]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/md.c
block: add a bi_error field to struct bio
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 if (mddev == NULL || mddev->pers == NULL
261 || !mddev->ready) {
262 bio_io_error(bio);
263 return;
264 }
265 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 if (bio_sectors(bio) != 0)
267 bio->bi_error = -EROFS;
268 bio_endio(bio);
269 return;
270 }
271 smp_rmb(); /* Ensure implications of 'active' are visible */
272 rcu_read_lock();
273 if (mddev->suspended) {
274 DEFINE_WAIT(__wait);
275 for (;;) {
276 prepare_to_wait(&mddev->sb_wait, &__wait,
277 TASK_UNINTERRUPTIBLE);
278 if (!mddev->suspended)
279 break;
280 rcu_read_unlock();
281 schedule();
282 rcu_read_lock();
283 }
284 finish_wait(&mddev->sb_wait, &__wait);
285 }
286 atomic_inc(&mddev->active_io);
287 rcu_read_unlock();
288
289 /*
290 * save the sectors now since our bio can
291 * go away inside make_request
292 */
293 sectors = bio_sectors(bio);
294 mddev->pers->make_request(mddev, bio);
295
296 cpu = part_stat_lock();
297 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
298 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
299 part_stat_unlock();
300
301 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
302 wake_up(&mddev->sb_wait);
303 }
304
305 /* mddev_suspend makes sure no new requests are submitted
306 * to the device, and that any requests that have been submitted
307 * are completely handled.
308 * Once mddev_detach() is called and completes, the module will be
309 * completely unused.
310 */
311 void mddev_suspend(struct mddev *mddev)
312 {
313 BUG_ON(mddev->suspended);
314 mddev->suspended = 1;
315 synchronize_rcu();
316 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
317 mddev->pers->quiesce(mddev, 1);
318
319 del_timer_sync(&mddev->safemode_timer);
320 }
321 EXPORT_SYMBOL_GPL(mddev_suspend);
322
323 void mddev_resume(struct mddev *mddev)
324 {
325 mddev->suspended = 0;
326 wake_up(&mddev->sb_wait);
327 mddev->pers->quiesce(mddev, 0);
328
329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
330 md_wakeup_thread(mddev->thread);
331 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
332 }
333 EXPORT_SYMBOL_GPL(mddev_resume);
334
335 int mddev_congested(struct mddev *mddev, int bits)
336 {
337 struct md_personality *pers = mddev->pers;
338 int ret = 0;
339
340 rcu_read_lock();
341 if (mddev->suspended)
342 ret = 1;
343 else if (pers && pers->congested)
344 ret = pers->congested(mddev, bits);
345 rcu_read_unlock();
346 return ret;
347 }
348 EXPORT_SYMBOL_GPL(mddev_congested);
349 static int md_congested(void *data, int bits)
350 {
351 struct mddev *mddev = data;
352 return mddev_congested(mddev, bits);
353 }
354
355 static int md_mergeable_bvec(struct request_queue *q,
356 struct bvec_merge_data *bvm,
357 struct bio_vec *biovec)
358 {
359 struct mddev *mddev = q->queuedata;
360 int ret;
361 rcu_read_lock();
362 if (mddev->suspended) {
363 /* Must always allow one vec */
364 if (bvm->bi_size == 0)
365 ret = biovec->bv_len;
366 else
367 ret = 0;
368 } else {
369 struct md_personality *pers = mddev->pers;
370 if (pers && pers->mergeable_bvec)
371 ret = pers->mergeable_bvec(mddev, bvm, biovec);
372 else
373 ret = biovec->bv_len;
374 }
375 rcu_read_unlock();
376 return ret;
377 }
378 /*
379 * Generic flush handling for md
380 */
381
382 static void md_end_flush(struct bio *bio)
383 {
384 struct md_rdev *rdev = bio->bi_private;
385 struct mddev *mddev = rdev->mddev;
386
387 rdev_dec_pending(rdev, mddev);
388
389 if (atomic_dec_and_test(&mddev->flush_pending)) {
390 /* The pre-request flush has finished */
391 queue_work(md_wq, &mddev->flush_work);
392 }
393 bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 struct md_rdev *rdev;
402
403 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 atomic_set(&mddev->flush_pending, 1);
405 rcu_read_lock();
406 rdev_for_each_rcu(rdev, mddev)
407 if (rdev->raid_disk >= 0 &&
408 !test_bit(Faulty, &rdev->flags)) {
409 /* Take two references, one is dropped
410 * when request finishes, one after
411 * we reclaim rcu_read_lock
412 */
413 struct bio *bi;
414 atomic_inc(&rdev->nr_pending);
415 atomic_inc(&rdev->nr_pending);
416 rcu_read_unlock();
417 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 bi->bi_end_io = md_end_flush;
419 bi->bi_private = rdev;
420 bi->bi_bdev = rdev->bdev;
421 atomic_inc(&mddev->flush_pending);
422 submit_bio(WRITE_FLUSH, bi);
423 rcu_read_lock();
424 rdev_dec_pending(rdev, mddev);
425 }
426 rcu_read_unlock();
427 if (atomic_dec_and_test(&mddev->flush_pending))
428 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 struct bio *bio = mddev->flush_bio;
435
436 if (bio->bi_iter.bi_size == 0)
437 /* an empty barrier - all done */
438 bio_endio(bio);
439 else {
440 bio->bi_rw &= ~REQ_FLUSH;
441 mddev->pers->make_request(mddev, bio);
442 }
443
444 mddev->flush_bio = NULL;
445 wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450 spin_lock_irq(&mddev->lock);
451 wait_event_lock_irq(mddev->sb_wait,
452 !mddev->flush_bio,
453 mddev->lock);
454 mddev->flush_bio = bio;
455 spin_unlock_irq(&mddev->lock);
456
457 INIT_WORK(&mddev->flush_work, submit_flushes);
458 queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464 struct mddev *mddev = cb->data;
465 md_wakeup_thread(mddev->thread);
466 kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472 atomic_inc(&mddev->active);
473 return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480 struct bio_set *bs = NULL;
481
482 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 return;
484 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 mddev->ctime == 0 && !mddev->hold_active) {
486 /* Array is not configured at all, and not held active,
487 * so destroy it */
488 list_del_init(&mddev->all_mddevs);
489 bs = mddev->bio_set;
490 mddev->bio_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
496 */
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
501 }
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509 mutex_init(&mddev->open_mutex);
510 mutex_init(&mddev->reconfig_mutex);
511 mutex_init(&mddev->bitmap_info.mutex);
512 INIT_LIST_HEAD(&mddev->disks);
513 INIT_LIST_HEAD(&mddev->all_mddevs);
514 init_timer(&mddev->safemode_timer);
515 atomic_set(&mddev->active, 1);
516 atomic_set(&mddev->openers, 0);
517 atomic_set(&mddev->active_io, 0);
518 spin_lock_init(&mddev->lock);
519 atomic_set(&mddev->flush_pending, 0);
520 init_waitqueue_head(&mddev->sb_wait);
521 init_waitqueue_head(&mddev->recovery_wait);
522 mddev->reshape_position = MaxSector;
523 mddev->reshape_backwards = 0;
524 mddev->last_sync_action = "none";
525 mddev->resync_min = 0;
526 mddev->resync_max = MaxSector;
527 mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530
531 static struct mddev *mddev_find(dev_t unit)
532 {
533 struct mddev *mddev, *new = NULL;
534
535 if (unit && MAJOR(unit) != MD_MAJOR)
536 unit &= ~((1<<MdpMinorShift)-1);
537
538 retry:
539 spin_lock(&all_mddevs_lock);
540
541 if (unit) {
542 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543 if (mddev->unit == unit) {
544 mddev_get(mddev);
545 spin_unlock(&all_mddevs_lock);
546 kfree(new);
547 return mddev;
548 }
549
550 if (new) {
551 list_add(&new->all_mddevs, &all_mddevs);
552 spin_unlock(&all_mddevs_lock);
553 new->hold_active = UNTIL_IOCTL;
554 return new;
555 }
556 } else if (new) {
557 /* find an unused unit number */
558 static int next_minor = 512;
559 int start = next_minor;
560 int is_free = 0;
561 int dev = 0;
562 while (!is_free) {
563 dev = MKDEV(MD_MAJOR, next_minor);
564 next_minor++;
565 if (next_minor > MINORMASK)
566 next_minor = 0;
567 if (next_minor == start) {
568 /* Oh dear, all in use. */
569 spin_unlock(&all_mddevs_lock);
570 kfree(new);
571 return NULL;
572 }
573
574 is_free = 1;
575 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576 if (mddev->unit == dev) {
577 is_free = 0;
578 break;
579 }
580 }
581 new->unit = dev;
582 new->md_minor = MINOR(dev);
583 new->hold_active = UNTIL_STOP;
584 list_add(&new->all_mddevs, &all_mddevs);
585 spin_unlock(&all_mddevs_lock);
586 return new;
587 }
588 spin_unlock(&all_mddevs_lock);
589
590 new = kzalloc(sizeof(*new), GFP_KERNEL);
591 if (!new)
592 return NULL;
593
594 new->unit = unit;
595 if (MAJOR(unit) == MD_MAJOR)
596 new->md_minor = MINOR(unit);
597 else
598 new->md_minor = MINOR(unit) >> MdpMinorShift;
599
600 mddev_init(new);
601
602 goto retry;
603 }
604
605 static struct attribute_group md_redundancy_group;
606
607 void mddev_unlock(struct mddev *mddev)
608 {
609 if (mddev->to_remove) {
610 /* These cannot be removed under reconfig_mutex as
611 * an access to the files will try to take reconfig_mutex
612 * while holding the file unremovable, which leads to
613 * a deadlock.
614 * So hold set sysfs_active while the remove in happeing,
615 * and anything else which might set ->to_remove or my
616 * otherwise change the sysfs namespace will fail with
617 * -EBUSY if sysfs_active is still set.
618 * We set sysfs_active under reconfig_mutex and elsewhere
619 * test it under the same mutex to ensure its correct value
620 * is seen.
621 */
622 struct attribute_group *to_remove = mddev->to_remove;
623 mddev->to_remove = NULL;
624 mddev->sysfs_active = 1;
625 mutex_unlock(&mddev->reconfig_mutex);
626
627 if (mddev->kobj.sd) {
628 if (to_remove != &md_redundancy_group)
629 sysfs_remove_group(&mddev->kobj, to_remove);
630 if (mddev->pers == NULL ||
631 mddev->pers->sync_request == NULL) {
632 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
633 if (mddev->sysfs_action)
634 sysfs_put(mddev->sysfs_action);
635 mddev->sysfs_action = NULL;
636 }
637 }
638 mddev->sysfs_active = 0;
639 } else
640 mutex_unlock(&mddev->reconfig_mutex);
641
642 /* As we've dropped the mutex we need a spinlock to
643 * make sure the thread doesn't disappear
644 */
645 spin_lock(&pers_lock);
646 md_wakeup_thread(mddev->thread);
647 spin_unlock(&pers_lock);
648 }
649 EXPORT_SYMBOL_GPL(mddev_unlock);
650
651 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
652 {
653 struct md_rdev *rdev;
654
655 rdev_for_each_rcu(rdev, mddev)
656 if (rdev->desc_nr == nr)
657 return rdev;
658
659 return NULL;
660 }
661 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
662
663 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
664 {
665 struct md_rdev *rdev;
666
667 rdev_for_each(rdev, mddev)
668 if (rdev->bdev->bd_dev == dev)
669 return rdev;
670
671 return NULL;
672 }
673
674 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
675 {
676 struct md_rdev *rdev;
677
678 rdev_for_each_rcu(rdev, mddev)
679 if (rdev->bdev->bd_dev == dev)
680 return rdev;
681
682 return NULL;
683 }
684
685 static struct md_personality *find_pers(int level, char *clevel)
686 {
687 struct md_personality *pers;
688 list_for_each_entry(pers, &pers_list, list) {
689 if (level != LEVEL_NONE && pers->level == level)
690 return pers;
691 if (strcmp(pers->name, clevel)==0)
692 return pers;
693 }
694 return NULL;
695 }
696
697 /* return the offset of the super block in 512byte sectors */
698 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
699 {
700 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
701 return MD_NEW_SIZE_SECTORS(num_sectors);
702 }
703
704 static int alloc_disk_sb(struct md_rdev *rdev)
705 {
706 rdev->sb_page = alloc_page(GFP_KERNEL);
707 if (!rdev->sb_page) {
708 printk(KERN_ALERT "md: out of memory.\n");
709 return -ENOMEM;
710 }
711
712 return 0;
713 }
714
715 void md_rdev_clear(struct md_rdev *rdev)
716 {
717 if (rdev->sb_page) {
718 put_page(rdev->sb_page);
719 rdev->sb_loaded = 0;
720 rdev->sb_page = NULL;
721 rdev->sb_start = 0;
722 rdev->sectors = 0;
723 }
724 if (rdev->bb_page) {
725 put_page(rdev->bb_page);
726 rdev->bb_page = NULL;
727 }
728 kfree(rdev->badblocks.page);
729 rdev->badblocks.page = NULL;
730 }
731 EXPORT_SYMBOL_GPL(md_rdev_clear);
732
733 static void super_written(struct bio *bio)
734 {
735 struct md_rdev *rdev = bio->bi_private;
736 struct mddev *mddev = rdev->mddev;
737
738 if (bio->bi_error) {
739 printk("md: super_written gets error=%d\n", bio->bi_error);
740 md_error(mddev, rdev);
741 }
742
743 if (atomic_dec_and_test(&mddev->pending_writes))
744 wake_up(&mddev->sb_wait);
745 bio_put(bio);
746 }
747
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749 sector_t sector, int size, struct page *page)
750 {
751 /* write first size bytes of page to sector of rdev
752 * Increment mddev->pending_writes before returning
753 * and decrement it on completion, waking up sb_wait
754 * if zero is reached.
755 * If an error occurred, call md_error
756 */
757 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758
759 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760 bio->bi_iter.bi_sector = sector;
761 bio_add_page(bio, page, size, 0);
762 bio->bi_private = rdev;
763 bio->bi_end_io = super_written;
764
765 atomic_inc(&mddev->pending_writes);
766 submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768
769 void md_super_wait(struct mddev *mddev)
770 {
771 /* wait for all superblock writes that were scheduled to complete */
772 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776 struct page *page, int rw, bool metadata_op)
777 {
778 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779 int ret;
780
781 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782 rdev->meta_bdev : rdev->bdev;
783 if (metadata_op)
784 bio->bi_iter.bi_sector = sector + rdev->sb_start;
785 else if (rdev->mddev->reshape_position != MaxSector &&
786 (rdev->mddev->reshape_backwards ==
787 (sector >= rdev->mddev->reshape_position)))
788 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789 else
790 bio->bi_iter.bi_sector = sector + rdev->data_offset;
791 bio_add_page(bio, page, size, 0);
792 submit_bio_wait(rw, bio);
793
794 ret = !bio->bi_error;
795 bio_put(bio);
796 return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802 char b[BDEVNAME_SIZE];
803
804 if (rdev->sb_loaded)
805 return 0;
806
807 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808 goto fail;
809 rdev->sb_loaded = 1;
810 return 0;
811
812 fail:
813 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814 bdevname(rdev->bdev,b));
815 return -EINVAL;
816 }
817
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820 return sb1->set_uuid0 == sb2->set_uuid0 &&
821 sb1->set_uuid1 == sb2->set_uuid1 &&
822 sb1->set_uuid2 == sb2->set_uuid2 &&
823 sb1->set_uuid3 == sb2->set_uuid3;
824 }
825
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 int ret;
829 mdp_super_t *tmp1, *tmp2;
830
831 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833
834 if (!tmp1 || !tmp2) {
835 ret = 0;
836 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 goto abort;
838 }
839
840 *tmp1 = *sb1;
841 *tmp2 = *sb2;
842
843 /*
844 * nr_disks is not constant
845 */
846 tmp1->nr_disks = 0;
847 tmp2->nr_disks = 0;
848
849 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851 kfree(tmp1);
852 kfree(tmp2);
853 return ret;
854 }
855
856 static u32 md_csum_fold(u32 csum)
857 {
858 csum = (csum & 0xffff) + (csum >> 16);
859 return (csum & 0xffff) + (csum >> 16);
860 }
861
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864 u64 newcsum = 0;
865 u32 *sb32 = (u32*)sb;
866 int i;
867 unsigned int disk_csum, csum;
868
869 disk_csum = sb->sb_csum;
870 sb->sb_csum = 0;
871
872 for (i = 0; i < MD_SB_BYTES/4 ; i++)
873 newcsum += sb32[i];
874 csum = (newcsum & 0xffffffff) + (newcsum>>32);
875
876 #ifdef CONFIG_ALPHA
877 /* This used to use csum_partial, which was wrong for several
878 * reasons including that different results are returned on
879 * different architectures. It isn't critical that we get exactly
880 * the same return value as before (we always csum_fold before
881 * testing, and that removes any differences). However as we
882 * know that csum_partial always returned a 16bit value on
883 * alphas, do a fold to maximise conformity to previous behaviour.
884 */
885 sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887 sb->sb_csum = disk_csum;
888 #endif
889 return csum;
890 }
891
892 /*
893 * Handle superblock details.
894 * We want to be able to handle multiple superblock formats
895 * so we have a common interface to them all, and an array of
896 * different handlers.
897 * We rely on user-space to write the initial superblock, and support
898 * reading and updating of superblocks.
899 * Interface methods are:
900 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901 * loads and validates a superblock on dev.
902 * if refdev != NULL, compare superblocks on both devices
903 * Return:
904 * 0 - dev has a superblock that is compatible with refdev
905 * 1 - dev has a superblock that is compatible and newer than refdev
906 * so dev should be used as the refdev in future
907 * -EINVAL superblock incompatible or invalid
908 * -othererror e.g. -EIO
909 *
910 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
911 * Verify that dev is acceptable into mddev.
912 * The first time, mddev->raid_disks will be 0, and data from
913 * dev should be merged in. Subsequent calls check that dev
914 * is new enough. Return 0 or -EINVAL
915 *
916 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
917 * Update the superblock for rdev with data in mddev
918 * This does not write to disc.
919 *
920 */
921
922 struct super_type {
923 char *name;
924 struct module *owner;
925 int (*load_super)(struct md_rdev *rdev,
926 struct md_rdev *refdev,
927 int minor_version);
928 int (*validate_super)(struct mddev *mddev,
929 struct md_rdev *rdev);
930 void (*sync_super)(struct mddev *mddev,
931 struct md_rdev *rdev);
932 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
933 sector_t num_sectors);
934 int (*allow_new_offset)(struct md_rdev *rdev,
935 unsigned long long new_offset);
936 };
937
938 /*
939 * Check that the given mddev has no bitmap.
940 *
941 * This function is called from the run method of all personalities that do not
942 * support bitmaps. It prints an error message and returns non-zero if mddev
943 * has a bitmap. Otherwise, it returns 0.
944 *
945 */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949 return 0;
950 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951 mdname(mddev), mddev->pers->name);
952 return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955
956 /*
957 * load_super for 0.90.0
958 */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 mdp_super_t *sb;
963 int ret;
964
965 /*
966 * Calculate the position of the superblock (512byte sectors),
967 * it's at the end of the disk.
968 *
969 * It also happens to be a multiple of 4Kb.
970 */
971 rdev->sb_start = calc_dev_sboffset(rdev);
972
973 ret = read_disk_sb(rdev, MD_SB_BYTES);
974 if (ret) return ret;
975
976 ret = -EINVAL;
977
978 bdevname(rdev->bdev, b);
979 sb = page_address(rdev->sb_page);
980
981 if (sb->md_magic != MD_SB_MAGIC) {
982 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983 b);
984 goto abort;
985 }
986
987 if (sb->major_version != 0 ||
988 sb->minor_version < 90 ||
989 sb->minor_version > 91) {
990 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991 sb->major_version, sb->minor_version,
992 b);
993 goto abort;
994 }
995
996 if (sb->raid_disks <= 0)
997 goto abort;
998
999 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001 b);
1002 goto abort;
1003 }
1004
1005 rdev->preferred_minor = sb->md_minor;
1006 rdev->data_offset = 0;
1007 rdev->new_data_offset = 0;
1008 rdev->sb_size = MD_SB_BYTES;
1009 rdev->badblocks.shift = -1;
1010
1011 if (sb->level == LEVEL_MULTIPATH)
1012 rdev->desc_nr = -1;
1013 else
1014 rdev->desc_nr = sb->this_disk.number;
1015
1016 if (!refdev) {
1017 ret = 1;
1018 } else {
1019 __u64 ev1, ev2;
1020 mdp_super_t *refsb = page_address(refdev->sb_page);
1021 if (!uuid_equal(refsb, sb)) {
1022 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023 b, bdevname(refdev->bdev,b2));
1024 goto abort;
1025 }
1026 if (!sb_equal(refsb, sb)) {
1027 printk(KERN_WARNING "md: %s has same UUID"
1028 " but different superblock to %s\n",
1029 b, bdevname(refdev->bdev, b2));
1030 goto abort;
1031 }
1032 ev1 = md_event(sb);
1033 ev2 = md_event(refsb);
1034 if (ev1 > ev2)
1035 ret = 1;
1036 else
1037 ret = 0;
1038 }
1039 rdev->sectors = rdev->sb_start;
1040 /* Limit to 4TB as metadata cannot record more than that.
1041 * (not needed for Linear and RAID0 as metadata doesn't
1042 * record this size)
1043 */
1044 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045 rdev->sectors = (2ULL << 32) - 2;
1046
1047 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048 /* "this cannot possibly happen" ... */
1049 ret = -EINVAL;
1050
1051 abort:
1052 return ret;
1053 }
1054
1055 /*
1056 * validate_super for 0.90.0
1057 */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060 mdp_disk_t *desc;
1061 mdp_super_t *sb = page_address(rdev->sb_page);
1062 __u64 ev1 = md_event(sb);
1063
1064 rdev->raid_disk = -1;
1065 clear_bit(Faulty, &rdev->flags);
1066 clear_bit(In_sync, &rdev->flags);
1067 clear_bit(Bitmap_sync, &rdev->flags);
1068 clear_bit(WriteMostly, &rdev->flags);
1069
1070 if (mddev->raid_disks == 0) {
1071 mddev->major_version = 0;
1072 mddev->minor_version = sb->minor_version;
1073 mddev->patch_version = sb->patch_version;
1074 mddev->external = 0;
1075 mddev->chunk_sectors = sb->chunk_size >> 9;
1076 mddev->ctime = sb->ctime;
1077 mddev->utime = sb->utime;
1078 mddev->level = sb->level;
1079 mddev->clevel[0] = 0;
1080 mddev->layout = sb->layout;
1081 mddev->raid_disks = sb->raid_disks;
1082 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083 mddev->events = ev1;
1084 mddev->bitmap_info.offset = 0;
1085 mddev->bitmap_info.space = 0;
1086 /* bitmap can use 60 K after the 4K superblocks */
1087 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089 mddev->reshape_backwards = 0;
1090
1091 if (mddev->minor_version >= 91) {
1092 mddev->reshape_position = sb->reshape_position;
1093 mddev->delta_disks = sb->delta_disks;
1094 mddev->new_level = sb->new_level;
1095 mddev->new_layout = sb->new_layout;
1096 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 if (mddev->delta_disks < 0)
1098 mddev->reshape_backwards = 1;
1099 } else {
1100 mddev->reshape_position = MaxSector;
1101 mddev->delta_disks = 0;
1102 mddev->new_level = mddev->level;
1103 mddev->new_layout = mddev->layout;
1104 mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 }
1106
1107 if (sb->state & (1<<MD_SB_CLEAN))
1108 mddev->recovery_cp = MaxSector;
1109 else {
1110 if (sb->events_hi == sb->cp_events_hi &&
1111 sb->events_lo == sb->cp_events_lo) {
1112 mddev->recovery_cp = sb->recovery_cp;
1113 } else
1114 mddev->recovery_cp = 0;
1115 }
1116
1117 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122 mddev->max_disks = MD_SB_DISKS;
1123
1124 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 mddev->bitmap_info.file == NULL) {
1126 mddev->bitmap_info.offset =
1127 mddev->bitmap_info.default_offset;
1128 mddev->bitmap_info.space =
1129 mddev->bitmap_info.default_space;
1130 }
1131
1132 } else if (mddev->pers == NULL) {
1133 /* Insist on good event counter while assembling, except
1134 * for spares (which don't need an event count) */
1135 ++ev1;
1136 if (sb->disks[rdev->desc_nr].state & (
1137 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138 if (ev1 < mddev->events)
1139 return -EINVAL;
1140 } else if (mddev->bitmap) {
1141 /* if adding to array with a bitmap, then we can accept an
1142 * older device ... but not too old.
1143 */
1144 if (ev1 < mddev->bitmap->events_cleared)
1145 return 0;
1146 if (ev1 < mddev->events)
1147 set_bit(Bitmap_sync, &rdev->flags);
1148 } else {
1149 if (ev1 < mddev->events)
1150 /* just a hot-add of a new device, leave raid_disk at -1 */
1151 return 0;
1152 }
1153
1154 if (mddev->level != LEVEL_MULTIPATH) {
1155 desc = sb->disks + rdev->desc_nr;
1156
1157 if (desc->state & (1<<MD_DISK_FAULTY))
1158 set_bit(Faulty, &rdev->flags);
1159 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160 desc->raid_disk < mddev->raid_disks */) {
1161 set_bit(In_sync, &rdev->flags);
1162 rdev->raid_disk = desc->raid_disk;
1163 rdev->saved_raid_disk = desc->raid_disk;
1164 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 /* active but not in sync implies recovery up to
1166 * reshape position. We don't know exactly where
1167 * that is, so set to zero for now */
1168 if (mddev->minor_version >= 91) {
1169 rdev->recovery_offset = 0;
1170 rdev->raid_disk = desc->raid_disk;
1171 }
1172 }
1173 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 set_bit(WriteMostly, &rdev->flags);
1175 } else /* MULTIPATH are always insync */
1176 set_bit(In_sync, &rdev->flags);
1177 return 0;
1178 }
1179
1180 /*
1181 * sync_super for 0.90.0
1182 */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185 mdp_super_t *sb;
1186 struct md_rdev *rdev2;
1187 int next_spare = mddev->raid_disks;
1188
1189 /* make rdev->sb match mddev data..
1190 *
1191 * 1/ zero out disks
1192 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193 * 3/ any empty disks < next_spare become removed
1194 *
1195 * disks[0] gets initialised to REMOVED because
1196 * we cannot be sure from other fields if it has
1197 * been initialised or not.
1198 */
1199 int i;
1200 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201
1202 rdev->sb_size = MD_SB_BYTES;
1203
1204 sb = page_address(rdev->sb_page);
1205
1206 memset(sb, 0, sizeof(*sb));
1207
1208 sb->md_magic = MD_SB_MAGIC;
1209 sb->major_version = mddev->major_version;
1210 sb->patch_version = mddev->patch_version;
1211 sb->gvalid_words = 0; /* ignored */
1212 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216
1217 sb->ctime = mddev->ctime;
1218 sb->level = mddev->level;
1219 sb->size = mddev->dev_sectors / 2;
1220 sb->raid_disks = mddev->raid_disks;
1221 sb->md_minor = mddev->md_minor;
1222 sb->not_persistent = 0;
1223 sb->utime = mddev->utime;
1224 sb->state = 0;
1225 sb->events_hi = (mddev->events>>32);
1226 sb->events_lo = (u32)mddev->events;
1227
1228 if (mddev->reshape_position == MaxSector)
1229 sb->minor_version = 90;
1230 else {
1231 sb->minor_version = 91;
1232 sb->reshape_position = mddev->reshape_position;
1233 sb->new_level = mddev->new_level;
1234 sb->delta_disks = mddev->delta_disks;
1235 sb->new_layout = mddev->new_layout;
1236 sb->new_chunk = mddev->new_chunk_sectors << 9;
1237 }
1238 mddev->minor_version = sb->minor_version;
1239 if (mddev->in_sync)
1240 {
1241 sb->recovery_cp = mddev->recovery_cp;
1242 sb->cp_events_hi = (mddev->events>>32);
1243 sb->cp_events_lo = (u32)mddev->events;
1244 if (mddev->recovery_cp == MaxSector)
1245 sb->state = (1<< MD_SB_CLEAN);
1246 } else
1247 sb->recovery_cp = 0;
1248
1249 sb->layout = mddev->layout;
1250 sb->chunk_size = mddev->chunk_sectors << 9;
1251
1252 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254
1255 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256 rdev_for_each(rdev2, mddev) {
1257 mdp_disk_t *d;
1258 int desc_nr;
1259 int is_active = test_bit(In_sync, &rdev2->flags);
1260
1261 if (rdev2->raid_disk >= 0 &&
1262 sb->minor_version >= 91)
1263 /* we have nowhere to store the recovery_offset,
1264 * but if it is not below the reshape_position,
1265 * we can piggy-back on that.
1266 */
1267 is_active = 1;
1268 if (rdev2->raid_disk < 0 ||
1269 test_bit(Faulty, &rdev2->flags))
1270 is_active = 0;
1271 if (is_active)
1272 desc_nr = rdev2->raid_disk;
1273 else
1274 desc_nr = next_spare++;
1275 rdev2->desc_nr = desc_nr;
1276 d = &sb->disks[rdev2->desc_nr];
1277 nr_disks++;
1278 d->number = rdev2->desc_nr;
1279 d->major = MAJOR(rdev2->bdev->bd_dev);
1280 d->minor = MINOR(rdev2->bdev->bd_dev);
1281 if (is_active)
1282 d->raid_disk = rdev2->raid_disk;
1283 else
1284 d->raid_disk = rdev2->desc_nr; /* compatibility */
1285 if (test_bit(Faulty, &rdev2->flags))
1286 d->state = (1<<MD_DISK_FAULTY);
1287 else if (is_active) {
1288 d->state = (1<<MD_DISK_ACTIVE);
1289 if (test_bit(In_sync, &rdev2->flags))
1290 d->state |= (1<<MD_DISK_SYNC);
1291 active++;
1292 working++;
1293 } else {
1294 d->state = 0;
1295 spare++;
1296 working++;
1297 }
1298 if (test_bit(WriteMostly, &rdev2->flags))
1299 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300 }
1301 /* now set the "removed" and "faulty" bits on any missing devices */
1302 for (i=0 ; i < mddev->raid_disks ; i++) {
1303 mdp_disk_t *d = &sb->disks[i];
1304 if (d->state == 0 && d->number == 0) {
1305 d->number = i;
1306 d->raid_disk = i;
1307 d->state = (1<<MD_DISK_REMOVED);
1308 d->state |= (1<<MD_DISK_FAULTY);
1309 failed++;
1310 }
1311 }
1312 sb->nr_disks = nr_disks;
1313 sb->active_disks = active;
1314 sb->working_disks = working;
1315 sb->failed_disks = failed;
1316 sb->spare_disks = spare;
1317
1318 sb->this_disk = sb->disks[rdev->desc_nr];
1319 sb->sb_csum = calc_sb_csum(sb);
1320 }
1321
1322 /*
1323 * rdev_size_change for 0.90.0
1324 */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329 return 0; /* component must fit device */
1330 if (rdev->mddev->bitmap_info.offset)
1331 return 0; /* can't move bitmap */
1332 rdev->sb_start = calc_dev_sboffset(rdev);
1333 if (!num_sectors || num_sectors > rdev->sb_start)
1334 num_sectors = rdev->sb_start;
1335 /* Limit to 4TB as metadata cannot record more than that.
1336 * 4TB == 2^32 KB, or 2*2^32 sectors.
1337 */
1338 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339 num_sectors = (2ULL << 32) - 2;
1340 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341 rdev->sb_page);
1342 md_super_wait(rdev->mddev);
1343 return num_sectors;
1344 }
1345
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349 /* non-zero offset changes not possible with v0.90 */
1350 return new_offset == 0;
1351 }
1352
1353 /*
1354 * version 1 superblock
1355 */
1356
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359 __le32 disk_csum;
1360 u32 csum;
1361 unsigned long long newcsum;
1362 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363 __le32 *isuper = (__le32*)sb;
1364
1365 disk_csum = sb->sb_csum;
1366 sb->sb_csum = 0;
1367 newcsum = 0;
1368 for (; size >= 4; size -= 4)
1369 newcsum += le32_to_cpu(*isuper++);
1370
1371 if (size == 2)
1372 newcsum += le16_to_cpu(*(__le16*) isuper);
1373
1374 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375 sb->sb_csum = disk_csum;
1376 return cpu_to_le32(csum);
1377 }
1378
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380 int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383 struct mdp_superblock_1 *sb;
1384 int ret;
1385 sector_t sb_start;
1386 sector_t sectors;
1387 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388 int bmask;
1389
1390 /*
1391 * Calculate the position of the superblock in 512byte sectors.
1392 * It is always aligned to a 4K boundary and
1393 * depeding on minor_version, it can be:
1394 * 0: At least 8K, but less than 12K, from end of device
1395 * 1: At start of device
1396 * 2: 4K from start of device.
