]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/md.c
ca0d79c264b98ad66c32231e819ff1e0ecfab060
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75 /*
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
79 */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
117 },
118 {
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
124 },
125 { }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
144 },
145 { }
146 };
147
148 static const struct block_device_operations md_fops;
149
150 static int start_readonly;
151
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
154 */
155
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158 mddev_t *mddev, **mddevp;
159
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
162
163 bio_free(bio, mddev->bio_set);
164 }
165
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
168 {
169 struct bio *b;
170 mddev_t **mddevp;
171
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
174
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
188 {
189 struct bio *b;
190 mddev_t **mddevp;
191
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
194
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
205
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
211 }
212 }
213
214 return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217
218 /*
219 * We have a system wide 'event count' that is incremented
220 * on any 'interesting' event, and readers of /proc/mdstat
221 * can use 'poll' or 'select' to find out when the event
222 * count increases.
223 *
224 * Events are:
225 * start array, stop array, error, add device, remove device,
226 * start build, activate spare
227 */
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
231 {
232 atomic_inc(&md_event_count);
233 wake_up(&md_event_waiters);
234 }
235 EXPORT_SYMBOL_GPL(md_new_event);
236
237 /* Alternate version that can be called from interrupts
238 * when calling sysfs_notify isn't needed.
239 */
240 static void md_new_event_inintr(mddev_t *mddev)
241 {
242 atomic_inc(&md_event_count);
243 wake_up(&md_event_waiters);
244 }
245
246 /*
247 * Enables to iterate over all existing md arrays
248 * all_mddevs_lock protects this list.
249 */
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
252
253
254 /*
255 * iterates through all used mddevs in the system.
256 * We take care to grab the all_mddevs_lock whenever navigating
257 * the list, and to always hold a refcount when unlocked.
258 * Any code which breaks out of this loop while own
259 * a reference to the current mddev and must mddev_put it.
260 */
261 #define for_each_mddev(mddev,tmp) \
262 \
263 for (({ spin_lock(&all_mddevs_lock); \
264 tmp = all_mddevs.next; \
265 mddev = NULL;}); \
266 ({ if (tmp != &all_mddevs) \
267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 spin_unlock(&all_mddevs_lock); \
269 if (mddev) mddev_put(mddev); \
270 mddev = list_entry(tmp, mddev_t, all_mddevs); \
271 tmp != &all_mddevs;}); \
272 ({ spin_lock(&all_mddevs_lock); \
273 tmp = tmp->next;}) \
274 )
275
276
277 /* Rather than calling directly into the personality make_request function,
278 * IO requests come here first so that we can check if the device is
279 * being suspended pending a reconfiguration.
280 * We hold a refcount over the call to ->make_request. By the time that
281 * call has finished, the bio has been linked into some internal structure
282 * and so is visible to ->quiesce(), so we don't need the refcount any more.
283 */
284 static int md_make_request(struct request_queue *q, struct bio *bio)
285 {
286 const int rw = bio_data_dir(bio);
287 mddev_t *mddev = q->queuedata;
288 int rv;
289 int cpu;
290 unsigned int sectors;
291
292 if (mddev == NULL || mddev->pers == NULL
293 || !mddev->ready) {
294 bio_io_error(bio);
295 return 0;
296 }
297 smp_rmb(); /* Ensure implications of 'active' are visible */
298 rcu_read_lock();
299 if (mddev->suspended) {
300 DEFINE_WAIT(__wait);
301 for (;;) {
302 prepare_to_wait(&mddev->sb_wait, &__wait,
303 TASK_UNINTERRUPTIBLE);
304 if (!mddev->suspended)
305 break;
306 rcu_read_unlock();
307 schedule();
308 rcu_read_lock();
309 }
310 finish_wait(&mddev->sb_wait, &__wait);
311 }
312 atomic_inc(&mddev->active_io);
313 rcu_read_unlock();
314
315 /*
316 * save the sectors now since our bio can
317 * go away inside make_request
318 */
319 sectors = bio_sectors(bio);
320 rv = mddev->pers->make_request(mddev, bio);
321
322 cpu = part_stat_lock();
323 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
324 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
325 part_stat_unlock();
326
327 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
328 wake_up(&mddev->sb_wait);
329
330 return rv;
331 }
332
333 /* mddev_suspend makes sure no new requests are submitted
334 * to the device, and that any requests that have been submitted
335 * are completely handled.
336 * Once ->stop is called and completes, the module will be completely
337 * unused.
338 */
339 void mddev_suspend(mddev_t *mddev)
340 {
341 BUG_ON(mddev->suspended);
342 mddev->suspended = 1;
343 synchronize_rcu();
344 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
345 mddev->pers->quiesce(mddev, 1);
346 }
347 EXPORT_SYMBOL_GPL(mddev_suspend);
348
349 void mddev_resume(mddev_t *mddev)
350 {
351 mddev->suspended = 0;
352 wake_up(&mddev->sb_wait);
353 mddev->pers->quiesce(mddev, 0);
354 }
355 EXPORT_SYMBOL_GPL(mddev_resume);
356
357 int mddev_congested(mddev_t *mddev, int bits)
358 {
359 return mddev->suspended;
360 }
361 EXPORT_SYMBOL(mddev_congested);
362
363 /*
364 * Generic flush handling for md
365 */
366
367 static void md_end_flush(struct bio *bio, int err)
368 {
369 mdk_rdev_t *rdev = bio->bi_private;
370 mddev_t *mddev = rdev->mddev;
371
372 rdev_dec_pending(rdev, mddev);
373
374 if (atomic_dec_and_test(&mddev->flush_pending)) {
375 /* The pre-request flush has finished */
376 queue_work(md_wq, &mddev->flush_work);
377 }
378 bio_put(bio);
379 }
380
381 static void md_submit_flush_data(struct work_struct *ws);
382
383 static void submit_flushes(struct work_struct *ws)
384 {
385 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
386 mdk_rdev_t *rdev;
387
388 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
389 atomic_set(&mddev->flush_pending, 1);
390 rcu_read_lock();
391 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
392 if (rdev->raid_disk >= 0 &&
393 !test_bit(Faulty, &rdev->flags)) {
394 /* Take two references, one is dropped
395 * when request finishes, one after
396 * we reclaim rcu_read_lock
397 */
398 struct bio *bi;
399 atomic_inc(&rdev->nr_pending);
400 atomic_inc(&rdev->nr_pending);
401 rcu_read_unlock();
402 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
403 bi->bi_end_io = md_end_flush;
404 bi->bi_private = rdev;
405 bi->bi_bdev = rdev->bdev;
406 atomic_inc(&mddev->flush_pending);
407 submit_bio(WRITE_FLUSH, bi);
408 rcu_read_lock();
409 rdev_dec_pending(rdev, mddev);
410 }
411 rcu_read_unlock();
412 if (atomic_dec_and_test(&mddev->flush_pending))
413 queue_work(md_wq, &mddev->flush_work);
414 }
415
416 static void md_submit_flush_data(struct work_struct *ws)
417 {
418 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
419 struct bio *bio = mddev->flush_bio;
420
421 if (bio->bi_size == 0)
422 /* an empty barrier - all done */
423 bio_endio(bio, 0);
424 else {
425 bio->bi_rw &= ~REQ_FLUSH;
426 if (mddev->pers->make_request(mddev, bio))
427 generic_make_request(bio);
428 }
429
430 mddev->flush_bio = NULL;
431 wake_up(&mddev->sb_wait);
432 }
433
434 void md_flush_request(mddev_t *mddev, struct bio *bio)
435 {
436 spin_lock_irq(&mddev->write_lock);
437 wait_event_lock_irq(mddev->sb_wait,
438 !mddev->flush_bio,
439 mddev->write_lock, /*nothing*/);
440 mddev->flush_bio = bio;
441 spin_unlock_irq(&mddev->write_lock);
442
443 INIT_WORK(&mddev->flush_work, submit_flushes);
444 queue_work(md_wq, &mddev->flush_work);
445 }
446 EXPORT_SYMBOL(md_flush_request);
447
448 /* Support for plugging.
449 * This mirrors the plugging support in request_queue, but does not
450 * require having a whole queue
451 */
452 static void plugger_work(struct work_struct *work)
453 {
454 struct plug_handle *plug =
455 container_of(work, struct plug_handle, unplug_work);
456 plug->unplug_fn(plug);
457 }
458 static void plugger_timeout(unsigned long data)
459 {
460 struct plug_handle *plug = (void *)data;
461 kblockd_schedule_work(NULL, &plug->unplug_work);
462 }
463 void plugger_init(struct plug_handle *plug,
464 void (*unplug_fn)(struct plug_handle *))
465 {
466 plug->unplug_flag = 0;
467 plug->unplug_fn = unplug_fn;
468 init_timer(&plug->unplug_timer);
469 plug->unplug_timer.function = plugger_timeout;
470 plug->unplug_timer.data = (unsigned long)plug;
471 INIT_WORK(&plug->unplug_work, plugger_work);
472 }
473 EXPORT_SYMBOL_GPL(plugger_init);
474
475 void plugger_set_plug(struct plug_handle *plug)
476 {
477 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
478 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
479 }
480 EXPORT_SYMBOL_GPL(plugger_set_plug);
481
482 int plugger_remove_plug(struct plug_handle *plug)
483 {
484 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
485 del_timer(&plug->unplug_timer);
486 return 1;
487 } else
488 return 0;
489 }
490 EXPORT_SYMBOL_GPL(plugger_remove_plug);
491
492
493 static inline mddev_t *mddev_get(mddev_t *mddev)
494 {
495 atomic_inc(&mddev->active);
496 return mddev;
497 }
498
499 static void mddev_delayed_delete(struct work_struct *ws);
500
501 static void mddev_put(mddev_t *mddev)
502 {
503 struct bio_set *bs = NULL;
504
505 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
506 return;
507 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
508 mddev->ctime == 0 && !mddev->hold_active) {
509 /* Array is not configured at all, and not held active,
510 * so destroy it */
511 list_del(&mddev->all_mddevs);
512 bs = mddev->bio_set;
513 mddev->bio_set = NULL;
514 if (mddev->gendisk) {
515 /* We did a probe so need to clean up. Call
516 * queue_work inside the spinlock so that
517 * flush_workqueue() after mddev_find will
518 * succeed in waiting for the work to be done.
519 */
520 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
521 queue_work(md_misc_wq, &mddev->del_work);
522 } else
523 kfree(mddev);
524 }
525 spin_unlock(&all_mddevs_lock);
526 if (bs)
527 bioset_free(bs);
528 }
529
530 void mddev_init(mddev_t *mddev)
531 {
532 mutex_init(&mddev->open_mutex);
533 mutex_init(&mddev->reconfig_mutex);
534 mutex_init(&mddev->bitmap_info.mutex);
535 INIT_LIST_HEAD(&mddev->disks);
536 INIT_LIST_HEAD(&mddev->all_mddevs);
537 init_timer(&mddev->safemode_timer);
538 atomic_set(&mddev->active, 1);
539 atomic_set(&mddev->openers, 0);
540 atomic_set(&mddev->active_io, 0);
541 spin_lock_init(&mddev->write_lock);
542 atomic_set(&mddev->flush_pending, 0);
543 init_waitqueue_head(&mddev->sb_wait);
544 init_waitqueue_head(&mddev->recovery_wait);
545 mddev->reshape_position = MaxSector;
546 mddev->resync_min = 0;
547 mddev->resync_max = MaxSector;
548 mddev->level = LEVEL_NONE;
549 }
550 EXPORT_SYMBOL_GPL(mddev_init);
551
552 static mddev_t * mddev_find(dev_t unit)
553 {
554 mddev_t *mddev, *new = NULL;
555
556 retry:
557 spin_lock(&all_mddevs_lock);
558
559 if (unit) {
560 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
561 if (mddev->unit == unit) {
562 mddev_get(mddev);
563 spin_unlock(&all_mddevs_lock);
564 kfree(new);
565 return mddev;
566 }
567
568 if (new) {
569 list_add(&new->all_mddevs, &all_mddevs);
570 spin_unlock(&all_mddevs_lock);
571 new->hold_active = UNTIL_IOCTL;
572 return new;
573 }
574 } else if (new) {
575 /* find an unused unit number */
576 static int next_minor = 512;
577 int start = next_minor;
578 int is_free = 0;
579 int dev = 0;
580 while (!is_free) {
581 dev = MKDEV(MD_MAJOR, next_minor);
582 next_minor++;
583 if (next_minor > MINORMASK)
584 next_minor = 0;
585 if (next_minor == start) {
586 /* Oh dear, all in use. */
587 spin_unlock(&all_mddevs_lock);
588 kfree(new);
589 return NULL;
590 }
591
592 is_free = 1;
593 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
594 if (mddev->unit == dev) {
595 is_free = 0;
596 break;
597 }
598 }
599 new->unit = dev;
600 new->md_minor = MINOR(dev);
601 new->hold_active = UNTIL_STOP;
602 list_add(&new->all_mddevs, &all_mddevs);
603 spin_unlock(&all_mddevs_lock);
604 return new;
605 }
606 spin_unlock(&all_mddevs_lock);
607
608 new = kzalloc(sizeof(*new), GFP_KERNEL);
609 if (!new)
610 return NULL;
611
612 new->unit = unit;
613 if (MAJOR(unit) == MD_MAJOR)
614 new->md_minor = MINOR(unit);
615 else
616 new->md_minor = MINOR(unit) >> MdpMinorShift;
617
618 mddev_init(new);
619
620 goto retry;
621 }
622
623 static inline int mddev_lock(mddev_t * mddev)
624 {
625 return mutex_lock_interruptible(&mddev->reconfig_mutex);
626 }
627
628 static inline int mddev_is_locked(mddev_t *mddev)
629 {
630 return mutex_is_locked(&mddev->reconfig_mutex);
631 }
632
633 static inline int mddev_trylock(mddev_t * mddev)
634 {
635 return mutex_trylock(&mddev->reconfig_mutex);
636 }
637
638 static struct attribute_group md_redundancy_group;
639
640 static void mddev_unlock(mddev_t * mddev)
641 {
642 if (mddev->to_remove) {
643 /* These cannot be removed under reconfig_mutex as
644 * an access to the files will try to take reconfig_mutex
645 * while holding the file unremovable, which leads to
646 * a deadlock.
647 * So hold set sysfs_active while the remove in happeing,
648 * and anything else which might set ->to_remove or my
649 * otherwise change the sysfs namespace will fail with
650 * -EBUSY if sysfs_active is still set.
651 * We set sysfs_active under reconfig_mutex and elsewhere
652 * test it under the same mutex to ensure its correct value
653 * is seen.
654 */
655 struct attribute_group *to_remove = mddev->to_remove;
656 mddev->to_remove = NULL;
657 mddev->sysfs_active = 1;
658 mutex_unlock(&mddev->reconfig_mutex);
659
660 if (mddev->kobj.sd) {
661 if (to_remove != &md_redundancy_group)
662 sysfs_remove_group(&mddev->kobj, to_remove);
663 if (mddev->pers == NULL ||
664 mddev->pers->sync_request == NULL) {
665 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
666 if (mddev->sysfs_action)
667 sysfs_put(mddev->sysfs_action);
668 mddev->sysfs_action = NULL;
669 }
670 }
671 mddev->sysfs_active = 0;
672 } else
673 mutex_unlock(&mddev->reconfig_mutex);
674
675 md_wakeup_thread(mddev->thread);
676 }
677
678 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
679 {
680 mdk_rdev_t *rdev;
681
682 list_for_each_entry(rdev, &mddev->disks, same_set)
683 if (rdev->desc_nr == nr)
684 return rdev;
685
686 return NULL;
687 }
688
689 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
690 {
691 mdk_rdev_t *rdev;
692
693 list_for_each_entry(rdev, &mddev->disks, same_set)
694 if (rdev->bdev->bd_dev == dev)
695 return rdev;
696
697 return NULL;
698 }
699
700 static struct mdk_personality *find_pers(int level, char *clevel)
701 {
702 struct mdk_personality *pers;
703 list_for_each_entry(pers, &pers_list, list) {
704 if (level != LEVEL_NONE && pers->level == level)
705 return pers;
706 if (strcmp(pers->name, clevel)==0)
707 return pers;
708 }
709 return NULL;
710 }
711
712 /* return the offset of the super block in 512byte sectors */
713 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
714 {
715 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
716 return MD_NEW_SIZE_SECTORS(num_sectors);
717 }
718
719 static int alloc_disk_sb(mdk_rdev_t * rdev)
720 {
721 if (rdev->sb_page)
722 MD_BUG();
723
724 rdev->sb_page = alloc_page(GFP_KERNEL);
725 if (!rdev->sb_page) {
726 printk(KERN_ALERT "md: out of memory.\n");
727 return -ENOMEM;
728 }
729
730 return 0;
731 }
732
733 static void free_disk_sb(mdk_rdev_t * rdev)
734 {
735 if (rdev->sb_page) {
736 put_page(rdev->sb_page);
737 rdev->sb_loaded = 0;
738 rdev->sb_page = NULL;
739 rdev->sb_start = 0;
740 rdev->sectors = 0;
741 }
742 }
743
744
745 static void super_written(struct bio *bio, int error)
746 {
747 mdk_rdev_t *rdev = bio->bi_private;
748 mddev_t *mddev = rdev->mddev;
749
750 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
751 printk("md: super_written gets error=%d, uptodate=%d\n",
752 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
753 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
754 md_error(mddev, rdev);
755 }
756
757 if (atomic_dec_and_test(&mddev->pending_writes))
758 wake_up(&mddev->sb_wait);
759 bio_put(bio);
760 }
761
762 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
763 sector_t sector, int size, struct page *page)
764 {
765 /* write first size bytes of page to sector of rdev
766 * Increment mddev->pending_writes before returning
767 * and decrement it on completion, waking up sb_wait
768 * if zero is reached.
769 * If an error occurred, call md_error
770 */
771 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
772
773 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
774 bio->bi_sector = sector;
775 bio_add_page(bio, page, size, 0);
776 bio->bi_private = rdev;
777 bio->bi_end_io = super_written;
778
779 atomic_inc(&mddev->pending_writes);
780 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
781 bio);
782 }
783
784 void md_super_wait(mddev_t *mddev)
785 {
786 /* wait for all superblock writes that were scheduled to complete */
787 DEFINE_WAIT(wq);
788 for(;;) {
789 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
790 if (atomic_read(&mddev->pending_writes)==0)
791 break;
792 schedule();
793 }
794 finish_wait(&mddev->sb_wait, &wq);
795 }
796
797 static void bi_complete(struct bio *bio, int error)
798 {
799 complete((struct completion*)bio->bi_private);
800 }
801
802 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
803 struct page *page, int rw, bool metadata_op)
804 {
805 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
806 struct completion event;
807 int ret;
808
809 rw |= REQ_SYNC | REQ_UNPLUG;
810
811 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
812 rdev->meta_bdev : rdev->bdev;
813 if (metadata_op)
814 bio->bi_sector = sector + rdev->sb_start;
815 else
816 bio->bi_sector = sector + rdev->data_offset;
817 bio_add_page(bio, page, size, 0);
818 init_completion(&event);
819 bio->bi_private = &event;
820 bio->bi_end_io = bi_complete;
821 submit_bio(rw, bio);
822 wait_for_completion(&event);
823
824 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
825 bio_put(bio);
826 return ret;
827 }
828 EXPORT_SYMBOL_GPL(sync_page_io);
829
830 static int read_disk_sb(mdk_rdev_t * rdev, int size)
831 {
832 char b[BDEVNAME_SIZE];
833 if (!rdev->sb_page) {
834 MD_BUG();
835 return -EINVAL;
836 }
837 if (rdev->sb_loaded)
838 return 0;
839
840
841 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
842 goto fail;
843 rdev->sb_loaded = 1;
844 return 0;
845
846 fail:
847 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
848 bdevname(rdev->bdev,b));
849 return -EINVAL;
850 }
851
852 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
853 {
854 return sb1->set_uuid0 == sb2->set_uuid0 &&
855 sb1->set_uuid1 == sb2->set_uuid1 &&
856 sb1->set_uuid2 == sb2->set_uuid2 &&
857 sb1->set_uuid3 == sb2->set_uuid3;
858 }
859
860 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
861 {
862 int ret;
863 mdp_super_t *tmp1, *tmp2;
864
865 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
866 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
867
868 if (!tmp1 || !tmp2) {
869 ret = 0;
870 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
871 goto abort;
872 }
873
874 *tmp1 = *sb1;
875 *tmp2 = *sb2;
876
877 /*
878 * nr_disks is not constant
879 */
880 tmp1->nr_disks = 0;
881 tmp2->nr_disks = 0;
882
883 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
884 abort:
885 kfree(tmp1);
886 kfree(tmp2);
887 return ret;
888 }
889
890
891 static u32 md_csum_fold(u32 csum)
892 {
893 csum = (csum & 0xffff) + (csum >> 16);
894 return (csum & 0xffff) + (csum >> 16);
895 }
896
897 static unsigned int calc_sb_csum(mdp_super_t * sb)
898 {
899 u64 newcsum = 0;
900 u32 *sb32 = (u32*)sb;
901 int i;
902 unsigned int disk_csum, csum;
903
904 disk_csum = sb->sb_csum;
905 sb->sb_csum = 0;
906
907 for (i = 0; i < MD_SB_BYTES/4 ; i++)
908 newcsum += sb32[i];
909 csum = (newcsum & 0xffffffff) + (newcsum>>32);
910
911
912 #ifdef CONFIG_ALPHA
913 /* This used to use csum_partial, which was wrong for several
914 * reasons including that different results are returned on
915 * different architectures. It isn't critical that we get exactly
916 * the same return value as before (we always csum_fold before
917 * testing, and that removes any differences). However as we
918 * know that csum_partial always returned a 16bit value on
919 * alphas, do a fold to maximise conformity to previous behaviour.
920 */
921 sb->sb_csum = md_csum_fold(disk_csum);
922 #else
923 sb->sb_csum = disk_csum;
924 #endif
925 return csum;
926 }
927
928
929 /*
930 * Handle superblock details.
931 * We want to be able to handle multiple superblock formats
932 * so we have a common interface to them all, and an array of
933 * different handlers.
934 * We rely on user-space to write the initial superblock, and support
935 * reading and updating of superblocks.
936 * Interface methods are:
937 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
938 * loads and validates a superblock on dev.
939 * if refdev != NULL, compare superblocks on both devices
940 * Return:
941 * 0 - dev has a superblock that is compatible with refdev
942 * 1 - dev has a superblock that is compatible and newer than refdev
943 * so dev should be used as the refdev in future
944 * -EINVAL superblock incompatible or invalid
945 * -othererror e.g. -EIO
946 *
947 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
948 * Verify that dev is acceptable into mddev.
949 * The first time, mddev->raid_disks will be 0, and data from
950 * dev should be merged in. Subsequent calls check that dev
951 * is new enough. Return 0 or -EINVAL
952 *
953 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
954 * Update the superblock for rdev with data in mddev
955 * This does not write to disc.
956 *
957 */
958
959 struct super_type {
960 char *name;
961 struct module *owner;
962 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
963 int minor_version);
964 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
965 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
966 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
967 sector_t num_sectors);
968 };
969
970 /*
971 * Check that the given mddev has no bitmap.
972 *
973 * This function is called from the run method of all personalities that do not
974 * support bitmaps. It prints an error message and returns non-zero if mddev
975 * has a bitmap. Otherwise, it returns 0.
