]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/md.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 struct md_cluster_operations *md_cluster_ops;
88 EXPORT_SYMBOL(md_cluster_ops);
89 struct module *md_cluster_mod;
90 EXPORT_SYMBOL(md_cluster_mod);
91
92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
93 static struct workqueue_struct *md_wq;
94 static struct workqueue_struct *md_misc_wq;
95
96 static int remove_and_add_spares(struct mddev *mddev,
97 struct md_rdev *this);
98 static void mddev_detach(struct mddev *mddev);
99
100 /*
101 * Default number of read corrections we'll attempt on an rdev
102 * before ejecting it from the array. We divide the read error
103 * count by 2 for every hour elapsed between read errors.
104 */
105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
106 /*
107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
108 * is 1000 KB/sec, so the extra system load does not show up that much.
109 * Increase it if you want to have more _guaranteed_ speed. Note that
110 * the RAID driver will use the maximum available bandwidth if the IO
111 * subsystem is idle. There is also an 'absolute maximum' reconstruction
112 * speed limit - in case reconstruction slows down your system despite
113 * idle IO detection.
114 *
115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
116 * or /sys/block/mdX/md/sync_speed_{min,max}
117 */
118
119 static int sysctl_speed_limit_min = 1000;
120 static int sysctl_speed_limit_max = 200000;
121 static inline int speed_min(struct mddev *mddev)
122 {
123 return mddev->sync_speed_min ?
124 mddev->sync_speed_min : sysctl_speed_limit_min;
125 }
126
127 static inline int speed_max(struct mddev *mddev)
128 {
129 return mddev->sync_speed_max ?
130 mddev->sync_speed_max : sysctl_speed_limit_max;
131 }
132
133 static struct ctl_table_header *raid_table_header;
134
135 static struct ctl_table raid_table[] = {
136 {
137 .procname = "speed_limit_min",
138 .data = &sysctl_speed_limit_min,
139 .maxlen = sizeof(int),
140 .mode = S_IRUGO|S_IWUSR,
141 .proc_handler = proc_dointvec,
142 },
143 {
144 .procname = "speed_limit_max",
145 .data = &sysctl_speed_limit_max,
146 .maxlen = sizeof(int),
147 .mode = S_IRUGO|S_IWUSR,
148 .proc_handler = proc_dointvec,
149 },
150 { }
151 };
152
153 static struct ctl_table raid_dir_table[] = {
154 {
155 .procname = "raid",
156 .maxlen = 0,
157 .mode = S_IRUGO|S_IXUGO,
158 .child = raid_table,
159 },
160 { }
161 };
162
163 static struct ctl_table raid_root_table[] = {
164 {
165 .procname = "dev",
166 .maxlen = 0,
167 .mode = 0555,
168 .child = raid_dir_table,
169 },
170 { }
171 };
172
173 static const struct block_device_operations md_fops;
174
175 static int start_readonly;
176
177 /*
178 * The original mechanism for creating an md device is to create
179 * a device node in /dev and to open it. This causes races with device-close.
180 * The preferred method is to write to the "new_array" module parameter.
181 * This can avoid races.
182 * Setting create_on_open to false disables the original mechanism
183 * so all the races disappear.
184 */
185 static bool create_on_open = true;
186
187 /* bio_clone_mddev
188 * like bio_clone_bioset, but with a local bio set
189 */
190
191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
192 struct mddev *mddev)
193 {
194 struct bio *b;
195
196 if (!mddev || !mddev->bio_set)
197 return bio_alloc(gfp_mask, nr_iovecs);
198
199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
200 if (!b)
201 return NULL;
202 return b;
203 }
204 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
205
206 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
207 {
208 if (!mddev || !mddev->sync_set)
209 return bio_alloc(GFP_NOIO, 1);
210
211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set);
212 }
213
214 /*
215 * We have a system wide 'event count' that is incremented
216 * on any 'interesting' event, and readers of /proc/mdstat
217 * can use 'poll' or 'select' to find out when the event
218 * count increases.
219 *
220 * Events are:
221 * start array, stop array, error, add device, remove device,
222 * start build, activate spare
223 */
224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
225 static atomic_t md_event_count;
226 void md_new_event(struct mddev *mddev)
227 {
228 atomic_inc(&md_event_count);
229 wake_up(&md_event_waiters);
230 }
231 EXPORT_SYMBOL_GPL(md_new_event);
232
233 /*
234 * Enables to iterate over all existing md arrays
235 * all_mddevs_lock protects this list.
236 */
237 static LIST_HEAD(all_mddevs);
238 static DEFINE_SPINLOCK(all_mddevs_lock);
239
240 /*
241 * iterates through all used mddevs in the system.
242 * We take care to grab the all_mddevs_lock whenever navigating
243 * the list, and to always hold a refcount when unlocked.
244 * Any code which breaks out of this loop while own
245 * a reference to the current mddev and must mddev_put it.
246 */
247 #define for_each_mddev(_mddev,_tmp) \
248 \
249 for (({ spin_lock(&all_mddevs_lock); \
250 _tmp = all_mddevs.next; \
251 _mddev = NULL;}); \
252 ({ if (_tmp != &all_mddevs) \
253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
254 spin_unlock(&all_mddevs_lock); \
255 if (_mddev) mddev_put(_mddev); \
256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
257 _tmp != &all_mddevs;}); \
258 ({ spin_lock(&all_mddevs_lock); \
259 _tmp = _tmp->next;}) \
260 )
261
262 /* Rather than calling directly into the personality make_request function,
263 * IO requests come here first so that we can check if the device is
264 * being suspended pending a reconfiguration.
265 * We hold a refcount over the call to ->make_request. By the time that
266 * call has finished, the bio has been linked into some internal structure
267 * and so is visible to ->quiesce(), so we don't need the refcount any more.
268 */
269 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
270 {
271 const int rw = bio_data_dir(bio);
272 struct mddev *mddev = q->queuedata;
273 unsigned int sectors;
274 int cpu;
275
276 blk_queue_split(q, &bio);
277
278 if (mddev == NULL || mddev->pers == NULL) {
279 bio_io_error(bio);
280 return BLK_QC_T_NONE;
281 }
282 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
283 if (bio_sectors(bio) != 0)
284 bio->bi_status = BLK_STS_IOERR;
285 bio_endio(bio);
286 return BLK_QC_T_NONE;
287 }
288 check_suspended:
289 rcu_read_lock();
290 if (mddev->suspended) {
291 DEFINE_WAIT(__wait);
292 for (;;) {
293 prepare_to_wait(&mddev->sb_wait, &__wait,
294 TASK_UNINTERRUPTIBLE);
295 if (!mddev->suspended)
296 break;
297 rcu_read_unlock();
298 schedule();
299 rcu_read_lock();
300 }
301 finish_wait(&mddev->sb_wait, &__wait);
302 }
303 atomic_inc(&mddev->active_io);
304 rcu_read_unlock();
305
306 /*
307 * save the sectors now since our bio can
308 * go away inside make_request
309 */
310 sectors = bio_sectors(bio);
311 /* bio could be mergeable after passing to underlayer */
312 bio->bi_opf &= ~REQ_NOMERGE;
313 if (!mddev->pers->make_request(mddev, bio)) {
314 atomic_dec(&mddev->active_io);
315 wake_up(&mddev->sb_wait);
316 goto check_suspended;
317 }
318
319 cpu = part_stat_lock();
320 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
321 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
322 part_stat_unlock();
323
324 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
325 wake_up(&mddev->sb_wait);
326
327 return BLK_QC_T_NONE;
328 }
329
330 /* mddev_suspend makes sure no new requests are submitted
331 * to the device, and that any requests that have been submitted
332 * are completely handled.
333 * Once mddev_detach() is called and completes, the module will be
334 * completely unused.
335 */
336 void mddev_suspend(struct mddev *mddev)
337 {
338 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
339 if (mddev->suspended++)
340 return;
341 synchronize_rcu();
342 wake_up(&mddev->sb_wait);
343 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
344 mddev->pers->quiesce(mddev, 1);
345
346 del_timer_sync(&mddev->safemode_timer);
347 }
348 EXPORT_SYMBOL_GPL(mddev_suspend);
349
350 void mddev_resume(struct mddev *mddev)
351 {
352 if (--mddev->suspended)
353 return;
354 wake_up(&mddev->sb_wait);
355 mddev->pers->quiesce(mddev, 0);
356
357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
358 md_wakeup_thread(mddev->thread);
359 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
360 }
361 EXPORT_SYMBOL_GPL(mddev_resume);
362
363 int mddev_congested(struct mddev *mddev, int bits)
364 {
365 struct md_personality *pers = mddev->pers;
366 int ret = 0;
367
368 rcu_read_lock();
369 if (mddev->suspended)
370 ret = 1;
371 else if (pers && pers->congested)
372 ret = pers->congested(mddev, bits);
373 rcu_read_unlock();
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(mddev_congested);
377 static int md_congested(void *data, int bits)
378 {
379 struct mddev *mddev = data;
380 return mddev_congested(mddev, bits);
381 }
382
383 /*
384 * Generic flush handling for md
385 */
386
387 static void md_end_flush(struct bio *bio)
388 {
389 struct md_rdev *rdev = bio->bi_private;
390 struct mddev *mddev = rdev->mddev;
391
392 rdev_dec_pending(rdev, mddev);
393
394 if (atomic_dec_and_test(&mddev->flush_pending)) {
395 /* The pre-request flush has finished */
396 queue_work(md_wq, &mddev->flush_work);
397 }
398 bio_put(bio);
399 }
400
401 static void md_submit_flush_data(struct work_struct *ws);
402
403 static void submit_flushes(struct work_struct *ws)
404 {
405 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
406 struct md_rdev *rdev;
407
408 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
409 atomic_set(&mddev->flush_pending, 1);
410 rcu_read_lock();
411 rdev_for_each_rcu(rdev, mddev)
412 if (rdev->raid_disk >= 0 &&
413 !test_bit(Faulty, &rdev->flags)) {
414 /* Take two references, one is dropped
415 * when request finishes, one after
416 * we reclaim rcu_read_lock
417 */
418 struct bio *bi;
419 atomic_inc(&rdev->nr_pending);
420 atomic_inc(&rdev->nr_pending);
421 rcu_read_unlock();
422 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
423 bi->bi_end_io = md_end_flush;
424 bi->bi_private = rdev;
425 bi->bi_bdev = rdev->bdev;
426 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
427 atomic_inc(&mddev->flush_pending);
428 submit_bio(bi);
429 rcu_read_lock();
430 rdev_dec_pending(rdev, mddev);
431 }
432 rcu_read_unlock();
433 if (atomic_dec_and_test(&mddev->flush_pending))
434 queue_work(md_wq, &mddev->flush_work);
435 }
436
437 static void md_submit_flush_data(struct work_struct *ws)
438 {
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct bio *bio = mddev->flush_bio;
441
442 if (bio->bi_iter.bi_size == 0)
443 /* an empty barrier - all done */
444 bio_endio(bio);
445 else {
446 bio->bi_opf &= ~REQ_PREFLUSH;
447 mddev->pers->make_request(mddev, bio);
448 }
449
450 mddev->flush_bio = NULL;
451 wake_up(&mddev->sb_wait);
452 }
453
454 void md_flush_request(struct mddev *mddev, struct bio *bio)
455 {
456 spin_lock_irq(&mddev->lock);
457 wait_event_lock_irq(mddev->sb_wait,
458 !mddev->flush_bio,
459 mddev->lock);
460 mddev->flush_bio = bio;
461 spin_unlock_irq(&mddev->lock);
462
463 INIT_WORK(&mddev->flush_work, submit_flushes);
464 queue_work(md_wq, &mddev->flush_work);
465 }
466 EXPORT_SYMBOL(md_flush_request);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 atomic_inc(&mddev->active);
471 return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478 struct bio_set *bs = NULL, *sync_bs = NULL;
479
480 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 return;
482 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 mddev->ctime == 0 && !mddev->hold_active) {
484 /* Array is not configured at all, and not held active,
485 * so destroy it */
486 list_del_init(&mddev->all_mddevs);
487 bs = mddev->bio_set;
488 sync_bs = mddev->sync_set;
489 mddev->bio_set = NULL;
490 mddev->sync_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
496 */
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
501 }
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
505 if (sync_bs)
506 bioset_free(sync_bs);
507 }
508
509 static void md_safemode_timeout(unsigned long data);
510
511 void mddev_init(struct mddev *mddev)
512 {
513 mutex_init(&mddev->open_mutex);
514 mutex_init(&mddev->reconfig_mutex);
515 mutex_init(&mddev->bitmap_info.mutex);
516 INIT_LIST_HEAD(&mddev->disks);
517 INIT_LIST_HEAD(&mddev->all_mddevs);
518 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
519 (unsigned long) mddev);
520 atomic_set(&mddev->active, 1);
521 atomic_set(&mddev->openers, 0);
522 atomic_set(&mddev->active_io, 0);
523 spin_lock_init(&mddev->lock);
524 atomic_set(&mddev->flush_pending, 0);
525 init_waitqueue_head(&mddev->sb_wait);
526 init_waitqueue_head(&mddev->recovery_wait);
527 mddev->reshape_position = MaxSector;
528 mddev->reshape_backwards = 0;
529 mddev->last_sync_action = "none";
530 mddev->resync_min = 0;
531 mddev->resync_max = MaxSector;
532 mddev->level = LEVEL_NONE;
533 }
534 EXPORT_SYMBOL_GPL(mddev_init);
535
536 static struct mddev *mddev_find(dev_t unit)
537 {
538 struct mddev *mddev, *new = NULL;
539
540 if (unit && MAJOR(unit) != MD_MAJOR)
541 unit &= ~((1<<MdpMinorShift)-1);
542
543 retry:
544 spin_lock(&all_mddevs_lock);
545
546 if (unit) {
547 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
548 if (mddev->unit == unit) {
549 mddev_get(mddev);
550 spin_unlock(&all_mddevs_lock);
551 kfree(new);
552 return mddev;
553 }
554
555 if (new) {
556 list_add(&new->all_mddevs, &all_mddevs);
557 spin_unlock(&all_mddevs_lock);
558 new->hold_active = UNTIL_IOCTL;
559 return new;
560 }
561 } else if (new) {
562 /* find an unused unit number */
563 static int next_minor = 512;
564 int start = next_minor;
565 int is_free = 0;
566 int dev = 0;
567 while (!is_free) {
568 dev = MKDEV(MD_MAJOR, next_minor);
569 next_minor++;
570 if (next_minor > MINORMASK)
571 next_minor = 0;
572 if (next_minor == start) {
573 /* Oh dear, all in use. */
574 spin_unlock(&all_mddevs_lock);
575 kfree(new);
576 return NULL;
577 }
578
579 is_free = 1;
580 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581 if (mddev->unit == dev) {
582 is_free = 0;
583 break;
584 }
585 }
586 new->unit = dev;
587 new->md_minor = MINOR(dev);
588 new->hold_active = UNTIL_STOP;
589 list_add(&new->all_mddevs, &all_mddevs);
590 spin_unlock(&all_mddevs_lock);
591 return new;
592 }
593 spin_unlock(&all_mddevs_lock);
594
595 new = kzalloc(sizeof(*new), GFP_KERNEL);
596 if (!new)
597 return NULL;
598
599 new->unit = unit;
600 if (MAJOR(unit) == MD_MAJOR)
601 new->md_minor = MINOR(unit);
602 else
603 new->md_minor = MINOR(unit) >> MdpMinorShift;
604
605 mddev_init(new);
606
607 goto retry;
608 }
609
610 static struct attribute_group md_redundancy_group;
611
612 void mddev_unlock(struct mddev *mddev)
613 {
614 if (mddev->to_remove) {
615 /* These cannot be removed under reconfig_mutex as
616 * an access to the files will try to take reconfig_mutex
617 * while holding the file unremovable, which leads to
618 * a deadlock.
619 * So hold set sysfs_active while the remove in happeing,
620 * and anything else which might set ->to_remove or my
621 * otherwise change the sysfs namespace will fail with
622 * -EBUSY if sysfs_active is still set.
623 * We set sysfs_active under reconfig_mutex and elsewhere
624 * test it under the same mutex to ensure its correct value
625 * is seen.
626 */
627 struct attribute_group *to_remove = mddev->to_remove;
628 mddev->to_remove = NULL;
629 mddev->sysfs_active = 1;
630 mutex_unlock(&mddev->reconfig_mutex);
631
632 if (mddev->kobj.sd) {
633 if (to_remove != &md_redundancy_group)
634 sysfs_remove_group(&mddev->kobj, to_remove);
635 if (mddev->pers == NULL ||
636 mddev->pers->sync_request == NULL) {
637 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
638 if (mddev->sysfs_action)
639 sysfs_put(mddev->sysfs_action);
640 mddev->sysfs_action = NULL;
641 }
642 }
643 mddev->sysfs_active = 0;
644 } else
645 mutex_unlock(&mddev->reconfig_mutex);
646
647 /* As we've dropped the mutex we need a spinlock to
648 * make sure the thread doesn't disappear
649 */
650 spin_lock(&pers_lock);
651 md_wakeup_thread(mddev->thread);
652 spin_unlock(&pers_lock);
653 }
654 EXPORT_SYMBOL_GPL(mddev_unlock);
655
656 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each_rcu(rdev, mddev)
661 if (rdev->desc_nr == nr)
662 return rdev;
663
664 return NULL;
665 }
666 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
667
668 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
669 {
670 struct md_rdev *rdev;
671
672 rdev_for_each(rdev, mddev)
673 if (rdev->bdev->bd_dev == dev)
674 return rdev;
675
676 return NULL;
677 }
678
679 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
680 {
681 struct md_rdev *rdev;
682
683 rdev_for_each_rcu(rdev, mddev)
684 if (rdev->bdev->bd_dev == dev)
685 return rdev;
686
687 return NULL;
688 }
689
690 static struct md_personality *find_pers(int level, char *clevel)
691 {
692 struct md_personality *pers;
693 list_for_each_entry(pers, &pers_list, list) {
694 if (level != LEVEL_NONE && pers->level == level)
695 return pers;
696 if (strcmp(pers->name, clevel)==0)
697 return pers;
698 }
699 return NULL;
700 }
701
702 /* return the offset of the super block in 512byte sectors */
703 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
704 {
705 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
706 return MD_NEW_SIZE_SECTORS(num_sectors);
707 }
708
709 static int alloc_disk_sb(struct md_rdev *rdev)
710 {
711 rdev->sb_page = alloc_page(GFP_KERNEL);
712 if (!rdev->sb_page)
713 return -ENOMEM;
714 return 0;
715 }
716
717 void md_rdev_clear(struct md_rdev *rdev)
718 {
719 if (rdev->sb_page) {
720 put_page(rdev->sb_page);
721 rdev->sb_loaded = 0;
722 rdev->sb_page = NULL;
723 rdev->sb_start = 0;
724 rdev->sectors = 0;
725 }
726 if (rdev->bb_page) {
727 put_page(rdev->bb_page);
728 rdev->bb_page = NULL;
729 }
730 badblocks_exit(&rdev->badblocks);
731 }
732 EXPORT_SYMBOL_GPL(md_rdev_clear);
733
734 static void super_written(struct bio *bio)
735 {
736 struct md_rdev *rdev = bio->bi_private;
737 struct mddev *mddev = rdev->mddev;
738
739 if (bio->bi_status) {
740 pr_err("md: super_written gets error=%d\n", bio->bi_status);
741 md_error(mddev, rdev);
742 if (!test_bit(Faulty, &rdev->flags)
743 && (bio->bi_opf & MD_FAILFAST)) {
744 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
745 set_bit(LastDev, &rdev->flags);
746 }
747 } else
748 clear_bit(LastDev, &rdev->flags);
749
750 if (atomic_dec_and_test(&mddev->pending_writes))
751 wake_up(&mddev->sb_wait);
752 rdev_dec_pending(rdev, mddev);
753 bio_put(bio);
754 }
755
756 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
757 sector_t sector, int size, struct page *page)
758 {
759 /* write first size bytes of page to sector of rdev
760 * Increment mddev->pending_writes before returning
761 * and decrement it on completion, waking up sb_wait
762 * if zero is reached.
763 * If an error occurred, call md_error
764 */
765 struct bio *bio;
766 int ff = 0;
767
768 if (test_bit(Faulty, &rdev->flags))
769 return;
770
771 bio = md_bio_alloc_sync(mddev);
772
773 atomic_inc(&rdev->nr_pending);
774
775 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
776 bio->bi_iter.bi_sector = sector;
777 bio_add_page(bio, page, size, 0);
778 bio->bi_private = rdev;
779 bio->bi_end_io = super_written;
780
781 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
782 test_bit(FailFast, &rdev->flags) &&
783 !test_bit(LastDev, &rdev->flags))
784 ff = MD_FAILFAST;
785 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
786
787 atomic_inc(&mddev->pending_writes);
788 submit_bio(bio);
789 }
790
791 int md_super_wait(struct mddev *mddev)
792 {
793 /* wait for all superblock writes that were scheduled to complete */
794 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
795 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
796 return -EAGAIN;
797 return 0;
798 }
799
800 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
801 struct page *page, int op, int op_flags, bool metadata_op)
802 {
803 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
804 int ret;
805
806 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
807 rdev->meta_bdev : rdev->bdev;
808 bio_set_op_attrs(bio, op, op_flags);
809 if (metadata_op)
810 bio->bi_iter.bi_sector = sector + rdev->sb_start;
811 else if (rdev->mddev->reshape_position != MaxSector &&
812 (rdev->mddev->reshape_backwards ==
813 (sector >= rdev->mddev->reshape_position)))
814 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
815 else
816 bio->bi_iter.bi_sector = sector + rdev->data_offset;
817 bio_add_page(bio, page, size, 0);
818
819 submit_bio_wait(bio);
820
821 ret = !bio->bi_status;
822 bio_put(bio);
823 return ret;
824 }
825 EXPORT_SYMBOL_GPL(sync_page_io);
826
827 static int read_disk_sb(struct md_rdev *rdev, int size)
828 {
829 char b[BDEVNAME_SIZE];
830
831 if (rdev->sb_loaded)
832 return 0;
833
834 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
835 goto fail;
836 rdev->sb_loaded = 1;
837 return 0;
838
839 fail:
840 pr_err("md: disabled device %s, could not read superblock.\n",
841 bdevname(rdev->bdev,b));
842 return -EINVAL;
843 }
844
845 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
846 {
847 return sb1->set_uuid0 == sb2->set_uuid0 &&
848 sb1->set_uuid1 == sb2->set_uuid1 &&
849 sb1->set_uuid2 == sb2->set_uuid2 &&
850 sb1->set_uuid3 == sb2->set_uuid3;
851 }
852
853 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
854 {
855 int ret;
856 mdp_super_t *tmp1, *tmp2;
857
858 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
859 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
860
861 if (!tmp1 || !tmp2) {
862 ret = 0;
863 goto abort;
864 }
865
866 *tmp1 = *sb1;
867 *tmp2 = *sb2;
868
869 /*
870 * nr_disks is not constant
871 */
872 tmp1->nr_disks = 0;
873 tmp2->nr_disks = 0;
874
875 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
876 abort:
877 kfree(tmp1);
878 kfree(tmp2);
879 return ret;
880 }
881
882 static u32 md_csum_fold(u32 csum)
883 {
884 csum = (csum & 0xffff) + (csum >> 16);
885 return (csum & 0xffff) + (csum >> 16);
886 }
887
888 static unsigned int calc_sb_csum(mdp_super_t *sb)
889 {
890 u64 newcsum = 0;
891 u32 *sb32 = (u32*)sb;
892 int i;
893 unsigned int disk_csum, csum;
894
895 disk_csum = sb->sb_csum;
896 sb->sb_csum = 0;
897
898 for (i = 0; i < MD_SB_BYTES/4 ; i++)
899 newcsum += sb32[i];
900 csum = (newcsum & 0xffffffff) + (newcsum>>32);
901
902 #ifdef CONFIG_ALPHA
903 /* This used to use csum_partial, which was wrong for several
904 * reasons including that different results are returned on
905 * different architectures. It isn't critical that we get exactly
906 * the same return value as before (we always csum_fold before
907 * testing, and that removes any differences). However as we
908 * know that csum_partial always returned a 16bit value on
909 * alphas, do a fold to maximise conformity to previous behaviour.
910 */
911 sb->sb_csum = md_csum_fold(disk_csum);
912 #else
913 sb->sb_csum = disk_csum;
914 #endif
915 return csum;
916 }
917
918 /*
919 * Handle superblock details.
920 * We want to be able to handle multiple superblock formats
921 * so we have a common interface to them all, and an array of
922 * different handlers.
923 * We rely on user-space to write the initial superblock, and support
924 * reading and updating of superblocks.
925 * Interface methods are:
926 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
927 * loads and validates a superblock on dev.
928 * if refdev != NULL, compare superblocks on both devices
929 * Return:
930 * 0 - dev has a superblock that is compatible with refdev
931 * 1 - dev has a superblock that is compatible and newer than refdev
932 * so dev should be used as the refdev in future
933 * -EINVAL superblock incompatible or invalid
934 * -othererror e.g. -EIO
935 *
936 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
937 * Verify that dev is acceptable into mddev.
938 * The first time, mddev->raid_disks will be 0, and data from
939 * dev should be merged in. Subsequent calls check that dev
940 * is new enough. Return 0 or -EINVAL
941 *
942 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
943 * Update the superblock for rdev with data in mddev
944 * This does not write to disc.
945 *
946 */
947
948 struct super_type {
949 char *name;
950 struct module *owner;
951 int (*load_super)(struct md_rdev *rdev,
952 struct md_rdev *refdev,
953 int minor_version);
954 int (*validate_super)(struct mddev *mddev,
955 struct md_rdev *rdev);
956 void (*sync_super)(struct mddev *mddev,
957 struct md_rdev *rdev);
958 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
959 sector_t num_sectors);
960 int (*allow_new_offset)(struct md_rdev *rdev,
961 unsigned long long new_offset);
962 };
963
964 /*
965 * Check that the given mddev has no bitmap.
966 *
967 * This function is called from the run method of all personalities that do not
968 * support bitmaps. It prints an error message and returns non-zero if mddev
969 * has a bitmap. Otherwise, it returns 0.
970 *
971 */
972 int md_check_no_bitmap(struct mddev *mddev)
973 {
974 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
975 return 0;
976 pr_warn("%s: bitmaps are not supported for %s\n",
977 mdname(mddev), mddev->pers->name);
978 return 1;
979 }
980 EXPORT_SYMBOL(md_check_no_bitmap);
981
982 /*
983 * load_super for 0.90.0
984 */
985 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
986 {
987 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
988 mdp_super_t *sb;
989 int ret;
990
991 /*
992 * Calculate the position of the superblock (512byte sectors),
993 * it's at the end of the disk.
994 *
995 * It also happens to be a multiple of 4Kb.
996 */
997 rdev->sb_start = calc_dev_sboffset(rdev);
998
999 ret = read_disk_sb(rdev, MD_SB_BYTES);
1000 if (ret)
1001 return ret;
1002
1003 ret = -EINVAL;
1004
1005 bdevname(rdev->bdev, b);
1006 sb = page_address(rdev->sb_page);
1007
1008 if (sb->md_magic != MD_SB_MAGIC) {
1009 pr_warn("md: invalid raid superblock magic on %s\n", b);
1010 goto abort;
1011 }
1012
1013 if (sb->major_version != 0 ||
1014 sb->minor_version < 90 ||
1015 sb->minor_version > 91) {
1016 pr_warn("Bad version number %d.%d on %s\n",
1017 sb->major_version, sb->minor_version, b);
1018 goto abort;
1019 }
1020
1021 if (sb->raid_disks <= 0)
1022 goto abort;
1023
1024 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1025 pr_warn("md: invalid superblock checksum on %s\n", b);
1026 goto abort;
1027 }
1028
1029 rdev->preferred_minor = sb->md_minor;
1030 rdev->data_offset = 0;
1031 rdev->new_data_offset = 0;
1032 rdev->sb_size = MD_SB_BYTES;
1033 rdev->badblocks.shift = -1;
1034
1035 if (sb->level == LEVEL_MULTIPATH)
1036 rdev->desc_nr = -1;
1037 else
1038 rdev->desc_nr = sb->this_disk.number;
1039
1040 if (!refdev) {
1041 ret = 1;
1042 } else {
1043 __u64 ev1, ev2;
1044 mdp_super_t *refsb = page_address(refdev->sb_page);
1045 if (!md_uuid_equal(refsb, sb)) {
1046 pr_warn("md: %s has different UUID to %s\n",
1047 b, bdevname(refdev->bdev,b2));
1048 goto abort;
1049 }
1050 if (!md_sb_equal(refsb, sb)) {
1051 pr_warn("md: %s has same UUID but different superblock to %s\n",
1052 b, bdevname(refdev->bdev, b2));
1053 goto abort;
1054 }
1055 ev1 = md_event(sb);
1056 ev2 = md_event(refsb);
1057 if (ev1 > ev2)
1058 ret = 1;
1059 else
1060 ret = 0;
1061 }
1062 rdev->sectors = rdev->sb_start;
1063 /* Limit to 4TB as metadata cannot record more than that.
1064 * (not needed for Linear and RAID0 as metadata doesn't
1065 * record this size)
1066 */
1067 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1068 sb->level >= 1)
1069 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1070
1071 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1072 /* "this cannot possibly happen" ... */
1073 ret = -EINVAL;
1074
1075 abort:
1076 return ret;
1077 }
1078
1079 /*
1080 * validate_super for 0.90.0
1081 */
1082 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1083 {
1084 mdp_disk_t *desc;
1085 mdp_super_t *sb = page_address(rdev->sb_page);
1086 __u64 ev1 = md_event(sb);
1087
1088 rdev->raid_disk = -1;
1089 clear_bit(Faulty, &rdev->flags);
1090 clear_bit(In_sync, &rdev->flags);
1091 clear_bit(Bitmap_sync, &rdev->flags);
1092 clear_bit(WriteMostly, &rdev->flags);
1093
1094 if (mddev->raid_disks == 0) {
1095 mddev->major_version = 0;
1096 mddev->minor_version = sb->minor_version;
1097 mddev->patch_version = sb->patch_version;
1098 mddev->external = 0;
1099 mddev->chunk_sectors = sb->chunk_size >> 9;
1100 mddev->ctime = sb->ctime;
1101 mddev->utime = sb->utime;
1102 mddev->level = sb->level;
1103 mddev->clevel[0] = 0;
1104 mddev->layout = sb->layout;
1105 mddev->raid_disks = sb->raid_disks;
1106 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1107 mddev->events = ev1;
1108 mddev->bitmap_info.offset = 0;
1109 mddev->bitmap_info.space = 0;
1110 /* bitmap can use 60 K after the 4K superblocks */
1111 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1112 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1113 mddev->reshape_backwards = 0;
1114
1115 if (mddev->minor_version >= 91) {
1116 mddev->reshape_position = sb->reshape_position;
1117 mddev->delta_disks = sb->delta_disks;
1118 mddev->new_level = sb->new_level;
1119 mddev->new_layout = sb->new_layout;
1120 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1121 if (mddev->delta_disks < 0)
1122 mddev->reshape_backwards = 1;
1123 } else {
1124 mddev->reshape_position = MaxSector;
1125 mddev->delta_disks = 0;
1126 mddev->new_level = mddev->level;
1127 mddev->new_layout = mddev->layout;
1128 mddev->new_chunk_sectors = mddev->chunk_sectors;
1129 }
1130
1131 if (sb->state & (1<<MD_SB_CLEAN))
1132 mddev->recovery_cp = MaxSector;
1133 else {
1134 if (sb->events_hi == sb->cp_events_hi &&
1135 sb->events_lo == sb->cp_events_lo) {
1136 mddev->recovery_cp = sb->recovery_cp;
1137 } else
1138 mddev->recovery_cp = 0;
1139 }
1140
1141 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1142 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1143 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1144 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1145
1146 mddev->max_disks = MD_SB_DISKS;
1147
1148 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1149 mddev->bitmap_info.file == NULL) {
1150 mddev->bitmap_info.offset =
1151 mddev->bitmap_info.default_offset;
1152 mddev->bitmap_info.space =
1153 mddev->bitmap_info.default_space;
1154 }
1155
1156 } else if (mddev->pers == NULL) {
1157 /* Insist on good event counter while assembling, except
1158 * for spares (which don't need an event count) */
1159 ++ev1;
1160 if (sb->disks[rdev->desc_nr].state & (
1161 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1162 if (ev1 < mddev->events)
1163 return -EINVAL;
1164 } else if (mddev->bitmap) {
1165 /* if adding to array with a bitmap, then we can accept an
1166 * older device ... but not too old.
1167 */
1168 if (ev1 < mddev->bitmap->events_cleared)
1169 return 0;
1170 if (ev1 < mddev->events)
1171 set_bit(Bitmap_sync, &rdev->flags);
1172 } else {
1173 if (ev1 < mddev->events)
1174 /* just a hot-add of a new device, leave raid_disk at -1 */
1175 return 0;
1176 }
1177
1178 if (mddev->level != LEVEL_MULTIPATH) {
1179 desc = sb->disks + rdev->desc_nr;
1180
1181 if (desc->state & (1<<MD_DISK_FAULTY))
1182 set_bit(Faulty, &rdev->flags);
1183 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1184 desc->raid_disk < mddev->raid_disks */) {
1185 set_bit(In_sync, &rdev->flags);
1186 rdev->raid_disk = desc->raid_disk;
1187 rdev->saved_raid_disk = desc->raid_disk;
1188 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1189 /* active but not in sync implies recovery up to
1190 * reshape position. We don't know exactly where
1191 * that is, so set to zero for now */
1192 if (mddev->minor_version >= 91) {
1193 rdev->recovery_offset = 0;
1194 rdev->raid_disk = desc->raid_disk;
1195 }
1196 }
1197 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1198 set_bit(WriteMostly, &rdev->flags);
1199 if (desc->state & (1<<MD_DISK_FAILFAST))
1200 set_bit(FailFast, &rdev->flags);
1201 } else /* MULTIPATH are always insync */
1202 set_bit(In_sync, &rdev->flags);
1203 return 0;
1204 }
1205
1206 /*
1207 * sync_super for 0.90.0
1208 */
1209 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1210 {
1211 mdp_super_t *sb;
1212 struct md_rdev *rdev2;
1213 int next_spare = mddev->raid_disks;
1214
1215 /* make rdev->sb match mddev data..
1216 *
1217 * 1/ zero out disks
1218 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1219 * 3/ any empty disks < next_spare become removed
1220 *
1221 * disks[0] gets initialised to REMOVED because
1222 * we cannot be sure from other fields if it has
1223 * been initialised or not.
1224 */
1225 int i;
1226 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1227
1228 rdev->sb_size = MD_SB_BYTES;
1229
1230 sb = page_address(rdev->sb_page);
1231
1232 memset(sb, 0, sizeof(*sb));
1233
1234 sb->md_magic = MD_SB_MAGIC;
1235 sb->major_version = mddev->major_version;
1236 sb->patch_version = mddev->patch_version;
1237 sb->gvalid_words = 0; /* ignored */
1238 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1239 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1240 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1241 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1242
1243 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1244 sb->level = mddev->level;
1245 sb->size = mddev->dev_sectors / 2;
1246 sb->raid_disks = mddev->raid_disks;
1247 sb->md_minor = mddev->md_minor;
1248 sb->not_persistent = 0;
1249 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1250 sb->state = 0;
1251 sb->events_hi = (mddev->events>>32);
1252 sb->events_lo = (u32)mddev->events;
1253
1254 if (mddev->reshape_position == MaxSector)
1255 sb->minor_version = 90;
1256 else {
1257 sb->minor_version = 91;
1258 sb->reshape_position = mddev->reshape_position;
1259 sb->new_level = mddev->new_level;
1260 sb->delta_disks = mddev->delta_disks;
1261 sb->new_layout = mddev->new_layout;
1262 sb->new_chunk = mddev->new_chunk_sectors << 9;
1263 }
1264 mddev->minor_version = sb->minor_version;
1265 if (mddev->in_sync)
1266 {
1267 sb->recovery_cp = mddev->recovery_cp;
1268 sb->cp_events_hi = (mddev->events>>32);
1269 sb->cp_events_lo = (u32)mddev->events;
1270 if (mddev->recovery_cp == MaxSector)
1271 sb->state = (1<< MD_SB_CLEAN);
1272 } else
1273 sb->recovery_cp = 0;
1274
1275 sb->layout = mddev->layout;
1276 sb->chunk_size = mddev->chunk_sectors << 9;
1277
1278 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1279 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1280
1281 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1282 rdev_for_each(rdev2, mddev) {
1283 mdp_disk_t *d;
1284 int desc_nr;
1285 int is_active = test_bit(In_sync, &rdev2->flags);
1286
1287 if (rdev2->raid_disk >= 0 &&
1288 sb->minor_version >= 91)
1289 /* we have nowhere to store the recovery_offset,
1290 * but if it is not below the reshape_position,
1291 * we can piggy-back on that.