1397 */
1398 switch(minor_version) {
1399 case 0:
1400 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401 sb_start -= 8*2;
1402 sb_start &= ~(sector_t)(4*2-1);
1403 break;
1404 case 1:
1405 sb_start = 0;
1406 break;
1407 case 2:
1408 sb_start = 8;
1409 break;
1410 default:
1411 return -EINVAL;
1412 }
1413 rdev->sb_start = sb_start;
1414
1415 /* superblock is rarely larger than 1K, but it can be larger,
1416 * and it is safe to read 4k, so we do that
1417 */
1418 ret = read_disk_sb(rdev, 4096);
1419 if (ret) return ret;
1420
1421 sb = page_address(rdev->sb_page);
1422
1423 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 sb->major_version != cpu_to_le32(1) ||
1425 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 return -EINVAL;
1429
1430 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 printk("md: invalid superblock checksum on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (le64_to_cpu(sb->data_size) < 10) {
1436 printk("md: data_size too small on %s\n",
1437 bdevname(rdev->bdev,b));
1438 return -EINVAL;
1439 }
1440 if (sb->pad0 ||
1441 sb->pad3[0] ||
1442 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443 /* Some padding is non-zero, might be a new feature */
1444 return -EINVAL;
1445
1446 rdev->preferred_minor = 0xffff;
1447 rdev->data_offset = le64_to_cpu(sb->data_offset);
1448 rdev->new_data_offset = rdev->data_offset;
1449 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453
1454 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456 if (rdev->sb_size & bmask)
1457 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458
1459 if (minor_version
1460 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461 return -EINVAL;
1462 if (minor_version
1463 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464 return -EINVAL;
1465
1466 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467 rdev->desc_nr = -1;
1468 else
1469 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470
1471 if (!rdev->bb_page) {
1472 rdev->bb_page = alloc_page(GFP_KERNEL);
1473 if (!rdev->bb_page)
1474 return -ENOMEM;
1475 }
1476 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477 rdev->badblocks.count == 0) {
1478 /* need to load the bad block list.
1479 * Currently we limit it to one page.
1480 */
1481 s32 offset;
1482 sector_t bb_sector;
1483 u64 *bbp;
1484 int i;
1485 int sectors = le16_to_cpu(sb->bblog_size);
1486 if (sectors > (PAGE_SIZE / 512))
1487 return -EINVAL;
1488 offset = le32_to_cpu(sb->bblog_offset);
1489 if (offset == 0)
1490 return -EINVAL;
1491 bb_sector = (long long)offset;
1492 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493 rdev->bb_page, READ, true))
1494 return -EIO;
1495 bbp = (u64 *)page_address(rdev->bb_page);
1496 rdev->badblocks.shift = sb->bblog_shift;
1497 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498 u64 bb = le64_to_cpu(*bbp);
1499 int count = bb & (0x3ff);
1500 u64 sector = bb >> 10;
1501 sector <<= sb->bblog_shift;
1502 count <<= sb->bblog_shift;
1503 if (bb + 1 == 0)
1504 break;
1505 if (md_set_badblocks(&rdev->badblocks,
1506 sector, count, 1) == 0)
1507 return -EINVAL;
1508 }
1509 } else if (sb->bblog_offset != 0)
1510 rdev->badblocks.shift = 0;
1511
1512 if (!refdev) {
1513 ret = 1;
1514 } else {
1515 __u64 ev1, ev2;
1516 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517
1518 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519 sb->level != refsb->level ||
1520 sb->layout != refsb->layout ||
1521 sb->chunksize != refsb->chunksize) {
1522 printk(KERN_WARNING "md: %s has strangely different"
1523 " superblock to %s\n",
1524 bdevname(rdev->bdev,b),
1525 bdevname(refdev->bdev,b2));
1526 return -EINVAL;
1527 }
1528 ev1 = le64_to_cpu(sb->events);
1529 ev2 = le64_to_cpu(refsb->events);
1530
1531 if (ev1 > ev2)
1532 ret = 1;
1533 else
1534 ret = 0;
1535 }
1536 if (minor_version) {
1537 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538 sectors -= rdev->data_offset;
1539 } else
1540 sectors = rdev->sb_start;
1541 if (sectors < le64_to_cpu(sb->data_size))
1542 return -EINVAL;
1543 rdev->sectors = le64_to_cpu(sb->data_size);
1544 return ret;
1545 }
1546
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550 __u64 ev1 = le64_to_cpu(sb->events);
1551
1552 rdev->raid_disk = -1;
1553 clear_bit(Faulty, &rdev->flags);
1554 clear_bit(In_sync, &rdev->flags);
1555 clear_bit(Bitmap_sync, &rdev->flags);
1556 clear_bit(WriteMostly, &rdev->flags);
1557
1558 if (mddev->raid_disks == 0) {
1559 mddev->major_version = 1;
1560 mddev->patch_version = 0;
1561 mddev->external = 0;
1562 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565 mddev->level = le32_to_cpu(sb->level);
1566 mddev->clevel[0] = 0;
1567 mddev->layout = le32_to_cpu(sb->layout);
1568 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569 mddev->dev_sectors = le64_to_cpu(sb->size);
1570 mddev->events = ev1;
1571 mddev->bitmap_info.offset = 0;
1572 mddev->bitmap_info.space = 0;
1573 /* Default location for bitmap is 1K after superblock
1574 * using 3K - total of 4K
1575 */
1576 mddev->bitmap_info.default_offset = 1024 >> 9;
1577 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578 mddev->reshape_backwards = 0;
1579
1580 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581 memcpy(mddev->uuid, sb->set_uuid, 16);
1582
1583 mddev->max_disks = (4096-256)/2;
1584
1585 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586 mddev->bitmap_info.file == NULL) {
1587 mddev->bitmap_info.offset =
1588 (__s32)le32_to_cpu(sb->bitmap_offset);
1589 /* Metadata doesn't record how much space is available.
1590 * For 1.0, we assume we can use up to the superblock
1591 * if before, else to 4K beyond superblock.
1592 * For others, assume no change is possible.
1593 */
1594 if (mddev->minor_version > 0)
1595 mddev->bitmap_info.space = 0;
1596 else if (mddev->bitmap_info.offset > 0)
1597 mddev->bitmap_info.space =
1598 8 - mddev->bitmap_info.offset;
1599 else
1600 mddev->bitmap_info.space =
1601 -mddev->bitmap_info.offset;
1602 }
1603
1604 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607 mddev->new_level = le32_to_cpu(sb->new_level);
1608 mddev->new_layout = le32_to_cpu(sb->new_layout);
1609 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610 if (mddev->delta_disks < 0 ||
1611 (mddev->delta_disks == 0 &&
1612 (le32_to_cpu(sb->feature_map)
1613 & MD_FEATURE_RESHAPE_BACKWARDS)))
1614 mddev->reshape_backwards = 1;
1615 } else {
1616 mddev->reshape_position = MaxSector;
1617 mddev->delta_disks = 0;
1618 mddev->new_level = mddev->level;
1619 mddev->new_layout = mddev->layout;
1620 mddev->new_chunk_sectors = mddev->chunk_sectors;
1621 }
1622
1623 } else if (mddev->pers == NULL) {
1624 /* Insist of good event counter while assembling, except for
1625 * spares (which don't need an event count) */
1626 ++ev1;
1627 if (rdev->desc_nr >= 0 &&
1628 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630 if (ev1 < mddev->events)
1631 return -EINVAL;
1632 } else if (mddev->bitmap) {
1633 /* If adding to array with a bitmap, then we can accept an
1634 * older device, but not too old.
1635 */
1636 if (ev1 < mddev->bitmap->events_cleared)
1637 return 0;
1638 if (ev1 < mddev->events)
1639 set_bit(Bitmap_sync, &rdev->flags);
1640 } else {
1641 if (ev1 < mddev->events)
1642 /* just a hot-add of a new device, leave raid_disk at -1 */
1643 return 0;
1644 }
1645 if (mddev->level != LEVEL_MULTIPATH) {
1646 int role;
1647 if (rdev->desc_nr < 0 ||
1648 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649 role = 0xffff;
1650 rdev->desc_nr = -1;
1651 } else
1652 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653 switch(role) {
1654 case 0xffff: /* spare */
1655 break;
1656 case 0xfffe: /* faulty */
1657 set_bit(Faulty, &rdev->flags);
1658 break;
1659 default:
1660 rdev->saved_raid_disk = role;
1661 if ((le32_to_cpu(sb->feature_map) &
1662 MD_FEATURE_RECOVERY_OFFSET)) {
1663 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664 if (!(le32_to_cpu(sb->feature_map) &
1665 MD_FEATURE_RECOVERY_BITMAP))
1666 rdev->saved_raid_disk = -1;
1667 } else
1668 set_bit(In_sync, &rdev->flags);
1669 rdev->raid_disk = role;
1670 break;
1671 }
1672 if (sb->devflags & WriteMostly1)
1673 set_bit(WriteMostly, &rdev->flags);
1674 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675 set_bit(Replacement, &rdev->flags);
1676 } else /* MULTIPATH are always insync */
1677 set_bit(In_sync, &rdev->flags);
1678
1679 return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 struct mdp_superblock_1 *sb;
1685 struct md_rdev *rdev2;
1686 int max_dev, i;
1687 /* make rdev->sb match mddev and rdev data. */
1688
1689 sb = page_address(rdev->sb_page);
1690
1691 sb->feature_map = 0;
1692 sb->pad0 = 0;
1693 sb->recovery_offset = cpu_to_le64(0);
1694 memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696 sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 sb->events = cpu_to_le64(mddev->events);
1698 if (mddev->in_sync)
1699 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 else
1701 sb->resync_offset = cpu_to_le64(0);
1702
1703 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 sb->size = cpu_to_le64(mddev->dev_sectors);
1707 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 sb->level = cpu_to_le32(mddev->level);
1709 sb->layout = cpu_to_le32(mddev->layout);
1710
1711 if (test_bit(WriteMostly, &rdev->flags))
1712 sb->devflags |= WriteMostly1;
1713 else
1714 sb->devflags &= ~WriteMostly1;
1715 sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 }
1722
1723 if (rdev->raid_disk >= 0 &&
1724 !test_bit(In_sync, &rdev->flags)) {
1725 sb->feature_map |=
1726 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 sb->recovery_offset =
1728 cpu_to_le64(rdev->recovery_offset);
1729 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 sb->feature_map |=
1731 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 }
1733 if (test_bit(Replacement, &rdev->flags))
1734 sb->feature_map |=
1735 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736
1737 if (mddev->reshape_position != MaxSector) {
1738 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 sb->new_level = cpu_to_le32(mddev->new_level);
1743 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 if (mddev->delta_disks == 0 &&
1745 mddev->reshape_backwards)
1746 sb->feature_map
1747 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 if (rdev->new_data_offset != rdev->data_offset) {
1749 sb->feature_map
1750 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 - rdev->data_offset));
1753 }
1754 }
1755
1756 if (rdev->badblocks.count == 0)
1757 /* Nothing to do for bad blocks*/ ;
1758 else if (sb->bblog_offset == 0)
1759 /* Cannot record bad blocks on this device */
1760 md_error(mddev, rdev);
1761 else {
1762 struct badblocks *bb = &rdev->badblocks;
1763 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 u64 *p = bb->page;
1765 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 if (bb->changed) {
1767 unsigned seq;
1768
1769 retry:
1770 seq = read_seqbegin(&bb->lock);
1771
1772 memset(bbp, 0xff, PAGE_SIZE);
1773
1774 for (i = 0 ; i < bb->count ; i++) {
1775 u64 internal_bb = p[i];
1776 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 | BB_LEN(internal_bb));
1778 bbp[i] = cpu_to_le64(store_bb);
1779 }
1780 bb->changed = 0;
1781 if (read_seqretry(&bb->lock, seq))
1782 goto retry;
1783
1784 bb->sector = (rdev->sb_start +
1785 (int)le32_to_cpu(sb->bblog_offset));
1786 bb->size = le16_to_cpu(sb->bblog_size);
1787 }
1788 }
1789
1790 max_dev = 0;
1791 rdev_for_each(rdev2, mddev)
1792 if (rdev2->desc_nr+1 > max_dev)
1793 max_dev = rdev2->desc_nr+1;
1794
1795 if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 int bmask;
1797 sb->max_dev = cpu_to_le32(max_dev);
1798 rdev->sb_size = max_dev * 2 + 256;
1799 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 if (rdev->sb_size & bmask)
1801 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 } else
1803 max_dev = le32_to_cpu(sb->max_dev);
1804
1805 for (i=0; i<max_dev;i++)
1806 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807
1808 rdev_for_each(rdev2, mddev) {
1809 i = rdev2->desc_nr;
1810 if (test_bit(Faulty, &rdev2->flags))
1811 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812 else if (test_bit(In_sync, &rdev2->flags))
1813 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814 else if (rdev2->raid_disk >= 0)
1815 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 else
1817 sb->dev_roles[i] = cpu_to_le16(0xffff);
1818 }
1819
1820 sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826 struct mdp_superblock_1 *sb;
1827 sector_t max_sectors;
1828 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829 return 0; /* component must fit device */
1830 if (rdev->data_offset != rdev->new_data_offset)
1831 return 0; /* too confusing */
1832 if (rdev->sb_start < rdev->data_offset) {
1833 /* minor versions 1 and 2; superblock before data */
1834 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835 max_sectors -= rdev->data_offset;
1836 if (!num_sectors || num_sectors > max_sectors)
1837 num_sectors = max_sectors;
1838 } else if (rdev->mddev->bitmap_info.offset) {
1839 /* minor version 0 with bitmap we can't move */
1840 return 0;
1841 } else {
1842 /* minor version 0; superblock after data */
1843 sector_t sb_start;
1844 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845 sb_start &= ~(sector_t)(4*2 - 1);
1846 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847 if (!num_sectors || num_sectors > max_sectors)
1848 num_sectors = max_sectors;
1849 rdev->sb_start = sb_start;
1850 }
1851 sb = page_address(rdev->sb_page);
1852 sb->data_size = cpu_to_le64(num_sectors);
1853 sb->super_offset = rdev->sb_start;
1854 sb->sb_csum = calc_sb_1_csum(sb);
1855 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856 rdev->sb_page);
1857 md_super_wait(rdev->mddev);
1858 return num_sectors;
1859
1860 }
1861
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864 unsigned long long new_offset)
1865 {
1866 /* All necessary checks on new >= old have been done */
1867 struct bitmap *bitmap;
1868 if (new_offset >= rdev->data_offset)
1869 return 1;
1870
1871 /* with 1.0 metadata, there is no metadata to tread on
1872 * so we can always move back */
1873 if (rdev->mddev->minor_version == 0)
1874 return 1;
1875
1876 /* otherwise we must be sure not to step on
1877 * any metadata, so stay:
1878 * 36K beyond start of superblock
1879 * beyond end of badblocks
1880 * beyond write-intent bitmap
1881 */
1882 if (rdev->sb_start + (32+4)*2 > new_offset)
1883 return 0;
1884 bitmap = rdev->mddev->bitmap;
1885 if (bitmap && !rdev->mddev->bitmap_info.file &&
1886 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888 return 0;
1889 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890 return 0;
1891
1892 return 1;
1893 }
1894
1895 static struct super_type super_types[] = {
1896 [0] = {
1897 .name = "0.90.0",
1898 .owner = THIS_MODULE,
1899 .load_super = super_90_load,
1900 .validate_super = super_90_validate,
1901 .sync_super = super_90_sync,
1902 .rdev_size_change = super_90_rdev_size_change,
1903 .allow_new_offset = super_90_allow_new_offset,
1904 },
1905 [1] = {
1906 .name = "md-1",
1907 .owner = THIS_MODULE,
1908 .load_super = super_1_load,
1909 .validate_super = super_1_validate,
1910 .sync_super = super_1_sync,
1911 .rdev_size_change = super_1_rdev_size_change,
1912 .allow_new_offset = super_1_allow_new_offset,
1913 },
1914 };
1915
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 if (mddev->sync_super) {
1919 mddev->sync_super(mddev, rdev);
1920 return;
1921 }
1922
1923 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924
1925 super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930 struct md_rdev *rdev, *rdev2;
1931
1932 rcu_read_lock();
1933 rdev_for_each_rcu(rdev, mddev1)
1934 rdev_for_each_rcu(rdev2, mddev2)
1935 if (rdev->bdev->bd_contains ==
1936 rdev2->bdev->bd_contains) {
1937 rcu_read_unlock();
1938 return 1;
1939 }
1940 rcu_read_unlock();
1941 return 0;
1942 }
1943
1944 static LIST_HEAD(pending_raid_disks);
1945
1946 /*
1947 * Try to register data integrity profile for an mddev
1948 *
1949 * This is called when an array is started and after a disk has been kicked
1950 * from the array. It only succeeds if all working and active component devices
1951 * are integrity capable with matching profiles.
1952 */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955 struct md_rdev *rdev, *reference = NULL;
1956
1957 if (list_empty(&mddev->disks))
1958 return 0; /* nothing to do */
1959 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960 return 0; /* shouldn't register, or already is */
1961 rdev_for_each(rdev, mddev) {
1962 /* skip spares and non-functional disks */
1963 if (test_bit(Faulty, &rdev->flags))
1964 continue;
1965 if (rdev->raid_disk < 0)
1966 continue;
1967 if (!reference) {
1968 /* Use the first rdev as the reference */
1969 reference = rdev;
1970 continue;
1971 }
1972 /* does this rdev's profile match the reference profile? */
1973 if (blk_integrity_compare(reference->bdev->bd_disk,
1974 rdev->bdev->bd_disk) < 0)
1975 return -EINVAL;
1976 }
1977 if (!reference || !bdev_get_integrity(reference->bdev))
1978 return 0;
1979 /*
1980 * All component devices are integrity capable and have matching
1981 * profiles, register the common profile for the md device.
1982 */
1983 if (blk_integrity_register(mddev->gendisk,
1984 bdev_get_integrity(reference->bdev)) != 0) {
1985 printk(KERN_ERR "md: failed to register integrity for %s\n",
1986 mdname(mddev));
1987 return -EINVAL;
1988 }
1989 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992 mdname(mddev));
1993 return -EINVAL;
1994 }
1995 return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 struct blk_integrity *bi_rdev;
2003 struct blk_integrity *bi_mddev;
2004
2005 if (!mddev->gendisk)
2006 return;
2007
2008 bi_rdev = bdev_get_integrity(rdev->bdev);
2009 bi_mddev = blk_get_integrity(mddev->gendisk);
2010
2011 if (!bi_mddev) /* nothing to do */
2012 return;
2013 if (rdev->raid_disk < 0) /* skip spares */
2014 return;
2015 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016 rdev->bdev->bd_disk) >= 0)
2017 return;
2018 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019 blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 char b[BDEVNAME_SIZE];
2026 struct kobject *ko;
2027 int err;
2028
2029 /* prevent duplicates */
2030 if (find_rdev(mddev, rdev->bdev->bd_dev))
2031 return -EEXIST;
2032
2033 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2034 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2035 rdev->sectors < mddev->dev_sectors)) {
2036 if (mddev->pers) {
2037 /* Cannot change size, so fail
2038 * If mddev->level <= 0, then we don't care
2039 * about aligning sizes (e.g. linear)
2040 */
2041 if (mddev->level > 0)
2042 return -ENOSPC;
2043 } else
2044 mddev->dev_sectors = rdev->sectors;
2045 }
2046
2047 /* Verify rdev->desc_nr is unique.
2048 * If it is -1, assign a free number, else
2049 * check number is not in use
2050 */
2051 rcu_read_lock();
2052 if (rdev->desc_nr < 0) {
2053 int choice = 0;
2054 if (mddev->pers)
2055 choice = mddev->raid_disks;
2056 while (md_find_rdev_nr_rcu(mddev, choice))
2057 choice++;
2058 rdev->desc_nr = choice;
2059 } else {
2060 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2061 rcu_read_unlock();
2062 return -EBUSY;
2063 }
2064 }
2065 rcu_read_unlock();
2066 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2067 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2068 mdname(mddev), mddev->max_disks);
2069 return -EBUSY;
2070 }
2071 bdevname(rdev->bdev,b);
2072 strreplace(b, '/', '!');
2073
2074 rdev->mddev = mddev;
2075 printk(KERN_INFO "md: bind<%s>\n", b);
2076
2077 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2078 goto fail;
2079
2080 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2081 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2082 /* failure here is OK */;
2083 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2084
2085 list_add_rcu(&rdev->same_set, &mddev->disks);
2086 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2087
2088 /* May as well allow recovery to be retried once */
2089 mddev->recovery_disabled++;
2090
2091 return 0;
2092
2093 fail:
2094 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2095 b, mdname(mddev));
2096 return err;
2097 }
2098
2099 static void md_delayed_delete(struct work_struct *ws)
2100 {
2101 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2102 kobject_del(&rdev->kobj);
2103 kobject_put(&rdev->kobj);
2104 }
2105
2106 static void unbind_rdev_from_array(struct md_rdev *rdev)
2107 {
2108 char b[BDEVNAME_SIZE];
2109
2110 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2111 list_del_rcu(&rdev->same_set);
2112 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2113 rdev->mddev = NULL;
2114 sysfs_remove_link(&rdev->kobj, "block");
2115 sysfs_put(rdev->sysfs_state);
2116 rdev->sysfs_state = NULL;
2117 rdev->badblocks.count = 0;
2118 /* We need to delay this, otherwise we can deadlock when
2119 * writing to 'remove' to "dev/state". We also need
2120 * to delay it due to rcu usage.
2121 */
2122 synchronize_rcu();
2123 INIT_WORK(&rdev->del_work, md_delayed_delete);
2124 kobject_get(&rdev->kobj);
2125 queue_work(md_misc_wq, &rdev->del_work);
2126 }
2127
2128 /*
2129 * prevent the device from being mounted, repartitioned or
2130 * otherwise reused by a RAID array (or any other kernel
2131 * subsystem), by bd_claiming the device.
2132 */
2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2134 {
2135 int err = 0;
2136 struct block_device *bdev;
2137 char b[BDEVNAME_SIZE];
2138
2139 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140 shared ? (struct md_rdev *)lock_rdev : rdev);
2141 if (IS_ERR(bdev)) {
2142 printk(KERN_ERR "md: could not open %s.\n",
2143 __bdevname(dev, b));
2144 return PTR_ERR(bdev);
2145 }
2146 rdev->bdev = bdev;
2147 return err;
2148 }
2149
2150 static void unlock_rdev(struct md_rdev *rdev)
2151 {
2152 struct block_device *bdev = rdev->bdev;
2153 rdev->bdev = NULL;
2154 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2155 }
2156
2157 void md_autodetect_dev(dev_t dev);
2158
2159 static void export_rdev(struct md_rdev *rdev)
2160 {
2161 char b[BDEVNAME_SIZE];
2162
2163 printk(KERN_INFO "md: export_rdev(%s)\n",
2164 bdevname(rdev->bdev,b));
2165 md_rdev_clear(rdev);
2166 #ifndef MODULE
2167 if (test_bit(AutoDetected, &rdev->flags))
2168 md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170 unlock_rdev(rdev);
2171 kobject_put(&rdev->kobj);
2172 }
2173
2174 void md_kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176 unbind_rdev_from_array(rdev);
2177 export_rdev(rdev);
2178 }
2179 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2180
2181 static void export_array(struct mddev *mddev)
2182 {
2183 struct md_rdev *rdev;
2184
2185 while (!list_empty(&mddev->disks)) {
2186 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2187 same_set);
2188 md_kick_rdev_from_array(rdev);
2189 }
2190 mddev->raid_disks = 0;
2191 mddev->major_version = 0;
2192 }
2193
2194 static void sync_sbs(struct mddev *mddev, int nospares)
2195 {
2196 /* Update each superblock (in-memory image), but
2197 * if we are allowed to, skip spares which already
2198 * have the right event counter, or have one earlier
2199 * (which would mean they aren't being marked as dirty
2200 * with the rest of the array)
2201 */
2202 struct md_rdev *rdev;
2203 rdev_for_each(rdev, mddev) {
2204 if (rdev->sb_events == mddev->events ||
2205 (nospares &&
2206 rdev->raid_disk < 0 &&
2207 rdev->sb_events+1 == mddev->events)) {
2208 /* Don't update this superblock */
2209 rdev->sb_loaded = 2;
2210 } else {
2211 sync_super(mddev, rdev);
2212 rdev->sb_loaded = 1;
2213 }
2214 }
2215 }
2216
2217 void md_update_sb(struct mddev *mddev, int force_change)
2218 {
2219 struct md_rdev *rdev;
2220 int sync_req;
2221 int nospares = 0;
2222 int any_badblocks_changed = 0;
2223
2224 if (mddev->ro) {
2225 if (force_change)
2226 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2227 return;
2228 }
2229 repeat:
2230 /* First make sure individual recovery_offsets are correct */
2231 rdev_for_each(rdev, mddev) {
2232 if (rdev->raid_disk >= 0 &&
2233 mddev->delta_disks >= 0 &&
2234 !test_bit(In_sync, &rdev->flags) &&
2235 mddev->curr_resync_completed > rdev->recovery_offset)
2236 rdev->recovery_offset = mddev->curr_resync_completed;
2237
2238 }
2239 if (!mddev->persistent) {
2240 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2241 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2242 if (!mddev->external) {
2243 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2244 rdev_for_each(rdev, mddev) {
2245 if (rdev->badblocks.changed) {
2246 rdev->badblocks.changed = 0;
2247 md_ack_all_badblocks(&rdev->badblocks);
2248 md_error(mddev, rdev);
2249 }
2250 clear_bit(Blocked, &rdev->flags);
2251 clear_bit(BlockedBadBlocks, &rdev->flags);
2252 wake_up(&rdev->blocked_wait);
2253 }
2254 }
2255 wake_up(&mddev->sb_wait);
2256 return;
2257 }
2258
2259 spin_lock(&mddev->lock);
2260
2261 mddev->utime = get_seconds();
2262
2263 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2264 force_change = 1;
2265 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2266 /* just a clean<-> dirty transition, possibly leave spares alone,
2267 * though if events isn't the right even/odd, we will have to do
2268 * spares after all
2269 */
2270 nospares = 1;
2271 if (force_change)
2272 nospares = 0;
2273 if (mddev->degraded)
2274 /* If the array is degraded, then skipping spares is both
2275 * dangerous and fairly pointless.
2276 * Dangerous because a device that was removed from the array
2277 * might have a event_count that still looks up-to-date,
2278 * so it can be re-added without a resync.
2279 * Pointless because if there are any spares to skip,
2280 * then a recovery will happen and soon that array won't
2281 * be degraded any more and the spare can go back to sleep then.
2282 */
2283 nospares = 0;
2284
2285 sync_req = mddev->in_sync;
2286
2287 /* If this is just a dirty<->clean transition, and the array is clean
2288 * and 'events' is odd, we can roll back to the previous clean state */
2289 if (nospares
2290 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2291 && mddev->can_decrease_events
2292 && mddev->events != 1) {
2293 mddev->events--;
2294 mddev->can_decrease_events = 0;
2295 } else {
2296 /* otherwise we have to go forward and ... */
2297 mddev->events ++;
2298 mddev->can_decrease_events = nospares;
2299 }
2300
2301 /*
2302 * This 64-bit counter should never wrap.
2303 * Either we are in around ~1 trillion A.C., assuming
2304 * 1 reboot per second, or we have a bug...
2305 */
2306 WARN_ON(mddev->events == 0);
2307
2308 rdev_for_each(rdev, mddev) {
2309 if (rdev->badblocks.changed)
2310 any_badblocks_changed++;
2311 if (test_bit(Faulty, &rdev->flags))
2312 set_bit(FaultRecorded, &rdev->flags);
2313 }
2314
2315 sync_sbs(mddev, nospares);
2316 spin_unlock(&mddev->lock);
2317
2318 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2319 mdname(mddev), mddev->in_sync);
2320
2321 bitmap_update_sb(mddev->bitmap);
2322 rdev_for_each(rdev, mddev) {
2323 char b[BDEVNAME_SIZE];
2324
2325 if (rdev->sb_loaded != 1)
2326 continue; /* no noise on spare devices */
2327
2328 if (!test_bit(Faulty, &rdev->flags)) {
2329 md_super_write(mddev,rdev,
2330 rdev->sb_start, rdev->sb_size,
2331 rdev->sb_page);
2332 pr_debug("md: (write) %s's sb offset: %llu\n",
2333 bdevname(rdev->bdev, b),
2334 (unsigned long long)rdev->sb_start);
2335 rdev->sb_events = mddev->events;
2336 if (rdev->badblocks.size) {
2337 md_super_write(mddev, rdev,
2338 rdev->badblocks.sector,
2339 rdev->badblocks.size << 9,
2340 rdev->bb_page);
2341 rdev->badblocks.size = 0;
2342 }
2343
2344 } else
2345 pr_debug("md: %s (skipping faulty)\n",
2346 bdevname(rdev->bdev, b));
2347
2348 if (mddev->level == LEVEL_MULTIPATH)
2349 /* only need to write one superblock... */
2350 break;
2351 }
2352 md_super_wait(mddev);
2353 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2354
2355 spin_lock(&mddev->lock);
2356 if (mddev->in_sync != sync_req ||
2357 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2358 /* have to write it out again */
2359 spin_unlock(&mddev->lock);
2360 goto repeat;
2361 }
2362 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 spin_unlock(&mddev->lock);
2364 wake_up(&mddev->sb_wait);
2365 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2366 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2367
2368 rdev_for_each(rdev, mddev) {
2369 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2370 clear_bit(Blocked, &rdev->flags);
2371
2372 if (any_badblocks_changed)
2373 md_ack_all_badblocks(&rdev->badblocks);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2376 }
2377 }
2378 EXPORT_SYMBOL(md_update_sb);
2379
2380 static int add_bound_rdev(struct md_rdev *rdev)
2381 {
2382 struct mddev *mddev = rdev->mddev;
2383 int err = 0;
2384
2385 if (!mddev->pers->hot_remove_disk) {
2386 /* If there is hot_add_disk but no hot_remove_disk
2387 * then added disks for geometry changes,
2388 * and should be added immediately.
2389 */
2390 super_types[mddev->major_version].
2391 validate_super(mddev, rdev);
2392 err = mddev->pers->hot_add_disk(mddev, rdev);
2393 if (err) {
2394 unbind_rdev_from_array(rdev);
2395 export_rdev(rdev);
2396 return err;
2397 }
2398 }
2399 sysfs_notify_dirent_safe(rdev->sysfs_state);
2400
2401 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2402 if (mddev->degraded)
2403 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2405 md_new_event(mddev);
2406 md_wakeup_thread(mddev->thread);
2407 return 0;
2408 }
2409
2410 /* words written to sysfs files may, or may not, be \n terminated.
2411 * We want to accept with case. For this we use cmd_match.
2412 */
2413 static int cmd_match(const char *cmd, const char *str)
2414 {
2415 /* See if cmd, written into a sysfs file, matches
2416 * str. They must either be the same, or cmd can
2417 * have a trailing newline
2418 */
2419 while (*cmd && *str && *cmd == *str) {
2420 cmd++;
2421 str++;
2422 }
2423 if (*cmd == '\n')
2424 cmd++;
2425 if (*str || *cmd)
2426 return 0;
2427 return 1;
2428 }
2429
2430 struct rdev_sysfs_entry {
2431 struct attribute attr;
2432 ssize_t (*show)(struct md_rdev *, char *);
2433 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2434 };
2435
2436 static ssize_t
2437 state_show(struct md_rdev *rdev, char *page)
2438 {
2439 char *sep = "";
2440 size_t len = 0;
2441 unsigned long flags = ACCESS_ONCE(rdev->flags);
2442
2443 if (test_bit(Faulty, &flags) ||
2444 rdev->badblocks.unacked_exist) {
2445 len+= sprintf(page+len, "%sfaulty",sep);
2446 sep = ",";
2447 }
2448 if (test_bit(In_sync, &flags)) {
2449 len += sprintf(page+len, "%sin_sync",sep);
2450 sep = ",";
2451 }
2452 if (test_bit(WriteMostly, &flags)) {
2453 len += sprintf(page+len, "%swrite_mostly",sep);
2454 sep = ",";
2455 }
2456 if (test_bit(Blocked, &flags) ||
2457 (rdev->badblocks.unacked_exist
2458 && !test_bit(Faulty, &flags))) {
2459 len += sprintf(page+len, "%sblocked", sep);
2460 sep = ",";
2461 }
2462 if (!test_bit(Faulty, &flags) &&
2463 !test_bit(In_sync, &flags)) {
2464 len += sprintf(page+len, "%sspare", sep);
2465 sep = ",";
2466 }
2467 if (test_bit(WriteErrorSeen, &flags)) {
2468 len += sprintf(page+len, "%swrite_error", sep);
2469 sep = ",";
2470 }
2471 if (test_bit(WantReplacement, &flags)) {
2472 len += sprintf(page+len, "%swant_replacement", sep);
2473 sep = ",";
2474 }
2475 if (test_bit(Replacement, &flags)) {
2476 len += sprintf(page+len, "%sreplacement", sep);
2477 sep = ",";
2478 }
2479
2480 return len+sprintf(page+len, "\n");
2481 }
2482
2483 static ssize_t
2484 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2485 {
2486 /* can write
2487 * faulty - simulates an error
2488 * remove - disconnects the device
2489 * writemostly - sets write_mostly
2490 * -writemostly - clears write_mostly
2491 * blocked - sets the Blocked flags
2492 * -blocked - clears the Blocked and possibly simulates an error
2493 * insync - sets Insync providing device isn't active
2494 * -insync - clear Insync for a device with a slot assigned,
2495 * so that it gets rebuilt based on bitmap
2496 * write_error - sets WriteErrorSeen
2497 * -write_error - clears WriteErrorSeen
2498 */
2499 int err = -EINVAL;
2500 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2501 md_error(rdev->mddev, rdev);
2502 if (test_bit(Faulty, &rdev->flags))
2503 err = 0;
2504 else
2505 err = -EBUSY;
2506 } else if (cmd_match(buf, "remove")) {
2507 if (rdev->raid_disk >= 0)
2508 err = -EBUSY;
2509 else {
2510 struct mddev *mddev = rdev->mddev;
2511 if (mddev_is_clustered(mddev))
2512 md_cluster_ops->remove_disk(mddev, rdev);
2513 md_kick_rdev_from_array(rdev);
2514 if (mddev_is_clustered(mddev))
2515 md_cluster_ops->metadata_update_start(mddev);
2516 if (mddev->pers)
2517 md_update_sb(mddev, 1);
2518 md_new_event(mddev);
2519 if (mddev_is_clustered(mddev))
2520 md_cluster_ops->metadata_update_finish(mddev);
2521 err = 0;
2522 }
2523 } else if (cmd_match(buf, "writemostly")) {
2524 set_bit(WriteMostly, &rdev->flags);
2525 err = 0;
2526 } else if (cmd_match(buf, "-writemostly")) {
2527 clear_bit(WriteMostly, &rdev->flags);
2528 err = 0;
2529 } else if (cmd_match(buf, "blocked")) {
2530 set_bit(Blocked, &rdev->flags);
2531 err = 0;
2532 } else if (cmd_match(buf, "-blocked")) {
2533 if (!test_bit(Faulty, &rdev->flags) &&
2534 rdev->badblocks.unacked_exist) {
2535 /* metadata handler doesn't understand badblocks,
2536 * so we need to fail the device
2537 */
2538 md_error(rdev->mddev, rdev);
2539 }
2540 clear_bit(Blocked, &rdev->flags);
2541 clear_bit(BlockedBadBlocks, &rdev->flags);
2542 wake_up(&rdev->blocked_wait);
2543 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2544 md_wakeup_thread(rdev->mddev->thread);
2545
2546 err = 0;
2547 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2548 set_bit(In_sync, &rdev->flags);
2549 err = 0;
2550 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2551 if (rdev->mddev->pers == NULL) {
2552 clear_bit(In_sync, &rdev->flags);
2553 rdev->saved_raid_disk = rdev->raid_disk;
2554 rdev->raid_disk = -1;
2555 err = 0;
2556 }
2557 } else if (cmd_match(buf, "write_error")) {
2558 set_bit(WriteErrorSeen, &rdev->flags);
2559 err = 0;
2560 } else if (cmd_match(buf, "-write_error")) {
2561 clear_bit(WriteErrorSeen, &rdev->flags);
2562 err = 0;
2563 } else if (cmd_match(buf, "want_replacement")) {
2564 /* Any non-spare device that is not a replacement can
2565 * become want_replacement at any time, but we then need to
2566 * check if recovery is needed.