976 *
977 */
978 int md_check_no_bitmap(mddev_t *mddev)
979 {
980 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
981 return 0;
982 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
983 mdname(mddev), mddev->pers->name);
984 return 1;
985 }
986 EXPORT_SYMBOL(md_check_no_bitmap);
987
988 /*
989 * load_super for 0.90.0
990 */
991 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
992 {
993 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
994 mdp_super_t *sb;
995 int ret;
996
997 /*
998 * Calculate the position of the superblock (512byte sectors),
999 * it's at the end of the disk.
1000 *
1001 * It also happens to be a multiple of 4Kb.
1002 */
1003 rdev->sb_start = calc_dev_sboffset(rdev);
1004
1005 ret = read_disk_sb(rdev, MD_SB_BYTES);
1006 if (ret) return ret;
1007
1008 ret = -EINVAL;
1009
1010 bdevname(rdev->bdev, b);
1011 sb = (mdp_super_t*)page_address(rdev->sb_page);
1012
1013 if (sb->md_magic != MD_SB_MAGIC) {
1014 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1015 b);
1016 goto abort;
1017 }
1018
1019 if (sb->major_version != 0 ||
1020 sb->minor_version < 90 ||
1021 sb->minor_version > 91) {
1022 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1023 sb->major_version, sb->minor_version,
1024 b);
1025 goto abort;
1026 }
1027
1028 if (sb->raid_disks <= 0)
1029 goto abort;
1030
1031 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1032 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1033 b);
1034 goto abort;
1035 }
1036
1037 rdev->preferred_minor = sb->md_minor;
1038 rdev->data_offset = 0;
1039 rdev->sb_size = MD_SB_BYTES;
1040
1041 if (sb->level == LEVEL_MULTIPATH)
1042 rdev->desc_nr = -1;
1043 else
1044 rdev->desc_nr = sb->this_disk.number;
1045
1046 if (!refdev) {
1047 ret = 1;
1048 } else {
1049 __u64 ev1, ev2;
1050 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1051 if (!uuid_equal(refsb, sb)) {
1052 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1053 b, bdevname(refdev->bdev,b2));
1054 goto abort;
1055 }
1056 if (!sb_equal(refsb, sb)) {
1057 printk(KERN_WARNING "md: %s has same UUID"
1058 " but different superblock to %s\n",
1059 b, bdevname(refdev->bdev, b2));
1060 goto abort;
1061 }
1062 ev1 = md_event(sb);
1063 ev2 = md_event(refsb);
1064 if (ev1 > ev2)
1065 ret = 1;
1066 else
1067 ret = 0;
1068 }
1069 rdev->sectors = rdev->sb_start;
1070
1071 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1072 /* "this cannot possibly happen" ... */
1073 ret = -EINVAL;
1074
1075 abort:
1076 return ret;
1077 }
1078
1079 /*
1080 * validate_super for 0.90.0
1081 */
1082 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1083 {
1084 mdp_disk_t *desc;
1085 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1086 __u64 ev1 = md_event(sb);
1087
1088 rdev->raid_disk = -1;
1089 clear_bit(Faulty, &rdev->flags);
1090 clear_bit(In_sync, &rdev->flags);
1091 clear_bit(WriteMostly, &rdev->flags);
1092
1093 if (mddev->raid_disks == 0) {
1094 mddev->major_version = 0;
1095 mddev->minor_version = sb->minor_version;
1096 mddev->patch_version = sb->patch_version;
1097 mddev->external = 0;
1098 mddev->chunk_sectors = sb->chunk_size >> 9;
1099 mddev->ctime = sb->ctime;
1100 mddev->utime = sb->utime;
1101 mddev->level = sb->level;
1102 mddev->clevel[0] = 0;
1103 mddev->layout = sb->layout;
1104 mddev->raid_disks = sb->raid_disks;
1105 mddev->dev_sectors = sb->size * 2;
1106 mddev->events = ev1;
1107 mddev->bitmap_info.offset = 0;
1108 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1109
1110 if (mddev->minor_version >= 91) {
1111 mddev->reshape_position = sb->reshape_position;
1112 mddev->delta_disks = sb->delta_disks;
1113 mddev->new_level = sb->new_level;
1114 mddev->new_layout = sb->new_layout;
1115 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1116 } else {
1117 mddev->reshape_position = MaxSector;
1118 mddev->delta_disks = 0;
1119 mddev->new_level = mddev->level;
1120 mddev->new_layout = mddev->layout;
1121 mddev->new_chunk_sectors = mddev->chunk_sectors;
1122 }
1123
1124 if (sb->state & (1<<MD_SB_CLEAN))
1125 mddev->recovery_cp = MaxSector;
1126 else {
1127 if (sb->events_hi == sb->cp_events_hi &&
1128 sb->events_lo == sb->cp_events_lo) {
1129 mddev->recovery_cp = sb->recovery_cp;
1130 } else
1131 mddev->recovery_cp = 0;
1132 }
1133
1134 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1135 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1136 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1137 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1138
1139 mddev->max_disks = MD_SB_DISKS;
1140
1141 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1142 mddev->bitmap_info.file == NULL)
1143 mddev->bitmap_info.offset =
1144 mddev->bitmap_info.default_offset;
1145
1146 } else if (mddev->pers == NULL) {
1147 /* Insist on good event counter while assembling, except
1148 * for spares (which don't need an event count) */
1149 ++ev1;
1150 if (sb->disks[rdev->desc_nr].state & (
1151 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1152 if (ev1 < mddev->events)
1153 return -EINVAL;
1154 } else if (mddev->bitmap) {
1155 /* if adding to array with a bitmap, then we can accept an
1156 * older device ... but not too old.
1157 */
1158 if (ev1 < mddev->bitmap->events_cleared)
1159 return 0;
1160 } else {
1161 if (ev1 < mddev->events)
1162 /* just a hot-add of a new device, leave raid_disk at -1 */
1163 return 0;
1164 }
1165
1166 if (mddev->level != LEVEL_MULTIPATH) {
1167 desc = sb->disks + rdev->desc_nr;
1168
1169 if (desc->state & (1<<MD_DISK_FAULTY))
1170 set_bit(Faulty, &rdev->flags);
1171 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1172 desc->raid_disk < mddev->raid_disks */) {
1173 set_bit(In_sync, &rdev->flags);
1174 rdev->raid_disk = desc->raid_disk;
1175 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1176 /* active but not in sync implies recovery up to
1177 * reshape position. We don't know exactly where
1178 * that is, so set to zero for now */
1179 if (mddev->minor_version >= 91) {
1180 rdev->recovery_offset = 0;
1181 rdev->raid_disk = desc->raid_disk;
1182 }
1183 }
1184 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1185 set_bit(WriteMostly, &rdev->flags);
1186 } else /* MULTIPATH are always insync */
1187 set_bit(In_sync, &rdev->flags);
1188 return 0;
1189 }
1190
1191 /*
1192 * sync_super for 0.90.0
1193 */
1194 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1195 {
1196 mdp_super_t *sb;
1197 mdk_rdev_t *rdev2;
1198 int next_spare = mddev->raid_disks;
1199
1200
1201 /* make rdev->sb match mddev data..
1202 *
1203 * 1/ zero out disks
1204 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1205 * 3/ any empty disks < next_spare become removed
1206 *
1207 * disks[0] gets initialised to REMOVED because
1208 * we cannot be sure from other fields if it has
1209 * been initialised or not.
1210 */
1211 int i;
1212 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1213
1214 rdev->sb_size = MD_SB_BYTES;
1215
1216 sb = (mdp_super_t*)page_address(rdev->sb_page);
1217
1218 memset(sb, 0, sizeof(*sb));
1219
1220 sb->md_magic = MD_SB_MAGIC;
1221 sb->major_version = mddev->major_version;
1222 sb->patch_version = mddev->patch_version;
1223 sb->gvalid_words = 0; /* ignored */
1224 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1225 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1226 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1227 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1228
1229 sb->ctime = mddev->ctime;
1230 sb->level = mddev->level;
1231 sb->size = mddev->dev_sectors / 2;
1232 sb->raid_disks = mddev->raid_disks;
1233 sb->md_minor = mddev->md_minor;
1234 sb->not_persistent = 0;
1235 sb->utime = mddev->utime;
1236 sb->state = 0;
1237 sb->events_hi = (mddev->events>>32);
1238 sb->events_lo = (u32)mddev->events;
1239
1240 if (mddev->reshape_position == MaxSector)
1241 sb->minor_version = 90;
1242 else {
1243 sb->minor_version = 91;
1244 sb->reshape_position = mddev->reshape_position;
1245 sb->new_level = mddev->new_level;
1246 sb->delta_disks = mddev->delta_disks;
1247 sb->new_layout = mddev->new_layout;
1248 sb->new_chunk = mddev->new_chunk_sectors << 9;
1249 }
1250 mddev->minor_version = sb->minor_version;
1251 if (mddev->in_sync)
1252 {
1253 sb->recovery_cp = mddev->recovery_cp;
1254 sb->cp_events_hi = (mddev->events>>32);
1255 sb->cp_events_lo = (u32)mddev->events;
1256 if (mddev->recovery_cp == MaxSector)
1257 sb->state = (1<< MD_SB_CLEAN);
1258 } else
1259 sb->recovery_cp = 0;
1260
1261 sb->layout = mddev->layout;
1262 sb->chunk_size = mddev->chunk_sectors << 9;
1263
1264 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1265 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1266
1267 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1268 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1269 mdp_disk_t *d;
1270 int desc_nr;
1271 int is_active = test_bit(In_sync, &rdev2->flags);
1272
1273 if (rdev2->raid_disk >= 0 &&
1274 sb->minor_version >= 91)
1275 /* we have nowhere to store the recovery_offset,
1276 * but if it is not below the reshape_position,
1277 * we can piggy-back on that.
1278 */
1279 is_active = 1;
1280 if (rdev2->raid_disk < 0 ||
1281 test_bit(Faulty, &rdev2->flags))
1282 is_active = 0;
1283 if (is_active)
1284 desc_nr = rdev2->raid_disk;
1285 else
1286 desc_nr = next_spare++;
1287 rdev2->desc_nr = desc_nr;
1288 d = &sb->disks[rdev2->desc_nr];
1289 nr_disks++;
1290 d->number = rdev2->desc_nr;
1291 d->major = MAJOR(rdev2->bdev->bd_dev);
1292 d->minor = MINOR(rdev2->bdev->bd_dev);
1293 if (is_active)
1294 d->raid_disk = rdev2->raid_disk;
1295 else
1296 d->raid_disk = rdev2->desc_nr; /* compatibility */
1297 if (test_bit(Faulty, &rdev2->flags))
1298 d->state = (1<<MD_DISK_FAULTY);
1299 else if (is_active) {
1300 d->state = (1<<MD_DISK_ACTIVE);
1301 if (test_bit(In_sync, &rdev2->flags))
1302 d->state |= (1<<MD_DISK_SYNC);
1303 active++;
1304 working++;
1305 } else {
1306 d->state = 0;
1307 spare++;
1308 working++;
1309 }
1310 if (test_bit(WriteMostly, &rdev2->flags))
1311 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1312 }
1313 /* now set the "removed" and "faulty" bits on any missing devices */
1314 for (i=0 ; i < mddev->raid_disks ; i++) {
1315 mdp_disk_t *d = &sb->disks[i];
1316 if (d->state == 0 && d->number == 0) {
1317 d->number = i;
1318 d->raid_disk = i;
1319 d->state = (1<<MD_DISK_REMOVED);
1320 d->state |= (1<<MD_DISK_FAULTY);
1321 failed++;
1322 }
1323 }
1324 sb->nr_disks = nr_disks;
1325 sb->active_disks = active;
1326 sb->working_disks = working;
1327 sb->failed_disks = failed;
1328 sb->spare_disks = spare;
1329
1330 sb->this_disk = sb->disks[rdev->desc_nr];
1331 sb->sb_csum = calc_sb_csum(sb);
1332 }
1333
1334 /*
1335 * rdev_size_change for 0.90.0
1336 */
1337 static unsigned long long
1338 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1339 {
1340 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1341 return 0; /* component must fit device */
1342 if (rdev->mddev->bitmap_info.offset)
1343 return 0; /* can't move bitmap */
1344 rdev->sb_start = calc_dev_sboffset(rdev);
1345 if (!num_sectors || num_sectors > rdev->sb_start)
1346 num_sectors = rdev->sb_start;
1347 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1348 rdev->sb_page);
1349 md_super_wait(rdev->mddev);
1350 return num_sectors;
1351 }
1352
1353
1354 /*
1355 * version 1 superblock
1356 */
1357
1358 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1359 {
1360 __le32 disk_csum;
1361 u32 csum;
1362 unsigned long long newcsum;
1363 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1364 __le32 *isuper = (__le32*)sb;
1365 int i;
1366
1367 disk_csum = sb->sb_csum;
1368 sb->sb_csum = 0;
1369 newcsum = 0;
1370 for (i=0; size>=4; size -= 4 )
1371 newcsum += le32_to_cpu(*isuper++);
1372
1373 if (size == 2)
1374 newcsum += le16_to_cpu(*(__le16*) isuper);
1375
1376 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1377 sb->sb_csum = disk_csum;
1378 return cpu_to_le32(csum);
1379 }
1380
1381 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1382 {
1383 struct mdp_superblock_1 *sb;
1384 int ret;
1385 sector_t sb_start;
1386 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1387 int bmask;
1388
1389 /*
1390 * Calculate the position of the superblock in 512byte sectors.
1391 * It is always aligned to a 4K boundary and
1392 * depeding on minor_version, it can be:
1393 * 0: At least 8K, but less than 12K, from end of device
1394 * 1: At start of device
1395 * 2: 4K from start of device.
1396 */
1397 switch(minor_version) {
1398 case 0:
1399 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1400 sb_start -= 8*2;
1401 sb_start &= ~(sector_t)(4*2-1);
1402 break;
1403 case 1:
1404 sb_start = 0;
1405 break;
1406 case 2:
1407 sb_start = 8;
1408 break;
1409 default:
1410 return -EINVAL;
1411 }
1412 rdev->sb_start = sb_start;
1413
1414 /* superblock is rarely larger than 1K, but it can be larger,
1415 * and it is safe to read 4k, so we do that
1416 */
1417 ret = read_disk_sb(rdev, 4096);
1418 if (ret) return ret;
1419
1420
1421 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1422
1423 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 sb->major_version != cpu_to_le32(1) ||
1425 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 return -EINVAL;
1429
1430 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 printk("md: invalid superblock checksum on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (le64_to_cpu(sb->data_size) < 10) {
1436 printk("md: data_size too small on %s\n",
1437 bdevname(rdev->bdev,b));
1438 return -EINVAL;
1439 }
1440
1441 rdev->preferred_minor = 0xffff;
1442 rdev->data_offset = le64_to_cpu(sb->data_offset);
1443 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1444
1445 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1446 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1447 if (rdev->sb_size & bmask)
1448 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1449
1450 if (minor_version
1451 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1452 return -EINVAL;
1453
1454 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1455 rdev->desc_nr = -1;
1456 else
1457 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1458
1459 if (!refdev) {
1460 ret = 1;
1461 } else {
1462 __u64 ev1, ev2;
1463 struct mdp_superblock_1 *refsb =
1464 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1465
1466 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1467 sb->level != refsb->level ||
1468 sb->layout != refsb->layout ||
1469 sb->chunksize != refsb->chunksize) {
1470 printk(KERN_WARNING "md: %s has strangely different"
1471 " superblock to %s\n",
1472 bdevname(rdev->bdev,b),
1473 bdevname(refdev->bdev,b2));
1474 return -EINVAL;
1475 }
1476 ev1 = le64_to_cpu(sb->events);
1477 ev2 = le64_to_cpu(refsb->events);
1478
1479 if (ev1 > ev2)
1480 ret = 1;
1481 else
1482 ret = 0;
1483 }
1484 if (minor_version)
1485 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1486 le64_to_cpu(sb->data_offset);
1487 else
1488 rdev->sectors = rdev->sb_start;
1489 if (rdev->sectors < le64_to_cpu(sb->data_size))
1490 return -EINVAL;
1491 rdev->sectors = le64_to_cpu(sb->data_size);
1492 if (le64_to_cpu(sb->size) > rdev->sectors)
1493 return -EINVAL;
1494 return ret;
1495 }
1496
1497 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1498 {
1499 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1500 __u64 ev1 = le64_to_cpu(sb->events);
1501
1502 rdev->raid_disk = -1;
1503 clear_bit(Faulty, &rdev->flags);
1504 clear_bit(In_sync, &rdev->flags);
1505 clear_bit(WriteMostly, &rdev->flags);
1506
1507 if (mddev->raid_disks == 0) {
1508 mddev->major_version = 1;
1509 mddev->patch_version = 0;
1510 mddev->external = 0;
1511 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1512 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1513 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1514 mddev->level = le32_to_cpu(sb->level);
1515 mddev->clevel[0] = 0;
1516 mddev->layout = le32_to_cpu(sb->layout);
1517 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1518 mddev->dev_sectors = le64_to_cpu(sb->size);
1519 mddev->events = ev1;
1520 mddev->bitmap_info.offset = 0;
1521 mddev->bitmap_info.default_offset = 1024 >> 9;
1522
1523 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1524 memcpy(mddev->uuid, sb->set_uuid, 16);
1525
1526 mddev->max_disks = (4096-256)/2;
1527
1528 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1529 mddev->bitmap_info.file == NULL )
1530 mddev->bitmap_info.offset =
1531 (__s32)le32_to_cpu(sb->bitmap_offset);
1532
1533 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1534 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1535 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1536 mddev->new_level = le32_to_cpu(sb->new_level);
1537 mddev->new_layout = le32_to_cpu(sb->new_layout);
1538 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1539 } else {
1540 mddev->reshape_position = MaxSector;
1541 mddev->delta_disks = 0;
1542 mddev->new_level = mddev->level;
1543 mddev->new_layout = mddev->layout;
1544 mddev->new_chunk_sectors = mddev->chunk_sectors;
1545 }
1546
1547 } else if (mddev->pers == NULL) {
1548 /* Insist of good event counter while assembling, except for
1549 * spares (which don't need an event count) */
1550 ++ev1;
1551 if (rdev->desc_nr >= 0 &&
1552 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1553 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1554 if (ev1 < mddev->events)
1555 return -EINVAL;
1556 } else if (mddev->bitmap) {
1557 /* If adding to array with a bitmap, then we can accept an
1558 * older device, but not too old.
1559 */
1560 if (ev1 < mddev->bitmap->events_cleared)
1561 return 0;
1562 } else {
1563 if (ev1 < mddev->events)
1564 /* just a hot-add of a new device, leave raid_disk at -1 */
1565 return 0;
1566 }
1567 if (mddev->level != LEVEL_MULTIPATH) {
1568 int role;
1569 if (rdev->desc_nr < 0 ||
1570 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1571 role = 0xffff;
1572 rdev->desc_nr = -1;
1573 } else
1574 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1575 switch(role) {
1576 case 0xffff: /* spare */
1577 break;
1578 case 0xfffe: /* faulty */
1579 set_bit(Faulty, &rdev->flags);
1580 break;
1581 default:
1582 if ((le32_to_cpu(sb->feature_map) &
1583 MD_FEATURE_RECOVERY_OFFSET))
1584 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1585 else
1586 set_bit(In_sync, &rdev->flags);
1587 rdev->raid_disk = role;
1588 break;
1589 }
1590 if (sb->devflags & WriteMostly1)
1591 set_bit(WriteMostly, &rdev->flags);
1592 } else /* MULTIPATH are always insync */
1593 set_bit(In_sync, &rdev->flags);
1594
1595 return 0;
1596 }
1597
1598 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1599 {
1600 struct mdp_superblock_1 *sb;
1601 mdk_rdev_t *rdev2;
1602 int max_dev, i;
1603 /* make rdev->sb match mddev and rdev data. */
1604
1605 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1606
1607 sb->feature_map = 0;
1608 sb->pad0 = 0;
1609 sb->recovery_offset = cpu_to_le64(0);
1610 memset(sb->pad1, 0, sizeof(sb->pad1));
1611 memset(sb->pad2, 0, sizeof(sb->pad2));
1612 memset(sb->pad3, 0, sizeof(sb->pad3));
1613
1614 sb->utime = cpu_to_le64((__u64)mddev->utime);
1615 sb->events = cpu_to_le64(mddev->events);
1616 if (mddev->in_sync)
1617 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1618 else
1619 sb->resync_offset = cpu_to_le64(0);
1620
1621 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1622
1623 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1624 sb->size = cpu_to_le64(mddev->dev_sectors);
1625 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1626 sb->level = cpu_to_le32(mddev->level);
1627 sb->layout = cpu_to_le32(mddev->layout);
1628
1629 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1630 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1631 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1632 }
1633
1634 if (rdev->raid_disk >= 0 &&
1635 !test_bit(In_sync, &rdev->flags)) {
1636 sb->feature_map |=
1637 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1638 sb->recovery_offset =
1639 cpu_to_le64(rdev->recovery_offset);
1640 }
1641
1642 if (mddev->reshape_position != MaxSector) {
1643 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1644 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1645 sb->new_layout = cpu_to_le32(mddev->new_layout);
1646 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1647 sb->new_level = cpu_to_le32(mddev->new_level);
1648 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1649 }
1650
1651 max_dev = 0;
1652 list_for_each_entry(rdev2, &mddev->disks, same_set)
1653 if (rdev2->desc_nr+1 > max_dev)
1654 max_dev = rdev2->desc_nr+1;
1655
1656 if (max_dev > le32_to_cpu(sb->max_dev)) {
1657 int bmask;
1658 sb->max_dev = cpu_to_le32(max_dev);
1659 rdev->sb_size = max_dev * 2 + 256;
1660 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1661 if (rdev->sb_size & bmask)
1662 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1663 } else
1664 max_dev = le32_to_cpu(sb->max_dev);
1665
1666 for (i=0; i<max_dev;i++)
1667 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1668
1669 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1670 i = rdev2->desc_nr;
1671 if (test_bit(Faulty, &rdev2->flags))
1672 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1673 else if (test_bit(In_sync, &rdev2->flags))
1674 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1675 else if (rdev2->raid_disk >= 0)
1676 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1677 else
1678 sb->dev_roles[i] = cpu_to_le16(0xffff);
1679 }
1680
1681 sb->sb_csum = calc_sb_1_csum(sb);
1682 }
1683
1684 static unsigned long long
1685 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1686 {
1687 struct mdp_superblock_1 *sb;
1688 sector_t max_sectors;
1689 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1690 return 0; /* component must fit device */
1691 if (rdev->sb_start < rdev->data_offset) {
1692 /* minor versions 1 and 2; superblock before data */
1693 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1694 max_sectors -= rdev->data_offset;
1695 if (!num_sectors || num_sectors > max_sectors)
1696 num_sectors = max_sectors;
1697 } else if (rdev->mddev->bitmap_info.offset) {
1698 /* minor version 0 with bitmap we can't move */
1699 return 0;
1700 } else {
1701 /* minor version 0; superblock after data */
1702 sector_t sb_start;
1703 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1704 sb_start &= ~(sector_t)(4*2 - 1);
1705 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1706 if (!num_sectors || num_sectors > max_sectors)
1707 num_sectors = max_sectors;
1708 rdev->sb_start = sb_start;
1709 }
1710 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1711 sb->data_size = cpu_to_le64(num_sectors);
1712 sb->super_offset = rdev->sb_start;
1713 sb->sb_csum = calc_sb_1_csum(sb);
1714 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1715 rdev->sb_page);
1716 md_super_wait(rdev->mddev);
1717 return num_sectors;
1718 }
1719
1720 static struct super_type super_types[] = {
1721 [0] = {
1722 .name = "0.90.0",
1723 .owner = THIS_MODULE,
1724 .load_super = super_90_load,
1725 .validate_super = super_90_validate,
1726 .sync_super = super_90_sync,
1727 .rdev_size_change = super_90_rdev_size_change,
1728 },
1729 [1] = {
1730 .name = "md-1",
1731 .owner = THIS_MODULE,
1732 .load_super = super_1_load,
1733 .validate_super = super_1_validate,
1734 .sync_super = super_1_sync,
1735 .rdev_size_change = super_1_rdev_size_change,
1736 },
1737 };
1738
1739 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1740 {
1741 mdk_rdev_t *rdev, *rdev2;
1742
1743 rcu_read_lock();
1744 rdev_for_each_rcu(rdev, mddev1)
1745 rdev_for_each_rcu(rdev2, mddev2)
1746 if (rdev->bdev->bd_contains ==
1747 rdev2->bdev->bd_contains) {
1748 rcu_read_unlock();
1749 return 1;
1750 }
1751 rcu_read_unlock();
1752 return 0;
1753 }
1754
1755 static LIST_HEAD(pending_raid_disks);
1756
1757 /*
1758 * Try to register data integrity profile for an mddev
1759 *
1760 * This is called when an array is started and after a disk has been kicked
1761 * from the array. It only succeeds if all working and active component devices
1762 * are integrity capable with matching profiles.
