8410 sectors = e - s;
8411 lo = hi;
8412 hi++;
8413 }
8414 }
8415 if (sectors == 0 && hi < bb->count) {
8416 /* we might be able to combine lo and hi */
8417 /* Note: 's' is at the end of 'lo' */
8418 sector_t a = BB_OFFSET(p[hi]);
8419 int lolen = BB_LEN(p[lo]);
8420 int hilen = BB_LEN(p[hi]);
8421 int newlen = lolen + hilen - (s - a);
8422 if (s >= a && newlen < BB_MAX_LEN) {
8423 /* yes, we can combine them */
8424 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8425 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8426 memmove(p + hi, p + hi + 1,
8427 (bb->count - hi - 1) * 8);
8428 bb->count--;
8429 }
8430 }
8431 while (sectors) {
8432 /* didn't merge (it all).
8433 * Need to add a range just before 'hi' */
8434 if (bb->count >= MD_MAX_BADBLOCKS) {
8435 /* No room for more */
8436 rv = 0;
8437 break;
8438 } else {
8439 int this_sectors = sectors;
8440 memmove(p + hi + 1, p + hi,
8441 (bb->count - hi) * 8);
8442 bb->count++;
8443
8444 if (this_sectors > BB_MAX_LEN)
8445 this_sectors = BB_MAX_LEN;
8446 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8447 sectors -= this_sectors;
8448 s += this_sectors;
8449 }
8450 }
8451
8452 bb->changed = 1;
8453 if (!acknowledged)
8454 bb->unacked_exist = 1;
8455 write_sequnlock_irqrestore(&bb->lock, flags);
8456
8457 return rv;
8458 }
8459
8460 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8461 int is_new)
8462 {
8463 int rv;
8464 if (is_new)
8465 s += rdev->new_data_offset;
8466 else
8467 s += rdev->data_offset;
8468 rv = md_set_badblocks(&rdev->badblocks,
8469 s, sectors, 0);
8470 if (rv) {
8471 /* Make sure they get written out promptly */
8472 sysfs_notify_dirent_safe(rdev->sysfs_state);
8473 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8474 md_wakeup_thread(rdev->mddev->thread);
8475 }
8476 return rv;
8477 }
8478 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8479
8480 /*
8481 * Remove a range of bad blocks from the table.
8482 * This may involve extending the table if we spilt a region,
8483 * but it must not fail. So if the table becomes full, we just
8484 * drop the remove request.
8485 */
8486 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8487 {
8488 u64 *p;
8489 int lo, hi;
8490 sector_t target = s + sectors;
8491 int rv = 0;
8492
8493 if (bb->shift > 0) {
8494 /* When clearing we round the start up and the end down.
8495 * This should not matter as the shift should align with
8496 * the block size and no rounding should ever be needed.
8497 * However it is better the think a block is bad when it
8498 * isn't than to think a block is not bad when it is.
8499 */
8500 s += (1<<bb->shift) - 1;
8501 s >>= bb->shift;
8502 target >>= bb->shift;
8503 sectors = target - s;
8504 }
8505
8506 write_seqlock_irq(&bb->lock);
8507
8508 p = bb->page;
8509 lo = 0;
8510 hi = bb->count;
8511 /* Find the last range that starts before 'target' */
8512 while (hi - lo > 1) {
8513 int mid = (lo + hi) / 2;
8514 sector_t a = BB_OFFSET(p[mid]);
8515 if (a < target)
8516 lo = mid;
8517 else
8518 hi = mid;
8519 }
8520 if (hi > lo) {
8521 /* p[lo] is the last range that could overlap the
8522 * current range. Earlier ranges could also overlap,
8523 * but only this one can overlap the end of the range.