2567 */
2568 if (rdev->raid_disk >= 0 &&
2569 !test_bit(Replacement, &rdev->flags))
2570 set_bit(WantReplacement, &rdev->flags);
2571 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2572 md_wakeup_thread(rdev->mddev->thread);
2573 err = 0;
2574 } else if (cmd_match(buf, "-want_replacement")) {
2575 /* Clearing 'want_replacement' is always allowed.
2576 * Once replacements starts it is too late though.
2577 */
2578 err = 0;
2579 clear_bit(WantReplacement, &rdev->flags);
2580 } else if (cmd_match(buf, "replacement")) {
2581 /* Can only set a device as a replacement when array has not
2582 * yet been started. Once running, replacement is automatic
2583 * from spares, or by assigning 'slot'.
2584 */
2585 if (rdev->mddev->pers)
2586 err = -EBUSY;
2587 else {
2588 set_bit(Replacement, &rdev->flags);
2589 err = 0;
2590 }
2591 } else if (cmd_match(buf, "-replacement")) {
2592 /* Similarly, can only clear Replacement before start */
2593 if (rdev->mddev->pers)
2594 err = -EBUSY;
2595 else {
2596 clear_bit(Replacement, &rdev->flags);
2597 err = 0;
2598 }
2599 } else if (cmd_match(buf, "re-add")) {
2600 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2601 /* clear_bit is performed _after_ all the devices
2602 * have their local Faulty bit cleared. If any writes
2603 * happen in the meantime in the local node, they
2604 * will land in the local bitmap, which will be synced
2605 * by this node eventually
2606 */
2607 if (!mddev_is_clustered(rdev->mddev) ||
2608 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2609 clear_bit(Faulty, &rdev->flags);
2610 err = add_bound_rdev(rdev);
2611 }
2612 } else
2613 err = -EBUSY;
2614 }
2615 if (!err)
2616 sysfs_notify_dirent_safe(rdev->sysfs_state);
2617 return err ? err : len;
2618 }
2619 static struct rdev_sysfs_entry rdev_state =
2620 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2621
2622 static ssize_t
2623 errors_show(struct md_rdev *rdev, char *page)
2624 {
2625 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2626 }
2627
2628 static ssize_t
2629 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2630 {
2631 unsigned int n;
2632 int rv;
2633
2634 rv = kstrtouint(buf, 10, &n);
2635 if (rv < 0)
2636 return rv;
2637 atomic_set(&rdev->corrected_errors, n);
2638 return len;
2639 }
2640 static struct rdev_sysfs_entry rdev_errors =
2641 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2642
2643 static ssize_t
2644 slot_show(struct md_rdev *rdev, char *page)
2645 {
2646 if (rdev->raid_disk < 0)
2647 return sprintf(page, "none\n");
2648 else
2649 return sprintf(page, "%d\n", rdev->raid_disk);
2650 }
2651
2652 static ssize_t
2653 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2654 {
2655 int slot;
2656 int err;
2657
2658 if (strncmp(buf, "none", 4)==0)
2659 slot = -1;
2660 else {
2661 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2662 if (err < 0)
2663 return err;
2664 }
2665 if (rdev->mddev->pers && slot == -1) {
2666 /* Setting 'slot' on an active array requires also
2667 * updating the 'rd%d' link, and communicating
2668 * with the personality with ->hot_*_disk.
2669 * For now we only support removing
2670 * failed/spare devices. This normally happens automatically,
2671 * but not when the metadata is externally managed.
2672 */
2673 if (rdev->raid_disk == -1)
2674 return -EEXIST;
2675 /* personality does all needed checks */
2676 if (rdev->mddev->pers->hot_remove_disk == NULL)
2677 return -EINVAL;
2678 clear_bit(Blocked, &rdev->flags);
2679 remove_and_add_spares(rdev->mddev, rdev);
2680 if (rdev->raid_disk >= 0)
2681 return -EBUSY;
2682 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2683 md_wakeup_thread(rdev->mddev->thread);
2684 } else if (rdev->mddev->pers) {
2685 /* Activating a spare .. or possibly reactivating
2686 * if we ever get bitmaps working here.
2687 */
2688
2689 if (rdev->raid_disk != -1)
2690 return -EBUSY;
2691
2692 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2693 return -EBUSY;
2694
2695 if (rdev->mddev->pers->hot_add_disk == NULL)
2696 return -EINVAL;
2697
2698 if (slot >= rdev->mddev->raid_disks &&
2699 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2700 return -ENOSPC;
2701
2702 rdev->raid_disk = slot;
2703 if (test_bit(In_sync, &rdev->flags))
2704 rdev->saved_raid_disk = slot;
2705 else
2706 rdev->saved_raid_disk = -1;
2707 clear_bit(In_sync, &rdev->flags);
2708 clear_bit(Bitmap_sync, &rdev->flags);
2709 err = rdev->mddev->pers->
2710 hot_add_disk(rdev->mddev, rdev);
2711 if (err) {
2712 rdev->raid_disk = -1;
2713 return err;
2714 } else
2715 sysfs_notify_dirent_safe(rdev->sysfs_state);
2716 if (sysfs_link_rdev(rdev->mddev, rdev))
2717 /* failure here is OK */;
2718 /* don't wakeup anyone, leave that to userspace. */
2719 } else {
2720 if (slot >= rdev->mddev->raid_disks &&
2721 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722 return -ENOSPC;
2723 rdev->raid_disk = slot;
2724 /* assume it is working */
2725 clear_bit(Faulty, &rdev->flags);
2726 clear_bit(WriteMostly, &rdev->flags);
2727 set_bit(In_sync, &rdev->flags);
2728 sysfs_notify_dirent_safe(rdev->sysfs_state);
2729 }
2730 return len;
2731 }
2732
2733 static struct rdev_sysfs_entry rdev_slot =
2734 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2735
2736 static ssize_t
2737 offset_show(struct md_rdev *rdev, char *page)
2738 {
2739 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2740 }
2741
2742 static ssize_t
2743 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2744 {
2745 unsigned long long offset;
2746 if (kstrtoull(buf, 10, &offset) < 0)
2747 return -EINVAL;
2748 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2749 return -EBUSY;
2750 if (rdev->sectors && rdev->mddev->external)
2751 /* Must set offset before size, so overlap checks
2752 * can be sane */
2753 return -EBUSY;
2754 rdev->data_offset = offset;
2755 rdev->new_data_offset = offset;
2756 return len;
2757 }
2758
2759 static struct rdev_sysfs_entry rdev_offset =
2760 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2761
2762 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2763 {
2764 return sprintf(page, "%llu\n",
2765 (unsigned long long)rdev->new_data_offset);
2766 }
2767
2768 static ssize_t new_offset_store(struct md_rdev *rdev,
2769 const char *buf, size_t len)
2770 {
2771 unsigned long long new_offset;
2772 struct mddev *mddev = rdev->mddev;
2773
2774 if (kstrtoull(buf, 10, &new_offset) < 0)
2775 return -EINVAL;
2776
2777 if (mddev->sync_thread ||
2778 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2779 return -EBUSY;
2780 if (new_offset == rdev->data_offset)
2781 /* reset is always permitted */
2782 ;
2783 else if (new_offset > rdev->data_offset) {
2784 /* must not push array size beyond rdev_sectors */
2785 if (new_offset - rdev->data_offset
2786 + mddev->dev_sectors > rdev->sectors)
2787 return -E2BIG;
2788 }
2789 /* Metadata worries about other space details. */
2790
2791 /* decreasing the offset is inconsistent with a backwards
2792 * reshape.
2793 */
2794 if (new_offset < rdev->data_offset &&
2795 mddev->reshape_backwards)
2796 return -EINVAL;
2797 /* Increasing offset is inconsistent with forwards
2798 * reshape. reshape_direction should be set to
2799 * 'backwards' first.
2800 */
2801 if (new_offset > rdev->data_offset &&
2802 !mddev->reshape_backwards)
2803 return -EINVAL;
2804
2805 if (mddev->pers && mddev->persistent &&
2806 !super_types[mddev->major_version]
2807 .allow_new_offset(rdev, new_offset))
2808 return -E2BIG;
2809 rdev->new_data_offset = new_offset;
2810 if (new_offset > rdev->data_offset)
2811 mddev->reshape_backwards = 1;
2812 else if (new_offset < rdev->data_offset)
2813 mddev->reshape_backwards = 0;
2814
2815 return len;
2816 }
2817 static struct rdev_sysfs_entry rdev_new_offset =
2818 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2819
2820 static ssize_t
2821 rdev_size_show(struct md_rdev *rdev, char *page)
2822 {
2823 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2824 }
2825
2826 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2827 {
2828 /* check if two start/length pairs overlap */
2829 if (s1+l1 <= s2)
2830 return 0;
2831 if (s2+l2 <= s1)
2832 return 0;
2833 return 1;
2834 }
2835
2836 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2837 {
2838 unsigned long long blocks;
2839 sector_t new;
2840
2841 if (kstrtoull(buf, 10, &blocks) < 0)
2842 return -EINVAL;
2843
2844 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2845 return -EINVAL; /* sector conversion overflow */
2846
2847 new = blocks * 2;
2848 if (new != blocks * 2)
2849 return -EINVAL; /* unsigned long long to sector_t overflow */
2850
2851 *sectors = new;
2852 return 0;
2853 }
2854
2855 static ssize_t
2856 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2857 {
2858 struct mddev *my_mddev = rdev->mddev;
2859 sector_t oldsectors = rdev->sectors;
2860 sector_t sectors;
2861
2862 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2863 return -EINVAL;
2864 if (rdev->data_offset != rdev->new_data_offset)
2865 return -EINVAL; /* too confusing */
2866 if (my_mddev->pers && rdev->raid_disk >= 0) {
2867 if (my_mddev->persistent) {
2868 sectors = super_types[my_mddev->major_version].
2869 rdev_size_change(rdev, sectors);
2870 if (!sectors)
2871 return -EBUSY;
2872 } else if (!sectors)
2873 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2874 rdev->data_offset;
2875 if (!my_mddev->pers->resize)
2876 /* Cannot change size for RAID0 or Linear etc */
2877 return -EINVAL;
2878 }
2879 if (sectors < my_mddev->dev_sectors)
2880 return -EINVAL; /* component must fit device */
2881
2882 rdev->sectors = sectors;
2883 if (sectors > oldsectors && my_mddev->external) {
2884 /* Need to check that all other rdevs with the same
2885 * ->bdev do not overlap. 'rcu' is sufficient to walk
2886 * the rdev lists safely.
2887 * This check does not provide a hard guarantee, it
2888 * just helps avoid dangerous mistakes.
2889 */
2890 struct mddev *mddev;
2891 int overlap = 0;
2892 struct list_head *tmp;
2893
2894 rcu_read_lock();
2895 for_each_mddev(mddev, tmp) {
2896 struct md_rdev *rdev2;
2897
2898 rdev_for_each(rdev2, mddev)
2899 if (rdev->bdev == rdev2->bdev &&
2900 rdev != rdev2 &&
2901 overlaps(rdev->data_offset, rdev->sectors,
2902 rdev2->data_offset,
2903 rdev2->sectors)) {
2904 overlap = 1;
2905 break;
2906 }
2907 if (overlap) {
2908 mddev_put(mddev);
2909 break;
2910 }
2911 }
2912 rcu_read_unlock();
2913 if (overlap) {
2914 /* Someone else could have slipped in a size
2915 * change here, but doing so is just silly.
2916 * We put oldsectors back because we *know* it is
2917 * safe, and trust userspace not to race with
2918 * itself
2919 */
2920 rdev->sectors = oldsectors;
2921 return -EBUSY;
2922 }
2923 }
2924 return len;
2925 }
2926
2927 static struct rdev_sysfs_entry rdev_size =
2928 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2929
2930 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2931 {
2932 unsigned long long recovery_start = rdev->recovery_offset;
2933
2934 if (test_bit(In_sync, &rdev->flags) ||
2935 recovery_start == MaxSector)
2936 return sprintf(page, "none\n");
2937
2938 return sprintf(page, "%llu\n", recovery_start);
2939 }
2940
2941 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2942 {
2943 unsigned long long recovery_start;
2944
2945 if (cmd_match(buf, "none"))
2946 recovery_start = MaxSector;
2947 else if (kstrtoull(buf, 10, &recovery_start))
2948 return -EINVAL;
2949
2950 if (rdev->mddev->pers &&
2951 rdev->raid_disk >= 0)
2952 return -EBUSY;
2953
2954 rdev->recovery_offset = recovery_start;
2955 if (recovery_start == MaxSector)
2956 set_bit(In_sync, &rdev->flags);
2957 else
2958 clear_bit(In_sync, &rdev->flags);
2959 return len;
2960 }
2961
2962 static struct rdev_sysfs_entry rdev_recovery_start =
2963 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2964
2965 static ssize_t
2966 badblocks_show(struct badblocks *bb, char *page, int unack);
2967 static ssize_t
2968 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2969
2970 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2971 {
2972 return badblocks_show(&rdev->badblocks, page, 0);
2973 }
2974 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2975 {
2976 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2977 /* Maybe that ack was all we needed */
2978 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2979 wake_up(&rdev->blocked_wait);
2980 return rv;
2981 }
2982 static struct rdev_sysfs_entry rdev_bad_blocks =
2983 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2984
2985 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2986 {
2987 return badblocks_show(&rdev->badblocks, page, 1);
2988 }
2989 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2990 {
2991 return badblocks_store(&rdev->badblocks, page, len, 1);
2992 }
2993 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2994 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2995
2996 static struct attribute *rdev_default_attrs[] = {
2997 &rdev_state.attr,
2998 &rdev_errors.attr,
2999 &rdev_slot.attr,
3000 &rdev_offset.attr,
3001 &rdev_new_offset.attr,
3002 &rdev_size.attr,
3003 &rdev_recovery_start.attr,
3004 &rdev_bad_blocks.attr,
3005 &rdev_unack_bad_blocks.attr,
3006 NULL,
3007 };
3008 static ssize_t
3009 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3010 {
3011 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3012 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3013
3014 if (!entry->show)
3015 return -EIO;
3016 if (!rdev->mddev)
3017 return -EBUSY;
3018 return entry->show(rdev, page);
3019 }
3020
3021 static ssize_t
3022 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3023 const char *page, size_t length)
3024 {
3025 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3026 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3027 ssize_t rv;
3028 struct mddev *mddev = rdev->mddev;
3029
3030 if (!entry->store)
3031 return -EIO;
3032 if (!capable(CAP_SYS_ADMIN))
3033 return -EACCES;
3034 rv = mddev ? mddev_lock(mddev): -EBUSY;
3035 if (!rv) {
3036 if (rdev->mddev == NULL)
3037 rv = -EBUSY;
3038 else
3039 rv = entry->store(rdev, page, length);
3040 mddev_unlock(mddev);
3041 }
3042 return rv;
3043 }
3044
3045 static void rdev_free(struct kobject *ko)
3046 {
3047 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3048 kfree(rdev);
3049 }
3050 static const struct sysfs_ops rdev_sysfs_ops = {
3051 .show = rdev_attr_show,
3052 .store = rdev_attr_store,
3053 };
3054 static struct kobj_type rdev_ktype = {
3055 .release = rdev_free,
3056 .sysfs_ops = &rdev_sysfs_ops,
3057 .default_attrs = rdev_default_attrs,
3058 };
3059
3060 int md_rdev_init(struct md_rdev *rdev)
3061 {
3062 rdev->desc_nr = -1;
3063 rdev->saved_raid_disk = -1;
3064 rdev->raid_disk = -1;
3065 rdev->flags = 0;
3066 rdev->data_offset = 0;
3067 rdev->new_data_offset = 0;
3068 rdev->sb_events = 0;
3069 rdev->last_read_error.tv_sec = 0;
3070 rdev->last_read_error.tv_nsec = 0;
3071 rdev->sb_loaded = 0;
3072 rdev->bb_page = NULL;
3073 atomic_set(&rdev->nr_pending, 0);
3074 atomic_set(&rdev->read_errors, 0);
3075 atomic_set(&rdev->corrected_errors, 0);
3076
3077 INIT_LIST_HEAD(&rdev->same_set);
3078 init_waitqueue_head(&rdev->blocked_wait);
3079
3080 /* Add space to store bad block list.
3081 * This reserves the space even on arrays where it cannot
3082 * be used - I wonder if that matters
3083 */
3084 rdev->badblocks.count = 0;
3085 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3086 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3087 seqlock_init(&rdev->badblocks.lock);
3088 if (rdev->badblocks.page == NULL)
3089 return -ENOMEM;
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(md_rdev_init);
3094 /*
3095 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3096 *
3097 * mark the device faulty if:
3098 *
3099 * - the device is nonexistent (zero size)
3100 * - the device has no valid superblock
3101 *
3102 * a faulty rdev _never_ has rdev->sb set.
3103 */
3104 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3105 {
3106 char b[BDEVNAME_SIZE];
3107 int err;
3108 struct md_rdev *rdev;
3109 sector_t size;
3110
3111 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3112 if (!rdev) {
3113 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3114 return ERR_PTR(-ENOMEM);
3115 }
3116
3117 err = md_rdev_init(rdev);
3118 if (err)
3119 goto abort_free;
3120 err = alloc_disk_sb(rdev);
3121 if (err)
3122 goto abort_free;
3123
3124 err = lock_rdev(rdev, newdev, super_format == -2);
3125 if (err)
3126 goto abort_free;
3127
3128 kobject_init(&rdev->kobj, &rdev_ktype);
3129
3130 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3131 if (!size) {
3132 printk(KERN_WARNING
3133 "md: %s has zero or unknown size, marking faulty!\n",
3134 bdevname(rdev->bdev,b));
3135 err = -EINVAL;
3136 goto abort_free;
3137 }
3138
3139 if (super_format >= 0) {
3140 err = super_types[super_format].
3141 load_super(rdev, NULL, super_minor);
3142 if (err == -EINVAL) {
3143 printk(KERN_WARNING
3144 "md: %s does not have a valid v%d.%d "
3145 "superblock, not importing!\n",
3146 bdevname(rdev->bdev,b),
3147 super_format, super_minor);
3148 goto abort_free;
3149 }
3150 if (err < 0) {
3151 printk(KERN_WARNING
3152 "md: could not read %s's sb, not importing!\n",
3153 bdevname(rdev->bdev,b));
3154 goto abort_free;
3155 }
3156 }
3157
3158 return rdev;
3159
3160 abort_free:
3161 if (rdev->bdev)
3162 unlock_rdev(rdev);
3163 md_rdev_clear(rdev);
3164 kfree(rdev);
3165 return ERR_PTR(err);
3166 }
3167
3168 /*
3169 * Check a full RAID array for plausibility
3170 */
3171
3172 static void analyze_sbs(struct mddev *mddev)
3173 {
3174 int i;
3175 struct md_rdev *rdev, *freshest, *tmp;
3176 char b[BDEVNAME_SIZE];
3177
3178 freshest = NULL;
3179 rdev_for_each_safe(rdev, tmp, mddev)
3180 switch (super_types[mddev->major_version].
3181 load_super(rdev, freshest, mddev->minor_version)) {
3182 case 1:
3183 freshest = rdev;
3184 break;
3185 case 0:
3186 break;
3187 default:
3188 printk( KERN_ERR \
3189 "md: fatal superblock inconsistency in %s"
3190 " -- removing from array\n",
3191 bdevname(rdev->bdev,b));
3192 md_kick_rdev_from_array(rdev);
3193 }
3194
3195 super_types[mddev->major_version].
3196 validate_super(mddev, freshest);
3197
3198 i = 0;
3199 rdev_for_each_safe(rdev, tmp, mddev) {
3200 if (mddev->max_disks &&
3201 (rdev->desc_nr >= mddev->max_disks ||
3202 i > mddev->max_disks)) {
3203 printk(KERN_WARNING
3204 "md: %s: %s: only %d devices permitted\n",
3205 mdname(mddev), bdevname(rdev->bdev, b),
3206 mddev->max_disks);
3207 md_kick_rdev_from_array(rdev);
3208 continue;
3209 }
3210 if (rdev != freshest) {
3211 if (super_types[mddev->major_version].
3212 validate_super(mddev, rdev)) {
3213 printk(KERN_WARNING "md: kicking non-fresh %s"
3214 " from array!\n",
3215 bdevname(rdev->bdev,b));
3216 md_kick_rdev_from_array(rdev);
3217 continue;
3218 }
3219 /* No device should have a Candidate flag
3220 * when reading devices
3221 */
3222 if (test_bit(Candidate, &rdev->flags)) {
3223 pr_info("md: kicking Cluster Candidate %s from array!\n",
3224 bdevname(rdev->bdev, b));
3225 md_kick_rdev_from_array(rdev);
3226 }
3227 }
3228 if (mddev->level == LEVEL_MULTIPATH) {
3229 rdev->desc_nr = i++;
3230 rdev->raid_disk = rdev->desc_nr;
3231 set_bit(In_sync, &rdev->flags);
3232 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3233 rdev->raid_disk = -1;
3234 clear_bit(In_sync, &rdev->flags);
3235 }
3236 }
3237 }
3238
3239 /* Read a fixed-point number.
3240 * Numbers in sysfs attributes should be in "standard" units where
3241 * possible, so time should be in seconds.
3242 * However we internally use a a much smaller unit such as
3243 * milliseconds or jiffies.
3244 * This function takes a decimal number with a possible fractional
3245 * component, and produces an integer which is the result of
3246 * multiplying that number by 10^'scale'.
3247 * all without any floating-point arithmetic.
3248 */
3249 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3250 {
3251 unsigned long result = 0;
3252 long decimals = -1;
3253 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3254 if (*cp == '.')
3255 decimals = 0;
3256 else if (decimals < scale) {
3257 unsigned int value;
3258 value = *cp - '0';
3259 result = result * 10 + value;
3260 if (decimals >= 0)
3261 decimals++;
3262 }
3263 cp++;
3264 }
3265 if (*cp == '\n')
3266 cp++;
3267 if (*cp)
3268 return -EINVAL;
3269 if (decimals < 0)
3270 decimals = 0;
3271 while (decimals < scale) {
3272 result *= 10;
3273 decimals ++;
3274 }
3275 *res = result;
3276 return 0;
3277 }
3278
3279 static void md_safemode_timeout(unsigned long data);
3280
3281 static ssize_t
3282 safe_delay_show(struct mddev *mddev, char *page)
3283 {
3284 int msec = (mddev->safemode_delay*1000)/HZ;
3285 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3286 }
3287 static ssize_t
3288 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3289 {
3290 unsigned long msec;
3291
3292 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3293 return -EINVAL;
3294 if (msec == 0)
3295 mddev->safemode_delay = 0;
3296 else {
3297 unsigned long old_delay = mddev->safemode_delay;
3298 unsigned long new_delay = (msec*HZ)/1000;
3299
3300 if (new_delay == 0)
3301 new_delay = 1;
3302 mddev->safemode_delay = new_delay;
3303 if (new_delay < old_delay || old_delay == 0)
3304 mod_timer(&mddev->safemode_timer, jiffies+1);
3305 }
3306 return len;
3307 }
3308 static struct md_sysfs_entry md_safe_delay =
3309 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3310
3311 static ssize_t
3312 level_show(struct mddev *mddev, char *page)
3313 {
3314 struct md_personality *p;
3315 int ret;
3316 spin_lock(&mddev->lock);
3317 p = mddev->pers;
3318 if (p)
3319 ret = sprintf(page, "%s\n", p->name);
3320 else if (mddev->clevel[0])
3321 ret = sprintf(page, "%s\n", mddev->clevel);
3322 else if (mddev->level != LEVEL_NONE)
3323 ret = sprintf(page, "%d\n", mddev->level);
3324 else
3325 ret = 0;
3326 spin_unlock(&mddev->lock);
3327 return ret;
3328 }
3329
3330 static ssize_t
3331 level_store(struct mddev *mddev, const char *buf, size_t len)
3332 {
3333 char clevel[16];
3334 ssize_t rv;
3335 size_t slen = len;
3336 struct md_personality *pers, *oldpers;
3337 long level;
3338 void *priv, *oldpriv;
3339 struct md_rdev *rdev;
3340
3341 if (slen == 0 || slen >= sizeof(clevel))
3342 return -EINVAL;
3343
3344 rv = mddev_lock(mddev);
3345 if (rv)
3346 return rv;
3347
3348 if (mddev->pers == NULL) {
3349 strncpy(mddev->clevel, buf, slen);
3350 if (mddev->clevel[slen-1] == '\n')
3351 slen--;
3352 mddev->clevel[slen] = 0;
3353 mddev->level = LEVEL_NONE;
3354 rv = len;
3355 goto out_unlock;
3356 }
3357 rv = -EROFS;
3358 if (mddev->ro)
3359 goto out_unlock;
3360
3361 /* request to change the personality. Need to ensure:
3362 * - array is not engaged in resync/recovery/reshape
3363 * - old personality can be suspended
3364 * - new personality will access other array.
3365 */
3366
3367 rv = -EBUSY;
3368 if (mddev->sync_thread ||
3369 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3370 mddev->reshape_position != MaxSector ||
3371 mddev->sysfs_active)
3372 goto out_unlock;
3373
3374 rv = -EINVAL;
3375 if (!mddev->pers->quiesce) {
3376 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3377 mdname(mddev), mddev->pers->name);
3378 goto out_unlock;
3379 }
3380
3381 /* Now find the new personality */
3382 strncpy(clevel, buf, slen);
3383 if (clevel[slen-1] == '\n')
3384 slen--;
3385 clevel[slen] = 0;
3386 if (kstrtol(clevel, 10, &level))
3387 level = LEVEL_NONE;
3388
3389 if (request_module("md-%s", clevel) != 0)
3390 request_module("md-level-%s", clevel);
3391 spin_lock(&pers_lock);
3392 pers = find_pers(level, clevel);
3393 if (!pers || !try_module_get(pers->owner)) {
3394 spin_unlock(&pers_lock);
3395 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3396 rv = -EINVAL;
3397 goto out_unlock;
3398 }
3399 spin_unlock(&pers_lock);
3400
3401 if (pers == mddev->pers) {
3402 /* Nothing to do! */
3403 module_put(pers->owner);
3404 rv = len;
3405 goto out_unlock;
3406 }
3407 if (!pers->takeover) {
3408 module_put(pers->owner);
3409 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3410 mdname(mddev), clevel);
3411 rv = -EINVAL;
3412 goto out_unlock;
3413 }
3414
3415 rdev_for_each(rdev, mddev)
3416 rdev->new_raid_disk = rdev->raid_disk;
3417
3418 /* ->takeover must set new_* and/or delta_disks
3419 * if it succeeds, and may set them when it fails.
3420 */
3421 priv = pers->takeover(mddev);
3422 if (IS_ERR(priv)) {
3423 mddev->new_level = mddev->level;
3424 mddev->new_layout = mddev->layout;
3425 mddev->new_chunk_sectors = mddev->chunk_sectors;
3426 mddev->raid_disks -= mddev->delta_disks;
3427 mddev->delta_disks = 0;
3428 mddev->reshape_backwards = 0;
3429 module_put(pers->owner);
3430 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431 mdname(mddev), clevel);
3432 rv = PTR_ERR(priv);
3433 goto out_unlock;
3434 }
3435
3436 /* Looks like we have a winner */
3437 mddev_suspend(mddev);
3438 mddev_detach(mddev);
3439
3440 spin_lock(&mddev->lock);
3441 oldpers = mddev->pers;
3442 oldpriv = mddev->private;
3443 mddev->pers = pers;
3444 mddev->private = priv;
3445 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446 mddev->level = mddev->new_level;
3447 mddev->layout = mddev->new_layout;
3448 mddev->chunk_sectors = mddev->new_chunk_sectors;
3449 mddev->delta_disks = 0;
3450 mddev->reshape_backwards = 0;
3451 mddev->degraded = 0;
3452 spin_unlock(&mddev->lock);
3453
3454 if (oldpers->sync_request == NULL &&
3455 mddev->external) {
3456 /* We are converting from a no-redundancy array
3457 * to a redundancy array and metadata is managed
3458 * externally so we need to be sure that writes
3459 * won't block due to a need to transition
3460 * clean->dirty
3461 * until external management is started.