1763 */
1764 int md_integrity_register(mddev_t *mddev)
1765 {
1766 mdk_rdev_t *rdev, *reference = NULL;
1767
1768 if (list_empty(&mddev->disks))
1769 return 0; /* nothing to do */
1770 if (blk_get_integrity(mddev->gendisk))
1771 return 0; /* already registered */
1772 list_for_each_entry(rdev, &mddev->disks, same_set) {
1773 /* skip spares and non-functional disks */
1774 if (test_bit(Faulty, &rdev->flags))
1775 continue;
1776 if (rdev->raid_disk < 0)
1777 continue;
1778 /*
1779 * If at least one rdev is not integrity capable, we can not
1780 * enable data integrity for the md device.
1781 */
1782 if (!bdev_get_integrity(rdev->bdev))
1783 return -EINVAL;
1784 if (!reference) {
1785 /* Use the first rdev as the reference */
1786 reference = rdev;
1787 continue;
1788 }
1789 /* does this rdev's profile match the reference profile? */
1790 if (blk_integrity_compare(reference->bdev->bd_disk,
1791 rdev->bdev->bd_disk) < 0)
1792 return -EINVAL;
1793 }
1794 /*
1795 * All component devices are integrity capable and have matching
1796 * profiles, register the common profile for the md device.
1797 */
1798 if (blk_integrity_register(mddev->gendisk,
1799 bdev_get_integrity(reference->bdev)) != 0) {
1800 printk(KERN_ERR "md: failed to register integrity for %s\n",
1801 mdname(mddev));
1802 return -EINVAL;
1803 }
1804 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1805 mdname(mddev));
1806 return 0;
1807 }
1808 EXPORT_SYMBOL(md_integrity_register);
1809
1810 /* Disable data integrity if non-capable/non-matching disk is being added */
1811 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1812 {
1813 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1814 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1815
1816 if (!bi_mddev) /* nothing to do */
1817 return;
1818 if (rdev->raid_disk < 0) /* skip spares */
1819 return;
1820 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1821 rdev->bdev->bd_disk) >= 0)
1822 return;
1823 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1824 blk_integrity_unregister(mddev->gendisk);
1825 }
1826 EXPORT_SYMBOL(md_integrity_add_rdev);
1827
1828 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1829 {
1830 char b[BDEVNAME_SIZE];
1831 struct kobject *ko;
1832 char *s;
1833 int err;
1834
1835 if (rdev->mddev) {
1836 MD_BUG();
1837 return -EINVAL;
1838 }
1839
1840 /* prevent duplicates */
1841 if (find_rdev(mddev, rdev->bdev->bd_dev))
1842 return -EEXIST;
1843
1844 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1845 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1846 rdev->sectors < mddev->dev_sectors)) {
1847 if (mddev->pers) {
1848 /* Cannot change size, so fail
1849 * If mddev->level <= 0, then we don't care
1850 * about aligning sizes (e.g. linear)
1851 */
1852 if (mddev->level > 0)
1853 return -ENOSPC;
1854 } else
1855 mddev->dev_sectors = rdev->sectors;
1856 }
1857
1858 /* Verify rdev->desc_nr is unique.
1859 * If it is -1, assign a free number, else
1860 * check number is not in use
1861 */
1862 if (rdev->desc_nr < 0) {
1863 int choice = 0;
1864 if (mddev->pers) choice = mddev->raid_disks;
1865 while (find_rdev_nr(mddev, choice))
1866 choice++;
1867 rdev->desc_nr = choice;
1868 } else {
1869 if (find_rdev_nr(mddev, rdev->desc_nr))
1870 return -EBUSY;
1871 }
1872 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1873 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1874 mdname(mddev), mddev->max_disks);
1875 return -EBUSY;
1876 }
1877 bdevname(rdev->bdev,b);
1878 while ( (s=strchr(b, '/')) != NULL)
1879 *s = '!';
1880
1881 rdev->mddev = mddev;
1882 printk(KERN_INFO "md: bind<%s>\n", b);
1883
1884 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1885 goto fail;
1886
1887 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1888 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1889 /* failure here is OK */;
1890 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1891
1892 list_add_rcu(&rdev->same_set, &mddev->disks);
1893 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
1894
1895 /* May as well allow recovery to be retried once */
1896 mddev->recovery_disabled = 0;
1897
1898 return 0;
1899
1900 fail:
1901 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1902 b, mdname(mddev));
1903 return err;
1904 }
1905
1906 static void md_delayed_delete(struct work_struct *ws)
1907 {
1908 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1909 kobject_del(&rdev->kobj);
1910 kobject_put(&rdev->kobj);
1911 }
1912
1913 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1914 {
1915 char b[BDEVNAME_SIZE];
1916 if (!rdev->mddev) {
1917 MD_BUG();
1918 return;
1919 }
1920 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
1921 list_del_rcu(&rdev->same_set);
1922 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1923 rdev->mddev = NULL;
1924 sysfs_remove_link(&rdev->kobj, "block");
1925 sysfs_put(rdev->sysfs_state);
1926 rdev->sysfs_state = NULL;
1927 /* We need to delay this, otherwise we can deadlock when
1928 * writing to 'remove' to "dev/state". We also need
1929 * to delay it due to rcu usage.
1930 */
1931 synchronize_rcu();
1932 INIT_WORK(&rdev->del_work, md_delayed_delete);
1933 kobject_get(&rdev->kobj);
1934 queue_work(md_misc_wq, &rdev->del_work);
1935 }
1936
1937 /*
1938 * prevent the device from being mounted, repartitioned or
1939 * otherwise reused by a RAID array (or any other kernel
1940 * subsystem), by bd_claiming the device.
1941 */
1942 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1943 {
1944 int err = 0;
1945 struct block_device *bdev;
1946 char b[BDEVNAME_SIZE];
1947
1948 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1949 shared ? (mdk_rdev_t *)lock_rdev : rdev);
1950 if (IS_ERR(bdev)) {
1951 printk(KERN_ERR "md: could not open %s.\n",
1952 __bdevname(dev, b));
1953 return PTR_ERR(bdev);
1954 }
1955 rdev->bdev = bdev;
1956 return err;
1957 }
1958
1959 static void unlock_rdev(mdk_rdev_t *rdev)
1960 {
1961 struct block_device *bdev = rdev->bdev;
1962 rdev->bdev = NULL;
1963 if (!bdev)
1964 MD_BUG();
1965 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1966 }
1967
1968 void md_autodetect_dev(dev_t dev);
1969
1970 static void export_rdev(mdk_rdev_t * rdev)
1971 {
1972 char b[BDEVNAME_SIZE];
1973 printk(KERN_INFO "md: export_rdev(%s)\n",
1974 bdevname(rdev->bdev,b));
1975 if (rdev->mddev)
1976 MD_BUG();
1977 free_disk_sb(rdev);
1978 #ifndef MODULE
1979 if (test_bit(AutoDetected, &rdev->flags))
1980 md_autodetect_dev(rdev->bdev->bd_dev);
1981 #endif
1982 unlock_rdev(rdev);
1983 kobject_put(&rdev->kobj);
1984 }
1985
1986 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1987 {
1988 unbind_rdev_from_array(rdev);
1989 export_rdev(rdev);
1990 }
1991
1992 static void export_array(mddev_t *mddev)
1993 {
1994 mdk_rdev_t *rdev, *tmp;
1995
1996 rdev_for_each(rdev, tmp, mddev) {
1997 if (!rdev->mddev) {
1998 MD_BUG();
1999 continue;
2000 }
2001 kick_rdev_from_array(rdev);
2002 }
2003 if (!list_empty(&mddev->disks))
2004 MD_BUG();
2005 mddev->raid_disks = 0;
2006 mddev->major_version = 0;
2007 }
2008
2009 static void print_desc(mdp_disk_t *desc)
2010 {
2011 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2012 desc->major,desc->minor,desc->raid_disk,desc->state);
2013 }
2014
2015 static void print_sb_90(mdp_super_t *sb)
2016 {
2017 int i;
2018
2019 printk(KERN_INFO
2020 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2021 sb->major_version, sb->minor_version, sb->patch_version,
2022 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2023 sb->ctime);
2024 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2025 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2026 sb->md_minor, sb->layout, sb->chunk_size);
2027 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2028 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2029 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2030 sb->failed_disks, sb->spare_disks,
2031 sb->sb_csum, (unsigned long)sb->events_lo);
2032
2033 printk(KERN_INFO);
2034 for (i = 0; i < MD_SB_DISKS; i++) {
2035 mdp_disk_t *desc;
2036
2037 desc = sb->disks + i;
2038 if (desc->number || desc->major || desc->minor ||
2039 desc->raid_disk || (desc->state && (desc->state != 4))) {
2040 printk(" D %2d: ", i);
2041 print_desc(desc);
2042 }
2043 }
2044 printk(KERN_INFO "md: THIS: ");
2045 print_desc(&sb->this_disk);
2046 }
2047
2048 static void print_sb_1(struct mdp_superblock_1 *sb)
2049 {
2050 __u8 *uuid;
2051
2052 uuid = sb->set_uuid;
2053 printk(KERN_INFO
2054 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2055 "md: Name: \"%s\" CT:%llu\n",
2056 le32_to_cpu(sb->major_version),
2057 le32_to_cpu(sb->feature_map),
2058 uuid,
2059 sb->set_name,
2060 (unsigned long long)le64_to_cpu(sb->ctime)
2061 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2062
2063 uuid = sb->device_uuid;
2064 printk(KERN_INFO
2065 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2066 " RO:%llu\n"
2067 "md: Dev:%08x UUID: %pU\n"
2068 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2069 "md: (MaxDev:%u) \n",
2070 le32_to_cpu(sb->level),
2071 (unsigned long long)le64_to_cpu(sb->size),
2072 le32_to_cpu(sb->raid_disks),
2073 le32_to_cpu(sb->layout),
2074 le32_to_cpu(sb->chunksize),
2075 (unsigned long long)le64_to_cpu(sb->data_offset),
2076 (unsigned long long)le64_to_cpu(sb->data_size),
2077 (unsigned long long)le64_to_cpu(sb->super_offset),
2078 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2079 le32_to_cpu(sb->dev_number),
2080 uuid,
2081 sb->devflags,
2082 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2083 (unsigned long long)le64_to_cpu(sb->events),
2084 (unsigned long long)le64_to_cpu(sb->resync_offset),
2085 le32_to_cpu(sb->sb_csum),
2086 le32_to_cpu(sb->max_dev)
2087 );
2088 }
2089
2090 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2091 {
2092 char b[BDEVNAME_SIZE];
2093 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2094 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2095 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2096 rdev->desc_nr);
2097 if (rdev->sb_loaded) {
2098 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2099 switch (major_version) {
2100 case 0:
2101 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2102 break;
2103 case 1:
2104 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2105 break;
2106 }
2107 } else
2108 printk(KERN_INFO "md: no rdev superblock!\n");
2109 }
2110
2111 static void md_print_devices(void)
2112 {
2113 struct list_head *tmp;
2114 mdk_rdev_t *rdev;
2115 mddev_t *mddev;
2116 char b[BDEVNAME_SIZE];
2117
2118 printk("\n");
2119 printk("md: **********************************\n");
2120 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2121 printk("md: **********************************\n");
2122 for_each_mddev(mddev, tmp) {
2123
2124 if (mddev->bitmap)
2125 bitmap_print_sb(mddev->bitmap);
2126 else
2127 printk("%s: ", mdname(mddev));
2128 list_for_each_entry(rdev, &mddev->disks, same_set)
2129 printk("<%s>", bdevname(rdev->bdev,b));
2130 printk("\n");
2131
2132 list_for_each_entry(rdev, &mddev->disks, same_set)
2133 print_rdev(rdev, mddev->major_version);
2134 }
2135 printk("md: **********************************\n");
2136 printk("\n");
2137 }
2138
2139
2140 static void sync_sbs(mddev_t * mddev, int nospares)
2141 {
2142 /* Update each superblock (in-memory image), but
2143 * if we are allowed to, skip spares which already
2144 * have the right event counter, or have one earlier
2145 * (which would mean they aren't being marked as dirty
2146 * with the rest of the array)
2147 */
2148 mdk_rdev_t *rdev;
2149 list_for_each_entry(rdev, &mddev->disks, same_set) {
2150 if (rdev->sb_events == mddev->events ||
2151 (nospares &&
2152 rdev->raid_disk < 0 &&
2153 rdev->sb_events+1 == mddev->events)) {
2154 /* Don't update this superblock */
2155 rdev->sb_loaded = 2;
2156 } else {
2157 super_types[mddev->major_version].
2158 sync_super(mddev, rdev);
2159 rdev->sb_loaded = 1;
2160 }
2161 }
2162 }
2163
2164 static void md_update_sb(mddev_t * mddev, int force_change)
2165 {
2166 mdk_rdev_t *rdev;
2167 int sync_req;
2168 int nospares = 0;
2169
2170 repeat:
2171 /* First make sure individual recovery_offsets are correct */
2172 list_for_each_entry(rdev, &mddev->disks, same_set) {
2173 if (rdev->raid_disk >= 0 &&
2174 mddev->delta_disks >= 0 &&
2175 !test_bit(In_sync, &rdev->flags) &&
2176 mddev->curr_resync_completed > rdev->recovery_offset)
2177 rdev->recovery_offset = mddev->curr_resync_completed;
2178
2179 }
2180 if (!mddev->persistent) {
2181 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2182 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2183 if (!mddev->external)
2184 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2185 wake_up(&mddev->sb_wait);
2186 return;
2187 }
2188
2189 spin_lock_irq(&mddev->write_lock);
2190
2191 mddev->utime = get_seconds();
2192
2193 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2194 force_change = 1;
2195 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2196 /* just a clean<-> dirty transition, possibly leave spares alone,
2197 * though if events isn't the right even/odd, we will have to do
2198 * spares after all
2199 */
2200 nospares = 1;
2201 if (force_change)
2202 nospares = 0;
2203 if (mddev->degraded)
2204 /* If the array is degraded, then skipping spares is both
2205 * dangerous and fairly pointless.
2206 * Dangerous because a device that was removed from the array
2207 * might have a event_count that still looks up-to-date,
2208 * so it can be re-added without a resync.
2209 * Pointless because if there are any spares to skip,
2210 * then a recovery will happen and soon that array won't
2211 * be degraded any more and the spare can go back to sleep then.
2212 */
2213 nospares = 0;
2214
2215 sync_req = mddev->in_sync;
2216
2217 /* If this is just a dirty<->clean transition, and the array is clean
2218 * and 'events' is odd, we can roll back to the previous clean state */
2219 if (nospares
2220 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2221 && mddev->can_decrease_events
2222 && mddev->events != 1) {
2223 mddev->events--;
2224 mddev->can_decrease_events = 0;
2225 } else {
2226 /* otherwise we have to go forward and ... */
2227 mddev->events ++;
2228 mddev->can_decrease_events = nospares;
2229 }
2230
2231 if (!mddev->events) {
2232 /*
2233 * oops, this 64-bit counter should never wrap.
2234 * Either we are in around ~1 trillion A.C., assuming
2235 * 1 reboot per second, or we have a bug:
2236 */
2237 MD_BUG();
2238 mddev->events --;
2239 }
2240 sync_sbs(mddev, nospares);
2241 spin_unlock_irq(&mddev->write_lock);
2242
2243 dprintk(KERN_INFO
2244 "md: updating %s RAID superblock on device (in sync %d)\n",
2245 mdname(mddev),mddev->in_sync);
2246
2247 bitmap_update_sb(mddev->bitmap);
2248 list_for_each_entry(rdev, &mddev->disks, same_set) {
2249 char b[BDEVNAME_SIZE];
2250 dprintk(KERN_INFO "md: ");
2251 if (rdev->sb_loaded != 1)
2252 continue; /* no noise on spare devices */
2253 if (test_bit(Faulty, &rdev->flags))
2254 dprintk("(skipping faulty ");
2255
2256 dprintk("%s ", bdevname(rdev->bdev,b));
2257 if (!test_bit(Faulty, &rdev->flags)) {
2258 md_super_write(mddev,rdev,
2259 rdev->sb_start, rdev->sb_size,
2260 rdev->sb_page);
2261 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2262 bdevname(rdev->bdev,b),
2263 (unsigned long long)rdev->sb_start);
2264 rdev->sb_events = mddev->events;
2265
2266 } else
2267 dprintk(")\n");
2268 if (mddev->level == LEVEL_MULTIPATH)
2269 /* only need to write one superblock... */
2270 break;
2271 }
2272 md_super_wait(mddev);
2273 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2274
2275 spin_lock_irq(&mddev->write_lock);
2276 if (mddev->in_sync != sync_req ||
2277 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2278 /* have to write it out again */
2279 spin_unlock_irq(&mddev->write_lock);
2280 goto repeat;
2281 }
2282 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2283 spin_unlock_irq(&mddev->write_lock);
2284 wake_up(&mddev->sb_wait);
2285 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2286 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2287
2288 }
2289
2290 /* words written to sysfs files may, or may not, be \n terminated.
2291 * We want to accept with case. For this we use cmd_match.
2292 */
2293 static int cmd_match(const char *cmd, const char *str)
2294 {
2295 /* See if cmd, written into a sysfs file, matches
2296 * str. They must either be the same, or cmd can
2297 * have a trailing newline
2298 */
2299 while (*cmd && *str && *cmd == *str) {
2300 cmd++;
2301 str++;
2302 }
2303 if (*cmd == '\n')
2304 cmd++;
2305 if (*str || *cmd)
2306 return 0;
2307 return 1;
2308 }
2309
2310 struct rdev_sysfs_entry {
2311 struct attribute attr;
2312 ssize_t (*show)(mdk_rdev_t *, char *);
2313 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2314 };
2315
2316 static ssize_t
2317 state_show(mdk_rdev_t *rdev, char *page)
2318 {
2319 char *sep = "";
2320 size_t len = 0;
2321
2322 if (test_bit(Faulty, &rdev->flags)) {
2323 len+= sprintf(page+len, "%sfaulty",sep);
2324 sep = ",";
2325 }
2326 if (test_bit(In_sync, &rdev->flags)) {
2327 len += sprintf(page+len, "%sin_sync",sep);
2328 sep = ",";
2329 }
2330 if (test_bit(WriteMostly, &rdev->flags)) {
2331 len += sprintf(page+len, "%swrite_mostly",sep);
2332 sep = ",";
2333 }
2334 if (test_bit(Blocked, &rdev->flags)) {
2335 len += sprintf(page+len, "%sblocked", sep);
2336 sep = ",";
2337 }
2338 if (!test_bit(Faulty, &rdev->flags) &&
2339 !test_bit(In_sync, &rdev->flags)) {
2340 len += sprintf(page+len, "%sspare", sep);
2341 sep = ",";
2342 }
2343 return len+sprintf(page+len, "\n");
2344 }
2345
2346 static ssize_t
2347 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2348 {
2349 /* can write
2350 * faulty - simulates and error
2351 * remove - disconnects the device
2352 * writemostly - sets write_mostly
2353 * -writemostly - clears write_mostly
2354 * blocked - sets the Blocked flag
2355 * -blocked - clears the Blocked flag
2356 * insync - sets Insync providing device isn't active
2357 */
2358 int err = -EINVAL;
2359 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2360 md_error(rdev->mddev, rdev);
2361 err = 0;
2362 } else if (cmd_match(buf, "remove")) {
2363 if (rdev->raid_disk >= 0)
2364 err = -EBUSY;
2365 else {
2366 mddev_t *mddev = rdev->mddev;
2367 kick_rdev_from_array(rdev);
2368 if (mddev->pers)
2369 md_update_sb(mddev, 1);
2370 md_new_event(mddev);
2371 err = 0;
2372 }
2373 } else if (cmd_match(buf, "writemostly")) {
2374 set_bit(WriteMostly, &rdev->flags);
2375 err = 0;
2376 } else if (cmd_match(buf, "-writemostly")) {
2377 clear_bit(WriteMostly, &rdev->flags);
2378 err = 0;
2379 } else if (cmd_match(buf, "blocked")) {
2380 set_bit(Blocked, &rdev->flags);
2381 err = 0;
2382 } else if (cmd_match(buf, "-blocked")) {
2383 clear_bit(Blocked, &rdev->flags);
2384 wake_up(&rdev->blocked_wait);
2385 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2386 md_wakeup_thread(rdev->mddev->thread);
2387
2388 err = 0;
2389 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2390 set_bit(In_sync, &rdev->flags);
2391 err = 0;
2392 }
2393 if (!err)
2394 sysfs_notify_dirent_safe(rdev->sysfs_state);
2395 return err ? err : len;
2396 }
2397 static struct rdev_sysfs_entry rdev_state =
2398 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2399
2400 static ssize_t
2401 errors_show(mdk_rdev_t *rdev, char *page)
2402 {
2403 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2404 }
2405
2406 static ssize_t
2407 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2408 {
2409 char *e;
2410 unsigned long n = simple_strtoul(buf, &e, 10);
2411 if (*buf && (*e == 0 || *e == '\n')) {
2412 atomic_set(&rdev->corrected_errors, n);
2413 return len;
2414 }
2415 return -EINVAL;
2416 }
2417 static struct rdev_sysfs_entry rdev_errors =
2418 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2419
2420 static ssize_t
2421 slot_show(mdk_rdev_t *rdev, char *page)
2422 {
2423 if (rdev->raid_disk < 0)
2424 return sprintf(page, "none\n");
2425 else
2426 return sprintf(page, "%d\n", rdev->raid_disk);
2427 }
2428
2429 static ssize_t
2430 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2431 {
2432 char *e;
2433 int err;
2434 char nm[20];
2435 int slot = simple_strtoul(buf, &e, 10);
2436 if (strncmp(buf, "none", 4)==0)
2437 slot = -1;
2438 else if (e==buf || (*e && *e!= '\n'))
2439 return -EINVAL;
2440 if (rdev->mddev->pers && slot == -1) {
2441 /* Setting 'slot' on an active array requires also
2442 * updating the 'rd%d' link, and communicating
2443 * with the personality with ->hot_*_disk.