1292 */
1293 is_active = 1;
1294 if (rdev2->raid_disk < 0 ||
1295 test_bit(Faulty, &rdev2->flags))
1296 is_active = 0;
1297 if (is_active)
1298 desc_nr = rdev2->raid_disk;
1299 else
1300 desc_nr = next_spare++;
1301 rdev2->desc_nr = desc_nr;
1302 d = &sb->disks[rdev2->desc_nr];
1303 nr_disks++;
1304 d->number = rdev2->desc_nr;
1305 d->major = MAJOR(rdev2->bdev->bd_dev);
1306 d->minor = MINOR(rdev2->bdev->bd_dev);
1307 if (is_active)
1308 d->raid_disk = rdev2->raid_disk;
1309 else
1310 d->raid_disk = rdev2->desc_nr; /* compatibility */
1311 if (test_bit(Faulty, &rdev2->flags))
1312 d->state = (1<<MD_DISK_FAULTY);
1313 else if (is_active) {
1314 d->state = (1<<MD_DISK_ACTIVE);
1315 if (test_bit(In_sync, &rdev2->flags))
1316 d->state |= (1<<MD_DISK_SYNC);
1317 active++;
1318 working++;
1319 } else {
1320 d->state = 0;
1321 spare++;
1322 working++;
1323 }
1324 if (test_bit(WriteMostly, &rdev2->flags))
1325 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1326 if (test_bit(FailFast, &rdev2->flags))
1327 d->state |= (1<<MD_DISK_FAILFAST);
1328 }
1329 /* now set the "removed" and "faulty" bits on any missing devices */
1330 for (i=0 ; i < mddev->raid_disks ; i++) {
1331 mdp_disk_t *d = &sb->disks[i];
1332 if (d->state == 0 && d->number == 0) {
1333 d->number = i;
1334 d->raid_disk = i;
1335 d->state = (1<<MD_DISK_REMOVED);
1336 d->state |= (1<<MD_DISK_FAULTY);
1337 failed++;
1338 }
1339 }
1340 sb->nr_disks = nr_disks;
1341 sb->active_disks = active;
1342 sb->working_disks = working;
1343 sb->failed_disks = failed;
1344 sb->spare_disks = spare;
1345
1346 sb->this_disk = sb->disks[rdev->desc_nr];
1347 sb->sb_csum = calc_sb_csum(sb);
1348 }
1349
1350 /*
1351 * rdev_size_change for 0.90.0
1352 */
1353 static unsigned long long
1354 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1355 {
1356 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1357 return 0; /* component must fit device */
1358 if (rdev->mddev->bitmap_info.offset)
1359 return 0; /* can't move bitmap */
1360 rdev->sb_start = calc_dev_sboffset(rdev);
1361 if (!num_sectors || num_sectors > rdev->sb_start)
1362 num_sectors = rdev->sb_start;
1363 /* Limit to 4TB as metadata cannot record more than that.
1364 * 4TB == 2^32 KB, or 2*2^32 sectors.
1365 */
1366 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1367 rdev->mddev->level >= 1)
1368 num_sectors = (sector_t)(2ULL << 32) - 2;
1369 do {
1370 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1371 rdev->sb_page);
1372 } while (md_super_wait(rdev->mddev) < 0);
1373 return num_sectors;
1374 }
1375
1376 static int
1377 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1378 {
1379 /* non-zero offset changes not possible with v0.90 */
1380 return new_offset == 0;
1381 }
1382
1383 /*
1384 * version 1 superblock
1385 */
1386
1387 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1388 {
1389 __le32 disk_csum;
1390 u32 csum;
1391 unsigned long long newcsum;
1392 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1393 __le32 *isuper = (__le32*)sb;
1394
1395 disk_csum = sb->sb_csum;
1396 sb->sb_csum = 0;
1397 newcsum = 0;
1398 for (; size >= 4; size -= 4)
1399 newcsum += le32_to_cpu(*isuper++);
1400
1401 if (size == 2)
1402 newcsum += le16_to_cpu(*(__le16*) isuper);
1403
1404 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1405 sb->sb_csum = disk_csum;
1406 return cpu_to_le32(csum);
1407 }
1408
1409 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1410 {
1411 struct mdp_superblock_1 *sb;
1412 int ret;
1413 sector_t sb_start;
1414 sector_t sectors;
1415 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1416 int bmask;
1417
1418 /*
1419 * Calculate the position of the superblock in 512byte sectors.
1420 * It is always aligned to a 4K boundary and
1421 * depeding on minor_version, it can be:
1422 * 0: At least 8K, but less than 12K, from end of device
1423 * 1: At start of device
1424 * 2: 4K from start of device.
1425 */
1426 switch(minor_version) {
1427 case 0:
1428 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1429 sb_start -= 8*2;
1430 sb_start &= ~(sector_t)(4*2-1);
1431 break;
1432 case 1:
1433 sb_start = 0;
1434 break;
1435 case 2:
1436 sb_start = 8;
1437 break;
1438 default:
1439 return -EINVAL;
1440 }
1441 rdev->sb_start = sb_start;
1442
1443 /* superblock is rarely larger than 1K, but it can be larger,
1444 * and it is safe to read 4k, so we do that
1445 */
1446 ret = read_disk_sb(rdev, 4096);
1447 if (ret) return ret;
1448
1449 sb = page_address(rdev->sb_page);
1450
1451 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1452 sb->major_version != cpu_to_le32(1) ||
1453 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1454 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1455 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1456 return -EINVAL;
1457
1458 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1459 pr_warn("md: invalid superblock checksum on %s\n",
1460 bdevname(rdev->bdev,b));
1461 return -EINVAL;
1462 }
1463 if (le64_to_cpu(sb->data_size) < 10) {
1464 pr_warn("md: data_size too small on %s\n",
1465 bdevname(rdev->bdev,b));
1466 return -EINVAL;
1467 }
1468 if (sb->pad0 ||
1469 sb->pad3[0] ||
1470 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1471 /* Some padding is non-zero, might be a new feature */
1472 return -EINVAL;
1473
1474 rdev->preferred_minor = 0xffff;
1475 rdev->data_offset = le64_to_cpu(sb->data_offset);
1476 rdev->new_data_offset = rdev->data_offset;
1477 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1478 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1479 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1480 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1481
1482 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1483 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1484 if (rdev->sb_size & bmask)
1485 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1486
1487 if (minor_version
1488 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1489 return -EINVAL;
1490 if (minor_version
1491 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1492 return -EINVAL;
1493
1494 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1495 rdev->desc_nr = -1;
1496 else
1497 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1498
1499 if (!rdev->bb_page) {
1500 rdev->bb_page = alloc_page(GFP_KERNEL);
1501 if (!rdev->bb_page)
1502 return -ENOMEM;
1503 }
1504 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1505 rdev->badblocks.count == 0) {
1506 /* need to load the bad block list.
1507 * Currently we limit it to one page.
1508 */
1509 s32 offset;
1510 sector_t bb_sector;
1511 u64 *bbp;
1512 int i;
1513 int sectors = le16_to_cpu(sb->bblog_size);
1514 if (sectors > (PAGE_SIZE / 512))
1515 return -EINVAL;
1516 offset = le32_to_cpu(sb->bblog_offset);
1517 if (offset == 0)
1518 return -EINVAL;
1519 bb_sector = (long long)offset;
1520 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1521 rdev->bb_page, REQ_OP_READ, 0, true))
1522 return -EIO;
1523 bbp = (u64 *)page_address(rdev->bb_page);
1524 rdev->badblocks.shift = sb->bblog_shift;
1525 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1526 u64 bb = le64_to_cpu(*bbp);
1527 int count = bb & (0x3ff);
1528 u64 sector = bb >> 10;
1529 sector <<= sb->bblog_shift;
1530 count <<= sb->bblog_shift;
1531 if (bb + 1 == 0)
1532 break;
1533 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1534 return -EINVAL;
1535 }
1536 } else if (sb->bblog_offset != 0)
1537 rdev->badblocks.shift = 0;
1538
1539 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) {
1540 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1541 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1542 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1543 }
1544
1545 if (!refdev) {
1546 ret = 1;
1547 } else {
1548 __u64 ev1, ev2;
1549 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1550
1551 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1552 sb->level != refsb->level ||
1553 sb->layout != refsb->layout ||
1554 sb->chunksize != refsb->chunksize) {
1555 pr_warn("md: %s has strangely different superblock to %s\n",
1556 bdevname(rdev->bdev,b),
1557 bdevname(refdev->bdev,b2));
1558 return -EINVAL;
1559 }
1560 ev1 = le64_to_cpu(sb->events);
1561 ev2 = le64_to_cpu(refsb->events);
1562
1563 if (ev1 > ev2)
1564 ret = 1;
1565 else
1566 ret = 0;
1567 }
1568 if (minor_version) {
1569 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1570 sectors -= rdev->data_offset;
1571 } else
1572 sectors = rdev->sb_start;
1573 if (sectors < le64_to_cpu(sb->data_size))
1574 return -EINVAL;
1575 rdev->sectors = le64_to_cpu(sb->data_size);
1576 return ret;
1577 }
1578
1579 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1580 {
1581 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1582 __u64 ev1 = le64_to_cpu(sb->events);
1583
1584 rdev->raid_disk = -1;
1585 clear_bit(Faulty, &rdev->flags);
1586 clear_bit(In_sync, &rdev->flags);
1587 clear_bit(Bitmap_sync, &rdev->flags);
1588 clear_bit(WriteMostly, &rdev->flags);
1589
1590 if (mddev->raid_disks == 0) {
1591 mddev->major_version = 1;
1592 mddev->patch_version = 0;
1593 mddev->external = 0;
1594 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1595 mddev->ctime = le64_to_cpu(sb->ctime);
1596 mddev->utime = le64_to_cpu(sb->utime);
1597 mddev->level = le32_to_cpu(sb->level);
1598 mddev->clevel[0] = 0;
1599 mddev->layout = le32_to_cpu(sb->layout);
1600 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1601 mddev->dev_sectors = le64_to_cpu(sb->size);
1602 mddev->events = ev1;
1603 mddev->bitmap_info.offset = 0;
1604 mddev->bitmap_info.space = 0;
1605 /* Default location for bitmap is 1K after superblock
1606 * using 3K - total of 4K
1607 */
1608 mddev->bitmap_info.default_offset = 1024 >> 9;
1609 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1610 mddev->reshape_backwards = 0;
1611
1612 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1613 memcpy(mddev->uuid, sb->set_uuid, 16);
1614
1615 mddev->max_disks = (4096-256)/2;
1616
1617 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1618 mddev->bitmap_info.file == NULL) {
1619 mddev->bitmap_info.offset =
1620 (__s32)le32_to_cpu(sb->bitmap_offset);
1621 /* Metadata doesn't record how much space is available.
1622 * For 1.0, we assume we can use up to the superblock
1623 * if before, else to 4K beyond superblock.
1624 * For others, assume no change is possible.
1625 */
1626 if (mddev->minor_version > 0)
1627 mddev->bitmap_info.space = 0;
1628 else if (mddev->bitmap_info.offset > 0)
1629 mddev->bitmap_info.space =
1630 8 - mddev->bitmap_info.offset;
1631 else
1632 mddev->bitmap_info.space =
1633 -mddev->bitmap_info.offset;
1634 }
1635
1636 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1637 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1638 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1639 mddev->new_level = le32_to_cpu(sb->new_level);
1640 mddev->new_layout = le32_to_cpu(sb->new_layout);
1641 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1642 if (mddev->delta_disks < 0 ||
1643 (mddev->delta_disks == 0 &&
1644 (le32_to_cpu(sb->feature_map)
1645 & MD_FEATURE_RESHAPE_BACKWARDS)))
1646 mddev->reshape_backwards = 1;
1647 } else {
1648 mddev->reshape_position = MaxSector;
1649 mddev->delta_disks = 0;
1650 mddev->new_level = mddev->level;
1651 mddev->new_layout = mddev->layout;
1652 mddev->new_chunk_sectors = mddev->chunk_sectors;
1653 }
1654
1655 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1656 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1657
1658 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) {
1659 if (le32_to_cpu(sb->feature_map) &
1660 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1661 return -EINVAL;
1662 set_bit(MD_HAS_PPL, &mddev->flags);
1663 }
1664 } else if (mddev->pers == NULL) {
1665 /* Insist of good event counter while assembling, except for
1666 * spares (which don't need an event count) */
1667 ++ev1;
1668 if (rdev->desc_nr >= 0 &&
1669 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1670 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1671 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1672 if (ev1 < mddev->events)
1673 return -EINVAL;
1674 } else if (mddev->bitmap) {
1675 /* If adding to array with a bitmap, then we can accept an
1676 * older device, but not too old.
1677 */
1678 if (ev1 < mddev->bitmap->events_cleared)
1679 return 0;
1680 if (ev1 < mddev->events)
1681 set_bit(Bitmap_sync, &rdev->flags);
1682 } else {
1683 if (ev1 < mddev->events)
1684 /* just a hot-add of a new device, leave raid_disk at -1 */
1685 return 0;
1686 }
1687 if (mddev->level != LEVEL_MULTIPATH) {
1688 int role;
1689 if (rdev->desc_nr < 0 ||
1690 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1691 role = MD_DISK_ROLE_SPARE;
1692 rdev->desc_nr = -1;
1693 } else
1694 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1695 switch(role) {
1696 case MD_DISK_ROLE_SPARE: /* spare */
1697 break;
1698 case MD_DISK_ROLE_FAULTY: /* faulty */
1699 set_bit(Faulty, &rdev->flags);
1700 break;
1701 case MD_DISK_ROLE_JOURNAL: /* journal device */
1702 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1703 /* journal device without journal feature */
1704 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1705 return -EINVAL;
1706 }
1707 set_bit(Journal, &rdev->flags);
1708 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1709 rdev->raid_disk = 0;
1710 break;
1711 default:
1712 rdev->saved_raid_disk = role;
1713 if ((le32_to_cpu(sb->feature_map) &
1714 MD_FEATURE_RECOVERY_OFFSET)) {
1715 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1716 if (!(le32_to_cpu(sb->feature_map) &
1717 MD_FEATURE_RECOVERY_BITMAP))
1718 rdev->saved_raid_disk = -1;
1719 } else
1720 set_bit(In_sync, &rdev->flags);
1721 rdev->raid_disk = role;
1722 break;
1723 }
1724 if (sb->devflags & WriteMostly1)
1725 set_bit(WriteMostly, &rdev->flags);
1726 if (sb->devflags & FailFast1)
1727 set_bit(FailFast, &rdev->flags);
1728 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1729 set_bit(Replacement, &rdev->flags);
1730 } else /* MULTIPATH are always insync */
1731 set_bit(In_sync, &rdev->flags);
1732
1733 return 0;
1734 }
1735
1736 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1737 {
1738 struct mdp_superblock_1 *sb;
1739 struct md_rdev *rdev2;
1740 int max_dev, i;
1741 /* make rdev->sb match mddev and rdev data. */
1742
1743 sb = page_address(rdev->sb_page);
1744
1745 sb->feature_map = 0;
1746 sb->pad0 = 0;
1747 sb->recovery_offset = cpu_to_le64(0);
1748 memset(sb->pad3, 0, sizeof(sb->pad3));
1749
1750 sb->utime = cpu_to_le64((__u64)mddev->utime);
1751 sb->events = cpu_to_le64(mddev->events);
1752 if (mddev->in_sync)
1753 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1754 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1755 sb->resync_offset = cpu_to_le64(MaxSector);
1756 else
1757 sb->resync_offset = cpu_to_le64(0);
1758
1759 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1760
1761 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1762 sb->size = cpu_to_le64(mddev->dev_sectors);
1763 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1764 sb->level = cpu_to_le32(mddev->level);
1765 sb->layout = cpu_to_le32(mddev->layout);
1766 if (test_bit(FailFast, &rdev->flags))
1767 sb->devflags |= FailFast1;
1768 else
1769 sb->devflags &= ~FailFast1;
1770
1771 if (test_bit(WriteMostly, &rdev->flags))
1772 sb->devflags |= WriteMostly1;
1773 else
1774 sb->devflags &= ~WriteMostly1;
1775 sb->data_offset = cpu_to_le64(rdev->data_offset);
1776 sb->data_size = cpu_to_le64(rdev->sectors);
1777
1778 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1779 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1780 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1781 }
1782
1783 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1784 !test_bit(In_sync, &rdev->flags)) {
1785 sb->feature_map |=
1786 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1787 sb->recovery_offset =
1788 cpu_to_le64(rdev->recovery_offset);
1789 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1790 sb->feature_map |=
1791 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1792 }
1793 /* Note: recovery_offset and journal_tail share space */
1794 if (test_bit(Journal, &rdev->flags))
1795 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1796 if (test_bit(Replacement, &rdev->flags))
1797 sb->feature_map |=
1798 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1799
1800 if (mddev->reshape_position != MaxSector) {
1801 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1802 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1803 sb->new_layout = cpu_to_le32(mddev->new_layout);
1804 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1805 sb->new_level = cpu_to_le32(mddev->new_level);
1806 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1807 if (mddev->delta_disks == 0 &&
1808 mddev->reshape_backwards)
1809 sb->feature_map
1810 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1811 if (rdev->new_data_offset != rdev->data_offset) {
1812 sb->feature_map
1813 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1814 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1815 - rdev->data_offset));
1816 }
1817 }
1818
1819 if (mddev_is_clustered(mddev))
1820 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1821
1822 if (rdev->badblocks.count == 0)
1823 /* Nothing to do for bad blocks*/ ;
1824 else if (sb->bblog_offset == 0)
1825 /* Cannot record bad blocks on this device */
1826 md_error(mddev, rdev);
1827 else {
1828 struct badblocks *bb = &rdev->badblocks;
1829 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1830 u64 *p = bb->page;
1831 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1832 if (bb->changed) {
1833 unsigned seq;
1834
1835 retry:
1836 seq = read_seqbegin(&bb->lock);
1837
1838 memset(bbp, 0xff, PAGE_SIZE);
1839
1840 for (i = 0 ; i < bb->count ; i++) {
1841 u64 internal_bb = p[i];
1842 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1843 | BB_LEN(internal_bb));
1844 bbp[i] = cpu_to_le64(store_bb);
1845 }
1846 bb->changed = 0;
1847 if (read_seqretry(&bb->lock, seq))
1848 goto retry;
1849
1850 bb->sector = (rdev->sb_start +
1851 (int)le32_to_cpu(sb->bblog_offset));
1852 bb->size = le16_to_cpu(sb->bblog_size);
1853 }
1854 }
1855
1856 max_dev = 0;
1857 rdev_for_each(rdev2, mddev)
1858 if (rdev2->desc_nr+1 > max_dev)
1859 max_dev = rdev2->desc_nr+1;
1860
1861 if (max_dev > le32_to_cpu(sb->max_dev)) {
1862 int bmask;
1863 sb->max_dev = cpu_to_le32(max_dev);
1864 rdev->sb_size = max_dev * 2 + 256;
1865 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1866 if (rdev->sb_size & bmask)
1867 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1868 } else
1869 max_dev = le32_to_cpu(sb->max_dev);
1870
1871 for (i=0; i<max_dev;i++)
1872 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1873
1874 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1875 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1876
1877 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1878 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1879 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1880 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1881 }
1882
1883 rdev_for_each(rdev2, mddev) {
1884 i = rdev2->desc_nr;
1885 if (test_bit(Faulty, &rdev2->flags))
1886 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1887 else if (test_bit(In_sync, &rdev2->flags))
1888 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1889 else if (test_bit(Journal, &rdev2->flags))
1890 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1891 else if (rdev2->raid_disk >= 0)
1892 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1893 else
1894 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1895 }
1896
1897 sb->sb_csum = calc_sb_1_csum(sb);
1898 }
1899
1900 static unsigned long long
1901 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1902 {
1903 struct mdp_superblock_1 *sb;
1904 sector_t max_sectors;
1905 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1906 return 0; /* component must fit device */
1907 if (rdev->data_offset != rdev->new_data_offset)
1908 return 0; /* too confusing */
1909 if (rdev->sb_start < rdev->data_offset) {
1910 /* minor versions 1 and 2; superblock before data */
1911 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1912 max_sectors -= rdev->data_offset;
1913 if (!num_sectors || num_sectors > max_sectors)
1914 num_sectors = max_sectors;
1915 } else if (rdev->mddev->bitmap_info.offset) {
1916 /* minor version 0 with bitmap we can't move */
1917 return 0;
1918 } else {
1919 /* minor version 0; superblock after data */
1920 sector_t sb_start;
1921 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1922 sb_start &= ~(sector_t)(4*2 - 1);
1923 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1924 if (!num_sectors || num_sectors > max_sectors)
1925 num_sectors = max_sectors;
1926 rdev->sb_start = sb_start;
1927 }
1928 sb = page_address(rdev->sb_page);
1929 sb->data_size = cpu_to_le64(num_sectors);
1930 sb->super_offset = cpu_to_le64(rdev->sb_start);
1931 sb->sb_csum = calc_sb_1_csum(sb);
1932 do {
1933 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1934 rdev->sb_page);
1935 } while (md_super_wait(rdev->mddev) < 0);
1936 return num_sectors;
1937
1938 }
1939
1940 static int
1941 super_1_allow_new_offset(struct md_rdev *rdev,
1942 unsigned long long new_offset)
1943 {
1944 /* All necessary checks on new >= old have been done */
1945 struct bitmap *bitmap;
1946 if (new_offset >= rdev->data_offset)
1947 return 1;
1948
1949 /* with 1.0 metadata, there is no metadata to tread on
1950 * so we can always move back */
1951 if (rdev->mddev->minor_version == 0)
1952 return 1;
1953
1954 /* otherwise we must be sure not to step on
1955 * any metadata, so stay:
1956 * 36K beyond start of superblock
1957 * beyond end of badblocks
1958 * beyond write-intent bitmap
1959 */
1960 if (rdev->sb_start + (32+4)*2 > new_offset)
1961 return 0;
1962 bitmap = rdev->mddev->bitmap;
1963 if (bitmap && !rdev->mddev->bitmap_info.file &&
1964 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1965 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1966 return 0;
1967 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1968 return 0;
1969
1970 return 1;
1971 }
1972
1973 static struct super_type super_types[] = {
1974 [0] = {
1975 .name = "0.90.0",
1976 .owner = THIS_MODULE,
1977 .load_super = super_90_load,
1978 .validate_super = super_90_validate,
1979 .sync_super = super_90_sync,
1980 .rdev_size_change = super_90_rdev_size_change,
1981 .allow_new_offset = super_90_allow_new_offset,
1982 },
1983 [1] = {
1984 .name = "md-1",
1985 .owner = THIS_MODULE,
1986 .load_super = super_1_load,
1987 .validate_super = super_1_validate,
1988 .sync_super = super_1_sync,
1989 .rdev_size_change = super_1_rdev_size_change,
1990 .allow_new_offset = super_1_allow_new_offset,
1991 },
1992 };
1993
1994 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1995 {
1996 if (mddev->sync_super) {
1997 mddev->sync_super(mddev, rdev);
1998 return;
1999 }
2000
2001 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2002
2003 super_types[mddev->major_version].sync_super(mddev, rdev);
2004 }
2005
2006 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2007 {
2008 struct md_rdev *rdev, *rdev2;
2009
2010 rcu_read_lock();
2011 rdev_for_each_rcu(rdev, mddev1) {
2012 if (test_bit(Faulty, &rdev->flags) ||
2013 test_bit(Journal, &rdev->flags) ||
2014 rdev->raid_disk == -1)
2015 continue;
2016 rdev_for_each_rcu(rdev2, mddev2) {
2017 if (test_bit(Faulty, &rdev2->flags) ||
2018 test_bit(Journal, &rdev2->flags) ||
2019 rdev2->raid_disk == -1)
2020 continue;
2021 if (rdev->bdev->bd_contains ==
2022 rdev2->bdev->bd_contains) {
2023 rcu_read_unlock();
2024 return 1;
2025 }
2026 }
2027 }
2028 rcu_read_unlock();
2029 return 0;
2030 }
2031
2032 static LIST_HEAD(pending_raid_disks);
2033
2034 /*
2035 * Try to register data integrity profile for an mddev
2036 *
2037 * This is called when an array is started and after a disk has been kicked
2038 * from the array. It only succeeds if all working and active component devices
2039 * are integrity capable with matching profiles.
2040 */
2041 int md_integrity_register(struct mddev *mddev)
2042 {
2043 struct md_rdev *rdev, *reference = NULL;
2044
2045 if (list_empty(&mddev->disks))
2046 return 0; /* nothing to do */
2047 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2048 return 0; /* shouldn't register, or already is */
2049 rdev_for_each(rdev, mddev) {
2050 /* skip spares and non-functional disks */
2051 if (test_bit(Faulty, &rdev->flags))
2052 continue;
2053 if (rdev->raid_disk < 0)
2054 continue;
2055 if (!reference) {
2056 /* Use the first rdev as the reference */
2057 reference = rdev;
2058 continue;
2059 }
2060 /* does this rdev's profile match the reference profile? */
2061 if (blk_integrity_compare(reference->bdev->bd_disk,
2062 rdev->bdev->bd_disk) < 0)
2063 return -EINVAL;
2064 }
2065 if (!reference || !bdev_get_integrity(reference->bdev))
2066 return 0;
2067 /*
2068 * All component devices are integrity capable and have matching
2069 * profiles, register the common profile for the md device.
2070 */
2071 blk_integrity_register(mddev->gendisk,
2072 bdev_get_integrity(reference->bdev));
2073
2074 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2075 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2076 pr_err("md: failed to create integrity pool for %s\n",
2077 mdname(mddev));
2078 return -EINVAL;
2079 }
2080 return 0;
2081 }
2082 EXPORT_SYMBOL(md_integrity_register);
2083
2084 /*
2085 * Attempt to add an rdev, but only if it is consistent with the current
2086 * integrity profile
2087 */
2088 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2089 {
2090 struct blk_integrity *bi_rdev;
2091 struct blk_integrity *bi_mddev;
2092 char name[BDEVNAME_SIZE];
2093
2094 if (!mddev->gendisk)
2095 return 0;
2096
2097 bi_rdev = bdev_get_integrity(rdev->bdev);
2098 bi_mddev = blk_get_integrity(mddev->gendisk);
2099
2100 if (!bi_mddev) /* nothing to do */
2101 return 0;
2102
2103 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2104 pr_err("%s: incompatible integrity profile for %s\n",
2105 mdname(mddev), bdevname(rdev->bdev, name));
2106 return -ENXIO;
2107 }
2108
2109 return 0;
2110 }
2111 EXPORT_SYMBOL(md_integrity_add_rdev);
2112
2113 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2114 {
2115 char b[BDEVNAME_SIZE];
2116 struct kobject *ko;
2117 int err;
2118
2119 /* prevent duplicates */
2120 if (find_rdev(mddev, rdev->bdev->bd_dev))
2121 return -EEXIST;
2122
2123 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2124 mddev->pers)
2125 return -EROFS;
2126
2127 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2128 if (!test_bit(Journal, &rdev->flags) &&
2129 rdev->sectors &&
2130 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2131 if (mddev->pers) {
2132 /* Cannot change size, so fail
2133 * If mddev->level <= 0, then we don't care
2134 * about aligning sizes (e.g. linear)
2135 */
2136 if (mddev->level > 0)
2137 return -ENOSPC;
2138 } else
2139 mddev->dev_sectors = rdev->sectors;
2140 }
2141
2142 /* Verify rdev->desc_nr is unique.
2143 * If it is -1, assign a free number, else
2144 * check number is not in use
2145 */
2146 rcu_read_lock();
2147 if (rdev->desc_nr < 0) {
2148 int choice = 0;
2149 if (mddev->pers)
2150 choice = mddev->raid_disks;
2151 while (md_find_rdev_nr_rcu(mddev, choice))
2152 choice++;
2153 rdev->desc_nr = choice;
2154 } else {
2155 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2156 rcu_read_unlock();
2157 return -EBUSY;
2158 }
2159 }
2160 rcu_read_unlock();
2161 if (!test_bit(Journal, &rdev->flags) &&
2162 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2163 pr_warn("md: %s: array is limited to %d devices\n",
2164 mdname(mddev), mddev->max_disks);
2165 return -EBUSY;
2166 }
2167 bdevname(rdev->bdev,b);
2168 strreplace(b, '/', '!');
2169
2170 rdev->mddev = mddev;
2171 pr_debug("md: bind<%s>\n", b);
2172
2173 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2174 goto fail;
2175
2176 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2177 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2178 /* failure here is OK */;
2179 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2180
2181 list_add_rcu(&rdev->same_set, &mddev->disks);
2182 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2183
2184 /* May as well allow recovery to be retried once */
2185 mddev->recovery_disabled++;
2186
2187 return 0;
2188
2189 fail:
2190 pr_warn("md: failed to register dev-%s for %s\n",
2191 b, mdname(mddev));
2192 return err;
2193 }
2194
2195 static void md_delayed_delete(struct work_struct *ws)
2196 {
2197 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2198 kobject_del(&rdev->kobj);
2199 kobject_put(&rdev->kobj);
2200 }
2201
2202 static void unbind_rdev_from_array(struct md_rdev *rdev)
2203 {
2204 char b[BDEVNAME_SIZE];
2205
2206 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2207 list_del_rcu(&rdev->same_set);
2208 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2209 rdev->mddev = NULL;
2210 sysfs_remove_link(&rdev->kobj, "block");
2211 sysfs_put(rdev->sysfs_state);
2212 rdev->sysfs_state = NULL;
2213 rdev->badblocks.count = 0;
2214 /* We need to delay this, otherwise we can deadlock when
2215 * writing to 'remove' to "dev/state". We also need
2216 * to delay it due to rcu usage.
2217 */
2218 synchronize_rcu();
2219 INIT_WORK(&rdev->del_work, md_delayed_delete);
2220 kobject_get(&rdev->kobj);
2221 queue_work(md_misc_wq, &rdev->del_work);
2222 }
2223
2224 /*
2225 * prevent the device from being mounted, repartitioned or
2226 * otherwise reused by a RAID array (or any other kernel
2227 * subsystem), by bd_claiming the device.
2228 */
2229 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2230 {
2231 int err = 0;
2232 struct block_device *bdev;
2233 char b[BDEVNAME_SIZE];
2234
2235 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2236 shared ? (struct md_rdev *)lock_rdev : rdev);
2237 if (IS_ERR(bdev)) {
2238 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2239 return PTR_ERR(bdev);
2240 }
2241 rdev->bdev = bdev;
2242 return err;
2243 }
2244
2245 static void unlock_rdev(struct md_rdev *rdev)
2246 {
2247 struct block_device *bdev = rdev->bdev;
2248 rdev->bdev = NULL;
2249 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2250 }
2251
2252 void md_autodetect_dev(dev_t dev);
2253
2254 static void export_rdev(struct md_rdev *rdev)
2255 {
2256 char b[BDEVNAME_SIZE];
2257
2258 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2259 md_rdev_clear(rdev);
2260 #ifndef MODULE
2261 if (test_bit(AutoDetected, &rdev->flags))
2262 md_autodetect_dev(rdev->bdev->bd_dev);
2263 #endif
2264 unlock_rdev(rdev);
2265 kobject_put(&rdev->kobj);
2266 }
2267
2268 void md_kick_rdev_from_array(struct md_rdev *rdev)
2269 {
2270 unbind_rdev_from_array(rdev);
2271 export_rdev(rdev);
2272 }
2273 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2274
2275 static void export_array(struct mddev *mddev)
2276 {
2277 struct md_rdev *rdev;
2278
2279 while (!list_empty(&mddev->disks)) {
2280 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2281 same_set);
2282 md_kick_rdev_from_array(rdev);
2283 }
2284 mddev->raid_disks = 0;
2285 mddev->major_version = 0;
2286 }
2287
2288 static bool set_in_sync(struct mddev *mddev)
2289 {
2290 WARN_ON_ONCE(NR_CPUS != 1 && !spin_is_locked(&mddev->lock));
2291 if (!mddev->in_sync) {
2292 mddev->sync_checkers++;
2293 spin_unlock(&mddev->lock);
2294 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2295 spin_lock(&mddev->lock);
2296 if (!mddev->in_sync &&
2297 percpu_ref_is_zero(&mddev->writes_pending)) {
2298 mddev->in_sync = 1;
2299 /*
2300 * Ensure ->in_sync is visible before we clear
2301 * ->sync_checkers.
2302 */
2303 smp_mb();
2304 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2305 sysfs_notify_dirent_safe(mddev->sysfs_state);
2306 }
2307 if (--mddev->sync_checkers == 0)
2308 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2309 }
2310 if (mddev->safemode == 1)
2311 mddev->safemode = 0;
2312 return mddev->in_sync;
2313 }
2314
2315 static void sync_sbs(struct mddev *mddev, int nospares)
2316 {
2317 /* Update each superblock (in-memory image), but
2318 * if we are allowed to, skip spares which already
2319 * have the right event counter, or have one earlier
2320 * (which would mean they aren't being marked as dirty
2321 * with the rest of the array)
2322 */
2323 struct md_rdev *rdev;
2324 rdev_for_each(rdev, mddev) {
2325 if (rdev->sb_events == mddev->events ||
2326 (nospares &&
2327 rdev->raid_disk < 0 &&
2328 rdev->sb_events+1 == mddev->events)) {
2329 /* Don't update this superblock */
2330 rdev->sb_loaded = 2;
2331 } else {
2332 sync_super(mddev, rdev);
2333 rdev->sb_loaded = 1;
2334 }
2335 }
2336 }
2337
2338 static bool does_sb_need_changing(struct mddev *mddev)
2339 {
2340 struct md_rdev *rdev;
2341 struct mdp_superblock_1 *sb;
2342 int role;
2343
2344 /* Find a good rdev */
2345 rdev_for_each(rdev, mddev)
2346 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2347 break;
2348
2349 /* No good device found. */
2350 if (!rdev)
2351 return false;
2352
2353 sb = page_address(rdev->sb_page);
2354 /* Check if a device has become faulty or a spare become active */
2355 rdev_for_each(rdev, mddev) {
2356 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2357 /* Device activated? */
2358 if (role == 0xffff && rdev->raid_disk >=0 &&
2359 !test_bit(Faulty, &rdev->flags))
2360 return true;
2361 /* Device turned faulty? */
2362 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2363 return true;
2364 }
2365
2366 /* Check if any mddev parameters have changed */
2367 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2368 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2369 (mddev->layout != le32_to_cpu(sb->layout)) ||
2370 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2371 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2372 return true;
2373
2374 return false;
2375 }
2376
2377 void md_update_sb(struct mddev *mddev, int force_change)
2378 {
2379 struct md_rdev *rdev;
2380 int sync_req;
2381 int nospares = 0;
2382 int any_badblocks_changed = 0;
2383 int ret = -1;
2384
2385 if (mddev->ro) {
2386 if (force_change)
2387 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2388 return;
2389 }
2390
2391 repeat:
2392 if (mddev_is_clustered(mddev)) {
2393 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2394 force_change = 1;
2395 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2396 nospares = 1;
2397 ret = md_cluster_ops->metadata_update_start(mddev);
2398 /* Has someone else has updated the sb */
2399 if (!does_sb_need_changing(mddev)) {
2400 if (ret == 0)
2401 md_cluster_ops->metadata_update_cancel(mddev);
2402 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2403 BIT(MD_SB_CHANGE_DEVS) |
2404 BIT(MD_SB_CHANGE_CLEAN));
2405 return;
2406 }
2407 }
2408
2409 /* First make sure individual recovery_offsets are correct */
2410 rdev_for_each(rdev, mddev) {
2411 if (rdev->raid_disk >= 0 &&
2412 mddev->delta_disks >= 0 &&
2413 !test_bit(Journal, &rdev->flags) &&
2414 !test_bit(In_sync, &rdev->flags) &&
2415 mddev->curr_resync_completed > rdev->recovery_offset)
2416 rdev->recovery_offset = mddev->curr_resync_completed;
2417
2418 }
2419 if (!mddev->persistent) {
2420 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2421 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2422 if (!mddev->external) {
2423 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2424 rdev_for_each(rdev, mddev) {
2425 if (rdev->badblocks.changed) {
2426 rdev->badblocks.changed = 0;
2427 ack_all_badblocks(&rdev->badblocks);
2428 md_error(mddev, rdev);
2429 }
2430 clear_bit(Blocked, &rdev->flags);
2431 clear_bit(BlockedBadBlocks, &rdev->flags);
2432 wake_up(&rdev->blocked_wait);
2433 }
2434 }
2435 wake_up(&mddev->sb_wait);
2436 return;
2437 }
2438
2439 spin_lock(&mddev->lock);
2440
2441 mddev->utime = ktime_get_real_seconds();
2442
2443 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2444 force_change = 1;
2445 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2446 /* just a clean<-> dirty transition, possibly leave spares alone,
2447 * though if events isn't the right even/odd, we will have to do
2448 * spares after all
2449 */
2450 nospares = 1;
2451 if (force_change)
2452 nospares = 0;
2453 if (mddev->degraded)
2454 /* If the array is degraded, then skipping spares is both
2455 * dangerous and fairly pointless.