3462 */
3463 mddev->in_sync = 0;
3464 mddev->safemode_delay = 0;
3465 mddev->safemode = 0;
3466 }
3467
3468 oldpers->free(mddev, oldpriv);
3469
3470 if (oldpers->sync_request == NULL &&
3471 pers->sync_request != NULL) {
3472 /* need to add the md_redundancy_group */
3473 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3474 printk(KERN_WARNING
3475 "md: cannot register extra attributes for %s\n",
3476 mdname(mddev));
3477 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3478 }
3479 if (oldpers->sync_request != NULL &&
3480 pers->sync_request == NULL) {
3481 /* need to remove the md_redundancy_group */
3482 if (mddev->to_remove == NULL)
3483 mddev->to_remove = &md_redundancy_group;
3484 }
3485
3486 rdev_for_each(rdev, mddev) {
3487 if (rdev->raid_disk < 0)
3488 continue;
3489 if (rdev->new_raid_disk >= mddev->raid_disks)
3490 rdev->new_raid_disk = -1;
3491 if (rdev->new_raid_disk == rdev->raid_disk)
3492 continue;
3493 sysfs_unlink_rdev(mddev, rdev);
3494 }
3495 rdev_for_each(rdev, mddev) {
3496 if (rdev->raid_disk < 0)
3497 continue;
3498 if (rdev->new_raid_disk == rdev->raid_disk)
3499 continue;
3500 rdev->raid_disk = rdev->new_raid_disk;
3501 if (rdev->raid_disk < 0)
3502 clear_bit(In_sync, &rdev->flags);
3503 else {
3504 if (sysfs_link_rdev(mddev, rdev))
3505 printk(KERN_WARNING "md: cannot register rd%d"
3506 " for %s after level change\n",
3507 rdev->raid_disk, mdname(mddev));
3508 }
3509 }
3510
3511 if (pers->sync_request == NULL) {
3512 /* this is now an array without redundancy, so
3513 * it must always be in_sync
3514 */
3515 mddev->in_sync = 1;
3516 del_timer_sync(&mddev->safemode_timer);
3517 }
3518 blk_set_stacking_limits(&mddev->queue->limits);
3519 pers->run(mddev);
3520 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3521 mddev_resume(mddev);
3522 if (!mddev->thread)
3523 md_update_sb(mddev, 1);
3524 sysfs_notify(&mddev->kobj, NULL, "level");
3525 md_new_event(mddev);
3526 rv = len;
3527 out_unlock:
3528 mddev_unlock(mddev);
3529 return rv;
3530 }
3531
3532 static struct md_sysfs_entry md_level =
3533 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3534
3535 static ssize_t
3536 layout_show(struct mddev *mddev, char *page)
3537 {
3538 /* just a number, not meaningful for all levels */
3539 if (mddev->reshape_position != MaxSector &&
3540 mddev->layout != mddev->new_layout)
3541 return sprintf(page, "%d (%d)\n",
3542 mddev->new_layout, mddev->layout);
3543 return sprintf(page, "%d\n", mddev->layout);
3544 }
3545
3546 static ssize_t
3547 layout_store(struct mddev *mddev, const char *buf, size_t len)
3548 {
3549 unsigned int n;
3550 int err;
3551
3552 err = kstrtouint(buf, 10, &n);
3553 if (err < 0)
3554 return err;
3555 err = mddev_lock(mddev);
3556 if (err)
3557 return err;
3558
3559 if (mddev->pers) {
3560 if (mddev->pers->check_reshape == NULL)
3561 err = -EBUSY;
3562 else if (mddev->ro)
3563 err = -EROFS;
3564 else {
3565 mddev->new_layout = n;
3566 err = mddev->pers->check_reshape(mddev);
3567 if (err)
3568 mddev->new_layout = mddev->layout;
3569 }
3570 } else {
3571 mddev->new_layout = n;
3572 if (mddev->reshape_position == MaxSector)
3573 mddev->layout = n;
3574 }
3575 mddev_unlock(mddev);
3576 return err ?: len;
3577 }
3578 static struct md_sysfs_entry md_layout =
3579 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3580
3581 static ssize_t
3582 raid_disks_show(struct mddev *mddev, char *page)
3583 {
3584 if (mddev->raid_disks == 0)
3585 return 0;
3586 if (mddev->reshape_position != MaxSector &&
3587 mddev->delta_disks != 0)
3588 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3589 mddev->raid_disks - mddev->delta_disks);
3590 return sprintf(page, "%d\n", mddev->raid_disks);
3591 }
3592
3593 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3594
3595 static ssize_t
3596 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598 unsigned int n;
3599 int err;
3600
3601 err = kstrtouint(buf, 10, &n);
3602 if (err < 0)
3603 return err;
3604
3605 err = mddev_lock(mddev);
3606 if (err)
3607 return err;
3608 if (mddev->pers)
3609 err = update_raid_disks(mddev, n);
3610 else if (mddev->reshape_position != MaxSector) {
3611 struct md_rdev *rdev;
3612 int olddisks = mddev->raid_disks - mddev->delta_disks;
3613
3614 err = -EINVAL;
3615 rdev_for_each(rdev, mddev) {
3616 if (olddisks < n &&
3617 rdev->data_offset < rdev->new_data_offset)
3618 goto out_unlock;
3619 if (olddisks > n &&
3620 rdev->data_offset > rdev->new_data_offset)
3621 goto out_unlock;
3622 }
3623 err = 0;
3624 mddev->delta_disks = n - olddisks;
3625 mddev->raid_disks = n;
3626 mddev->reshape_backwards = (mddev->delta_disks < 0);
3627 } else
3628 mddev->raid_disks = n;
3629 out_unlock:
3630 mddev_unlock(mddev);
3631 return err ? err : len;
3632 }
3633 static struct md_sysfs_entry md_raid_disks =
3634 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3635
3636 static ssize_t
3637 chunk_size_show(struct mddev *mddev, char *page)
3638 {
3639 if (mddev->reshape_position != MaxSector &&
3640 mddev->chunk_sectors != mddev->new_chunk_sectors)
3641 return sprintf(page, "%d (%d)\n",
3642 mddev->new_chunk_sectors << 9,
3643 mddev->chunk_sectors << 9);
3644 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3645 }
3646
3647 static ssize_t
3648 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3649 {
3650 unsigned long n;
3651 int err;
3652
3653 err = kstrtoul(buf, 10, &n);
3654 if (err < 0)
3655 return err;
3656
3657 err = mddev_lock(mddev);
3658 if (err)
3659 return err;
3660 if (mddev->pers) {
3661 if (mddev->pers->check_reshape == NULL)
3662 err = -EBUSY;
3663 else if (mddev->ro)
3664 err = -EROFS;
3665 else {
3666 mddev->new_chunk_sectors = n >> 9;
3667 err = mddev->pers->check_reshape(mddev);
3668 if (err)
3669 mddev->new_chunk_sectors = mddev->chunk_sectors;
3670 }
3671 } else {
3672 mddev->new_chunk_sectors = n >> 9;
3673 if (mddev->reshape_position == MaxSector)
3674 mddev->chunk_sectors = n >> 9;
3675 }
3676 mddev_unlock(mddev);
3677 return err ?: len;
3678 }
3679 static struct md_sysfs_entry md_chunk_size =
3680 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3681
3682 static ssize_t
3683 resync_start_show(struct mddev *mddev, char *page)
3684 {
3685 if (mddev->recovery_cp == MaxSector)
3686 return sprintf(page, "none\n");
3687 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3688 }
3689
3690 static ssize_t
3691 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 unsigned long long n;
3694 int err;
3695
3696 if (cmd_match(buf, "none"))
3697 n = MaxSector;
3698 else {
3699 err = kstrtoull(buf, 10, &n);
3700 if (err < 0)
3701 return err;
3702 if (n != (sector_t)n)
3703 return -EINVAL;
3704 }
3705
3706 err = mddev_lock(mddev);
3707 if (err)
3708 return err;
3709 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3710 err = -EBUSY;
3711
3712 if (!err) {
3713 mddev->recovery_cp = n;
3714 if (mddev->pers)
3715 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3716 }
3717 mddev_unlock(mddev);
3718 return err ?: len;
3719 }
3720 static struct md_sysfs_entry md_resync_start =
3721 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3722 resync_start_show, resync_start_store);
3723
3724 /*
3725 * The array state can be:
3726 *
3727 * clear
3728 * No devices, no size, no level
3729 * Equivalent to STOP_ARRAY ioctl
3730 * inactive
3731 * May have some settings, but array is not active
3732 * all IO results in error
3733 * When written, doesn't tear down array, but just stops it
3734 * suspended (not supported yet)
3735 * All IO requests will block. The array can be reconfigured.
3736 * Writing this, if accepted, will block until array is quiescent
3737 * readonly
3738 * no resync can happen. no superblocks get written.
3739 * write requests fail
3740 * read-auto
3741 * like readonly, but behaves like 'clean' on a write request.
3742 *
3743 * clean - no pending writes, but otherwise active.
3744 * When written to inactive array, starts without resync
3745 * If a write request arrives then
3746 * if metadata is known, mark 'dirty' and switch to 'active'.
3747 * if not known, block and switch to write-pending
3748 * If written to an active array that has pending writes, then fails.
3749 * active
3750 * fully active: IO and resync can be happening.
3751 * When written to inactive array, starts with resync
3752 *
3753 * write-pending
3754 * clean, but writes are blocked waiting for 'active' to be written.
3755 *
3756 * active-idle
3757 * like active, but no writes have been seen for a while (100msec).
3758 *
3759 */
3760 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3761 write_pending, active_idle, bad_word};
3762 static char *array_states[] = {
3763 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3764 "write-pending", "active-idle", NULL };
3765
3766 static int match_word(const char *word, char **list)
3767 {
3768 int n;
3769 for (n=0; list[n]; n++)
3770 if (cmd_match(word, list[n]))
3771 break;
3772 return n;
3773 }
3774
3775 static ssize_t
3776 array_state_show(struct mddev *mddev, char *page)
3777 {
3778 enum array_state st = inactive;
3779
3780 if (mddev->pers)
3781 switch(mddev->ro) {
3782 case 1:
3783 st = readonly;
3784 break;
3785 case 2:
3786 st = read_auto;
3787 break;
3788 case 0:
3789 if (mddev->in_sync)
3790 st = clean;
3791 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3792 st = write_pending;
3793 else if (mddev->safemode)
3794 st = active_idle;
3795 else
3796 st = active;
3797 }
3798 else {
3799 if (list_empty(&mddev->disks) &&
3800 mddev->raid_disks == 0 &&
3801 mddev->dev_sectors == 0)
3802 st = clear;
3803 else
3804 st = inactive;
3805 }
3806 return sprintf(page, "%s\n", array_states[st]);
3807 }
3808
3809 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3810 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3811 static int do_md_run(struct mddev *mddev);
3812 static int restart_array(struct mddev *mddev);
3813
3814 static ssize_t
3815 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3816 {
3817 int err;
3818 enum array_state st = match_word(buf, array_states);
3819
3820 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3821 /* don't take reconfig_mutex when toggling between
3822 * clean and active
3823 */
3824 spin_lock(&mddev->lock);
3825 if (st == active) {
3826 restart_array(mddev);
3827 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3828 wake_up(&mddev->sb_wait);
3829 err = 0;
3830 } else /* st == clean */ {
3831 restart_array(mddev);
3832 if (atomic_read(&mddev->writes_pending) == 0) {
3833 if (mddev->in_sync == 0) {
3834 mddev->in_sync = 1;
3835 if (mddev->safemode == 1)
3836 mddev->safemode = 0;
3837 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3838 }
3839 err = 0;
3840 } else
3841 err = -EBUSY;
3842 }
3843 spin_unlock(&mddev->lock);
3844 return err ?: len;
3845 }
3846 err = mddev_lock(mddev);
3847 if (err)
3848 return err;
3849 err = -EINVAL;
3850 switch(st) {
3851 case bad_word:
3852 break;
3853 case clear:
3854 /* stopping an active array */
3855 err = do_md_stop(mddev, 0, NULL);
3856 break;
3857 case inactive:
3858 /* stopping an active array */
3859 if (mddev->pers)
3860 err = do_md_stop(mddev, 2, NULL);
3861 else
3862 err = 0; /* already inactive */
3863 break;
3864 case suspended:
3865 break; /* not supported yet */
3866 case readonly:
3867 if (mddev->pers)
3868 err = md_set_readonly(mddev, NULL);
3869 else {
3870 mddev->ro = 1;
3871 set_disk_ro(mddev->gendisk, 1);
3872 err = do_md_run(mddev);
3873 }
3874 break;
3875 case read_auto:
3876 if (mddev->pers) {
3877 if (mddev->ro == 0)
3878 err = md_set_readonly(mddev, NULL);
3879 else if (mddev->ro == 1)
3880 err = restart_array(mddev);
3881 if (err == 0) {
3882 mddev->ro = 2;
3883 set_disk_ro(mddev->gendisk, 0);
3884 }
3885 } else {
3886 mddev->ro = 2;
3887 err = do_md_run(mddev);
3888 }
3889 break;
3890 case clean:
3891 if (mddev->pers) {
3892 restart_array(mddev);
3893 spin_lock(&mddev->lock);
3894 if (atomic_read(&mddev->writes_pending) == 0) {
3895 if (mddev->in_sync == 0) {
3896 mddev->in_sync = 1;
3897 if (mddev->safemode == 1)
3898 mddev->safemode = 0;
3899 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3900 }
3901 err = 0;
3902 } else
3903 err = -EBUSY;
3904 spin_unlock(&mddev->lock);
3905 } else
3906 err = -EINVAL;
3907 break;
3908 case active:
3909 if (mddev->pers) {
3910 restart_array(mddev);
3911 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3912 wake_up(&mddev->sb_wait);
3913 err = 0;
3914 } else {
3915 mddev->ro = 0;
3916 set_disk_ro(mddev->gendisk, 0);
3917 err = do_md_run(mddev);
3918 }
3919 break;
3920 case write_pending:
3921 case active_idle:
3922 /* these cannot be set */
3923 break;
3924 }
3925
3926 if (!err) {
3927 if (mddev->hold_active == UNTIL_IOCTL)
3928 mddev->hold_active = 0;
3929 sysfs_notify_dirent_safe(mddev->sysfs_state);
3930 }
3931 mddev_unlock(mddev);
3932 return err ?: len;
3933 }
3934 static struct md_sysfs_entry md_array_state =
3935 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3936
3937 static ssize_t
3938 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3939 return sprintf(page, "%d\n",
3940 atomic_read(&mddev->max_corr_read_errors));
3941 }
3942
3943 static ssize_t
3944 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3945 {
3946 unsigned int n;
3947 int rv;
3948
3949 rv = kstrtouint(buf, 10, &n);
3950 if (rv < 0)
3951 return rv;
3952 atomic_set(&mddev->max_corr_read_errors, n);
3953 return len;
3954 }
3955
3956 static struct md_sysfs_entry max_corr_read_errors =
3957 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3958 max_corrected_read_errors_store);
3959
3960 static ssize_t
3961 null_show(struct mddev *mddev, char *page)
3962 {
3963 return -EINVAL;
3964 }
3965
3966 static ssize_t
3967 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3968 {
3969 /* buf must be %d:%d\n? giving major and minor numbers */
3970 /* The new device is added to the array.
3971 * If the array has a persistent superblock, we read the
3972 * superblock to initialise info and check validity.
3973 * Otherwise, only checking done is that in bind_rdev_to_array,
3974 * which mainly checks size.
3975 */
3976 char *e;
3977 int major = simple_strtoul(buf, &e, 10);
3978 int minor;
3979 dev_t dev;
3980 struct md_rdev *rdev;
3981 int err;
3982
3983 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3984 return -EINVAL;
3985 minor = simple_strtoul(e+1, &e, 10);
3986 if (*e && *e != '\n')
3987 return -EINVAL;
3988 dev = MKDEV(major, minor);
3989 if (major != MAJOR(dev) ||
3990 minor != MINOR(dev))
3991 return -EOVERFLOW;
3992
3993 flush_workqueue(md_misc_wq);
3994
3995 err = mddev_lock(mddev);
3996 if (err)
3997 return err;
3998 if (mddev->persistent) {
3999 rdev = md_import_device(dev, mddev->major_version,
4000 mddev->minor_version);
4001 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4002 struct md_rdev *rdev0
4003 = list_entry(mddev->disks.next,
4004 struct md_rdev, same_set);
4005 err = super_types[mddev->major_version]
4006 .load_super(rdev, rdev0, mddev->minor_version);
4007 if (err < 0)
4008 goto out;
4009 }
4010 } else if (mddev->external)
4011 rdev = md_import_device(dev, -2, -1);
4012 else
4013 rdev = md_import_device(dev, -1, -1);
4014
4015 if (IS_ERR(rdev)) {
4016 mddev_unlock(mddev);
4017 return PTR_ERR(rdev);
4018 }
4019 err = bind_rdev_to_array(rdev, mddev);
4020 out:
4021 if (err)
4022 export_rdev(rdev);
4023 mddev_unlock(mddev);
4024 return err ? err : len;
4025 }
4026
4027 static struct md_sysfs_entry md_new_device =
4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4029
4030 static ssize_t
4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033 char *end;
4034 unsigned long chunk, end_chunk;
4035 int err;
4036
4037 err = mddev_lock(mddev);
4038 if (err)
4039 return err;
4040 if (!mddev->bitmap)
4041 goto out;
4042 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4043 while (*buf) {
4044 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4045 if (buf == end) break;
4046 if (*end == '-') { /* range */
4047 buf = end + 1;
4048 end_chunk = simple_strtoul(buf, &end, 0);
4049 if (buf == end) break;
4050 }
4051 if (*end && !isspace(*end)) break;
4052 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4053 buf = skip_spaces(end);
4054 }
4055 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4056 out:
4057 mddev_unlock(mddev);
4058 return len;
4059 }
4060
4061 static struct md_sysfs_entry md_bitmap =
4062 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4063
4064 static ssize_t
4065 size_show(struct mddev *mddev, char *page)
4066 {
4067 return sprintf(page, "%llu\n",
4068 (unsigned long long)mddev->dev_sectors / 2);
4069 }
4070
4071 static int update_size(struct mddev *mddev, sector_t num_sectors);
4072
4073 static ssize_t
4074 size_store(struct mddev *mddev, const char *buf, size_t len)
4075 {
4076 /* If array is inactive, we can reduce the component size, but
4077 * not increase it (except from 0).
4078 * If array is active, we can try an on-line resize
4079 */
4080 sector_t sectors;
4081 int err = strict_blocks_to_sectors(buf, &sectors);
4082
4083 if (err < 0)
4084 return err;
4085 err = mddev_lock(mddev);
4086 if (err)
4087 return err;
4088 if (mddev->pers) {
4089 if (mddev_is_clustered(mddev))
4090 md_cluster_ops->metadata_update_start(mddev);
4091 err = update_size(mddev, sectors);
4092 md_update_sb(mddev, 1);
4093 if (mddev_is_clustered(mddev))
4094 md_cluster_ops->metadata_update_finish(mddev);
4095 } else {
4096 if (mddev->dev_sectors == 0 ||
4097 mddev->dev_sectors > sectors)
4098 mddev->dev_sectors = sectors;
4099 else
4100 err = -ENOSPC;
4101 }
4102 mddev_unlock(mddev);
4103 return err ? err : len;
4104 }
4105
4106 static struct md_sysfs_entry md_size =
4107 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4108
4109 /* Metadata version.
4110 * This is one of
4111 * 'none' for arrays with no metadata (good luck...)
4112 * 'external' for arrays with externally managed metadata,
4113 * or N.M for internally known formats
4114 */
4115 static ssize_t
4116 metadata_show(struct mddev *mddev, char *page)
4117 {
4118 if (mddev->persistent)
4119 return sprintf(page, "%d.%d\n",
4120 mddev->major_version, mddev->minor_version);
4121 else if (mddev->external)
4122 return sprintf(page, "external:%s\n", mddev->metadata_type);
4123 else
4124 return sprintf(page, "none\n");
4125 }
4126
4127 static ssize_t
4128 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130 int major, minor;
4131 char *e;
4132 int err;
4133 /* Changing the details of 'external' metadata is
4134 * always permitted. Otherwise there must be
4135 * no devices attached to the array.
4136 */
4137
4138 err = mddev_lock(mddev);
4139 if (err)
4140 return err;
4141 err = -EBUSY;
4142 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4143 ;
4144 else if (!list_empty(&mddev->disks))
4145 goto out_unlock;
4146
4147 err = 0;
4148 if (cmd_match(buf, "none")) {
4149 mddev->persistent = 0;
4150 mddev->external = 0;
4151 mddev->major_version = 0;
4152 mddev->minor_version = 90;
4153 goto out_unlock;
4154 }
4155 if (strncmp(buf, "external:", 9) == 0) {
4156 size_t namelen = len-9;
4157 if (namelen >= sizeof(mddev->metadata_type))
4158 namelen = sizeof(mddev->metadata_type)-1;
4159 strncpy(mddev->metadata_type, buf+9, namelen);
4160 mddev->metadata_type[namelen] = 0;
4161 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4162 mddev->metadata_type[--namelen] = 0;
4163 mddev->persistent = 0;
4164 mddev->external = 1;
4165 mddev->major_version = 0;
4166 mddev->minor_version = 90;
4167 goto out_unlock;
4168 }
4169 major = simple_strtoul(buf, &e, 10);
4170 err = -EINVAL;
4171 if (e==buf || *e != '.')
4172 goto out_unlock;
4173 buf = e+1;
4174 minor = simple_strtoul(buf, &e, 10);
4175 if (e==buf || (*e && *e != '\n') )
4176 goto out_unlock;
4177 err = -ENOENT;
4178 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4179 goto out_unlock;
4180 mddev->major_version = major;
4181 mddev->minor_version = minor;
4182 mddev->persistent = 1;
4183 mddev->external = 0;
4184 err = 0;
4185 out_unlock:
4186 mddev_unlock(mddev);
4187 return err ?: len;
4188 }
4189
4190 static struct md_sysfs_entry md_metadata =
4191 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4192
4193 static ssize_t
4194 action_show(struct mddev *mddev, char *page)
4195 {
4196 char *type = "idle";
4197 unsigned long recovery = mddev->recovery;
4198 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4199 type = "frozen";
4200 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4201 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4202 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4203 type = "reshape";
4204 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4205 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4206 type = "resync";
4207 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4208 type = "check";
4209 else
4210 type = "repair";
4211 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4212 type = "recover";
4213 }
4214 return sprintf(page, "%s\n", type);
4215 }
4216
4217 static ssize_t
4218 action_store(struct mddev *mddev, const char *page, size_t len)
4219 {
4220 if (!mddev->pers || !mddev->pers->sync_request)
4221 return -EINVAL;
4222
4223
4224 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4225 if (cmd_match(page, "frozen"))
4226 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4227 else
4228 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4229 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4230 mddev_lock(mddev) == 0) {
4231 flush_workqueue(md_misc_wq);
4232 if (mddev->sync_thread) {
4233 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4234 md_reap_sync_thread(mddev);
4235 }
4236 mddev_unlock(mddev);
4237 }
4238 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240 return -EBUSY;
4241 else if (cmd_match(page, "resync"))
4242 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4243 else if (cmd_match(page, "recover")) {
4244 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4245 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246 } else if (cmd_match(page, "reshape")) {
4247 int err;
4248 if (mddev->pers->start_reshape == NULL)
4249 return -EINVAL;
4250 err = mddev_lock(mddev);
4251 if (!err) {
4252 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4253 err = mddev->pers->start_reshape(mddev);
4254 mddev_unlock(mddev);
4255 }
4256 if (err)
4257 return err;
4258 sysfs_notify(&mddev->kobj, NULL, "degraded");
4259 } else {
4260 if (cmd_match(page, "check"))
4261 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4262 else if (!cmd_match(page, "repair"))
4263 return -EINVAL;
4264 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4265 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4266 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4267 }
4268 if (mddev->ro == 2) {
4269 /* A write to sync_action is enough to justify
4270 * canceling read-auto mode
4271 */
4272 mddev->ro = 0;
4273 md_wakeup_thread(mddev->sync_thread);
4274 }
4275 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4276 md_wakeup_thread(mddev->thread);
4277 sysfs_notify_dirent_safe(mddev->sysfs_action);
4278 return len;
4279 }
4280
4281 static struct md_sysfs_entry md_scan_mode =
4282 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4283
4284 static ssize_t
4285 last_sync_action_show(struct mddev *mddev, char *page)
4286 {
4287 return sprintf(page, "%s\n", mddev->last_sync_action);
4288 }
4289
4290 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4291
4292 static ssize_t
4293 mismatch_cnt_show(struct mddev *mddev, char *page)
4294 {
4295 return sprintf(page, "%llu\n",
4296 (unsigned long long)
4297 atomic64_read(&mddev->resync_mismatches));
4298 }
4299
4300 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4301
4302 static ssize_t
4303 sync_min_show(struct mddev *mddev, char *page)
4304 {
4305 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4306 mddev->sync_speed_min ? "local": "system");
4307 }
4308
4309 static ssize_t
4310 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4311 {
4312 unsigned int min;
4313 int rv;
4314
4315 if (strncmp(buf, "system", 6)==0) {
4316 min = 0;
4317 } else {
4318 rv = kstrtouint(buf, 10, &min);
4319 if (rv < 0)
4320 return rv;
4321 if (min == 0)
4322 return -EINVAL;
4323 }
4324 mddev->sync_speed_min = min;
4325 return len;
4326 }
4327
4328 static struct md_sysfs_entry md_sync_min =
4329 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4330
4331 static ssize_t
4332 sync_max_show(struct mddev *mddev, char *page)
4333 {
4334 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4335 mddev->sync_speed_max ? "local": "system");
4336 }
4337
4338 static ssize_t
4339 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4340 {
4341 unsigned int max;
4342 int rv;
4343
4344 if (strncmp(buf, "system", 6)==0) {
4345 max = 0;
4346 } else {
4347 rv = kstrtouint(buf, 10, &max);
4348 if (rv < 0)
4349 return rv;
4350 if (max == 0)
4351 return -EINVAL;
4352 }
4353 mddev->sync_speed_max = max;
4354 return len;
4355 }
4356
4357 static struct md_sysfs_entry md_sync_max =
4358 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4359
4360 static ssize_t
4361 degraded_show(struct mddev *mddev, char *page)
4362 {
4363 return sprintf(page, "%d\n", mddev->degraded);
4364 }
4365 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4366
4367 static ssize_t
4368 sync_force_parallel_show(struct mddev *mddev, char *page)
4369 {
4370 return sprintf(page, "%d\n", mddev->parallel_resync);
4371 }
4372
4373 static ssize_t
4374 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4375 {
4376 long n;
4377
4378 if (kstrtol(buf, 10, &n))
4379 return -EINVAL;
4380
4381 if (n != 0 && n != 1)
4382 return -EINVAL;
4383
4384 mddev->parallel_resync = n;
4385
4386 if (mddev->sync_thread)
4387 wake_up(&resync_wait);
4388
4389 return len;
4390 }
4391
4392 /* force parallel resync, even with shared block devices */
4393 static struct md_sysfs_entry md_sync_force_parallel =
4394 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4395 sync_force_parallel_show, sync_force_parallel_store);
4396
4397 static ssize_t
4398 sync_speed_show(struct mddev *mddev, char *page)
4399 {
4400 unsigned long resync, dt, db;
4401 if (mddev->curr_resync == 0)
4402 return sprintf(page, "none\n");
4403 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4404 dt = (jiffies - mddev->resync_mark) / HZ;
4405 if (!dt) dt++;
4406 db = resync - mddev->resync_mark_cnt;
4407 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4408 }
4409
4410 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4411
4412 static ssize_t
4413 sync_completed_show(struct mddev *mddev, char *page)
4414 {
4415 unsigned long long max_sectors, resync;
4416
4417 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4418 return sprintf(page, "none\n");
4419
4420 if (mddev->curr_resync == 1 ||
4421 mddev->curr_resync == 2)
4422 return sprintf(page, "delayed\n");
4423
4424 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4425 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4426 max_sectors = mddev->resync_max_sectors;
4427 else
4428 max_sectors = mddev->dev_sectors;
4429
4430 resync = mddev->curr_resync_completed;
4431 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4432 }
4433
4434 static struct md_sysfs_entry md_sync_completed =
4435 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4436
4437 static ssize_t
4438 min_sync_show(struct mddev *mddev, char *page)
4439 {
4440 return sprintf(page, "%llu\n",
4441 (unsigned long long)mddev->resync_min);
4442 }
4443 static ssize_t
4444 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4445 {
4446 unsigned long long min;
4447 int err;
4448
4449 if (kstrtoull(buf, 10, &min))
4450 return -EINVAL;
4451
4452 spin_lock(&mddev->lock);
4453 err = -EINVAL;
4454 if (min > mddev->resync_max)
4455 goto out_unlock;
4456
4457 err = -EBUSY;
4458 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4459 goto out_unlock;
4460
4461 /* Round down to multiple of 4K for safety */
4462 mddev->resync_min = round_down(min, 8);
4463 err = 0;
4464
4465 out_unlock:
4466 spin_unlock(&mddev->lock);
4467 return err ?: len;
4468 }
4469
4470 static struct md_sysfs_entry md_min_sync =
4471 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4472
4473 static ssize_t
4474 max_sync_show(struct mddev *mddev, char *page)
4475 {
4476 if (mddev->resync_max == MaxSector)
4477 return sprintf(page, "max\n");
4478 else
4479 return sprintf(page, "%llu\n",
4480 (unsigned long long)mddev->resync_max);
4481 }
4482 static ssize_t
4483 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4484 {
4485 int err;
4486 spin_lock(&mddev->lock);
4487 if (strncmp(buf, "max", 3) == 0)
4488 mddev->resync_max = MaxSector;
4489 else {
4490 unsigned long long max;
4491 int chunk;
4492
4493 err = -EINVAL;
4494 if (kstrtoull(buf, 10, &max))
4495 goto out_unlock;
4496 if (max < mddev->resync_min)
4497 goto out_unlock;
4498
4499 err = -EBUSY;
4500 if (max < mddev->resync_max &&
4501 mddev->ro == 0 &&
4502 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503 goto out_unlock;
4504
4505 /* Must be a multiple of chunk_size */
4506 chunk = mddev->chunk_sectors;
4507 if (chunk) {
4508 sector_t temp = max;
4509
4510 err = -EINVAL;
4511 if (sector_div(temp, chunk))
4512 goto out_unlock;
4513 }
4514 mddev->resync_max = max;
4515 }
4516 wake_up(&mddev->recovery_wait);
4517 err = 0;
4518 out_unlock:
4519 spin_unlock(&mddev->lock);
4520 return err ?: len;
4521 }
4522
4523 static struct md_sysfs_entry md_max_sync =
4524 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4525
4526 static ssize_t
4527 suspend_lo_show(struct mddev *mddev, char *page)
4528 {
4529 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4530 }
4531
4532 static ssize_t
4533 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4534 {
4535 unsigned long long old, new;
4536 int err;
4537
4538 err = kstrtoull(buf, 10, &new);
4539 if (err < 0)
4540 return err;
4541 if (new != (sector_t)new)
4542 return -EINVAL;
4543
4544 err = mddev_lock(mddev);
4545 if (err)
4546 return err;
4547 err = -EINVAL;
4548 if (mddev->pers == NULL ||
4549 mddev->pers->quiesce == NULL)
4550 goto unlock;
4551 old = mddev->suspend_lo;
4552 mddev->suspend_lo = new;
4553 if (new >= old)
4554 /* Shrinking suspended region */
4555 mddev->pers->quiesce(mddev, 2);
4556 else {
4557 /* Expanding suspended region - need to wait */
4558 mddev->pers->quiesce(mddev, 1);
4559 mddev->pers->quiesce(mddev, 0);
4560 }
4561 err = 0;
4562 unlock:
4563 mddev_unlock(mddev);
4564 return err ?: len;
4565 }
4566 static struct md_sysfs_entry md_suspend_lo =
4567 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4568
4569 static ssize_t
4570 suspend_hi_show(struct mddev *mddev, char *page)
4571 {
4572 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4573 }
4574
4575 static ssize_t
4576 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578 unsigned long long old, new;
4579 int err;
4580
4581 err = kstrtoull(buf, 10, &new);
4582 if (err < 0)
4583 return err;
4584 if (new != (sector_t)new)
4585 return -EINVAL;
4586
4587 err = mddev_lock(mddev);
4588 if (err)
4589 return err;
4590 err = -EINVAL;
4591 if (mddev->pers == NULL ||
4592 mddev->pers->quiesce == NULL)
4593 goto unlock;
4594 old = mddev->suspend_hi;
4595 mddev->suspend_hi = new;
4596 if (new <= old)
4597 /* Shrinking suspended region */
4598 mddev->pers->quiesce(mddev, 2);
4599 else {
4600 /* Expanding suspended region - need to wait */
4601 mddev->pers->quiesce(mddev, 1);
4602 mddev->pers->quiesce(mddev, 0);
4603 }
4604 err = 0;
4605 unlock:
4606 mddev_unlock(mddev);
4607 return err ?: len;
4608 }
4609 static struct md_sysfs_entry md_suspend_hi =
4610 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4611
4612 static ssize_t
4613 reshape_position_show(struct mddev *mddev, char *page)
4614 {
4615 if (mddev->reshape_position != MaxSector)
4616 return sprintf(page, "%llu\n",
4617 (unsigned long long)mddev->reshape_position);
4618 strcpy(page, "none\n");
4619 return 5;
4620 }
4621
4622 static ssize_t
4623 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4624 {
4625 struct md_rdev *rdev;
4626 unsigned long long new;
4627 int err;
4628
4629 err = kstrtoull(buf, 10, &new);
4630 if (err < 0)
4631 return err;
4632 if (new != (sector_t)new)
4633 return -EINVAL;
4634 err = mddev_lock(mddev);
4635 if (err)
4636 return err;
4637 err = -EBUSY;
4638 if (mddev->pers)
4639 goto unlock;
4640 mddev->reshape_position = new;
4641 mddev->delta_disks = 0;
4642 mddev->reshape_backwards = 0;
4643 mddev->new_level = mddev->level;
4644 mddev->new_layout = mddev->layout;
4645 mddev->new_chunk_sectors = mddev->chunk_sectors;
4646 rdev_for_each(rdev, mddev)
4647 rdev->new_data_offset = rdev->data_offset;
4648 err = 0;
4649 unlock:
4650 mddev_unlock(mddev);
4651 return err ?: len;
4652 }
4653
4654 static struct md_sysfs_entry md_reshape_position =
4655 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4656 reshape_position_store);
4657
4658 static ssize_t
4659 reshape_direction_show(struct mddev *mddev, char *page)
4660 {
4661 return sprintf(page, "%s\n",
4662 mddev->reshape_backwards ? "backwards" : "forwards");
4663 }
4664
4665 static ssize_t
4666 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4667 {
4668 int backwards = 0;
4669 int err;
4670
4671 if (cmd_match(buf, "forwards"))
4672 backwards = 0;
4673 else if (cmd_match(buf, "backwards"))
4674 backwards = 1;
4675 else
4676 return -EINVAL;
4677 if (mddev->reshape_backwards == backwards)
4678 return len;
4679
4680 err = mddev_lock(mddev);
4681 if (err)
4682 return err;
4683 /* check if we are allowed to change */
4684 if (mddev->delta_disks)
4685 err = -EBUSY;
4686 else if (mddev->persistent &&
4687 mddev->major_version == 0)
4688 err = -EINVAL;
4689 else
4690 mddev->reshape_backwards = backwards;
4691 mddev_unlock(mddev);
4692 return err ?: len;
4693 }
4694
4695 static struct md_sysfs_entry md_reshape_direction =
4696 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4697 reshape_direction_store);
4698
4699 static ssize_t
4700 array_size_show(struct mddev *mddev, char *page)
4701 {
4702 if (mddev->external_size)
4703 return sprintf(page, "%llu\n",
4704 (unsigned long long)mddev->array_sectors/2);
4705 else
4706 return sprintf(page, "default\n");
4707 }
4708
4709 static ssize_t
4710 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4711 {
4712 sector_t sectors;
4713 int err;
4714
4715 err = mddev_lock(mddev);
4716 if (err)
4717 return err;
4718
4719 if (strncmp(buf, "default", 7) == 0) {
4720 if (mddev->pers)
4721 sectors = mddev->pers->size(mddev, 0, 0);
4722 else
4723 sectors = mddev->array_sectors;
4724
4725 mddev->external_size = 0;
4726 } else {
4727 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4728 err = -EINVAL;
4729 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4730 err = -E2BIG;
4731 else
4732 mddev->external_size = 1;
4733 }
4734
4735 if (!err) {
4736 mddev->array_sectors = sectors;
4737 if (mddev->pers) {
4738 set_capacity(mddev->gendisk, mddev->array_sectors);
4739 revalidate_disk(mddev->gendisk);
4740 }
4741 }
4742 mddev_unlock(mddev);
4743 return err ?: len;
4744 }
4745
4746 static struct md_sysfs_entry md_array_size =
4747 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4748 array_size_store);
4749
4750 static struct attribute *md_default_attrs[] = {
4751 &md_level.attr,
4752 &md_layout.attr,
4753 &md_raid_disks.attr,
4754 &md_chunk_size.attr,
4755 &md_size.attr,
4756 &md_resync_start.attr,
4757 &md_metadata.attr,
4758 &md_new_device.attr,
4759 &md_safe_delay.attr,
4760 &md_array_state.attr,
4761 &md_reshape_position.attr,
4762 &md_reshape_direction.attr,
4763 &md_array_size.attr,
4764 &max_corr_read_errors.attr,
4765 NULL,
4766 };
4767
4768 static struct attribute *md_redundancy_attrs[] = {
4769 &md_scan_mode.attr,
4770 &md_last_scan_mode.attr,
4771 &md_mismatches.attr,
4772 &md_sync_min.attr,
4773 &md_sync_max.attr,
4774 &md_sync_speed.attr,
4775 &md_sync_force_parallel.attr,
4776 &md_sync_completed.attr,
4777 &md_min_sync.attr,
4778 &md_max_sync.attr,
4779 &md_suspend_lo.attr,
4780 &md_suspend_hi.attr,
4781 &md_bitmap.attr,
4782 &md_degraded.attr,
4783 NULL,
4784 };
4785 static struct attribute_group md_redundancy_group = {
4786 .name = NULL,
4787 .attrs = md_redundancy_attrs,
4788 };
4789
4790 static ssize_t
4791 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4792 {
4793 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4794 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4795 ssize_t rv;
4796
4797 if (!entry->show)
4798 return -EIO;
4799 spin_lock(&all_mddevs_lock);
4800 if (list_empty(&mddev->all_mddevs)) {
4801 spin_unlock(&all_mddevs_lock);
4802 return -EBUSY;
4803 }
4804 mddev_get(mddev);
4805 spin_unlock(&all_mddevs_lock);
4806
4807 rv = entry->show(mddev, page);
4808 mddev_put(mddev);
4809 return rv;
4810 }
4811
4812 static ssize_t
4813 md_attr_store(struct kobject *kobj, struct attribute *attr,
4814 const char *page, size_t length)
4815 {
4816 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4817 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4818 ssize_t rv;
4819
4820 if (!entry->store)
4821 return -EIO;
4822 if (!capable(CAP_SYS_ADMIN))
4823 return -EACCES;
4824 spin_lock(&all_mddevs_lock);
4825 if (list_empty(&mddev->all_mddevs)) {
4826 spin_unlock(&all_mddevs_lock);
4827 return -EBUSY;
4828 }
4829 mddev_get(mddev);
4830 spin_unlock(&all_mddevs_lock);
4831 rv = entry->store(mddev, page, length);
4832 mddev_put(mddev);
4833 return rv;
4834 }
4835
4836 static void md_free(struct kobject *ko)
4837 {
4838 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4839
4840 if (mddev->sysfs_state)
4841 sysfs_put(mddev->sysfs_state);
4842
4843 if (mddev->queue)
4844 blk_cleanup_queue(mddev->queue);
4845 if (mddev->gendisk) {
4846 del_gendisk(mddev->gendisk);
4847 put_disk(mddev->gendisk);
4848 }
4849
4850 kfree(mddev);
4851 }
4852
4853 static const struct sysfs_ops md_sysfs_ops = {
4854 .show = md_attr_show,
4855 .store = md_attr_store,
4856 };
4857 static struct kobj_type md_ktype = {
4858 .release = md_free,
4859 .sysfs_ops = &md_sysfs_ops,
4860 .default_attrs = md_default_attrs,
4861 };
4862
4863 int mdp_major = 0;
4864
4865 static void mddev_delayed_delete(struct work_struct *ws)
4866 {
4867 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4868
4869 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4870 kobject_del(&mddev->kobj);
4871 kobject_put(&mddev->kobj);
4872 }
4873
4874 static int md_alloc(dev_t dev, char *name)
4875 {
4876 static DEFINE_MUTEX(disks_mutex);
4877 struct mddev *mddev = mddev_find(dev);
4878 struct gendisk *disk;
4879 int partitioned;
4880 int shift;
4881 int unit;
4882 int error;
4883
4884 if (!mddev)
4885 return -ENODEV;
4886
4887 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4888 shift = partitioned ? MdpMinorShift : 0;
4889 unit = MINOR(mddev->unit) >> shift;
4890
4891 /* wait for any previous instance of this device to be
4892 * completely removed (mddev_delayed_delete).