2444 * For now we only support removing
2445 * failed/spare devices. This normally happens automatically,
2446 * but not when the metadata is externally managed.
2447 */
2448 if (rdev->raid_disk == -1)
2449 return -EEXIST;
2450 /* personality does all needed checks */
2451 if (rdev->mddev->pers->hot_add_disk == NULL)
2452 return -EINVAL;
2453 err = rdev->mddev->pers->
2454 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2455 if (err)
2456 return err;
2457 sprintf(nm, "rd%d", rdev->raid_disk);
2458 sysfs_remove_link(&rdev->mddev->kobj, nm);
2459 rdev->raid_disk = -1;
2460 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2461 md_wakeup_thread(rdev->mddev->thread);
2462 } else if (rdev->mddev->pers) {
2463 mdk_rdev_t *rdev2;
2464 /* Activating a spare .. or possibly reactivating
2465 * if we ever get bitmaps working here.
2466 */
2467
2468 if (rdev->raid_disk != -1)
2469 return -EBUSY;
2470
2471 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2472 return -EBUSY;
2473
2474 if (rdev->mddev->pers->hot_add_disk == NULL)
2475 return -EINVAL;
2476
2477 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2478 if (rdev2->raid_disk == slot)
2479 return -EEXIST;
2480
2481 if (slot >= rdev->mddev->raid_disks &&
2482 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2483 return -ENOSPC;
2484
2485 rdev->raid_disk = slot;
2486 if (test_bit(In_sync, &rdev->flags))
2487 rdev->saved_raid_disk = slot;
2488 else
2489 rdev->saved_raid_disk = -1;
2490 err = rdev->mddev->pers->
2491 hot_add_disk(rdev->mddev, rdev);
2492 if (err) {
2493 rdev->raid_disk = -1;
2494 return err;
2495 } else
2496 sysfs_notify_dirent_safe(rdev->sysfs_state);
2497 sprintf(nm, "rd%d", rdev->raid_disk);
2498 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2499 /* failure here is OK */;
2500 /* don't wakeup anyone, leave that to userspace. */
2501 } else {
2502 if (slot >= rdev->mddev->raid_disks &&
2503 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2504 return -ENOSPC;
2505 rdev->raid_disk = slot;
2506 /* assume it is working */
2507 clear_bit(Faulty, &rdev->flags);
2508 clear_bit(WriteMostly, &rdev->flags);
2509 set_bit(In_sync, &rdev->flags);
2510 sysfs_notify_dirent_safe(rdev->sysfs_state);
2511 }
2512 return len;
2513 }
2514
2515
2516 static struct rdev_sysfs_entry rdev_slot =
2517 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2518
2519 static ssize_t
2520 offset_show(mdk_rdev_t *rdev, char *page)
2521 {
2522 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2523 }
2524
2525 static ssize_t
2526 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2527 {
2528 char *e;
2529 unsigned long long offset = simple_strtoull(buf, &e, 10);
2530 if (e==buf || (*e && *e != '\n'))
2531 return -EINVAL;
2532 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2533 return -EBUSY;
2534 if (rdev->sectors && rdev->mddev->external)
2535 /* Must set offset before size, so overlap checks
2536 * can be sane */
2537 return -EBUSY;
2538 rdev->data_offset = offset;
2539 return len;
2540 }
2541
2542 static struct rdev_sysfs_entry rdev_offset =
2543 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2544
2545 static ssize_t
2546 rdev_size_show(mdk_rdev_t *rdev, char *page)
2547 {
2548 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2549 }
2550
2551 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2552 {
2553 /* check if two start/length pairs overlap */
2554 if (s1+l1 <= s2)
2555 return 0;
2556 if (s2+l2 <= s1)
2557 return 0;
2558 return 1;
2559 }
2560
2561 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2562 {
2563 unsigned long long blocks;
2564 sector_t new;
2565
2566 if (strict_strtoull(buf, 10, &blocks) < 0)
2567 return -EINVAL;
2568
2569 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2570 return -EINVAL; /* sector conversion overflow */
2571
2572 new = blocks * 2;
2573 if (new != blocks * 2)
2574 return -EINVAL; /* unsigned long long to sector_t overflow */
2575
2576 *sectors = new;
2577 return 0;
2578 }
2579
2580 static ssize_t
2581 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2582 {
2583 mddev_t *my_mddev = rdev->mddev;
2584 sector_t oldsectors = rdev->sectors;
2585 sector_t sectors;
2586
2587 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2588 return -EINVAL;
2589 if (my_mddev->pers && rdev->raid_disk >= 0) {
2590 if (my_mddev->persistent) {
2591 sectors = super_types[my_mddev->major_version].
2592 rdev_size_change(rdev, sectors);
2593 if (!sectors)
2594 return -EBUSY;
2595 } else if (!sectors)
2596 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2597 rdev->data_offset;
2598 }
2599 if (sectors < my_mddev->dev_sectors)
2600 return -EINVAL; /* component must fit device */
2601
2602 rdev->sectors = sectors;
2603 if (sectors > oldsectors && my_mddev->external) {
2604 /* need to check that all other rdevs with the same ->bdev
2605 * do not overlap. We need to unlock the mddev to avoid
2606 * a deadlock. We have already changed rdev->sectors, and if
2607 * we have to change it back, we will have the lock again.
2608 */
2609 mddev_t *mddev;
2610 int overlap = 0;
2611 struct list_head *tmp;
2612
2613 mddev_unlock(my_mddev);
2614 for_each_mddev(mddev, tmp) {
2615 mdk_rdev_t *rdev2;
2616
2617 mddev_lock(mddev);
2618 list_for_each_entry(rdev2, &mddev->disks, same_set)
2619 if (rdev->bdev == rdev2->bdev &&
2620 rdev != rdev2 &&
2621 overlaps(rdev->data_offset, rdev->sectors,
2622 rdev2->data_offset,
2623 rdev2->sectors)) {
2624 overlap = 1;
2625 break;
2626 }
2627 mddev_unlock(mddev);
2628 if (overlap) {
2629 mddev_put(mddev);
2630 break;
2631 }
2632 }
2633 mddev_lock(my_mddev);
2634 if (overlap) {
2635 /* Someone else could have slipped in a size
2636 * change here, but doing so is just silly.
2637 * We put oldsectors back because we *know* it is
2638 * safe, and trust userspace not to race with
2639 * itself
2640 */
2641 rdev->sectors = oldsectors;
2642 return -EBUSY;
2643 }
2644 }
2645 return len;
2646 }
2647
2648 static struct rdev_sysfs_entry rdev_size =
2649 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2650
2651
2652 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2653 {
2654 unsigned long long recovery_start = rdev->recovery_offset;
2655
2656 if (test_bit(In_sync, &rdev->flags) ||
2657 recovery_start == MaxSector)
2658 return sprintf(page, "none\n");
2659
2660 return sprintf(page, "%llu\n", recovery_start);
2661 }
2662
2663 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2664 {
2665 unsigned long long recovery_start;
2666
2667 if (cmd_match(buf, "none"))
2668 recovery_start = MaxSector;
2669 else if (strict_strtoull(buf, 10, &recovery_start))
2670 return -EINVAL;
2671
2672 if (rdev->mddev->pers &&
2673 rdev->raid_disk >= 0)
2674 return -EBUSY;
2675
2676 rdev->recovery_offset = recovery_start;
2677 if (recovery_start == MaxSector)
2678 set_bit(In_sync, &rdev->flags);
2679 else
2680 clear_bit(In_sync, &rdev->flags);
2681 return len;
2682 }
2683
2684 static struct rdev_sysfs_entry rdev_recovery_start =
2685 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2686
2687 static struct attribute *rdev_default_attrs[] = {
2688 &rdev_state.attr,
2689 &rdev_errors.attr,
2690 &rdev_slot.attr,
2691 &rdev_offset.attr,
2692 &rdev_size.attr,
2693 &rdev_recovery_start.attr,
2694 NULL,
2695 };
2696 static ssize_t
2697 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2698 {
2699 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2700 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2701 mddev_t *mddev = rdev->mddev;
2702 ssize_t rv;
2703
2704 if (!entry->show)
2705 return -EIO;
2706
2707 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2708 if (!rv) {
2709 if (rdev->mddev == NULL)
2710 rv = -EBUSY;
2711 else
2712 rv = entry->show(rdev, page);
2713 mddev_unlock(mddev);
2714 }
2715 return rv;
2716 }
2717
2718 static ssize_t
2719 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2720 const char *page, size_t length)
2721 {
2722 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2723 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2724 ssize_t rv;
2725 mddev_t *mddev = rdev->mddev;
2726
2727 if (!entry->store)
2728 return -EIO;
2729 if (!capable(CAP_SYS_ADMIN))
2730 return -EACCES;
2731 rv = mddev ? mddev_lock(mddev): -EBUSY;
2732 if (!rv) {
2733 if (rdev->mddev == NULL)
2734 rv = -EBUSY;
2735 else
2736 rv = entry->store(rdev, page, length);
2737 mddev_unlock(mddev);
2738 }
2739 return rv;
2740 }
2741
2742 static void rdev_free(struct kobject *ko)
2743 {
2744 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2745 kfree(rdev);
2746 }
2747 static const struct sysfs_ops rdev_sysfs_ops = {
2748 .show = rdev_attr_show,
2749 .store = rdev_attr_store,
2750 };
2751 static struct kobj_type rdev_ktype = {
2752 .release = rdev_free,
2753 .sysfs_ops = &rdev_sysfs_ops,
2754 .default_attrs = rdev_default_attrs,
2755 };
2756
2757 void md_rdev_init(mdk_rdev_t *rdev)
2758 {
2759 rdev->desc_nr = -1;
2760 rdev->saved_raid_disk = -1;
2761 rdev->raid_disk = -1;
2762 rdev->flags = 0;
2763 rdev->data_offset = 0;
2764 rdev->sb_events = 0;
2765 rdev->last_read_error.tv_sec = 0;
2766 rdev->last_read_error.tv_nsec = 0;
2767 atomic_set(&rdev->nr_pending, 0);
2768 atomic_set(&rdev->read_errors, 0);
2769 atomic_set(&rdev->corrected_errors, 0);
2770
2771 INIT_LIST_HEAD(&rdev->same_set);
2772 init_waitqueue_head(&rdev->blocked_wait);
2773 }
2774 EXPORT_SYMBOL_GPL(md_rdev_init);
2775 /*
2776 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2777 *
2778 * mark the device faulty if:
2779 *
2780 * - the device is nonexistent (zero size)
2781 * - the device has no valid superblock
2782 *
2783 * a faulty rdev _never_ has rdev->sb set.
2784 */
2785 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2786 {
2787 char b[BDEVNAME_SIZE];
2788 int err;
2789 mdk_rdev_t *rdev;
2790 sector_t size;
2791
2792 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2793 if (!rdev) {
2794 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2795 return ERR_PTR(-ENOMEM);
2796 }
2797
2798 md_rdev_init(rdev);
2799 if ((err = alloc_disk_sb(rdev)))
2800 goto abort_free;
2801
2802 err = lock_rdev(rdev, newdev, super_format == -2);
2803 if (err)
2804 goto abort_free;
2805
2806 kobject_init(&rdev->kobj, &rdev_ktype);
2807
2808 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2809 if (!size) {
2810 printk(KERN_WARNING
2811 "md: %s has zero or unknown size, marking faulty!\n",
2812 bdevname(rdev->bdev,b));
2813 err = -EINVAL;
2814 goto abort_free;
2815 }
2816
2817 if (super_format >= 0) {
2818 err = super_types[super_format].
2819 load_super(rdev, NULL, super_minor);
2820 if (err == -EINVAL) {
2821 printk(KERN_WARNING
2822 "md: %s does not have a valid v%d.%d "
2823 "superblock, not importing!\n",
2824 bdevname(rdev->bdev,b),
2825 super_format, super_minor);
2826 goto abort_free;
2827 }
2828 if (err < 0) {
2829 printk(KERN_WARNING
2830 "md: could not read %s's sb, not importing!\n",
2831 bdevname(rdev->bdev,b));
2832 goto abort_free;
2833 }
2834 }
2835
2836 return rdev;
2837
2838 abort_free:
2839 if (rdev->sb_page) {
2840 if (rdev->bdev)
2841 unlock_rdev(rdev);
2842 free_disk_sb(rdev);
2843 }
2844 kfree(rdev);
2845 return ERR_PTR(err);
2846 }
2847
2848 /*
2849 * Check a full RAID array for plausibility
2850 */
2851
2852
2853 static void analyze_sbs(mddev_t * mddev)
2854 {
2855 int i;
2856 mdk_rdev_t *rdev, *freshest, *tmp;
2857 char b[BDEVNAME_SIZE];
2858
2859 freshest = NULL;
2860 rdev_for_each(rdev, tmp, mddev)
2861 switch (super_types[mddev->major_version].
2862 load_super(rdev, freshest, mddev->minor_version)) {
2863 case 1:
2864 freshest = rdev;
2865 break;
2866 case 0:
2867 break;
2868 default:
2869 printk( KERN_ERR \
2870 "md: fatal superblock inconsistency in %s"
2871 " -- removing from array\n",
2872 bdevname(rdev->bdev,b));
2873 kick_rdev_from_array(rdev);
2874 }
2875
2876
2877 super_types[mddev->major_version].
2878 validate_super(mddev, freshest);
2879
2880 i = 0;
2881 rdev_for_each(rdev, tmp, mddev) {
2882 if (mddev->max_disks &&
2883 (rdev->desc_nr >= mddev->max_disks ||
2884 i > mddev->max_disks)) {
2885 printk(KERN_WARNING
2886 "md: %s: %s: only %d devices permitted\n",
2887 mdname(mddev), bdevname(rdev->bdev, b),
2888 mddev->max_disks);
2889 kick_rdev_from_array(rdev);
2890 continue;
2891 }
2892 if (rdev != freshest)
2893 if (super_types[mddev->major_version].
2894 validate_super(mddev, rdev)) {
2895 printk(KERN_WARNING "md: kicking non-fresh %s"
2896 " from array!\n",
2897 bdevname(rdev->bdev,b));
2898 kick_rdev_from_array(rdev);
2899 continue;
2900 }
2901 if (mddev->level == LEVEL_MULTIPATH) {
2902 rdev->desc_nr = i++;
2903 rdev->raid_disk = rdev->desc_nr;
2904 set_bit(In_sync, &rdev->flags);
2905 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2906 rdev->raid_disk = -1;
2907 clear_bit(In_sync, &rdev->flags);
2908 }
2909 }
2910 }
2911
2912 /* Read a fixed-point number.
2913 * Numbers in sysfs attributes should be in "standard" units where
2914 * possible, so time should be in seconds.
2915 * However we internally use a a much smaller unit such as
2916 * milliseconds or jiffies.
2917 * This function takes a decimal number with a possible fractional
2918 * component, and produces an integer which is the result of
2919 * multiplying that number by 10^'scale'.
2920 * all without any floating-point arithmetic.
2921 */
2922 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2923 {
2924 unsigned long result = 0;
2925 long decimals = -1;
2926 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2927 if (*cp == '.')
2928 decimals = 0;
2929 else if (decimals < scale) {
2930 unsigned int value;
2931 value = *cp - '0';
2932 result = result * 10 + value;
2933 if (decimals >= 0)
2934 decimals++;
2935 }
2936 cp++;
2937 }
2938 if (*cp == '\n')
2939 cp++;
2940 if (*cp)
2941 return -EINVAL;
2942 if (decimals < 0)
2943 decimals = 0;
2944 while (decimals < scale) {
2945 result *= 10;
2946 decimals ++;
2947 }
2948 *res = result;
2949 return 0;
2950 }
2951
2952
2953 static void md_safemode_timeout(unsigned long data);
2954
2955 static ssize_t
2956 safe_delay_show(mddev_t *mddev, char *page)
2957 {
2958 int msec = (mddev->safemode_delay*1000)/HZ;
2959 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2960 }
2961 static ssize_t
2962 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2963 {
2964 unsigned long msec;
2965
2966 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2967 return -EINVAL;
2968 if (msec == 0)
2969 mddev->safemode_delay = 0;
2970 else {
2971 unsigned long old_delay = mddev->safemode_delay;
2972 mddev->safemode_delay = (msec*HZ)/1000;
2973 if (mddev->safemode_delay == 0)
2974 mddev->safemode_delay = 1;
2975 if (mddev->safemode_delay < old_delay)
2976 md_safemode_timeout((unsigned long)mddev);
2977 }
2978 return len;
2979 }
2980 static struct md_sysfs_entry md_safe_delay =
2981 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2982
2983 static ssize_t
2984 level_show(mddev_t *mddev, char *page)
2985 {
2986 struct mdk_personality *p = mddev->pers;
2987 if (p)
2988 return sprintf(page, "%s\n", p->name);
2989 else if (mddev->clevel[0])
2990 return sprintf(page, "%s\n", mddev->clevel);
2991 else if (mddev->level != LEVEL_NONE)
2992 return sprintf(page, "%d\n", mddev->level);
2993 else
2994 return 0;
2995 }
2996
2997 static ssize_t
2998 level_store(mddev_t *mddev, const char *buf, size_t len)
2999 {
3000 char clevel[16];
3001 ssize_t rv = len;
3002 struct mdk_personality *pers;
3003 long level;
3004 void *priv;
3005 mdk_rdev_t *rdev;
3006
3007 if (mddev->pers == NULL) {
3008 if (len == 0)
3009 return 0;
3010 if (len >= sizeof(mddev->clevel))
3011 return -ENOSPC;
3012 strncpy(mddev->clevel, buf, len);
3013 if (mddev->clevel[len-1] == '\n')
3014 len--;
3015 mddev->clevel[len] = 0;
3016 mddev->level = LEVEL_NONE;
3017 return rv;
3018 }
3019
3020 /* request to change the personality. Need to ensure:
3021 * - array is not engaged in resync/recovery/reshape
3022 * - old personality can be suspended
3023 * - new personality will access other array.
3024 */
3025
3026 if (mddev->sync_thread ||
3027 mddev->reshape_position != MaxSector ||
3028 mddev->sysfs_active)
3029 return -EBUSY;
3030
3031 if (!mddev->pers->quiesce) {
3032 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3033 mdname(mddev), mddev->pers->name);
3034 return -EINVAL;
3035 }
3036
3037 /* Now find the new personality */
3038 if (len == 0 || len >= sizeof(clevel))
3039 return -EINVAL;
3040 strncpy(clevel, buf, len);
3041 if (clevel[len-1] == '\n')
3042 len--;
3043 clevel[len] = 0;
3044 if (strict_strtol(clevel, 10, &level))
3045 level = LEVEL_NONE;
3046
3047 if (request_module("md-%s", clevel) != 0)
3048 request_module("md-level-%s", clevel);
3049 spin_lock(&pers_lock);
3050 pers = find_pers(level, clevel);
3051 if (!pers || !try_module_get(pers->owner)) {
3052 spin_unlock(&pers_lock);
3053 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3054 return -EINVAL;
3055 }
3056 spin_unlock(&pers_lock);
3057
3058 if (pers == mddev->pers) {
3059 /* Nothing to do! */
3060 module_put(pers->owner);
3061 return rv;
3062 }
3063 if (!pers->takeover) {
3064 module_put(pers->owner);
3065 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3066 mdname(mddev), clevel);
3067 return -EINVAL;
3068 }
3069
3070 list_for_each_entry(rdev, &mddev->disks, same_set)
3071 rdev->new_raid_disk = rdev->raid_disk;
3072
3073 /* ->takeover must set new_* and/or delta_disks
3074 * if it succeeds, and may set them when it fails.
3075 */
3076 priv = pers->takeover(mddev);
3077 if (IS_ERR(priv)) {
3078 mddev->new_level = mddev->level;
3079 mddev->new_layout = mddev->layout;
3080 mddev->new_chunk_sectors = mddev->chunk_sectors;
3081 mddev->raid_disks -= mddev->delta_disks;
3082 mddev->delta_disks = 0;
3083 module_put(pers->owner);
3084 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3085 mdname(mddev), clevel);
3086 return PTR_ERR(priv);
3087 }
3088
3089 /* Looks like we have a winner */
3090 mddev_suspend(mddev);
3091 mddev->pers->stop(mddev);
3092
3093 if (mddev->pers->sync_request == NULL &&
3094 pers->sync_request != NULL) {
3095 /* need to add the md_redundancy_group */
3096 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3097 printk(KERN_WARNING
3098 "md: cannot register extra attributes for %s\n",
3099 mdname(mddev));
3100 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3101 }
3102 if (mddev->pers->sync_request != NULL &&
3103 pers->sync_request == NULL) {
3104 /* need to remove the md_redundancy_group */
3105 if (mddev->to_remove == NULL)
3106 mddev->to_remove = &md_redundancy_group;
3107 }
3108
3109 if (mddev->pers->sync_request == NULL &&
3110 mddev->external) {
3111 /* We are converting from a no-redundancy array
3112 * to a redundancy array and metadata is managed
3113 * externally so we need to be sure that writes
3114 * won't block due to a need to transition
3115 * clean->dirty
3116 * until external management is started.