2456 * Dangerous because a device that was removed from the array
2457 * might have a event_count that still looks up-to-date,
2458 * so it can be re-added without a resync.
2459 * Pointless because if there are any spares to skip,
2460 * then a recovery will happen and soon that array won't
2461 * be degraded any more and the spare can go back to sleep then.
2462 */
2463 nospares = 0;
2464
2465 sync_req = mddev->in_sync;
2466
2467 /* If this is just a dirty<->clean transition, and the array is clean
2468 * and 'events' is odd, we can roll back to the previous clean state */
2469 if (nospares
2470 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2471 && mddev->can_decrease_events
2472 && mddev->events != 1) {
2473 mddev->events--;
2474 mddev->can_decrease_events = 0;
2475 } else {
2476 /* otherwise we have to go forward and ... */
2477 mddev->events ++;
2478 mddev->can_decrease_events = nospares;
2479 }
2480
2481 /*
2482 * This 64-bit counter should never wrap.
2483 * Either we are in around ~1 trillion A.C., assuming
2484 * 1 reboot per second, or we have a bug...
2485 */
2486 WARN_ON(mddev->events == 0);
2487
2488 rdev_for_each(rdev, mddev) {
2489 if (rdev->badblocks.changed)
2490 any_badblocks_changed++;
2491 if (test_bit(Faulty, &rdev->flags))
2492 set_bit(FaultRecorded, &rdev->flags);
2493 }
2494
2495 sync_sbs(mddev, nospares);
2496 spin_unlock(&mddev->lock);
2497
2498 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2499 mdname(mddev), mddev->in_sync);
2500
2501 if (mddev->queue)
2502 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2503 rewrite:
2504 bitmap_update_sb(mddev->bitmap);
2505 rdev_for_each(rdev, mddev) {
2506 char b[BDEVNAME_SIZE];
2507
2508 if (rdev->sb_loaded != 1)
2509 continue; /* no noise on spare devices */
2510
2511 if (!test_bit(Faulty, &rdev->flags)) {
2512 md_super_write(mddev,rdev,
2513 rdev->sb_start, rdev->sb_size,
2514 rdev->sb_page);
2515 pr_debug("md: (write) %s's sb offset: %llu\n",
2516 bdevname(rdev->bdev, b),
2517 (unsigned long long)rdev->sb_start);
2518 rdev->sb_events = mddev->events;
2519 if (rdev->badblocks.size) {
2520 md_super_write(mddev, rdev,
2521 rdev->badblocks.sector,
2522 rdev->badblocks.size << 9,
2523 rdev->bb_page);
2524 rdev->badblocks.size = 0;
2525 }
2526
2527 } else
2528 pr_debug("md: %s (skipping faulty)\n",
2529 bdevname(rdev->bdev, b));
2530
2531 if (mddev->level == LEVEL_MULTIPATH)
2532 /* only need to write one superblock... */
2533 break;
2534 }
2535 if (md_super_wait(mddev) < 0)
2536 goto rewrite;
2537 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2538
2539 if (mddev_is_clustered(mddev) && ret == 0)
2540 md_cluster_ops->metadata_update_finish(mddev);
2541
2542 if (mddev->in_sync != sync_req ||
2543 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2544 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2545 /* have to write it out again */
2546 goto repeat;
2547 wake_up(&mddev->sb_wait);
2548 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2549 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2550
2551 rdev_for_each(rdev, mddev) {
2552 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2553 clear_bit(Blocked, &rdev->flags);
2554
2555 if (any_badblocks_changed)
2556 ack_all_badblocks(&rdev->badblocks);
2557 clear_bit(BlockedBadBlocks, &rdev->flags);
2558 wake_up(&rdev->blocked_wait);
2559 }
2560 }
2561 EXPORT_SYMBOL(md_update_sb);
2562
2563 static int add_bound_rdev(struct md_rdev *rdev)
2564 {
2565 struct mddev *mddev = rdev->mddev;
2566 int err = 0;
2567 bool add_journal = test_bit(Journal, &rdev->flags);
2568
2569 if (!mddev->pers->hot_remove_disk || add_journal) {
2570 /* If there is hot_add_disk but no hot_remove_disk
2571 * then added disks for geometry changes,
2572 * and should be added immediately.
2573 */
2574 super_types[mddev->major_version].
2575 validate_super(mddev, rdev);
2576 if (add_journal)
2577 mddev_suspend(mddev);
2578 err = mddev->pers->hot_add_disk(mddev, rdev);
2579 if (add_journal)
2580 mddev_resume(mddev);
2581 if (err) {
2582 md_kick_rdev_from_array(rdev);
2583 return err;
2584 }
2585 }
2586 sysfs_notify_dirent_safe(rdev->sysfs_state);
2587
2588 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2589 if (mddev->degraded)
2590 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2591 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2592 md_new_event(mddev);
2593 md_wakeup_thread(mddev->thread);
2594 return 0;
2595 }
2596
2597 /* words written to sysfs files may, or may not, be \n terminated.
2598 * We want to accept with case. For this we use cmd_match.
2599 */
2600 static int cmd_match(const char *cmd, const char *str)
2601 {
2602 /* See if cmd, written into a sysfs file, matches
2603 * str. They must either be the same, or cmd can
2604 * have a trailing newline
2605 */
2606 while (*cmd && *str && *cmd == *str) {
2607 cmd++;
2608 str++;
2609 }
2610 if (*cmd == '\n')
2611 cmd++;
2612 if (*str || *cmd)
2613 return 0;
2614 return 1;
2615 }
2616
2617 struct rdev_sysfs_entry {
2618 struct attribute attr;
2619 ssize_t (*show)(struct md_rdev *, char *);
2620 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2621 };
2622
2623 static ssize_t
2624 state_show(struct md_rdev *rdev, char *page)
2625 {
2626 char *sep = ",";
2627 size_t len = 0;
2628 unsigned long flags = ACCESS_ONCE(rdev->flags);
2629
2630 if (test_bit(Faulty, &flags) ||
2631 (!test_bit(ExternalBbl, &flags) &&
2632 rdev->badblocks.unacked_exist))
2633 len += sprintf(page+len, "faulty%s", sep);
2634 if (test_bit(In_sync, &flags))
2635 len += sprintf(page+len, "in_sync%s", sep);
2636 if (test_bit(Journal, &flags))
2637 len += sprintf(page+len, "journal%s", sep);
2638 if (test_bit(WriteMostly, &flags))
2639 len += sprintf(page+len, "write_mostly%s", sep);
2640 if (test_bit(Blocked, &flags) ||
2641 (rdev->badblocks.unacked_exist
2642 && !test_bit(Faulty, &flags)))
2643 len += sprintf(page+len, "blocked%s", sep);
2644 if (!test_bit(Faulty, &flags) &&
2645 !test_bit(Journal, &flags) &&
2646 !test_bit(In_sync, &flags))
2647 len += sprintf(page+len, "spare%s", sep);
2648 if (test_bit(WriteErrorSeen, &flags))
2649 len += sprintf(page+len, "write_error%s", sep);
2650 if (test_bit(WantReplacement, &flags))
2651 len += sprintf(page+len, "want_replacement%s", sep);
2652 if (test_bit(Replacement, &flags))
2653 len += sprintf(page+len, "replacement%s", sep);
2654 if (test_bit(ExternalBbl, &flags))
2655 len += sprintf(page+len, "external_bbl%s", sep);
2656 if (test_bit(FailFast, &flags))
2657 len += sprintf(page+len, "failfast%s", sep);
2658
2659 if (len)
2660 len -= strlen(sep);
2661
2662 return len+sprintf(page+len, "\n");
2663 }
2664
2665 static ssize_t
2666 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2667 {
2668 /* can write
2669 * faulty - simulates an error
2670 * remove - disconnects the device
2671 * writemostly - sets write_mostly
2672 * -writemostly - clears write_mostly
2673 * blocked - sets the Blocked flags
2674 * -blocked - clears the Blocked and possibly simulates an error
2675 * insync - sets Insync providing device isn't active
2676 * -insync - clear Insync for a device with a slot assigned,
2677 * so that it gets rebuilt based on bitmap
2678 * write_error - sets WriteErrorSeen
2679 * -write_error - clears WriteErrorSeen
2680 * {,-}failfast - set/clear FailFast
2681 */
2682 int err = -EINVAL;
2683 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2684 md_error(rdev->mddev, rdev);
2685 if (test_bit(Faulty, &rdev->flags))
2686 err = 0;
2687 else
2688 err = -EBUSY;
2689 } else if (cmd_match(buf, "remove")) {
2690 if (rdev->mddev->pers) {
2691 clear_bit(Blocked, &rdev->flags);
2692 remove_and_add_spares(rdev->mddev, rdev);
2693 }
2694 if (rdev->raid_disk >= 0)
2695 err = -EBUSY;
2696 else {
2697 struct mddev *mddev = rdev->mddev;
2698 err = 0;
2699 if (mddev_is_clustered(mddev))
2700 err = md_cluster_ops->remove_disk(mddev, rdev);
2701
2702 if (err == 0) {
2703 md_kick_rdev_from_array(rdev);
2704 if (mddev->pers) {
2705 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2706 md_wakeup_thread(mddev->thread);
2707 }
2708 md_new_event(mddev);
2709 }
2710 }
2711 } else if (cmd_match(buf, "writemostly")) {
2712 set_bit(WriteMostly, &rdev->flags);
2713 err = 0;
2714 } else if (cmd_match(buf, "-writemostly")) {
2715 clear_bit(WriteMostly, &rdev->flags);
2716 err = 0;
2717 } else if (cmd_match(buf, "blocked")) {
2718 set_bit(Blocked, &rdev->flags);
2719 err = 0;
2720 } else if (cmd_match(buf, "-blocked")) {
2721 if (!test_bit(Faulty, &rdev->flags) &&
2722 !test_bit(ExternalBbl, &rdev->flags) &&
2723 rdev->badblocks.unacked_exist) {
2724 /* metadata handler doesn't understand badblocks,
2725 * so we need to fail the device
2726 */
2727 md_error(rdev->mddev, rdev);
2728 }
2729 clear_bit(Blocked, &rdev->flags);
2730 clear_bit(BlockedBadBlocks, &rdev->flags);
2731 wake_up(&rdev->blocked_wait);
2732 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2733 md_wakeup_thread(rdev->mddev->thread);
2734
2735 err = 0;
2736 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2737 set_bit(In_sync, &rdev->flags);
2738 err = 0;
2739 } else if (cmd_match(buf, "failfast")) {
2740 set_bit(FailFast, &rdev->flags);
2741 err = 0;
2742 } else if (cmd_match(buf, "-failfast")) {
2743 clear_bit(FailFast, &rdev->flags);
2744 err = 0;
2745 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2746 !test_bit(Journal, &rdev->flags)) {
2747 if (rdev->mddev->pers == NULL) {
2748 clear_bit(In_sync, &rdev->flags);
2749 rdev->saved_raid_disk = rdev->raid_disk;
2750 rdev->raid_disk = -1;
2751 err = 0;
2752 }
2753 } else if (cmd_match(buf, "write_error")) {
2754 set_bit(WriteErrorSeen, &rdev->flags);
2755 err = 0;
2756 } else if (cmd_match(buf, "-write_error")) {
2757 clear_bit(WriteErrorSeen, &rdev->flags);
2758 err = 0;
2759 } else if (cmd_match(buf, "want_replacement")) {
2760 /* Any non-spare device that is not a replacement can
2761 * become want_replacement at any time, but we then need to
2762 * check if recovery is needed.
2763 */
2764 if (rdev->raid_disk >= 0 &&
2765 !test_bit(Journal, &rdev->flags) &&
2766 !test_bit(Replacement, &rdev->flags))
2767 set_bit(WantReplacement, &rdev->flags);
2768 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2769 md_wakeup_thread(rdev->mddev->thread);
2770 err = 0;
2771 } else if (cmd_match(buf, "-want_replacement")) {
2772 /* Clearing 'want_replacement' is always allowed.
2773 * Once replacements starts it is too late though.
2774 */
2775 err = 0;
2776 clear_bit(WantReplacement, &rdev->flags);
2777 } else if (cmd_match(buf, "replacement")) {
2778 /* Can only set a device as a replacement when array has not
2779 * yet been started. Once running, replacement is automatic
2780 * from spares, or by assigning 'slot'.
2781 */
2782 if (rdev->mddev->pers)
2783 err = -EBUSY;
2784 else {
2785 set_bit(Replacement, &rdev->flags);
2786 err = 0;
2787 }
2788 } else if (cmd_match(buf, "-replacement")) {
2789 /* Similarly, can only clear Replacement before start */
2790 if (rdev->mddev->pers)
2791 err = -EBUSY;
2792 else {
2793 clear_bit(Replacement, &rdev->flags);
2794 err = 0;
2795 }
2796 } else if (cmd_match(buf, "re-add")) {
2797 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2798 /* clear_bit is performed _after_ all the devices
2799 * have their local Faulty bit cleared. If any writes
2800 * happen in the meantime in the local node, they
2801 * will land in the local bitmap, which will be synced
2802 * by this node eventually
2803 */
2804 if (!mddev_is_clustered(rdev->mddev) ||
2805 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2806 clear_bit(Faulty, &rdev->flags);
2807 err = add_bound_rdev(rdev);
2808 }
2809 } else
2810 err = -EBUSY;
2811 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2812 set_bit(ExternalBbl, &rdev->flags);
2813 rdev->badblocks.shift = 0;
2814 err = 0;
2815 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2816 clear_bit(ExternalBbl, &rdev->flags);
2817 err = 0;
2818 }
2819 if (!err)
2820 sysfs_notify_dirent_safe(rdev->sysfs_state);
2821 return err ? err : len;
2822 }
2823 static struct rdev_sysfs_entry rdev_state =
2824 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2825
2826 static ssize_t
2827 errors_show(struct md_rdev *rdev, char *page)
2828 {
2829 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2830 }
2831
2832 static ssize_t
2833 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2834 {
2835 unsigned int n;
2836 int rv;
2837
2838 rv = kstrtouint(buf, 10, &n);
2839 if (rv < 0)
2840 return rv;
2841 atomic_set(&rdev->corrected_errors, n);
2842 return len;
2843 }
2844 static struct rdev_sysfs_entry rdev_errors =
2845 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2846
2847 static ssize_t
2848 slot_show(struct md_rdev *rdev, char *page)
2849 {
2850 if (test_bit(Journal, &rdev->flags))
2851 return sprintf(page, "journal\n");
2852 else if (rdev->raid_disk < 0)
2853 return sprintf(page, "none\n");
2854 else
2855 return sprintf(page, "%d\n", rdev->raid_disk);
2856 }
2857
2858 static ssize_t
2859 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2860 {
2861 int slot;
2862 int err;
2863
2864 if (test_bit(Journal, &rdev->flags))
2865 return -EBUSY;
2866 if (strncmp(buf, "none", 4)==0)
2867 slot = -1;
2868 else {
2869 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2870 if (err < 0)
2871 return err;
2872 }
2873 if (rdev->mddev->pers && slot == -1) {
2874 /* Setting 'slot' on an active array requires also
2875 * updating the 'rd%d' link, and communicating
2876 * with the personality with ->hot_*_disk.
2877 * For now we only support removing
2878 * failed/spare devices. This normally happens automatically,
2879 * but not when the metadata is externally managed.
2880 */
2881 if (rdev->raid_disk == -1)
2882 return -EEXIST;
2883 /* personality does all needed checks */
2884 if (rdev->mddev->pers->hot_remove_disk == NULL)
2885 return -EINVAL;
2886 clear_bit(Blocked, &rdev->flags);
2887 remove_and_add_spares(rdev->mddev, rdev);
2888 if (rdev->raid_disk >= 0)
2889 return -EBUSY;
2890 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2891 md_wakeup_thread(rdev->mddev->thread);
2892 } else if (rdev->mddev->pers) {
2893 /* Activating a spare .. or possibly reactivating
2894 * if we ever get bitmaps working here.
2895 */
2896 int err;
2897
2898 if (rdev->raid_disk != -1)
2899 return -EBUSY;
2900
2901 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2902 return -EBUSY;
2903
2904 if (rdev->mddev->pers->hot_add_disk == NULL)
2905 return -EINVAL;
2906
2907 if (slot >= rdev->mddev->raid_disks &&
2908 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2909 return -ENOSPC;
2910
2911 rdev->raid_disk = slot;
2912 if (test_bit(In_sync, &rdev->flags))
2913 rdev->saved_raid_disk = slot;
2914 else
2915 rdev->saved_raid_disk = -1;
2916 clear_bit(In_sync, &rdev->flags);
2917 clear_bit(Bitmap_sync, &rdev->flags);
2918 err = rdev->mddev->pers->
2919 hot_add_disk(rdev->mddev, rdev);
2920 if (err) {
2921 rdev->raid_disk = -1;
2922 return err;
2923 } else
2924 sysfs_notify_dirent_safe(rdev->sysfs_state);
2925 if (sysfs_link_rdev(rdev->mddev, rdev))
2926 /* failure here is OK */;
2927 /* don't wakeup anyone, leave that to userspace. */
2928 } else {
2929 if (slot >= rdev->mddev->raid_disks &&
2930 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2931 return -ENOSPC;
2932 rdev->raid_disk = slot;
2933 /* assume it is working */
2934 clear_bit(Faulty, &rdev->flags);
2935 clear_bit(WriteMostly, &rdev->flags);
2936 set_bit(In_sync, &rdev->flags);
2937 sysfs_notify_dirent_safe(rdev->sysfs_state);
2938 }
2939 return len;
2940 }
2941
2942 static struct rdev_sysfs_entry rdev_slot =
2943 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2944
2945 static ssize_t
2946 offset_show(struct md_rdev *rdev, char *page)
2947 {
2948 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2949 }
2950
2951 static ssize_t
2952 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2953 {
2954 unsigned long long offset;
2955 if (kstrtoull(buf, 10, &offset) < 0)
2956 return -EINVAL;
2957 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2958 return -EBUSY;
2959 if (rdev->sectors && rdev->mddev->external)
2960 /* Must set offset before size, so overlap checks
2961 * can be sane */
2962 return -EBUSY;
2963 rdev->data_offset = offset;
2964 rdev->new_data_offset = offset;
2965 return len;
2966 }
2967
2968 static struct rdev_sysfs_entry rdev_offset =
2969 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2970
2971 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2972 {
2973 return sprintf(page, "%llu\n",
2974 (unsigned long long)rdev->new_data_offset);
2975 }
2976
2977 static ssize_t new_offset_store(struct md_rdev *rdev,
2978 const char *buf, size_t len)
2979 {
2980 unsigned long long new_offset;
2981 struct mddev *mddev = rdev->mddev;
2982
2983 if (kstrtoull(buf, 10, &new_offset) < 0)
2984 return -EINVAL;
2985
2986 if (mddev->sync_thread ||
2987 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2988 return -EBUSY;
2989 if (new_offset == rdev->data_offset)
2990 /* reset is always permitted */
2991 ;
2992 else if (new_offset > rdev->data_offset) {
2993 /* must not push array size beyond rdev_sectors */
2994 if (new_offset - rdev->data_offset
2995 + mddev->dev_sectors > rdev->sectors)
2996 return -E2BIG;
2997 }
2998 /* Metadata worries about other space details. */
2999
3000 /* decreasing the offset is inconsistent with a backwards
3001 * reshape.
3002 */
3003 if (new_offset < rdev->data_offset &&
3004 mddev->reshape_backwards)
3005 return -EINVAL;
3006 /* Increasing offset is inconsistent with forwards
3007 * reshape. reshape_direction should be set to
3008 * 'backwards' first.
3009 */
3010 if (new_offset > rdev->data_offset &&
3011 !mddev->reshape_backwards)
3012 return -EINVAL;
3013
3014 if (mddev->pers && mddev->persistent &&
3015 !super_types[mddev->major_version]
3016 .allow_new_offset(rdev, new_offset))
3017 return -E2BIG;
3018 rdev->new_data_offset = new_offset;
3019 if (new_offset > rdev->data_offset)
3020 mddev->reshape_backwards = 1;
3021 else if (new_offset < rdev->data_offset)
3022 mddev->reshape_backwards = 0;
3023
3024 return len;
3025 }
3026 static struct rdev_sysfs_entry rdev_new_offset =
3027 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3028
3029 static ssize_t
3030 rdev_size_show(struct md_rdev *rdev, char *page)
3031 {
3032 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3033 }
3034
3035 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3036 {
3037 /* check if two start/length pairs overlap */
3038 if (s1+l1 <= s2)
3039 return 0;
3040 if (s2+l2 <= s1)
3041 return 0;
3042 return 1;
3043 }
3044
3045 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3046 {
3047 unsigned long long blocks;
3048 sector_t new;
3049
3050 if (kstrtoull(buf, 10, &blocks) < 0)
3051 return -EINVAL;
3052
3053 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3054 return -EINVAL; /* sector conversion overflow */
3055
3056 new = blocks * 2;
3057 if (new != blocks * 2)
3058 return -EINVAL; /* unsigned long long to sector_t overflow */
3059
3060 *sectors = new;
3061 return 0;
3062 }
3063
3064 static ssize_t
3065 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3066 {
3067 struct mddev *my_mddev = rdev->mddev;
3068 sector_t oldsectors = rdev->sectors;
3069 sector_t sectors;
3070
3071 if (test_bit(Journal, &rdev->flags))
3072 return -EBUSY;
3073 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3074 return -EINVAL;
3075 if (rdev->data_offset != rdev->new_data_offset)
3076 return -EINVAL; /* too confusing */
3077 if (my_mddev->pers && rdev->raid_disk >= 0) {
3078 if (my_mddev->persistent) {
3079 sectors = super_types[my_mddev->major_version].
3080 rdev_size_change(rdev, sectors);
3081 if (!sectors)
3082 return -EBUSY;
3083 } else if (!sectors)
3084 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3085 rdev->data_offset;
3086 if (!my_mddev->pers->resize)
3087 /* Cannot change size for RAID0 or Linear etc */
3088 return -EINVAL;
3089 }
3090 if (sectors < my_mddev->dev_sectors)
3091 return -EINVAL; /* component must fit device */
3092
3093 rdev->sectors = sectors;
3094 if (sectors > oldsectors && my_mddev->external) {
3095 /* Need to check that all other rdevs with the same
3096 * ->bdev do not overlap. 'rcu' is sufficient to walk
3097 * the rdev lists safely.
3098 * This check does not provide a hard guarantee, it
3099 * just helps avoid dangerous mistakes.
3100 */
3101 struct mddev *mddev;
3102 int overlap = 0;
3103 struct list_head *tmp;
3104
3105 rcu_read_lock();
3106 for_each_mddev(mddev, tmp) {
3107 struct md_rdev *rdev2;
3108
3109 rdev_for_each(rdev2, mddev)
3110 if (rdev->bdev == rdev2->bdev &&
3111 rdev != rdev2 &&
3112 overlaps(rdev->data_offset, rdev->sectors,
3113 rdev2->data_offset,
3114 rdev2->sectors)) {
3115 overlap = 1;
3116 break;
3117 }
3118 if (overlap) {
3119 mddev_put(mddev);
3120 break;
3121 }
3122 }
3123 rcu_read_unlock();
3124 if (overlap) {
3125 /* Someone else could have slipped in a size
3126 * change here, but doing so is just silly.
3127 * We put oldsectors back because we *know* it is
3128 * safe, and trust userspace not to race with
3129 * itself
3130 */
3131 rdev->sectors = oldsectors;
3132 return -EBUSY;
3133 }
3134 }
3135 return len;
3136 }
3137
3138 static struct rdev_sysfs_entry rdev_size =
3139 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3140
3141 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3142 {
3143 unsigned long long recovery_start = rdev->recovery_offset;
3144
3145 if (test_bit(In_sync, &rdev->flags) ||
3146 recovery_start == MaxSector)
3147 return sprintf(page, "none\n");
3148
3149 return sprintf(page, "%llu\n", recovery_start);
3150 }
3151
3152 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3153 {
3154 unsigned long long recovery_start;
3155
3156 if (cmd_match(buf, "none"))
3157 recovery_start = MaxSector;
3158 else if (kstrtoull(buf, 10, &recovery_start))
3159 return -EINVAL;
3160
3161 if (rdev->mddev->pers &&
3162 rdev->raid_disk >= 0)
3163 return -EBUSY;
3164
3165 rdev->recovery_offset = recovery_start;
3166 if (recovery_start == MaxSector)
3167 set_bit(In_sync, &rdev->flags);
3168 else
3169 clear_bit(In_sync, &rdev->flags);
3170 return len;
3171 }
3172
3173 static struct rdev_sysfs_entry rdev_recovery_start =
3174 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3175
3176 /* sysfs access to bad-blocks list.
3177 * We present two files.
3178 * 'bad-blocks' lists sector numbers and lengths of ranges that
3179 * are recorded as bad. The list is truncated to fit within
3180 * the one-page limit of sysfs.
3181 * Writing "sector length" to this file adds an acknowledged
3182 * bad block list.
3183 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3184 * been acknowledged. Writing to this file adds bad blocks
3185 * without acknowledging them. This is largely for testing.
3186 */
3187 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3188 {
3189 return badblocks_show(&rdev->badblocks, page, 0);
3190 }
3191 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3192 {
3193 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3194 /* Maybe that ack was all we needed */
3195 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3196 wake_up(&rdev->blocked_wait);
3197 return rv;
3198 }
3199 static struct rdev_sysfs_entry rdev_bad_blocks =
3200 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3201
3202 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3203 {
3204 return badblocks_show(&rdev->badblocks, page, 1);
3205 }
3206 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3207 {
3208 return badblocks_store(&rdev->badblocks, page, len, 1);
3209 }
3210 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3211 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3212
3213 static ssize_t
3214 ppl_sector_show(struct md_rdev *rdev, char *page)
3215 {
3216 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3217 }
3218
3219 static ssize_t
3220 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3221 {
3222 unsigned long long sector;
3223
3224 if (kstrtoull(buf, 10, &sector) < 0)
3225 return -EINVAL;
3226 if (sector != (sector_t)sector)
3227 return -EINVAL;
3228
3229 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3230 rdev->raid_disk >= 0)
3231 return -EBUSY;
3232
3233 if (rdev->mddev->persistent) {
3234 if (rdev->mddev->major_version == 0)
3235 return -EINVAL;
3236 if ((sector > rdev->sb_start &&
3237 sector - rdev->sb_start > S16_MAX) ||
3238 (sector < rdev->sb_start &&
3239 rdev->sb_start - sector > -S16_MIN))
3240 return -EINVAL;
3241 rdev->ppl.offset = sector - rdev->sb_start;
3242 } else if (!rdev->mddev->external) {
3243 return -EBUSY;
3244 }
3245 rdev->ppl.sector = sector;
3246 return len;
3247 }
3248
3249 static struct rdev_sysfs_entry rdev_ppl_sector =
3250 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3251
3252 static ssize_t
3253 ppl_size_show(struct md_rdev *rdev, char *page)
3254 {
3255 return sprintf(page, "%u\n", rdev->ppl.size);
3256 }
3257
3258 static ssize_t
3259 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3260 {
3261 unsigned int size;
3262
3263 if (kstrtouint(buf, 10, &size) < 0)
3264 return -EINVAL;
3265
3266 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3267 rdev->raid_disk >= 0)
3268 return -EBUSY;
3269
3270 if (rdev->mddev->persistent) {
3271 if (rdev->mddev->major_version == 0)
3272 return -EINVAL;
3273 if (size > U16_MAX)
3274 return -EINVAL;
3275 } else if (!rdev->mddev->external) {
3276 return -EBUSY;
3277 }
3278 rdev->ppl.size = size;
3279 return len;
3280 }
3281
3282 static struct rdev_sysfs_entry rdev_ppl_size =
3283 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3284
3285 static struct attribute *rdev_default_attrs[] = {
3286 &rdev_state.attr,
3287 &rdev_errors.attr,
3288 &rdev_slot.attr,
3289 &rdev_offset.attr,
3290 &rdev_new_offset.attr,
3291 &rdev_size.attr,
3292 &rdev_recovery_start.attr,
3293 &rdev_bad_blocks.attr,
3294 &rdev_unack_bad_blocks.attr,
3295 &rdev_ppl_sector.attr,
3296 &rdev_ppl_size.attr,
3297 NULL,
3298 };
3299 static ssize_t
3300 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3301 {
3302 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3303 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3304
3305 if (!entry->show)
3306 return -EIO;
3307 if (!rdev->mddev)
3308 return -EBUSY;
3309 return entry->show(rdev, page);
3310 }
3311
3312 static ssize_t
3313 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3314 const char *page, size_t length)
3315 {
3316 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3317 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3318 ssize_t rv;
3319 struct mddev *mddev = rdev->mddev;
3320
3321 if (!entry->store)
3322 return -EIO;
3323 if (!capable(CAP_SYS_ADMIN))
3324 return -EACCES;
3325 rv = mddev ? mddev_lock(mddev): -EBUSY;
3326 if (!rv) {
3327 if (rdev->mddev == NULL)
3328 rv = -EBUSY;
3329 else
3330 rv = entry->store(rdev, page, length);
3331 mddev_unlock(mddev);
3332 }
3333 return rv;
3334 }
3335
3336 static void rdev_free(struct kobject *ko)
3337 {
3338 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3339 kfree(rdev);
3340 }
3341 static const struct sysfs_ops rdev_sysfs_ops = {
3342 .show = rdev_attr_show,
3343 .store = rdev_attr_store,
3344 };
3345 static struct kobj_type rdev_ktype = {
3346 .release = rdev_free,
3347 .sysfs_ops = &rdev_sysfs_ops,
3348 .default_attrs = rdev_default_attrs,
3349 };
3350
3351 int md_rdev_init(struct md_rdev *rdev)
3352 {
3353 rdev->desc_nr = -1;
3354 rdev->saved_raid_disk = -1;
3355 rdev->raid_disk = -1;
3356 rdev->flags = 0;
3357 rdev->data_offset = 0;
3358 rdev->new_data_offset = 0;
3359 rdev->sb_events = 0;
3360 rdev->last_read_error = 0;
3361 rdev->sb_loaded = 0;
3362 rdev->bb_page = NULL;
3363 atomic_set(&rdev->nr_pending, 0);
3364 atomic_set(&rdev->read_errors, 0);
3365 atomic_set(&rdev->corrected_errors, 0);
3366
3367 INIT_LIST_HEAD(&rdev->same_set);
3368 init_waitqueue_head(&rdev->blocked_wait);
3369
3370 /* Add space to store bad block list.
3371 * This reserves the space even on arrays where it cannot
3372 * be used - I wonder if that matters
3373 */
3374 return badblocks_init(&rdev->badblocks, 0);
3375 }
3376 EXPORT_SYMBOL_GPL(md_rdev_init);
3377 /*
3378 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3379 *
3380 * mark the device faulty if:
3381 *
3382 * - the device is nonexistent (zero size)
3383 * - the device has no valid superblock
3384 *
3385 * a faulty rdev _never_ has rdev->sb set.
3386 */
3387 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3388 {
3389 char b[BDEVNAME_SIZE];
3390 int err;
3391 struct md_rdev *rdev;
3392 sector_t size;
3393
3394 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3395 if (!rdev)
3396 return ERR_PTR(-ENOMEM);
3397
3398 err = md_rdev_init(rdev);
3399 if (err)
3400 goto abort_free;
3401 err = alloc_disk_sb(rdev);
3402 if (err)
3403 goto abort_free;
3404
3405 err = lock_rdev(rdev, newdev, super_format == -2);
3406 if (err)
3407 goto abort_free;
3408
3409 kobject_init(&rdev->kobj, &rdev_ktype);
3410
3411 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3412 if (!size) {
3413 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3414 bdevname(rdev->bdev,b));
3415 err = -EINVAL;
3416 goto abort_free;
3417 }
3418
3419 if (super_format >= 0) {
3420 err = super_types[super_format].
3421 load_super(rdev, NULL, super_minor);
3422 if (err == -EINVAL) {
3423 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3424 bdevname(rdev->bdev,b),
3425 super_format, super_minor);
3426 goto abort_free;
3427 }
3428 if (err < 0) {
3429 pr_warn("md: could not read %s's sb, not importing!\n",
3430 bdevname(rdev->bdev,b));
3431 goto abort_free;
3432 }
3433 }
3434
3435 return rdev;
3436
3437 abort_free:
3438 if (rdev->bdev)
3439 unlock_rdev(rdev);
3440 md_rdev_clear(rdev);
3441 kfree(rdev);
3442 return ERR_PTR(err);
3443 }
3444
3445 /*
3446 * Check a full RAID array for plausibility
3447 */
3448
3449 static void analyze_sbs(struct mddev *mddev)
3450 {
3451 int i;
3452 struct md_rdev *rdev, *freshest, *tmp;
3453 char b[BDEVNAME_SIZE];
3454
3455 freshest = NULL;
3456 rdev_for_each_safe(rdev, tmp, mddev)
3457 switch (super_types[mddev->major_version].
3458 load_super(rdev, freshest, mddev->minor_version)) {
3459 case 1:
3460 freshest = rdev;
3461 break;
3462 case 0:
3463 break;
3464 default:
3465 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3466 bdevname(rdev->bdev,b));
3467 md_kick_rdev_from_array(rdev);
3468 }
3469
3470 super_types[mddev->major_version].
3471 validate_super(mddev, freshest);
3472
3473 i = 0;
3474 rdev_for_each_safe(rdev, tmp, mddev) {
3475 if (mddev->max_disks &&
3476 (rdev->desc_nr >= mddev->max_disks ||
3477 i > mddev->max_disks)) {
3478 pr_warn("md: %s: %s: only %d devices permitted\n",
3479 mdname(mddev), bdevname(rdev->bdev, b),
3480 mddev->max_disks);
3481 md_kick_rdev_from_array(rdev);
3482 continue;
3483 }
3484 if (rdev != freshest) {
3485 if (super_types[mddev->major_version].