4893 */
4894 flush_workqueue(md_misc_wq);
4895
4896 mutex_lock(&disks_mutex);
4897 error = -EEXIST;
4898 if (mddev->gendisk)
4899 goto abort;
4900
4901 if (name) {
4902 /* Need to ensure that 'name' is not a duplicate.
4903 */
4904 struct mddev *mddev2;
4905 spin_lock(&all_mddevs_lock);
4906
4907 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4908 if (mddev2->gendisk &&
4909 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4910 spin_unlock(&all_mddevs_lock);
4911 goto abort;
4912 }
4913 spin_unlock(&all_mddevs_lock);
4914 }
4915
4916 error = -ENOMEM;
4917 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4918 if (!mddev->queue)
4919 goto abort;
4920 mddev->queue->queuedata = mddev;
4921
4922 blk_queue_make_request(mddev->queue, md_make_request);
4923 blk_set_stacking_limits(&mddev->queue->limits);
4924
4925 disk = alloc_disk(1 << shift);
4926 if (!disk) {
4927 blk_cleanup_queue(mddev->queue);
4928 mddev->queue = NULL;
4929 goto abort;
4930 }
4931 disk->major = MAJOR(mddev->unit);
4932 disk->first_minor = unit << shift;
4933 if (name)
4934 strcpy(disk->disk_name, name);
4935 else if (partitioned)
4936 sprintf(disk->disk_name, "md_d%d", unit);
4937 else
4938 sprintf(disk->disk_name, "md%d", unit);
4939 disk->fops = &md_fops;
4940 disk->private_data = mddev;
4941 disk->queue = mddev->queue;
4942 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4943 /* Allow extended partitions. This makes the
4944 * 'mdp' device redundant, but we can't really
4945 * remove it now.
4946 */
4947 disk->flags |= GENHD_FL_EXT_DEVT;
4948 mddev->gendisk = disk;
4949 /* As soon as we call add_disk(), another thread could get
4950 * through to md_open, so make sure it doesn't get too far
4951 */
4952 mutex_lock(&mddev->open_mutex);
4953 add_disk(disk);
4954
4955 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4956 &disk_to_dev(disk)->kobj, "%s", "md");
4957 if (error) {
4958 /* This isn't possible, but as kobject_init_and_add is marked
4959 * __must_check, we must do something with the result
4960 */
4961 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4962 disk->disk_name);
4963 error = 0;
4964 }
4965 if (mddev->kobj.sd &&
4966 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4967 printk(KERN_DEBUG "pointless warning\n");
4968 mutex_unlock(&mddev->open_mutex);
4969 abort:
4970 mutex_unlock(&disks_mutex);
4971 if (!error && mddev->kobj.sd) {
4972 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4973 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4974 }
4975 mddev_put(mddev);
4976 return error;
4977 }
4978
4979 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4980 {
4981 md_alloc(dev, NULL);
4982 return NULL;
4983 }
4984
4985 static int add_named_array(const char *val, struct kernel_param *kp)
4986 {
4987 /* val must be "md_*" where * is not all digits.
4988 * We allocate an array with a large free minor number, and
4989 * set the name to val. val must not already be an active name.
4990 */
4991 int len = strlen(val);
4992 char buf[DISK_NAME_LEN];
4993
4994 while (len && val[len-1] == '\n')
4995 len--;
4996 if (len >= DISK_NAME_LEN)
4997 return -E2BIG;
4998 strlcpy(buf, val, len+1);
4999 if (strncmp(buf, "md_", 3) != 0)
5000 return -EINVAL;
5001 return md_alloc(0, buf);
5002 }
5003
5004 static void md_safemode_timeout(unsigned long data)
5005 {
5006 struct mddev *mddev = (struct mddev *) data;
5007
5008 if (!atomic_read(&mddev->writes_pending)) {
5009 mddev->safemode = 1;
5010 if (mddev->external)
5011 sysfs_notify_dirent_safe(mddev->sysfs_state);
5012 }
5013 md_wakeup_thread(mddev->thread);
5014 }
5015
5016 static int start_dirty_degraded;
5017
5018 int md_run(struct mddev *mddev)
5019 {
5020 int err;
5021 struct md_rdev *rdev;
5022 struct md_personality *pers;
5023
5024 if (list_empty(&mddev->disks))
5025 /* cannot run an array with no devices.. */
5026 return -EINVAL;
5027
5028 if (mddev->pers)
5029 return -EBUSY;
5030 /* Cannot run until previous stop completes properly */
5031 if (mddev->sysfs_active)
5032 return -EBUSY;
5033
5034 /*
5035 * Analyze all RAID superblock(s)
5036 */
5037 if (!mddev->raid_disks) {
5038 if (!mddev->persistent)
5039 return -EINVAL;
5040 analyze_sbs(mddev);
5041 }
5042
5043 if (mddev->level != LEVEL_NONE)
5044 request_module("md-level-%d", mddev->level);
5045 else if (mddev->clevel[0])
5046 request_module("md-%s", mddev->clevel);
5047
5048 /*
5049 * Drop all container device buffers, from now on
5050 * the only valid external interface is through the md
5051 * device.
5052 */
5053 rdev_for_each(rdev, mddev) {
5054 if (test_bit(Faulty, &rdev->flags))
5055 continue;
5056 sync_blockdev(rdev->bdev);
5057 invalidate_bdev(rdev->bdev);
5058
5059 /* perform some consistency tests on the device.
5060 * We don't want the data to overlap the metadata,
5061 * Internal Bitmap issues have been handled elsewhere.
5062 */
5063 if (rdev->meta_bdev) {
5064 /* Nothing to check */;
5065 } else if (rdev->data_offset < rdev->sb_start) {
5066 if (mddev->dev_sectors &&
5067 rdev->data_offset + mddev->dev_sectors
5068 > rdev->sb_start) {
5069 printk("md: %s: data overlaps metadata\n",
5070 mdname(mddev));
5071 return -EINVAL;
5072 }
5073 } else {
5074 if (rdev->sb_start + rdev->sb_size/512
5075 > rdev->data_offset) {
5076 printk("md: %s: metadata overlaps data\n",
5077 mdname(mddev));
5078 return -EINVAL;
5079 }
5080 }
5081 sysfs_notify_dirent_safe(rdev->sysfs_state);
5082 }
5083
5084 if (mddev->bio_set == NULL)
5085 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5086
5087 spin_lock(&pers_lock);
5088 pers = find_pers(mddev->level, mddev->clevel);
5089 if (!pers || !try_module_get(pers->owner)) {
5090 spin_unlock(&pers_lock);
5091 if (mddev->level != LEVEL_NONE)
5092 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5093 mddev->level);
5094 else
5095 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5096 mddev->clevel);
5097 return -EINVAL;
5098 }
5099 spin_unlock(&pers_lock);
5100 if (mddev->level != pers->level) {
5101 mddev->level = pers->level;
5102 mddev->new_level = pers->level;
5103 }
5104 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5105
5106 if (mddev->reshape_position != MaxSector &&
5107 pers->start_reshape == NULL) {
5108 /* This personality cannot handle reshaping... */
5109 module_put(pers->owner);
5110 return -EINVAL;
5111 }
5112
5113 if (pers->sync_request) {
5114 /* Warn if this is a potentially silly
5115 * configuration.
5116 */
5117 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5118 struct md_rdev *rdev2;
5119 int warned = 0;
5120
5121 rdev_for_each(rdev, mddev)
5122 rdev_for_each(rdev2, mddev) {
5123 if (rdev < rdev2 &&
5124 rdev->bdev->bd_contains ==
5125 rdev2->bdev->bd_contains) {
5126 printk(KERN_WARNING
5127 "%s: WARNING: %s appears to be"
5128 " on the same physical disk as"
5129 " %s.\n",
5130 mdname(mddev),
5131 bdevname(rdev->bdev,b),
5132 bdevname(rdev2->bdev,b2));
5133 warned = 1;
5134 }
5135 }
5136
5137 if (warned)
5138 printk(KERN_WARNING
5139 "True protection against single-disk"
5140 " failure might be compromised.\n");
5141 }
5142
5143 mddev->recovery = 0;
5144 /* may be over-ridden by personality */
5145 mddev->resync_max_sectors = mddev->dev_sectors;
5146
5147 mddev->ok_start_degraded = start_dirty_degraded;
5148
5149 if (start_readonly && mddev->ro == 0)
5150 mddev->ro = 2; /* read-only, but switch on first write */
5151
5152 err = pers->run(mddev);
5153 if (err)
5154 printk(KERN_ERR "md: pers->run() failed ...\n");
5155 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5156 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5157 " but 'external_size' not in effect?\n", __func__);
5158 printk(KERN_ERR
5159 "md: invalid array_size %llu > default size %llu\n",
5160 (unsigned long long)mddev->array_sectors / 2,
5161 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5162 err = -EINVAL;
5163 }
5164 if (err == 0 && pers->sync_request &&
5165 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5166 struct bitmap *bitmap;
5167
5168 bitmap = bitmap_create(mddev, -1);
5169 if (IS_ERR(bitmap)) {
5170 err = PTR_ERR(bitmap);
5171 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5172 mdname(mddev), err);
5173 } else
5174 mddev->bitmap = bitmap;
5175
5176 }
5177 if (err) {
5178 mddev_detach(mddev);
5179 if (mddev->private)
5180 pers->free(mddev, mddev->private);
5181 mddev->private = NULL;
5182 module_put(pers->owner);
5183 bitmap_destroy(mddev);
5184 return err;
5185 }
5186 if (mddev->queue) {
5187 mddev->queue->backing_dev_info.congested_data = mddev;
5188 mddev->queue->backing_dev_info.congested_fn = md_congested;
5189 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5190 }
5191 if (pers->sync_request) {
5192 if (mddev->kobj.sd &&
5193 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5194 printk(KERN_WARNING
5195 "md: cannot register extra attributes for %s\n",
5196 mdname(mddev));
5197 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5198 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5199 mddev->ro = 0;
5200
5201 atomic_set(&mddev->writes_pending,0);
5202 atomic_set(&mddev->max_corr_read_errors,
5203 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5204 mddev->safemode = 0;
5205 mddev->safemode_timer.function = md_safemode_timeout;
5206 mddev->safemode_timer.data = (unsigned long) mddev;
5207 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5208 mddev->in_sync = 1;
5209 smp_wmb();
5210 spin_lock(&mddev->lock);
5211 mddev->pers = pers;
5212 mddev->ready = 1;
5213 spin_unlock(&mddev->lock);
5214 rdev_for_each(rdev, mddev)
5215 if (rdev->raid_disk >= 0)
5216 if (sysfs_link_rdev(mddev, rdev))
5217 /* failure here is OK */;
5218
5219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5220
5221 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5222 md_update_sb(mddev, 0);
5223
5224 md_new_event(mddev);
5225 sysfs_notify_dirent_safe(mddev->sysfs_state);
5226 sysfs_notify_dirent_safe(mddev->sysfs_action);
5227 sysfs_notify(&mddev->kobj, NULL, "degraded");
5228 return 0;
5229 }
5230 EXPORT_SYMBOL_GPL(md_run);
5231
5232 static int do_md_run(struct mddev *mddev)
5233 {
5234 int err;
5235
5236 err = md_run(mddev);
5237 if (err)
5238 goto out;
5239 err = bitmap_load(mddev);
5240 if (err) {
5241 bitmap_destroy(mddev);
5242 goto out;
5243 }
5244
5245 md_wakeup_thread(mddev->thread);
5246 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5247
5248 set_capacity(mddev->gendisk, mddev->array_sectors);
5249 revalidate_disk(mddev->gendisk);
5250 mddev->changed = 1;
5251 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5252 out:
5253 return err;
5254 }
5255
5256 static int restart_array(struct mddev *mddev)
5257 {
5258 struct gendisk *disk = mddev->gendisk;
5259
5260 /* Complain if it has no devices */
5261 if (list_empty(&mddev->disks))
5262 return -ENXIO;
5263 if (!mddev->pers)
5264 return -EINVAL;
5265 if (!mddev->ro)
5266 return -EBUSY;
5267 mddev->safemode = 0;
5268 mddev->ro = 0;
5269 set_disk_ro(disk, 0);
5270 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5271 mdname(mddev));
5272 /* Kick recovery or resync if necessary */
5273 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5274 md_wakeup_thread(mddev->thread);
5275 md_wakeup_thread(mddev->sync_thread);
5276 sysfs_notify_dirent_safe(mddev->sysfs_state);
5277 return 0;
5278 }
5279
5280 static void md_clean(struct mddev *mddev)
5281 {
5282 mddev->array_sectors = 0;
5283 mddev->external_size = 0;
5284 mddev->dev_sectors = 0;
5285 mddev->raid_disks = 0;
5286 mddev->recovery_cp = 0;
5287 mddev->resync_min = 0;
5288 mddev->resync_max = MaxSector;
5289 mddev->reshape_position = MaxSector;
5290 mddev->external = 0;
5291 mddev->persistent = 0;
5292 mddev->level = LEVEL_NONE;
5293 mddev->clevel[0] = 0;
5294 mddev->flags = 0;
5295 mddev->ro = 0;
5296 mddev->metadata_type[0] = 0;
5297 mddev->chunk_sectors = 0;
5298 mddev->ctime = mddev->utime = 0;
5299 mddev->layout = 0;
5300 mddev->max_disks = 0;
5301 mddev->events = 0;
5302 mddev->can_decrease_events = 0;
5303 mddev->delta_disks = 0;
5304 mddev->reshape_backwards = 0;
5305 mddev->new_level = LEVEL_NONE;
5306 mddev->new_layout = 0;
5307 mddev->new_chunk_sectors = 0;
5308 mddev->curr_resync = 0;
5309 atomic64_set(&mddev->resync_mismatches, 0);
5310 mddev->suspend_lo = mddev->suspend_hi = 0;
5311 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5312 mddev->recovery = 0;
5313 mddev->in_sync = 0;
5314 mddev->changed = 0;
5315 mddev->degraded = 0;
5316 mddev->safemode = 0;
5317 mddev->private = NULL;
5318 mddev->merge_check_needed = 0;
5319 mddev->bitmap_info.offset = 0;
5320 mddev->bitmap_info.default_offset = 0;
5321 mddev->bitmap_info.default_space = 0;
5322 mddev->bitmap_info.chunksize = 0;
5323 mddev->bitmap_info.daemon_sleep = 0;
5324 mddev->bitmap_info.max_write_behind = 0;
5325 }
5326
5327 static void __md_stop_writes(struct mddev *mddev)
5328 {
5329 if (mddev_is_clustered(mddev))
5330 md_cluster_ops->metadata_update_start(mddev);
5331 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5332 flush_workqueue(md_misc_wq);
5333 if (mddev->sync_thread) {
5334 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5335 md_reap_sync_thread(mddev);
5336 }
5337
5338 del_timer_sync(&mddev->safemode_timer);
5339
5340 bitmap_flush(mddev);
5341 md_super_wait(mddev);
5342
5343 if (mddev->ro == 0 &&
5344 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5345 /* mark array as shutdown cleanly */
5346 mddev->in_sync = 1;
5347 md_update_sb(mddev, 1);
5348 }
5349 if (mddev_is_clustered(mddev))
5350 md_cluster_ops->metadata_update_finish(mddev);
5351 }
5352
5353 void md_stop_writes(struct mddev *mddev)
5354 {
5355 mddev_lock_nointr(mddev);
5356 __md_stop_writes(mddev);
5357 mddev_unlock(mddev);
5358 }
5359 EXPORT_SYMBOL_GPL(md_stop_writes);
5360
5361 static void mddev_detach(struct mddev *mddev)
5362 {
5363 struct bitmap *bitmap = mddev->bitmap;
5364 /* wait for behind writes to complete */
5365 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5366 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5367 mdname(mddev));
5368 /* need to kick something here to make sure I/O goes? */
5369 wait_event(bitmap->behind_wait,
5370 atomic_read(&bitmap->behind_writes) == 0);
5371 }
5372 if (mddev->pers && mddev->pers->quiesce) {
5373 mddev->pers->quiesce(mddev, 1);
5374 mddev->pers->quiesce(mddev, 0);
5375 }
5376 md_unregister_thread(&mddev->thread);
5377 if (mddev->queue)
5378 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5379 }
5380
5381 static void __md_stop(struct mddev *mddev)
5382 {
5383 struct md_personality *pers = mddev->pers;
5384 mddev_detach(mddev);
5385 spin_lock(&mddev->lock);
5386 mddev->ready = 0;
5387 mddev->pers = NULL;
5388 spin_unlock(&mddev->lock);
5389 pers->free(mddev, mddev->private);
5390 mddev->private = NULL;
5391 if (pers->sync_request && mddev->to_remove == NULL)
5392 mddev->to_remove = &md_redundancy_group;
5393 module_put(pers->owner);
5394 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5395 }
5396
5397 void md_stop(struct mddev *mddev)
5398 {
5399 /* stop the array and free an attached data structures.
5400 * This is called from dm-raid
5401 */
5402 __md_stop(mddev);
5403 bitmap_destroy(mddev);
5404 if (mddev->bio_set)
5405 bioset_free(mddev->bio_set);
5406 }
5407
5408 EXPORT_SYMBOL_GPL(md_stop);
5409
5410 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5411 {
5412 int err = 0;
5413 int did_freeze = 0;
5414
5415 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5416 did_freeze = 1;
5417 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5418 md_wakeup_thread(mddev->thread);
5419 }
5420 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5421 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5422 if (mddev->sync_thread)
5423 /* Thread might be blocked waiting for metadata update
5424 * which will now never happen */
5425 wake_up_process(mddev->sync_thread->tsk);
5426
5427 mddev_unlock(mddev);
5428 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5429 &mddev->recovery));
5430 mddev_lock_nointr(mddev);
5431
5432 mutex_lock(&mddev->open_mutex);
5433 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5434 mddev->sync_thread ||
5435 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5436 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5437 printk("md: %s still in use.\n",mdname(mddev));
5438 if (did_freeze) {
5439 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5440 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5441 md_wakeup_thread(mddev->thread);
5442 }
5443 err = -EBUSY;
5444 goto out;
5445 }
5446 if (mddev->pers) {
5447 __md_stop_writes(mddev);
5448
5449 err = -ENXIO;
5450 if (mddev->ro==1)
5451 goto out;
5452 mddev->ro = 1;
5453 set_disk_ro(mddev->gendisk, 1);
5454 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5455 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5456 md_wakeup_thread(mddev->thread);
5457 sysfs_notify_dirent_safe(mddev->sysfs_state);
5458 err = 0;
5459 }
5460 out:
5461 mutex_unlock(&mddev->open_mutex);
5462 return err;
5463 }
5464
5465 /* mode:
5466 * 0 - completely stop and dis-assemble array
5467 * 2 - stop but do not disassemble array
5468 */
5469 static int do_md_stop(struct mddev *mddev, int mode,
5470 struct block_device *bdev)
5471 {
5472 struct gendisk *disk = mddev->gendisk;
5473 struct md_rdev *rdev;
5474 int did_freeze = 0;
5475
5476 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5477 did_freeze = 1;
5478 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5479 md_wakeup_thread(mddev->thread);
5480 }
5481 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5482 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5483 if (mddev->sync_thread)
5484 /* Thread might be blocked waiting for metadata update
5485 * which will now never happen */
5486 wake_up_process(mddev->sync_thread->tsk);
5487
5488 mddev_unlock(mddev);
5489 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5490 !test_bit(MD_RECOVERY_RUNNING,
5491 &mddev->recovery)));
5492 mddev_lock_nointr(mddev);
5493
5494 mutex_lock(&mddev->open_mutex);
5495 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5496 mddev->sysfs_active ||
5497 mddev->sync_thread ||
5498 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5499 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5500 printk("md: %s still in use.\n",mdname(mddev));
5501 mutex_unlock(&mddev->open_mutex);
5502 if (did_freeze) {
5503 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5505 md_wakeup_thread(mddev->thread);
5506 }
5507 return -EBUSY;
5508 }
5509 if (mddev->pers) {
5510 if (mddev->ro)
5511 set_disk_ro(disk, 0);
5512
5513 __md_stop_writes(mddev);
5514 __md_stop(mddev);
5515 mddev->queue->merge_bvec_fn = NULL;
5516 mddev->queue->backing_dev_info.congested_fn = NULL;
5517
5518 /* tell userspace to handle 'inactive' */
5519 sysfs_notify_dirent_safe(mddev->sysfs_state);
5520
5521 rdev_for_each(rdev, mddev)
5522 if (rdev->raid_disk >= 0)
5523 sysfs_unlink_rdev(mddev, rdev);
5524
5525 set_capacity(disk, 0);
5526 mutex_unlock(&mddev->open_mutex);
5527 mddev->changed = 1;
5528 revalidate_disk(disk);
5529
5530 if (mddev->ro)
5531 mddev->ro = 0;
5532 } else
5533 mutex_unlock(&mddev->open_mutex);
5534 /*
5535 * Free resources if final stop
5536 */
5537 if (mode == 0) {
5538 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5539
5540 bitmap_destroy(mddev);
5541 if (mddev->bitmap_info.file) {
5542 struct file *f = mddev->bitmap_info.file;
5543 spin_lock(&mddev->lock);
5544 mddev->bitmap_info.file = NULL;
5545 spin_unlock(&mddev->lock);
5546 fput(f);
5547 }
5548 mddev->bitmap_info.offset = 0;
5549
5550 export_array(mddev);
5551
5552 md_clean(mddev);
5553 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5554 if (mddev->hold_active == UNTIL_STOP)
5555 mddev->hold_active = 0;
5556 }
5557 blk_integrity_unregister(disk);
5558 md_new_event(mddev);
5559 sysfs_notify_dirent_safe(mddev->sysfs_state);
5560 return 0;
5561 }
5562
5563 #ifndef MODULE
5564 static void autorun_array(struct mddev *mddev)
5565 {
5566 struct md_rdev *rdev;
5567 int err;
5568
5569 if (list_empty(&mddev->disks))
5570 return;
5571
5572 printk(KERN_INFO "md: running: ");
5573
5574 rdev_for_each(rdev, mddev) {
5575 char b[BDEVNAME_SIZE];
5576 printk("<%s>", bdevname(rdev->bdev,b));
5577 }
5578 printk("\n");
5579
5580 err = do_md_run(mddev);
5581 if (err) {
5582 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5583 do_md_stop(mddev, 0, NULL);
5584 }
5585 }
5586
5587 /*
5588 * lets try to run arrays based on all disks that have arrived
5589 * until now. (those are in pending_raid_disks)
5590 *
5591 * the method: pick the first pending disk, collect all disks with
5592 * the same UUID, remove all from the pending list and put them into
5593 * the 'same_array' list. Then order this list based on superblock
5594 * update time (freshest comes first), kick out 'old' disks and
5595 * compare superblocks. If everything's fine then run it.
5596 *
5597 * If "unit" is allocated, then bump its reference count
5598 */
5599 static void autorun_devices(int part)
5600 {
5601 struct md_rdev *rdev0, *rdev, *tmp;
5602 struct mddev *mddev;
5603 char b[BDEVNAME_SIZE];
5604
5605 printk(KERN_INFO "md: autorun ...\n");
5606 while (!list_empty(&pending_raid_disks)) {
5607 int unit;
5608 dev_t dev;
5609 LIST_HEAD(candidates);
5610 rdev0 = list_entry(pending_raid_disks.next,
5611 struct md_rdev, same_set);
5612
5613 printk(KERN_INFO "md: considering %s ...\n",
5614 bdevname(rdev0->bdev,b));
5615 INIT_LIST_HEAD(&candidates);
5616 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5617 if (super_90_load(rdev, rdev0, 0) >= 0) {
5618 printk(KERN_INFO "md: adding %s ...\n",
5619 bdevname(rdev->bdev,b));
5620 list_move(&rdev->same_set, &candidates);
5621 }
5622 /*
5623 * now we have a set of devices, with all of them having
5624 * mostly sane superblocks. It's time to allocate the
5625 * mddev.
5626 */
5627 if (part) {
5628 dev = MKDEV(mdp_major,
5629 rdev0->preferred_minor << MdpMinorShift);
5630 unit = MINOR(dev) >> MdpMinorShift;
5631 } else {
5632 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5633 unit = MINOR(dev);
5634 }
5635 if (rdev0->preferred_minor != unit) {
5636 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5637 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5638 break;
5639 }
5640
5641 md_probe(dev, NULL, NULL);
5642 mddev = mddev_find(dev);
5643 if (!mddev || !mddev->gendisk) {
5644 if (mddev)
5645 mddev_put(mddev);
5646 printk(KERN_ERR
5647 "md: cannot allocate memory for md drive.\n");
5648 break;
5649 }
5650 if (mddev_lock(mddev))
5651 printk(KERN_WARNING "md: %s locked, cannot run\n",
5652 mdname(mddev));
5653 else if (mddev->raid_disks || mddev->major_version
5654 || !list_empty(&mddev->disks)) {
5655 printk(KERN_WARNING
5656 "md: %s already running, cannot run %s\n",
5657 mdname(mddev), bdevname(rdev0->bdev,b));
5658 mddev_unlock(mddev);
5659 } else {
5660 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5661 mddev->persistent = 1;
5662 rdev_for_each_list(rdev, tmp, &candidates) {
5663 list_del_init(&rdev->same_set);
5664 if (bind_rdev_to_array(rdev, mddev))
5665 export_rdev(rdev);
5666 }
5667 autorun_array(mddev);
5668 mddev_unlock(mddev);
5669 }
5670 /* on success, candidates will be empty, on error
5671 * it won't...
5672 */
5673 rdev_for_each_list(rdev, tmp, &candidates) {
5674 list_del_init(&rdev->same_set);
5675 export_rdev(rdev);
5676 }
5677 mddev_put(mddev);
5678 }
5679 printk(KERN_INFO "md: ... autorun DONE.\n");
5680 }
5681 #endif /* !MODULE */
5682
5683 static int get_version(void __user *arg)
5684 {
5685 mdu_version_t ver;
5686
5687 ver.major = MD_MAJOR_VERSION;
5688 ver.minor = MD_MINOR_VERSION;
5689 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5690
5691 if (copy_to_user(arg, &ver, sizeof(ver)))
5692 return -EFAULT;
5693
5694 return 0;
5695 }
5696
5697 static int get_array_info(struct mddev *mddev, void __user *arg)
5698 {
5699 mdu_array_info_t info;
5700 int nr,working,insync,failed,spare;
5701 struct md_rdev *rdev;
5702
5703 nr = working = insync = failed = spare = 0;
5704 rcu_read_lock();
5705 rdev_for_each_rcu(rdev, mddev) {
5706 nr++;
5707 if (test_bit(Faulty, &rdev->flags))
5708 failed++;
5709 else {
5710 working++;
5711 if (test_bit(In_sync, &rdev->flags))
5712 insync++;
5713 else
5714 spare++;
5715 }
5716 }
5717 rcu_read_unlock();
5718
5719 info.major_version = mddev->major_version;
5720 info.minor_version = mddev->minor_version;
5721 info.patch_version = MD_PATCHLEVEL_VERSION;
5722 info.ctime = mddev->ctime;
5723 info.level = mddev->level;
5724 info.size = mddev->dev_sectors / 2;
5725 if (info.size != mddev->dev_sectors / 2) /* overflow */
5726 info.size = -1;
5727 info.nr_disks = nr;
5728 info.raid_disks = mddev->raid_disks;
5729 info.md_minor = mddev->md_minor;
5730 info.not_persistent= !mddev->persistent;
5731
5732 info.utime = mddev->utime;
5733 info.state = 0;
5734 if (mddev->in_sync)
5735 info.state = (1<<MD_SB_CLEAN);
5736 if (mddev->bitmap && mddev->bitmap_info.offset)
5737 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5738 if (mddev_is_clustered(mddev))
5739 info.state |= (1<<MD_SB_CLUSTERED);
5740 info.active_disks = insync;
5741 info.working_disks = working;
5742 info.failed_disks = failed;
5743 info.spare_disks = spare;
5744
5745 info.layout = mddev->layout;
5746 info.chunk_size = mddev->chunk_sectors << 9;
5747
5748 if (copy_to_user(arg, &info, sizeof(info)))
5749 return -EFAULT;
5750
5751 return 0;
5752 }
5753
5754 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5755 {
5756 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5757 char *ptr;
5758 int err;
5759
5760 file = kmalloc(sizeof(*file), GFP_NOIO);
5761 if (!file)
5762 return -ENOMEM;
5763
5764 err = 0;
5765 spin_lock(&mddev->lock);
5766 /* bitmap disabled, zero the first byte and copy out */
5767 if (!mddev->bitmap_info.file)
5768 file->pathname[0] = '\0';
5769 else if ((ptr = file_path(mddev->bitmap_info.file,
5770 file->pathname, sizeof(file->pathname))),
5771 IS_ERR(ptr))
5772 err = PTR_ERR(ptr);
5773 else
5774 memmove(file->pathname, ptr,
5775 sizeof(file->pathname)-(ptr-file->pathname));
5776 spin_unlock(&mddev->lock);
5777
5778 if (err == 0 &&
5779 copy_to_user(arg, file, sizeof(*file)))
5780 err = -EFAULT;
5781
5782 kfree(file);
5783 return err;
5784 }
5785
5786 static int get_disk_info(struct mddev *mddev, void __user * arg)
5787 {
5788 mdu_disk_info_t info;
5789 struct md_rdev *rdev;
5790
5791 if (copy_from_user(&info, arg, sizeof(info)))
5792 return -EFAULT;
5793
5794 rcu_read_lock();
5795 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5796 if (rdev) {
5797 info.major = MAJOR(rdev->bdev->bd_dev);
5798 info.minor = MINOR(rdev->bdev->bd_dev);
5799 info.raid_disk = rdev->raid_disk;
5800 info.state = 0;
5801 if (test_bit(Faulty, &rdev->flags))
5802 info.state |= (1<<MD_DISK_FAULTY);
5803 else if (test_bit(In_sync, &rdev->flags)) {
5804 info.state |= (1<<MD_DISK_ACTIVE);
5805 info.state |= (1<<MD_DISK_SYNC);
5806 }
5807 if (test_bit(WriteMostly, &rdev->flags))
5808 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5809 } else {
5810 info.major = info.minor = 0;
5811 info.raid_disk = -1;
5812 info.state = (1<<MD_DISK_REMOVED);
5813 }
5814 rcu_read_unlock();
5815
5816 if (copy_to_user(arg, &info, sizeof(info)))
5817 return -EFAULT;
5818
5819 return 0;
5820 }
5821
5822 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5823 {
5824 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5825 struct md_rdev *rdev;
5826 dev_t dev = MKDEV(info->major,info->minor);
5827
5828 if (mddev_is_clustered(mddev) &&
5829 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5830 pr_err("%s: Cannot add to clustered mddev.\n",
5831 mdname(mddev));
5832 return -EINVAL;
5833 }
5834
5835 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5836 return -EOVERFLOW;
5837
5838 if (!mddev->raid_disks) {
5839 int err;
5840 /* expecting a device which has a superblock */
5841 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5842 if (IS_ERR(rdev)) {
5843 printk(KERN_WARNING
5844 "md: md_import_device returned %ld\n",
5845 PTR_ERR(rdev));
5846 return PTR_ERR(rdev);
5847 }
5848 if (!list_empty(&mddev->disks)) {
5849 struct md_rdev *rdev0
5850 = list_entry(mddev->disks.next,
5851 struct md_rdev, same_set);
5852 err = super_types[mddev->major_version]
5853 .load_super(rdev, rdev0, mddev->minor_version);
5854 if (err < 0) {
5855 printk(KERN_WARNING
5856 "md: %s has different UUID to %s\n",
5857 bdevname(rdev->bdev,b),
5858 bdevname(rdev0->bdev,b2));
5859 export_rdev(rdev);
5860 return -EINVAL;
5861 }
5862 }
5863 err = bind_rdev_to_array(rdev, mddev);
5864 if (err)
5865 export_rdev(rdev);
5866 return err;
5867 }
5868
5869 /*
5870 * add_new_disk can be used once the array is assembled
5871 * to add "hot spares". They must already have a superblock
5872 * written
5873 */
5874 if (mddev->pers) {
5875 int err;
5876 if (!mddev->pers->hot_add_disk) {
5877 printk(KERN_WARNING
5878 "%s: personality does not support diskops!\n",
5879 mdname(mddev));
5880 return -EINVAL;
5881 }
5882 if (mddev->persistent)
5883 rdev = md_import_device(dev, mddev->major_version,
5884 mddev->minor_version);
5885 else
5886 rdev = md_import_device(dev, -1, -1);
5887 if (IS_ERR(rdev)) {
5888 printk(KERN_WARNING
5889 "md: md_import_device returned %ld\n",
5890 PTR_ERR(rdev));
5891 return PTR_ERR(rdev);
5892 }
5893 /* set saved_raid_disk if appropriate */
5894 if (!mddev->persistent) {
5895 if (info->state & (1<<MD_DISK_SYNC) &&
5896 info->raid_disk < mddev->raid_disks) {
5897 rdev->raid_disk = info->raid_disk;
5898 set_bit(In_sync, &rdev->flags);
5899 clear_bit(Bitmap_sync, &rdev->flags);
5900 } else
5901 rdev->raid_disk = -1;
5902 rdev->saved_raid_disk = rdev->raid_disk;
5903 } else
5904 super_types[mddev->major_version].