3117 */
3118 mddev->in_sync = 0;
3119 mddev->safemode_delay = 0;
3120 mddev->safemode = 0;
3121 }
3122
3123 list_for_each_entry(rdev, &mddev->disks, same_set) {
3124 char nm[20];
3125 if (rdev->raid_disk < 0)
3126 continue;
3127 if (rdev->new_raid_disk >= mddev->raid_disks)
3128 rdev->new_raid_disk = -1;
3129 if (rdev->new_raid_disk == rdev->raid_disk)
3130 continue;
3131 sprintf(nm, "rd%d", rdev->raid_disk);
3132 sysfs_remove_link(&mddev->kobj, nm);
3133 }
3134 list_for_each_entry(rdev, &mddev->disks, same_set) {
3135 if (rdev->raid_disk < 0)
3136 continue;
3137 if (rdev->new_raid_disk == rdev->raid_disk)
3138 continue;
3139 rdev->raid_disk = rdev->new_raid_disk;
3140 if (rdev->raid_disk < 0)
3141 clear_bit(In_sync, &rdev->flags);
3142 else {
3143 char nm[20];
3144 sprintf(nm, "rd%d", rdev->raid_disk);
3145 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3146 printk("md: cannot register %s for %s after level change\n",
3147 nm, mdname(mddev));
3148 }
3149 }
3150
3151 module_put(mddev->pers->owner);
3152 mddev->pers = pers;
3153 mddev->private = priv;
3154 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3155 mddev->level = mddev->new_level;
3156 mddev->layout = mddev->new_layout;
3157 mddev->chunk_sectors = mddev->new_chunk_sectors;
3158 mddev->delta_disks = 0;
3159 if (mddev->pers->sync_request == NULL) {
3160 /* this is now an array without redundancy, so
3161 * it must always be in_sync
3162 */
3163 mddev->in_sync = 1;
3164 del_timer_sync(&mddev->safemode_timer);
3165 }
3166 pers->run(mddev);
3167 mddev_resume(mddev);
3168 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3169 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3170 md_wakeup_thread(mddev->thread);
3171 sysfs_notify(&mddev->kobj, NULL, "level");
3172 md_new_event(mddev);
3173 return rv;
3174 }
3175
3176 static struct md_sysfs_entry md_level =
3177 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3178
3179
3180 static ssize_t
3181 layout_show(mddev_t *mddev, char *page)
3182 {
3183 /* just a number, not meaningful for all levels */
3184 if (mddev->reshape_position != MaxSector &&
3185 mddev->layout != mddev->new_layout)
3186 return sprintf(page, "%d (%d)\n",
3187 mddev->new_layout, mddev->layout);
3188 return sprintf(page, "%d\n", mddev->layout);
3189 }
3190
3191 static ssize_t
3192 layout_store(mddev_t *mddev, const char *buf, size_t len)
3193 {
3194 char *e;
3195 unsigned long n = simple_strtoul(buf, &e, 10);
3196
3197 if (!*buf || (*e && *e != '\n'))
3198 return -EINVAL;
3199
3200 if (mddev->pers) {
3201 int err;
3202 if (mddev->pers->check_reshape == NULL)
3203 return -EBUSY;
3204 mddev->new_layout = n;
3205 err = mddev->pers->check_reshape(mddev);
3206 if (err) {
3207 mddev->new_layout = mddev->layout;
3208 return err;
3209 }
3210 } else {
3211 mddev->new_layout = n;
3212 if (mddev->reshape_position == MaxSector)
3213 mddev->layout = n;
3214 }
3215 return len;
3216 }
3217 static struct md_sysfs_entry md_layout =
3218 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3219
3220
3221 static ssize_t
3222 raid_disks_show(mddev_t *mddev, char *page)
3223 {
3224 if (mddev->raid_disks == 0)
3225 return 0;
3226 if (mddev->reshape_position != MaxSector &&
3227 mddev->delta_disks != 0)
3228 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3229 mddev->raid_disks - mddev->delta_disks);
3230 return sprintf(page, "%d\n", mddev->raid_disks);
3231 }
3232
3233 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3234
3235 static ssize_t
3236 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3237 {
3238 char *e;
3239 int rv = 0;
3240 unsigned long n = simple_strtoul(buf, &e, 10);
3241
3242 if (!*buf || (*e && *e != '\n'))
3243 return -EINVAL;
3244
3245 if (mddev->pers)
3246 rv = update_raid_disks(mddev, n);
3247 else if (mddev->reshape_position != MaxSector) {
3248 int olddisks = mddev->raid_disks - mddev->delta_disks;
3249 mddev->delta_disks = n - olddisks;
3250 mddev->raid_disks = n;
3251 } else
3252 mddev->raid_disks = n;
3253 return rv ? rv : len;
3254 }
3255 static struct md_sysfs_entry md_raid_disks =
3256 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3257
3258 static ssize_t
3259 chunk_size_show(mddev_t *mddev, char *page)
3260 {
3261 if (mddev->reshape_position != MaxSector &&
3262 mddev->chunk_sectors != mddev->new_chunk_sectors)
3263 return sprintf(page, "%d (%d)\n",
3264 mddev->new_chunk_sectors << 9,
3265 mddev->chunk_sectors << 9);
3266 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3267 }
3268
3269 static ssize_t
3270 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3271 {
3272 char *e;
3273 unsigned long n = simple_strtoul(buf, &e, 10);
3274
3275 if (!*buf || (*e && *e != '\n'))
3276 return -EINVAL;
3277
3278 if (mddev->pers) {
3279 int err;
3280 if (mddev->pers->check_reshape == NULL)
3281 return -EBUSY;
3282 mddev->new_chunk_sectors = n >> 9;
3283 err = mddev->pers->check_reshape(mddev);
3284 if (err) {
3285 mddev->new_chunk_sectors = mddev->chunk_sectors;
3286 return err;
3287 }
3288 } else {
3289 mddev->new_chunk_sectors = n >> 9;
3290 if (mddev->reshape_position == MaxSector)
3291 mddev->chunk_sectors = n >> 9;
3292 }
3293 return len;
3294 }
3295 static struct md_sysfs_entry md_chunk_size =
3296 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3297
3298 static ssize_t
3299 resync_start_show(mddev_t *mddev, char *page)
3300 {
3301 if (mddev->recovery_cp == MaxSector)
3302 return sprintf(page, "none\n");
3303 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3304 }
3305
3306 static ssize_t
3307 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3308 {
3309 char *e;
3310 unsigned long long n = simple_strtoull(buf, &e, 10);
3311
3312 if (mddev->pers)
3313 return -EBUSY;
3314 if (cmd_match(buf, "none"))
3315 n = MaxSector;
3316 else if (!*buf || (*e && *e != '\n'))
3317 return -EINVAL;
3318
3319 mddev->recovery_cp = n;
3320 return len;
3321 }
3322 static struct md_sysfs_entry md_resync_start =
3323 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3324
3325 /*
3326 * The array state can be:
3327 *
3328 * clear
3329 * No devices, no size, no level
3330 * Equivalent to STOP_ARRAY ioctl
3331 * inactive
3332 * May have some settings, but array is not active
3333 * all IO results in error
3334 * When written, doesn't tear down array, but just stops it
3335 * suspended (not supported yet)
3336 * All IO requests will block. The array can be reconfigured.
3337 * Writing this, if accepted, will block until array is quiescent
3338 * readonly
3339 * no resync can happen. no superblocks get written.
3340 * write requests fail
3341 * read-auto
3342 * like readonly, but behaves like 'clean' on a write request.
3343 *
3344 * clean - no pending writes, but otherwise active.
3345 * When written to inactive array, starts without resync
3346 * If a write request arrives then
3347 * if metadata is known, mark 'dirty' and switch to 'active'.
3348 * if not known, block and switch to write-pending
3349 * If written to an active array that has pending writes, then fails.
3350 * active
3351 * fully active: IO and resync can be happening.
3352 * When written to inactive array, starts with resync
3353 *
3354 * write-pending
3355 * clean, but writes are blocked waiting for 'active' to be written.
3356 *
3357 * active-idle
3358 * like active, but no writes have been seen for a while (100msec).
3359 *
3360 */
3361 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3362 write_pending, active_idle, bad_word};
3363 static char *array_states[] = {
3364 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3365 "write-pending", "active-idle", NULL };
3366
3367 static int match_word(const char *word, char **list)
3368 {
3369 int n;
3370 for (n=0; list[n]; n++)
3371 if (cmd_match(word, list[n]))
3372 break;
3373 return n;
3374 }
3375
3376 static ssize_t
3377 array_state_show(mddev_t *mddev, char *page)
3378 {
3379 enum array_state st = inactive;
3380
3381 if (mddev->pers)
3382 switch(mddev->ro) {
3383 case 1:
3384 st = readonly;
3385 break;
3386 case 2:
3387 st = read_auto;
3388 break;
3389 case 0:
3390 if (mddev->in_sync)
3391 st = clean;
3392 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3393 st = write_pending;
3394 else if (mddev->safemode)
3395 st = active_idle;
3396 else
3397 st = active;
3398 }
3399 else {
3400 if (list_empty(&mddev->disks) &&
3401 mddev->raid_disks == 0 &&
3402 mddev->dev_sectors == 0)
3403 st = clear;
3404 else
3405 st = inactive;
3406 }
3407 return sprintf(page, "%s\n", array_states[st]);
3408 }
3409
3410 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3411 static int md_set_readonly(mddev_t * mddev, int is_open);
3412 static int do_md_run(mddev_t * mddev);
3413 static int restart_array(mddev_t *mddev);
3414
3415 static ssize_t
3416 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3417 {
3418 int err = -EINVAL;
3419 enum array_state st = match_word(buf, array_states);
3420 switch(st) {
3421 case bad_word:
3422 break;
3423 case clear:
3424 /* stopping an active array */
3425 if (atomic_read(&mddev->openers) > 0)
3426 return -EBUSY;
3427 err = do_md_stop(mddev, 0, 0);
3428 break;
3429 case inactive:
3430 /* stopping an active array */
3431 if (mddev->pers) {
3432 if (atomic_read(&mddev->openers) > 0)
3433 return -EBUSY;
3434 err = do_md_stop(mddev, 2, 0);
3435 } else
3436 err = 0; /* already inactive */
3437 break;
3438 case suspended:
3439 break; /* not supported yet */
3440 case readonly:
3441 if (mddev->pers)
3442 err = md_set_readonly(mddev, 0);
3443 else {
3444 mddev->ro = 1;
3445 set_disk_ro(mddev->gendisk, 1);
3446 err = do_md_run(mddev);
3447 }
3448 break;
3449 case read_auto:
3450 if (mddev->pers) {
3451 if (mddev->ro == 0)
3452 err = md_set_readonly(mddev, 0);
3453 else if (mddev->ro == 1)
3454 err = restart_array(mddev);
3455 if (err == 0) {
3456 mddev->ro = 2;
3457 set_disk_ro(mddev->gendisk, 0);
3458 }
3459 } else {
3460 mddev->ro = 2;
3461 err = do_md_run(mddev);
3462 }
3463 break;
3464 case clean:
3465 if (mddev->pers) {
3466 restart_array(mddev);
3467 spin_lock_irq(&mddev->write_lock);
3468 if (atomic_read(&mddev->writes_pending) == 0) {
3469 if (mddev->in_sync == 0) {
3470 mddev->in_sync = 1;
3471 if (mddev->safemode == 1)
3472 mddev->safemode = 0;
3473 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3474 }
3475 err = 0;
3476 } else
3477 err = -EBUSY;
3478 spin_unlock_irq(&mddev->write_lock);
3479 } else
3480 err = -EINVAL;
3481 break;
3482 case active:
3483 if (mddev->pers) {
3484 restart_array(mddev);
3485 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3486 wake_up(&mddev->sb_wait);
3487 err = 0;
3488 } else {
3489 mddev->ro = 0;
3490 set_disk_ro(mddev->gendisk, 0);
3491 err = do_md_run(mddev);
3492 }
3493 break;
3494 case write_pending:
3495 case active_idle:
3496 /* these cannot be set */
3497 break;
3498 }
3499 if (err)
3500 return err;
3501 else {
3502 sysfs_notify_dirent_safe(mddev->sysfs_state);
3503 return len;
3504 }
3505 }
3506 static struct md_sysfs_entry md_array_state =
3507 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3508
3509 static ssize_t
3510 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3511 return sprintf(page, "%d\n",
3512 atomic_read(&mddev->max_corr_read_errors));
3513 }
3514
3515 static ssize_t
3516 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3517 {
3518 char *e;
3519 unsigned long n = simple_strtoul(buf, &e, 10);
3520
3521 if (*buf && (*e == 0 || *e == '\n')) {
3522 atomic_set(&mddev->max_corr_read_errors, n);
3523 return len;
3524 }
3525 return -EINVAL;
3526 }
3527
3528 static struct md_sysfs_entry max_corr_read_errors =
3529 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3530 max_corrected_read_errors_store);
3531
3532 static ssize_t
3533 null_show(mddev_t *mddev, char *page)
3534 {
3535 return -EINVAL;
3536 }
3537
3538 static ssize_t
3539 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3540 {
3541 /* buf must be %d:%d\n? giving major and minor numbers */
3542 /* The new device is added to the array.
3543 * If the array has a persistent superblock, we read the
3544 * superblock to initialise info and check validity.
3545 * Otherwise, only checking done is that in bind_rdev_to_array,
3546 * which mainly checks size.
3547 */
3548 char *e;
3549 int major = simple_strtoul(buf, &e, 10);
3550 int minor;
3551 dev_t dev;
3552 mdk_rdev_t *rdev;
3553 int err;
3554
3555 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3556 return -EINVAL;
3557 minor = simple_strtoul(e+1, &e, 10);
3558 if (*e && *e != '\n')
3559 return -EINVAL;
3560 dev = MKDEV(major, minor);
3561 if (major != MAJOR(dev) ||
3562 minor != MINOR(dev))
3563 return -EOVERFLOW;
3564
3565
3566 if (mddev->persistent) {
3567 rdev = md_import_device(dev, mddev->major_version,
3568 mddev->minor_version);
3569 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3570 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3571 mdk_rdev_t, same_set);
3572 err = super_types[mddev->major_version]
3573 .load_super(rdev, rdev0, mddev->minor_version);
3574 if (err < 0)
3575 goto out;
3576 }
3577 } else if (mddev->external)
3578 rdev = md_import_device(dev, -2, -1);
3579 else
3580 rdev = md_import_device(dev, -1, -1);
3581
3582 if (IS_ERR(rdev))
3583 return PTR_ERR(rdev);
3584 err = bind_rdev_to_array(rdev, mddev);
3585 out:
3586 if (err)
3587 export_rdev(rdev);
3588 return err ? err : len;
3589 }
3590
3591 static struct md_sysfs_entry md_new_device =
3592 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3593
3594 static ssize_t
3595 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3596 {
3597 char *end;
3598 unsigned long chunk, end_chunk;
3599
3600 if (!mddev->bitmap)
3601 goto out;
3602 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3603 while (*buf) {
3604 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3605 if (buf == end) break;
3606 if (*end == '-') { /* range */
3607 buf = end + 1;
3608 end_chunk = simple_strtoul(buf, &end, 0);
3609 if (buf == end) break;
3610 }
3611 if (*end && !isspace(*end)) break;
3612 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3613 buf = skip_spaces(end);
3614 }
3615 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3616 out:
3617 return len;
3618 }
3619
3620 static struct md_sysfs_entry md_bitmap =
3621 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3622
3623 static ssize_t
3624 size_show(mddev_t *mddev, char *page)
3625 {
3626 return sprintf(page, "%llu\n",
3627 (unsigned long long)mddev->dev_sectors / 2);
3628 }
3629
3630 static int update_size(mddev_t *mddev, sector_t num_sectors);
3631
3632 static ssize_t
3633 size_store(mddev_t *mddev, const char *buf, size_t len)
3634 {
3635 /* If array is inactive, we can reduce the component size, but
3636 * not increase it (except from 0).
3637 * If array is active, we can try an on-line resize
3638 */
3639 sector_t sectors;
3640 int err = strict_blocks_to_sectors(buf, &sectors);
3641
3642 if (err < 0)
3643 return err;
3644 if (mddev->pers) {
3645 err = update_size(mddev, sectors);
3646 md_update_sb(mddev, 1);
3647 } else {
3648 if (mddev->dev_sectors == 0 ||
3649 mddev->dev_sectors > sectors)
3650 mddev->dev_sectors = sectors;
3651 else
3652 err = -ENOSPC;
3653 }
3654 return err ? err : len;
3655 }
3656
3657 static struct md_sysfs_entry md_size =
3658 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3659
3660
3661 /* Metdata version.
3662 * This is one of
3663 * 'none' for arrays with no metadata (good luck...)
3664 * 'external' for arrays with externally managed metadata,
3665 * or N.M for internally known formats
3666 */
3667 static ssize_t
3668 metadata_show(mddev_t *mddev, char *page)
3669 {
3670 if (mddev->persistent)
3671 return sprintf(page, "%d.%d\n",
3672 mddev->major_version, mddev->minor_version);
3673 else if (mddev->external)
3674 return sprintf(page, "external:%s\n", mddev->metadata_type);
3675 else
3676 return sprintf(page, "none\n");
3677 }
3678
3679 static ssize_t
3680 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3681 {
3682 int major, minor;
3683 char *e;
3684 /* Changing the details of 'external' metadata is
3685 * always permitted. Otherwise there must be
3686 * no devices attached to the array.
3687 */
3688 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3689 ;
3690 else if (!list_empty(&mddev->disks))
3691 return -EBUSY;
3692
3693 if (cmd_match(buf, "none")) {
3694 mddev->persistent = 0;
3695 mddev->external = 0;
3696 mddev->major_version = 0;
3697 mddev->minor_version = 90;
3698 return len;
3699 }
3700 if (strncmp(buf, "external:", 9) == 0) {
3701 size_t namelen = len-9;
3702 if (namelen >= sizeof(mddev->metadata_type))
3703 namelen = sizeof(mddev->metadata_type)-1;
3704 strncpy(mddev->metadata_type, buf+9, namelen);
3705 mddev->metadata_type[namelen] = 0;
3706 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3707 mddev->metadata_type[--namelen] = 0;
3708 mddev->persistent = 0;
3709 mddev->external = 1;
3710 mddev->major_version = 0;
3711 mddev->minor_version = 90;
3712 return len;
3713 }
3714 major = simple_strtoul(buf, &e, 10);
3715 if (e==buf || *e != '.')