3486 validate_super(mddev, rdev)) {
3487 pr_warn("md: kicking non-fresh %s from array!\n",
3488 bdevname(rdev->bdev,b));
3489 md_kick_rdev_from_array(rdev);
3490 continue;
3491 }
3492 }
3493 if (mddev->level == LEVEL_MULTIPATH) {
3494 rdev->desc_nr = i++;
3495 rdev->raid_disk = rdev->desc_nr;
3496 set_bit(In_sync, &rdev->flags);
3497 } else if (rdev->raid_disk >=
3498 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3499 !test_bit(Journal, &rdev->flags)) {
3500 rdev->raid_disk = -1;
3501 clear_bit(In_sync, &rdev->flags);
3502 }
3503 }
3504 }
3505
3506 /* Read a fixed-point number.
3507 * Numbers in sysfs attributes should be in "standard" units where
3508 * possible, so time should be in seconds.
3509 * However we internally use a a much smaller unit such as
3510 * milliseconds or jiffies.
3511 * This function takes a decimal number with a possible fractional
3512 * component, and produces an integer which is the result of
3513 * multiplying that number by 10^'scale'.
3514 * all without any floating-point arithmetic.
3515 */
3516 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3517 {
3518 unsigned long result = 0;
3519 long decimals = -1;
3520 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3521 if (*cp == '.')
3522 decimals = 0;
3523 else if (decimals < scale) {
3524 unsigned int value;
3525 value = *cp - '0';
3526 result = result * 10 + value;
3527 if (decimals >= 0)
3528 decimals++;
3529 }
3530 cp++;
3531 }
3532 if (*cp == '\n')
3533 cp++;
3534 if (*cp)
3535 return -EINVAL;
3536 if (decimals < 0)
3537 decimals = 0;
3538 while (decimals < scale) {
3539 result *= 10;
3540 decimals ++;
3541 }
3542 *res = result;
3543 return 0;
3544 }
3545
3546 static ssize_t
3547 safe_delay_show(struct mddev *mddev, char *page)
3548 {
3549 int msec = (mddev->safemode_delay*1000)/HZ;
3550 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3551 }
3552 static ssize_t
3553 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3554 {
3555 unsigned long msec;
3556
3557 if (mddev_is_clustered(mddev)) {
3558 pr_warn("md: Safemode is disabled for clustered mode\n");
3559 return -EINVAL;
3560 }
3561
3562 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3563 return -EINVAL;
3564 if (msec == 0)
3565 mddev->safemode_delay = 0;
3566 else {
3567 unsigned long old_delay = mddev->safemode_delay;
3568 unsigned long new_delay = (msec*HZ)/1000;
3569
3570 if (new_delay == 0)
3571 new_delay = 1;
3572 mddev->safemode_delay = new_delay;
3573 if (new_delay < old_delay || old_delay == 0)
3574 mod_timer(&mddev->safemode_timer, jiffies+1);
3575 }
3576 return len;
3577 }
3578 static struct md_sysfs_entry md_safe_delay =
3579 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3580
3581 static ssize_t
3582 level_show(struct mddev *mddev, char *page)
3583 {
3584 struct md_personality *p;
3585 int ret;
3586 spin_lock(&mddev->lock);
3587 p = mddev->pers;
3588 if (p)
3589 ret = sprintf(page, "%s\n", p->name);
3590 else if (mddev->clevel[0])
3591 ret = sprintf(page, "%s\n", mddev->clevel);
3592 else if (mddev->level != LEVEL_NONE)
3593 ret = sprintf(page, "%d\n", mddev->level);
3594 else
3595 ret = 0;
3596 spin_unlock(&mddev->lock);
3597 return ret;
3598 }
3599
3600 static ssize_t
3601 level_store(struct mddev *mddev, const char *buf, size_t len)
3602 {
3603 char clevel[16];
3604 ssize_t rv;
3605 size_t slen = len;
3606 struct md_personality *pers, *oldpers;
3607 long level;
3608 void *priv, *oldpriv;
3609 struct md_rdev *rdev;
3610
3611 if (slen == 0 || slen >= sizeof(clevel))
3612 return -EINVAL;
3613
3614 rv = mddev_lock(mddev);
3615 if (rv)
3616 return rv;
3617
3618 if (mddev->pers == NULL) {
3619 strncpy(mddev->clevel, buf, slen);
3620 if (mddev->clevel[slen-1] == '\n')
3621 slen--;
3622 mddev->clevel[slen] = 0;
3623 mddev->level = LEVEL_NONE;
3624 rv = len;
3625 goto out_unlock;
3626 }
3627 rv = -EROFS;
3628 if (mddev->ro)
3629 goto out_unlock;
3630
3631 /* request to change the personality. Need to ensure:
3632 * - array is not engaged in resync/recovery/reshape
3633 * - old personality can be suspended
3634 * - new personality will access other array.
3635 */
3636
3637 rv = -EBUSY;
3638 if (mddev->sync_thread ||
3639 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3640 mddev->reshape_position != MaxSector ||
3641 mddev->sysfs_active)
3642 goto out_unlock;
3643
3644 rv = -EINVAL;
3645 if (!mddev->pers->quiesce) {
3646 pr_warn("md: %s: %s does not support online personality change\n",
3647 mdname(mddev), mddev->pers->name);
3648 goto out_unlock;
3649 }
3650
3651 /* Now find the new personality */
3652 strncpy(clevel, buf, slen);
3653 if (clevel[slen-1] == '\n')
3654 slen--;
3655 clevel[slen] = 0;
3656 if (kstrtol(clevel, 10, &level))
3657 level = LEVEL_NONE;
3658
3659 if (request_module("md-%s", clevel) != 0)
3660 request_module("md-level-%s", clevel);
3661 spin_lock(&pers_lock);
3662 pers = find_pers(level, clevel);
3663 if (!pers || !try_module_get(pers->owner)) {
3664 spin_unlock(&pers_lock);
3665 pr_warn("md: personality %s not loaded\n", clevel);
3666 rv = -EINVAL;
3667 goto out_unlock;
3668 }
3669 spin_unlock(&pers_lock);
3670
3671 if (pers == mddev->pers) {
3672 /* Nothing to do! */
3673 module_put(pers->owner);
3674 rv = len;
3675 goto out_unlock;
3676 }
3677 if (!pers->takeover) {
3678 module_put(pers->owner);
3679 pr_warn("md: %s: %s does not support personality takeover\n",
3680 mdname(mddev), clevel);
3681 rv = -EINVAL;
3682 goto out_unlock;
3683 }
3684
3685 rdev_for_each(rdev, mddev)
3686 rdev->new_raid_disk = rdev->raid_disk;
3687
3688 /* ->takeover must set new_* and/or delta_disks
3689 * if it succeeds, and may set them when it fails.
3690 */
3691 priv = pers->takeover(mddev);
3692 if (IS_ERR(priv)) {
3693 mddev->new_level = mddev->level;
3694 mddev->new_layout = mddev->layout;
3695 mddev->new_chunk_sectors = mddev->chunk_sectors;
3696 mddev->raid_disks -= mddev->delta_disks;
3697 mddev->delta_disks = 0;
3698 mddev->reshape_backwards = 0;
3699 module_put(pers->owner);
3700 pr_warn("md: %s: %s would not accept array\n",
3701 mdname(mddev), clevel);
3702 rv = PTR_ERR(priv);
3703 goto out_unlock;
3704 }
3705
3706 /* Looks like we have a winner */
3707 mddev_suspend(mddev);
3708 mddev_detach(mddev);
3709
3710 spin_lock(&mddev->lock);
3711 oldpers = mddev->pers;
3712 oldpriv = mddev->private;
3713 mddev->pers = pers;
3714 mddev->private = priv;
3715 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3716 mddev->level = mddev->new_level;
3717 mddev->layout = mddev->new_layout;
3718 mddev->chunk_sectors = mddev->new_chunk_sectors;
3719 mddev->delta_disks = 0;
3720 mddev->reshape_backwards = 0;
3721 mddev->degraded = 0;
3722 spin_unlock(&mddev->lock);
3723
3724 if (oldpers->sync_request == NULL &&
3725 mddev->external) {
3726 /* We are converting from a no-redundancy array
3727 * to a redundancy array and metadata is managed
3728 * externally so we need to be sure that writes
3729 * won't block due to a need to transition
3730 * clean->dirty
3731 * until external management is started.
3732 */
3733 mddev->in_sync = 0;
3734 mddev->safemode_delay = 0;
3735 mddev->safemode = 0;
3736 }
3737
3738 oldpers->free(mddev, oldpriv);
3739
3740 if (oldpers->sync_request == NULL &&
3741 pers->sync_request != NULL) {
3742 /* need to add the md_redundancy_group */
3743 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3744 pr_warn("md: cannot register extra attributes for %s\n",
3745 mdname(mddev));
3746 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3747 }
3748 if (oldpers->sync_request != NULL &&
3749 pers->sync_request == NULL) {
3750 /* need to remove the md_redundancy_group */
3751 if (mddev->to_remove == NULL)
3752 mddev->to_remove = &md_redundancy_group;
3753 }
3754
3755 module_put(oldpers->owner);
3756
3757 rdev_for_each(rdev, mddev) {
3758 if (rdev->raid_disk < 0)
3759 continue;
3760 if (rdev->new_raid_disk >= mddev->raid_disks)
3761 rdev->new_raid_disk = -1;
3762 if (rdev->new_raid_disk == rdev->raid_disk)
3763 continue;
3764 sysfs_unlink_rdev(mddev, rdev);
3765 }
3766 rdev_for_each(rdev, mddev) {
3767 if (rdev->raid_disk < 0)
3768 continue;
3769 if (rdev->new_raid_disk == rdev->raid_disk)
3770 continue;
3771 rdev->raid_disk = rdev->new_raid_disk;
3772 if (rdev->raid_disk < 0)
3773 clear_bit(In_sync, &rdev->flags);
3774 else {
3775 if (sysfs_link_rdev(mddev, rdev))
3776 pr_warn("md: cannot register rd%d for %s after level change\n",
3777 rdev->raid_disk, mdname(mddev));
3778 }
3779 }
3780
3781 if (pers->sync_request == NULL) {
3782 /* this is now an array without redundancy, so
3783 * it must always be in_sync
3784 */
3785 mddev->in_sync = 1;
3786 del_timer_sync(&mddev->safemode_timer);
3787 }
3788 blk_set_stacking_limits(&mddev->queue->limits);
3789 pers->run(mddev);
3790 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3791 mddev_resume(mddev);
3792 if (!mddev->thread)
3793 md_update_sb(mddev, 1);
3794 sysfs_notify(&mddev->kobj, NULL, "level");
3795 md_new_event(mddev);
3796 rv = len;
3797 out_unlock:
3798 mddev_unlock(mddev);
3799 return rv;
3800 }
3801
3802 static struct md_sysfs_entry md_level =
3803 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3804
3805 static ssize_t
3806 layout_show(struct mddev *mddev, char *page)
3807 {
3808 /* just a number, not meaningful for all levels */
3809 if (mddev->reshape_position != MaxSector &&
3810 mddev->layout != mddev->new_layout)
3811 return sprintf(page, "%d (%d)\n",
3812 mddev->new_layout, mddev->layout);
3813 return sprintf(page, "%d\n", mddev->layout);
3814 }
3815
3816 static ssize_t
3817 layout_store(struct mddev *mddev, const char *buf, size_t len)
3818 {
3819 unsigned int n;
3820 int err;
3821
3822 err = kstrtouint(buf, 10, &n);
3823 if (err < 0)
3824 return err;
3825 err = mddev_lock(mddev);
3826 if (err)
3827 return err;
3828
3829 if (mddev->pers) {
3830 if (mddev->pers->check_reshape == NULL)
3831 err = -EBUSY;
3832 else if (mddev->ro)
3833 err = -EROFS;
3834 else {
3835 mddev->new_layout = n;
3836 err = mddev->pers->check_reshape(mddev);
3837 if (err)
3838 mddev->new_layout = mddev->layout;
3839 }
3840 } else {
3841 mddev->new_layout = n;
3842 if (mddev->reshape_position == MaxSector)
3843 mddev->layout = n;
3844 }
3845 mddev_unlock(mddev);
3846 return err ?: len;
3847 }
3848 static struct md_sysfs_entry md_layout =
3849 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3850
3851 static ssize_t
3852 raid_disks_show(struct mddev *mddev, char *page)
3853 {
3854 if (mddev->raid_disks == 0)
3855 return 0;
3856 if (mddev->reshape_position != MaxSector &&
3857 mddev->delta_disks != 0)
3858 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3859 mddev->raid_disks - mddev->delta_disks);
3860 return sprintf(page, "%d\n", mddev->raid_disks);
3861 }
3862
3863 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3864
3865 static ssize_t
3866 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3867 {
3868 unsigned int n;
3869 int err;
3870
3871 err = kstrtouint(buf, 10, &n);
3872 if (err < 0)
3873 return err;
3874
3875 err = mddev_lock(mddev);
3876 if (err)
3877 return err;
3878 if (mddev->pers)
3879 err = update_raid_disks(mddev, n);
3880 else if (mddev->reshape_position != MaxSector) {
3881 struct md_rdev *rdev;
3882 int olddisks = mddev->raid_disks - mddev->delta_disks;
3883
3884 err = -EINVAL;
3885 rdev_for_each(rdev, mddev) {
3886 if (olddisks < n &&
3887 rdev->data_offset < rdev->new_data_offset)
3888 goto out_unlock;
3889 if (olddisks > n &&
3890 rdev->data_offset > rdev->new_data_offset)
3891 goto out_unlock;
3892 }
3893 err = 0;
3894 mddev->delta_disks = n - olddisks;
3895 mddev->raid_disks = n;
3896 mddev->reshape_backwards = (mddev->delta_disks < 0);
3897 } else
3898 mddev->raid_disks = n;
3899 out_unlock:
3900 mddev_unlock(mddev);
3901 return err ? err : len;
3902 }
3903 static struct md_sysfs_entry md_raid_disks =
3904 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3905
3906 static ssize_t
3907 chunk_size_show(struct mddev *mddev, char *page)
3908 {
3909 if (mddev->reshape_position != MaxSector &&
3910 mddev->chunk_sectors != mddev->new_chunk_sectors)
3911 return sprintf(page, "%d (%d)\n",
3912 mddev->new_chunk_sectors << 9,
3913 mddev->chunk_sectors << 9);
3914 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3915 }
3916
3917 static ssize_t
3918 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3919 {
3920 unsigned long n;
3921 int err;
3922
3923 err = kstrtoul(buf, 10, &n);
3924 if (err < 0)
3925 return err;
3926
3927 err = mddev_lock(mddev);
3928 if (err)
3929 return err;
3930 if (mddev->pers) {
3931 if (mddev->pers->check_reshape == NULL)
3932 err = -EBUSY;
3933 else if (mddev->ro)
3934 err = -EROFS;
3935 else {
3936 mddev->new_chunk_sectors = n >> 9;
3937 err = mddev->pers->check_reshape(mddev);
3938 if (err)
3939 mddev->new_chunk_sectors = mddev->chunk_sectors;
3940 }
3941 } else {
3942 mddev->new_chunk_sectors = n >> 9;
3943 if (mddev->reshape_position == MaxSector)
3944 mddev->chunk_sectors = n >> 9;
3945 }
3946 mddev_unlock(mddev);
3947 return err ?: len;
3948 }
3949 static struct md_sysfs_entry md_chunk_size =
3950 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3951
3952 static ssize_t
3953 resync_start_show(struct mddev *mddev, char *page)
3954 {
3955 if (mddev->recovery_cp == MaxSector)
3956 return sprintf(page, "none\n");
3957 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3958 }
3959
3960 static ssize_t
3961 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3962 {
3963 unsigned long long n;
3964 int err;
3965
3966 if (cmd_match(buf, "none"))
3967 n = MaxSector;
3968 else {
3969 err = kstrtoull(buf, 10, &n);
3970 if (err < 0)
3971 return err;
3972 if (n != (sector_t)n)
3973 return -EINVAL;
3974 }
3975
3976 err = mddev_lock(mddev);
3977 if (err)
3978 return err;
3979 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3980 err = -EBUSY;
3981
3982 if (!err) {
3983 mddev->recovery_cp = n;
3984 if (mddev->pers)
3985 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
3986 }
3987 mddev_unlock(mddev);
3988 return err ?: len;
3989 }
3990 static struct md_sysfs_entry md_resync_start =
3991 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3992 resync_start_show, resync_start_store);
3993
3994 /*
3995 * The array state can be:
3996 *
3997 * clear
3998 * No devices, no size, no level
3999 * Equivalent to STOP_ARRAY ioctl
4000 * inactive
4001 * May have some settings, but array is not active
4002 * all IO results in error
4003 * When written, doesn't tear down array, but just stops it
4004 * suspended (not supported yet)
4005 * All IO requests will block. The array can be reconfigured.
4006 * Writing this, if accepted, will block until array is quiescent
4007 * readonly
4008 * no resync can happen. no superblocks get written.
4009 * write requests fail
4010 * read-auto
4011 * like readonly, but behaves like 'clean' on a write request.
4012 *
4013 * clean - no pending writes, but otherwise active.
4014 * When written to inactive array, starts without resync
4015 * If a write request arrives then
4016 * if metadata is known, mark 'dirty' and switch to 'active'.
4017 * if not known, block and switch to write-pending
4018 * If written to an active array that has pending writes, then fails.
4019 * active
4020 * fully active: IO and resync can be happening.
4021 * When written to inactive array, starts with resync
4022 *
4023 * write-pending
4024 * clean, but writes are blocked waiting for 'active' to be written.
4025 *
4026 * active-idle
4027 * like active, but no writes have been seen for a while (100msec).
4028 *
4029 */
4030 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4031 write_pending, active_idle, bad_word};
4032 static char *array_states[] = {
4033 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4034 "write-pending", "active-idle", NULL };
4035
4036 static int match_word(const char *word, char **list)
4037 {
4038 int n;
4039 for (n=0; list[n]; n++)
4040 if (cmd_match(word, list[n]))
4041 break;
4042 return n;
4043 }
4044
4045 static ssize_t
4046 array_state_show(struct mddev *mddev, char *page)
4047 {
4048 enum array_state st = inactive;
4049
4050 if (mddev->pers)
4051 switch(mddev->ro) {
4052 case 1:
4053 st = readonly;
4054 break;
4055 case 2:
4056 st = read_auto;
4057 break;
4058 case 0:
4059 spin_lock(&mddev->lock);
4060 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4061 st = write_pending;
4062 else if (mddev->in_sync)
4063 st = clean;
4064 else if (mddev->safemode)
4065 st = active_idle;
4066 else
4067 st = active;
4068 spin_unlock(&mddev->lock);
4069 }
4070 else {
4071 if (list_empty(&mddev->disks) &&
4072 mddev->raid_disks == 0 &&
4073 mddev->dev_sectors == 0)
4074 st = clear;
4075 else
4076 st = inactive;
4077 }
4078 return sprintf(page, "%s\n", array_states[st]);
4079 }
4080
4081 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4082 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4083 static int do_md_run(struct mddev *mddev);
4084 static int restart_array(struct mddev *mddev);
4085
4086 static ssize_t
4087 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4088 {
4089 int err = 0;
4090 enum array_state st = match_word(buf, array_states);
4091
4092 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4093 /* don't take reconfig_mutex when toggling between
4094 * clean and active
4095 */
4096 spin_lock(&mddev->lock);
4097 if (st == active) {
4098 restart_array(mddev);
4099 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4100 md_wakeup_thread(mddev->thread);
4101 wake_up(&mddev->sb_wait);
4102 } else /* st == clean */ {
4103 restart_array(mddev);
4104 if (!set_in_sync(mddev))
4105 err = -EBUSY;
4106 }
4107 if (!err)
4108 sysfs_notify_dirent_safe(mddev->sysfs_state);
4109 spin_unlock(&mddev->lock);
4110 return err ?: len;
4111 }
4112 err = mddev_lock(mddev);
4113 if (err)
4114 return err;
4115 err = -EINVAL;
4116 switch(st) {
4117 case bad_word:
4118 break;
4119 case clear:
4120 /* stopping an active array */
4121 err = do_md_stop(mddev, 0, NULL);
4122 break;
4123 case inactive:
4124 /* stopping an active array */
4125 if (mddev->pers)
4126 err = do_md_stop(mddev, 2, NULL);
4127 else
4128 err = 0; /* already inactive */
4129 break;
4130 case suspended:
4131 break; /* not supported yet */
4132 case readonly:
4133 if (mddev->pers)
4134 err = md_set_readonly(mddev, NULL);
4135 else {
4136 mddev->ro = 1;
4137 set_disk_ro(mddev->gendisk, 1);
4138 err = do_md_run(mddev);
4139 }
4140 break;
4141 case read_auto:
4142 if (mddev->pers) {
4143 if (mddev->ro == 0)
4144 err = md_set_readonly(mddev, NULL);
4145 else if (mddev->ro == 1)
4146 err = restart_array(mddev);
4147 if (err == 0) {
4148 mddev->ro = 2;
4149 set_disk_ro(mddev->gendisk, 0);
4150 }
4151 } else {
4152 mddev->ro = 2;
4153 err = do_md_run(mddev);
4154 }
4155 break;
4156 case clean:
4157 if (mddev->pers) {
4158 err = restart_array(mddev);
4159 if (err)
4160 break;
4161 spin_lock(&mddev->lock);
4162 if (!set_in_sync(mddev))
4163 err = -EBUSY;
4164 spin_unlock(&mddev->lock);
4165 } else
4166 err = -EINVAL;
4167 break;
4168 case active:
4169 if (mddev->pers) {
4170 err = restart_array(mddev);
4171 if (err)
4172 break;
4173 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4174 wake_up(&mddev->sb_wait);
4175 err = 0;
4176 } else {
4177 mddev->ro = 0;
4178 set_disk_ro(mddev->gendisk, 0);
4179 err = do_md_run(mddev);
4180 }
4181 break;
4182 case write_pending:
4183 case active_idle:
4184 /* these cannot be set */
4185 break;
4186 }
4187
4188 if (!err) {
4189 if (mddev->hold_active == UNTIL_IOCTL)
4190 mddev->hold_active = 0;
4191 sysfs_notify_dirent_safe(mddev->sysfs_state);
4192 }
4193 mddev_unlock(mddev);
4194 return err ?: len;
4195 }
4196 static struct md_sysfs_entry md_array_state =
4197 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4198
4199 static ssize_t
4200 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4201 return sprintf(page, "%d\n",
4202 atomic_read(&mddev->max_corr_read_errors));
4203 }
4204
4205 static ssize_t
4206 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4207 {
4208 unsigned int n;
4209 int rv;
4210
4211 rv = kstrtouint(buf, 10, &n);
4212 if (rv < 0)
4213 return rv;
4214 atomic_set(&mddev->max_corr_read_errors, n);
4215 return len;
4216 }
4217
4218 static struct md_sysfs_entry max_corr_read_errors =
4219 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4220 max_corrected_read_errors_store);
4221
4222 static ssize_t
4223 null_show(struct mddev *mddev, char *page)
4224 {
4225 return -EINVAL;
4226 }
4227
4228 static ssize_t
4229 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4230 {
4231 /* buf must be %d:%d\n? giving major and minor numbers */
4232 /* The new device is added to the array.
4233 * If the array has a persistent superblock, we read the
4234 * superblock to initialise info and check validity.
4235 * Otherwise, only checking done is that in bind_rdev_to_array,
4236 * which mainly checks size.
4237 */
4238 char *e;
4239 int major = simple_strtoul(buf, &e, 10);
4240 int minor;
4241 dev_t dev;
4242 struct md_rdev *rdev;
4243 int err;
4244
4245 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4246 return -EINVAL;
4247 minor = simple_strtoul(e+1, &e, 10);
4248 if (*e && *e != '\n')
4249 return -EINVAL;
4250 dev = MKDEV(major, minor);
4251 if (major != MAJOR(dev) ||
4252 minor != MINOR(dev))
4253 return -EOVERFLOW;
4254
4255 flush_workqueue(md_misc_wq);
4256
4257 err = mddev_lock(mddev);
4258 if (err)
4259 return err;
4260 if (mddev->persistent) {
4261 rdev = md_import_device(dev, mddev->major_version,
4262 mddev->minor_version);
4263 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4264 struct md_rdev *rdev0
4265 = list_entry(mddev->disks.next,
4266 struct md_rdev, same_set);
4267 err = super_types[mddev->major_version]
4268 .load_super(rdev, rdev0, mddev->minor_version);
4269 if (err < 0)
4270 goto out;
4271 }
4272 } else if (mddev->external)
4273 rdev = md_import_device(dev, -2, -1);
4274 else
4275 rdev = md_import_device(dev, -1, -1);
4276
4277 if (IS_ERR(rdev)) {
4278 mddev_unlock(mddev);
4279 return PTR_ERR(rdev);
4280 }
4281 err = bind_rdev_to_array(rdev, mddev);
4282 out:
4283 if (err)
4284 export_rdev(rdev);
4285 mddev_unlock(mddev);
4286 return err ? err : len;
4287 }
4288
4289 static struct md_sysfs_entry md_new_device =
4290 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4291
4292 static ssize_t
4293 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4294 {
4295 char *end;
4296 unsigned long chunk, end_chunk;
4297 int err;
4298
4299 err = mddev_lock(mddev);
4300 if (err)
4301 return err;
4302 if (!mddev->bitmap)
4303 goto out;
4304 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4305 while (*buf) {
4306 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4307 if (buf == end) break;
4308 if (*end == '-') { /* range */
4309 buf = end + 1;
4310 end_chunk = simple_strtoul(buf, &end, 0);
4311 if (buf == end) break;
4312 }
4313 if (*end && !isspace(*end)) break;
4314 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4315 buf = skip_spaces(end);
4316 }
4317 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4318 out:
4319 mddev_unlock(mddev);
4320 return len;
4321 }
4322
4323 static struct md_sysfs_entry md_bitmap =
4324 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4325
4326 static ssize_t
4327 size_show(struct mddev *mddev, char *page)
4328 {
4329 return sprintf(page, "%llu\n",
4330 (unsigned long long)mddev->dev_sectors / 2);
4331 }
4332
4333 static int update_size(struct mddev *mddev, sector_t num_sectors);
4334
4335 static ssize_t
4336 size_store(struct mddev *mddev, const char *buf, size_t len)
4337 {
4338 /* If array is inactive, we can reduce the component size, but
4339 * not increase it (except from 0).
4340 * If array is active, we can try an on-line resize
4341 */
4342 sector_t sectors;
4343 int err = strict_blocks_to_sectors(buf, &sectors);
4344
4345 if (err < 0)
4346 return err;
4347 err = mddev_lock(mddev);
4348 if (err)
4349 return err;
4350 if (mddev->pers) {
4351 err = update_size(mddev, sectors);
4352 if (err == 0)
4353 md_update_sb(mddev, 1);
4354 } else {
4355 if (mddev->dev_sectors == 0 ||
4356 mddev->dev_sectors > sectors)
4357 mddev->dev_sectors = sectors;
4358 else
4359 err = -ENOSPC;
4360 }
4361 mddev_unlock(mddev);
4362 return err ? err : len;
4363 }
4364
4365 static struct md_sysfs_entry md_size =
4366 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4367
4368 /* Metadata version.
4369 * This is one of
4370 * 'none' for arrays with no metadata (good luck...)
4371 * 'external' for arrays with externally managed metadata,
4372 * or N.M for internally known formats
4373 */
4374 static ssize_t
4375 metadata_show(struct mddev *mddev, char *page)
4376 {
4377 if (mddev->persistent)
4378 return sprintf(page, "%d.%d\n",
4379 mddev->major_version, mddev->minor_version);
4380 else if (mddev->external)
4381 return sprintf(page, "external:%s\n", mddev->metadata_type);
4382 else
4383 return sprintf(page, "none\n");
4384 }
4385
4386 static ssize_t
4387 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4388 {
4389 int major, minor;
4390 char *e;
4391 int err;
4392 /* Changing the details of 'external' metadata is
4393 * always permitted. Otherwise there must be
4394 * no devices attached to the array.
4395 */
4396
4397 err = mddev_lock(mddev);
4398 if (err)
4399 return err;
4400 err = -EBUSY;
4401 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4402 ;
4403 else if (!list_empty(&mddev->disks))
4404 goto out_unlock;
4405
4406 err = 0;
4407 if (cmd_match(buf, "none")) {
4408 mddev->persistent = 0;
4409 mddev->external = 0;
4410 mddev->major_version = 0;
4411 mddev->minor_version = 90;
4412 goto out_unlock;
4413 }
4414 if (strncmp(buf, "external:", 9) == 0) {
4415 size_t namelen = len-9;
4416 if (namelen >= sizeof(mddev->metadata_type))
4417 namelen = sizeof(mddev->metadata_type)-1;
4418 strncpy(mddev->metadata_type, buf+9, namelen);
4419 mddev->metadata_type[namelen] = 0;
4420 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4421 mddev->metadata_type[--namelen] = 0;
4422 mddev->persistent = 0;
4423 mddev->external = 1;
4424 mddev->major_version = 0;
4425 mddev->minor_version = 90;
4426 goto out_unlock;
4427 }
4428 major = simple_strtoul(buf, &e, 10);
4429 err = -EINVAL;
4430 if (e==buf || *e != '.')