8524 */
8525 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8526 /* Partial overlap, leave the tail of this range */
8527 int ack = BB_ACK(p[lo]);
8528 sector_t a = BB_OFFSET(p[lo]);
8529 sector_t end = a + BB_LEN(p[lo]);
8530
8531 if (a < s) {
8532 /* we need to split this range */
8533 if (bb->count >= MD_MAX_BADBLOCKS) {
8534 rv = -ENOSPC;
8535 goto out;
8536 }
8537 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8538 bb->count++;
8539 p[lo] = BB_MAKE(a, s-a, ack);
8540 lo++;
8541 }
8542 p[lo] = BB_MAKE(target, end - target, ack);
8543 /* there is no longer an overlap */
8544 hi = lo;
8545 lo--;
8546 }
8547 while (lo >= 0 &&
8548 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8549 /* This range does overlap */
8550 if (BB_OFFSET(p[lo]) < s) {
8551 /* Keep the early parts of this range. */
8552 int ack = BB_ACK(p[lo]);
8553 sector_t start = BB_OFFSET(p[lo]);
8554 p[lo] = BB_MAKE(start, s - start, ack);
8555 /* now low doesn't overlap, so.. */
8556 break;
8557 }
8558 lo--;
8559 }
8560 /* 'lo' is strictly before, 'hi' is strictly after,
8561 * anything between needs to be discarded
8562 */
8563 if (hi - lo > 1) {
8564 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8565 bb->count -= (hi - lo - 1);
8566 }
8567 }
8568
8569 bb->changed = 1;
8570 out:
8571 write_sequnlock_irq(&bb->lock);
8572 return rv;
8573 }
8574
8575 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8576 int is_new)
8577 {
8578 if (is_new)
8579 s += rdev->new_data_offset;
8580 else
8581 s += rdev->data_offset;
8582 return md_clear_badblocks(&rdev->badblocks,
8583 s, sectors);
8584 }
8585 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8586
8587 /*
8588 * Acknowledge all bad blocks in a list.
8589 * This only succeeds if ->changed is clear. It is used by
8590 * in-kernel metadata updates
8591 */
8592 void md_ack_all_badblocks(struct badblocks *bb)
8593 {
8594 if (bb->page == NULL || bb->changed)
8595 /* no point even trying */
8596 return;
8597 write_seqlock_irq(&bb->lock);
8598
8599 if (bb->changed == 0 && bb->unacked_exist) {
8600 u64 *p = bb->page;
8601 int i;
8602 for (i = 0; i < bb->count ; i++) {
8603 if (!BB_ACK(p[i])) {
8604 sector_t start = BB_OFFSET(p[i]);
8605 int len = BB_LEN(p[i]);
8606 p[i] = BB_MAKE(start, len, 1);
8607 }
8608 }
8609 bb->unacked_exist = 0;
8610 }
8611 write_sequnlock_irq(&bb->lock);
8612 }
8613 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8614
8615 /* sysfs access to bad-blocks list.
8616 * We present two files.
8617 * 'bad-blocks' lists sector numbers and lengths of ranges that
8618 * are recorded as bad. The list is truncated to fit within
8619 * the one-page limit of sysfs.
8620 * Writing "sector length" to this file adds an acknowledged
8621 * bad block list.
8622 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8623 * been acknowledged. Writing to this file adds bad blocks
8624 * without acknowledging them. This is largely for testing.
8625 */
8626
8627 static ssize_t
8628 badblocks_show(struct badblocks *bb, char *page, int unack)
8629 {
8630 size_t len;
8631 int i;
8632 u64 *p = bb->page;
8633 unsigned seq;
8634
8635 if (bb->shift < 0)
8636 return 0;
8637
8638 retry:
8639 seq = read_seqbegin(&bb->lock);
8640
8641 len = 0;
8642 i = 0;
8643
8644 while (len < PAGE_SIZE && i < bb->count) {
8645 sector_t s = BB_OFFSET(p[i]);
8646 unsigned int length = BB_LEN(p[i]);
8647 int ack = BB_ACK(p[i]);
8648 i++;
8649
8650 if (unack && ack)
8651 continue;
8652
8653 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8654 (unsigned long long)s << bb->shift,
8655 length << bb->shift);
8656 }
8657 if (unack && len == 0)
8658 bb->unacked_exist = 0;
8659
8660 if (read_seqretry(&bb->lock, seq))
8661 goto retry;
8662
8663 return len;
8664 }
8665
8666 #define DO_DEBUG 1
8667
8668 static ssize_t
8669 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8670 {
8671 unsigned long long sector;
8672 int length;
8673 char newline;
8674 #ifdef DO_DEBUG
8675 /* Allow clearing via sysfs *only* for testing/debugging.