3716 return -EINVAL;
3717 buf = e+1;
3718 minor = simple_strtoul(buf, &e, 10);
3719 if (e==buf || (*e && *e != '\n') )
3720 return -EINVAL;
3721 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3722 return -ENOENT;
3723 mddev->major_version = major;
3724 mddev->minor_version = minor;
3725 mddev->persistent = 1;
3726 mddev->external = 0;
3727 return len;
3728 }
3729
3730 static struct md_sysfs_entry md_metadata =
3731 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3732
3733 static ssize_t
3734 action_show(mddev_t *mddev, char *page)
3735 {
3736 char *type = "idle";
3737 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3738 type = "frozen";
3739 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3740 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3741 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3742 type = "reshape";
3743 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3744 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3745 type = "resync";
3746 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3747 type = "check";
3748 else
3749 type = "repair";
3750 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3751 type = "recover";
3752 }
3753 return sprintf(page, "%s\n", type);
3754 }
3755
3756 static void reap_sync_thread(mddev_t *mddev);
3757
3758 static ssize_t
3759 action_store(mddev_t *mddev, const char *page, size_t len)
3760 {
3761 if (!mddev->pers || !mddev->pers->sync_request)
3762 return -EINVAL;
3763
3764 if (cmd_match(page, "frozen"))
3765 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3766 else
3767 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3768
3769 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3770 if (mddev->sync_thread) {
3771 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3772 reap_sync_thread(mddev);
3773 }
3774 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3775 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3776 return -EBUSY;
3777 else if (cmd_match(page, "resync"))
3778 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3779 else if (cmd_match(page, "recover")) {
3780 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3781 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3782 } else if (cmd_match(page, "reshape")) {
3783 int err;
3784 if (mddev->pers->start_reshape == NULL)
3785 return -EINVAL;
3786 err = mddev->pers->start_reshape(mddev);
3787 if (err)
3788 return err;
3789 sysfs_notify(&mddev->kobj, NULL, "degraded");
3790 } else {
3791 if (cmd_match(page, "check"))
3792 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3793 else if (!cmd_match(page, "repair"))
3794 return -EINVAL;
3795 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3796 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3797 }
3798 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3799 md_wakeup_thread(mddev->thread);
3800 sysfs_notify_dirent_safe(mddev->sysfs_action);
3801 return len;
3802 }
3803
3804 static ssize_t
3805 mismatch_cnt_show(mddev_t *mddev, char *page)
3806 {
3807 return sprintf(page, "%llu\n",
3808 (unsigned long long) mddev->resync_mismatches);
3809 }
3810
3811 static struct md_sysfs_entry md_scan_mode =
3812 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3813
3814
3815 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3816
3817 static ssize_t
3818 sync_min_show(mddev_t *mddev, char *page)
3819 {
3820 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3821 mddev->sync_speed_min ? "local": "system");
3822 }
3823
3824 static ssize_t
3825 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3826 {
3827 int min;
3828 char *e;
3829 if (strncmp(buf, "system", 6)==0) {
3830 mddev->sync_speed_min = 0;
3831 return len;
3832 }
3833 min = simple_strtoul(buf, &e, 10);
3834 if (buf == e || (*e && *e != '\n') || min <= 0)
3835 return -EINVAL;
3836 mddev->sync_speed_min = min;
3837 return len;
3838 }
3839
3840 static struct md_sysfs_entry md_sync_min =
3841 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3842
3843 static ssize_t
3844 sync_max_show(mddev_t *mddev, char *page)
3845 {
3846 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3847 mddev->sync_speed_max ? "local": "system");
3848 }
3849
3850 static ssize_t
3851 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3852 {
3853 int max;
3854 char *e;
3855 if (strncmp(buf, "system", 6)==0) {
3856 mddev->sync_speed_max = 0;
3857 return len;
3858 }
3859 max = simple_strtoul(buf, &e, 10);
3860 if (buf == e || (*e && *e != '\n') || max <= 0)
3861 return -EINVAL;
3862 mddev->sync_speed_max = max;
3863 return len;
3864 }
3865
3866 static struct md_sysfs_entry md_sync_max =
3867 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3868
3869 static ssize_t
3870 degraded_show(mddev_t *mddev, char *page)
3871 {
3872 return sprintf(page, "%d\n", mddev->degraded);
3873 }
3874 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3875
3876 static ssize_t
3877 sync_force_parallel_show(mddev_t *mddev, char *page)
3878 {
3879 return sprintf(page, "%d\n", mddev->parallel_resync);
3880 }
3881
3882 static ssize_t
3883 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3884 {
3885 long n;
3886
3887 if (strict_strtol(buf, 10, &n))
3888 return -EINVAL;
3889
3890 if (n != 0 && n != 1)
3891 return -EINVAL;
3892
3893 mddev->parallel_resync = n;
3894
3895 if (mddev->sync_thread)
3896 wake_up(&resync_wait);
3897
3898 return len;
3899 }
3900
3901 /* force parallel resync, even with shared block devices */
3902 static struct md_sysfs_entry md_sync_force_parallel =
3903 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3904 sync_force_parallel_show, sync_force_parallel_store);
3905
3906 static ssize_t
3907 sync_speed_show(mddev_t *mddev, char *page)
3908 {
3909 unsigned long resync, dt, db;
3910 if (mddev->curr_resync == 0)
3911 return sprintf(page, "none\n");
3912 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3913 dt = (jiffies - mddev->resync_mark) / HZ;
3914 if (!dt) dt++;
3915 db = resync - mddev->resync_mark_cnt;
3916 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3917 }
3918
3919 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3920
3921 static ssize_t
3922 sync_completed_show(mddev_t *mddev, char *page)
3923 {
3924 unsigned long long max_sectors, resync;
3925
3926 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3927 return sprintf(page, "none\n");
3928
3929 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3930 max_sectors = mddev->resync_max_sectors;
3931 else
3932 max_sectors = mddev->dev_sectors;
3933
3934 resync = mddev->curr_resync_completed;
3935 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
3936 }
3937
3938 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3939
3940 static ssize_t
3941 min_sync_show(mddev_t *mddev, char *page)
3942 {
3943 return sprintf(page, "%llu\n",
3944 (unsigned long long)mddev->resync_min);
3945 }
3946 static ssize_t
3947 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3948 {
3949 unsigned long long min;
3950 if (strict_strtoull(buf, 10, &min))
3951 return -EINVAL;
3952 if (min > mddev->resync_max)
3953 return -EINVAL;
3954 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3955 return -EBUSY;
3956
3957 /* Must be a multiple of chunk_size */
3958 if (mddev->chunk_sectors) {
3959 sector_t temp = min;
3960 if (sector_div(temp, mddev->chunk_sectors))
3961 return -EINVAL;
3962 }
3963 mddev->resync_min = min;
3964
3965 return len;
3966 }
3967
3968 static struct md_sysfs_entry md_min_sync =
3969 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3970
3971 static ssize_t
3972 max_sync_show(mddev_t *mddev, char *page)
3973 {
3974 if (mddev->resync_max == MaxSector)
3975 return sprintf(page, "max\n");
3976 else
3977 return sprintf(page, "%llu\n",
3978 (unsigned long long)mddev->resync_max);
3979 }
3980 static ssize_t
3981 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3982 {
3983 if (strncmp(buf, "max", 3) == 0)
3984 mddev->resync_max = MaxSector;
3985 else {
3986 unsigned long long max;
3987 if (strict_strtoull(buf, 10, &max))
3988 return -EINVAL;
3989 if (max < mddev->resync_min)
3990 return -EINVAL;
3991 if (max < mddev->resync_max &&
3992 mddev->ro == 0 &&
3993 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3994 return -EBUSY;
3995
3996 /* Must be a multiple of chunk_size */
3997 if (mddev->chunk_sectors) {
3998 sector_t temp = max;
3999 if (sector_div(temp, mddev->chunk_sectors))
4000 return -EINVAL;
4001 }
4002 mddev->resync_max = max;
4003 }
4004 wake_up(&mddev->recovery_wait);
4005 return len;
4006 }
4007
4008 static struct md_sysfs_entry md_max_sync =
4009 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4010
4011 static ssize_t
4012 suspend_lo_show(mddev_t *mddev, char *page)
4013 {
4014 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4015 }
4016
4017 static ssize_t
4018 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4019 {
4020 char *e;
4021 unsigned long long new = simple_strtoull(buf, &e, 10);
4022 unsigned long long old = mddev->suspend_lo;
4023
4024 if (mddev->pers == NULL ||
4025 mddev->pers->quiesce == NULL)
4026 return -EINVAL;
4027 if (buf == e || (*e && *e != '\n'))
4028 return -EINVAL;
4029
4030 mddev->suspend_lo = new;
4031 if (new >= old)
4032 /* Shrinking suspended region */
4033 mddev->pers->quiesce(mddev, 2);
4034 else {
4035 /* Expanding suspended region - need to wait */
4036 mddev->pers->quiesce(mddev, 1);
4037 mddev->pers->quiesce(mddev, 0);
4038 }
4039 return len;
4040 }
4041 static struct md_sysfs_entry md_suspend_lo =
4042 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4043
4044
4045 static ssize_t
4046 suspend_hi_show(mddev_t *mddev, char *page)
4047 {
4048 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4049 }
4050
4051 static ssize_t
4052 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4053 {
4054 char *e;
4055 unsigned long long new = simple_strtoull(buf, &e, 10);
4056 unsigned long long old = mddev->suspend_hi;
4057
4058 if (mddev->pers == NULL ||
4059 mddev->pers->quiesce == NULL)
4060 return -EINVAL;
4061 if (buf == e || (*e && *e != '\n'))
4062 return -EINVAL;
4063
4064 mddev->suspend_hi = new;
4065 if (new <= old)
4066 /* Shrinking suspended region */
4067 mddev->pers->quiesce(mddev, 2);
4068 else {
4069 /* Expanding suspended region - need to wait */
4070 mddev->pers->quiesce(mddev, 1);
4071 mddev->pers->quiesce(mddev, 0);
4072 }
4073 return len;
4074 }
4075 static struct md_sysfs_entry md_suspend_hi =
4076 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4077
4078 static ssize_t
4079 reshape_position_show(mddev_t *mddev, char *page)
4080 {
4081 if (mddev->reshape_position != MaxSector)
4082 return sprintf(page, "%llu\n",
4083 (unsigned long long)mddev->reshape_position);
4084 strcpy(page, "none\n");
4085 return 5;
4086 }
4087
4088 static ssize_t
4089 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4090 {
4091 char *e;
4092 unsigned long long new = simple_strtoull(buf, &e, 10);
4093 if (mddev->pers)
4094 return -EBUSY;
4095 if (buf == e || (*e && *e != '\n'))
4096 return -EINVAL;
4097 mddev->reshape_position = new;
4098 mddev->delta_disks = 0;
4099 mddev->new_level = mddev->level;
4100 mddev->new_layout = mddev->layout;
4101 mddev->new_chunk_sectors = mddev->chunk_sectors;
4102 return len;
4103 }
4104
4105 static struct md_sysfs_entry md_reshape_position =
4106 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4107 reshape_position_store);
4108
4109 static ssize_t
4110 array_size_show(mddev_t *mddev, char *page)
4111 {
4112 if (mddev->external_size)
4113 return sprintf(page, "%llu\n",
4114 (unsigned long long)mddev->array_sectors/2);
4115 else
4116 return sprintf(page, "default\n");
4117 }
4118
4119 static ssize_t
4120 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4121 {
4122 sector_t sectors;
4123
4124 if (strncmp(buf, "default", 7) == 0) {
4125 if (mddev->pers)
4126 sectors = mddev->pers->size(mddev, 0, 0);
4127 else
4128 sectors = mddev->array_sectors;
4129
4130 mddev->external_size = 0;
4131 } else {
4132 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4133 return -EINVAL;
4134 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4135 return -E2BIG;
4136
4137 mddev->external_size = 1;
4138 }
4139
4140 mddev->array_sectors = sectors;
4141 set_capacity(mddev->gendisk, mddev->array_sectors);
4142 if (mddev->pers)
4143 revalidate_disk(mddev->gendisk);
4144
4145 return len;
4146 }
4147
4148 static struct md_sysfs_entry md_array_size =
4149 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4150 array_size_store);
4151
4152 static struct attribute *md_default_attrs[] = {
4153 &md_level.attr,
4154 &md_layout.attr,
4155 &md_raid_disks.attr,
4156 &md_chunk_size.attr,
4157 &md_size.attr,
4158 &md_resync_start.attr,
4159 &md_metadata.attr,
4160 &md_new_device.attr,
4161 &md_safe_delay.attr,
4162 &md_array_state.attr,
4163 &md_reshape_position.attr,
4164 &md_array_size.attr,
4165 &max_corr_read_errors.attr,
4166 NULL,
4167 };
4168
4169 static struct attribute *md_redundancy_attrs[] = {
4170 &md_scan_mode.attr,
4171 &md_mismatches.attr,
4172 &md_sync_min.attr,
4173 &md_sync_max.attr,
4174 &md_sync_speed.attr,
4175 &md_sync_force_parallel.attr,
4176 &md_sync_completed.attr,
4177 &md_min_sync.attr,
4178 &md_max_sync.attr,
4179 &md_suspend_lo.attr,
4180 &md_suspend_hi.attr,
4181 &md_bitmap.attr,
4182 &md_degraded.attr,
4183 NULL,
4184 };
4185 static struct attribute_group md_redundancy_group = {
4186 .name = NULL,
4187 .attrs = md_redundancy_attrs,
4188 };
4189
4190
4191 static ssize_t
4192 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4193 {
4194 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4195 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4196 ssize_t rv;
4197
4198 if (!entry->show)
4199 return -EIO;
4200 rv = mddev_lock(mddev);
4201 if (!rv) {
4202 rv = entry->show(mddev, page);
4203 mddev_unlock(mddev);
4204 }
4205 return rv;
4206 }
4207
4208 static ssize_t
4209 md_attr_store(struct kobject *kobj, struct attribute *attr,
4210 const char *page, size_t length)
4211 {
4212 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4213 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4214 ssize_t rv;
4215
4216 if (!entry->store)
4217 return -EIO;
4218 if (!capable(CAP_SYS_ADMIN))
4219 return -EACCES;
4220 rv = mddev_lock(mddev);
4221 if (mddev->hold_active == UNTIL_IOCTL)
4222 mddev->hold_active = 0;
4223 if (!rv) {
4224 rv = entry->store(mddev, page, length);
4225 mddev_unlock(mddev);
4226 }
4227 return rv;
4228 }
4229
4230 static void md_free(struct kobject *ko)
4231 {
4232 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4233
4234 if (mddev->sysfs_state)
4235 sysfs_put(mddev->sysfs_state);
4236
4237 if (mddev->gendisk) {
4238 del_gendisk(mddev->gendisk);
4239 put_disk(mddev->gendisk);
4240 }
4241 if (mddev->queue)
4242 blk_cleanup_queue(mddev->queue);
4243
4244 kfree(mddev);
4245 }
4246
4247 static const struct sysfs_ops md_sysfs_ops = {
4248 .show = md_attr_show,
4249 .store = md_attr_store,
4250 };
4251 static struct kobj_type md_ktype = {
4252 .release = md_free,
4253 .sysfs_ops = &md_sysfs_ops,
4254 .default_attrs = md_default_attrs,
4255 };
4256
4257 int mdp_major = 0;
4258
4259 static void mddev_delayed_delete(struct work_struct *ws)
4260 {
4261 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4262
4263 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4264 kobject_del(&mddev->kobj);
4265 kobject_put(&mddev->kobj);
4266 }
4267
4268 static int md_alloc(dev_t dev, char *name)
4269 {
4270 static DEFINE_MUTEX(disks_mutex);
4271 mddev_t *mddev = mddev_find(dev);
4272 struct gendisk *disk;
4273 int partitioned;
4274 int shift;
4275 int unit;
4276 int error;
4277
4278 if (!mddev)
4279 return -ENODEV;
4280
4281 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4282 shift = partitioned ? MdpMinorShift : 0;
4283 unit = MINOR(mddev->unit) >> shift;
4284
4285 /* wait for any previous instance of this device to be
4286 * completely removed (mddev_delayed_delete).
4287 */
4288 flush_workqueue(md_misc_wq);
4289
4290 mutex_lock(&disks_mutex);
4291 error = -EEXIST;
4292 if (mddev->gendisk)
4293 goto abort;
4294
4295 if (name) {
4296 /* Need to ensure that 'name' is not a duplicate.
4297 */
4298 mddev_t *mddev2;
4299 spin_lock(&all_mddevs_lock);
4300
4301 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4302 if (mddev2->gendisk &&
4303 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4304 spin_unlock(&all_mddevs_lock);
4305 goto abort;
4306 }
4307 spin_unlock(&all_mddevs_lock);
4308 }
4309
4310 error = -ENOMEM;
4311 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4312 if (!mddev->queue)
4313 goto abort;
4314 mddev->queue->queuedata = mddev;
4315
4316 blk_queue_make_request(mddev->queue, md_make_request);
4317
4318 disk = alloc_disk(1 << shift);
4319 if (!disk) {
4320 blk_cleanup_queue(mddev->queue);
4321 mddev->queue = NULL;
4322 goto abort;
4323 }
4324 disk->major = MAJOR(mddev->unit);
4325 disk->first_minor = unit << shift;
4326 if (name)
4327 strcpy(disk->disk_name, name);
4328 else if (partitioned)
4329 sprintf(disk->disk_name, "md_d%d", unit);
4330 else
4331 sprintf(disk->disk_name, "md%d", unit);
4332 disk->fops = &md_fops;
4333 disk->private_data = mddev;
4334 disk->queue = mddev->queue;
4335 /* Allow extended partitions. This makes the
4336 * 'mdp' device redundant, but we can't really
4337 * remove it now.
4338 */
4339 disk->flags |= GENHD_FL_EXT_DEVT;
4340 add_disk(disk);
4341 mddev->gendisk = disk;
4342 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4343 &disk_to_dev(disk)->kobj, "%s", "md");
4344 if (error) {
4345 /* This isn't possible, but as kobject_init_and_add is marked
4346 * __must_check, we must do something with the result
4347 */
4348 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4349 disk->disk_name);
4350 error = 0;
4351 }
4352 if (mddev->kobj.sd &&
4353 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4354 printk(KERN_DEBUG "pointless warning\n");
4355
4356 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4357 abort:
4358 mutex_unlock(&disks_mutex);
4359 if (!error && mddev->kobj.sd) {
4360 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4361 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4362 }
4363 mddev_put(mddev);
4364 return error;
4365 }
4366
4367 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4368 {
4369 md_alloc(dev, NULL);
4370 return NULL;
4371 }
4372
4373 static int add_named_array(const char *val, struct kernel_param *kp)
4374 {
4375 /* val must be "md_*" where * is not all digits.
4376 * We allocate an array with a large free minor number, and
4377 * set the name to val. val must not already be an active name.
4378 */
4379 int len = strlen(val);
4380 char buf[DISK_NAME_LEN];
4381
4382 while (len && val[len-1] == '\n')
4383 len--;
4384 if (len >= DISK_NAME_LEN)
4385 return -E2BIG;
4386 strlcpy(buf, val, len+1);
4387 if (strncmp(buf, "md_", 3) != 0)
4388 return -EINVAL;
4389 return md_alloc(0, buf);
4390 }
4391
4392 static void md_safemode_timeout(unsigned long data)
4393 {
4394 mddev_t *mddev = (mddev_t *) data;
4395
4396 if (!atomic_read(&mddev->writes_pending)) {
4397 mddev->safemode = 1;
4398 if (mddev->external)
4399 sysfs_notify_dirent_safe(mddev->sysfs_state);
4400 }
4401 md_wakeup_thread(mddev->thread);
4402 }
4403
4404 static int start_dirty_degraded;
4405
4406 int md_run(mddev_t *mddev)
4407 {
4408 int err;
4409 mdk_rdev_t *rdev;
4410 struct mdk_personality *pers;
4411
4412 if (list_empty(&mddev->disks))
4413 /* cannot run an array with no devices.. */
4414 return -EINVAL;
4415
4416 if (mddev->pers)
4417 return -EBUSY;
4418 /* Cannot run until previous stop completes properly */
4419 if (mddev->sysfs_active)
4420 return -EBUSY;
4421
4422 /*
4423 * Analyze all RAID superblock(s)
4424 */
4425 if (!mddev->raid_disks) {
4426 if (!mddev->persistent)
4427 return -EINVAL;
4428 analyze_sbs(mddev);
4429 }
4430
4431 if (mddev->level != LEVEL_NONE)
4432 request_module("md-level-%d", mddev->level);
4433 else if (mddev->clevel[0])
4434 request_module("md-%s", mddev->clevel);
4435
4436 /*
4437 * Drop all container device buffers, from now on
4438 * the only valid external interface is through the md
4439 * device.
4440 */
4441 list_for_each_entry(rdev, &mddev->disks, same_set) {
4442 if (test_bit(Faulty, &rdev->flags))
4443 continue;
4444 sync_blockdev(rdev->bdev);
4445 invalidate_bdev(rdev->bdev);
4446
4447 /* perform some consistency tests on the device.
4448 * We don't want the data to overlap the metadata,
4449 * Internal Bitmap issues have been handled elsewhere.
4450 */
4451 if (rdev->meta_bdev) {
4452 /* Nothing to check */;
4453 } else if (rdev->data_offset < rdev->sb_start) {
4454 if (mddev->dev_sectors &&
4455 rdev->data_offset + mddev->dev_sectors
4456 > rdev->sb_start) {
4457 printk("md: %s: data overlaps metadata\n",
4458 mdname(mddev));
4459 return -EINVAL;
4460 }
4461 } else {
4462 if (rdev->sb_start + rdev->sb_size/512
4463 > rdev->data_offset) {
4464 printk("md: %s: metadata overlaps data\n",
4465 mdname(mddev));
4466 return -EINVAL;
4467 }
4468 }
4469 sysfs_notify_dirent_safe(rdev->sysfs_state);
4470 }
4471
4472 if (mddev->bio_set == NULL)
4473 mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4474
4475 spin_lock(&pers_lock);
4476 pers = find_pers(mddev->level, mddev->clevel);
4477 if (!pers || !try_module_get(pers->owner)) {
4478 spin_unlock(&pers_lock);
4479 if (mddev->level != LEVEL_NONE)
4480 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4481 mddev->level);
4482 else
4483 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4484 mddev->clevel);
4485 return -EINVAL;
4486 }
4487 mddev->pers = pers;
4488 spin_unlock(&pers_lock);
4489 if (mddev->level != pers->level) {
4490 mddev->level = pers->level;
4491 mddev->new_level = pers->level;
4492 }
4493 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4494
4495 if (mddev->reshape_position != MaxSector &&
4496 pers->start_reshape == NULL) {
4497 /* This personality cannot handle reshaping... */
4498 mddev->pers = NULL;
4499 module_put(pers->owner);
4500 return -EINVAL;
4501 }
4502
4503 if (pers->sync_request) {
4504 /* Warn if this is a potentially silly
4505 * configuration.
4506 */
4507 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4508 mdk_rdev_t *rdev2;
4509 int warned = 0;
4510
4511 list_for_each_entry(rdev, &mddev->disks, same_set)
4512 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4513 if (rdev < rdev2 &&
4514 rdev->bdev->bd_contains ==
4515 rdev2->bdev->bd_contains) {
4516 printk(KERN_WARNING
4517 "%s: WARNING: %s appears to be"
4518 " on the same physical disk as"
4519 " %s.\n",
4520 mdname(mddev),
4521 bdevname(rdev->bdev,b),
4522 bdevname(rdev2->bdev,b2));
4523 warned = 1;
4524 }
4525 }
4526
4527 if (warned)
4528 printk(KERN_WARNING
4529 "True protection against single-disk"
4530 " failure might be compromised.\n");
4531 }
4532
4533 mddev->recovery = 0;
4534 /* may be over-ridden by personality */
4535 mddev->resync_max_sectors = mddev->dev_sectors;
4536
4537 mddev->ok_start_degraded = start_dirty_degraded;
4538
4539 if (start_readonly && mddev->ro == 0)
4540 mddev->ro = 2; /* read-only, but switch on first write */
4541
4542 err = mddev->pers->run(mddev);
4543 if (err)
4544 printk(KERN_ERR "md: pers->run() failed ...\n");
4545 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4546 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4547 " but 'external_size' not in effect?\n", __func__);
4548 printk(KERN_ERR
4549 "md: invalid array_size %llu > default size %llu\n",
4550 (unsigned long long)mddev->array_sectors / 2,
4551 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4552 err = -EINVAL;
4553 mddev->pers->stop(mddev);
4554 }
4555 if (err == 0 && mddev->pers->sync_request) {
4556 err = bitmap_create(mddev);
4557 if (err) {
4558 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4559 mdname(mddev), err);
4560 mddev->pers->stop(mddev);
4561 }
4562 }
4563 if (err) {
4564 module_put(mddev->pers->owner);
4565 mddev->pers = NULL;
4566 bitmap_destroy(mddev);
4567 return err;
4568 }
4569 if (mddev->pers->sync_request) {
4570 if (mddev->kobj.sd &&
4571 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4572 printk(KERN_WARNING
4573 "md: cannot register extra attributes for %s\n",
4574 mdname(mddev));
4575 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4576 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4577 mddev->ro = 0;
4578
4579 atomic_set(&mddev->writes_pending,0);
4580 atomic_set(&mddev->max_corr_read_errors,
4581 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4582 mddev->safemode = 0;
4583 mddev->safemode_timer.function = md_safemode_timeout;
4584 mddev->safemode_timer.data = (unsigned long) mddev;
4585 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4586 mddev->in_sync = 1;
4587 smp_wmb();
4588 mddev->ready = 1;
4589 list_for_each_entry(rdev, &mddev->disks, same_set)
4590 if (rdev->raid_disk >= 0) {
4591 char nm[20];
4592 sprintf(nm, "rd%d", rdev->raid_disk);
4593 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4594 /* failure here is OK */;
4595 }
4596
4597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4598
4599 if (mddev->flags)
4600 md_update_sb(mddev, 0);
4601
4602 md_wakeup_thread(mddev->thread);
4603 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4604
4605 md_new_event(mddev);
4606 sysfs_notify_dirent_safe(mddev->sysfs_state);
4607 sysfs_notify_dirent_safe(mddev->sysfs_action);
4608 sysfs_notify(&mddev->kobj, NULL, "degraded");
4609 return 0;
4610 }
4611 EXPORT_SYMBOL_GPL(md_run);
4612
4613 static int do_md_run(mddev_t *mddev)
4614 {
4615 int err;
4616
4617 err = md_run(mddev);
4618 if (err)
4619 goto out;
4620 err = bitmap_load(mddev);
4621 if (err) {
4622 bitmap_destroy(mddev);
4623 goto out;
4624 }
4625 set_capacity(mddev->gendisk, mddev->array_sectors);
4626 revalidate_disk(mddev->gendisk);
4627 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4628 out:
4629 return err;
4630 }
4631
4632 static int restart_array(mddev_t *mddev)
4633 {
4634 struct gendisk *disk = mddev->gendisk;
4635
4636 /* Complain if it has no devices */
4637 if (list_empty(&mddev->disks))
4638 return -ENXIO;
4639 if (!mddev->pers)
4640 return -EINVAL;
4641 if (!mddev->ro)
4642 return -EBUSY;
4643 mddev->safemode = 0;
4644 mddev->ro = 0;
4645 set_disk_ro(disk, 0);
4646 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4647 mdname(mddev));
4648 /* Kick recovery or resync if necessary */
4649 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4650 md_wakeup_thread(mddev->thread);
4651 md_wakeup_thread(mddev->sync_thread);
4652 sysfs_notify_dirent_safe(mddev->sysfs_state);
4653 return 0;
4654 }
4655
4656 /* similar to deny_write_access, but accounts for our holding a reference
4657 * to the file ourselves */
4658 static int deny_bitmap_write_access(struct file * file)
4659 {
4660 struct inode *inode = file->f_mapping->host;
4661
4662 spin_lock(&inode->i_lock);
4663 if (atomic_read(&inode->i_writecount) > 1) {
4664 spin_unlock(&inode->i_lock);
4665 return -ETXTBSY;
4666 }
4667 atomic_set(&inode->i_writecount, -1);
4668 spin_unlock(&inode->i_lock);
4669
4670 return 0;
4671 }
4672
4673 void restore_bitmap_write_access(struct file *file)
4674 {
4675 struct inode *inode = file->f_mapping->host;
4676
4677 spin_lock(&inode->i_lock);
4678 atomic_set(&inode->i_writecount, 1);
4679 spin_unlock(&inode->i_lock);
4680 }
4681
4682 static void md_clean(mddev_t *mddev)
4683 {
4684 mddev->array_sectors = 0;
4685 mddev->external_size = 0;
4686 mddev->dev_sectors = 0;
4687 mddev->raid_disks = 0;
4688 mddev->recovery_cp = 0;
4689 mddev->resync_min = 0;
4690 mddev->resync_max = MaxSector;
4691 mddev->reshape_position = MaxSector;
4692 mddev->external = 0;
4693 mddev->persistent = 0;
4694 mddev->level = LEVEL_NONE;
4695 mddev->clevel[0] = 0;
4696 mddev->flags = 0;
4697 mddev->ro = 0;
4698 mddev->metadata_type[0] = 0;
4699 mddev->chunk_sectors = 0;
4700 mddev->ctime = mddev->utime = 0;
4701 mddev->layout = 0;
4702 mddev->max_disks = 0;
4703 mddev->events = 0;
4704 mddev->can_decrease_events = 0;
4705 mddev->delta_disks = 0;
4706 mddev->new_level = LEVEL_NONE;
4707 mddev->new_layout = 0;
4708 mddev->new_chunk_sectors = 0;
4709 mddev->curr_resync = 0;
4710 mddev->resync_mismatches = 0;
4711 mddev->suspend_lo = mddev->suspend_hi = 0;
4712 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4713 mddev->recovery = 0;
4714 mddev->in_sync = 0;
4715 mddev->degraded = 0;
4716 mddev->safemode = 0;
4717 mddev->bitmap_info.offset = 0;
4718 mddev->bitmap_info.default_offset = 0;
4719 mddev->bitmap_info.chunksize = 0;
4720 mddev->bitmap_info.daemon_sleep = 0;
4721 mddev->bitmap_info.max_write_behind = 0;
4722 mddev->plug = NULL;
4723 }
4724
4725 static void __md_stop_writes(mddev_t *mddev)
4726 {
4727 if (mddev->sync_thread) {
4728 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4729 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4730 reap_sync_thread(mddev);
4731 }
4732
4733 del_timer_sync(&mddev->safemode_timer);
4734
4735 bitmap_flush(mddev);
4736 md_super_wait(mddev);
4737
4738 if (!mddev->in_sync || mddev->flags) {
4739 /* mark array as shutdown cleanly */
4740 mddev->in_sync = 1;
4741 md_update_sb(mddev, 1);
4742 }
4743 }
4744
4745 void md_stop_writes(mddev_t *mddev)
4746 {
4747 mddev_lock(mddev);
4748 __md_stop_writes(mddev);
4749 mddev_unlock(mddev);
4750 }
4751 EXPORT_SYMBOL_GPL(md_stop_writes);
4752
4753 void md_stop(mddev_t *mddev)
4754 {
4755 mddev->ready = 0;
4756 mddev->pers->stop(mddev);
4757 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4758 mddev->to_remove = &md_redundancy_group;
4759 module_put(mddev->pers->owner);
4760 mddev->pers = NULL;
4761 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4762 }
4763 EXPORT_SYMBOL_GPL(md_stop);
4764
4765 static int md_set_readonly(mddev_t *mddev, int is_open)
4766 {
4767 int err = 0;
4768 mutex_lock(&mddev->open_mutex);
4769 if (atomic_read(&mddev->openers) > is_open) {
4770 printk("md: %s still in use.\n",mdname(mddev));
4771 err = -EBUSY;
4772 goto out;
4773 }
4774 if (mddev->pers) {
4775 __md_stop_writes(mddev);
4776
4777 err = -ENXIO;
4778 if (mddev->ro==1)
4779 goto out;
4780 mddev->ro = 1;
4781 set_disk_ro(mddev->gendisk, 1);
4782 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4783 sysfs_notify_dirent_safe(mddev->sysfs_state);
4784 err = 0;
4785 }
4786 out:
4787 mutex_unlock(&mddev->open_mutex);
4788 return err;
4789 }
4790
4791 /* mode:
4792 * 0 - completely stop and dis-assemble array
4793 * 2 - stop but do not disassemble array
4794 */
4795 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4796 {
4797 struct gendisk *disk = mddev->gendisk;
4798 mdk_rdev_t *rdev;
4799
4800 mutex_lock(&mddev->open_mutex);
4801 if (atomic_read(&mddev->openers) > is_open ||
4802 mddev->sysfs_active) {
4803 printk("md: %s still in use.\n",mdname(mddev));
4804 mutex_unlock(&mddev->open_mutex);
4805 return -EBUSY;
4806 }
4807
4808 if (mddev->pers) {
4809 if (mddev->ro)
4810 set_disk_ro(disk, 0);
4811
4812 __md_stop_writes(mddev);
4813 md_stop(mddev);
4814 mddev->queue->merge_bvec_fn = NULL;
4815 mddev->queue->backing_dev_info.congested_fn = NULL;
4816
4817 /* tell userspace to handle 'inactive' */
4818 sysfs_notify_dirent_safe(mddev->sysfs_state);
4819
4820 list_for_each_entry(rdev, &mddev->disks, same_set)
4821 if (rdev->raid_disk >= 0) {
4822 char nm[20];
4823 sprintf(nm, "rd%d", rdev->raid_disk);
4824 sysfs_remove_link(&mddev->kobj, nm);
4825 }
4826
4827 set_capacity(disk, 0);
4828 mutex_unlock(&mddev->open_mutex);
4829 revalidate_disk(disk);
4830
4831 if (mddev->ro)
4832 mddev->ro = 0;
4833 } else
4834 mutex_unlock(&mddev->open_mutex);
4835 /*
4836 * Free resources if final stop
4837 */
4838 if (mode == 0) {
4839 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4840
4841 bitmap_destroy(mddev);
4842 if (mddev->bitmap_info.file) {
4843 restore_bitmap_write_access(mddev->bitmap_info.file);
4844 fput(mddev->bitmap_info.file);
4845 mddev->bitmap_info.file = NULL;
4846 }
4847 mddev->bitmap_info.offset = 0;
4848
4849 export_array(mddev);
4850
4851 md_clean(mddev);
4852 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4853 if (mddev->hold_active == UNTIL_STOP)
4854 mddev->hold_active = 0;
4855 }
4856 blk_integrity_unregister(disk);
4857 md_new_event(mddev);
4858 sysfs_notify_dirent_safe(mddev->sysfs_state);
4859 return 0;
4860 }
4861
4862 #ifndef MODULE
4863 static void autorun_array(mddev_t *mddev)
4864 {
4865 mdk_rdev_t *rdev;
4866 int err;
4867
4868 if (list_empty(&mddev->disks))
4869 return;
4870
4871 printk(KERN_INFO "md: running: ");
4872
4873 list_for_each_entry(rdev, &mddev->disks, same_set) {
4874 char b[BDEVNAME_SIZE];
4875 printk("<%s>", bdevname(rdev->bdev,b));
4876 }
4877 printk("\n");
4878
4879 err = do_md_run(mddev);
4880 if (err) {
4881 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4882 do_md_stop(mddev, 0, 0);
4883 }
4884 }
4885
4886 /*
4887 * lets try to run arrays based on all disks that have arrived
4888 * until now. (those are in pending_raid_disks)
4889 *
4890 * the method: pick the first pending disk, collect all disks with
4891 * the same UUID, remove all from the pending list and put them into
4892 * the 'same_array' list. Then order this list based on superblock
4893 * update time (freshest comes first), kick out 'old' disks and
4894 * compare superblocks. If everything's fine then run it.