4431 goto out_unlock;
4432 buf = e+1;
4433 minor = simple_strtoul(buf, &e, 10);
4434 if (e==buf || (*e && *e != '\n') )
4435 goto out_unlock;
4436 err = -ENOENT;
4437 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4438 goto out_unlock;
4439 mddev->major_version = major;
4440 mddev->minor_version = minor;
4441 mddev->persistent = 1;
4442 mddev->external = 0;
4443 err = 0;
4444 out_unlock:
4445 mddev_unlock(mddev);
4446 return err ?: len;
4447 }
4448
4449 static struct md_sysfs_entry md_metadata =
4450 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4451
4452 static ssize_t
4453 action_show(struct mddev *mddev, char *page)
4454 {
4455 char *type = "idle";
4456 unsigned long recovery = mddev->recovery;
4457 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4458 type = "frozen";
4459 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4460 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4461 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4462 type = "reshape";
4463 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4464 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4465 type = "resync";
4466 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4467 type = "check";
4468 else
4469 type = "repair";
4470 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4471 type = "recover";
4472 else if (mddev->reshape_position != MaxSector)
4473 type = "reshape";
4474 }
4475 return sprintf(page, "%s\n", type);
4476 }
4477
4478 static ssize_t
4479 action_store(struct mddev *mddev, const char *page, size_t len)
4480 {
4481 if (!mddev->pers || !mddev->pers->sync_request)
4482 return -EINVAL;
4483
4484
4485 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4486 if (cmd_match(page, "frozen"))
4487 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4488 else
4489 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4490 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4491 mddev_lock(mddev) == 0) {
4492 flush_workqueue(md_misc_wq);
4493 if (mddev->sync_thread) {
4494 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4495 md_reap_sync_thread(mddev);
4496 }
4497 mddev_unlock(mddev);
4498 }
4499 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4500 return -EBUSY;
4501 else if (cmd_match(page, "resync"))
4502 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4503 else if (cmd_match(page, "recover")) {
4504 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4505 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4506 } else if (cmd_match(page, "reshape")) {
4507 int err;
4508 if (mddev->pers->start_reshape == NULL)
4509 return -EINVAL;
4510 err = mddev_lock(mddev);
4511 if (!err) {
4512 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4513 err = -EBUSY;
4514 else {
4515 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4516 err = mddev->pers->start_reshape(mddev);
4517 }
4518 mddev_unlock(mddev);
4519 }
4520 if (err)
4521 return err;
4522 sysfs_notify(&mddev->kobj, NULL, "degraded");
4523 } else {
4524 if (cmd_match(page, "check"))
4525 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4526 else if (!cmd_match(page, "repair"))
4527 return -EINVAL;
4528 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4529 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4530 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4531 }
4532 if (mddev->ro == 2) {
4533 /* A write to sync_action is enough to justify
4534 * canceling read-auto mode
4535 */
4536 mddev->ro = 0;
4537 md_wakeup_thread(mddev->sync_thread);
4538 }
4539 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4540 md_wakeup_thread(mddev->thread);
4541 sysfs_notify_dirent_safe(mddev->sysfs_action);
4542 return len;
4543 }
4544
4545 static struct md_sysfs_entry md_scan_mode =
4546 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4547
4548 static ssize_t
4549 last_sync_action_show(struct mddev *mddev, char *page)
4550 {
4551 return sprintf(page, "%s\n", mddev->last_sync_action);
4552 }
4553
4554 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4555
4556 static ssize_t
4557 mismatch_cnt_show(struct mddev *mddev, char *page)
4558 {
4559 return sprintf(page, "%llu\n",
4560 (unsigned long long)
4561 atomic64_read(&mddev->resync_mismatches));
4562 }
4563
4564 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4565
4566 static ssize_t
4567 sync_min_show(struct mddev *mddev, char *page)
4568 {
4569 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4570 mddev->sync_speed_min ? "local": "system");
4571 }
4572
4573 static ssize_t
4574 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576 unsigned int min;
4577 int rv;
4578
4579 if (strncmp(buf, "system", 6)==0) {
4580 min = 0;
4581 } else {
4582 rv = kstrtouint(buf, 10, &min);
4583 if (rv < 0)
4584 return rv;
4585 if (min == 0)
4586 return -EINVAL;
4587 }
4588 mddev->sync_speed_min = min;
4589 return len;
4590 }
4591
4592 static struct md_sysfs_entry md_sync_min =
4593 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4594
4595 static ssize_t
4596 sync_max_show(struct mddev *mddev, char *page)
4597 {
4598 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4599 mddev->sync_speed_max ? "local": "system");
4600 }
4601
4602 static ssize_t
4603 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4604 {
4605 unsigned int max;
4606 int rv;
4607
4608 if (strncmp(buf, "system", 6)==0) {
4609 max = 0;
4610 } else {
4611 rv = kstrtouint(buf, 10, &max);
4612 if (rv < 0)
4613 return rv;
4614 if (max == 0)
4615 return -EINVAL;
4616 }
4617 mddev->sync_speed_max = max;
4618 return len;
4619 }
4620
4621 static struct md_sysfs_entry md_sync_max =
4622 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4623
4624 static ssize_t
4625 degraded_show(struct mddev *mddev, char *page)
4626 {
4627 return sprintf(page, "%d\n", mddev->degraded);
4628 }
4629 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4630
4631 static ssize_t
4632 sync_force_parallel_show(struct mddev *mddev, char *page)
4633 {
4634 return sprintf(page, "%d\n", mddev->parallel_resync);
4635 }
4636
4637 static ssize_t
4638 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4639 {
4640 long n;
4641
4642 if (kstrtol(buf, 10, &n))
4643 return -EINVAL;
4644
4645 if (n != 0 && n != 1)
4646 return -EINVAL;
4647
4648 mddev->parallel_resync = n;
4649
4650 if (mddev->sync_thread)
4651 wake_up(&resync_wait);
4652
4653 return len;
4654 }
4655
4656 /* force parallel resync, even with shared block devices */
4657 static struct md_sysfs_entry md_sync_force_parallel =
4658 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4659 sync_force_parallel_show, sync_force_parallel_store);
4660
4661 static ssize_t
4662 sync_speed_show(struct mddev *mddev, char *page)
4663 {
4664 unsigned long resync, dt, db;
4665 if (mddev->curr_resync == 0)
4666 return sprintf(page, "none\n");
4667 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4668 dt = (jiffies - mddev->resync_mark) / HZ;
4669 if (!dt) dt++;
4670 db = resync - mddev->resync_mark_cnt;
4671 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4672 }
4673
4674 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4675
4676 static ssize_t
4677 sync_completed_show(struct mddev *mddev, char *page)
4678 {
4679 unsigned long long max_sectors, resync;
4680
4681 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4682 return sprintf(page, "none\n");
4683
4684 if (mddev->curr_resync == 1 ||
4685 mddev->curr_resync == 2)
4686 return sprintf(page, "delayed\n");
4687
4688 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4689 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4690 max_sectors = mddev->resync_max_sectors;
4691 else
4692 max_sectors = mddev->dev_sectors;
4693
4694 resync = mddev->curr_resync_completed;
4695 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4696 }
4697
4698 static struct md_sysfs_entry md_sync_completed =
4699 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4700
4701 static ssize_t
4702 min_sync_show(struct mddev *mddev, char *page)
4703 {
4704 return sprintf(page, "%llu\n",
4705 (unsigned long long)mddev->resync_min);
4706 }
4707 static ssize_t
4708 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4709 {
4710 unsigned long long min;
4711 int err;
4712
4713 if (kstrtoull(buf, 10, &min))
4714 return -EINVAL;
4715
4716 spin_lock(&mddev->lock);
4717 err = -EINVAL;
4718 if (min > mddev->resync_max)
4719 goto out_unlock;
4720
4721 err = -EBUSY;
4722 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4723 goto out_unlock;
4724
4725 /* Round down to multiple of 4K for safety */
4726 mddev->resync_min = round_down(min, 8);
4727 err = 0;
4728
4729 out_unlock:
4730 spin_unlock(&mddev->lock);
4731 return err ?: len;
4732 }
4733
4734 static struct md_sysfs_entry md_min_sync =
4735 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4736
4737 static ssize_t
4738 max_sync_show(struct mddev *mddev, char *page)
4739 {
4740 if (mddev->resync_max == MaxSector)
4741 return sprintf(page, "max\n");
4742 else
4743 return sprintf(page, "%llu\n",
4744 (unsigned long long)mddev->resync_max);
4745 }
4746 static ssize_t
4747 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4748 {
4749 int err;
4750 spin_lock(&mddev->lock);
4751 if (strncmp(buf, "max", 3) == 0)
4752 mddev->resync_max = MaxSector;
4753 else {
4754 unsigned long long max;
4755 int chunk;
4756
4757 err = -EINVAL;
4758 if (kstrtoull(buf, 10, &max))
4759 goto out_unlock;
4760 if (max < mddev->resync_min)
4761 goto out_unlock;
4762
4763 err = -EBUSY;
4764 if (max < mddev->resync_max &&
4765 mddev->ro == 0 &&
4766 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4767 goto out_unlock;
4768
4769 /* Must be a multiple of chunk_size */
4770 chunk = mddev->chunk_sectors;
4771 if (chunk) {
4772 sector_t temp = max;
4773
4774 err = -EINVAL;
4775 if (sector_div(temp, chunk))
4776 goto out_unlock;
4777 }
4778 mddev->resync_max = max;
4779 }
4780 wake_up(&mddev->recovery_wait);
4781 err = 0;
4782 out_unlock:
4783 spin_unlock(&mddev->lock);
4784 return err ?: len;
4785 }
4786
4787 static struct md_sysfs_entry md_max_sync =
4788 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4789
4790 static ssize_t
4791 suspend_lo_show(struct mddev *mddev, char *page)
4792 {
4793 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4794 }
4795
4796 static ssize_t
4797 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4798 {
4799 unsigned long long old, new;
4800 int err;
4801
4802 err = kstrtoull(buf, 10, &new);
4803 if (err < 0)
4804 return err;
4805 if (new != (sector_t)new)
4806 return -EINVAL;
4807
4808 err = mddev_lock(mddev);
4809 if (err)
4810 return err;
4811 err = -EINVAL;
4812 if (mddev->pers == NULL ||
4813 mddev->pers->quiesce == NULL)
4814 goto unlock;
4815 old = mddev->suspend_lo;
4816 mddev->suspend_lo = new;
4817 if (new >= old)
4818 /* Shrinking suspended region */
4819 mddev->pers->quiesce(mddev, 2);
4820 else {
4821 /* Expanding suspended region - need to wait */
4822 mddev->pers->quiesce(mddev, 1);
4823 mddev->pers->quiesce(mddev, 0);
4824 }
4825 err = 0;
4826 unlock:
4827 mddev_unlock(mddev);
4828 return err ?: len;
4829 }
4830 static struct md_sysfs_entry md_suspend_lo =
4831 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4832
4833 static ssize_t
4834 suspend_hi_show(struct mddev *mddev, char *page)
4835 {
4836 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4837 }
4838
4839 static ssize_t
4840 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4841 {
4842 unsigned long long old, new;
4843 int err;
4844
4845 err = kstrtoull(buf, 10, &new);
4846 if (err < 0)
4847 return err;
4848 if (new != (sector_t)new)
4849 return -EINVAL;
4850
4851 err = mddev_lock(mddev);
4852 if (err)
4853 return err;
4854 err = -EINVAL;
4855 if (mddev->pers == NULL ||
4856 mddev->pers->quiesce == NULL)
4857 goto unlock;
4858 old = mddev->suspend_hi;
4859 mddev->suspend_hi = new;
4860 if (new <= old)
4861 /* Shrinking suspended region */
4862 mddev->pers->quiesce(mddev, 2);
4863 else {
4864 /* Expanding suspended region - need to wait */
4865 mddev->pers->quiesce(mddev, 1);
4866 mddev->pers->quiesce(mddev, 0);
4867 }
4868 err = 0;
4869 unlock:
4870 mddev_unlock(mddev);
4871 return err ?: len;
4872 }
4873 static struct md_sysfs_entry md_suspend_hi =
4874 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4875
4876 static ssize_t
4877 reshape_position_show(struct mddev *mddev, char *page)
4878 {
4879 if (mddev->reshape_position != MaxSector)
4880 return sprintf(page, "%llu\n",
4881 (unsigned long long)mddev->reshape_position);
4882 strcpy(page, "none\n");
4883 return 5;
4884 }
4885
4886 static ssize_t
4887 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4888 {
4889 struct md_rdev *rdev;
4890 unsigned long long new;
4891 int err;
4892
4893 err = kstrtoull(buf, 10, &new);
4894 if (err < 0)
4895 return err;
4896 if (new != (sector_t)new)
4897 return -EINVAL;
4898 err = mddev_lock(mddev);
4899 if (err)
4900 return err;
4901 err = -EBUSY;
4902 if (mddev->pers)
4903 goto unlock;
4904 mddev->reshape_position = new;
4905 mddev->delta_disks = 0;
4906 mddev->reshape_backwards = 0;
4907 mddev->new_level = mddev->level;
4908 mddev->new_layout = mddev->layout;
4909 mddev->new_chunk_sectors = mddev->chunk_sectors;
4910 rdev_for_each(rdev, mddev)
4911 rdev->new_data_offset = rdev->data_offset;
4912 err = 0;
4913 unlock:
4914 mddev_unlock(mddev);
4915 return err ?: len;
4916 }
4917
4918 static struct md_sysfs_entry md_reshape_position =
4919 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4920 reshape_position_store);
4921
4922 static ssize_t
4923 reshape_direction_show(struct mddev *mddev, char *page)
4924 {
4925 return sprintf(page, "%s\n",
4926 mddev->reshape_backwards ? "backwards" : "forwards");
4927 }
4928
4929 static ssize_t
4930 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4931 {
4932 int backwards = 0;
4933 int err;
4934
4935 if (cmd_match(buf, "forwards"))
4936 backwards = 0;
4937 else if (cmd_match(buf, "backwards"))
4938 backwards = 1;
4939 else
4940 return -EINVAL;
4941 if (mddev->reshape_backwards == backwards)
4942 return len;
4943
4944 err = mddev_lock(mddev);
4945 if (err)
4946 return err;
4947 /* check if we are allowed to change */
4948 if (mddev->delta_disks)
4949 err = -EBUSY;
4950 else if (mddev->persistent &&
4951 mddev->major_version == 0)
4952 err = -EINVAL;
4953 else
4954 mddev->reshape_backwards = backwards;
4955 mddev_unlock(mddev);
4956 return err ?: len;
4957 }
4958
4959 static struct md_sysfs_entry md_reshape_direction =
4960 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4961 reshape_direction_store);
4962
4963 static ssize_t
4964 array_size_show(struct mddev *mddev, char *page)
4965 {
4966 if (mddev->external_size)
4967 return sprintf(page, "%llu\n",
4968 (unsigned long long)mddev->array_sectors/2);
4969 else
4970 return sprintf(page, "default\n");
4971 }
4972
4973 static ssize_t
4974 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4975 {
4976 sector_t sectors;
4977 int err;
4978
4979 err = mddev_lock(mddev);
4980 if (err)
4981 return err;
4982
4983 /* cluster raid doesn't support change array_sectors */
4984 if (mddev_is_clustered(mddev)) {
4985 mddev_unlock(mddev);
4986 return -EINVAL;
4987 }
4988
4989 if (strncmp(buf, "default", 7) == 0) {
4990 if (mddev->pers)
4991 sectors = mddev->pers->size(mddev, 0, 0);
4992 else
4993 sectors = mddev->array_sectors;
4994
4995 mddev->external_size = 0;
4996 } else {
4997 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4998 err = -EINVAL;
4999 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5000 err = -E2BIG;
5001 else
5002 mddev->external_size = 1;
5003 }
5004
5005 if (!err) {
5006 mddev->array_sectors = sectors;
5007 if (mddev->pers) {
5008 set_capacity(mddev->gendisk, mddev->array_sectors);
5009 revalidate_disk(mddev->gendisk);
5010 }
5011 }
5012 mddev_unlock(mddev);
5013 return err ?: len;
5014 }
5015
5016 static struct md_sysfs_entry md_array_size =
5017 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5018 array_size_store);
5019
5020 static ssize_t
5021 consistency_policy_show(struct mddev *mddev, char *page)
5022 {
5023 int ret;
5024
5025 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5026 ret = sprintf(page, "journal\n");
5027 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5028 ret = sprintf(page, "ppl\n");
5029 } else if (mddev->bitmap) {
5030 ret = sprintf(page, "bitmap\n");
5031 } else if (mddev->pers) {
5032 if (mddev->pers->sync_request)
5033 ret = sprintf(page, "resync\n");
5034 else
5035 ret = sprintf(page, "none\n");
5036 } else {
5037 ret = sprintf(page, "unknown\n");
5038 }
5039
5040 return ret;
5041 }
5042
5043 static ssize_t
5044 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5045 {
5046 int err = 0;
5047
5048 if (mddev->pers) {
5049 if (mddev->pers->change_consistency_policy)
5050 err = mddev->pers->change_consistency_policy(mddev, buf);
5051 else
5052 err = -EBUSY;
5053 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5054 set_bit(MD_HAS_PPL, &mddev->flags);
5055 } else {
5056 err = -EINVAL;
5057 }
5058
5059 return err ? err : len;
5060 }
5061
5062 static struct md_sysfs_entry md_consistency_policy =
5063 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5064 consistency_policy_store);
5065
5066 static struct attribute *md_default_attrs[] = {
5067 &md_level.attr,
5068 &md_layout.attr,
5069 &md_raid_disks.attr,
5070 &md_chunk_size.attr,
5071 &md_size.attr,
5072 &md_resync_start.attr,
5073 &md_metadata.attr,
5074 &md_new_device.attr,
5075 &md_safe_delay.attr,
5076 &md_array_state.attr,
5077 &md_reshape_position.attr,
5078 &md_reshape_direction.attr,
5079 &md_array_size.attr,
5080 &max_corr_read_errors.attr,
5081 &md_consistency_policy.attr,
5082 NULL,
5083 };
5084
5085 static struct attribute *md_redundancy_attrs[] = {
5086 &md_scan_mode.attr,
5087 &md_last_scan_mode.attr,
5088 &md_mismatches.attr,
5089 &md_sync_min.attr,
5090 &md_sync_max.attr,
5091 &md_sync_speed.attr,
5092 &md_sync_force_parallel.attr,
5093 &md_sync_completed.attr,
5094 &md_min_sync.attr,
5095 &md_max_sync.attr,
5096 &md_suspend_lo.attr,
5097 &md_suspend_hi.attr,
5098 &md_bitmap.attr,
5099 &md_degraded.attr,
5100 NULL,
5101 };
5102 static struct attribute_group md_redundancy_group = {
5103 .name = NULL,
5104 .attrs = md_redundancy_attrs,
5105 };
5106
5107 static ssize_t
5108 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5109 {
5110 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5111 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5112 ssize_t rv;
5113
5114 if (!entry->show)
5115 return -EIO;
5116 spin_lock(&all_mddevs_lock);
5117 if (list_empty(&mddev->all_mddevs)) {
5118 spin_unlock(&all_mddevs_lock);
5119 return -EBUSY;
5120 }
5121 mddev_get(mddev);
5122 spin_unlock(&all_mddevs_lock);
5123
5124 rv = entry->show(mddev, page);
5125 mddev_put(mddev);
5126 return rv;
5127 }
5128
5129 static ssize_t
5130 md_attr_store(struct kobject *kobj, struct attribute *attr,
5131 const char *page, size_t length)
5132 {
5133 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5134 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5135 ssize_t rv;
5136
5137 if (!entry->store)
5138 return -EIO;
5139 if (!capable(CAP_SYS_ADMIN))
5140 return -EACCES;
5141 spin_lock(&all_mddevs_lock);
5142 if (list_empty(&mddev->all_mddevs)) {
5143 spin_unlock(&all_mddevs_lock);
5144 return -EBUSY;
5145 }
5146 mddev_get(mddev);
5147 spin_unlock(&all_mddevs_lock);
5148 rv = entry->store(mddev, page, length);
5149 mddev_put(mddev);
5150 return rv;
5151 }
5152
5153 static void md_free(struct kobject *ko)
5154 {
5155 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5156
5157 if (mddev->sysfs_state)
5158 sysfs_put(mddev->sysfs_state);
5159
5160 if (mddev->queue)
5161 blk_cleanup_queue(mddev->queue);
5162 if (mddev->gendisk) {
5163 del_gendisk(mddev->gendisk);
5164 put_disk(mddev->gendisk);
5165 }
5166 percpu_ref_exit(&mddev->writes_pending);
5167
5168 kfree(mddev);
5169 }
5170
5171 static const struct sysfs_ops md_sysfs_ops = {
5172 .show = md_attr_show,
5173 .store = md_attr_store,
5174 };
5175 static struct kobj_type md_ktype = {
5176 .release = md_free,
5177 .sysfs_ops = &md_sysfs_ops,
5178 .default_attrs = md_default_attrs,
5179 };
5180
5181 int mdp_major = 0;
5182
5183 static void mddev_delayed_delete(struct work_struct *ws)
5184 {
5185 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5186
5187 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5188 kobject_del(&mddev->kobj);
5189 kobject_put(&mddev->kobj);
5190 }
5191
5192 static void no_op(struct percpu_ref *r) {}
5193
5194 int mddev_init_writes_pending(struct mddev *mddev)
5195 {
5196 if (mddev->writes_pending.percpu_count_ptr)
5197 return 0;
5198 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5199 return -ENOMEM;
5200 /* We want to start with the refcount at zero */
5201 percpu_ref_put(&mddev->writes_pending);
5202 return 0;
5203 }
5204 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5205
5206 static int md_alloc(dev_t dev, char *name)
5207 {
5208 /*
5209 * If dev is zero, name is the name of a device to allocate with
5210 * an arbitrary minor number. It will be "md_???"
5211 * If dev is non-zero it must be a device number with a MAJOR of
5212 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5213 * the device is being created by opening a node in /dev.
5214 * If "name" is not NULL, the device is being created by
5215 * writing to /sys/module/md_mod/parameters/new_array.
5216 */
5217 static DEFINE_MUTEX(disks_mutex);
5218 struct mddev *mddev = mddev_find(dev);
5219 struct gendisk *disk;
5220 int partitioned;
5221 int shift;
5222 int unit;
5223 int error;
5224
5225 if (!mddev)
5226 return -ENODEV;
5227
5228 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5229 shift = partitioned ? MdpMinorShift : 0;
5230 unit = MINOR(mddev->unit) >> shift;
5231
5232 /* wait for any previous instance of this device to be
5233 * completely removed (mddev_delayed_delete).
5234 */
5235 flush_workqueue(md_misc_wq);
5236
5237 mutex_lock(&disks_mutex);
5238 error = -EEXIST;
5239 if (mddev->gendisk)
5240 goto abort;
5241
5242 if (name && !dev) {
5243 /* Need to ensure that 'name' is not a duplicate.
5244 */
5245 struct mddev *mddev2;
5246 spin_lock(&all_mddevs_lock);
5247
5248 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5249 if (mddev2->gendisk &&
5250 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5251 spin_unlock(&all_mddevs_lock);
5252 goto abort;
5253 }
5254 spin_unlock(&all_mddevs_lock);
5255 }
5256 if (name && dev)
5257 /*
5258 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5259 */
5260 mddev->hold_active = UNTIL_STOP;
5261
5262 error = -ENOMEM;
5263 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5264 if (!mddev->queue)
5265 goto abort;
5266 mddev->queue->queuedata = mddev;
5267
5268 blk_queue_make_request(mddev->queue, md_make_request);
5269 blk_set_stacking_limits(&mddev->queue->limits);
5270
5271 disk = alloc_disk(1 << shift);
5272 if (!disk) {
5273 blk_cleanup_queue(mddev->queue);
5274 mddev->queue = NULL;
5275 goto abort;
5276 }
5277 disk->major = MAJOR(mddev->unit);
5278 disk->first_minor = unit << shift;
5279 if (name)
5280 strcpy(disk->disk_name, name);
5281 else if (partitioned)
5282 sprintf(disk->disk_name, "md_d%d", unit);
5283 else
5284 sprintf(disk->disk_name, "md%d", unit);
5285 disk->fops = &md_fops;
5286 disk->private_data = mddev;
5287 disk->queue = mddev->queue;
5288 blk_queue_write_cache(mddev->queue, true, true);
5289 /* Allow extended partitions. This makes the
5290 * 'mdp' device redundant, but we can't really
5291 * remove it now.
5292 */
5293 disk->flags |= GENHD_FL_EXT_DEVT;
5294 mddev->gendisk = disk;
5295 /* As soon as we call add_disk(), another thread could get
5296 * through to md_open, so make sure it doesn't get too far
5297 */
5298 mutex_lock(&mddev->open_mutex);
5299 add_disk(disk);
5300
5301 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5302 &disk_to_dev(disk)->kobj, "%s", "md");
5303 if (error) {
5304 /* This isn't possible, but as kobject_init_and_add is marked
5305 * __must_check, we must do something with the result
5306 */
5307 pr_debug("md: cannot register %s/md - name in use\n",
5308 disk->disk_name);
5309 error = 0;
5310 }
5311 if (mddev->kobj.sd &&
5312 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5313 pr_debug("pointless warning\n");
5314 mutex_unlock(&mddev->open_mutex);
5315 abort:
5316 mutex_unlock(&disks_mutex);
5317 if (!error && mddev->kobj.sd) {
5318 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5319 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5320 }
5321 mddev_put(mddev);
5322 return error;
5323 }
5324
5325 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5326 {
5327 if (create_on_open)
5328 md_alloc(dev, NULL);
5329 return NULL;
5330 }
5331
5332 static int add_named_array(const char *val, struct kernel_param *kp)
5333 {
5334 /*
5335 * val must be "md_*" or "mdNNN".
5336 * For "md_*" we allocate an array with a large free minor number, and
5337 * set the name to val. val must not already be an active name.
5338 * For "mdNNN" we allocate an array with the minor number NNN
5339 * which must not already be in use.
5340 */
5341 int len = strlen(val);
5342 char buf[DISK_NAME_LEN];
5343 unsigned long devnum;
5344
5345 while (len && val[len-1] == '\n')
5346 len--;
5347 if (len >= DISK_NAME_LEN)
5348 return -E2BIG;
5349 strlcpy(buf, val, len+1);
5350 if (strncmp(buf, "md_", 3) == 0)
5351 return md_alloc(0, buf);
5352 if (strncmp(buf, "md", 2) == 0 &&
5353 isdigit(buf[2]) &&
5354 kstrtoul(buf+2, 10, &devnum) == 0 &&
5355 devnum <= MINORMASK)
5356 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5357
5358 return -EINVAL;
5359 }
5360
5361 static void md_safemode_timeout(unsigned long data)
5362 {
5363 struct mddev *mddev = (struct mddev *) data;
5364
5365 mddev->safemode = 1;
5366 if (mddev->external)
5367 sysfs_notify_dirent_safe(mddev->sysfs_state);
5368
5369 md_wakeup_thread(mddev->thread);
5370 }
5371
5372 static int start_dirty_degraded;
5373
5374 int md_run(struct mddev *mddev)
5375 {
5376 int err;
5377 struct md_rdev *rdev;
5378 struct md_personality *pers;
5379
5380 if (list_empty(&mddev->disks))
5381 /* cannot run an array with no devices.. */
5382 return -EINVAL;
5383
5384 if (mddev->pers)
5385 return -EBUSY;
5386 /* Cannot run until previous stop completes properly */
5387 if (mddev->sysfs_active)
5388 return -EBUSY;
5389
5390 /*
5391 * Analyze all RAID superblock(s)
5392 */
5393 if (!mddev->raid_disks) {
5394 if (!mddev->persistent)
5395 return -EINVAL;
5396 analyze_sbs(mddev);
5397 }
5398
5399 if (mddev->level != LEVEL_NONE)
5400 request_module("md-level-%d", mddev->level);
5401 else if (mddev->clevel[0])
5402 request_module("md-%s", mddev->clevel);
5403
5404 /*
5405 * Drop all container device buffers, from now on
5406 * the only valid external interface is through the md
5407 * device.
5408 */
5409 rdev_for_each(rdev, mddev) {
5410 if (test_bit(Faulty, &rdev->flags))
5411 continue;
5412 sync_blockdev(rdev->bdev);
5413 invalidate_bdev(rdev->bdev);
5414 if (mddev->ro != 1 &&
5415 (bdev_read_only(rdev->bdev) ||
5416 bdev_read_only(rdev->meta_bdev))) {
5417 mddev->ro = 1;
5418 if (mddev->gendisk)
5419 set_disk_ro(mddev->gendisk, 1);
5420 }
5421
5422 /* perform some consistency tests on the device.
5423 * We don't want the data to overlap the metadata,
5424 * Internal Bitmap issues have been handled elsewhere.
5425 */
5426 if (rdev->meta_bdev) {
5427 /* Nothing to check */;
5428 } else if (rdev->data_offset < rdev->sb_start) {
5429 if (mddev->dev_sectors &&
5430 rdev->data_offset + mddev->dev_sectors
5431 > rdev->sb_start) {
5432 pr_warn("md: %s: data overlaps metadata\n",
5433 mdname(mddev));
5434 return -EINVAL;
5435 }
5436 } else {
5437 if (rdev->sb_start + rdev->sb_size/512
5438 > rdev->data_offset) {
5439 pr_warn("md: %s: metadata overlaps data\n",
5440 mdname(mddev));
5441 return -EINVAL;
5442 }
5443 }
5444 sysfs_notify_dirent_safe(rdev->sysfs_state);
5445 }
5446
5447 if (mddev->bio_set == NULL) {
5448 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5449 if (!mddev->bio_set)
5450 return -ENOMEM;
5451 }
5452 if (mddev->sync_set == NULL) {
5453 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5454 if (!mddev->sync_set)
5455 return -ENOMEM;
5456 }
5457
5458 spin_lock(&pers_lock);
5459 pers = find_pers(mddev->level, mddev->clevel);
5460 if (!pers || !try_module_get(pers->owner)) {
5461 spin_unlock(&pers_lock);
5462 if (mddev->level != LEVEL_NONE)
5463 pr_warn("md: personality for level %d is not loaded!\n",
5464 mddev->level);
5465 else
5466 pr_warn("md: personality for level %s is not loaded!\n",
5467 mddev->clevel);
5468 return -EINVAL;
5469 }
5470 spin_unlock(&pers_lock);
5471 if (mddev->level != pers->level) {
5472 mddev->level = pers->level;
5473 mddev->new_level = pers->level;
5474 }
5475 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5476
5477 if (mddev->reshape_position != MaxSector &&
5478 pers->start_reshape == NULL) {
5479 /* This personality cannot handle reshaping... */
5480 module_put(pers->owner);
5481 return -EINVAL;
5482 }
5483
5484 if (pers->sync_request) {
5485 /* Warn if this is a potentially silly
5486 * configuration.
5487 */
5488 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5489 struct md_rdev *rdev2;
5490 int warned = 0;
5491
5492 rdev_for_each(rdev, mddev)
5493 rdev_for_each(rdev2, mddev) {
5494 if (rdev < rdev2 &&
5495 rdev->bdev->bd_contains ==
5496 rdev2->bdev->bd_contains) {
5497 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5498 mdname(mddev),
5499 bdevname(rdev->bdev,b),
5500 bdevname(rdev2->bdev,b2));
5501 warned = 1;
5502 }
5503 }
5504
5505 if (warned)
5506 pr_warn("True protection against single-disk failure might be compromised.\n");
5507 }
5508
5509 mddev->recovery = 0;
5510 /* may be over-ridden by personality */
5511 mddev->resync_max_sectors = mddev->dev_sectors;
5512
5513 mddev->ok_start_degraded = start_dirty_degraded;
5514
5515 if (start_readonly && mddev->ro == 0)
5516 mddev->ro = 2; /* read-only, but switch on first write */
5517
5518 /*
5519 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes
5520 * up mddev->thread. It is important to initialize critical
5521 * resources for mddev->thread BEFORE calling pers->run().
5522 */
5523 err = pers->run(mddev);
5524 if (err)
5525 pr_warn("md: pers->run() failed ...\n");
5526 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5527 WARN_ONCE(!mddev->external_size,
5528 "%s: default size too small, but 'external_size' not in effect?\n",
5529 __func__);
5530 pr_warn("md: invalid array_size %llu > default size %llu\n",
5531 (unsigned long long)mddev->array_sectors / 2,
5532 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5533 err = -EINVAL;
5534 }
5535 if (err == 0 && pers->sync_request &&
5536 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5537 struct bitmap *bitmap;
5538
5539 bitmap = bitmap_create(mddev, -1);
5540 if (IS_ERR(bitmap)) {
5541 err = PTR_ERR(bitmap);
5542 pr_warn("%s: failed to create bitmap (%d)\n",
5543 mdname(mddev), err);
5544 } else
5545 mddev->bitmap = bitmap;
5546
5547 }
5548 if (err) {
5549 mddev_detach(mddev);
5550 if (mddev->private)
5551 pers->free(mddev, mddev->private);
5552 mddev->private = NULL;
5553 module_put(pers->owner);
5554 bitmap_destroy(mddev);
5555 return err;
5556 }
5557 if (mddev->queue) {
5558 bool nonrot = true;
5559
5560 rdev_for_each(rdev, mddev) {
5561 if (rdev->raid_disk >= 0 &&
5562 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5563 nonrot = false;
5564 break;
5565 }
5566 }
5567 if (mddev->degraded)
5568 nonrot = false;
5569 if (nonrot)
5570 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5571 else
5572 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5573 mddev->queue->backing_dev_info->congested_data = mddev;
5574 mddev->queue->backing_dev_info->congested_fn = md_congested;
5575 }
5576 if (pers->sync_request) {
5577 if (mddev->kobj.sd &&
5578 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5579 pr_warn("md: cannot register extra attributes for %s\n",
5580 mdname(mddev));
5581 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5582 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5583 mddev->ro = 0;
5584
5585 atomic_set(&mddev->max_corr_read_errors,
5586 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5587 mddev->safemode = 0;
5588 if (mddev_is_clustered(mddev))
5589 mddev->safemode_delay = 0;
5590 else
5591 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5592 mddev->in_sync = 1;
5593 smp_wmb();
5594 spin_lock(&mddev->lock);
5595 mddev->pers = pers;
5596 spin_unlock(&mddev->lock);
5597 rdev_for_each(rdev, mddev)
5598 if (rdev->raid_disk >= 0)
5599 if (sysfs_link_rdev(mddev, rdev))
5600 /* failure here is OK */;
5601
5602 if (mddev->degraded && !mddev->ro)
5603 /* This ensures that recovering status is reported immediately
5604 * via sysfs - until a lack of spares is confirmed.
5605 */
5606 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5607 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5608
5609 if (mddev->sb_flags)
5610 md_update_sb(mddev, 0);
5611
5612 md_new_event(mddev);
5613 sysfs_notify_dirent_safe(mddev->sysfs_state);
5614 sysfs_notify_dirent_safe(mddev->sysfs_action);
5615 sysfs_notify(&mddev->kobj, NULL, "degraded");
5616 return 0;
5617 }
5618 EXPORT_SYMBOL_GPL(md_run);
5619
5620 static int do_md_run(struct mddev *mddev)
5621 {
5622 int err;
5623
5624 err = md_run(mddev);
5625 if (err)
5626 goto out;
5627 err = bitmap_load(mddev);
5628 if (err) {
5629 bitmap_destroy(mddev);
5630 goto out;
5631 }
5632
5633 if (mddev_is_clustered(mddev))
5634 md_allow_write(mddev);
5635
5636 md_wakeup_thread(mddev->thread);
5637 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5638
5639 set_capacity(mddev->gendisk, mddev->array_sectors);
5640 revalidate_disk(mddev->gendisk);
5641 mddev->changed = 1;
5642 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5643 out:
5644 return err;
5645 }
5646
5647 static int restart_array(struct mddev *mddev)
5648 {
5649 struct gendisk *disk = mddev->gendisk;
5650 struct md_rdev *rdev;
5651 bool has_journal = false;
5652 bool has_readonly = false;
5653
5654 /* Complain if it has no devices */
5655 if (list_empty(&mddev->disks))
5656 return -ENXIO;
5657 if (!mddev->pers)
5658 return -EINVAL;
5659 if (!mddev->ro)
5660 return -EBUSY;
5661
5662 rcu_read_lock();
5663 rdev_for_each_rcu(rdev, mddev) {
5664 if (test_bit(Journal, &rdev->flags) &&
5665 !test_bit(Faulty, &rdev->flags))
5666 has_journal = true;
5667 if (bdev_read_only(rdev->bdev))
5668 has_readonly = true;
5669 }
5670 rcu_read_unlock();
5671 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5672 /* Don't restart rw with journal missing/faulty */
5673 return -EINVAL;
5674 if (has_readonly)
5675 return -EROFS;
5676
5677 mddev->safemode = 0;
5678 mddev->ro = 0;
5679 set_disk_ro(disk, 0);
5680 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5681 /* Kick recovery or resync if necessary */
5682 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5683 md_wakeup_thread(mddev->thread);
5684 md_wakeup_thread(mddev->sync_thread);
5685 sysfs_notify_dirent_safe(mddev->sysfs_state);
5686 return 0;
5687 }
5688
5689 static void md_clean(struct mddev *mddev)
5690 {
5691 mddev->array_sectors = 0;
5692 mddev->external_size = 0;
5693 mddev->dev_sectors = 0;
5694 mddev->raid_disks = 0;
5695 mddev->recovery_cp = 0;
5696 mddev->resync_min = 0;
5697 mddev->resync_max = MaxSector;
5698 mddev->reshape_position = MaxSector;
5699 mddev->external = 0;
5700 mddev->persistent = 0;
5701 mddev->level = LEVEL_NONE;
5702 mddev->clevel[0] = 0;
5703 mddev->flags = 0;
5704 mddev->sb_flags = 0;
5705 mddev->ro = 0;
5706 mddev->metadata_type[0] = 0;
5707 mddev->chunk_sectors = 0;
5708 mddev->ctime = mddev->utime = 0;
5709 mddev->layout = 0;
5710 mddev->max_disks = 0;
5711 mddev->events = 0;
5712 mddev->can_decrease_events = 0;
5713 mddev->delta_disks = 0;
5714 mddev->reshape_backwards = 0;
5715 mddev->new_level = LEVEL_NONE;
5716 mddev->new_layout = 0;
5717 mddev->new_chunk_sectors = 0;
5718 mddev->curr_resync = 0;
5719 atomic64_set(&mddev->resync_mismatches, 0);
5720 mddev->suspend_lo = mddev->suspend_hi = 0;
5721 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5722 mddev->recovery = 0;
5723 mddev->in_sync = 0;
5724 mddev->changed = 0;
5725 mddev->degraded = 0;
5726 mddev->safemode = 0;
5727 mddev->private = NULL;
5728 mddev->cluster_info = NULL;
5729 mddev->bitmap_info.offset = 0;
5730 mddev->bitmap_info.default_offset = 0;
5731 mddev->bitmap_info.default_space = 0;
5732 mddev->bitmap_info.chunksize = 0;
5733 mddev->bitmap_info.daemon_sleep = 0;
5734 mddev->bitmap_info.max_write_behind = 0;
5735 mddev->bitmap_info.nodes = 0;
5736 }
5737
5738 static void __md_stop_writes(struct mddev *mddev)
5739 {
5740 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5741 flush_workqueue(md_misc_wq);
5742 if (mddev->sync_thread) {
5743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5744 md_reap_sync_thread(mddev);
5745 }
5746
5747 del_timer_sync(&mddev->safemode_timer);
5748
5749 if (mddev->pers && mddev->pers->quiesce) {
5750 mddev->pers->quiesce(mddev, 1);
5751 mddev->pers->quiesce(mddev, 0);
5752 }
5753 bitmap_flush(mddev);
5754
5755 if (mddev->ro == 0 &&
5756 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5757 mddev->sb_flags)) {
5758 /* mark array as shutdown cleanly */
5759 if (!mddev_is_clustered(mddev))
5760 mddev->in_sync = 1;
5761 md_update_sb(mddev, 1);
5762 }
5763 }
5764
5765 void md_stop_writes(struct mddev *mddev)
5766 {
5767 mddev_lock_nointr(mddev);
5768 __md_stop_writes(mddev);
5769 mddev_unlock(mddev);
5770 }
5771 EXPORT_SYMBOL_GPL(md_stop_writes);
5772
5773 static void mddev_detach(struct mddev *mddev)
5774 {
5775 bitmap_wait_behind_writes(mddev);
5776 if (mddev->pers && mddev->pers->quiesce) {
5777 mddev->pers->quiesce(mddev, 1);
5778 mddev->pers->quiesce(mddev, 0);
5779 }
5780 md_unregister_thread(&mddev->thread);
5781 if (mddev->queue)
5782 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5783 }
5784
5785 static void __md_stop(struct mddev *mddev)
5786 {
5787 struct md_personality *pers = mddev->pers;
5788 bitmap_destroy(mddev);
5789 mddev_detach(mddev);
5790 /* Ensure ->event_work is done */
5791 flush_workqueue(md_misc_wq);
5792 spin_lock(&mddev->lock);
5793 mddev->pers = NULL;
5794 spin_unlock(&mddev->lock);
5795 pers->free(mddev, mddev->private);
5796 mddev->private = NULL;
5797 if (pers->sync_request && mddev->to_remove == NULL)
5798 mddev->to_remove = &md_redundancy_group;
5799 module_put(pers->owner);
5800 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5801 }
5802
5803 void md_stop(struct mddev *mddev)
5804 {
5805 /* stop the array and free an attached data structures.