5905 validate_super(mddev, rdev);
5906 if ((info->state & (1<<MD_DISK_SYNC)) &&
5907 rdev->raid_disk != info->raid_disk) {
5908 /* This was a hot-add request, but events doesn't
5909 * match, so reject it.
5910 */
5911 export_rdev(rdev);
5912 return -EINVAL;
5913 }
5914
5915 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5916 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5917 set_bit(WriteMostly, &rdev->flags);
5918 else
5919 clear_bit(WriteMostly, &rdev->flags);
5920
5921 /*
5922 * check whether the device shows up in other nodes
5923 */
5924 if (mddev_is_clustered(mddev)) {
5925 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5926 /* Through --cluster-confirm */
5927 set_bit(Candidate, &rdev->flags);
5928 err = md_cluster_ops->new_disk_ack(mddev, true);
5929 if (err) {
5930 export_rdev(rdev);
5931 return err;
5932 }
5933 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5934 /* --add initiated by this node */
5935 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5936 if (err) {
5937 md_cluster_ops->add_new_disk_finish(mddev);
5938 export_rdev(rdev);
5939 return err;
5940 }
5941 }
5942 }
5943
5944 rdev->raid_disk = -1;
5945 err = bind_rdev_to_array(rdev, mddev);
5946 if (err)
5947 export_rdev(rdev);
5948 else
5949 err = add_bound_rdev(rdev);
5950 if (mddev_is_clustered(mddev) &&
5951 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5952 md_cluster_ops->add_new_disk_finish(mddev);
5953 return err;
5954 }
5955
5956 /* otherwise, add_new_disk is only allowed
5957 * for major_version==0 superblocks
5958 */
5959 if (mddev->major_version != 0) {
5960 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5961 mdname(mddev));
5962 return -EINVAL;
5963 }
5964
5965 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5966 int err;
5967 rdev = md_import_device(dev, -1, 0);
5968 if (IS_ERR(rdev)) {
5969 printk(KERN_WARNING
5970 "md: error, md_import_device() returned %ld\n",
5971 PTR_ERR(rdev));
5972 return PTR_ERR(rdev);
5973 }
5974 rdev->desc_nr = info->number;
5975 if (info->raid_disk < mddev->raid_disks)
5976 rdev->raid_disk = info->raid_disk;
5977 else
5978 rdev->raid_disk = -1;
5979
5980 if (rdev->raid_disk < mddev->raid_disks)
5981 if (info->state & (1<<MD_DISK_SYNC))
5982 set_bit(In_sync, &rdev->flags);
5983
5984 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5985 set_bit(WriteMostly, &rdev->flags);
5986
5987 if (!mddev->persistent) {
5988 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5989 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5990 } else
5991 rdev->sb_start = calc_dev_sboffset(rdev);
5992 rdev->sectors = rdev->sb_start;
5993
5994 err = bind_rdev_to_array(rdev, mddev);
5995 if (err) {
5996 export_rdev(rdev);
5997 return err;
5998 }
5999 }
6000
6001 return 0;
6002 }
6003
6004 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6005 {
6006 char b[BDEVNAME_SIZE];
6007 struct md_rdev *rdev;
6008
6009 rdev = find_rdev(mddev, dev);
6010 if (!rdev)
6011 return -ENXIO;
6012
6013 if (mddev_is_clustered(mddev))
6014 md_cluster_ops->metadata_update_start(mddev);
6015
6016 clear_bit(Blocked, &rdev->flags);
6017 remove_and_add_spares(mddev, rdev);
6018
6019 if (rdev->raid_disk >= 0)
6020 goto busy;
6021
6022 if (mddev_is_clustered(mddev))
6023 md_cluster_ops->remove_disk(mddev, rdev);
6024
6025 md_kick_rdev_from_array(rdev);
6026 md_update_sb(mddev, 1);
6027 md_new_event(mddev);
6028
6029 if (mddev_is_clustered(mddev))
6030 md_cluster_ops->metadata_update_finish(mddev);
6031
6032 return 0;
6033 busy:
6034 if (mddev_is_clustered(mddev))
6035 md_cluster_ops->metadata_update_cancel(mddev);
6036 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6037 bdevname(rdev->bdev,b), mdname(mddev));
6038 return -EBUSY;
6039 }
6040
6041 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6042 {
6043 char b[BDEVNAME_SIZE];
6044 int err;
6045 struct md_rdev *rdev;
6046
6047 if (!mddev->pers)
6048 return -ENODEV;
6049
6050 if (mddev->major_version != 0) {
6051 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6052 " version-0 superblocks.\n",
6053 mdname(mddev));
6054 return -EINVAL;
6055 }
6056 if (!mddev->pers->hot_add_disk) {
6057 printk(KERN_WARNING
6058 "%s: personality does not support diskops!\n",
6059 mdname(mddev));
6060 return -EINVAL;
6061 }
6062
6063 rdev = md_import_device(dev, -1, 0);
6064 if (IS_ERR(rdev)) {
6065 printk(KERN_WARNING
6066 "md: error, md_import_device() returned %ld\n",
6067 PTR_ERR(rdev));
6068 return -EINVAL;
6069 }
6070
6071 if (mddev->persistent)
6072 rdev->sb_start = calc_dev_sboffset(rdev);
6073 else
6074 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6075
6076 rdev->sectors = rdev->sb_start;
6077
6078 if (test_bit(Faulty, &rdev->flags)) {
6079 printk(KERN_WARNING
6080 "md: can not hot-add faulty %s disk to %s!\n",
6081 bdevname(rdev->bdev,b), mdname(mddev));
6082 err = -EINVAL;
6083 goto abort_export;
6084 }
6085
6086 if (mddev_is_clustered(mddev))
6087 md_cluster_ops->metadata_update_start(mddev);
6088 clear_bit(In_sync, &rdev->flags);
6089 rdev->desc_nr = -1;
6090 rdev->saved_raid_disk = -1;
6091 err = bind_rdev_to_array(rdev, mddev);
6092 if (err)
6093 goto abort_clustered;
6094
6095 /*
6096 * The rest should better be atomic, we can have disk failures
6097 * noticed in interrupt contexts ...
6098 */
6099
6100 rdev->raid_disk = -1;
6101
6102 md_update_sb(mddev, 1);
6103
6104 if (mddev_is_clustered(mddev))
6105 md_cluster_ops->metadata_update_finish(mddev);
6106 /*
6107 * Kick recovery, maybe this spare has to be added to the
6108 * array immediately.
6109 */
6110 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6111 md_wakeup_thread(mddev->thread);
6112 md_new_event(mddev);
6113 return 0;
6114
6115 abort_clustered:
6116 if (mddev_is_clustered(mddev))
6117 md_cluster_ops->metadata_update_cancel(mddev);
6118 abort_export:
6119 export_rdev(rdev);
6120 return err;
6121 }
6122
6123 static int set_bitmap_file(struct mddev *mddev, int fd)
6124 {
6125 int err = 0;
6126
6127 if (mddev->pers) {
6128 if (!mddev->pers->quiesce || !mddev->thread)
6129 return -EBUSY;
6130 if (mddev->recovery || mddev->sync_thread)
6131 return -EBUSY;
6132 /* we should be able to change the bitmap.. */
6133 }
6134
6135 if (fd >= 0) {
6136 struct inode *inode;
6137 struct file *f;
6138
6139 if (mddev->bitmap || mddev->bitmap_info.file)
6140 return -EEXIST; /* cannot add when bitmap is present */
6141 f = fget(fd);
6142
6143 if (f == NULL) {
6144 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6145 mdname(mddev));
6146 return -EBADF;
6147 }
6148
6149 inode = f->f_mapping->host;
6150 if (!S_ISREG(inode->i_mode)) {
6151 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6152 mdname(mddev));
6153 err = -EBADF;
6154 } else if (!(f->f_mode & FMODE_WRITE)) {
6155 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6156 mdname(mddev));
6157 err = -EBADF;
6158 } else if (atomic_read(&inode->i_writecount) != 1) {
6159 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6160 mdname(mddev));
6161 err = -EBUSY;
6162 }
6163 if (err) {
6164 fput(f);
6165 return err;
6166 }
6167 mddev->bitmap_info.file = f;
6168 mddev->bitmap_info.offset = 0; /* file overrides offset */
6169 } else if (mddev->bitmap == NULL)
6170 return -ENOENT; /* cannot remove what isn't there */
6171 err = 0;
6172 if (mddev->pers) {
6173 mddev->pers->quiesce(mddev, 1);
6174 if (fd >= 0) {
6175 struct bitmap *bitmap;
6176
6177 bitmap = bitmap_create(mddev, -1);
6178 if (!IS_ERR(bitmap)) {
6179 mddev->bitmap = bitmap;
6180 err = bitmap_load(mddev);
6181 } else
6182 err = PTR_ERR(bitmap);
6183 }
6184 if (fd < 0 || err) {
6185 bitmap_destroy(mddev);
6186 fd = -1; /* make sure to put the file */
6187 }
6188 mddev->pers->quiesce(mddev, 0);
6189 }
6190 if (fd < 0) {
6191 struct file *f = mddev->bitmap_info.file;
6192 if (f) {
6193 spin_lock(&mddev->lock);
6194 mddev->bitmap_info.file = NULL;
6195 spin_unlock(&mddev->lock);
6196 fput(f);
6197 }
6198 }
6199
6200 return err;
6201 }
6202
6203 /*
6204 * set_array_info is used two different ways
6205 * The original usage is when creating a new array.
6206 * In this usage, raid_disks is > 0 and it together with
6207 * level, size, not_persistent,layout,chunksize determine the
6208 * shape of the array.
6209 * This will always create an array with a type-0.90.0 superblock.
6210 * The newer usage is when assembling an array.
6211 * In this case raid_disks will be 0, and the major_version field is
6212 * use to determine which style super-blocks are to be found on the devices.
6213 * The minor and patch _version numbers are also kept incase the
6214 * super_block handler wishes to interpret them.
6215 */
6216 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6217 {
6218
6219 if (info->raid_disks == 0) {
6220 /* just setting version number for superblock loading */
6221 if (info->major_version < 0 ||
6222 info->major_version >= ARRAY_SIZE(super_types) ||
6223 super_types[info->major_version].name == NULL) {
6224 /* maybe try to auto-load a module? */
6225 printk(KERN_INFO
6226 "md: superblock version %d not known\n",
6227 info->major_version);
6228 return -EINVAL;
6229 }
6230 mddev->major_version = info->major_version;
6231 mddev->minor_version = info->minor_version;
6232 mddev->patch_version = info->patch_version;
6233 mddev->persistent = !info->not_persistent;
6234 /* ensure mddev_put doesn't delete this now that there
6235 * is some minimal configuration.
6236 */
6237 mddev->ctime = get_seconds();
6238 return 0;
6239 }
6240 mddev->major_version = MD_MAJOR_VERSION;
6241 mddev->minor_version = MD_MINOR_VERSION;
6242 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6243 mddev->ctime = get_seconds();
6244
6245 mddev->level = info->level;
6246 mddev->clevel[0] = 0;
6247 mddev->dev_sectors = 2 * (sector_t)info->size;
6248 mddev->raid_disks = info->raid_disks;
6249 /* don't set md_minor, it is determined by which /dev/md* was
6250 * openned
6251 */
6252 if (info->state & (1<<MD_SB_CLEAN))
6253 mddev->recovery_cp = MaxSector;
6254 else
6255 mddev->recovery_cp = 0;
6256 mddev->persistent = ! info->not_persistent;
6257 mddev->external = 0;
6258
6259 mddev->layout = info->layout;
6260 mddev->chunk_sectors = info->chunk_size >> 9;
6261
6262 mddev->max_disks = MD_SB_DISKS;
6263
6264 if (mddev->persistent)
6265 mddev->flags = 0;
6266 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6267
6268 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6269 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6270 mddev->bitmap_info.offset = 0;
6271
6272 mddev->reshape_position = MaxSector;
6273
6274 /*
6275 * Generate a 128 bit UUID
6276 */
6277 get_random_bytes(mddev->uuid, 16);
6278
6279 mddev->new_level = mddev->level;
6280 mddev->new_chunk_sectors = mddev->chunk_sectors;
6281 mddev->new_layout = mddev->layout;
6282 mddev->delta_disks = 0;
6283 mddev->reshape_backwards = 0;
6284
6285 return 0;
6286 }
6287
6288 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6289 {
6290 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6291
6292 if (mddev->external_size)
6293 return;
6294
6295 mddev->array_sectors = array_sectors;
6296 }
6297 EXPORT_SYMBOL(md_set_array_sectors);
6298
6299 static int update_size(struct mddev *mddev, sector_t num_sectors)
6300 {
6301 struct md_rdev *rdev;
6302 int rv;
6303 int fit = (num_sectors == 0);
6304
6305 if (mddev->pers->resize == NULL)
6306 return -EINVAL;
6307 /* The "num_sectors" is the number of sectors of each device that
6308 * is used. This can only make sense for arrays with redundancy.
6309 * linear and raid0 always use whatever space is available. We can only
6310 * consider changing this number if no resync or reconstruction is
6311 * happening, and if the new size is acceptable. It must fit before the
6312 * sb_start or, if that is <data_offset, it must fit before the size
6313 * of each device. If num_sectors is zero, we find the largest size
6314 * that fits.
6315 */
6316 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6317 mddev->sync_thread)
6318 return -EBUSY;
6319 if (mddev->ro)
6320 return -EROFS;
6321
6322 rdev_for_each(rdev, mddev) {
6323 sector_t avail = rdev->sectors;
6324
6325 if (fit && (num_sectors == 0 || num_sectors > avail))
6326 num_sectors = avail;
6327 if (avail < num_sectors)
6328 return -ENOSPC;
6329 }
6330 rv = mddev->pers->resize(mddev, num_sectors);
6331 if (!rv)
6332 revalidate_disk(mddev->gendisk);
6333 return rv;
6334 }
6335
6336 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6337 {
6338 int rv;
6339 struct md_rdev *rdev;
6340 /* change the number of raid disks */
6341 if (mddev->pers->check_reshape == NULL)
6342 return -EINVAL;
6343 if (mddev->ro)
6344 return -EROFS;
6345 if (raid_disks <= 0 ||
6346 (mddev->max_disks && raid_disks >= mddev->max_disks))
6347 return -EINVAL;
6348 if (mddev->sync_thread ||
6349 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6350 mddev->reshape_position != MaxSector)
6351 return -EBUSY;
6352
6353 rdev_for_each(rdev, mddev) {
6354 if (mddev->raid_disks < raid_disks &&
6355 rdev->data_offset < rdev->new_data_offset)
6356 return -EINVAL;
6357 if (mddev->raid_disks > raid_disks &&
6358 rdev->data_offset > rdev->new_data_offset)
6359 return -EINVAL;
6360 }
6361
6362 mddev->delta_disks = raid_disks - mddev->raid_disks;
6363 if (mddev->delta_disks < 0)
6364 mddev->reshape_backwards = 1;
6365 else if (mddev->delta_disks > 0)
6366 mddev->reshape_backwards = 0;
6367
6368 rv = mddev->pers->check_reshape(mddev);
6369 if (rv < 0) {
6370 mddev->delta_disks = 0;
6371 mddev->reshape_backwards = 0;
6372 }
6373 return rv;
6374 }
6375
6376 /*
6377 * update_array_info is used to change the configuration of an
6378 * on-line array.
6379 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6380 * fields in the info are checked against the array.
6381 * Any differences that cannot be handled will cause an error.
6382 * Normally, only one change can be managed at a time.
6383 */
6384 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6385 {
6386 int rv = 0;
6387 int cnt = 0;
6388 int state = 0;
6389
6390 /* calculate expected state,ignoring low bits */
6391 if (mddev->bitmap && mddev->bitmap_info.offset)
6392 state |= (1 << MD_SB_BITMAP_PRESENT);
6393
6394 if (mddev->major_version != info->major_version ||
6395 mddev->minor_version != info->minor_version ||
6396 /* mddev->patch_version != info->patch_version || */
6397 mddev->ctime != info->ctime ||
6398 mddev->level != info->level ||
6399 /* mddev->layout != info->layout || */
6400 mddev->persistent != !info->not_persistent ||
6401 mddev->chunk_sectors != info->chunk_size >> 9 ||
6402 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6403 ((state^info->state) & 0xfffffe00)
6404 )
6405 return -EINVAL;
6406 /* Check there is only one change */
6407 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6408 cnt++;
6409 if (mddev->raid_disks != info->raid_disks)
6410 cnt++;
6411 if (mddev->layout != info->layout)
6412 cnt++;
6413 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6414 cnt++;
6415 if (cnt == 0)
6416 return 0;
6417 if (cnt > 1)
6418 return -EINVAL;
6419
6420 if (mddev->layout != info->layout) {
6421 /* Change layout
6422 * we don't need to do anything at the md level, the
6423 * personality will take care of it all.
6424 */
6425 if (mddev->pers->check_reshape == NULL)
6426 return -EINVAL;
6427 else {
6428 mddev->new_layout = info->layout;
6429 rv = mddev->pers->check_reshape(mddev);
6430 if (rv)
6431 mddev->new_layout = mddev->layout;
6432 return rv;
6433 }
6434 }
6435 if (mddev_is_clustered(mddev))
6436 md_cluster_ops->metadata_update_start(mddev);
6437 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6438 rv = update_size(mddev, (sector_t)info->size * 2);
6439
6440 if (mddev->raid_disks != info->raid_disks)
6441 rv = update_raid_disks(mddev, info->raid_disks);
6442
6443 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6444 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6445 rv = -EINVAL;
6446 goto err;
6447 }
6448 if (mddev->recovery || mddev->sync_thread) {
6449 rv = -EBUSY;
6450 goto err;
6451 }
6452 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6453 struct bitmap *bitmap;
6454 /* add the bitmap */
6455 if (mddev->bitmap) {
6456 rv = -EEXIST;
6457 goto err;
6458 }
6459 if (mddev->bitmap_info.default_offset == 0) {
6460 rv = -EINVAL;
6461 goto err;
6462 }
6463 mddev->bitmap_info.offset =
6464 mddev->bitmap_info.default_offset;
6465 mddev->bitmap_info.space =
6466 mddev->bitmap_info.default_space;
6467 mddev->pers->quiesce(mddev, 1);
6468 bitmap = bitmap_create(mddev, -1);
6469 if (!IS_ERR(bitmap)) {
6470 mddev->bitmap = bitmap;
6471 rv = bitmap_load(mddev);
6472 } else
6473 rv = PTR_ERR(bitmap);
6474 if (rv)
6475 bitmap_destroy(mddev);
6476 mddev->pers->quiesce(mddev, 0);
6477 } else {
6478 /* remove the bitmap */
6479 if (!mddev->bitmap) {
6480 rv = -ENOENT;
6481 goto err;
6482 }
6483 if (mddev->bitmap->storage.file) {
6484 rv = -EINVAL;
6485 goto err;
6486 }
6487 mddev->pers->quiesce(mddev, 1);
6488 bitmap_destroy(mddev);
6489 mddev->pers->quiesce(mddev, 0);
6490 mddev->bitmap_info.offset = 0;
6491 }
6492 }
6493 md_update_sb(mddev, 1);
6494 if (mddev_is_clustered(mddev))
6495 md_cluster_ops->metadata_update_finish(mddev);
6496 return rv;
6497 err:
6498 if (mddev_is_clustered(mddev))
6499 md_cluster_ops->metadata_update_cancel(mddev);
6500 return rv;
6501 }
6502
6503 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6504 {
6505 struct md_rdev *rdev;
6506 int err = 0;
6507
6508 if (mddev->pers == NULL)
6509 return -ENODEV;
6510
6511 rcu_read_lock();
6512 rdev = find_rdev_rcu(mddev, dev);
6513 if (!rdev)
6514 err = -ENODEV;
6515 else {
6516 md_error(mddev, rdev);
6517 if (!test_bit(Faulty, &rdev->flags))
6518 err = -EBUSY;
6519 }
6520 rcu_read_unlock();
6521 return err;
6522 }
6523
6524 /*
6525 * We have a problem here : there is no easy way to give a CHS
6526 * virtual geometry. We currently pretend that we have a 2 heads
6527 * 4 sectors (with a BIG number of cylinders...). This drives
6528 * dosfs just mad... ;-)
6529 */
6530 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6531 {
6532 struct mddev *mddev = bdev->bd_disk->private_data;
6533
6534 geo->heads = 2;
6535 geo->sectors = 4;
6536 geo->cylinders = mddev->array_sectors / 8;
6537 return 0;
6538 }
6539
6540 static inline bool md_ioctl_valid(unsigned int cmd)
6541 {
6542 switch (cmd) {
6543 case ADD_NEW_DISK:
6544 case BLKROSET:
6545 case GET_ARRAY_INFO:
6546 case GET_BITMAP_FILE:
6547 case GET_DISK_INFO:
6548 case HOT_ADD_DISK:
6549 case HOT_REMOVE_DISK:
6550 case RAID_AUTORUN:
6551 case RAID_VERSION:
6552 case RESTART_ARRAY_RW:
6553 case RUN_ARRAY:
6554 case SET_ARRAY_INFO:
6555 case SET_BITMAP_FILE:
6556 case SET_DISK_FAULTY:
6557 case STOP_ARRAY:
6558 case STOP_ARRAY_RO:
6559 case CLUSTERED_DISK_NACK:
6560 return true;
6561 default:
6562 return false;
6563 }
6564 }
6565
6566 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6567 unsigned int cmd, unsigned long arg)
6568 {
6569 int err = 0;
6570 void __user *argp = (void __user *)arg;
6571 struct mddev *mddev = NULL;
6572 int ro;
6573
6574 if (!md_ioctl_valid(cmd))
6575 return -ENOTTY;
6576
6577 switch (cmd) {
6578 case RAID_VERSION:
6579 case GET_ARRAY_INFO:
6580 case GET_DISK_INFO:
6581 break;
6582 default:
6583 if (!capable(CAP_SYS_ADMIN))
6584 return -EACCES;
6585 }
6586
6587 /*
6588 * Commands dealing with the RAID driver but not any
6589 * particular array:
6590 */
6591 switch (cmd) {
6592 case RAID_VERSION:
6593 err = get_version(argp);
6594 goto out;
6595
6596 #ifndef MODULE
6597 case RAID_AUTORUN:
6598 err = 0;
6599 autostart_arrays(arg);
6600 goto out;
6601 #endif
6602 default:;
6603 }
6604
6605 /*
6606 * Commands creating/starting a new array:
6607 */
6608
6609 mddev = bdev->bd_disk->private_data;
6610
6611 if (!mddev) {
6612 BUG();
6613 goto out;
6614 }
6615
6616 /* Some actions do not requires the mutex */
6617 switch (cmd) {
6618 case GET_ARRAY_INFO:
6619 if (!mddev->raid_disks && !mddev->external)
6620 err = -ENODEV;
6621 else
6622 err = get_array_info(mddev, argp);
6623 goto out;
6624
6625 case GET_DISK_INFO:
6626 if (!mddev->raid_disks && !mddev->external)
6627 err = -ENODEV;
6628 else
6629 err = get_disk_info(mddev, argp);
6630 goto out;
6631
6632 case SET_DISK_FAULTY:
6633 err = set_disk_faulty(mddev, new_decode_dev(arg));
6634 goto out;
6635
6636 case GET_BITMAP_FILE:
6637 err = get_bitmap_file(mddev, argp);
6638 goto out;
6639
6640 }
6641
6642 if (cmd == ADD_NEW_DISK)
6643 /* need to ensure md_delayed_delete() has completed */
6644 flush_workqueue(md_misc_wq);
6645
6646 if (cmd == HOT_REMOVE_DISK)
6647 /* need to ensure recovery thread has run */
6648 wait_event_interruptible_timeout(mddev->sb_wait,
6649 !test_bit(MD_RECOVERY_NEEDED,
6650 &mddev->flags),
6651 msecs_to_jiffies(5000));
6652 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6653 /* Need to flush page cache, and ensure no-one else opens
6654 * and writes
6655 */
6656 mutex_lock(&mddev->open_mutex);
6657 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6658 mutex_unlock(&mddev->open_mutex);
6659 err = -EBUSY;
6660 goto out;
6661 }
6662 set_bit(MD_STILL_CLOSED, &mddev->flags);
6663 mutex_unlock(&mddev->open_mutex);
6664 sync_blockdev(bdev);
6665 }
6666 err = mddev_lock(mddev);
6667 if (err) {
6668 printk(KERN_INFO
6669 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6670 err, cmd);
6671 goto out;
6672 }
6673
6674 if (cmd == SET_ARRAY_INFO) {
6675 mdu_array_info_t info;
6676 if (!arg)
6677 memset(&info, 0, sizeof(info));
6678 else if (copy_from_user(&info, argp, sizeof(info))) {
6679 err = -EFAULT;
6680 goto unlock;
6681 }
6682 if (mddev->pers) {
6683 err = update_array_info(mddev, &info);
6684 if (err) {
6685 printk(KERN_WARNING "md: couldn't update"
6686 " array info. %d\n", err);
6687 goto unlock;
6688 }
6689 goto unlock;
6690 }
6691 if (!list_empty(&mddev->disks)) {
6692 printk(KERN_WARNING
6693 "md: array %s already has disks!\n",
6694 mdname(mddev));
6695 err = -EBUSY;
6696 goto unlock;
6697 }
6698 if (mddev->raid_disks) {
6699 printk(KERN_WARNING
6700 "md: array %s already initialised!\n",
6701 mdname(mddev));
6702 err = -EBUSY;
6703 goto unlock;
6704 }
6705 err = set_array_info(mddev, &info);
6706 if (err) {
6707 printk(KERN_WARNING "md: couldn't set"
6708 " array info. %d\n", err);
6709 goto unlock;
6710 }
6711 goto unlock;
6712 }
6713
6714 /*
6715 * Commands querying/configuring an existing array:
6716 */
6717 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6718 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6719 if ((!mddev->raid_disks && !mddev->external)
6720 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6721 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6722 && cmd != GET_BITMAP_FILE) {
6723 err = -ENODEV;
6724 goto unlock;
6725 }
6726
6727 /*
6728 * Commands even a read-only array can execute:
6729 */
6730 switch (cmd) {
6731 case RESTART_ARRAY_RW:
6732 err = restart_array(mddev);
6733 goto unlock;
6734
6735 case STOP_ARRAY:
6736 err = do_md_stop(mddev, 0, bdev);
6737 goto unlock;
6738
6739 case STOP_ARRAY_RO:
6740 err = md_set_readonly(mddev, bdev);
6741 goto unlock;
6742
6743 case HOT_REMOVE_DISK:
6744 err = hot_remove_disk(mddev, new_decode_dev(arg));
6745 goto unlock;
6746
6747 case ADD_NEW_DISK:
6748 /* We can support ADD_NEW_DISK on read-only arrays
6749 * on if we are re-adding a preexisting device.
6750 * So require mddev->pers and MD_DISK_SYNC.
6751 */
6752 if (mddev->pers) {
6753 mdu_disk_info_t info;
6754 if (copy_from_user(&info, argp, sizeof(info)))
6755 err = -EFAULT;
6756 else if (!(info.state & (1<<MD_DISK_SYNC)))
6757 /* Need to clear read-only for this */
6758 break;
6759 else
6760 err = add_new_disk(mddev, &info);
6761 goto unlock;
6762 }
6763 break;
6764
6765 case BLKROSET:
6766 if (get_user(ro, (int __user *)(arg))) {
6767 err = -EFAULT;
6768 goto unlock;
6769 }
6770 err = -EINVAL;
6771
6772 /* if the bdev is going readonly the value of mddev->ro
6773 * does not matter, no writes are coming
6774 */
6775 if (ro)
6776 goto unlock;
6777
6778 /* are we are already prepared for writes? */
6779 if (mddev->ro != 1)
6780 goto unlock;
6781
6782 /* transitioning to readauto need only happen for
6783 * arrays that call md_write_start
6784 */
6785 if (mddev->pers) {
6786 err = restart_array(mddev);
6787 if (err == 0) {
6788 mddev->ro = 2;
6789 set_disk_ro(mddev->gendisk, 0);
6790 }
6791 }
6792 goto unlock;
6793 }
6794
6795 /*
6796 * The remaining ioctls are changing the state of the
6797 * superblock, so we do not allow them on read-only arrays.
6798 */
6799 if (mddev->ro && mddev->pers) {
6800 if (mddev->ro == 2) {
6801 mddev->ro = 0;
6802 sysfs_notify_dirent_safe(mddev->sysfs_state);
6803 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6804 /* mddev_unlock will wake thread */
6805 /* If a device failed while we were read-only, we
6806 * need to make sure the metadata is updated now.
6807 */
6808 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6809 mddev_unlock(mddev);
6810 wait_event(mddev->sb_wait,
6811 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6812 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6813 mddev_lock_nointr(mddev);
6814 }
6815 } else {
6816 err = -EROFS;
6817 goto unlock;
6818 }
6819 }
6820
6821 switch (cmd) {
6822 case ADD_NEW_DISK:
6823 {
6824 mdu_disk_info_t info;
6825 if (copy_from_user(&info, argp, sizeof(info)))
6826 err = -EFAULT;
6827 else
6828 err = add_new_disk(mddev, &info);
6829 goto unlock;
6830 }
6831
6832 case CLUSTERED_DISK_NACK:
6833 if (mddev_is_clustered(mddev))
6834 md_cluster_ops->new_disk_ack(mddev, false);
6835 else
6836 err = -EINVAL;
6837 goto unlock;
6838
6839 case HOT_ADD_DISK:
6840 err = hot_add_disk(mddev, new_decode_dev(arg));
6841 goto unlock;
6842
6843 case RUN_ARRAY:
6844 err = do_md_run(mddev);
6845 goto unlock;
6846
6847 case SET_BITMAP_FILE:
6848 err = set_bitmap_file(mddev, (int)arg);
6849 goto unlock;
6850
6851 default:
6852 err = -EINVAL;
6853 goto unlock;
6854 }
6855
6856 unlock:
6857 if (mddev->hold_active == UNTIL_IOCTL &&
6858 err != -EINVAL)
6859 mddev->hold_active = 0;
6860 mddev_unlock(mddev);
6861 out:
6862 return err;
6863 }
6864 #ifdef CONFIG_COMPAT
6865 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6866 unsigned int cmd, unsigned long arg)
6867 {
6868 switch (cmd) {
6869 case HOT_REMOVE_DISK:
6870 case HOT_ADD_DISK:
6871 case SET_DISK_FAULTY:
6872 case SET_BITMAP_FILE:
6873 /* These take in integer arg, do not convert */
6874 break;
6875 default:
6876 arg = (unsigned long)compat_ptr(arg);
6877 break;
6878 }
6879
6880 return md_ioctl(bdev, mode, cmd, arg);
6881 }
6882 #endif /* CONFIG_COMPAT */
6883
6884 static int md_open(struct block_device *bdev, fmode_t mode)
6885 {
6886 /*
6887 * Succeed if we can lock the mddev, which confirms that
6888 * it isn't being stopped right now.