4895 *
4896 * If "unit" is allocated, then bump its reference count
4897 */
4898 static void autorun_devices(int part)
4899 {
4900 mdk_rdev_t *rdev0, *rdev, *tmp;
4901 mddev_t *mddev;
4902 char b[BDEVNAME_SIZE];
4903
4904 printk(KERN_INFO "md: autorun ...\n");
4905 while (!list_empty(&pending_raid_disks)) {
4906 int unit;
4907 dev_t dev;
4908 LIST_HEAD(candidates);
4909 rdev0 = list_entry(pending_raid_disks.next,
4910 mdk_rdev_t, same_set);
4911
4912 printk(KERN_INFO "md: considering %s ...\n",
4913 bdevname(rdev0->bdev,b));
4914 INIT_LIST_HEAD(&candidates);
4915 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4916 if (super_90_load(rdev, rdev0, 0) >= 0) {
4917 printk(KERN_INFO "md: adding %s ...\n",
4918 bdevname(rdev->bdev,b));
4919 list_move(&rdev->same_set, &candidates);
4920 }
4921 /*
4922 * now we have a set of devices, with all of them having
4923 * mostly sane superblocks. It's time to allocate the
4924 * mddev.
4925 */
4926 if (part) {
4927 dev = MKDEV(mdp_major,
4928 rdev0->preferred_minor << MdpMinorShift);
4929 unit = MINOR(dev) >> MdpMinorShift;
4930 } else {
4931 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4932 unit = MINOR(dev);
4933 }
4934 if (rdev0->preferred_minor != unit) {
4935 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4936 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4937 break;
4938 }
4939
4940 md_probe(dev, NULL, NULL);
4941 mddev = mddev_find(dev);
4942 if (!mddev || !mddev->gendisk) {
4943 if (mddev)
4944 mddev_put(mddev);
4945 printk(KERN_ERR
4946 "md: cannot allocate memory for md drive.\n");
4947 break;
4948 }
4949 if (mddev_lock(mddev))
4950 printk(KERN_WARNING "md: %s locked, cannot run\n",
4951 mdname(mddev));
4952 else if (mddev->raid_disks || mddev->major_version
4953 || !list_empty(&mddev->disks)) {
4954 printk(KERN_WARNING
4955 "md: %s already running, cannot run %s\n",
4956 mdname(mddev), bdevname(rdev0->bdev,b));
4957 mddev_unlock(mddev);
4958 } else {
4959 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4960 mddev->persistent = 1;
4961 rdev_for_each_list(rdev, tmp, &candidates) {
4962 list_del_init(&rdev->same_set);
4963 if (bind_rdev_to_array(rdev, mddev))
4964 export_rdev(rdev);
4965 }
4966 autorun_array(mddev);
4967 mddev_unlock(mddev);
4968 }
4969 /* on success, candidates will be empty, on error
4970 * it won't...
4971 */
4972 rdev_for_each_list(rdev, tmp, &candidates) {
4973 list_del_init(&rdev->same_set);
4974 export_rdev(rdev);
4975 }
4976 mddev_put(mddev);
4977 }
4978 printk(KERN_INFO "md: ... autorun DONE.\n");
4979 }
4980 #endif /* !MODULE */
4981
4982 static int get_version(void __user * arg)
4983 {
4984 mdu_version_t ver;
4985
4986 ver.major = MD_MAJOR_VERSION;
4987 ver.minor = MD_MINOR_VERSION;
4988 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4989
4990 if (copy_to_user(arg, &ver, sizeof(ver)))
4991 return -EFAULT;
4992
4993 return 0;
4994 }
4995
4996 static int get_array_info(mddev_t * mddev, void __user * arg)
4997 {
4998 mdu_array_info_t info;
4999 int nr,working,insync,failed,spare;
5000 mdk_rdev_t *rdev;
5001
5002 nr=working=insync=failed=spare=0;
5003 list_for_each_entry(rdev, &mddev->disks, same_set) {
5004 nr++;
5005 if (test_bit(Faulty, &rdev->flags))
5006 failed++;
5007 else {
5008 working++;
5009 if (test_bit(In_sync, &rdev->flags))
5010 insync++;
5011 else
5012 spare++;
5013 }
5014 }
5015
5016 info.major_version = mddev->major_version;
5017 info.minor_version = mddev->minor_version;
5018 info.patch_version = MD_PATCHLEVEL_VERSION;
5019 info.ctime = mddev->ctime;
5020 info.level = mddev->level;
5021 info.size = mddev->dev_sectors / 2;
5022 if (info.size != mddev->dev_sectors / 2) /* overflow */
5023 info.size = -1;
5024 info.nr_disks = nr;
5025 info.raid_disks = mddev->raid_disks;
5026 info.md_minor = mddev->md_minor;
5027 info.not_persistent= !mddev->persistent;
5028
5029 info.utime = mddev->utime;
5030 info.state = 0;
5031 if (mddev->in_sync)
5032 info.state = (1<<MD_SB_CLEAN);
5033 if (mddev->bitmap && mddev->bitmap_info.offset)
5034 info.state = (1<<MD_SB_BITMAP_PRESENT);
5035 info.active_disks = insync;
5036 info.working_disks = working;
5037 info.failed_disks = failed;
5038 info.spare_disks = spare;
5039
5040 info.layout = mddev->layout;
5041 info.chunk_size = mddev->chunk_sectors << 9;
5042
5043 if (copy_to_user(arg, &info, sizeof(info)))
5044 return -EFAULT;
5045
5046 return 0;
5047 }
5048
5049 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5050 {
5051 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5052 char *ptr, *buf = NULL;
5053 int err = -ENOMEM;
5054
5055 if (md_allow_write(mddev))
5056 file = kmalloc(sizeof(*file), GFP_NOIO);
5057 else
5058 file = kmalloc(sizeof(*file), GFP_KERNEL);
5059
5060 if (!file)
5061 goto out;
5062
5063 /* bitmap disabled, zero the first byte and copy out */
5064 if (!mddev->bitmap || !mddev->bitmap->file) {
5065 file->pathname[0] = '\0';
5066 goto copy_out;
5067 }
5068
5069 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5070 if (!buf)
5071 goto out;
5072
5073 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5074 if (IS_ERR(ptr))
5075 goto out;
5076
5077 strcpy(file->pathname, ptr);
5078
5079 copy_out:
5080 err = 0;
5081 if (copy_to_user(arg, file, sizeof(*file)))
5082 err = -EFAULT;
5083 out:
5084 kfree(buf);
5085 kfree(file);
5086 return err;
5087 }
5088
5089 static int get_disk_info(mddev_t * mddev, void __user * arg)
5090 {
5091 mdu_disk_info_t info;
5092 mdk_rdev_t *rdev;
5093
5094 if (copy_from_user(&info, arg, sizeof(info)))
5095 return -EFAULT;
5096
5097 rdev = find_rdev_nr(mddev, info.number);
5098 if (rdev) {
5099 info.major = MAJOR(rdev->bdev->bd_dev);
5100 info.minor = MINOR(rdev->bdev->bd_dev);
5101 info.raid_disk = rdev->raid_disk;
5102 info.state = 0;
5103 if (test_bit(Faulty, &rdev->flags))
5104 info.state |= (1<<MD_DISK_FAULTY);
5105 else if (test_bit(In_sync, &rdev->flags)) {
5106 info.state |= (1<<MD_DISK_ACTIVE);
5107 info.state |= (1<<MD_DISK_SYNC);
5108 }
5109 if (test_bit(WriteMostly, &rdev->flags))
5110 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5111 } else {
5112 info.major = info.minor = 0;
5113 info.raid_disk = -1;
5114 info.state = (1<<MD_DISK_REMOVED);
5115 }
5116
5117 if (copy_to_user(arg, &info, sizeof(info)))
5118 return -EFAULT;
5119
5120 return 0;
5121 }
5122
5123 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5124 {
5125 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5126 mdk_rdev_t *rdev;
5127 dev_t dev = MKDEV(info->major,info->minor);
5128
5129 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5130 return -EOVERFLOW;
5131
5132 if (!mddev->raid_disks) {
5133 int err;
5134 /* expecting a device which has a superblock */
5135 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5136 if (IS_ERR(rdev)) {
5137 printk(KERN_WARNING
5138 "md: md_import_device returned %ld\n",
5139 PTR_ERR(rdev));
5140 return PTR_ERR(rdev);
5141 }
5142 if (!list_empty(&mddev->disks)) {
5143 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5144 mdk_rdev_t, same_set);
5145 err = super_types[mddev->major_version]
5146 .load_super(rdev, rdev0, mddev->minor_version);
5147 if (err < 0) {
5148 printk(KERN_WARNING
5149 "md: %s has different UUID to %s\n",
5150 bdevname(rdev->bdev,b),
5151 bdevname(rdev0->bdev,b2));
5152 export_rdev(rdev);
5153 return -EINVAL;
5154 }
5155 }
5156 err = bind_rdev_to_array(rdev, mddev);
5157 if (err)
5158 export_rdev(rdev);
5159 return err;
5160 }
5161
5162 /*
5163 * add_new_disk can be used once the array is assembled
5164 * to add "hot spares". They must already have a superblock
5165 * written
5166 */
5167 if (mddev->pers) {
5168 int err;
5169 if (!mddev->pers->hot_add_disk) {
5170 printk(KERN_WARNING
5171 "%s: personality does not support diskops!\n",
5172 mdname(mddev));
5173 return -EINVAL;
5174 }
5175 if (mddev->persistent)
5176 rdev = md_import_device(dev, mddev->major_version,
5177 mddev->minor_version);
5178 else
5179 rdev = md_import_device(dev, -1, -1);
5180 if (IS_ERR(rdev)) {
5181 printk(KERN_WARNING
5182 "md: md_import_device returned %ld\n",
5183 PTR_ERR(rdev));
5184 return PTR_ERR(rdev);
5185 }
5186 /* set saved_raid_disk if appropriate */
5187 if (!mddev->persistent) {
5188 if (info->state & (1<<MD_DISK_SYNC) &&
5189 info->raid_disk < mddev->raid_disks) {
5190 rdev->raid_disk = info->raid_disk;
5191 set_bit(In_sync, &rdev->flags);
5192 } else
5193 rdev->raid_disk = -1;
5194 } else
5195 super_types[mddev->major_version].
5196 validate_super(mddev, rdev);
5197 if (test_bit(In_sync, &rdev->flags))
5198 rdev->saved_raid_disk = rdev->raid_disk;
5199 else
5200 rdev->saved_raid_disk = -1;
5201
5202 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5203 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5204 set_bit(WriteMostly, &rdev->flags);
5205 else
5206 clear_bit(WriteMostly, &rdev->flags);
5207
5208 rdev->raid_disk = -1;
5209 err = bind_rdev_to_array(rdev, mddev);
5210 if (!err && !mddev->pers->hot_remove_disk) {
5211 /* If there is hot_add_disk but no hot_remove_disk
5212 * then added disks for geometry changes,
5213 * and should be added immediately.
5214 */
5215 super_types[mddev->major_version].
5216 validate_super(mddev, rdev);
5217 err = mddev->pers->hot_add_disk(mddev, rdev);
5218 if (err)
5219 unbind_rdev_from_array(rdev);
5220 }
5221 if (err)
5222 export_rdev(rdev);
5223 else
5224 sysfs_notify_dirent_safe(rdev->sysfs_state);
5225
5226 md_update_sb(mddev, 1);
5227 if (mddev->degraded)
5228 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5229 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5230 md_wakeup_thread(mddev->thread);
5231 return err;
5232 }
5233
5234 /* otherwise, add_new_disk is only allowed
5235 * for major_version==0 superblocks
5236 */
5237 if (mddev->major_version != 0) {
5238 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5239 mdname(mddev));
5240 return -EINVAL;
5241 }
5242
5243 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5244 int err;
5245 rdev = md_import_device(dev, -1, 0);
5246 if (IS_ERR(rdev)) {
5247 printk(KERN_WARNING
5248 "md: error, md_import_device() returned %ld\n",
5249 PTR_ERR(rdev));
5250 return PTR_ERR(rdev);
5251 }
5252 rdev->desc_nr = info->number;
5253 if (info->raid_disk < mddev->raid_disks)
5254 rdev->raid_disk = info->raid_disk;
5255 else
5256 rdev->raid_disk = -1;
5257
5258 if (rdev->raid_disk < mddev->raid_disks)
5259 if (info->state & (1<<MD_DISK_SYNC))
5260 set_bit(In_sync, &rdev->flags);
5261
5262 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5263 set_bit(WriteMostly, &rdev->flags);
5264
5265 if (!mddev->persistent) {
5266 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5267 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5268 } else
5269 rdev->sb_start = calc_dev_sboffset(rdev);
5270 rdev->sectors = rdev->sb_start;
5271
5272 err = bind_rdev_to_array(rdev, mddev);
5273 if (err) {
5274 export_rdev(rdev);
5275 return err;
5276 }
5277 }
5278
5279 return 0;
5280 }
5281
5282 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5283 {
5284 char b[BDEVNAME_SIZE];
5285 mdk_rdev_t *rdev;
5286
5287 rdev = find_rdev(mddev, dev);
5288 if (!rdev)
5289 return -ENXIO;
5290
5291 if (rdev->raid_disk >= 0)
5292 goto busy;
5293
5294 kick_rdev_from_array(rdev);
5295 md_update_sb(mddev, 1);
5296 md_new_event(mddev);
5297
5298 return 0;
5299 busy:
5300 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5301 bdevname(rdev->bdev,b), mdname(mddev));
5302 return -EBUSY;
5303 }
5304
5305 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5306 {
5307 char b[BDEVNAME_SIZE];
5308 int err;
5309 mdk_rdev_t *rdev;
5310
5311 if (!mddev->pers)
5312 return -ENODEV;
5313
5314 if (mddev->major_version != 0) {
5315 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5316 " version-0 superblocks.\n",
5317 mdname(mddev));
5318 return -EINVAL;
5319 }
5320 if (!mddev->pers->hot_add_disk) {
5321 printk(KERN_WARNING
5322 "%s: personality does not support diskops!\n",
5323 mdname(mddev));
5324 return -EINVAL;
5325 }
5326
5327 rdev = md_import_device(dev, -1, 0);
5328 if (IS_ERR(rdev)) {
5329 printk(KERN_WARNING
5330 "md: error, md_import_device() returned %ld\n",
5331 PTR_ERR(rdev));
5332 return -EINVAL;
5333 }
5334
5335 if (mddev->persistent)
5336 rdev->sb_start = calc_dev_sboffset(rdev);
5337 else
5338 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5339
5340 rdev->sectors = rdev->sb_start;
5341
5342 if (test_bit(Faulty, &rdev->flags)) {
5343 printk(KERN_WARNING
5344 "md: can not hot-add faulty %s disk to %s!\n",
5345 bdevname(rdev->bdev,b), mdname(mddev));
5346 err = -EINVAL;
5347 goto abort_export;
5348 }
5349 clear_bit(In_sync, &rdev->flags);
5350 rdev->desc_nr = -1;
5351 rdev->saved_raid_disk = -1;
5352 err = bind_rdev_to_array(rdev, mddev);
5353 if (err)
5354 goto abort_export;
5355
5356 /*
5357 * The rest should better be atomic, we can have disk failures
5358 * noticed in interrupt contexts ...
5359 */
5360
5361 rdev->raid_disk = -1;
5362
5363 md_update_sb(mddev, 1);
5364
5365 /*
5366 * Kick recovery, maybe this spare has to be added to the
5367 * array immediately.
5368 */
5369 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5370 md_wakeup_thread(mddev->thread);
5371 md_new_event(mddev);
5372 return 0;
5373
5374 abort_export:
5375 export_rdev(rdev);
5376 return err;
5377 }
5378
5379 static int set_bitmap_file(mddev_t *mddev, int fd)
5380 {
5381 int err;
5382
5383 if (mddev->pers) {
5384 if (!mddev->pers->quiesce)
5385 return -EBUSY;
5386 if (mddev->recovery || mddev->sync_thread)
5387 return -EBUSY;
5388 /* we should be able to change the bitmap.. */
5389 }
5390
5391
5392 if (fd >= 0) {
5393 if (mddev->bitmap)
5394 return -EEXIST; /* cannot add when bitmap is present */
5395 mddev->bitmap_info.file = fget(fd);
5396
5397 if (mddev->bitmap_info.file == NULL) {
5398 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5399 mdname(mddev));
5400 return -EBADF;
5401 }
5402
5403 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5404 if (err) {
5405 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5406 mdname(mddev));
5407 fput(mddev->bitmap_info.file);
5408 mddev->bitmap_info.file = NULL;
5409 return err;
5410 }
5411 mddev->bitmap_info.offset = 0; /* file overrides offset */
5412 } else if (mddev->bitmap == NULL)
5413 return -ENOENT; /* cannot remove what isn't there */
5414 err = 0;
5415 if (mddev->pers) {
5416 mddev->pers->quiesce(mddev, 1);
5417 if (fd >= 0) {
5418 err = bitmap_create(mddev);
5419 if (!err)
5420 err = bitmap_load(mddev);
5421 }
5422 if (fd < 0 || err) {
5423 bitmap_destroy(mddev);
5424 fd = -1; /* make sure to put the file */
5425 }
5426 mddev->pers->quiesce(mddev, 0);
5427 }
5428 if (fd < 0) {
5429 if (mddev->bitmap_info.file) {
5430 restore_bitmap_write_access(mddev->bitmap_info.file);
5431 fput(mddev->bitmap_info.file);
5432 }
5433 mddev->bitmap_info.file = NULL;
5434 }
5435
5436 return err;
5437 }
5438
5439 /*
5440 * set_array_info is used two different ways
5441 * The original usage is when creating a new array.