5806 * This is called from dm-raid
5807 */
5808 __md_stop(mddev);
5809 if (mddev->bio_set)
5810 bioset_free(mddev->bio_set);
5811 }
5812
5813 EXPORT_SYMBOL_GPL(md_stop);
5814
5815 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5816 {
5817 int err = 0;
5818 int did_freeze = 0;
5819
5820 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5821 did_freeze = 1;
5822 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5823 md_wakeup_thread(mddev->thread);
5824 }
5825 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5826 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5827 if (mddev->sync_thread)
5828 /* Thread might be blocked waiting for metadata update
5829 * which will now never happen */
5830 wake_up_process(mddev->sync_thread->tsk);
5831
5832 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5833 return -EBUSY;
5834 mddev_unlock(mddev);
5835 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5836 &mddev->recovery));
5837 wait_event(mddev->sb_wait,
5838 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5839 mddev_lock_nointr(mddev);
5840
5841 mutex_lock(&mddev->open_mutex);
5842 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5843 mddev->sync_thread ||
5844 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5845 pr_warn("md: %s still in use.\n",mdname(mddev));
5846 if (did_freeze) {
5847 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5848 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5849 md_wakeup_thread(mddev->thread);
5850 }
5851 err = -EBUSY;
5852 goto out;
5853 }
5854 if (mddev->pers) {
5855 __md_stop_writes(mddev);
5856
5857 err = -ENXIO;
5858 if (mddev->ro==1)
5859 goto out;
5860 mddev->ro = 1;
5861 set_disk_ro(mddev->gendisk, 1);
5862 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5863 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5864 md_wakeup_thread(mddev->thread);
5865 sysfs_notify_dirent_safe(mddev->sysfs_state);
5866 err = 0;
5867 }
5868 out:
5869 mutex_unlock(&mddev->open_mutex);
5870 return err;
5871 }
5872
5873 /* mode:
5874 * 0 - completely stop and dis-assemble array
5875 * 2 - stop but do not disassemble array
5876 */
5877 static int do_md_stop(struct mddev *mddev, int mode,
5878 struct block_device *bdev)
5879 {
5880 struct gendisk *disk = mddev->gendisk;
5881 struct md_rdev *rdev;
5882 int did_freeze = 0;
5883
5884 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5885 did_freeze = 1;
5886 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5887 md_wakeup_thread(mddev->thread);
5888 }
5889 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5890 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5891 if (mddev->sync_thread)
5892 /* Thread might be blocked waiting for metadata update
5893 * which will now never happen */
5894 wake_up_process(mddev->sync_thread->tsk);
5895
5896 mddev_unlock(mddev);
5897 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5898 !test_bit(MD_RECOVERY_RUNNING,
5899 &mddev->recovery)));
5900 mddev_lock_nointr(mddev);
5901
5902 mutex_lock(&mddev->open_mutex);
5903 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5904 mddev->sysfs_active ||
5905 mddev->sync_thread ||
5906 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5907 pr_warn("md: %s still in use.\n",mdname(mddev));
5908 mutex_unlock(&mddev->open_mutex);
5909 if (did_freeze) {
5910 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5911 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5912 md_wakeup_thread(mddev->thread);
5913 }
5914 return -EBUSY;
5915 }
5916 if (mddev->pers) {
5917 if (mddev->ro)
5918 set_disk_ro(disk, 0);
5919
5920 __md_stop_writes(mddev);
5921 __md_stop(mddev);
5922 mddev->queue->backing_dev_info->congested_fn = NULL;
5923
5924 /* tell userspace to handle 'inactive' */
5925 sysfs_notify_dirent_safe(mddev->sysfs_state);
5926
5927 rdev_for_each(rdev, mddev)
5928 if (rdev->raid_disk >= 0)
5929 sysfs_unlink_rdev(mddev, rdev);
5930
5931 set_capacity(disk, 0);
5932 mutex_unlock(&mddev->open_mutex);
5933 mddev->changed = 1;
5934 revalidate_disk(disk);
5935
5936 if (mddev->ro)
5937 mddev->ro = 0;
5938 } else
5939 mutex_unlock(&mddev->open_mutex);
5940 /*
5941 * Free resources if final stop
5942 */
5943 if (mode == 0) {
5944 pr_info("md: %s stopped.\n", mdname(mddev));
5945
5946 if (mddev->bitmap_info.file) {
5947 struct file *f = mddev->bitmap_info.file;
5948 spin_lock(&mddev->lock);
5949 mddev->bitmap_info.file = NULL;
5950 spin_unlock(&mddev->lock);
5951 fput(f);
5952 }
5953 mddev->bitmap_info.offset = 0;
5954
5955 export_array(mddev);
5956
5957 md_clean(mddev);
5958 if (mddev->hold_active == UNTIL_STOP)
5959 mddev->hold_active = 0;
5960 }
5961 md_new_event(mddev);
5962 sysfs_notify_dirent_safe(mddev->sysfs_state);
5963 return 0;
5964 }
5965
5966 #ifndef MODULE
5967 static void autorun_array(struct mddev *mddev)
5968 {
5969 struct md_rdev *rdev;
5970 int err;
5971
5972 if (list_empty(&mddev->disks))
5973 return;
5974
5975 pr_info("md: running: ");
5976
5977 rdev_for_each(rdev, mddev) {
5978 char b[BDEVNAME_SIZE];
5979 pr_cont("<%s>", bdevname(rdev->bdev,b));
5980 }
5981 pr_cont("\n");
5982
5983 err = do_md_run(mddev);
5984 if (err) {
5985 pr_warn("md: do_md_run() returned %d\n", err);
5986 do_md_stop(mddev, 0, NULL);
5987 }
5988 }
5989
5990 /*
5991 * lets try to run arrays based on all disks that have arrived
5992 * until now. (those are in pending_raid_disks)
5993 *
5994 * the method: pick the first pending disk, collect all disks with
5995 * the same UUID, remove all from the pending list and put them into
5996 * the 'same_array' list. Then order this list based on superblock
5997 * update time (freshest comes first), kick out 'old' disks and
5998 * compare superblocks. If everything's fine then run it.
5999 *
6000 * If "unit" is allocated, then bump its reference count
6001 */
6002 static void autorun_devices(int part)
6003 {
6004 struct md_rdev *rdev0, *rdev, *tmp;
6005 struct mddev *mddev;
6006 char b[BDEVNAME_SIZE];
6007
6008 pr_info("md: autorun ...\n");
6009 while (!list_empty(&pending_raid_disks)) {
6010 int unit;
6011 dev_t dev;
6012 LIST_HEAD(candidates);
6013 rdev0 = list_entry(pending_raid_disks.next,
6014 struct md_rdev, same_set);
6015
6016 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6017 INIT_LIST_HEAD(&candidates);
6018 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6019 if (super_90_load(rdev, rdev0, 0) >= 0) {
6020 pr_debug("md: adding %s ...\n",
6021 bdevname(rdev->bdev,b));
6022 list_move(&rdev->same_set, &candidates);
6023 }
6024 /*
6025 * now we have a set of devices, with all of them having
6026 * mostly sane superblocks. It's time to allocate the
6027 * mddev.
6028 */
6029 if (part) {
6030 dev = MKDEV(mdp_major,
6031 rdev0->preferred_minor << MdpMinorShift);
6032 unit = MINOR(dev) >> MdpMinorShift;
6033 } else {
6034 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6035 unit = MINOR(dev);
6036 }
6037 if (rdev0->preferred_minor != unit) {
6038 pr_warn("md: unit number in %s is bad: %d\n",
6039 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6040 break;
6041 }
6042
6043 md_probe(dev, NULL, NULL);
6044 mddev = mddev_find(dev);
6045 if (!mddev || !mddev->gendisk) {
6046 if (mddev)
6047 mddev_put(mddev);
6048 break;
6049 }
6050 if (mddev_lock(mddev))
6051 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6052 else if (mddev->raid_disks || mddev->major_version
6053 || !list_empty(&mddev->disks)) {
6054 pr_warn("md: %s already running, cannot run %s\n",
6055 mdname(mddev), bdevname(rdev0->bdev,b));
6056 mddev_unlock(mddev);
6057 } else {
6058 pr_debug("md: created %s\n", mdname(mddev));
6059 mddev->persistent = 1;
6060 rdev_for_each_list(rdev, tmp, &candidates) {
6061 list_del_init(&rdev->same_set);
6062 if (bind_rdev_to_array(rdev, mddev))
6063 export_rdev(rdev);
6064 }
6065 autorun_array(mddev);
6066 mddev_unlock(mddev);
6067 }
6068 /* on success, candidates will be empty, on error
6069 * it won't...
6070 */
6071 rdev_for_each_list(rdev, tmp, &candidates) {
6072 list_del_init(&rdev->same_set);
6073 export_rdev(rdev);
6074 }
6075 mddev_put(mddev);
6076 }
6077 pr_info("md: ... autorun DONE.\n");
6078 }
6079 #endif /* !MODULE */
6080
6081 static int get_version(void __user *arg)
6082 {
6083 mdu_version_t ver;
6084
6085 ver.major = MD_MAJOR_VERSION;
6086 ver.minor = MD_MINOR_VERSION;
6087 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6088
6089 if (copy_to_user(arg, &ver, sizeof(ver)))
6090 return -EFAULT;
6091
6092 return 0;
6093 }
6094
6095 static int get_array_info(struct mddev *mddev, void __user *arg)
6096 {
6097 mdu_array_info_t info;
6098 int nr,working,insync,failed,spare;
6099 struct md_rdev *rdev;
6100
6101 nr = working = insync = failed = spare = 0;
6102 rcu_read_lock();
6103 rdev_for_each_rcu(rdev, mddev) {
6104 nr++;
6105 if (test_bit(Faulty, &rdev->flags))
6106 failed++;
6107 else {
6108 working++;
6109 if (test_bit(In_sync, &rdev->flags))
6110 insync++;
6111 else if (test_bit(Journal, &rdev->flags))
6112 /* TODO: add journal count to md_u.h */
6113 ;
6114 else
6115 spare++;
6116 }
6117 }
6118 rcu_read_unlock();
6119
6120 info.major_version = mddev->major_version;
6121 info.minor_version = mddev->minor_version;
6122 info.patch_version = MD_PATCHLEVEL_VERSION;
6123 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6124 info.level = mddev->level;
6125 info.size = mddev->dev_sectors / 2;
6126 if (info.size != mddev->dev_sectors / 2) /* overflow */
6127 info.size = -1;
6128 info.nr_disks = nr;
6129 info.raid_disks = mddev->raid_disks;
6130 info.md_minor = mddev->md_minor;
6131 info.not_persistent= !mddev->persistent;
6132
6133 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6134 info.state = 0;
6135 if (mddev->in_sync)
6136 info.state = (1<<MD_SB_CLEAN);
6137 if (mddev->bitmap && mddev->bitmap_info.offset)
6138 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6139 if (mddev_is_clustered(mddev))
6140 info.state |= (1<<MD_SB_CLUSTERED);
6141 info.active_disks = insync;
6142 info.working_disks = working;
6143 info.failed_disks = failed;
6144 info.spare_disks = spare;
6145
6146 info.layout = mddev->layout;
6147 info.chunk_size = mddev->chunk_sectors << 9;
6148
6149 if (copy_to_user(arg, &info, sizeof(info)))
6150 return -EFAULT;
6151
6152 return 0;
6153 }
6154
6155 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6156 {
6157 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6158 char *ptr;
6159 int err;
6160
6161 file = kzalloc(sizeof(*file), GFP_NOIO);
6162 if (!file)
6163 return -ENOMEM;
6164
6165 err = 0;
6166 spin_lock(&mddev->lock);
6167 /* bitmap enabled */
6168 if (mddev->bitmap_info.file) {
6169 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6170 sizeof(file->pathname));
6171 if (IS_ERR(ptr))
6172 err = PTR_ERR(ptr);
6173 else
6174 memmove(file->pathname, ptr,
6175 sizeof(file->pathname)-(ptr-file->pathname));
6176 }
6177 spin_unlock(&mddev->lock);
6178
6179 if (err == 0 &&
6180 copy_to_user(arg, file, sizeof(*file)))
6181 err = -EFAULT;
6182
6183 kfree(file);
6184 return err;
6185 }
6186
6187 static int get_disk_info(struct mddev *mddev, void __user * arg)
6188 {
6189 mdu_disk_info_t info;
6190 struct md_rdev *rdev;
6191
6192 if (copy_from_user(&info, arg, sizeof(info)))
6193 return -EFAULT;
6194
6195 rcu_read_lock();
6196 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6197 if (rdev) {
6198 info.major = MAJOR(rdev->bdev->bd_dev);
6199 info.minor = MINOR(rdev->bdev->bd_dev);
6200 info.raid_disk = rdev->raid_disk;
6201 info.state = 0;
6202 if (test_bit(Faulty, &rdev->flags))
6203 info.state |= (1<<MD_DISK_FAULTY);
6204 else if (test_bit(In_sync, &rdev->flags)) {
6205 info.state |= (1<<MD_DISK_ACTIVE);
6206 info.state |= (1<<MD_DISK_SYNC);
6207 }
6208 if (test_bit(Journal, &rdev->flags))
6209 info.state |= (1<<MD_DISK_JOURNAL);
6210 if (test_bit(WriteMostly, &rdev->flags))
6211 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6212 if (test_bit(FailFast, &rdev->flags))
6213 info.state |= (1<<MD_DISK_FAILFAST);
6214 } else {
6215 info.major = info.minor = 0;
6216 info.raid_disk = -1;
6217 info.state = (1<<MD_DISK_REMOVED);
6218 }
6219 rcu_read_unlock();
6220
6221 if (copy_to_user(arg, &info, sizeof(info)))
6222 return -EFAULT;
6223
6224 return 0;
6225 }
6226
6227 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6228 {
6229 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6230 struct md_rdev *rdev;
6231 dev_t dev = MKDEV(info->major,info->minor);
6232
6233 if (mddev_is_clustered(mddev) &&
6234 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6235 pr_warn("%s: Cannot add to clustered mddev.\n",
6236 mdname(mddev));
6237 return -EINVAL;
6238 }
6239
6240 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6241 return -EOVERFLOW;
6242
6243 if (!mddev->raid_disks) {
6244 int err;
6245 /* expecting a device which has a superblock */
6246 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6247 if (IS_ERR(rdev)) {
6248 pr_warn("md: md_import_device returned %ld\n",
6249 PTR_ERR(rdev));
6250 return PTR_ERR(rdev);
6251 }
6252 if (!list_empty(&mddev->disks)) {
6253 struct md_rdev *rdev0
6254 = list_entry(mddev->disks.next,
6255 struct md_rdev, same_set);
6256 err = super_types[mddev->major_version]
6257 .load_super(rdev, rdev0, mddev->minor_version);
6258 if (err < 0) {
6259 pr_warn("md: %s has different UUID to %s\n",
6260 bdevname(rdev->bdev,b),
6261 bdevname(rdev0->bdev,b2));
6262 export_rdev(rdev);
6263 return -EINVAL;
6264 }
6265 }
6266 err = bind_rdev_to_array(rdev, mddev);
6267 if (err)
6268 export_rdev(rdev);
6269 return err;
6270 }
6271
6272 /*
6273 * add_new_disk can be used once the array is assembled
6274 * to add "hot spares". They must already have a superblock
6275 * written
6276 */
6277 if (mddev->pers) {
6278 int err;
6279 if (!mddev->pers->hot_add_disk) {
6280 pr_warn("%s: personality does not support diskops!\n",
6281 mdname(mddev));
6282 return -EINVAL;
6283 }
6284 if (mddev->persistent)
6285 rdev = md_import_device(dev, mddev->major_version,
6286 mddev->minor_version);
6287 else
6288 rdev = md_import_device(dev, -1, -1);
6289 if (IS_ERR(rdev)) {
6290 pr_warn("md: md_import_device returned %ld\n",
6291 PTR_ERR(rdev));
6292 return PTR_ERR(rdev);
6293 }
6294 /* set saved_raid_disk if appropriate */
6295 if (!mddev->persistent) {
6296 if (info->state & (1<<MD_DISK_SYNC) &&
6297 info->raid_disk < mddev->raid_disks) {
6298 rdev->raid_disk = info->raid_disk;
6299 set_bit(In_sync, &rdev->flags);
6300 clear_bit(Bitmap_sync, &rdev->flags);
6301 } else
6302 rdev->raid_disk = -1;
6303 rdev->saved_raid_disk = rdev->raid_disk;
6304 } else
6305 super_types[mddev->major_version].
6306 validate_super(mddev, rdev);
6307 if ((info->state & (1<<MD_DISK_SYNC)) &&
6308 rdev->raid_disk != info->raid_disk) {
6309 /* This was a hot-add request, but events doesn't
6310 * match, so reject it.
6311 */
6312 export_rdev(rdev);
6313 return -EINVAL;
6314 }
6315
6316 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6317 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6318 set_bit(WriteMostly, &rdev->flags);
6319 else
6320 clear_bit(WriteMostly, &rdev->flags);
6321 if (info->state & (1<<MD_DISK_FAILFAST))
6322 set_bit(FailFast, &rdev->flags);
6323 else
6324 clear_bit(FailFast, &rdev->flags);
6325
6326 if (info->state & (1<<MD_DISK_JOURNAL)) {
6327 struct md_rdev *rdev2;
6328 bool has_journal = false;
6329
6330 /* make sure no existing journal disk */
6331 rdev_for_each(rdev2, mddev) {
6332 if (test_bit(Journal, &rdev2->flags)) {
6333 has_journal = true;
6334 break;
6335 }
6336 }
6337 if (has_journal) {
6338 export_rdev(rdev);
6339 return -EBUSY;
6340 }
6341 set_bit(Journal, &rdev->flags);
6342 }
6343 /*
6344 * check whether the device shows up in other nodes
6345 */
6346 if (mddev_is_clustered(mddev)) {
6347 if (info->state & (1 << MD_DISK_CANDIDATE))
6348 set_bit(Candidate, &rdev->flags);
6349 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6350 /* --add initiated by this node */
6351 err = md_cluster_ops->add_new_disk(mddev, rdev);
6352 if (err) {
6353 export_rdev(rdev);
6354 return err;
6355 }
6356 }
6357 }
6358
6359 rdev->raid_disk = -1;
6360 err = bind_rdev_to_array(rdev, mddev);
6361
6362 if (err)
6363 export_rdev(rdev);
6364
6365 if (mddev_is_clustered(mddev)) {
6366 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6367 if (!err) {
6368 err = md_cluster_ops->new_disk_ack(mddev,
6369 err == 0);
6370 if (err)
6371 md_kick_rdev_from_array(rdev);
6372 }
6373 } else {
6374 if (err)
6375 md_cluster_ops->add_new_disk_cancel(mddev);
6376 else
6377 err = add_bound_rdev(rdev);
6378 }
6379
6380 } else if (!err)
6381 err = add_bound_rdev(rdev);
6382
6383 return err;
6384 }
6385
6386 /* otherwise, add_new_disk is only allowed
6387 * for major_version==0 superblocks
6388 */
6389 if (mddev->major_version != 0) {
6390 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6391 return -EINVAL;
6392 }
6393
6394 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6395 int err;
6396 rdev = md_import_device(dev, -1, 0);
6397 if (IS_ERR(rdev)) {
6398 pr_warn("md: error, md_import_device() returned %ld\n",
6399 PTR_ERR(rdev));
6400 return PTR_ERR(rdev);
6401 }
6402 rdev->desc_nr = info->number;
6403 if (info->raid_disk < mddev->raid_disks)
6404 rdev->raid_disk = info->raid_disk;
6405 else
6406 rdev->raid_disk = -1;
6407
6408 if (rdev->raid_disk < mddev->raid_disks)
6409 if (info->state & (1<<MD_DISK_SYNC))
6410 set_bit(In_sync, &rdev->flags);
6411
6412 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6413 set_bit(WriteMostly, &rdev->flags);
6414 if (info->state & (1<<MD_DISK_FAILFAST))
6415 set_bit(FailFast, &rdev->flags);
6416
6417 if (!mddev->persistent) {
6418 pr_debug("md: nonpersistent superblock ...\n");
6419 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6420 } else
6421 rdev->sb_start = calc_dev_sboffset(rdev);
6422 rdev->sectors = rdev->sb_start;
6423
6424 err = bind_rdev_to_array(rdev, mddev);
6425 if (err) {
6426 export_rdev(rdev);
6427 return err;
6428 }
6429 }
6430
6431 return 0;
6432 }
6433
6434 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6435 {
6436 char b[BDEVNAME_SIZE];
6437 struct md_rdev *rdev;
6438
6439 rdev = find_rdev(mddev, dev);
6440 if (!rdev)
6441 return -ENXIO;
6442
6443 if (rdev->raid_disk < 0)
6444 goto kick_rdev;
6445
6446 clear_bit(Blocked, &rdev->flags);
6447 remove_and_add_spares(mddev, rdev);
6448
6449 if (rdev->raid_disk >= 0)
6450 goto busy;
6451
6452 kick_rdev:
6453 if (mddev_is_clustered(mddev))
6454 md_cluster_ops->remove_disk(mddev, rdev);
6455
6456 md_kick_rdev_from_array(rdev);
6457 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6458 if (mddev->thread)
6459 md_wakeup_thread(mddev->thread);
6460 else
6461 md_update_sb(mddev, 1);
6462 md_new_event(mddev);
6463
6464 return 0;
6465 busy:
6466 pr_debug("md: cannot remove active disk %s from %s ...\n",
6467 bdevname(rdev->bdev,b), mdname(mddev));
6468 return -EBUSY;
6469 }
6470
6471 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6472 {
6473 char b[BDEVNAME_SIZE];
6474 int err;
6475 struct md_rdev *rdev;
6476
6477 if (!mddev->pers)
6478 return -ENODEV;
6479
6480 if (mddev->major_version != 0) {
6481 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6482 mdname(mddev));
6483 return -EINVAL;
6484 }
6485 if (!mddev->pers->hot_add_disk) {
6486 pr_warn("%s: personality does not support diskops!\n",
6487 mdname(mddev));
6488 return -EINVAL;
6489 }
6490
6491 rdev = md_import_device(dev, -1, 0);
6492 if (IS_ERR(rdev)) {
6493 pr_warn("md: error, md_import_device() returned %ld\n",
6494 PTR_ERR(rdev));
6495 return -EINVAL;
6496 }
6497
6498 if (mddev->persistent)
6499 rdev->sb_start = calc_dev_sboffset(rdev);
6500 else
6501 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6502
6503 rdev->sectors = rdev->sb_start;
6504
6505 if (test_bit(Faulty, &rdev->flags)) {
6506 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6507 bdevname(rdev->bdev,b), mdname(mddev));
6508 err = -EINVAL;
6509 goto abort_export;
6510 }
6511
6512 clear_bit(In_sync, &rdev->flags);
6513 rdev->desc_nr = -1;
6514 rdev->saved_raid_disk = -1;
6515 err = bind_rdev_to_array(rdev, mddev);
6516 if (err)
6517 goto abort_export;
6518
6519 /*
6520 * The rest should better be atomic, we can have disk failures
6521 * noticed in interrupt contexts ...
6522 */
6523
6524 rdev->raid_disk = -1;
6525
6526 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6527 if (!mddev->thread)
6528 md_update_sb(mddev, 1);
6529 /*
6530 * Kick recovery, maybe this spare has to be added to the
6531 * array immediately.
6532 */
6533 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6534 md_wakeup_thread(mddev->thread);
6535 md_new_event(mddev);
6536 return 0;
6537
6538 abort_export:
6539 export_rdev(rdev);
6540 return err;
6541 }
6542
6543 static int set_bitmap_file(struct mddev *mddev, int fd)
6544 {
6545 int err = 0;
6546
6547 if (mddev->pers) {
6548 if (!mddev->pers->quiesce || !mddev->thread)
6549 return -EBUSY;
6550 if (mddev->recovery || mddev->sync_thread)
6551 return -EBUSY;
6552 /* we should be able to change the bitmap.. */
6553 }
6554
6555 if (fd >= 0) {
6556 struct inode *inode;
6557 struct file *f;
6558
6559 if (mddev->bitmap || mddev->bitmap_info.file)
6560 return -EEXIST; /* cannot add when bitmap is present */
6561 f = fget(fd);
6562
6563 if (f == NULL) {
6564 pr_warn("%s: error: failed to get bitmap file\n",
6565 mdname(mddev));
6566 return -EBADF;
6567 }
6568
6569 inode = f->f_mapping->host;
6570 if (!S_ISREG(inode->i_mode)) {
6571 pr_warn("%s: error: bitmap file must be a regular file\n",
6572 mdname(mddev));
6573 err = -EBADF;
6574 } else if (!(f->f_mode & FMODE_WRITE)) {
6575 pr_warn("%s: error: bitmap file must open for write\n",
6576 mdname(mddev));
6577 err = -EBADF;
6578 } else if (atomic_read(&inode->i_writecount) != 1) {
6579 pr_warn("%s: error: bitmap file is already in use\n",
6580 mdname(mddev));
6581 err = -EBUSY;
6582 }
6583 if (err) {
6584 fput(f);
6585 return err;
6586 }
6587 mddev->bitmap_info.file = f;
6588 mddev->bitmap_info.offset = 0; /* file overrides offset */
6589 } else if (mddev->bitmap == NULL)
6590 return -ENOENT; /* cannot remove what isn't there */
6591 err = 0;
6592 if (mddev->pers) {
6593 mddev->pers->quiesce(mddev, 1);
6594 if (fd >= 0) {
6595 struct bitmap *bitmap;
6596
6597 bitmap = bitmap_create(mddev, -1);
6598 if (!IS_ERR(bitmap)) {
6599 mddev->bitmap = bitmap;
6600 err = bitmap_load(mddev);
6601 } else
6602 err = PTR_ERR(bitmap);
6603 }
6604 if (fd < 0 || err) {
6605 bitmap_destroy(mddev);
6606 fd = -1; /* make sure to put the file */
6607 }
6608 mddev->pers->quiesce(mddev, 0);
6609 }
6610 if (fd < 0) {
6611 struct file *f = mddev->bitmap_info.file;
6612 if (f) {
6613 spin_lock(&mddev->lock);
6614 mddev->bitmap_info.file = NULL;
6615 spin_unlock(&mddev->lock);
6616 fput(f);
6617 }
6618 }
6619
6620 return err;
6621 }
6622
6623 /*
6624 * set_array_info is used two different ways
6625 * The original usage is when creating a new array.
6626 * In this usage, raid_disks is > 0 and it together with
6627 * level, size, not_persistent,layout,chunksize determine the
6628 * shape of the array.
6629 * This will always create an array with a type-0.90.0 superblock.
6630 * The newer usage is when assembling an array.
6631 * In this case raid_disks will be 0, and the major_version field is
6632 * use to determine which style super-blocks are to be found on the devices.
6633 * The minor and patch _version numbers are also kept incase the
6634 * super_block handler wishes to interpret them.
6635 */
6636 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6637 {
6638
6639 if (info->raid_disks == 0) {
6640 /* just setting version number for superblock loading */
6641 if (info->major_version < 0 ||
6642 info->major_version >= ARRAY_SIZE(super_types) ||
6643 super_types[info->major_version].name == NULL) {
6644 /* maybe try to auto-load a module? */
6645 pr_warn("md: superblock version %d not known\n",
6646 info->major_version);
6647 return -EINVAL;
6648 }
6649 mddev->major_version = info->major_version;
6650 mddev->minor_version = info->minor_version;
6651 mddev->patch_version = info->patch_version;
6652 mddev->persistent = !info->not_persistent;
6653 /* ensure mddev_put doesn't delete this now that there
6654 * is some minimal configuration.
6655 */
6656 mddev->ctime = ktime_get_real_seconds();
6657 return 0;
6658 }
6659 mddev->major_version = MD_MAJOR_VERSION;
6660 mddev->minor_version = MD_MINOR_VERSION;
6661 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6662 mddev->ctime = ktime_get_real_seconds();
6663
6664 mddev->level = info->level;
6665 mddev->clevel[0] = 0;
6666 mddev->dev_sectors = 2 * (sector_t)info->size;
6667 mddev->raid_disks = info->raid_disks;
6668 /* don't set md_minor, it is determined by which /dev/md* was
6669 * openned
6670 */
6671 if (info->state & (1<<MD_SB_CLEAN))
6672 mddev->recovery_cp = MaxSector;
6673 else
6674 mddev->recovery_cp = 0;
6675 mddev->persistent = ! info->not_persistent;
6676 mddev->external = 0;
6677
6678 mddev->layout = info->layout;
6679 mddev->chunk_sectors = info->chunk_size >> 9;
6680
6681 if (mddev->persistent) {
6682 mddev->max_disks = MD_SB_DISKS;
6683 mddev->flags = 0;
6684 mddev->sb_flags = 0;
6685 }
6686 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6687
6688 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6689 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6690 mddev->bitmap_info.offset = 0;
6691
6692 mddev->reshape_position = MaxSector;
6693
6694 /*
6695 * Generate a 128 bit UUID
6696 */
6697 get_random_bytes(mddev->uuid, 16);
6698
6699 mddev->new_level = mddev->level;
6700 mddev->new_chunk_sectors = mddev->chunk_sectors;
6701 mddev->new_layout = mddev->layout;
6702 mddev->delta_disks = 0;
6703 mddev->reshape_backwards = 0;
6704
6705 return 0;
6706 }
6707
6708 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6709 {
6710 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6711
6712 if (mddev->external_size)
6713 return;
6714
6715 mddev->array_sectors = array_sectors;
6716 }
6717 EXPORT_SYMBOL(md_set_array_sectors);
6718
6719 static int update_size(struct mddev *mddev, sector_t num_sectors)
6720 {
6721 struct md_rdev *rdev;
6722 int rv;
6723 int fit = (num_sectors == 0);
6724 sector_t old_dev_sectors = mddev->dev_sectors;
6725
6726 if (mddev->pers->resize == NULL)
6727 return -EINVAL;
6728 /* The "num_sectors" is the number of sectors of each device that
6729 * is used. This can only make sense for arrays with redundancy.
6730 * linear and raid0 always use whatever space is available. We can only
6731 * consider changing this number if no resync or reconstruction is
6732 * happening, and if the new size is acceptable. It must fit before the
6733 * sb_start or, if that is <data_offset, it must fit before the size
6734 * of each device. If num_sectors is zero, we find the largest size
6735 * that fits.
6736 */
6737 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6738 mddev->sync_thread)
6739 return -EBUSY;
6740 if (mddev->ro)
6741 return -EROFS;
6742
6743 rdev_for_each(rdev, mddev) {
6744 sector_t avail = rdev->sectors;
6745
6746 if (fit && (num_sectors == 0 || num_sectors > avail))
6747 num_sectors = avail;
6748 if (avail < num_sectors)
6749 return -ENOSPC;
6750 }
6751 rv = mddev->pers->resize(mddev, num_sectors);
6752 if (!rv) {
6753 if (mddev_is_clustered(mddev))
6754 md_cluster_ops->update_size(mddev, old_dev_sectors);
6755 else if (mddev->queue) {
6756 set_capacity(mddev->gendisk, mddev->array_sectors);
6757 revalidate_disk(mddev->gendisk);
6758 }
6759 }
6760 return rv;
6761 }
6762
6763 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6764 {
6765 int rv;
6766 struct md_rdev *rdev;
6767 /* change the number of raid disks */
6768 if (mddev->pers->check_reshape == NULL)
6769 return -EINVAL;
6770 if (mddev->ro)
6771 return -EROFS;
6772 if (raid_disks <= 0 ||
6773 (mddev->max_disks && raid_disks >= mddev->max_disks))
6774 return -EINVAL;
6775 if (mddev->sync_thread ||
6776 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6777 mddev->reshape_position != MaxSector)
6778 return -EBUSY;
6779
6780 rdev_for_each(rdev, mddev) {
6781 if (mddev->raid_disks < raid_disks &&
6782 rdev->data_offset < rdev->new_data_offset)
6783 return -EINVAL;
6784 if (mddev->raid_disks > raid_disks &&
6785 rdev->data_offset > rdev->new_data_offset)
6786 return -EINVAL;
6787 }
6788
6789 mddev->delta_disks = raid_disks - mddev->raid_disks;
6790 if (mddev->delta_disks < 0)
6791 mddev->reshape_backwards = 1;
6792 else if (mddev->delta_disks > 0)
6793 mddev->reshape_backwards = 0;
6794
6795 rv = mddev->pers->check_reshape(mddev);
6796 if (rv < 0) {
6797 mddev->delta_disks = 0;
6798 mddev->reshape_backwards = 0;
6799 }
6800 return rv;
6801 }
6802
6803 /*
6804 * update_array_info is used to change the configuration of an
6805 * on-line array.
6806 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6807 * fields in the info are checked against the array.
6808 * Any differences that cannot be handled will cause an error.
6809 * Normally, only one change can be managed at a time.
6810 */
6811 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6812 {
6813 int rv = 0;
6814 int cnt = 0;
6815 int state = 0;
6816
6817 /* calculate expected state,ignoring low bits */
6818 if (mddev->bitmap && mddev->bitmap_info.offset)
6819 state |= (1 << MD_SB_BITMAP_PRESENT);
6820
6821 if (mddev->major_version != info->major_version ||
6822 mddev->minor_version != info->minor_version ||
6823 /* mddev->patch_version != info->patch_version || */
6824 mddev->ctime != info->ctime ||
6825 mddev->level != info->level ||
6826 /* mddev->layout != info->layout || */
6827 mddev->persistent != !info->not_persistent ||
6828 mddev->chunk_sectors != info->chunk_size >> 9 ||
6829 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6830 ((state^info->state) & 0xfffffe00)
6831 )
6832 return -EINVAL;
6833 /* Check there is only one change */
6834 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6835 cnt++;
6836 if (mddev->raid_disks != info->raid_disks)
6837 cnt++;
6838 if (mddev->layout != info->layout)
6839 cnt++;
6840 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6841 cnt++;
6842 if (cnt == 0)
6843 return 0;
6844 if (cnt > 1)
6845 return -EINVAL;
6846
6847 if (mddev->layout != info->layout) {
6848 /* Change layout
6849 * we don't need to do anything at the md level, the
6850 * personality will take care of it all.