8676 * Normally only a successful write may clear a badblock
8677 */
8678 int clear = 0;
8679 if (page[0] == '-') {
8680 clear = 1;
8681 page++;
8682 }
8683 #endif /* DO_DEBUG */
8684
8685 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8686 case 3:
8687 if (newline != '\n')
8688 return -EINVAL;
8689 case 2:
8690 if (length <= 0)
8691 return -EINVAL;
8692 break;
8693 default:
8694 return -EINVAL;
8695 }
8696
8697 #ifdef DO_DEBUG
8698 if (clear) {
8699 md_clear_badblocks(bb, sector, length);
8700 return len;
8701 }
8702 #endif /* DO_DEBUG */
8703 if (md_set_badblocks(bb, sector, length, !unack))
8704 return len;
8705 else
8706 return -ENOSPC;
8707 }
8708
8709 static int md_notify_reboot(struct notifier_block *this,
8710 unsigned long code, void *x)
8711 {
8712 struct list_head *tmp;
8713 struct mddev *mddev;
8714 int need_delay = 0;
8715
8716 for_each_mddev(mddev, tmp) {
8717 if (mddev_trylock(mddev)) {
8718 if (mddev->pers)
8719 __md_stop_writes(mddev);
8720 if (mddev->persistent)
8721 mddev->safemode = 2;
8722 mddev_unlock(mddev);
8723 }
8724 need_delay = 1;
8725 }
8726 /*
8727 * certain more exotic SCSI devices are known to be
8728 * volatile wrt too early system reboots. While the
8729 * right place to handle this issue is the given
8730 * driver, we do want to have a safe RAID driver ...
8731 */
8732 if (need_delay)
8733 mdelay(1000*1);
8734
8735 return NOTIFY_DONE;
8736 }
8737
8738 static struct notifier_block md_notifier = {
8739 .notifier_call = md_notify_reboot,
8740 .next = NULL,
8741 .priority = INT_MAX, /* before any real devices */
8742 };
8743
8744 static void md_geninit(void)
8745 {
8746 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8747
8748 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8749 }
8750
8751 static int __init md_init(void)
8752 {
8753 int ret = -ENOMEM;
8754
8755 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8756 if (!md_wq)
8757 goto err_wq;
8758
8759 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8760 if (!md_misc_wq)
8761 goto err_misc_wq;
8762
8763 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8764 goto err_md;
8765
8766 if ((ret = register_blkdev(0, "mdp")) < 0)
8767 goto err_mdp;
8768 mdp_major = ret;
8769
8770 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8771 md_probe, NULL, NULL);
8772 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8773 md_probe, NULL, NULL);
8774
8775 register_reboot_notifier(&md_notifier);
8776 raid_table_header = register_sysctl_table(raid_root_table);
8777
8778 md_geninit();
8779 return 0;
8780
8781 err_mdp:
8782 unregister_blkdev(MD_MAJOR, "md");
8783 err_md:
8784 destroy_workqueue(md_misc_wq);
8785 err_misc_wq:
8786 destroy_workqueue(md_wq);
8787 err_wq:
8788 return ret;
8789 }
8790
8791 void md_reload_sb(struct mddev *mddev)
8792 {
8793 struct md_rdev *rdev, *tmp;
8794
8795 rdev_for_each_safe(rdev, tmp, mddev) {
8796 rdev->sb_loaded = 0;
8797 ClearPageUptodate(rdev->sb_page);
8798 }
8799 mddev->raid_disks = 0;
8800 analyze_sbs(mddev);
8801 rdev_for_each_safe(rdev, tmp, mddev) {
8802 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8803 /* since we don't write to faulty devices, we figure out if the
8804 * disk is faulty by comparing events
8805 */
8806 if (mddev->events > sb->events)
8807 set_bit(Faulty, &rdev->flags);
8808 }
8809
8810 }
8811 EXPORT_SYMBOL(md_reload_sb);
8812
8813 #ifndef MODULE
8814
8815 /*
8816 * Searches all registered partitions for autorun RAID arrays
8817 * at boot time.