6889 */
6890 struct mddev *mddev = mddev_find(bdev->bd_dev);
6891 int err;
6892
6893 if (!mddev)
6894 return -ENODEV;
6895
6896 if (mddev->gendisk != bdev->bd_disk) {
6897 /* we are racing with mddev_put which is discarding this
6898 * bd_disk.
6899 */
6900 mddev_put(mddev);
6901 /* Wait until bdev->bd_disk is definitely gone */
6902 flush_workqueue(md_misc_wq);
6903 /* Then retry the open from the top */
6904 return -ERESTARTSYS;
6905 }
6906 BUG_ON(mddev != bdev->bd_disk->private_data);
6907
6908 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6909 goto out;
6910
6911 err = 0;
6912 atomic_inc(&mddev->openers);
6913 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6914 mutex_unlock(&mddev->open_mutex);
6915
6916 check_disk_change(bdev);
6917 out:
6918 return err;
6919 }
6920
6921 static void md_release(struct gendisk *disk, fmode_t mode)
6922 {
6923 struct mddev *mddev = disk->private_data;
6924
6925 BUG_ON(!mddev);
6926 atomic_dec(&mddev->openers);
6927 mddev_put(mddev);
6928 }
6929
6930 static int md_media_changed(struct gendisk *disk)
6931 {
6932 struct mddev *mddev = disk->private_data;
6933
6934 return mddev->changed;
6935 }
6936
6937 static int md_revalidate(struct gendisk *disk)
6938 {
6939 struct mddev *mddev = disk->private_data;
6940
6941 mddev->changed = 0;
6942 return 0;
6943 }
6944 static const struct block_device_operations md_fops =
6945 {
6946 .owner = THIS_MODULE,
6947 .open = md_open,
6948 .release = md_release,
6949 .ioctl = md_ioctl,
6950 #ifdef CONFIG_COMPAT
6951 .compat_ioctl = md_compat_ioctl,
6952 #endif
6953 .getgeo = md_getgeo,
6954 .media_changed = md_media_changed,
6955 .revalidate_disk= md_revalidate,
6956 };
6957
6958 static int md_thread(void *arg)
6959 {
6960 struct md_thread *thread = arg;
6961
6962 /*
6963 * md_thread is a 'system-thread', it's priority should be very
6964 * high. We avoid resource deadlocks individually in each
6965 * raid personality. (RAID5 does preallocation) We also use RR and
6966 * the very same RT priority as kswapd, thus we will never get
6967 * into a priority inversion deadlock.
6968 *
6969 * we definitely have to have equal or higher priority than
6970 * bdflush, otherwise bdflush will deadlock if there are too
6971 * many dirty RAID5 blocks.
6972 */
6973
6974 allow_signal(SIGKILL);
6975 while (!kthread_should_stop()) {
6976
6977 /* We need to wait INTERRUPTIBLE so that
6978 * we don't add to the load-average.
6979 * That means we need to be sure no signals are
6980 * pending
6981 */
6982 if (signal_pending(current))
6983 flush_signals(current);
6984
6985 wait_event_interruptible_timeout
6986 (thread->wqueue,
6987 test_bit(THREAD_WAKEUP, &thread->flags)
6988 || kthread_should_stop(),
6989 thread->timeout);
6990
6991 clear_bit(THREAD_WAKEUP, &thread->flags);
6992 if (!kthread_should_stop())
6993 thread->run(thread);
6994 }
6995
6996 return 0;
6997 }
6998
6999 void md_wakeup_thread(struct md_thread *thread)
7000 {
7001 if (thread) {
7002 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7003 set_bit(THREAD_WAKEUP, &thread->flags);
7004 wake_up(&thread->wqueue);
7005 }
7006 }
7007 EXPORT_SYMBOL(md_wakeup_thread);
7008
7009 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7010 struct mddev *mddev, const char *name)
7011 {
7012 struct md_thread *thread;
7013
7014 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7015 if (!thread)
7016 return NULL;
7017
7018 init_waitqueue_head(&thread->wqueue);
7019
7020 thread->run = run;
7021 thread->mddev = mddev;
7022 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7023 thread->tsk = kthread_run(md_thread, thread,
7024 "%s_%s",
7025 mdname(thread->mddev),
7026 name);
7027 if (IS_ERR(thread->tsk)) {
7028 kfree(thread);
7029 return NULL;
7030 }
7031 return thread;
7032 }
7033 EXPORT_SYMBOL(md_register_thread);
7034
7035 void md_unregister_thread(struct md_thread **threadp)
7036 {
7037 struct md_thread *thread = *threadp;
7038 if (!thread)
7039 return;
7040 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7041 /* Locking ensures that mddev_unlock does not wake_up a
7042 * non-existent thread
7043 */
7044 spin_lock(&pers_lock);
7045 *threadp = NULL;
7046 spin_unlock(&pers_lock);
7047
7048 kthread_stop(thread->tsk);
7049 kfree(thread);
7050 }
7051 EXPORT_SYMBOL(md_unregister_thread);
7052
7053 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7054 {
7055 if (!rdev || test_bit(Faulty, &rdev->flags))
7056 return;
7057
7058 if (!mddev->pers || !mddev->pers->error_handler)
7059 return;
7060 mddev->pers->error_handler(mddev,rdev);
7061 if (mddev->degraded)
7062 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7063 sysfs_notify_dirent_safe(rdev->sysfs_state);
7064 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7065 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7066 md_wakeup_thread(mddev->thread);
7067 if (mddev->event_work.func)
7068 queue_work(md_misc_wq, &mddev->event_work);
7069 md_new_event_inintr(mddev);
7070 }
7071 EXPORT_SYMBOL(md_error);
7072
7073 /* seq_file implementation /proc/mdstat */
7074
7075 static void status_unused(struct seq_file *seq)
7076 {
7077 int i = 0;
7078 struct md_rdev *rdev;
7079
7080 seq_printf(seq, "unused devices: ");
7081
7082 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7083 char b[BDEVNAME_SIZE];
7084 i++;
7085 seq_printf(seq, "%s ",
7086 bdevname(rdev->bdev,b));
7087 }
7088 if (!i)
7089 seq_printf(seq, "<none>");
7090
7091 seq_printf(seq, "\n");
7092 }
7093
7094 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7095 {
7096 sector_t max_sectors, resync, res;
7097 unsigned long dt, db;
7098 sector_t rt;
7099 int scale;
7100 unsigned int per_milli;
7101
7102 if (mddev->curr_resync <= 3)
7103 resync = 0;
7104 else
7105 resync = mddev->curr_resync
7106 - atomic_read(&mddev->recovery_active);
7107
7108 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7109 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7110 max_sectors = mddev->resync_max_sectors;
7111 else
7112 max_sectors = mddev->dev_sectors;
7113
7114 WARN_ON(max_sectors == 0);
7115 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7116 * in a sector_t, and (max_sectors>>scale) will fit in a
7117 * u32, as those are the requirements for sector_div.
7118 * Thus 'scale' must be at least 10
7119 */
7120 scale = 10;
7121 if (sizeof(sector_t) > sizeof(unsigned long)) {
7122 while ( max_sectors/2 > (1ULL<<(scale+32)))
7123 scale++;
7124 }
7125 res = (resync>>scale)*1000;
7126 sector_div(res, (u32)((max_sectors>>scale)+1));
7127
7128 per_milli = res;
7129 {
7130 int i, x = per_milli/50, y = 20-x;
7131 seq_printf(seq, "[");
7132 for (i = 0; i < x; i++)
7133 seq_printf(seq, "=");
7134 seq_printf(seq, ">");
7135 for (i = 0; i < y; i++)
7136 seq_printf(seq, ".");
7137 seq_printf(seq, "] ");
7138 }
7139 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7140 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7141 "reshape" :
7142 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7143 "check" :
7144 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7145 "resync" : "recovery"))),
7146 per_milli/10, per_milli % 10,
7147 (unsigned long long) resync/2,
7148 (unsigned long long) max_sectors/2);
7149
7150 /*
7151 * dt: time from mark until now
7152 * db: blocks written from mark until now
7153 * rt: remaining time
7154 *
7155 * rt is a sector_t, so could be 32bit or 64bit.
7156 * So we divide before multiply in case it is 32bit and close
7157 * to the limit.
7158 * We scale the divisor (db) by 32 to avoid losing precision
7159 * near the end of resync when the number of remaining sectors
7160 * is close to 'db'.
7161 * We then divide rt by 32 after multiplying by db to compensate.
7162 * The '+1' avoids division by zero if db is very small.
7163 */
7164 dt = ((jiffies - mddev->resync_mark) / HZ);
7165 if (!dt) dt++;
7166 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7167 - mddev->resync_mark_cnt;
7168
7169 rt = max_sectors - resync; /* number of remaining sectors */
7170 sector_div(rt, db/32+1);
7171 rt *= dt;
7172 rt >>= 5;
7173
7174 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7175 ((unsigned long)rt % 60)/6);
7176
7177 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7178 }
7179
7180 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7181 {
7182 struct list_head *tmp;
7183 loff_t l = *pos;
7184 struct mddev *mddev;
7185
7186 if (l >= 0x10000)
7187 return NULL;
7188 if (!l--)
7189 /* header */
7190 return (void*)1;
7191
7192 spin_lock(&all_mddevs_lock);
7193 list_for_each(tmp,&all_mddevs)
7194 if (!l--) {
7195 mddev = list_entry(tmp, struct mddev, all_mddevs);
7196 mddev_get(mddev);
7197 spin_unlock(&all_mddevs_lock);
7198 return mddev;
7199 }
7200 spin_unlock(&all_mddevs_lock);
7201 if (!l--)
7202 return (void*)2;/* tail */
7203 return NULL;
7204 }
7205
7206 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7207 {
7208 struct list_head *tmp;
7209 struct mddev *next_mddev, *mddev = v;
7210
7211 ++*pos;
7212 if (v == (void*)2)
7213 return NULL;
7214
7215 spin_lock(&all_mddevs_lock);
7216 if (v == (void*)1)
7217 tmp = all_mddevs.next;
7218 else
7219 tmp = mddev->all_mddevs.next;
7220 if (tmp != &all_mddevs)
7221 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7222 else {
7223 next_mddev = (void*)2;
7224 *pos = 0x10000;
7225 }
7226 spin_unlock(&all_mddevs_lock);
7227
7228 if (v != (void*)1)
7229 mddev_put(mddev);
7230 return next_mddev;
7231
7232 }
7233
7234 static void md_seq_stop(struct seq_file *seq, void *v)
7235 {
7236 struct mddev *mddev = v;
7237
7238 if (mddev && v != (void*)1 && v != (void*)2)
7239 mddev_put(mddev);
7240 }
7241
7242 static int md_seq_show(struct seq_file *seq, void *v)
7243 {
7244 struct mddev *mddev = v;
7245 sector_t sectors;
7246 struct md_rdev *rdev;
7247
7248 if (v == (void*)1) {
7249 struct md_personality *pers;
7250 seq_printf(seq, "Personalities : ");
7251 spin_lock(&pers_lock);
7252 list_for_each_entry(pers, &pers_list, list)
7253 seq_printf(seq, "[%s] ", pers->name);
7254
7255 spin_unlock(&pers_lock);
7256 seq_printf(seq, "\n");
7257 seq->poll_event = atomic_read(&md_event_count);
7258 return 0;
7259 }
7260 if (v == (void*)2) {
7261 status_unused(seq);
7262 return 0;
7263 }
7264
7265 spin_lock(&mddev->lock);
7266 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7267 seq_printf(seq, "%s : %sactive", mdname(mddev),
7268 mddev->pers ? "" : "in");
7269 if (mddev->pers) {
7270 if (mddev->ro==1)
7271 seq_printf(seq, " (read-only)");
7272 if (mddev->ro==2)
7273 seq_printf(seq, " (auto-read-only)");
7274 seq_printf(seq, " %s", mddev->pers->name);
7275 }
7276
7277 sectors = 0;
7278 rcu_read_lock();
7279 rdev_for_each_rcu(rdev, mddev) {
7280 char b[BDEVNAME_SIZE];
7281 seq_printf(seq, " %s[%d]",
7282 bdevname(rdev->bdev,b), rdev->desc_nr);
7283 if (test_bit(WriteMostly, &rdev->flags))
7284 seq_printf(seq, "(W)");
7285 if (test_bit(Faulty, &rdev->flags)) {
7286 seq_printf(seq, "(F)");
7287 continue;
7288 }
7289 if (rdev->raid_disk < 0)
7290 seq_printf(seq, "(S)"); /* spare */
7291 if (test_bit(Replacement, &rdev->flags))
7292 seq_printf(seq, "(R)");
7293 sectors += rdev->sectors;
7294 }
7295 rcu_read_unlock();
7296
7297 if (!list_empty(&mddev->disks)) {
7298 if (mddev->pers)
7299 seq_printf(seq, "\n %llu blocks",
7300 (unsigned long long)
7301 mddev->array_sectors / 2);
7302 else
7303 seq_printf(seq, "\n %llu blocks",
7304 (unsigned long long)sectors / 2);
7305 }
7306 if (mddev->persistent) {
7307 if (mddev->major_version != 0 ||
7308 mddev->minor_version != 90) {
7309 seq_printf(seq," super %d.%d",
7310 mddev->major_version,
7311 mddev->minor_version);
7312 }
7313 } else if (mddev->external)
7314 seq_printf(seq, " super external:%s",
7315 mddev->metadata_type);
7316 else
7317 seq_printf(seq, " super non-persistent");
7318
7319 if (mddev->pers) {
7320 mddev->pers->status(seq, mddev);
7321 seq_printf(seq, "\n ");
7322 if (mddev->pers->sync_request) {
7323 if (mddev->curr_resync > 2) {
7324 status_resync(seq, mddev);
7325 seq_printf(seq, "\n ");
7326 } else if (mddev->curr_resync >= 1)
7327 seq_printf(seq, "\tresync=DELAYED\n ");
7328 else if (mddev->recovery_cp < MaxSector)
7329 seq_printf(seq, "\tresync=PENDING\n ");
7330 }
7331 } else
7332 seq_printf(seq, "\n ");
7333
7334 bitmap_status(seq, mddev->bitmap);
7335
7336 seq_printf(seq, "\n");
7337 }
7338 spin_unlock(&mddev->lock);
7339
7340 return 0;
7341 }
7342
7343 static const struct seq_operations md_seq_ops = {
7344 .start = md_seq_start,
7345 .next = md_seq_next,
7346 .stop = md_seq_stop,
7347 .show = md_seq_show,
7348 };
7349
7350 static int md_seq_open(struct inode *inode, struct file *file)
7351 {
7352 struct seq_file *seq;
7353 int error;
7354
7355 error = seq_open(file, &md_seq_ops);
7356 if (error)
7357 return error;
7358
7359 seq = file->private_data;
7360 seq->poll_event = atomic_read(&md_event_count);
7361 return error;
7362 }
7363
7364 static int md_unloading;
7365 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7366 {
7367 struct seq_file *seq = filp->private_data;
7368 int mask;
7369
7370 if (md_unloading)
7371 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7372 poll_wait(filp, &md_event_waiters, wait);
7373
7374 /* always allow read */
7375 mask = POLLIN | POLLRDNORM;
7376
7377 if (seq->poll_event != atomic_read(&md_event_count))
7378 mask |= POLLERR | POLLPRI;
7379 return mask;
7380 }
7381
7382 static const struct file_operations md_seq_fops = {
7383 .owner = THIS_MODULE,
7384 .open = md_seq_open,
7385 .read = seq_read,
7386 .llseek = seq_lseek,
7387 .release = seq_release_private,
7388 .poll = mdstat_poll,
7389 };
7390
7391 int register_md_personality(struct md_personality *p)
7392 {
7393 printk(KERN_INFO "md: %s personality registered for level %d\n",
7394 p->name, p->level);
7395 spin_lock(&pers_lock);
7396 list_add_tail(&p->list, &pers_list);
7397 spin_unlock(&pers_lock);
7398 return 0;
7399 }
7400 EXPORT_SYMBOL(register_md_personality);
7401
7402 int unregister_md_personality(struct md_personality *p)
7403 {
7404 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7405 spin_lock(&pers_lock);
7406 list_del_init(&p->list);
7407 spin_unlock(&pers_lock);
7408 return 0;
7409 }
7410 EXPORT_SYMBOL(unregister_md_personality);
7411
7412 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7413 {
7414 if (md_cluster_ops != NULL)
7415 return -EALREADY;
7416 spin_lock(&pers_lock);
7417 md_cluster_ops = ops;
7418 md_cluster_mod = module;
7419 spin_unlock(&pers_lock);
7420 return 0;
7421 }
7422 EXPORT_SYMBOL(register_md_cluster_operations);
7423
7424 int unregister_md_cluster_operations(void)
7425 {
7426 spin_lock(&pers_lock);
7427 md_cluster_ops = NULL;
7428 spin_unlock(&pers_lock);
7429 return 0;
7430 }
7431 EXPORT_SYMBOL(unregister_md_cluster_operations);
7432
7433 int md_setup_cluster(struct mddev *mddev, int nodes)
7434 {
7435 int err;
7436
7437 err = request_module("md-cluster");
7438 if (err) {
7439 pr_err("md-cluster module not found.\n");
7440 return err;
7441 }
7442
7443 spin_lock(&pers_lock);
7444 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7445 spin_unlock(&pers_lock);
7446 return -ENOENT;
7447 }
7448 spin_unlock(&pers_lock);
7449
7450 return md_cluster_ops->join(mddev, nodes);
7451 }
7452
7453 void md_cluster_stop(struct mddev *mddev)
7454 {
7455 if (!md_cluster_ops)
7456 return;
7457 md_cluster_ops->leave(mddev);
7458 module_put(md_cluster_mod);
7459 }
7460
7461 static int is_mddev_idle(struct mddev *mddev, int init)
7462 {
7463 struct md_rdev *rdev;
7464 int idle;
7465 int curr_events;
7466
7467 idle = 1;
7468 rcu_read_lock();
7469 rdev_for_each_rcu(rdev, mddev) {
7470 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7471 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7472 (int)part_stat_read(&disk->part0, sectors[1]) -
7473 atomic_read(&disk->sync_io);
7474 /* sync IO will cause sync_io to increase before the disk_stats
7475 * as sync_io is counted when a request starts, and
7476 * disk_stats is counted when it completes.
7477 * So resync activity will cause curr_events to be smaller than
7478 * when there was no such activity.
7479 * non-sync IO will cause disk_stat to increase without
7480 * increasing sync_io so curr_events will (eventually)
7481 * be larger than it was before. Once it becomes
7482 * substantially larger, the test below will cause
7483 * the array to appear non-idle, and resync will slow
7484 * down.
7485 * If there is a lot of outstanding resync activity when
7486 * we set last_event to curr_events, then all that activity
7487 * completing might cause the array to appear non-idle
7488 * and resync will be slowed down even though there might
7489 * not have been non-resync activity. This will only
7490 * happen once though. 'last_events' will soon reflect
7491 * the state where there is little or no outstanding
7492 * resync requests, and further resync activity will
7493 * always make curr_events less than last_events.
7494 *
7495 */
7496 if (init || curr_events - rdev->last_events > 64) {
7497 rdev->last_events = curr_events;
7498 idle = 0;
7499 }
7500 }
7501 rcu_read_unlock();
7502 return idle;
7503 }
7504
7505 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7506 {
7507 /* another "blocks" (512byte) blocks have been synced */
7508 atomic_sub(blocks, &mddev->recovery_active);
7509 wake_up(&mddev->recovery_wait);
7510 if (!ok) {
7511 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7512 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7513 md_wakeup_thread(mddev->thread);
7514 // stop recovery, signal do_sync ....
7515 }
7516 }
7517 EXPORT_SYMBOL(md_done_sync);
7518
7519 /* md_write_start(mddev, bi)
7520 * If we need to update some array metadata (e.g. 'active' flag
7521 * in superblock) before writing, schedule a superblock update
7522 * and wait for it to complete.
7523 */
7524 void md_write_start(struct mddev *mddev, struct bio *bi)
7525 {
7526 int did_change = 0;
7527 if (bio_data_dir(bi) != WRITE)
7528 return;
7529
7530 BUG_ON(mddev->ro == 1);
7531 if (mddev->ro == 2) {
7532 /* need to switch to read/write */
7533 mddev->ro = 0;
7534 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7535 md_wakeup_thread(mddev->thread);
7536 md_wakeup_thread(mddev->sync_thread);
7537 did_change = 1;
7538 }
7539 atomic_inc(&mddev->writes_pending);
7540 if (mddev->safemode == 1)
7541 mddev->safemode = 0;
7542 if (mddev->in_sync) {
7543 spin_lock(&mddev->lock);
7544 if (mddev->in_sync) {
7545 mddev->in_sync = 0;
7546 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7547 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7548 md_wakeup_thread(mddev->thread);
7549 did_change = 1;
7550 }
7551 spin_unlock(&mddev->lock);
7552 }
7553 if (did_change)
7554 sysfs_notify_dirent_safe(mddev->sysfs_state);
7555 wait_event(mddev->sb_wait,
7556 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7557 }
7558 EXPORT_SYMBOL(md_write_start);
7559
7560 void md_write_end(struct mddev *mddev)
7561 {
7562 if (atomic_dec_and_test(&mddev->writes_pending)) {
7563 if (mddev->safemode == 2)
7564 md_wakeup_thread(mddev->thread);
7565 else if (mddev->safemode_delay)
7566 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7567 }
7568 }
7569 EXPORT_SYMBOL(md_write_end);
7570
7571 /* md_allow_write(mddev)
7572 * Calling this ensures that the array is marked 'active' so that writes
7573 * may proceed without blocking. It is important to call this before
7574 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7575 * Must be called with mddev_lock held.
7576 *
7577 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7578 * is dropped, so return -EAGAIN after notifying userspace.
7579 */
7580 int md_allow_write(struct mddev *mddev)
7581 {
7582 if (!mddev->pers)
7583 return 0;
7584 if (mddev->ro)
7585 return 0;
7586 if (!mddev->pers->sync_request)
7587 return 0;
7588
7589 spin_lock(&mddev->lock);
7590 if (mddev->in_sync) {
7591 mddev->in_sync = 0;
7592 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7593 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7594 if (mddev->safemode_delay &&
7595 mddev->safemode == 0)
7596 mddev->safemode = 1;
7597 spin_unlock(&mddev->lock);
7598 if (mddev_is_clustered(mddev))
7599 md_cluster_ops->metadata_update_start(mddev);
7600 md_update_sb(mddev, 0);
7601 if (mddev_is_clustered(mddev))
7602 md_cluster_ops->metadata_update_finish(mddev);
7603 sysfs_notify_dirent_safe(mddev->sysfs_state);
7604 } else
7605 spin_unlock(&mddev->lock);
7606
7607 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7608 return -EAGAIN;
7609 else
7610 return 0;
7611 }
7612 EXPORT_SYMBOL_GPL(md_allow_write);
7613
7614 #define SYNC_MARKS 10
7615 #define SYNC_MARK_STEP (3*HZ)
7616 #define UPDATE_FREQUENCY (5*60*HZ)
7617 void md_do_sync(struct md_thread *thread)
7618 {
7619 struct mddev *mddev = thread->mddev;
7620 struct mddev *mddev2;
7621 unsigned int currspeed = 0,
7622 window;
7623 sector_t max_sectors,j, io_sectors, recovery_done;
7624 unsigned long mark[SYNC_MARKS];
7625 unsigned long update_time;
7626 sector_t mark_cnt[SYNC_MARKS];
7627 int last_mark,m;
7628 struct list_head *tmp;
7629 sector_t last_check;
7630 int skipped = 0;
7631 struct md_rdev *rdev;
7632 char *desc, *action = NULL;
7633 struct blk_plug plug;
7634
7635 /* just incase thread restarts... */
7636 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7637 return;
7638 if (mddev->ro) {/* never try to sync a read-only array */
7639 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7640 return;
7641 }
7642
7643 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7644 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7645 desc = "data-check";
7646 action = "check";
7647 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7648 desc = "requested-resync";
7649 action = "repair";
7650 } else
7651 desc = "resync";
7652 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7653 desc = "reshape";
7654 else
7655 desc = "recovery";
7656
7657 mddev->last_sync_action = action ?: desc;
7658
7659 /* we overload curr_resync somewhat here.
7660 * 0 == not engaged in resync at all
7661 * 2 == checking that there is no conflict with another sync
7662 * 1 == like 2, but have yielded to allow conflicting resync to
7663 * commense
7664 * other == active in resync - this many blocks
7665 *
7666 * Before starting a resync we must have set curr_resync to
7667 * 2, and then checked that every "conflicting" array has curr_resync
7668 * less than ours. When we find one that is the same or higher
7669 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7670 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7671 * This will mean we have to start checking from the beginning again.
7672 *
7673 */
7674
7675 do {
7676 mddev->curr_resync = 2;
7677
7678 try_again:
7679 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7680 goto skip;
7681 for_each_mddev(mddev2, tmp) {
7682 if (mddev2 == mddev)
7683 continue;
7684 if (!mddev->parallel_resync
7685 && mddev2->curr_resync
7686 && match_mddev_units(mddev, mddev2)) {
7687 DEFINE_WAIT(wq);
7688 if (mddev < mddev2 && mddev->curr_resync == 2) {
7689 /* arbitrarily yield */
7690 mddev->curr_resync = 1;
7691 wake_up(&resync_wait);
7692 }
7693 if (mddev > mddev2 && mddev->curr_resync == 1)
7694 /* no need to wait here, we can wait the next
7695 * time 'round when curr_resync == 2
7696 */
7697 continue;
7698 /* We need to wait 'interruptible' so as not to
7699 * contribute to the load average, and not to
7700 * be caught by 'softlockup'
7701 */
7702 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7703 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7704 mddev2->curr_resync >= mddev->curr_resync) {
7705 printk(KERN_INFO "md: delaying %s of %s"
7706 " until %s has finished (they"
7707 " share one or more physical units)\n",
7708 desc, mdname(mddev), mdname(mddev2));
7709 mddev_put(mddev2);
7710 if (signal_pending(current))
7711 flush_signals(current);
7712 schedule();
7713 finish_wait(&resync_wait, &wq);
7714 goto try_again;
7715 }
7716 finish_wait(&resync_wait, &wq);
7717 }
7718 }
7719 } while (mddev->curr_resync < 2);
7720
7721 j = 0;
7722 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7723 /* resync follows the size requested by the personality,
7724 * which defaults to physical size, but can be virtual size
7725 */
7726 max_sectors = mddev->resync_max_sectors;
7727 atomic64_set(&mddev->resync_mismatches, 0);
7728 /* we don't use the checkpoint if there's a bitmap */
7729 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7730 j = mddev->resync_min;
7731 else if (!mddev->bitmap)
7732 j = mddev->recovery_cp;
7733
7734 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7735 max_sectors = mddev->resync_max_sectors;
7736 else {
7737 /* recovery follows the physical size of devices */
7738 max_sectors = mddev->dev_sectors;
7739 j = MaxSector;
7740 rcu_read_lock();
7741 rdev_for_each_rcu(rdev, mddev)
7742 if (rdev->raid_disk >= 0 &&
7743 !test_bit(Faulty, &rdev->flags) &&
7744 !test_bit(In_sync, &rdev->flags) &&
7745 rdev->recovery_offset < j)
7746 j = rdev->recovery_offset;
7747 rcu_read_unlock();
7748
7749 /* If there is a bitmap, we need to make sure all
7750 * writes that started before we added a spare
7751 * complete before we start doing a recovery.
7752 * Otherwise the write might complete and (via
7753 * bitmap_endwrite) set a bit in the bitmap after the
7754 * recovery has checked that bit and skipped that
7755 * region.
7756 */
7757 if (mddev->bitmap) {
7758 mddev->pers->quiesce(mddev, 1);
7759 mddev->pers->quiesce(mddev, 0);
7760 }
7761 }
7762
7763 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7764 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7765 " %d KB/sec/disk.\n", speed_min(mddev));
7766 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7767 "(but not more than %d KB/sec) for %s.\n",
7768 speed_max(mddev), desc);
7769
7770 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7771
7772 io_sectors = 0;
7773 for (m = 0; m < SYNC_MARKS; m++) {
7774 mark[m] = jiffies;
7775 mark_cnt[m] = io_sectors;
7776 }
7777 last_mark = 0;
7778 mddev->resync_mark = mark[last_mark];
7779 mddev->resync_mark_cnt = mark_cnt[last_mark];
7780
7781 /*
7782 * Tune reconstruction:
7783 */
7784 window = 32*(PAGE_SIZE/512);
7785 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7786 window/2, (unsigned long long)max_sectors/2);
7787
7788 atomic_set(&mddev->recovery_active, 0);
7789 last_check = 0;
7790
7791 if (j>2) {
7792 printk(KERN_INFO
7793 "md: resuming %s of %s from checkpoint.\n",
7794 desc, mdname(mddev));
7795 mddev->curr_resync = j;
7796 } else
7797 mddev->curr_resync = 3; /* no longer delayed */
7798 mddev->curr_resync_completed = j;
7799 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7800 md_new_event(mddev);
7801 update_time = jiffies;
7802
7803 if (mddev_is_clustered(mddev))
7804 md_cluster_ops->resync_start(mddev, j, max_sectors);
7805
7806 blk_start_plug(&plug);
7807 while (j < max_sectors) {
7808 sector_t sectors;
7809
7810 skipped = 0;
7811
7812 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7813 ((mddev->curr_resync > mddev->curr_resync_completed &&
7814 (mddev->curr_resync - mddev->curr_resync_completed)
7815 > (max_sectors >> 4)) ||
7816 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7817 (j - mddev->curr_resync_completed)*2
7818 >= mddev->resync_max - mddev->curr_resync_completed
7819 )) {
7820 /* time to update curr_resync_completed */
7821 wait_event(mddev->recovery_wait,
7822 atomic_read(&mddev->recovery_active) == 0);
7823 mddev->curr_resync_completed = j;
7824 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7825 j > mddev->recovery_cp)
7826 mddev->recovery_cp = j;
7827 update_time = jiffies;
7828 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7829 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7830 }
7831
7832 while (j >= mddev->resync_max &&
7833 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7834 /* As this condition is controlled by user-space,
7835 * we can block indefinitely, so use '_interruptible'
7836 * to avoid triggering warnings.
7837 */
7838 flush_signals(current); /* just in case */
7839 wait_event_interruptible(mddev->recovery_wait,
7840 mddev->resync_max > j
7841 || test_bit(MD_RECOVERY_INTR,
7842 &mddev->recovery));
7843 }
7844
7845 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7846 break;
7847
7848 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7849 if (sectors == 0) {
7850 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7851 break;
7852 }
7853
7854 if (!skipped) { /* actual IO requested */
7855 io_sectors += sectors;
7856 atomic_add(sectors, &mddev->recovery_active);
7857 }
7858
7859 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7860 break;
7861
7862 j += sectors;
7863 if (j > 2)
7864 mddev->curr_resync = j;
7865 if (mddev_is_clustered(mddev))
7866 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7867 mddev->curr_mark_cnt = io_sectors;
7868 if (last_check == 0)
7869 /* this is the earliest that rebuild will be
7870 * visible in /proc/mdstat
7871 */
7872 md_new_event(mddev);
7873
7874 if (last_check + window > io_sectors || j == max_sectors)
7875 continue;
7876
7877 last_check = io_sectors;
7878 repeat:
7879 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7880 /* step marks */
7881 int next = (last_mark+1) % SYNC_MARKS;
7882
7883 mddev->resync_mark = mark[next];
7884 mddev->resync_mark_cnt = mark_cnt[next];
7885 mark[next] = jiffies;
7886 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7887 last_mark = next;
7888 }
7889
7890 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7891 break;
7892
7893 /*
7894 * this loop exits only if either when we are slower than
7895 * the 'hard' speed limit, or the system was IO-idle for
7896 * a jiffy.
7897 * the system might be non-idle CPU-wise, but we only care
7898 * about not overloading the IO subsystem. (things like an
7899 * e2fsck being done on the RAID array should execute fast)
7900 */
7901 cond_resched();
7902
7903 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7904 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7905 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7906
7907 if (currspeed > speed_min(mddev)) {
7908 if (currspeed > speed_max(mddev)) {
7909 msleep(500);
7910 goto repeat;
7911 }
7912 if (!is_mddev_idle(mddev, 0)) {
7913 /*
7914 * Give other IO more of a chance.
7915 * The faster the devices, the less we wait.