6851 */
6852 if (mddev->pers->check_reshape == NULL)
6853 return -EINVAL;
6854 else {
6855 mddev->new_layout = info->layout;
6856 rv = mddev->pers->check_reshape(mddev);
6857 if (rv)
6858 mddev->new_layout = mddev->layout;
6859 return rv;
6860 }
6861 }
6862 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6863 rv = update_size(mddev, (sector_t)info->size * 2);
6864
6865 if (mddev->raid_disks != info->raid_disks)
6866 rv = update_raid_disks(mddev, info->raid_disks);
6867
6868 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6869 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6870 rv = -EINVAL;
6871 goto err;
6872 }
6873 if (mddev->recovery || mddev->sync_thread) {
6874 rv = -EBUSY;
6875 goto err;
6876 }
6877 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6878 struct bitmap *bitmap;
6879 /* add the bitmap */
6880 if (mddev->bitmap) {
6881 rv = -EEXIST;
6882 goto err;
6883 }
6884 if (mddev->bitmap_info.default_offset == 0) {
6885 rv = -EINVAL;
6886 goto err;
6887 }
6888 mddev->bitmap_info.offset =
6889 mddev->bitmap_info.default_offset;
6890 mddev->bitmap_info.space =
6891 mddev->bitmap_info.default_space;
6892 mddev->pers->quiesce(mddev, 1);
6893 bitmap = bitmap_create(mddev, -1);
6894 if (!IS_ERR(bitmap)) {
6895 mddev->bitmap = bitmap;
6896 rv = bitmap_load(mddev);
6897 } else
6898 rv = PTR_ERR(bitmap);
6899 if (rv)
6900 bitmap_destroy(mddev);
6901 mddev->pers->quiesce(mddev, 0);
6902 } else {
6903 /* remove the bitmap */
6904 if (!mddev->bitmap) {
6905 rv = -ENOENT;
6906 goto err;
6907 }
6908 if (mddev->bitmap->storage.file) {
6909 rv = -EINVAL;
6910 goto err;
6911 }
6912 if (mddev->bitmap_info.nodes) {
6913 /* hold PW on all the bitmap lock */
6914 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6915 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6916 rv = -EPERM;
6917 md_cluster_ops->unlock_all_bitmaps(mddev);
6918 goto err;
6919 }
6920
6921 mddev->bitmap_info.nodes = 0;
6922 md_cluster_ops->leave(mddev);
6923 }
6924 mddev->pers->quiesce(mddev, 1);
6925 bitmap_destroy(mddev);
6926 mddev->pers->quiesce(mddev, 0);
6927 mddev->bitmap_info.offset = 0;
6928 }
6929 }
6930 md_update_sb(mddev, 1);
6931 return rv;
6932 err:
6933 return rv;
6934 }
6935
6936 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6937 {
6938 struct md_rdev *rdev;
6939 int err = 0;
6940
6941 if (mddev->pers == NULL)
6942 return -ENODEV;
6943
6944 rcu_read_lock();
6945 rdev = find_rdev_rcu(mddev, dev);
6946 if (!rdev)
6947 err = -ENODEV;
6948 else {
6949 md_error(mddev, rdev);
6950 if (!test_bit(Faulty, &rdev->flags))
6951 err = -EBUSY;
6952 }
6953 rcu_read_unlock();
6954 return err;
6955 }
6956
6957 /*
6958 * We have a problem here : there is no easy way to give a CHS
6959 * virtual geometry. We currently pretend that we have a 2 heads
6960 * 4 sectors (with a BIG number of cylinders...). This drives
6961 * dosfs just mad... ;-)
6962 */
6963 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6964 {
6965 struct mddev *mddev = bdev->bd_disk->private_data;
6966
6967 geo->heads = 2;
6968 geo->sectors = 4;
6969 geo->cylinders = mddev->array_sectors / 8;
6970 return 0;
6971 }
6972
6973 static inline bool md_ioctl_valid(unsigned int cmd)
6974 {
6975 switch (cmd) {
6976 case ADD_NEW_DISK:
6977 case BLKROSET:
6978 case GET_ARRAY_INFO:
6979 case GET_BITMAP_FILE:
6980 case GET_DISK_INFO:
6981 case HOT_ADD_DISK:
6982 case HOT_REMOVE_DISK:
6983 case RAID_AUTORUN:
6984 case RAID_VERSION:
6985 case RESTART_ARRAY_RW:
6986 case RUN_ARRAY:
6987 case SET_ARRAY_INFO:
6988 case SET_BITMAP_FILE:
6989 case SET_DISK_FAULTY:
6990 case STOP_ARRAY:
6991 case STOP_ARRAY_RO:
6992 case CLUSTERED_DISK_NACK:
6993 return true;
6994 default:
6995 return false;
6996 }
6997 }
6998
6999 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7000 unsigned int cmd, unsigned long arg)
7001 {
7002 int err = 0;
7003 void __user *argp = (void __user *)arg;
7004 struct mddev *mddev = NULL;
7005 int ro;
7006 bool did_set_md_closing = false;
7007
7008 if (!md_ioctl_valid(cmd))
7009 return -ENOTTY;
7010
7011 switch (cmd) {
7012 case RAID_VERSION:
7013 case GET_ARRAY_INFO:
7014 case GET_DISK_INFO:
7015 break;
7016 default:
7017 if (!capable(CAP_SYS_ADMIN))
7018 return -EACCES;
7019 }
7020
7021 /*
7022 * Commands dealing with the RAID driver but not any
7023 * particular array:
7024 */
7025 switch (cmd) {
7026 case RAID_VERSION:
7027 err = get_version(argp);
7028 goto out;
7029
7030 #ifndef MODULE
7031 case RAID_AUTORUN:
7032 err = 0;
7033 autostart_arrays(arg);
7034 goto out;
7035 #endif
7036 default:;
7037 }
7038
7039 /*
7040 * Commands creating/starting a new array:
7041 */
7042
7043 mddev = bdev->bd_disk->private_data;
7044
7045 if (!mddev) {
7046 BUG();
7047 goto out;
7048 }
7049
7050 /* Some actions do not requires the mutex */
7051 switch (cmd) {
7052 case GET_ARRAY_INFO:
7053 if (!mddev->raid_disks && !mddev->external)
7054 err = -ENODEV;
7055 else
7056 err = get_array_info(mddev, argp);
7057 goto out;
7058
7059 case GET_DISK_INFO:
7060 if (!mddev->raid_disks && !mddev->external)
7061 err = -ENODEV;
7062 else
7063 err = get_disk_info(mddev, argp);
7064 goto out;
7065
7066 case SET_DISK_FAULTY:
7067 err = set_disk_faulty(mddev, new_decode_dev(arg));
7068 goto out;
7069
7070 case GET_BITMAP_FILE:
7071 err = get_bitmap_file(mddev, argp);
7072 goto out;
7073
7074 }
7075
7076 if (cmd == ADD_NEW_DISK)
7077 /* need to ensure md_delayed_delete() has completed */
7078 flush_workqueue(md_misc_wq);
7079
7080 if (cmd == HOT_REMOVE_DISK)
7081 /* need to ensure recovery thread has run */
7082 wait_event_interruptible_timeout(mddev->sb_wait,
7083 !test_bit(MD_RECOVERY_NEEDED,
7084 &mddev->recovery),
7085 msecs_to_jiffies(5000));
7086 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7087 /* Need to flush page cache, and ensure no-one else opens
7088 * and writes
7089 */
7090 mutex_lock(&mddev->open_mutex);
7091 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7092 mutex_unlock(&mddev->open_mutex);
7093 err = -EBUSY;
7094 goto out;
7095 }
7096 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7097 set_bit(MD_CLOSING, &mddev->flags);
7098 did_set_md_closing = true;
7099 mutex_unlock(&mddev->open_mutex);
7100 sync_blockdev(bdev);
7101 }
7102 err = mddev_lock(mddev);
7103 if (err) {
7104 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7105 err, cmd);
7106 goto out;
7107 }
7108
7109 if (cmd == SET_ARRAY_INFO) {
7110 mdu_array_info_t info;
7111 if (!arg)
7112 memset(&info, 0, sizeof(info));
7113 else if (copy_from_user(&info, argp, sizeof(info))) {
7114 err = -EFAULT;
7115 goto unlock;
7116 }
7117 if (mddev->pers) {
7118 err = update_array_info(mddev, &info);
7119 if (err) {
7120 pr_warn("md: couldn't update array info. %d\n", err);
7121 goto unlock;
7122 }
7123 goto unlock;
7124 }
7125 if (!list_empty(&mddev->disks)) {
7126 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7127 err = -EBUSY;
7128 goto unlock;
7129 }
7130 if (mddev->raid_disks) {
7131 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7132 err = -EBUSY;
7133 goto unlock;
7134 }
7135 err = set_array_info(mddev, &info);
7136 if (err) {
7137 pr_warn("md: couldn't set array info. %d\n", err);
7138 goto unlock;
7139 }
7140 goto unlock;
7141 }
7142
7143 /*
7144 * Commands querying/configuring an existing array:
7145 */
7146 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7147 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7148 if ((!mddev->raid_disks && !mddev->external)
7149 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7150 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7151 && cmd != GET_BITMAP_FILE) {
7152 err = -ENODEV;
7153 goto unlock;
7154 }
7155
7156 /*
7157 * Commands even a read-only array can execute:
7158 */
7159 switch (cmd) {
7160 case RESTART_ARRAY_RW:
7161 err = restart_array(mddev);
7162 goto unlock;
7163
7164 case STOP_ARRAY:
7165 err = do_md_stop(mddev, 0, bdev);
7166 goto unlock;
7167
7168 case STOP_ARRAY_RO:
7169 err = md_set_readonly(mddev, bdev);
7170 goto unlock;
7171
7172 case HOT_REMOVE_DISK:
7173 err = hot_remove_disk(mddev, new_decode_dev(arg));
7174 goto unlock;
7175
7176 case ADD_NEW_DISK:
7177 /* We can support ADD_NEW_DISK on read-only arrays
7178 * only if we are re-adding a preexisting device.
7179 * So require mddev->pers and MD_DISK_SYNC.
7180 */
7181 if (mddev->pers) {
7182 mdu_disk_info_t info;
7183 if (copy_from_user(&info, argp, sizeof(info)))
7184 err = -EFAULT;
7185 else if (!(info.state & (1<<MD_DISK_SYNC)))
7186 /* Need to clear read-only for this */
7187 break;
7188 else
7189 err = add_new_disk(mddev, &info);
7190 goto unlock;
7191 }
7192 break;
7193
7194 case BLKROSET:
7195 if (get_user(ro, (int __user *)(arg))) {
7196 err = -EFAULT;
7197 goto unlock;
7198 }
7199 err = -EINVAL;
7200
7201 /* if the bdev is going readonly the value of mddev->ro
7202 * does not matter, no writes are coming
7203 */
7204 if (ro)
7205 goto unlock;
7206
7207 /* are we are already prepared for writes? */
7208 if (mddev->ro != 1)
7209 goto unlock;
7210
7211 /* transitioning to readauto need only happen for
7212 * arrays that call md_write_start
7213 */
7214 if (mddev->pers) {
7215 err = restart_array(mddev);
7216 if (err == 0) {
7217 mddev->ro = 2;
7218 set_disk_ro(mddev->gendisk, 0);
7219 }
7220 }
7221 goto unlock;
7222 }
7223
7224 /*
7225 * The remaining ioctls are changing the state of the
7226 * superblock, so we do not allow them on read-only arrays.
7227 */
7228 if (mddev->ro && mddev->pers) {
7229 if (mddev->ro == 2) {
7230 mddev->ro = 0;
7231 sysfs_notify_dirent_safe(mddev->sysfs_state);
7232 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7233 /* mddev_unlock will wake thread */
7234 /* If a device failed while we were read-only, we
7235 * need to make sure the metadata is updated now.
7236 */
7237 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7238 mddev_unlock(mddev);
7239 wait_event(mddev->sb_wait,
7240 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7241 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7242 mddev_lock_nointr(mddev);
7243 }
7244 } else {
7245 err = -EROFS;
7246 goto unlock;
7247 }
7248 }
7249
7250 switch (cmd) {
7251 case ADD_NEW_DISK:
7252 {
7253 mdu_disk_info_t info;
7254 if (copy_from_user(&info, argp, sizeof(info)))
7255 err = -EFAULT;
7256 else
7257 err = add_new_disk(mddev, &info);
7258 goto unlock;
7259 }
7260
7261 case CLUSTERED_DISK_NACK:
7262 if (mddev_is_clustered(mddev))
7263 md_cluster_ops->new_disk_ack(mddev, false);
7264 else
7265 err = -EINVAL;
7266 goto unlock;
7267
7268 case HOT_ADD_DISK:
7269 err = hot_add_disk(mddev, new_decode_dev(arg));
7270 goto unlock;
7271
7272 case RUN_ARRAY:
7273 err = do_md_run(mddev);
7274 goto unlock;
7275
7276 case SET_BITMAP_FILE:
7277 err = set_bitmap_file(mddev, (int)arg);
7278 goto unlock;
7279
7280 default:
7281 err = -EINVAL;
7282 goto unlock;
7283 }
7284
7285 unlock:
7286 if (mddev->hold_active == UNTIL_IOCTL &&
7287 err != -EINVAL)
7288 mddev->hold_active = 0;
7289 mddev_unlock(mddev);
7290 out:
7291 if(did_set_md_closing)
7292 clear_bit(MD_CLOSING, &mddev->flags);
7293 return err;
7294 }
7295 #ifdef CONFIG_COMPAT
7296 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7297 unsigned int cmd, unsigned long arg)
7298 {
7299 switch (cmd) {
7300 case HOT_REMOVE_DISK:
7301 case HOT_ADD_DISK:
7302 case SET_DISK_FAULTY:
7303 case SET_BITMAP_FILE:
7304 /* These take in integer arg, do not convert */
7305 break;
7306 default:
7307 arg = (unsigned long)compat_ptr(arg);
7308 break;
7309 }
7310
7311 return md_ioctl(bdev, mode, cmd, arg);
7312 }
7313 #endif /* CONFIG_COMPAT */
7314
7315 static int md_open(struct block_device *bdev, fmode_t mode)
7316 {
7317 /*
7318 * Succeed if we can lock the mddev, which confirms that
7319 * it isn't being stopped right now.
7320 */
7321 struct mddev *mddev = mddev_find(bdev->bd_dev);
7322 int err;
7323
7324 if (!mddev)
7325 return -ENODEV;
7326
7327 if (mddev->gendisk != bdev->bd_disk) {
7328 /* we are racing with mddev_put which is discarding this
7329 * bd_disk.
7330 */
7331 mddev_put(mddev);
7332 /* Wait until bdev->bd_disk is definitely gone */
7333 flush_workqueue(md_misc_wq);
7334 /* Then retry the open from the top */
7335 return -ERESTARTSYS;
7336 }
7337 BUG_ON(mddev != bdev->bd_disk->private_data);
7338
7339 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7340 goto out;
7341
7342 if (test_bit(MD_CLOSING, &mddev->flags)) {
7343 mutex_unlock(&mddev->open_mutex);
7344 err = -ENODEV;
7345 goto out;
7346 }
7347
7348 err = 0;
7349 atomic_inc(&mddev->openers);
7350 mutex_unlock(&mddev->open_mutex);
7351
7352 check_disk_change(bdev);
7353 out:
7354 if (err)
7355 mddev_put(mddev);
7356 return err;
7357 }
7358
7359 static void md_release(struct gendisk *disk, fmode_t mode)
7360 {
7361 struct mddev *mddev = disk->private_data;
7362
7363 BUG_ON(!mddev);
7364 atomic_dec(&mddev->openers);
7365 mddev_put(mddev);
7366 }
7367
7368 static int md_media_changed(struct gendisk *disk)
7369 {
7370 struct mddev *mddev = disk->private_data;
7371
7372 return mddev->changed;
7373 }
7374
7375 static int md_revalidate(struct gendisk *disk)
7376 {
7377 struct mddev *mddev = disk->private_data;
7378
7379 mddev->changed = 0;
7380 return 0;
7381 }
7382 static const struct block_device_operations md_fops =
7383 {
7384 .owner = THIS_MODULE,
7385 .open = md_open,
7386 .release = md_release,
7387 .ioctl = md_ioctl,
7388 #ifdef CONFIG_COMPAT
7389 .compat_ioctl = md_compat_ioctl,
7390 #endif
7391 .getgeo = md_getgeo,
7392 .media_changed = md_media_changed,
7393 .revalidate_disk= md_revalidate,
7394 };
7395
7396 static int md_thread(void *arg)
7397 {
7398 struct md_thread *thread = arg;
7399
7400 /*
7401 * md_thread is a 'system-thread', it's priority should be very
7402 * high. We avoid resource deadlocks individually in each
7403 * raid personality. (RAID5 does preallocation) We also use RR and
7404 * the very same RT priority as kswapd, thus we will never get
7405 * into a priority inversion deadlock.
7406 *
7407 * we definitely have to have equal or higher priority than
7408 * bdflush, otherwise bdflush will deadlock if there are too
7409 * many dirty RAID5 blocks.
7410 */
7411
7412 allow_signal(SIGKILL);
7413 while (!kthread_should_stop()) {
7414
7415 /* We need to wait INTERRUPTIBLE so that
7416 * we don't add to the load-average.
7417 * That means we need to be sure no signals are
7418 * pending
7419 */
7420 if (signal_pending(current))
7421 flush_signals(current);
7422
7423 wait_event_interruptible_timeout
7424 (thread->wqueue,
7425 test_bit(THREAD_WAKEUP, &thread->flags)
7426 || kthread_should_stop() || kthread_should_park(),
7427 thread->timeout);
7428
7429 clear_bit(THREAD_WAKEUP, &thread->flags);
7430 if (kthread_should_park())
7431 kthread_parkme();
7432 if (!kthread_should_stop())
7433 thread->run(thread);
7434 }
7435
7436 return 0;
7437 }
7438
7439 void md_wakeup_thread(struct md_thread *thread)
7440 {
7441 if (thread) {
7442 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7443 if (!test_and_set_bit(THREAD_WAKEUP, &thread->flags))
7444 wake_up(&thread->wqueue);
7445 }
7446 }
7447 EXPORT_SYMBOL(md_wakeup_thread);
7448
7449 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7450 struct mddev *mddev, const char *name)
7451 {
7452 struct md_thread *thread;
7453
7454 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7455 if (!thread)
7456 return NULL;
7457
7458 init_waitqueue_head(&thread->wqueue);
7459
7460 thread->run = run;
7461 thread->mddev = mddev;
7462 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7463 thread->tsk = kthread_run(md_thread, thread,
7464 "%s_%s",
7465 mdname(thread->mddev),
7466 name);
7467 if (IS_ERR(thread->tsk)) {
7468 kfree(thread);
7469 return NULL;
7470 }
7471 return thread;
7472 }
7473 EXPORT_SYMBOL(md_register_thread);
7474
7475 void md_unregister_thread(struct md_thread **threadp)
7476 {
7477 struct md_thread *thread = *threadp;
7478 if (!thread)
7479 return;
7480 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7481 /* Locking ensures that mddev_unlock does not wake_up a
7482 * non-existent thread
7483 */
7484 spin_lock(&pers_lock);
7485 *threadp = NULL;
7486 spin_unlock(&pers_lock);
7487
7488 kthread_stop(thread->tsk);
7489 kfree(thread);
7490 }
7491 EXPORT_SYMBOL(md_unregister_thread);
7492
7493 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7494 {
7495 if (!rdev || test_bit(Faulty, &rdev->flags))
7496 return;
7497
7498 if (!mddev->pers || !mddev->pers->error_handler)
7499 return;
7500 mddev->pers->error_handler(mddev,rdev);
7501 if (mddev->degraded)
7502 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7503 sysfs_notify_dirent_safe(rdev->sysfs_state);
7504 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7505 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7506 md_wakeup_thread(mddev->thread);
7507 if (mddev->event_work.func)
7508 queue_work(md_misc_wq, &mddev->event_work);
7509 md_new_event(mddev);
7510 }
7511 EXPORT_SYMBOL(md_error);
7512
7513 /* seq_file implementation /proc/mdstat */
7514
7515 static void status_unused(struct seq_file *seq)
7516 {
7517 int i = 0;
7518 struct md_rdev *rdev;
7519
7520 seq_printf(seq, "unused devices: ");
7521
7522 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7523 char b[BDEVNAME_SIZE];
7524 i++;
7525 seq_printf(seq, "%s ",
7526 bdevname(rdev->bdev,b));
7527 }
7528 if (!i)
7529 seq_printf(seq, "<none>");
7530
7531 seq_printf(seq, "\n");
7532 }
7533
7534 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7535 {
7536 sector_t max_sectors, resync, res;
7537 unsigned long dt, db;
7538 sector_t rt;
7539 int scale;
7540 unsigned int per_milli;
7541
7542 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7543 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7544 max_sectors = mddev->resync_max_sectors;
7545 else
7546 max_sectors = mddev->dev_sectors;
7547
7548 resync = mddev->curr_resync;
7549 if (resync <= 3) {
7550 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7551 /* Still cleaning up */
7552 resync = max_sectors;
7553 } else
7554 resync -= atomic_read(&mddev->recovery_active);
7555
7556 if (resync == 0) {
7557 if (mddev->recovery_cp < MaxSector) {
7558 seq_printf(seq, "\tresync=PENDING");
7559 return 1;
7560 }
7561 return 0;
7562 }
7563 if (resync < 3) {
7564 seq_printf(seq, "\tresync=DELAYED");
7565 return 1;
7566 }
7567
7568 WARN_ON(max_sectors == 0);
7569 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7570 * in a sector_t, and (max_sectors>>scale) will fit in a
7571 * u32, as those are the requirements for sector_div.
7572 * Thus 'scale' must be at least 10
7573 */
7574 scale = 10;
7575 if (sizeof(sector_t) > sizeof(unsigned long)) {
7576 while ( max_sectors/2 > (1ULL<<(scale+32)))
7577 scale++;
7578 }
7579 res = (resync>>scale)*1000;
7580 sector_div(res, (u32)((max_sectors>>scale)+1));
7581
7582 per_milli = res;
7583 {
7584 int i, x = per_milli/50, y = 20-x;
7585 seq_printf(seq, "[");
7586 for (i = 0; i < x; i++)
7587 seq_printf(seq, "=");
7588 seq_printf(seq, ">");
7589 for (i = 0; i < y; i++)
7590 seq_printf(seq, ".");
7591 seq_printf(seq, "] ");
7592 }
7593 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7594 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7595 "reshape" :
7596 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7597 "check" :
7598 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7599 "resync" : "recovery"))),
7600 per_milli/10, per_milli % 10,
7601 (unsigned long long) resync/2,
7602 (unsigned long long) max_sectors/2);
7603
7604 /*
7605 * dt: time from mark until now
7606 * db: blocks written from mark until now
7607 * rt: remaining time
7608 *
7609 * rt is a sector_t, so could be 32bit or 64bit.
7610 * So we divide before multiply in case it is 32bit and close
7611 * to the limit.
7612 * We scale the divisor (db) by 32 to avoid losing precision
7613 * near the end of resync when the number of remaining sectors
7614 * is close to 'db'.
7615 * We then divide rt by 32 after multiplying by db to compensate.
7616 * The '+1' avoids division by zero if db is very small.
7617 */
7618 dt = ((jiffies - mddev->resync_mark) / HZ);
7619 if (!dt) dt++;
7620 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7621 - mddev->resync_mark_cnt;
7622
7623 rt = max_sectors - resync; /* number of remaining sectors */
7624 sector_div(rt, db/32+1);
7625 rt *= dt;
7626 rt >>= 5;
7627
7628 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7629 ((unsigned long)rt % 60)/6);
7630
7631 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7632 return 1;
7633 }
7634
7635 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7636 {
7637 struct list_head *tmp;
7638 loff_t l = *pos;
7639 struct mddev *mddev;
7640
7641 if (l >= 0x10000)
7642 return NULL;
7643 if (!l--)
7644 /* header */
7645 return (void*)1;
7646
7647 spin_lock(&all_mddevs_lock);
7648 list_for_each(tmp,&all_mddevs)
7649 if (!l--) {
7650 mddev = list_entry(tmp, struct mddev, all_mddevs);
7651 mddev_get(mddev);
7652 spin_unlock(&all_mddevs_lock);
7653 return mddev;
7654 }
7655 spin_unlock(&all_mddevs_lock);
7656 if (!l--)
7657 return (void*)2;/* tail */
7658 return NULL;
7659 }
7660
7661 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7662 {
7663 struct list_head *tmp;
7664 struct mddev *next_mddev, *mddev = v;
7665
7666 ++*pos;
7667 if (v == (void*)2)
7668 return NULL;
7669
7670 spin_lock(&all_mddevs_lock);
7671 if (v == (void*)1)
7672 tmp = all_mddevs.next;
7673 else
7674 tmp = mddev->all_mddevs.next;
7675 if (tmp != &all_mddevs)
7676 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7677 else {
7678 next_mddev = (void*)2;
7679 *pos = 0x10000;
7680 }
7681 spin_unlock(&all_mddevs_lock);
7682
7683 if (v != (void*)1)
7684 mddev_put(mddev);
7685 return next_mddev;
7686
7687 }
7688
7689 static void md_seq_stop(struct seq_file *seq, void *v)
7690 {
7691 struct mddev *mddev = v;
7692
7693 if (mddev && v != (void*)1 && v != (void*)2)
7694 mddev_put(mddev);
7695 }
7696
7697 static int md_seq_show(struct seq_file *seq, void *v)
7698 {
7699 struct mddev *mddev = v;
7700 sector_t sectors;
7701 struct md_rdev *rdev;
7702
7703 if (v == (void*)1) {
7704 struct md_personality *pers;
7705 seq_printf(seq, "Personalities : ");
7706 spin_lock(&pers_lock);
7707 list_for_each_entry(pers, &pers_list, list)
7708 seq_printf(seq, "[%s] ", pers->name);
7709
7710 spin_unlock(&pers_lock);
7711 seq_printf(seq, "\n");
7712 seq->poll_event = atomic_read(&md_event_count);
7713 return 0;
7714 }
7715 if (v == (void*)2) {
7716 status_unused(seq);
7717 return 0;
7718 }
7719
7720 spin_lock(&mddev->lock);
7721 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7722 seq_printf(seq, "%s : %sactive", mdname(mddev),
7723 mddev->pers ? "" : "in");
7724 if (mddev->pers) {
7725 if (mddev->ro==1)
7726 seq_printf(seq, " (read-only)");
7727 if (mddev->ro==2)
7728 seq_printf(seq, " (auto-read-only)");
7729 seq_printf(seq, " %s", mddev->pers->name);
7730 }
7731
7732 sectors = 0;
7733 rcu_read_lock();
7734 rdev_for_each_rcu(rdev, mddev) {
7735 char b[BDEVNAME_SIZE];
7736 seq_printf(seq, " %s[%d]",
7737 bdevname(rdev->bdev,b), rdev->desc_nr);
7738 if (test_bit(WriteMostly, &rdev->flags))
7739 seq_printf(seq, "(W)");
7740 if (test_bit(Journal, &rdev->flags))
7741 seq_printf(seq, "(J)");
7742 if (test_bit(Faulty, &rdev->flags)) {
7743 seq_printf(seq, "(F)");
7744 continue;
7745 }
7746 if (rdev->raid_disk < 0)
7747 seq_printf(seq, "(S)"); /* spare */
7748 if (test_bit(Replacement, &rdev->flags))
7749 seq_printf(seq, "(R)");
7750 sectors += rdev->sectors;
7751 }
7752 rcu_read_unlock();
7753
7754 if (!list_empty(&mddev->disks)) {
7755 if (mddev->pers)
7756 seq_printf(seq, "\n %llu blocks",
7757 (unsigned long long)
7758 mddev->array_sectors / 2);
7759 else
7760 seq_printf(seq, "\n %llu blocks",
7761 (unsigned long long)sectors / 2);
7762 }
7763 if (mddev->persistent) {
7764 if (mddev->major_version != 0 ||
7765 mddev->minor_version != 90) {
7766 seq_printf(seq," super %d.%d",
7767 mddev->major_version,
7768 mddev->minor_version);
7769 }
7770 } else if (mddev->external)
7771 seq_printf(seq, " super external:%s",
7772 mddev->metadata_type);
7773 else
7774 seq_printf(seq, " super non-persistent");
7775
7776 if (mddev->pers) {
7777 mddev->pers->status(seq, mddev);
7778 seq_printf(seq, "\n ");
7779 if (mddev->pers->sync_request) {
7780 if (status_resync(seq, mddev))
7781 seq_printf(seq, "\n ");
7782 }
7783 } else
7784 seq_printf(seq, "\n ");
7785
7786 bitmap_status(seq, mddev->bitmap);
7787
7788 seq_printf(seq, "\n");
7789 }
7790 spin_unlock(&mddev->lock);
7791
7792 return 0;
7793 }
7794
7795 static const struct seq_operations md_seq_ops = {
7796 .start = md_seq_start,
7797 .next = md_seq_next,
7798 .stop = md_seq_stop,
7799 .show = md_seq_show,
7800 };
7801
7802 static int md_seq_open(struct inode *inode, struct file *file)
7803 {
7804 struct seq_file *seq;
7805 int error;
7806
7807 error = seq_open(file, &md_seq_ops);
7808 if (error)
7809 return error;
7810
7811 seq = file->private_data;
7812 seq->poll_event = atomic_read(&md_event_count);
7813 return error;
7814 }
7815
7816 static int md_unloading;
7817 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7818 {
7819 struct seq_file *seq = filp->private_data;
7820 int mask;
7821
7822 if (md_unloading)
7823 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7824 poll_wait(filp, &md_event_waiters, wait);
7825
7826 /* always allow read */
7827 mask = POLLIN | POLLRDNORM;
7828
7829 if (seq->poll_event != atomic_read(&md_event_count))
7830 mask |= POLLERR | POLLPRI;
7831 return mask;
7832 }
7833
7834 static const struct file_operations md_seq_fops = {
7835 .owner = THIS_MODULE,
7836 .open = md_seq_open,
7837 .read = seq_read,
7838 .llseek = seq_lseek,
7839 .release = seq_release_private,
7840 .poll = mdstat_poll,
7841 };
7842
7843 int register_md_personality(struct md_personality *p)
7844 {
7845 pr_debug("md: %s personality registered for level %d\n",
7846 p->name, p->level);
7847 spin_lock(&pers_lock);
7848 list_add_tail(&p->list, &pers_list);
7849 spin_unlock(&pers_lock);
7850 return 0;
7851 }
7852 EXPORT_SYMBOL(register_md_personality);
7853
7854 int unregister_md_personality(struct md_personality *p)
7855 {
7856 pr_debug("md: %s personality unregistered\n", p->name);
7857 spin_lock(&pers_lock);
7858 list_del_init(&p->list);
7859 spin_unlock(&pers_lock);
7860 return 0;
7861 }
7862 EXPORT_SYMBOL(unregister_md_personality);
7863
7864 int register_md_cluster_operations(struct md_cluster_operations *ops,
7865 struct module *module)
7866 {
7867 int ret = 0;
7868 spin_lock(&pers_lock);
7869 if (md_cluster_ops != NULL)
7870 ret = -EALREADY;
7871 else {
7872 md_cluster_ops = ops;
7873 md_cluster_mod = module;
7874 }
7875 spin_unlock(&pers_lock);
7876 return ret;
7877 }
7878 EXPORT_SYMBOL(register_md_cluster_operations);
7879
7880 int unregister_md_cluster_operations(void)
7881 {
7882 spin_lock(&pers_lock);
7883 md_cluster_ops = NULL;
7884 spin_unlock(&pers_lock);
7885 return 0;
7886 }
7887 EXPORT_SYMBOL(unregister_md_cluster_operations);
7888
7889 int md_setup_cluster(struct mddev *mddev, int nodes)
7890 {
7891 if (!md_cluster_ops)
7892 request_module("md-cluster");
7893 spin_lock(&pers_lock);
7894 /* ensure module won't be unloaded */
7895 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7896 pr_warn("can't find md-cluster module or get it's reference.\n");
7897 spin_unlock(&pers_lock);
7898 return -ENOENT;
7899 }
7900 spin_unlock(&pers_lock);
7901
7902 return md_cluster_ops->join(mddev, nodes);
7903 }
7904
7905 void md_cluster_stop(struct mddev *mddev)
7906 {
7907 if (!md_cluster_ops)
7908 return;
7909 md_cluster_ops->leave(mddev);
7910 module_put(md_cluster_mod);
7911 }
7912
7913 static int is_mddev_idle(struct mddev *mddev, int init)
7914 {
7915 struct md_rdev *rdev;
7916 int idle;
7917 int curr_events;
7918
7919 idle = 1;
7920 rcu_read_lock();
7921 rdev_for_each_rcu(rdev, mddev) {
7922 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7923 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7924 (int)part_stat_read(&disk->part0, sectors[1]) -
7925 atomic_read(&disk->sync_io);
7926 /* sync IO will cause sync_io to increase before the disk_stats
7927 * as sync_io is counted when a request starts, and
7928 * disk_stats is counted when it completes.
7929 * So resync activity will cause curr_events to be smaller than
7930 * when there was no such activity.
7931 * non-sync IO will cause disk_stat to increase without
7932 * increasing sync_io so curr_events will (eventually)
7933 * be larger than it was before. Once it becomes
7934 * substantially larger, the test below will cause
7935 * the array to appear non-idle, and resync will slow
7936 * down.
7937 * If there is a lot of outstanding resync activity when
7938 * we set last_event to curr_events, then all that activity
7939 * completing might cause the array to appear non-idle
7940 * and resync will be slowed down even though there might
7941 * not have been non-resync activity. This will only
7942 * happen once though. 'last_events' will soon reflect
7943 * the state where there is little or no outstanding
7944 * resync requests, and further resync activity will
7945 * always make curr_events less than last_events.
7946 *
7947 */
7948 if (init || curr_events - rdev->last_events > 64) {
7949 rdev->last_events = curr_events;
7950 idle = 0;
7951 }
7952 }
7953 rcu_read_unlock();
7954 return idle;
7955 }
7956
7957 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7958 {
7959 /* another "blocks" (512byte) blocks have been synced */
7960 atomic_sub(blocks, &mddev->recovery_active);
7961 wake_up(&mddev->recovery_wait);
7962 if (!ok) {
7963 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7964 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7965 md_wakeup_thread(mddev->thread);
7966 // stop recovery, signal do_sync ....
7967 }
7968 }
7969 EXPORT_SYMBOL(md_done_sync);
7970
7971 /* md_write_start(mddev, bi)
7972 * If we need to update some array metadata (e.g. 'active' flag
7973 * in superblock) before writing, schedule a superblock update
7974 * and wait for it to complete.
7975 * A return value of 'false' means that the write wasn't recorded
7976 * and cannot proceed as the array is being suspend.
7977 */
7978 bool md_write_start(struct mddev *mddev, struct bio *bi)
7979 {
7980 int did_change = 0;
7981 if (bio_data_dir(bi) != WRITE)
7982 return true;
7983
7984 BUG_ON(mddev->ro == 1);
7985 if (mddev->ro == 2) {
7986 /* need to switch to read/write */
7987 mddev->ro = 0;
7988 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7989 md_wakeup_thread(mddev->thread);
7990 md_wakeup_thread(mddev->sync_thread);
7991 did_change = 1;
7992 }
7993 rcu_read_lock();
7994 percpu_ref_get(&mddev->writes_pending);
7995 smp_mb(); /* Match smp_mb in set_in_sync() */
7996 if (mddev->safemode == 1)
7997 mddev->safemode = 0;
7998 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
7999 if (mddev->in_sync || mddev->sync_checkers) {
8000 spin_lock(&mddev->lock);
8001 if (mddev->in_sync) {
8002 mddev->in_sync = 0;
8003 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8004 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8005 md_wakeup_thread(mddev->thread);
8006 did_change = 1;
8007 }
8008 spin_unlock(&mddev->lock);
8009 }
8010 rcu_read_unlock();
8011 if (did_change)
8012 sysfs_notify_dirent_safe(mddev->sysfs_state);
8013 wait_event(mddev->sb_wait,
8014 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && !mddev->suspended);
8015 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8016 percpu_ref_put(&mddev->writes_pending);
8017 return false;
8018 }
8019 return true;
8020 }
8021 EXPORT_SYMBOL(md_write_start);
8022
8023 /* md_write_inc can only be called when md_write_start() has
8024 * already been called at least once of the current request.
8025 * It increments the counter and is useful when a single request
8026 * is split into several parts. Each part causes an increment and
8027 * so needs a matching md_write_end().
8028 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8029 * a spinlocked region.
8030 */
8031 void md_write_inc(struct mddev *mddev, struct bio *bi)
8032 {
8033 if (bio_data_dir(bi) != WRITE)
8034 return;
8035 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8036 percpu_ref_get(&mddev->writes_pending);
8037 }
8038 EXPORT_SYMBOL(md_write_inc);
8039
8040 void md_write_end(struct mddev *mddev)
8041 {
8042 percpu_ref_put(&mddev->writes_pending);
8043
8044 if (mddev->safemode == 2)
8045 md_wakeup_thread(mddev->thread);
8046 else if (mddev->safemode_delay)
8047 /* The roundup() ensures this only performs locking once
8048 * every ->safemode_delay jiffies
8049 */
8050 mod_timer(&mddev->safemode_timer,
8051 roundup(jiffies, mddev->safemode_delay) +
8052 mddev->safemode_delay);
8053 }
8054
8055 EXPORT_SYMBOL(md_write_end);
8056
8057 /* md_allow_write(mddev)
8058 * Calling this ensures that the array is marked 'active' so that writes
8059 * may proceed without blocking. It is important to call this before
8060 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8061 * Must be called with mddev_lock held.