8818 */
8819
8820 static LIST_HEAD(all_detected_devices);
8821 struct detected_devices_node {
8822 struct list_head list;
8823 dev_t dev;
8824 };
8825
8826 void md_autodetect_dev(dev_t dev)
8827 {
8828 struct detected_devices_node *node_detected_dev;
8829
8830 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8831 if (node_detected_dev) {
8832 node_detected_dev->dev = dev;
8833 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8834 } else {
8835 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8836 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8837 }
8838 }
8839
8840 static void autostart_arrays(int part)
8841 {
8842 struct md_rdev *rdev;
8843 struct detected_devices_node *node_detected_dev;
8844 dev_t dev;
8845 int i_scanned, i_passed;
8846
8847 i_scanned = 0;
8848 i_passed = 0;
8849
8850 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8851
8852 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8853 i_scanned++;
8854 node_detected_dev = list_entry(all_detected_devices.next,
8855 struct detected_devices_node, list);
8856 list_del(&node_detected_dev->list);
8857 dev = node_detected_dev->dev;
8858 kfree(node_detected_dev);
8859 rdev = md_import_device(dev,0, 90);
8860 if (IS_ERR(rdev))
8861 continue;
8862
8863 if (test_bit(Faulty, &rdev->flags))
8864 continue;
8865
8866 set_bit(AutoDetected, &rdev->flags);
8867 list_add(&rdev->same_set, &pending_raid_disks);
8868 i_passed++;
8869 }
8870
8871 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8872 i_scanned, i_passed);
8873
8874 autorun_devices(part);
8875 }
8876
8877 #endif /* !MODULE */
8878
8879 static __exit void md_exit(void)
8880 {
8881 struct mddev *mddev;
8882 struct list_head *tmp;
8883 int delay = 1;
8884
8885 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8886 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8887
8888 unregister_blkdev(MD_MAJOR,"md");
8889 unregister_blkdev(mdp_major, "mdp");
8890 unregister_reboot_notifier(&md_notifier);
8891 unregister_sysctl_table(raid_table_header);
8892
8893 /* We cannot unload the modules while some process is
8894 * waiting for us in select() or poll() - wake them up
8895 */
8896 md_unloading = 1;
8897 while (waitqueue_active(&md_event_waiters)) {
8898 /* not safe to leave yet */
8899 wake_up(&md_event_waiters);
8900 msleep(delay);
8901 delay += delay;
8902 }
8903 remove_proc_entry("mdstat", NULL);
8904
8905 for_each_mddev(mddev, tmp) {
8906 export_array(mddev);
8907 mddev->hold_active = 0;
8908 }
8909 destroy_workqueue(md_misc_wq);
8910 destroy_workqueue(md_wq);
8911 }
8912
8913 subsys_initcall(md_init);
8914 module_exit(md_exit)
8915
8916 static int get_ro(char *buffer, struct kernel_param *kp)
8917 {
8918 return sprintf(buffer, "%d", start_readonly);
8919 }
8920 static int set_ro(const char *val, struct kernel_param *kp)
8921 {
8922 char *e;
8923 int num = simple_strtoul(val, &e, 10);
8924 if (*val && (*e == '\0' || *e == '\n')) {
8925 start_readonly = num;
8926 return 0;
8927 }
8928 return -EINVAL;
8929 }
8930
8931 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8932 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8933 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8934
8935 MODULE_LICENSE("GPL");
8936 MODULE_DESCRIPTION("MD RAID framework");
8937 MODULE_ALIAS("md");
8938 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);