7916 */
7917 wait_event(mddev->recovery_wait,
7918 !atomic_read(&mddev->recovery_active));
7919 }
7920 }
7921 }
7922 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7923 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7924 ? "interrupted" : "done");
7925 /*
7926 * this also signals 'finished resyncing' to md_stop
7927 */
7928 blk_finish_plug(&plug);
7929 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7930
7931 /* tell personality that we are finished */
7932 mddev->pers->sync_request(mddev, max_sectors, &skipped);
7933
7934 if (mddev_is_clustered(mddev))
7935 md_cluster_ops->resync_finish(mddev);
7936
7937 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7938 mddev->curr_resync > 2) {
7939 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7940 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7941 if (mddev->curr_resync >= mddev->recovery_cp) {
7942 printk(KERN_INFO
7943 "md: checkpointing %s of %s.\n",
7944 desc, mdname(mddev));
7945 if (test_bit(MD_RECOVERY_ERROR,
7946 &mddev->recovery))
7947 mddev->recovery_cp =
7948 mddev->curr_resync_completed;
7949 else
7950 mddev->recovery_cp =
7951 mddev->curr_resync;
7952 }
7953 } else
7954 mddev->recovery_cp = MaxSector;
7955 } else {
7956 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7957 mddev->curr_resync = MaxSector;
7958 rcu_read_lock();
7959 rdev_for_each_rcu(rdev, mddev)
7960 if (rdev->raid_disk >= 0 &&
7961 mddev->delta_disks >= 0 &&
7962 !test_bit(Faulty, &rdev->flags) &&
7963 !test_bit(In_sync, &rdev->flags) &&
7964 rdev->recovery_offset < mddev->curr_resync)
7965 rdev->recovery_offset = mddev->curr_resync;
7966 rcu_read_unlock();
7967 }
7968 }
7969 skip:
7970 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7971
7972 spin_lock(&mddev->lock);
7973 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7974 /* We completed so min/max setting can be forgotten if used. */
7975 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7976 mddev->resync_min = 0;
7977 mddev->resync_max = MaxSector;
7978 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7979 mddev->resync_min = mddev->curr_resync_completed;
7980 mddev->curr_resync = 0;
7981 spin_unlock(&mddev->lock);
7982
7983 wake_up(&resync_wait);
7984 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7985 md_wakeup_thread(mddev->thread);
7986 return;
7987 }
7988 EXPORT_SYMBOL_GPL(md_do_sync);
7989
7990 static int remove_and_add_spares(struct mddev *mddev,
7991 struct md_rdev *this)
7992 {
7993 struct md_rdev *rdev;
7994 int spares = 0;
7995 int removed = 0;
7996
7997 rdev_for_each(rdev, mddev)
7998 if ((this == NULL || rdev == this) &&
7999 rdev->raid_disk >= 0 &&
8000 !test_bit(Blocked, &rdev->flags) &&
8001 (test_bit(Faulty, &rdev->flags) ||
8002 ! test_bit(In_sync, &rdev->flags)) &&
8003 atomic_read(&rdev->nr_pending)==0) {
8004 if (mddev->pers->hot_remove_disk(
8005 mddev, rdev) == 0) {
8006 sysfs_unlink_rdev(mddev, rdev);
8007 rdev->raid_disk = -1;
8008 removed++;
8009 }
8010 }
8011 if (removed && mddev->kobj.sd)
8012 sysfs_notify(&mddev->kobj, NULL, "degraded");
8013
8014 if (this)
8015 goto no_add;
8016
8017 rdev_for_each(rdev, mddev) {
8018 if (rdev->raid_disk >= 0 &&
8019 !test_bit(In_sync, &rdev->flags) &&
8020 !test_bit(Faulty, &rdev->flags))
8021 spares++;
8022 if (rdev->raid_disk >= 0)
8023 continue;
8024 if (test_bit(Faulty, &rdev->flags))
8025 continue;
8026 if (mddev->ro &&
8027 ! (rdev->saved_raid_disk >= 0 &&
8028 !test_bit(Bitmap_sync, &rdev->flags)))
8029 continue;
8030
8031 if (rdev->saved_raid_disk < 0)
8032 rdev->recovery_offset = 0;
8033 if (mddev->pers->
8034 hot_add_disk(mddev, rdev) == 0) {
8035 if (sysfs_link_rdev(mddev, rdev))
8036 /* failure here is OK */;
8037 spares++;
8038 md_new_event(mddev);
8039 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8040 }
8041 }
8042 no_add:
8043 if (removed)
8044 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8045 return spares;
8046 }
8047
8048 static void md_start_sync(struct work_struct *ws)
8049 {
8050 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8051
8052 mddev->sync_thread = md_register_thread(md_do_sync,
8053 mddev,
8054 "resync");
8055 if (!mddev->sync_thread) {
8056 printk(KERN_ERR "%s: could not start resync"
8057 " thread...\n",
8058 mdname(mddev));
8059 /* leave the spares where they are, it shouldn't hurt */
8060 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8061 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8062 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8063 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8064 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8065 wake_up(&resync_wait);
8066 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8067 &mddev->recovery))
8068 if (mddev->sysfs_action)
8069 sysfs_notify_dirent_safe(mddev->sysfs_action);
8070 } else
8071 md_wakeup_thread(mddev->sync_thread);
8072 sysfs_notify_dirent_safe(mddev->sysfs_action);
8073 md_new_event(mddev);
8074 }
8075
8076 /*
8077 * This routine is regularly called by all per-raid-array threads to
8078 * deal with generic issues like resync and super-block update.
8079 * Raid personalities that don't have a thread (linear/raid0) do not
8080 * need this as they never do any recovery or update the superblock.
8081 *
8082 * It does not do any resync itself, but rather "forks" off other threads
8083 * to do that as needed.
8084 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8085 * "->recovery" and create a thread at ->sync_thread.
8086 * When the thread finishes it sets MD_RECOVERY_DONE
8087 * and wakeups up this thread which will reap the thread and finish up.
8088 * This thread also removes any faulty devices (with nr_pending == 0).
8089 *
8090 * The overall approach is:
8091 * 1/ if the superblock needs updating, update it.
8092 * 2/ If a recovery thread is running, don't do anything else.
8093 * 3/ If recovery has finished, clean up, possibly marking spares active.
8094 * 4/ If there are any faulty devices, remove them.
8095 * 5/ If array is degraded, try to add spares devices
8096 * 6/ If array has spares or is not in-sync, start a resync thread.
8097 */
8098 void md_check_recovery(struct mddev *mddev)
8099 {
8100 if (mddev->suspended)
8101 return;
8102
8103 if (mddev->bitmap)
8104 bitmap_daemon_work(mddev);
8105
8106 if (signal_pending(current)) {
8107 if (mddev->pers->sync_request && !mddev->external) {
8108 printk(KERN_INFO "md: %s in immediate safe mode\n",
8109 mdname(mddev));
8110 mddev->safemode = 2;
8111 }
8112 flush_signals(current);
8113 }
8114
8115 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8116 return;
8117 if ( ! (
8118 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8119 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8120 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8121 (mddev->external == 0 && mddev->safemode == 1) ||
8122 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8123 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8124 ))
8125 return;
8126
8127 if (mddev_trylock(mddev)) {
8128 int spares = 0;
8129
8130 if (mddev->ro) {
8131 struct md_rdev *rdev;
8132 if (!mddev->external && mddev->in_sync)
8133 /* 'Blocked' flag not needed as failed devices
8134 * will be recorded if array switched to read/write.
8135 * Leaving it set will prevent the device
8136 * from being removed.
8137 */
8138 rdev_for_each(rdev, mddev)
8139 clear_bit(Blocked, &rdev->flags);
8140 /* On a read-only array we can:
8141 * - remove failed devices
8142 * - add already-in_sync devices if the array itself
8143 * is in-sync.
8144 * As we only add devices that are already in-sync,
8145 * we can activate the spares immediately.
8146 */
8147 remove_and_add_spares(mddev, NULL);
8148 /* There is no thread, but we need to call
8149 * ->spare_active and clear saved_raid_disk
8150 */
8151 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8152 md_reap_sync_thread(mddev);
8153 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8154 goto unlock;
8155 }
8156
8157 if (!mddev->external) {
8158 int did_change = 0;
8159 spin_lock(&mddev->lock);
8160 if (mddev->safemode &&
8161 !atomic_read(&mddev->writes_pending) &&
8162 !mddev->in_sync &&
8163 mddev->recovery_cp == MaxSector) {
8164 mddev->in_sync = 1;
8165 did_change = 1;
8166 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8167 }
8168 if (mddev->safemode == 1)
8169 mddev->safemode = 0;
8170 spin_unlock(&mddev->lock);
8171 if (did_change)
8172 sysfs_notify_dirent_safe(mddev->sysfs_state);
8173 }
8174
8175 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8176 if (mddev_is_clustered(mddev))
8177 md_cluster_ops->metadata_update_start(mddev);
8178 md_update_sb(mddev, 0);
8179 if (mddev_is_clustered(mddev))
8180 md_cluster_ops->metadata_update_finish(mddev);
8181 }
8182
8183 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8184 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8185 /* resync/recovery still happening */
8186 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8187 goto unlock;
8188 }
8189 if (mddev->sync_thread) {
8190 md_reap_sync_thread(mddev);
8191 goto unlock;
8192 }
8193 /* Set RUNNING before clearing NEEDED to avoid
8194 * any transients in the value of "sync_action".
8195 */
8196 mddev->curr_resync_completed = 0;
8197 spin_lock(&mddev->lock);
8198 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8199 spin_unlock(&mddev->lock);
8200 /* Clear some bits that don't mean anything, but
8201 * might be left set
8202 */
8203 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8204 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8205
8206 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8207 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8208 goto not_running;
8209 /* no recovery is running.
8210 * remove any failed drives, then
8211 * add spares if possible.
8212 * Spares are also removed and re-added, to allow
8213 * the personality to fail the re-add.
8214 */
8215
8216 if (mddev->reshape_position != MaxSector) {
8217 if (mddev->pers->check_reshape == NULL ||
8218 mddev->pers->check_reshape(mddev) != 0)
8219 /* Cannot proceed */
8220 goto not_running;
8221 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8222 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8223 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8224 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8225 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8226 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8227 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8228 } else if (mddev->recovery_cp < MaxSector) {
8229 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8230 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8231 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8232 /* nothing to be done ... */
8233 goto not_running;
8234
8235 if (mddev->pers->sync_request) {
8236 if (spares) {
8237 /* We are adding a device or devices to an array
8238 * which has the bitmap stored on all devices.
8239 * So make sure all bitmap pages get written
8240 */
8241 bitmap_write_all(mddev->bitmap);
8242 }
8243 INIT_WORK(&mddev->del_work, md_start_sync);
8244 queue_work(md_misc_wq, &mddev->del_work);
8245 goto unlock;
8246 }
8247 not_running:
8248 if (!mddev->sync_thread) {
8249 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8250 wake_up(&resync_wait);
8251 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8252 &mddev->recovery))
8253 if (mddev->sysfs_action)
8254 sysfs_notify_dirent_safe(mddev->sysfs_action);
8255 }
8256 unlock:
8257 wake_up(&mddev->sb_wait);
8258 mddev_unlock(mddev);
8259 }
8260 }
8261 EXPORT_SYMBOL(md_check_recovery);
8262
8263 void md_reap_sync_thread(struct mddev *mddev)
8264 {
8265 struct md_rdev *rdev;
8266
8267 /* resync has finished, collect result */
8268 md_unregister_thread(&mddev->sync_thread);
8269 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8270 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8271 /* success...*/
8272 /* activate any spares */
8273 if (mddev->pers->spare_active(mddev)) {
8274 sysfs_notify(&mddev->kobj, NULL,
8275 "degraded");
8276 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8277 }
8278 }
8279 if (mddev_is_clustered(mddev))
8280 md_cluster_ops->metadata_update_start(mddev);
8281 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8282 mddev->pers->finish_reshape)
8283 mddev->pers->finish_reshape(mddev);
8284
8285 /* If array is no-longer degraded, then any saved_raid_disk
8286 * information must be scrapped.
8287 */
8288 if (!mddev->degraded)
8289 rdev_for_each(rdev, mddev)
8290 rdev->saved_raid_disk = -1;
8291
8292 md_update_sb(mddev, 1);
8293 if (mddev_is_clustered(mddev))
8294 md_cluster_ops->metadata_update_finish(mddev);
8295 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8296 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8297 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8298 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8299 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8300 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8301 wake_up(&resync_wait);
8302 /* flag recovery needed just to double check */
8303 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8304 sysfs_notify_dirent_safe(mddev->sysfs_action);
8305 md_new_event(mddev);
8306 if (mddev->event_work.func)
8307 queue_work(md_misc_wq, &mddev->event_work);
8308 }
8309 EXPORT_SYMBOL(md_reap_sync_thread);
8310
8311 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8312 {
8313 sysfs_notify_dirent_safe(rdev->sysfs_state);
8314 wait_event_timeout(rdev->blocked_wait,
8315 !test_bit(Blocked, &rdev->flags) &&
8316 !test_bit(BlockedBadBlocks, &rdev->flags),
8317 msecs_to_jiffies(5000));
8318 rdev_dec_pending(rdev, mddev);
8319 }
8320 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8321
8322 void md_finish_reshape(struct mddev *mddev)
8323 {
8324 /* called be personality module when reshape completes. */
8325 struct md_rdev *rdev;
8326
8327 rdev_for_each(rdev, mddev) {
8328 if (rdev->data_offset > rdev->new_data_offset)
8329 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8330 else
8331 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8332 rdev->data_offset = rdev->new_data_offset;
8333 }
8334 }
8335 EXPORT_SYMBOL(md_finish_reshape);
8336
8337 /* Bad block management.
8338 * We can record which blocks on each device are 'bad' and so just
8339 * fail those blocks, or that stripe, rather than the whole device.
8340 * Entries in the bad-block table are 64bits wide. This comprises:
8341 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8342 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8343 * A 'shift' can be set so that larger blocks are tracked and
8344 * consequently larger devices can be covered.
8345 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8346 *
8347 * Locking of the bad-block table uses a seqlock so md_is_badblock
8348 * might need to retry if it is very unlucky.
8349 * We will sometimes want to check for bad blocks in a bi_end_io function,
8350 * so we use the write_seqlock_irq variant.
8351 *
8352 * When looking for a bad block we specify a range and want to
8353 * know if any block in the range is bad. So we binary-search
8354 * to the last range that starts at-or-before the given endpoint,
8355 * (or "before the sector after the target range")
8356 * then see if it ends after the given start.
8357 * We return
8358 * 0 if there are no known bad blocks in the range
8359 * 1 if there are known bad block which are all acknowledged
8360 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8361 * plus the start/length of the first bad section we overlap.
8362 */
8363 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8364 sector_t *first_bad, int *bad_sectors)
8365 {
8366 int hi;
8367 int lo;
8368 u64 *p = bb->page;
8369 int rv;
8370 sector_t target = s + sectors;
8371 unsigned seq;
8372
8373 if (bb->shift > 0) {
8374 /* round the start down, and the end up */
8375 s >>= bb->shift;
8376 target += (1<<bb->shift) - 1;
8377 target >>= bb->shift;
8378 sectors = target - s;
8379 }
8380 /* 'target' is now the first block after the bad range */
8381
8382 retry:
8383 seq = read_seqbegin(&bb->lock);
8384 lo = 0;
8385 rv = 0;
8386 hi = bb->count;
8387
8388 /* Binary search between lo and hi for 'target'
8389 * i.e. for the last range that starts before 'target'
8390 */
8391 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8392 * are known not to be the last range before target.
8393 * VARIANT: hi-lo is the number of possible
8394 * ranges, and decreases until it reaches 1
8395 */
8396 while (hi - lo > 1) {
8397 int mid = (lo + hi) / 2;
8398 sector_t a = BB_OFFSET(p[mid]);
8399 if (a < target)
8400 /* This could still be the one, earlier ranges
8401 * could not. */
8402 lo = mid;
8403 else
8404 /* This and later ranges are definitely out. */
8405 hi = mid;
8406 }
8407 /* 'lo' might be the last that started before target, but 'hi' isn't */
8408 if (hi > lo) {
8409 /* need to check all range that end after 's' to see if
8410 * any are unacknowledged.
8411 */
8412 while (lo >= 0 &&
8413 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8414 if (BB_OFFSET(p[lo]) < target) {
8415 /* starts before the end, and finishes after
8416 * the start, so they must overlap
8417 */
8418 if (rv != -1 && BB_ACK(p[lo]))
8419 rv = 1;
8420 else
8421 rv = -1;
8422 *first_bad = BB_OFFSET(p[lo]);
8423 *bad_sectors = BB_LEN(p[lo]);
8424 }
8425 lo--;
8426 }
8427 }
8428
8429 if (read_seqretry(&bb->lock, seq))
8430 goto retry;
8431
8432 return rv;
8433 }
8434 EXPORT_SYMBOL_GPL(md_is_badblock);
8435
8436 /*
8437 * Add a range of bad blocks to the table.
8438 * This might extend the table, or might contract it
8439 * if two adjacent ranges can be merged.
8440 * We binary-search to find the 'insertion' point, then
8441 * decide how best to handle it.
8442 */
8443 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8444 int acknowledged)
8445 {
8446 u64 *p;
8447 int lo, hi;
8448 int rv = 1;
8449 unsigned long flags;
8450
8451 if (bb->shift < 0)
8452 /* badblocks are disabled */
8453 return 0;
8454
8455 if (bb->shift) {
8456 /* round the start down, and the end up */
8457 sector_t next = s + sectors;
8458 s >>= bb->shift;
8459 next += (1<<bb->shift) - 1;
8460 next >>= bb->shift;
8461 sectors = next - s;
8462 }
8463
8464 write_seqlock_irqsave(&bb->lock, flags);
8465
8466 p = bb->page;
8467 lo = 0;
8468 hi = bb->count;
8469 /* Find the last range that starts at-or-before 's' */
8470 while (hi - lo > 1) {
8471 int mid = (lo + hi) / 2;
8472 sector_t a = BB_OFFSET(p[mid]);
8473 if (a <= s)
8474 lo = mid;
8475 else
8476 hi = mid;
8477 }
8478 if (hi > lo && BB_OFFSET(p[lo]) > s)
8479 hi = lo;
8480
8481 if (hi > lo) {
8482 /* we found a range that might merge with the start
8483 * of our new range
8484 */
8485 sector_t a = BB_OFFSET(p[lo]);
8486 sector_t e = a + BB_LEN(p[lo]);
8487 int ack = BB_ACK(p[lo]);
8488 if (e >= s) {
8489 /* Yes, we can merge with a previous range */
8490 if (s == a && s + sectors >= e)
8491 /* new range covers old */
8492 ack = acknowledged;
8493 else
8494 ack = ack && acknowledged;
8495
8496 if (e < s + sectors)
8497 e = s + sectors;
8498 if (e - a <= BB_MAX_LEN) {
8499 p[lo] = BB_MAKE(a, e-a, ack);
8500 s = e;
8501 } else {
8502 /* does not all fit in one range,
8503 * make p[lo] maximal
8504 */
8505 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8506 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8507 s = a + BB_MAX_LEN;
8508 }
8509 sectors = e - s;
8510 }
8511 }
8512 if (sectors && hi < bb->count) {
8513 /* 'hi' points to the first range that starts after 's'.
8514 * Maybe we can merge with the start of that range */
8515 sector_t a = BB_OFFSET(p[hi]);
8516 sector_t e = a + BB_LEN(p[hi]);
8517 int ack = BB_ACK(p[hi]);
8518 if (a <= s + sectors) {
8519 /* merging is possible */
8520 if (e <= s + sectors) {
8521 /* full overlap */
8522 e = s + sectors;
8523 ack = acknowledged;
8524 } else
8525 ack = ack && acknowledged;
8526
8527 a = s;
8528 if (e - a <= BB_MAX_LEN) {
8529 p[hi] = BB_MAKE(a, e-a, ack);
8530 s = e;
8531 } else {
8532 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8533 s = a + BB_MAX_LEN;
8534 }
8535 sectors = e - s;
8536 lo = hi;
8537 hi++;
8538 }
8539 }
8540 if (sectors == 0 && hi < bb->count) {
8541 /* we might be able to combine lo and hi */
8542 /* Note: 's' is at the end of 'lo' */
8543 sector_t a = BB_OFFSET(p[hi]);
8544 int lolen = BB_LEN(p[lo]);
8545 int hilen = BB_LEN(p[hi]);
8546 int newlen = lolen + hilen - (s - a);
8547 if (s >= a && newlen < BB_MAX_LEN) {
8548 /* yes, we can combine them */
8549 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8550 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8551 memmove(p + hi, p + hi + 1,
8552 (bb->count - hi - 1) * 8);
8553 bb->count--;
8554 }
8555 }
8556 while (sectors) {
8557 /* didn't merge (it all).
8558 * Need to add a range just before 'hi' */
8559 if (bb->count >= MD_MAX_BADBLOCKS) {
8560 /* No room for more */
8561 rv = 0;
8562 break;
8563 } else {
8564 int this_sectors = sectors;
8565 memmove(p + hi + 1, p + hi,
8566 (bb->count - hi) * 8);
8567 bb->count++;
8568
8569 if (this_sectors > BB_MAX_LEN)
8570 this_sectors = BB_MAX_LEN;
8571 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8572 sectors -= this_sectors;
8573 s += this_sectors;
8574 }
8575 }
8576
8577 bb->changed = 1;
8578 if (!acknowledged)
8579 bb->unacked_exist = 1;
8580 write_sequnlock_irqrestore(&bb->lock, flags);
8581
8582 return rv;
8583 }
8584
8585 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8586 int is_new)
8587 {
8588 int rv;
8589 if (is_new)
8590 s += rdev->new_data_offset;
8591 else
8592 s += rdev->data_offset;
8593 rv = md_set_badblocks(&rdev->badblocks,
8594 s, sectors, 0);
8595 if (rv) {
8596 /* Make sure they get written out promptly */
8597 sysfs_notify_dirent_safe(rdev->sysfs_state);
8598 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8599 md_wakeup_thread(rdev->mddev->thread);
8600 }
8601 return rv;
8602 }
8603 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8604
8605 /*
8606 * Remove a range of bad blocks from the table.
8607 * This may involve extending the table if we spilt a region,
8608 * but it must not fail. So if the table becomes full, we just
8609 * drop the remove request.
8610 */
8611 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8612 {
8613 u64 *p;
8614 int lo, hi;
8615 sector_t target = s + sectors;
8616 int rv = 0;
8617
8618 if (bb->shift > 0) {
8619 /* When clearing we round the start up and the end down.
8620 * This should not matter as the shift should align with
8621 * the block size and no rounding should ever be needed.
8622 * However it is better the think a block is bad when it
8623 * isn't than to think a block is not bad when it is.
8624 */
8625 s += (1<<bb->shift) - 1;
8626 s >>= bb->shift;
8627 target >>= bb->shift;
8628 sectors = target - s;
8629 }
8630
8631 write_seqlock_irq(&bb->lock);
8632
8633 p = bb->page;
8634 lo = 0;
8635 hi = bb->count;
8636 /* Find the last range that starts before 'target' */
8637 while (hi - lo > 1) {
8638 int mid = (lo + hi) / 2;
8639 sector_t a = BB_OFFSET(p[mid]);
8640 if (a < target)
8641 lo = mid;
8642 else
8643 hi = mid;
8644 }
8645 if (hi > lo) {
8646 /* p[lo] is the last range that could overlap the
8647 * current range. Earlier ranges could also overlap,
8648 * but only this one can overlap the end of the range.
8649 */
8650 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8651 /* Partial overlap, leave the tail of this range */
8652 int ack = BB_ACK(p[lo]);
8653 sector_t a = BB_OFFSET(p[lo]);
8654 sector_t end = a + BB_LEN(p[lo]);
8655
8656 if (a < s) {
8657 /* we need to split this range */
8658 if (bb->count >= MD_MAX_BADBLOCKS) {
8659 rv = -ENOSPC;
8660 goto out;
8661 }
8662 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8663 bb->count++;
8664 p[lo] = BB_MAKE(a, s-a, ack);
8665 lo++;
8666 }
8667 p[lo] = BB_MAKE(target, end - target, ack);
8668 /* there is no longer an overlap */
8669 hi = lo;
8670 lo--;
8671 }
8672 while (lo >= 0 &&
8673 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8674 /* This range does overlap */
8675 if (BB_OFFSET(p[lo]) < s) {
8676 /* Keep the early parts of this range. */
8677 int ack = BB_ACK(p[lo]);
8678 sector_t start = BB_OFFSET(p[lo]);
8679 p[lo] = BB_MAKE(start, s - start, ack);
8680 /* now low doesn't overlap, so.. */
8681 break;
8682 }
8683 lo--;
8684 }
8685 /* 'lo' is strictly before, 'hi' is strictly after,
8686 * anything between needs to be discarded
8687 */
8688 if (hi - lo > 1) {
8689 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8690 bb->count -= (hi - lo - 1);
8691 }
8692 }
8693
8694 bb->changed = 1;
8695 out:
8696 write_sequnlock_irq(&bb->lock);
8697 return rv;
8698 }
8699
8700 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8701 int is_new)
8702 {
8703 if (is_new)
8704 s += rdev->new_data_offset;
8705 else
8706 s += rdev->data_offset;
8707 return md_clear_badblocks(&rdev->badblocks,
8708 s, sectors);
8709 }
8710 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8711
8712 /*
8713 * Acknowledge all bad blocks in a list.
8714 * This only succeeds if ->changed is clear. It is used by
8715 * in-kernel metadata updates
8716 */
8717 void md_ack_all_badblocks(struct badblocks *bb)
8718 {
8719 if (bb->page == NULL || bb->changed)
8720 /* no point even trying */
8721 return;
8722 write_seqlock_irq(&bb->lock);
8723
8724 if (bb->changed == 0 && bb->unacked_exist) {
8725 u64 *p = bb->page;
8726 int i;
8727 for (i = 0; i < bb->count ; i++) {
8728 if (!BB_ACK(p[i])) {
8729 sector_t start = BB_OFFSET(p[i]);
8730 int len = BB_LEN(p[i]);
8731 p[i] = BB_MAKE(start, len, 1);
8732 }
8733 }
8734 bb->unacked_exist = 0;
8735 }
8736 write_sequnlock_irq(&bb->lock);
8737 }
8738 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8739
8740 /* sysfs access to bad-blocks list.
8741 * We present two files.
8742 * 'bad-blocks' lists sector numbers and lengths of ranges that
8743 * are recorded as bad. The list is truncated to fit within
8744 * the one-page limit of sysfs.
8745 * Writing "sector length" to this file adds an acknowledged
8746 * bad block list.
8747 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8748 * been acknowledged. Writing to this file adds bad blocks
8749 * without acknowledging them. This is largely for testing.
8750 */
8751
8752 static ssize_t
8753 badblocks_show(struct badblocks *bb, char *page, int unack)
8754 {
8755 size_t len;
8756 int i;
8757 u64 *p = bb->page;
8758 unsigned seq;
8759
8760 if (bb->shift < 0)
8761 return 0;
8762
8763 retry:
8764 seq = read_seqbegin(&bb->lock);
8765
8766 len = 0;
8767 i = 0;
8768
8769 while (len < PAGE_SIZE && i < bb->count) {
8770 sector_t s = BB_OFFSET(p[i]);
8771 unsigned int length = BB_LEN(p[i]);
8772 int ack = BB_ACK(p[i]);
8773 i++;
8774
8775 if (unack && ack)
8776 continue;
8777
8778 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8779 (unsigned long long)s << bb->shift,
8780 length << bb->shift);
8781 }
8782 if (unack && len == 0)
8783 bb->unacked_exist = 0;
8784
8785 if (read_seqretry(&bb->lock, seq))
8786 goto retry;
8787
8788 return len;
8789 }
8790
8791 #define DO_DEBUG 1
8792
8793 static ssize_t
8794 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8795 {
8796 unsigned long long sector;
8797 int length;
8798 char newline;
8799 #ifdef DO_DEBUG
8800 /* Allow clearing via sysfs *only* for testing/debugging.
8801 * Normally only a successful write may clear a badblock
8802 */
8803 int clear = 0;
8804 if (page[0] == '-') {
8805 clear = 1;
8806 page++;
8807 }
8808 #endif /* DO_DEBUG */
8809
8810 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8811 case 3:
8812 if (newline != '\n')
8813 return -EINVAL;
8814 case 2:
8815 if (length <= 0)
8816 return -EINVAL;
8817 break;
8818 default:
8819 return -EINVAL;
8820 }
8821
8822 #ifdef DO_DEBUG
8823 if (clear) {
8824 md_clear_badblocks(bb, sector, length);
8825 return len;
8826 }
8827 #endif /* DO_DEBUG */
8828 if (md_set_badblocks(bb, sector, length, !unack))
8829 return len;
8830 else
8831 return -ENOSPC;
8832 }
8833
8834 static int md_notify_reboot(struct notifier_block *this,
8835 unsigned long code, void *x)
8836 {
8837 struct list_head *tmp;
8838 struct mddev *mddev;
8839 int need_delay = 0;
8840
8841 for_each_mddev(mddev, tmp) {
8842 if (mddev_trylock(mddev)) {
8843 if (mddev->pers)
8844 __md_stop_writes(mddev);
8845 if (mddev->persistent)
8846 mddev->safemode = 2;
8847 mddev_unlock(mddev);
8848 }
8849 need_delay = 1;
8850 }
8851 /*
8852 * certain more exotic SCSI devices are known to be
8853 * volatile wrt too early system reboots. While the
8854 * right place to handle this issue is the given
8855 * driver, we do want to have a safe RAID driver ...
8856 */
8857 if (need_delay)
8858 mdelay(1000*1);
8859
8860 return NOTIFY_DONE;
8861 }
8862
8863 static struct notifier_block md_notifier = {
8864 .notifier_call = md_notify_reboot,
8865 .next = NULL,
8866 .priority = INT_MAX, /* before any real devices */
8867 };
8868
8869 static void md_geninit(void)
8870 {
8871 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8872
8873 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8874 }
8875
8876 static int __init md_init(void)
8877 {
8878 int ret = -ENOMEM;
8879
8880 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8881 if (!md_wq)
8882 goto err_wq;
8883
8884 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8885 if (!md_misc_wq)
8886 goto err_misc_wq;
8887
8888 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8889 goto err_md;
8890
8891 if ((ret = register_blkdev(0, "mdp")) < 0)
8892 goto err_mdp;
8893 mdp_major = ret;
8894
8895 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8896 md_probe, NULL, NULL);
8897 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8898 md_probe, NULL, NULL);
8899
8900 register_reboot_notifier(&md_notifier);
8901 raid_table_header = register_sysctl_table(raid_root_table);
8902
8903 md_geninit();
8904 return 0;
8905
8906 err_mdp:
8907 unregister_blkdev(MD_MAJOR, "md");
8908 err_md:
8909 destroy_workqueue(md_misc_wq);
8910 err_misc_wq:
8911 destroy_workqueue(md_wq);
8912 err_wq:
8913 return ret;
8914 }
8915
8916 void md_reload_sb(struct mddev *mddev)
8917 {
8918 struct md_rdev *rdev, *tmp;
8919
8920 rdev_for_each_safe(rdev, tmp, mddev) {
8921 rdev->sb_loaded = 0;
8922 ClearPageUptodate(rdev->sb_page);
8923 }
8924 mddev->raid_disks = 0;
8925 analyze_sbs(mddev);
8926 rdev_for_each_safe(rdev, tmp, mddev) {
8927 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8928 /* since we don't write to faulty devices, we figure out if the
8929 * disk is faulty by comparing events
8930 */
8931 if (mddev->events > sb->events)
8932 set_bit(Faulty, &rdev->flags);
8933 }
8934
8935 }
8936 EXPORT_SYMBOL(md_reload_sb);
8937
8938 #ifndef MODULE
8939
8940 /*
8941 * Searches all registered partitions for autorun RAID arrays
8942 * at boot time.
8943 */
8944
8945 static LIST_HEAD(all_detected_devices);
8946 struct detected_devices_node {
8947 struct list_head list;
8948 dev_t dev;
8949 };
8950
8951 void md_autodetect_dev(dev_t dev)
8952 {
8953 struct detected_devices_node *node_detected_dev;
8954
8955 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8956 if (node_detected_dev) {
8957 node_detected_dev->dev = dev;
8958 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8959 } else {
8960 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8961 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8962 }
8963 }
8964
8965 static void autostart_arrays(int part)
8966 {
8967 struct md_rdev *rdev;
8968 struct detected_devices_node *node_detected_dev;
8969 dev_t dev;
8970 int i_scanned, i_passed;
8971
8972 i_scanned = 0;
8973 i_passed = 0;
8974
8975 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8976
8977 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8978 i_scanned++;
8979 node_detected_dev = list_entry(all_detected_devices.next,
8980 struct detected_devices_node, list);
8981 list_del(&node_detected_dev->list);
8982 dev = node_detected_dev->dev;
8983 kfree(node_detected_dev);
8984 rdev = md_import_device(dev,0, 90);
8985 if (IS_ERR(rdev))
8986 continue;
8987
8988 if (test_bit(Faulty, &rdev->flags))
8989 continue;
8990
8991 set_bit(AutoDetected, &rdev->flags);
8992 list_add(&rdev->same_set, &pending_raid_disks);
8993 i_passed++;
8994 }
8995
8996 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8997 i_scanned, i_passed);
8998
8999 autorun_devices(part);
9000 }
9001
9002 #endif /* !MODULE */
9003
9004 static __exit void md_exit(void)
9005 {
9006 struct mddev *mddev;
9007 struct list_head *tmp;
9008 int delay = 1;
9009
9010 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9011 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9012
9013 unregister_blkdev(MD_MAJOR,"md");
9014 unregister_blkdev(mdp_major, "mdp");
9015 unregister_reboot_notifier(&md_notifier);
9016 unregister_sysctl_table(raid_table_header);
9017
9018 /* We cannot unload the modules while some process is
9019 * waiting for us in select() or poll() - wake them up
9020 */
9021 md_unloading = 1;
9022 while (waitqueue_active(&md_event_waiters)) {
9023 /* not safe to leave yet */
9024 wake_up(&md_event_waiters);
9025 msleep(delay);
9026 delay += delay;
9027 }
9028 remove_proc_entry("mdstat", NULL);
9029
9030 for_each_mddev(mddev, tmp) {
9031 export_array(mddev);
9032 mddev->hold_active = 0;
9033 }
9034 destroy_workqueue(md_misc_wq);
9035 destroy_workqueue(md_wq);
9036 }
9037
9038 subsys_initcall(md_init);
9039 module_exit(md_exit)
9040
9041 static int get_ro(char *buffer, struct kernel_param *kp)
9042 {
9043 return sprintf(buffer, "%d", start_readonly);
9044 }
9045 static int set_ro(const char *val, struct kernel_param *kp)
9046 {
9047 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9048 }
9049
9050 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9051 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9052 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9053
9054 MODULE_LICENSE("GPL");
9055 MODULE_DESCRIPTION("MD RAID framework");
9056 MODULE_ALIAS("md");
9057 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);