8062 */
8063 void md_allow_write(struct mddev *mddev)
8064 {
8065 if (!mddev->pers)
8066 return;
8067 if (mddev->ro)
8068 return;
8069 if (!mddev->pers->sync_request)
8070 return;
8071
8072 spin_lock(&mddev->lock);
8073 if (mddev->in_sync) {
8074 mddev->in_sync = 0;
8075 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8076 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8077 if (mddev->safemode_delay &&
8078 mddev->safemode == 0)
8079 mddev->safemode = 1;
8080 spin_unlock(&mddev->lock);
8081 md_update_sb(mddev, 0);
8082 sysfs_notify_dirent_safe(mddev->sysfs_state);
8083 /* wait for the dirty state to be recorded in the metadata */
8084 wait_event(mddev->sb_wait,
8085 !test_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags) &&
8086 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8087 } else
8088 spin_unlock(&mddev->lock);
8089 }
8090 EXPORT_SYMBOL_GPL(md_allow_write);
8091
8092 #define SYNC_MARKS 10
8093 #define SYNC_MARK_STEP (3*HZ)
8094 #define UPDATE_FREQUENCY (5*60*HZ)
8095 void md_do_sync(struct md_thread *thread)
8096 {
8097 struct mddev *mddev = thread->mddev;
8098 struct mddev *mddev2;
8099 unsigned int currspeed = 0,
8100 window;
8101 sector_t max_sectors,j, io_sectors, recovery_done;
8102 unsigned long mark[SYNC_MARKS];
8103 unsigned long update_time;
8104 sector_t mark_cnt[SYNC_MARKS];
8105 int last_mark,m;
8106 struct list_head *tmp;
8107 sector_t last_check;
8108 int skipped = 0;
8109 struct md_rdev *rdev;
8110 char *desc, *action = NULL;
8111 struct blk_plug plug;
8112 int ret;
8113
8114 /* just incase thread restarts... */
8115 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8116 return;
8117 if (mddev->ro) {/* never try to sync a read-only array */
8118 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8119 return;
8120 }
8121
8122 if (mddev_is_clustered(mddev)) {
8123 ret = md_cluster_ops->resync_start(mddev);
8124 if (ret)
8125 goto skip;
8126
8127 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8128 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8129 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8130 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8131 && ((unsigned long long)mddev->curr_resync_completed
8132 < (unsigned long long)mddev->resync_max_sectors))
8133 goto skip;
8134 }
8135
8136 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8137 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8138 desc = "data-check";
8139 action = "check";
8140 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8141 desc = "requested-resync";
8142 action = "repair";
8143 } else
8144 desc = "resync";
8145 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8146 desc = "reshape";
8147 else
8148 desc = "recovery";
8149
8150 mddev->last_sync_action = action ?: desc;
8151
8152 /* we overload curr_resync somewhat here.
8153 * 0 == not engaged in resync at all
8154 * 2 == checking that there is no conflict with another sync
8155 * 1 == like 2, but have yielded to allow conflicting resync to
8156 * commense
8157 * other == active in resync - this many blocks
8158 *
8159 * Before starting a resync we must have set curr_resync to
8160 * 2, and then checked that every "conflicting" array has curr_resync
8161 * less than ours. When we find one that is the same or higher
8162 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8163 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8164 * This will mean we have to start checking from the beginning again.
8165 *
8166 */
8167
8168 do {
8169 int mddev2_minor = -1;
8170 mddev->curr_resync = 2;
8171
8172 try_again:
8173 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8174 goto skip;
8175 for_each_mddev(mddev2, tmp) {
8176 if (mddev2 == mddev)
8177 continue;
8178 if (!mddev->parallel_resync
8179 && mddev2->curr_resync
8180 && match_mddev_units(mddev, mddev2)) {
8181 DEFINE_WAIT(wq);
8182 if (mddev < mddev2 && mddev->curr_resync == 2) {
8183 /* arbitrarily yield */
8184 mddev->curr_resync = 1;
8185 wake_up(&resync_wait);
8186 }
8187 if (mddev > mddev2 && mddev->curr_resync == 1)
8188 /* no need to wait here, we can wait the next
8189 * time 'round when curr_resync == 2
8190 */
8191 continue;
8192 /* We need to wait 'interruptible' so as not to
8193 * contribute to the load average, and not to
8194 * be caught by 'softlockup'
8195 */
8196 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8197 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8198 mddev2->curr_resync >= mddev->curr_resync) {
8199 if (mddev2_minor != mddev2->md_minor) {
8200 mddev2_minor = mddev2->md_minor;
8201 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8202 desc, mdname(mddev),
8203 mdname(mddev2));
8204 }
8205 mddev_put(mddev2);
8206 if (signal_pending(current))
8207 flush_signals(current);
8208 schedule();
8209 finish_wait(&resync_wait, &wq);
8210 goto try_again;
8211 }
8212 finish_wait(&resync_wait, &wq);
8213 }
8214 }
8215 } while (mddev->curr_resync < 2);
8216
8217 j = 0;
8218 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8219 /* resync follows the size requested by the personality,
8220 * which defaults to physical size, but can be virtual size
8221 */
8222 max_sectors = mddev->resync_max_sectors;
8223 atomic64_set(&mddev->resync_mismatches, 0);
8224 /* we don't use the checkpoint if there's a bitmap */
8225 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8226 j = mddev->resync_min;
8227 else if (!mddev->bitmap)
8228 j = mddev->recovery_cp;
8229
8230 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8231 max_sectors = mddev->resync_max_sectors;
8232 else {
8233 /* recovery follows the physical size of devices */
8234 max_sectors = mddev->dev_sectors;
8235 j = MaxSector;
8236 rcu_read_lock();
8237 rdev_for_each_rcu(rdev, mddev)
8238 if (rdev->raid_disk >= 0 &&
8239 !test_bit(Journal, &rdev->flags) &&
8240 !test_bit(Faulty, &rdev->flags) &&
8241 !test_bit(In_sync, &rdev->flags) &&
8242 rdev->recovery_offset < j)
8243 j = rdev->recovery_offset;
8244 rcu_read_unlock();
8245
8246 /* If there is a bitmap, we need to make sure all
8247 * writes that started before we added a spare
8248 * complete before we start doing a recovery.
8249 * Otherwise the write might complete and (via
8250 * bitmap_endwrite) set a bit in the bitmap after the
8251 * recovery has checked that bit and skipped that
8252 * region.
8253 */
8254 if (mddev->bitmap) {
8255 mddev->pers->quiesce(mddev, 1);
8256 mddev->pers->quiesce(mddev, 0);
8257 }
8258 }
8259
8260 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8261 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8262 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8263 speed_max(mddev), desc);
8264
8265 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8266
8267 io_sectors = 0;
8268 for (m = 0; m < SYNC_MARKS; m++) {
8269 mark[m] = jiffies;
8270 mark_cnt[m] = io_sectors;
8271 }
8272 last_mark = 0;
8273 mddev->resync_mark = mark[last_mark];
8274 mddev->resync_mark_cnt = mark_cnt[last_mark];
8275
8276 /*
8277 * Tune reconstruction:
8278 */
8279 window = 32*(PAGE_SIZE/512);
8280 pr_debug("md: using %dk window, over a total of %lluk.\n",
8281 window/2, (unsigned long long)max_sectors/2);
8282
8283 atomic_set(&mddev->recovery_active, 0);
8284 last_check = 0;
8285
8286 if (j>2) {
8287 pr_debug("md: resuming %s of %s from checkpoint.\n",
8288 desc, mdname(mddev));
8289 mddev->curr_resync = j;
8290 } else
8291 mddev->curr_resync = 3; /* no longer delayed */
8292 mddev->curr_resync_completed = j;
8293 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8294 md_new_event(mddev);
8295 update_time = jiffies;
8296
8297 blk_start_plug(&plug);
8298 while (j < max_sectors) {
8299 sector_t sectors;
8300
8301 skipped = 0;
8302
8303 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8304 ((mddev->curr_resync > mddev->curr_resync_completed &&
8305 (mddev->curr_resync - mddev->curr_resync_completed)
8306 > (max_sectors >> 4)) ||
8307 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8308 (j - mddev->curr_resync_completed)*2
8309 >= mddev->resync_max - mddev->curr_resync_completed ||
8310 mddev->curr_resync_completed > mddev->resync_max
8311 )) {
8312 /* time to update curr_resync_completed */
8313 wait_event(mddev->recovery_wait,
8314 atomic_read(&mddev->recovery_active) == 0);
8315 mddev->curr_resync_completed = j;
8316 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8317 j > mddev->recovery_cp)
8318 mddev->recovery_cp = j;
8319 update_time = jiffies;
8320 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8321 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8322 }
8323
8324 while (j >= mddev->resync_max &&
8325 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8326 /* As this condition is controlled by user-space,
8327 * we can block indefinitely, so use '_interruptible'
8328 * to avoid triggering warnings.
8329 */
8330 flush_signals(current); /* just in case */
8331 wait_event_interruptible(mddev->recovery_wait,
8332 mddev->resync_max > j
8333 || test_bit(MD_RECOVERY_INTR,
8334 &mddev->recovery));
8335 }
8336
8337 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8338 break;
8339
8340 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8341 if (sectors == 0) {
8342 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8343 break;
8344 }
8345
8346 if (!skipped) { /* actual IO requested */
8347 io_sectors += sectors;
8348 atomic_add(sectors, &mddev->recovery_active);
8349 }
8350
8351 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8352 break;
8353
8354 j += sectors;
8355 if (j > max_sectors)
8356 /* when skipping, extra large numbers can be returned. */
8357 j = max_sectors;
8358 if (j > 2)
8359 mddev->curr_resync = j;
8360 mddev->curr_mark_cnt = io_sectors;
8361 if (last_check == 0)
8362 /* this is the earliest that rebuild will be
8363 * visible in /proc/mdstat
8364 */
8365 md_new_event(mddev);
8366
8367 if (last_check + window > io_sectors || j == max_sectors)
8368 continue;
8369
8370 last_check = io_sectors;
8371 repeat:
8372 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8373 /* step marks */
8374 int next = (last_mark+1) % SYNC_MARKS;
8375
8376 mddev->resync_mark = mark[next];
8377 mddev->resync_mark_cnt = mark_cnt[next];
8378 mark[next] = jiffies;
8379 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8380 last_mark = next;
8381 }
8382
8383 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8384 break;
8385
8386 /*
8387 * this loop exits only if either when we are slower than
8388 * the 'hard' speed limit, or the system was IO-idle for
8389 * a jiffy.
8390 * the system might be non-idle CPU-wise, but we only care
8391 * about not overloading the IO subsystem. (things like an
8392 * e2fsck being done on the RAID array should execute fast)
8393 */
8394 cond_resched();
8395
8396 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8397 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8398 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8399
8400 if (currspeed > speed_min(mddev)) {
8401 if (currspeed > speed_max(mddev)) {
8402 msleep(500);
8403 goto repeat;
8404 }
8405 if (!is_mddev_idle(mddev, 0)) {
8406 /*
8407 * Give other IO more of a chance.
8408 * The faster the devices, the less we wait.
8409 */
8410 wait_event(mddev->recovery_wait,
8411 !atomic_read(&mddev->recovery_active));
8412 }
8413 }
8414 }
8415 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8416 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8417 ? "interrupted" : "done");
8418 /*
8419 * this also signals 'finished resyncing' to md_stop
8420 */
8421 blk_finish_plug(&plug);
8422 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8423
8424 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8425 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8426 mddev->curr_resync > 3) {
8427 mddev->curr_resync_completed = mddev->curr_resync;
8428 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8429 }
8430 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8431
8432 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8433 mddev->curr_resync > 3) {
8434 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8435 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8436 if (mddev->curr_resync >= mddev->recovery_cp) {
8437 pr_debug("md: checkpointing %s of %s.\n",
8438 desc, mdname(mddev));
8439 if (test_bit(MD_RECOVERY_ERROR,
8440 &mddev->recovery))
8441 mddev->recovery_cp =
8442 mddev->curr_resync_completed;
8443 else
8444 mddev->recovery_cp =
8445 mddev->curr_resync;
8446 }
8447 } else
8448 mddev->recovery_cp = MaxSector;
8449 } else {
8450 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8451 mddev->curr_resync = MaxSector;
8452 rcu_read_lock();
8453 rdev_for_each_rcu(rdev, mddev)
8454 if (rdev->raid_disk >= 0 &&
8455 mddev->delta_disks >= 0 &&
8456 !test_bit(Journal, &rdev->flags) &&
8457 !test_bit(Faulty, &rdev->flags) &&
8458 !test_bit(In_sync, &rdev->flags) &&
8459 rdev->recovery_offset < mddev->curr_resync)
8460 rdev->recovery_offset = mddev->curr_resync;
8461 rcu_read_unlock();
8462 }
8463 }
8464 skip:
8465 /* set CHANGE_PENDING here since maybe another update is needed,
8466 * so other nodes are informed. It should be harmless for normal
8467 * raid */
8468 set_mask_bits(&mddev->sb_flags, 0,
8469 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8470
8471 spin_lock(&mddev->lock);
8472 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8473 /* We completed so min/max setting can be forgotten if used. */
8474 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8475 mddev->resync_min = 0;
8476 mddev->resync_max = MaxSector;
8477 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8478 mddev->resync_min = mddev->curr_resync_completed;
8479 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8480 mddev->curr_resync = 0;
8481 spin_unlock(&mddev->lock);
8482
8483 wake_up(&resync_wait);
8484 md_wakeup_thread(mddev->thread);
8485 return;
8486 }
8487 EXPORT_SYMBOL_GPL(md_do_sync);
8488
8489 static int remove_and_add_spares(struct mddev *mddev,
8490 struct md_rdev *this)
8491 {
8492 struct md_rdev *rdev;
8493 int spares = 0;
8494 int removed = 0;
8495 bool remove_some = false;
8496
8497 rdev_for_each(rdev, mddev) {
8498 if ((this == NULL || rdev == this) &&
8499 rdev->raid_disk >= 0 &&
8500 !test_bit(Blocked, &rdev->flags) &&
8501 test_bit(Faulty, &rdev->flags) &&
8502 atomic_read(&rdev->nr_pending)==0) {
8503 /* Faulty non-Blocked devices with nr_pending == 0
8504 * never get nr_pending incremented,
8505 * never get Faulty cleared, and never get Blocked set.
8506 * So we can synchronize_rcu now rather than once per device
8507 */
8508 remove_some = true;
8509 set_bit(RemoveSynchronized, &rdev->flags);
8510 }
8511 }
8512
8513 if (remove_some)
8514 synchronize_rcu();
8515 rdev_for_each(rdev, mddev) {
8516 if ((this == NULL || rdev == this) &&
8517 rdev->raid_disk >= 0 &&
8518 !test_bit(Blocked, &rdev->flags) &&
8519 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8520 (!test_bit(In_sync, &rdev->flags) &&
8521 !test_bit(Journal, &rdev->flags))) &&
8522 atomic_read(&rdev->nr_pending)==0)) {
8523 if (mddev->pers->hot_remove_disk(
8524 mddev, rdev) == 0) {
8525 sysfs_unlink_rdev(mddev, rdev);
8526 rdev->raid_disk = -1;
8527 removed++;
8528 }
8529 }
8530 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8531 clear_bit(RemoveSynchronized, &rdev->flags);
8532 }
8533
8534 if (removed && mddev->kobj.sd)
8535 sysfs_notify(&mddev->kobj, NULL, "degraded");
8536
8537 if (this && removed)
8538 goto no_add;
8539
8540 rdev_for_each(rdev, mddev) {
8541 if (this && this != rdev)
8542 continue;
8543 if (test_bit(Candidate, &rdev->flags))
8544 continue;
8545 if (rdev->raid_disk >= 0 &&
8546 !test_bit(In_sync, &rdev->flags) &&
8547 !test_bit(Journal, &rdev->flags) &&
8548 !test_bit(Faulty, &rdev->flags))
8549 spares++;
8550 if (rdev->raid_disk >= 0)
8551 continue;
8552 if (test_bit(Faulty, &rdev->flags))
8553 continue;
8554 if (!test_bit(Journal, &rdev->flags)) {
8555 if (mddev->ro &&
8556 ! (rdev->saved_raid_disk >= 0 &&
8557 !test_bit(Bitmap_sync, &rdev->flags)))
8558 continue;
8559
8560 rdev->recovery_offset = 0;
8561 }
8562 if (mddev->pers->
8563 hot_add_disk(mddev, rdev) == 0) {
8564 if (sysfs_link_rdev(mddev, rdev))
8565 /* failure here is OK */;
8566 if (!test_bit(Journal, &rdev->flags))
8567 spares++;
8568 md_new_event(mddev);
8569 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8570 }
8571 }
8572 no_add:
8573 if (removed)
8574 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8575 return spares;
8576 }
8577
8578 static void md_start_sync(struct work_struct *ws)
8579 {
8580 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8581
8582 mddev->sync_thread = md_register_thread(md_do_sync,
8583 mddev,
8584 "resync");
8585 if (!mddev->sync_thread) {
8586 pr_warn("%s: could not start resync thread...\n",
8587 mdname(mddev));
8588 /* leave the spares where they are, it shouldn't hurt */
8589 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8590 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8591 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8592 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8593 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8594 wake_up(&resync_wait);
8595 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8596 &mddev->recovery))
8597 if (mddev->sysfs_action)
8598 sysfs_notify_dirent_safe(mddev->sysfs_action);
8599 } else
8600 md_wakeup_thread(mddev->sync_thread);
8601 sysfs_notify_dirent_safe(mddev->sysfs_action);
8602 md_new_event(mddev);
8603 }
8604
8605 /*
8606 * This routine is regularly called by all per-raid-array threads to
8607 * deal with generic issues like resync and super-block update.
8608 * Raid personalities that don't have a thread (linear/raid0) do not
8609 * need this as they never do any recovery or update the superblock.
8610 *
8611 * It does not do any resync itself, but rather "forks" off other threads
8612 * to do that as needed.
8613 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8614 * "->recovery" and create a thread at ->sync_thread.
8615 * When the thread finishes it sets MD_RECOVERY_DONE
8616 * and wakeups up this thread which will reap the thread and finish up.
8617 * This thread also removes any faulty devices (with nr_pending == 0).
8618 *
8619 * The overall approach is:
8620 * 1/ if the superblock needs updating, update it.
8621 * 2/ If a recovery thread is running, don't do anything else.
8622 * 3/ If recovery has finished, clean up, possibly marking spares active.
8623 * 4/ If there are any faulty devices, remove them.
8624 * 5/ If array is degraded, try to add spares devices
8625 * 6/ If array has spares or is not in-sync, start a resync thread.
8626 */
8627 void md_check_recovery(struct mddev *mddev)
8628 {
8629 if (mddev->suspended)
8630 return;
8631
8632 if (mddev->bitmap)
8633 bitmap_daemon_work(mddev);
8634
8635 if (signal_pending(current)) {
8636 if (mddev->pers->sync_request && !mddev->external) {
8637 pr_debug("md: %s in immediate safe mode\n",
8638 mdname(mddev));
8639 mddev->safemode = 2;
8640 }
8641 flush_signals(current);
8642 }
8643
8644 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8645 return;
8646 if ( ! (
8647 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8648 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8649 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8650 (mddev->external == 0 && mddev->safemode == 1) ||
8651 (mddev->safemode == 2
8652 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8653 ))
8654 return;
8655
8656 if (mddev_trylock(mddev)) {
8657 int spares = 0;
8658
8659 if (!mddev->external && mddev->safemode == 1)
8660 mddev->safemode = 0;
8661
8662 if (mddev->ro) {
8663 struct md_rdev *rdev;
8664 if (!mddev->external && mddev->in_sync)
8665 /* 'Blocked' flag not needed as failed devices
8666 * will be recorded if array switched to read/write.
8667 * Leaving it set will prevent the device
8668 * from being removed.
8669 */
8670 rdev_for_each(rdev, mddev)
8671 clear_bit(Blocked, &rdev->flags);
8672 /* On a read-only array we can:
8673 * - remove failed devices
8674 * - add already-in_sync devices if the array itself
8675 * is in-sync.
8676 * As we only add devices that are already in-sync,
8677 * we can activate the spares immediately.
8678 */
8679 remove_and_add_spares(mddev, NULL);
8680 /* There is no thread, but we need to call
8681 * ->spare_active and clear saved_raid_disk
8682 */
8683 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8684 md_reap_sync_thread(mddev);
8685 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8686 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8687 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8688 goto unlock;
8689 }
8690
8691 if (mddev_is_clustered(mddev)) {
8692 struct md_rdev *rdev;
8693 /* kick the device if another node issued a
8694 * remove disk.
8695 */
8696 rdev_for_each(rdev, mddev) {
8697 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8698 rdev->raid_disk < 0)
8699 md_kick_rdev_from_array(rdev);
8700 }
8701 }
8702
8703 if (!mddev->external && !mddev->in_sync) {
8704 spin_lock(&mddev->lock);
8705 set_in_sync(mddev);
8706 spin_unlock(&mddev->lock);
8707 }
8708
8709 if (mddev->sb_flags)
8710 md_update_sb(mddev, 0);
8711
8712 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8713 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8714 /* resync/recovery still happening */
8715 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8716 goto unlock;
8717 }
8718 if (mddev->sync_thread) {
8719 md_reap_sync_thread(mddev);
8720 goto unlock;
8721 }
8722 /* Set RUNNING before clearing NEEDED to avoid
8723 * any transients in the value of "sync_action".
8724 */
8725 mddev->curr_resync_completed = 0;
8726 spin_lock(&mddev->lock);
8727 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8728 spin_unlock(&mddev->lock);
8729 /* Clear some bits that don't mean anything, but
8730 * might be left set
8731 */
8732 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8733 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8734
8735 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8736 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8737 goto not_running;
8738 /* no recovery is running.
8739 * remove any failed drives, then
8740 * add spares if possible.
8741 * Spares are also removed and re-added, to allow
8742 * the personality to fail the re-add.
8743 */
8744
8745 if (mddev->reshape_position != MaxSector) {
8746 if (mddev->pers->check_reshape == NULL ||
8747 mddev->pers->check_reshape(mddev) != 0)
8748 /* Cannot proceed */
8749 goto not_running;
8750 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8751 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8752 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8753 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8754 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8755 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8756 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8757 } else if (mddev->recovery_cp < MaxSector) {
8758 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8759 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8760 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8761 /* nothing to be done ... */
8762 goto not_running;
8763
8764 if (mddev->pers->sync_request) {
8765 if (spares) {
8766 /* We are adding a device or devices to an array
8767 * which has the bitmap stored on all devices.
8768 * So make sure all bitmap pages get written
8769 */
8770 bitmap_write_all(mddev->bitmap);
8771 }
8772 INIT_WORK(&mddev->del_work, md_start_sync);
8773 queue_work(md_misc_wq, &mddev->del_work);
8774 goto unlock;
8775 }
8776 not_running:
8777 if (!mddev->sync_thread) {
8778 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8779 wake_up(&resync_wait);
8780 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8781 &mddev->recovery))
8782 if (mddev->sysfs_action)
8783 sysfs_notify_dirent_safe(mddev->sysfs_action);
8784 }
8785 unlock:
8786 wake_up(&mddev->sb_wait);
8787 mddev_unlock(mddev);
8788 }
8789 }
8790 EXPORT_SYMBOL(md_check_recovery);
8791
8792 void md_reap_sync_thread(struct mddev *mddev)
8793 {
8794 struct md_rdev *rdev;
8795
8796 /* resync has finished, collect result */
8797 md_unregister_thread(&mddev->sync_thread);
8798 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8799 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8800 /* success...*/
8801 /* activate any spares */
8802 if (mddev->pers->spare_active(mddev)) {
8803 sysfs_notify(&mddev->kobj, NULL,
8804 "degraded");
8805 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8806 }
8807 }
8808 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8809 mddev->pers->finish_reshape)
8810 mddev->pers->finish_reshape(mddev);
8811
8812 /* If array is no-longer degraded, then any saved_raid_disk
8813 * information must be scrapped.
8814 */
8815 if (!mddev->degraded)
8816 rdev_for_each(rdev, mddev)
8817 rdev->saved_raid_disk = -1;
8818
8819 md_update_sb(mddev, 1);
8820 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8821 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8822 * clustered raid */
8823 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8824 md_cluster_ops->resync_finish(mddev);
8825 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8826 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8827 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8828 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8829 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8830 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8831 wake_up(&resync_wait);
8832 /* flag recovery needed just to double check */
8833 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8834 sysfs_notify_dirent_safe(mddev->sysfs_action);
8835 md_new_event(mddev);
8836 if (mddev->event_work.func)
8837 queue_work(md_misc_wq, &mddev->event_work);
8838 }
8839 EXPORT_SYMBOL(md_reap_sync_thread);
8840
8841 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8842 {
8843 sysfs_notify_dirent_safe(rdev->sysfs_state);
8844 wait_event_timeout(rdev->blocked_wait,
8845 !test_bit(Blocked, &rdev->flags) &&
8846 !test_bit(BlockedBadBlocks, &rdev->flags),
8847 msecs_to_jiffies(5000));
8848 rdev_dec_pending(rdev, mddev);
8849 }
8850 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8851
8852 void md_finish_reshape(struct mddev *mddev)
8853 {
8854 /* called be personality module when reshape completes. */
8855 struct md_rdev *rdev;
8856
8857 rdev_for_each(rdev, mddev) {
8858 if (rdev->data_offset > rdev->new_data_offset)
8859 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8860 else
8861 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8862 rdev->data_offset = rdev->new_data_offset;
8863 }
8864 }
8865 EXPORT_SYMBOL(md_finish_reshape);
8866
8867 /* Bad block management */
8868
8869 /* Returns 1 on success, 0 on failure */
8870 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8871 int is_new)
8872 {
8873 struct mddev *mddev = rdev->mddev;
8874 int rv;
8875 if (is_new)
8876 s += rdev->new_data_offset;
8877 else
8878 s += rdev->data_offset;
8879 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8880 if (rv == 0) {
8881 /* Make sure they get written out promptly */
8882 if (test_bit(ExternalBbl, &rdev->flags))
8883 sysfs_notify(&rdev->kobj, NULL,
8884 "unacknowledged_bad_blocks");
8885 sysfs_notify_dirent_safe(rdev->sysfs_state);
8886 set_mask_bits(&mddev->sb_flags, 0,
8887 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
8888 md_wakeup_thread(rdev->mddev->thread);
8889 return 1;
8890 } else
8891 return 0;
8892 }
8893 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8894
8895 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8896 int is_new)
8897 {
8898 int rv;
8899 if (is_new)
8900 s += rdev->new_data_offset;
8901 else
8902 s += rdev->data_offset;
8903 rv = badblocks_clear(&rdev->badblocks, s, sectors);
8904 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
8905 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
8906 return rv;
8907 }
8908 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8909
8910 static int md_notify_reboot(struct notifier_block *this,
8911 unsigned long code, void *x)
8912 {
8913 struct list_head *tmp;
8914 struct mddev *mddev;
8915 int need_delay = 0;
8916
8917 for_each_mddev(mddev, tmp) {
8918 if (mddev_trylock(mddev)) {
8919 if (mddev->pers)
8920 __md_stop_writes(mddev);
8921 if (mddev->persistent)
8922 mddev->safemode = 2;
8923 mddev_unlock(mddev);
8924 }
8925 need_delay = 1;
8926 }
8927 /*
8928 * certain more exotic SCSI devices are known to be
8929 * volatile wrt too early system reboots. While the
8930 * right place to handle this issue is the given
8931 * driver, we do want to have a safe RAID driver ...
8932 */
8933 if (need_delay)
8934 mdelay(1000*1);
8935
8936 return NOTIFY_DONE;
8937 }
8938
8939 static struct notifier_block md_notifier = {
8940 .notifier_call = md_notify_reboot,
8941 .next = NULL,
8942 .priority = INT_MAX, /* before any real devices */
8943 };
8944
8945 static void md_geninit(void)
8946 {
8947 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8948
8949 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8950 }
8951
8952 static int __init md_init(void)
8953 {
8954 int ret = -ENOMEM;
8955
8956 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8957 if (!md_wq)
8958 goto err_wq;
8959
8960 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8961 if (!md_misc_wq)
8962 goto err_misc_wq;
8963
8964 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8965 goto err_md;
8966
8967 if ((ret = register_blkdev(0, "mdp")) < 0)
8968 goto err_mdp;
8969 mdp_major = ret;
8970
8971 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8972 md_probe, NULL, NULL);
8973 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8974 md_probe, NULL, NULL);
8975
8976 register_reboot_notifier(&md_notifier);
8977 raid_table_header = register_sysctl_table(raid_root_table);
8978
8979 md_geninit();
8980 return 0;
8981
8982 err_mdp:
8983 unregister_blkdev(MD_MAJOR, "md");
8984 err_md:
8985 destroy_workqueue(md_misc_wq);
8986 err_misc_wq:
8987 destroy_workqueue(md_wq);
8988 err_wq:
8989 return ret;
8990 }
8991
8992 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8993 {
8994 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8995 struct md_rdev *rdev2;
8996 int role, ret;
8997 char b[BDEVNAME_SIZE];
8998
8999 /*
9000 * If size is changed in another node then we need to
9001 * do resize as well.
9002 */
9003 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9004 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9005 if (ret)
9006 pr_info("md-cluster: resize failed\n");
9007 else
9008 bitmap_update_sb(mddev->bitmap);
9009 }
9010
9011 /* Check for change of roles in the active devices */
9012 rdev_for_each(rdev2, mddev) {
9013 if (test_bit(Faulty, &rdev2->flags))
9014 continue;
9015
9016 /* Check if the roles changed */
9017 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9018
9019 if (test_bit(Candidate, &rdev2->flags)) {
9020 if (role == 0xfffe) {
9021 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9022 md_kick_rdev_from_array(rdev2);
9023 continue;
9024 }
9025 else
9026 clear_bit(Candidate, &rdev2->flags);
9027 }
9028
9029 if (role != rdev2->raid_disk) {
9030 /* got activated */
9031 if (rdev2->raid_disk == -1 && role != 0xffff) {
9032 rdev2->saved_raid_disk = role;
9033 ret = remove_and_add_spares(mddev, rdev2);
9034 pr_info("Activated spare: %s\n",
9035 bdevname(rdev2->bdev,b));
9036 /* wakeup mddev->thread here, so array could
9037 * perform resync with the new activated disk */
9038 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9039 md_wakeup_thread(mddev->thread);
9040
9041 }
9042 /* device faulty
9043 * We just want to do the minimum to mark the disk
9044 * as faulty. The recovery is performed by the
9045 * one who initiated the error.
9046 */
9047 if ((role == 0xfffe) || (role == 0xfffd)) {
9048 md_error(mddev, rdev2);
9049 clear_bit(Blocked, &rdev2->flags);
9050 }
9051 }
9052 }
9053
9054 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9055 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9056
9057 /* Finally set the event to be up to date */
9058 mddev->events = le64_to_cpu(sb->events);
9059 }
9060
9061 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9062 {
9063 int err;
9064 struct page *swapout = rdev->sb_page;
9065 struct mdp_superblock_1 *sb;
9066
9067 /* Store the sb page of the rdev in the swapout temporary
9068 * variable in case we err in the future
9069 */
9070 rdev->sb_page = NULL;
9071 err = alloc_disk_sb(rdev);
9072 if (err == 0) {
9073 ClearPageUptodate(rdev->sb_page);
9074 rdev->sb_loaded = 0;
9075 err = super_types[mddev->major_version].
9076 load_super(rdev, NULL, mddev->minor_version);
9077 }
9078 if (err < 0) {
9079 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9080 __func__, __LINE__, rdev->desc_nr, err);
9081 if (rdev->sb_page)
9082 put_page(rdev->sb_page);
9083 rdev->sb_page = swapout;
9084 rdev->sb_loaded = 1;
9085 return err;
9086 }
9087
9088 sb = page_address(rdev->sb_page);
9089 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9090 * is not set
9091 */
9092
9093 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9094 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9095
9096 /* The other node finished recovery, call spare_active to set
9097 * device In_sync and mddev->degraded
9098 */
9099 if (rdev->recovery_offset == MaxSector &&
9100 !test_bit(In_sync, &rdev->flags) &&
9101 mddev->pers->spare_active(mddev))
9102 sysfs_notify(&mddev->kobj, NULL, "degraded");
9103
9104 put_page(swapout);
9105 return 0;
9106 }
9107
9108 void md_reload_sb(struct mddev *mddev, int nr)
9109 {
9110 struct md_rdev *rdev;
9111 int err;
9112
9113 /* Find the rdev */
9114 rdev_for_each_rcu(rdev, mddev) {
9115 if (rdev->desc_nr == nr)
9116 break;
9117 }
9118
9119 if (!rdev || rdev->desc_nr != nr) {
9120 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9121 return;
9122 }
9123
9124 err = read_rdev(mddev, rdev);
9125 if (err < 0)
9126 return;
9127
9128 check_sb_changes(mddev, rdev);
9129
9130 /* Read all rdev's to update recovery_offset */
9131 rdev_for_each_rcu(rdev, mddev)
9132 read_rdev(mddev, rdev);
9133 }
9134 EXPORT_SYMBOL(md_reload_sb);
9135
9136 #ifndef MODULE
9137
9138 /*
9139 * Searches all registered partitions for autorun RAID arrays
9140 * at boot time.
9141 */
9142
9143 static DEFINE_MUTEX(detected_devices_mutex);
9144 static LIST_HEAD(all_detected_devices);
9145 struct detected_devices_node {
9146 struct list_head list;
9147 dev_t dev;
9148 };
9149
9150 void md_autodetect_dev(dev_t dev)
9151 {
9152 struct detected_devices_node *node_detected_dev;
9153
9154 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9155 if (node_detected_dev) {
9156 node_detected_dev->dev = dev;
9157 mutex_lock(&detected_devices_mutex);
9158 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9159 mutex_unlock(&detected_devices_mutex);
9160 }
9161 }
9162
9163 static void autostart_arrays(int part)
9164 {
9165 struct md_rdev *rdev;
9166 struct detected_devices_node *node_detected_dev;
9167 dev_t dev;
9168 int i_scanned, i_passed;
9169
9170 i_scanned = 0;
9171 i_passed = 0;
9172
9173 pr_info("md: Autodetecting RAID arrays.\n");
9174
9175 mutex_lock(&detected_devices_mutex);
9176 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9177 i_scanned++;
9178 node_detected_dev = list_entry(all_detected_devices.next,
9179 struct detected_devices_node, list);
9180 list_del(&node_detected_dev->list);
9181 dev = node_detected_dev->dev;
9182 kfree(node_detected_dev);
9183 mutex_unlock(&detected_devices_mutex);
9184 rdev = md_import_device(dev,0, 90);
9185 mutex_lock(&detected_devices_mutex);
9186 if (IS_ERR(rdev))
9187 continue;
9188
9189 if (test_bit(Faulty, &rdev->flags))
9190 continue;
9191
9192 set_bit(AutoDetected, &rdev->flags);
9193 list_add(&rdev->same_set, &pending_raid_disks);
9194 i_passed++;
9195 }
9196 mutex_unlock(&detected_devices_mutex);
9197
9198 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9199
9200 autorun_devices(part);
9201 }
9202
9203 #endif /* !MODULE */
9204
9205 static __exit void md_exit(void)
9206 {
9207 struct mddev *mddev;
9208 struct list_head *tmp;
9209 int delay = 1;
9210
9211 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9212 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9213
9214 unregister_blkdev(MD_MAJOR,"md");
9215 unregister_blkdev(mdp_major, "mdp");
9216 unregister_reboot_notifier(&md_notifier);
9217 unregister_sysctl_table(raid_table_header);
9218
9219 /* We cannot unload the modules while some process is
9220 * waiting for us in select() or poll() - wake them up
9221 */
9222 md_unloading = 1;
9223 while (waitqueue_active(&md_event_waiters)) {
9224 /* not safe to leave yet */
9225 wake_up(&md_event_waiters);
9226 msleep(delay);
9227 delay += delay;
9228 }
9229 remove_proc_entry("mdstat", NULL);
9230
9231 for_each_mddev(mddev, tmp) {
9232 export_array(mddev);
9233 mddev->ctime = 0;
9234 mddev->hold_active = 0;
9235 /*
9236 * for_each_mddev() will call mddev_put() at the end of each
9237 * iteration. As the mddev is now fully clear, this will
9238 * schedule the mddev for destruction by a workqueue, and the
9239 * destroy_workqueue() below will wait for that to complete.
9240 */
9241 }
9242 destroy_workqueue(md_misc_wq);
9243 destroy_workqueue(md_wq);
9244 }
9245
9246 subsys_initcall(md_init);
9247 module_exit(md_exit)
9248
9249 static int get_ro(char *buffer, struct kernel_param *kp)
9250 {
9251 return sprintf(buffer, "%d", start_readonly);
9252 }
9253 static int set_ro(const char *val, struct kernel_param *kp)
9254 {
9255 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9256 }
9257
9258 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9259 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9260 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9261 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9262
9263 MODULE_LICENSE("GPL");
9264 MODULE_DESCRIPTION("MD RAID framework");
9265 MODULE_ALIAS("md");
9266 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);