5442 * In this usage, raid_disks is > 0 and it together with
5443 * level, size, not_persistent,layout,chunksize determine the
5444 * shape of the array.
5445 * This will always create an array with a type-0.90.0 superblock.
5446 * The newer usage is when assembling an array.
5447 * In this case raid_disks will be 0, and the major_version field is
5448 * use to determine which style super-blocks are to be found on the devices.
5449 * The minor and patch _version numbers are also kept incase the
5450 * super_block handler wishes to interpret them.
5451 */
5452 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5453 {
5454
5455 if (info->raid_disks == 0) {
5456 /* just setting version number for superblock loading */
5457 if (info->major_version < 0 ||
5458 info->major_version >= ARRAY_SIZE(super_types) ||
5459 super_types[info->major_version].name == NULL) {
5460 /* maybe try to auto-load a module? */
5461 printk(KERN_INFO
5462 "md: superblock version %d not known\n",
5463 info->major_version);
5464 return -EINVAL;
5465 }
5466 mddev->major_version = info->major_version;
5467 mddev->minor_version = info->minor_version;
5468 mddev->patch_version = info->patch_version;
5469 mddev->persistent = !info->not_persistent;
5470 /* ensure mddev_put doesn't delete this now that there
5471 * is some minimal configuration.
5472 */
5473 mddev->ctime = get_seconds();
5474 return 0;
5475 }
5476 mddev->major_version = MD_MAJOR_VERSION;
5477 mddev->minor_version = MD_MINOR_VERSION;
5478 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5479 mddev->ctime = get_seconds();
5480
5481 mddev->level = info->level;
5482 mddev->clevel[0] = 0;
5483 mddev->dev_sectors = 2 * (sector_t)info->size;
5484 mddev->raid_disks = info->raid_disks;
5485 /* don't set md_minor, it is determined by which /dev/md* was
5486 * openned
5487 */
5488 if (info->state & (1<<MD_SB_CLEAN))
5489 mddev->recovery_cp = MaxSector;
5490 else
5491 mddev->recovery_cp = 0;
5492 mddev->persistent = ! info->not_persistent;
5493 mddev->external = 0;
5494
5495 mddev->layout = info->layout;
5496 mddev->chunk_sectors = info->chunk_size >> 9;
5497
5498 mddev->max_disks = MD_SB_DISKS;
5499
5500 if (mddev->persistent)
5501 mddev->flags = 0;
5502 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5503
5504 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5505 mddev->bitmap_info.offset = 0;
5506
5507 mddev->reshape_position = MaxSector;
5508
5509 /*
5510 * Generate a 128 bit UUID
5511 */
5512 get_random_bytes(mddev->uuid, 16);
5513
5514 mddev->new_level = mddev->level;
5515 mddev->new_chunk_sectors = mddev->chunk_sectors;
5516 mddev->new_layout = mddev->layout;
5517 mddev->delta_disks = 0;
5518
5519 return 0;
5520 }
5521
5522 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5523 {
5524 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5525
5526 if (mddev->external_size)
5527 return;
5528
5529 mddev->array_sectors = array_sectors;
5530 }
5531 EXPORT_SYMBOL(md_set_array_sectors);
5532
5533 static int update_size(mddev_t *mddev, sector_t num_sectors)
5534 {
5535 mdk_rdev_t *rdev;
5536 int rv;
5537 int fit = (num_sectors == 0);
5538
5539 if (mddev->pers->resize == NULL)
5540 return -EINVAL;
5541 /* The "num_sectors" is the number of sectors of each device that
5542 * is used. This can only make sense for arrays with redundancy.
5543 * linear and raid0 always use whatever space is available. We can only
5544 * consider changing this number if no resync or reconstruction is
5545 * happening, and if the new size is acceptable. It must fit before the
5546 * sb_start or, if that is <data_offset, it must fit before the size
5547 * of each device. If num_sectors is zero, we find the largest size
5548 * that fits.
5549 */
5550 if (mddev->sync_thread)
5551 return -EBUSY;
5552 if (mddev->bitmap)
5553 /* Sorry, cannot grow a bitmap yet, just remove it,
5554 * grow, and re-add.
5555 */
5556 return -EBUSY;
5557 list_for_each_entry(rdev, &mddev->disks, same_set) {
5558 sector_t avail = rdev->sectors;
5559
5560 if (fit && (num_sectors == 0 || num_sectors > avail))
5561 num_sectors = avail;
5562 if (avail < num_sectors)
5563 return -ENOSPC;
5564 }
5565 rv = mddev->pers->resize(mddev, num_sectors);
5566 if (!rv)
5567 revalidate_disk(mddev->gendisk);
5568 return rv;
5569 }
5570
5571 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5572 {
5573 int rv;
5574 /* change the number of raid disks */
5575 if (mddev->pers->check_reshape == NULL)
5576 return -EINVAL;
5577 if (raid_disks <= 0 ||
5578 (mddev->max_disks && raid_disks >= mddev->max_disks))
5579 return -EINVAL;
5580 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5581 return -EBUSY;
5582 mddev->delta_disks = raid_disks - mddev->raid_disks;
5583
5584 rv = mddev->pers->check_reshape(mddev);
5585 if (rv < 0)
5586 mddev->delta_disks = 0;
5587 return rv;
5588 }
5589
5590
5591 /*
5592 * update_array_info is used to change the configuration of an
5593 * on-line array.
5594 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5595 * fields in the info are checked against the array.
5596 * Any differences that cannot be handled will cause an error.
5597 * Normally, only one change can be managed at a time.
5598 */
5599 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5600 {
5601 int rv = 0;
5602 int cnt = 0;
5603 int state = 0;
5604
5605 /* calculate expected state,ignoring low bits */
5606 if (mddev->bitmap && mddev->bitmap_info.offset)
5607 state |= (1 << MD_SB_BITMAP_PRESENT);
5608
5609 if (mddev->major_version != info->major_version ||
5610 mddev->minor_version != info->minor_version ||
5611 /* mddev->patch_version != info->patch_version || */
5612 mddev->ctime != info->ctime ||
5613 mddev->level != info->level ||
5614 /* mddev->layout != info->layout || */
5615 !mddev->persistent != info->not_persistent||
5616 mddev->chunk_sectors != info->chunk_size >> 9 ||
5617 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5618 ((state^info->state) & 0xfffffe00)
5619 )
5620 return -EINVAL;
5621 /* Check there is only one change */
5622 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5623 cnt++;
5624 if (mddev->raid_disks != info->raid_disks)
5625 cnt++;
5626 if (mddev->layout != info->layout)
5627 cnt++;
5628 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5629 cnt++;
5630 if (cnt == 0)
5631 return 0;
5632 if (cnt > 1)
5633 return -EINVAL;
5634
5635 if (mddev->layout != info->layout) {
5636 /* Change layout
5637 * we don't need to do anything at the md level, the
5638 * personality will take care of it all.
5639 */
5640 if (mddev->pers->check_reshape == NULL)
5641 return -EINVAL;
5642 else {
5643 mddev->new_layout = info->layout;
5644 rv = mddev->pers->check_reshape(mddev);
5645 if (rv)
5646 mddev->new_layout = mddev->layout;
5647 return rv;
5648 }
5649 }
5650 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5651 rv = update_size(mddev, (sector_t)info->size * 2);
5652
5653 if (mddev->raid_disks != info->raid_disks)
5654 rv = update_raid_disks(mddev, info->raid_disks);
5655
5656 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5657 if (mddev->pers->quiesce == NULL)
5658 return -EINVAL;
5659 if (mddev->recovery || mddev->sync_thread)
5660 return -EBUSY;
5661 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5662 /* add the bitmap */
5663 if (mddev->bitmap)
5664 return -EEXIST;
5665 if (mddev->bitmap_info.default_offset == 0)
5666 return -EINVAL;
5667 mddev->bitmap_info.offset =
5668 mddev->bitmap_info.default_offset;
5669 mddev->pers->quiesce(mddev, 1);
5670 rv = bitmap_create(mddev);
5671 if (!rv)
5672 rv = bitmap_load(mddev);
5673 if (rv)
5674 bitmap_destroy(mddev);
5675 mddev->pers->quiesce(mddev, 0);
5676 } else {
5677 /* remove the bitmap */
5678 if (!mddev->bitmap)
5679 return -ENOENT;
5680 if (mddev->bitmap->file)
5681 return -EINVAL;
5682 mddev->pers->quiesce(mddev, 1);
5683 bitmap_destroy(mddev);
5684 mddev->pers->quiesce(mddev, 0);
5685 mddev->bitmap_info.offset = 0;
5686 }
5687 }
5688 md_update_sb(mddev, 1);
5689 return rv;
5690 }
5691
5692 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5693 {
5694 mdk_rdev_t *rdev;
5695
5696 if (mddev->pers == NULL)
5697 return -ENODEV;
5698
5699 rdev = find_rdev(mddev, dev);
5700 if (!rdev)
5701 return -ENODEV;
5702
5703 md_error(mddev, rdev);
5704 return 0;
5705 }
5706
5707 /*
5708 * We have a problem here : there is no easy way to give a CHS
5709 * virtual geometry. We currently pretend that we have a 2 heads
5710 * 4 sectors (with a BIG number of cylinders...). This drives
5711 * dosfs just mad... ;-)
5712 */
5713 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5714 {
5715 mddev_t *mddev = bdev->bd_disk->private_data;
5716
5717 geo->heads = 2;
5718 geo->sectors = 4;
5719 geo->cylinders = mddev->array_sectors / 8;
5720 return 0;
5721 }
5722
5723 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5724 unsigned int cmd, unsigned long arg)
5725 {
5726 int err = 0;
5727 void __user *argp = (void __user *)arg;
5728 mddev_t *mddev = NULL;
5729 int ro;
5730
5731 if (!capable(CAP_SYS_ADMIN))
5732 return -EACCES;
5733
5734 /*
5735 * Commands dealing with the RAID driver but not any
5736 * particular array:
5737 */
5738 switch (cmd)
5739 {
5740 case RAID_VERSION:
5741 err = get_version(argp);
5742 goto done;
5743
5744 case PRINT_RAID_DEBUG:
5745 err = 0;
5746 md_print_devices();
5747 goto done;
5748
5749 #ifndef MODULE
5750 case RAID_AUTORUN:
5751 err = 0;
5752 autostart_arrays(arg);
5753 goto done;
5754 #endif
5755 default:;
5756 }
5757
5758 /*
5759 * Commands creating/starting a new array:
5760 */
5761
5762 mddev = bdev->bd_disk->private_data;
5763
5764 if (!mddev) {
5765 BUG();
5766 goto abort;
5767 }
5768
5769 err = mddev_lock(mddev);
5770 if (err) {
5771 printk(KERN_INFO
5772 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5773 err, cmd);
5774 goto abort;
5775 }
5776
5777 switch (cmd)
5778 {
5779 case SET_ARRAY_INFO:
5780 {
5781 mdu_array_info_t info;
5782 if (!arg)
5783 memset(&info, 0, sizeof(info));
5784 else if (copy_from_user(&info, argp, sizeof(info))) {
5785 err = -EFAULT;
5786 goto abort_unlock;
5787 }
5788 if (mddev->pers) {
5789 err = update_array_info(mddev, &info);
5790 if (err) {
5791 printk(KERN_WARNING "md: couldn't update"
5792 " array info. %d\n", err);
5793 goto abort_unlock;
5794 }
5795 goto done_unlock;
5796 }
5797 if (!list_empty(&mddev->disks)) {
5798 printk(KERN_WARNING
5799 "md: array %s already has disks!\n",
5800 mdname(mddev));
5801 err = -EBUSY;
5802 goto abort_unlock;
5803 }
5804 if (mddev->raid_disks) {
5805 printk(KERN_WARNING
5806 "md: array %s already initialised!\n",
5807 mdname(mddev));
5808 err = -EBUSY;
5809 goto abort_unlock;
5810 }
5811 err = set_array_info(mddev, &info);
5812 if (err) {
5813 printk(KERN_WARNING "md: couldn't set"
5814 " array info. %d\n", err);
5815 goto abort_unlock;
5816 }
5817 }
5818 goto done_unlock;
5819
5820 default:;
5821 }
5822
5823 /*
5824 * Commands querying/configuring an existing array:
5825 */
5826 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5827 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5828 if ((!mddev->raid_disks && !mddev->external)
5829 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5830 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5831 && cmd != GET_BITMAP_FILE) {
5832 err = -ENODEV;
5833 goto abort_unlock;
5834 }
5835
5836 /*
5837 * Commands even a read-only array can execute:
5838 */
5839 switch (cmd)
5840 {
5841 case GET_ARRAY_INFO:
5842 err = get_array_info(mddev, argp);
5843 goto done_unlock;
5844
5845 case GET_BITMAP_FILE:
5846 err = get_bitmap_file(mddev, argp);
5847 goto done_unlock;
5848
5849 case GET_DISK_INFO:
5850 err = get_disk_info(mddev, argp);
5851 goto done_unlock;
5852
5853 case RESTART_ARRAY_RW:
5854 err = restart_array(mddev);
5855 goto done_unlock;
5856
5857 case STOP_ARRAY:
5858 err = do_md_stop(mddev, 0, 1);
5859 goto done_unlock;
5860
5861 case STOP_ARRAY_RO:
5862 err = md_set_readonly(mddev, 1);
5863 goto done_unlock;
5864
5865 case BLKROSET:
5866 if (get_user(ro, (int __user *)(arg))) {
5867 err = -EFAULT;
5868 goto done_unlock;
5869 }
5870 err = -EINVAL;
5871
5872 /* if the bdev is going readonly the value of mddev->ro
5873 * does not matter, no writes are coming
5874 */
5875 if (ro)
5876 goto done_unlock;
5877
5878 /* are we are already prepared for writes? */
5879 if (mddev->ro != 1)
5880 goto done_unlock;
5881
5882 /* transitioning to readauto need only happen for
5883 * arrays that call md_write_start
5884 */
5885 if (mddev->pers) {
5886 err = restart_array(mddev);
5887 if (err == 0) {
5888 mddev->ro = 2;
5889 set_disk_ro(mddev->gendisk, 0);
5890 }
5891 }
5892 goto done_unlock;
5893 }
5894
5895 /*
5896 * The remaining ioctls are changing the state of the
5897 * superblock, so we do not allow them on read-only arrays.
5898 * However non-MD ioctls (e.g. get-size) will still come through
5899 * here and hit the 'default' below, so only disallow
5900 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5901 */
5902 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5903 if (mddev->ro == 2) {
5904 mddev->ro = 0;
5905 sysfs_notify_dirent_safe(mddev->sysfs_state);
5906 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5907 md_wakeup_thread(mddev->thread);
5908 } else {
5909 err = -EROFS;
5910 goto abort_unlock;
5911 }
5912 }
5913
5914 switch (cmd)
5915 {
5916 case ADD_NEW_DISK:
5917 {
5918 mdu_disk_info_t info;
5919 if (copy_from_user(&info, argp, sizeof(info)))
5920 err = -EFAULT;
5921 else
5922 err = add_new_disk(mddev, &info);
5923 goto done_unlock;
5924 }
5925
5926 case HOT_REMOVE_DISK:
5927 err = hot_remove_disk(mddev, new_decode_dev(arg));
5928 goto done_unlock;
5929
5930 case HOT_ADD_DISK:
5931 err = hot_add_disk(mddev, new_decode_dev(arg));
5932 goto done_unlock;
5933
5934 case SET_DISK_FAULTY:
5935 err = set_disk_faulty(mddev, new_decode_dev(arg));
5936 goto done_unlock;
5937
5938 case RUN_ARRAY:
5939 err = do_md_run(mddev);
5940 goto done_unlock;
5941
5942 case SET_BITMAP_FILE:
5943 err = set_bitmap_file(mddev, (int)arg);
5944 goto done_unlock;
5945
5946 default:
5947 err = -EINVAL;
5948 goto abort_unlock;
5949 }
5950
5951 done_unlock:
5952 abort_unlock:
5953 if (mddev->hold_active == UNTIL_IOCTL &&
5954 err != -EINVAL)
5955 mddev->hold_active = 0;
5956 mddev_unlock(mddev);
5957
5958 return err;
5959 done:
5960 if (err)
5961 MD_BUG();
5962 abort:
5963 return err;
5964 }
5965 #ifdef CONFIG_COMPAT
5966 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5967 unsigned int cmd, unsigned long arg)
5968 {
5969 switch (cmd) {
5970 case HOT_REMOVE_DISK:
5971 case HOT_ADD_DISK:
5972 case SET_DISK_FAULTY:
5973 case SET_BITMAP_FILE:
5974 /* These take in integer arg, do not convert */
5975 break;
5976 default:
5977 arg = (unsigned long)compat_ptr(arg);
5978 break;
5979 }
5980
5981 return md_ioctl(bdev, mode, cmd, arg);
5982 }
5983 #endif /* CONFIG_COMPAT */
5984
5985 static int md_open(struct block_device *bdev, fmode_t mode)
5986 {
5987 /*
5988 * Succeed if we can lock the mddev, which confirms that
5989 * it isn't being stopped right now.
5990 */
5991 mddev_t *mddev = mddev_find(bdev->bd_dev);
5992 int err;
5993
5994 if (mddev->gendisk != bdev->bd_disk) {
5995 /* we are racing with mddev_put which is discarding this
5996 * bd_disk.
5997 */
5998 mddev_put(mddev);
5999 /* Wait until bdev->bd_disk is definitely gone */
6000 flush_workqueue(md_misc_wq);
6001 /* Then retry the open from the top */
6002 return -ERESTARTSYS;
6003 }
6004 BUG_ON(mddev != bdev->bd_disk->private_data);
6005
6006 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6007 goto out;
6008
6009 err = 0;
6010 atomic_inc(&mddev->openers);
6011 mutex_unlock(&mddev->open_mutex);
6012
6013 check_disk_size_change(mddev->gendisk, bdev);
6014 out:
6015 return err;
6016 }
6017
6018 static int md_release(struct gendisk *disk, fmode_t mode)
6019 {
6020 mddev_t *mddev = disk->private_data;
6021
6022 BUG_ON(!mddev);
6023 atomic_dec(&mddev->openers);
6024 mddev_put(mddev);
6025
6026 return 0;
6027 }
6028 static const struct block_device_operations md_fops =
6029 {
6030 .owner = THIS_MODULE,
6031 .open = md_open,
6032 .release = md_release,
6033 .ioctl = md_ioctl,
6034 #ifdef CONFIG_COMPAT
6035 .compat_ioctl = md_compat_ioctl,
6036 #endif
6037 .getgeo = md_getgeo,
6038 };
6039
6040 static int md_thread(void * arg)
6041 {
6042 mdk_thread_t *thread = arg;
6043
6044 /*
6045 * md_thread is a 'system-thread', it's priority should be very
6046 * high. We avoid resource deadlocks individually in each
6047 * raid personality. (RAID5 does preallocation) We also use RR and
6048 * the very same RT priority as kswapd, thus we will never get
6049 * into a priority inversion deadlock.
6050 *
6051 * we definitely have to have equal or higher priority than
6052 * bdflush, otherwise bdflush will deadlock if there are too
6053 * many dirty RAID5 blocks.
6054 */
6055
6056 allow_signal(SIGKILL);
6057 while (!kthread_should_stop()) {
6058
6059 /* We need to wait INTERRUPTIBLE so that
6060 * we don't add to the load-average.
6061 * That means we need to be sure no signals are
6062 * pending
6063 */
6064 if (signal_pending(current))
6065 flush_signals(current);
6066
6067 wait_event_interruptible_timeout
6068 (thread->wqueue,
6069 test_bit(THREAD_WAKEUP, &thread->flags)
6070 || kthread_should_stop(),
6071 thread->timeout);
6072
6073 clear_bit(THREAD_WAKEUP, &thread->flags);
6074 if (!kthread_should_stop())
6075 thread->run(thread->mddev);
6076 }
6077
6078 return 0;
6079 }
6080
6081 void md_wakeup_thread(mdk_thread_t *thread)
6082 {
6083 if (thread) {
6084 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6085 set_bit(THREAD_WAKEUP, &thread->flags);
6086 wake_up(&thread->wqueue);
6087 }
6088 }
6089
6090 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6091 const char *name)
6092 {
6093 mdk_thread_t *thread;
6094
6095 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6096 if (!thread)
6097 return NULL;
6098
6099 init_waitqueue_head(&thread->wqueue);
6100
6101 thread->run = run;
6102 thread->mddev = mddev;
6103 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6104 thread->tsk = kthread_run(md_thread, thread,
6105 "%s_%s",
6106 mdname(thread->mddev),
6107 name ?: mddev->pers->name);
6108 if (IS_ERR(thread->tsk)) {
6109 kfree(thread);
6110 return NULL;
6111 }
6112 return thread;
6113 }
6114
6115 void md_unregister_thread(mdk_thread_t *thread)
6116 {
6117 if (!thread)
6118 return;
6119 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6120
6121 kthread_stop(thread->tsk);
6122 kfree(thread);
6123 }
6124
6125 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6126 {
6127 if (!mddev) {
6128 MD_BUG();
6129 return;
6130 }
6131
6132 if (!rdev || test_bit(Faulty, &rdev->flags))
6133 return;
6134
6135 if (mddev->external)
6136 set_bit(Blocked, &rdev->flags);
6137 /*
6138 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6139 mdname(mddev),
6140 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6141 __builtin_return_address(0),__builtin_return_address(1),
6142 __builtin_return_address(2),__builtin_return_address(3));
6143 */
6144 if (!mddev->pers)
6145 return;
6146 if (!mddev->pers->error_handler)
6147 return;
6148 mddev->pers->error_handler(mddev,rdev);
6149 if (mddev->degraded)
6150 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6151 sysfs_notify_dirent_safe(rdev->sysfs_state);
6152 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6154 md_wakeup_thread(mddev->thread);
6155 if (mddev->event_work.func)
6156 queue_work(md_misc_wq, &mddev->event_work);
6157 md_new_event_inintr(mddev);
6158 }
6159
6160 /* seq_file implementation /proc/mdstat */
6161
6162 static void status_unused(struct seq_file *seq)
6163 {
6164 int i = 0;
6165 mdk_rdev_t *rdev;
6166
6167 seq_printf(seq, "unused devices: ");
6168
6169 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6170 char b[BDEVNAME_SIZE];
6171 i++;
6172 seq_printf(seq, "%s ",
6173 bdevname(rdev->bdev,b));
6174 }
6175 if (!i)
6176 seq_printf(seq, "<none>");
6177
6178 seq_printf(seq, "\n");
6179 }
6180
6181
6182 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6183 {
6184 sector_t max_sectors, resync, res;
6185 unsigned long dt, db;
6186 sector_t rt;
6187 int scale;
6188 unsigned int per_milli;
6189
6190 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6191
6192 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6193 max_sectors = mddev->resync_max_sectors;
6194 else
6195 max_sectors = mddev->dev_sectors;
6196
6197 /*
6198 * Should not happen.
6199 */
6200 if (!max_sectors) {
6201 MD_BUG();
6202 return;
6203 }
6204 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6205 * in a sector_t, and (max_sectors>>scale) will fit in a
6206 * u32, as those are the requirements for sector_div.
6207 * Thus 'scale' must be at least 10
6208 */
6209 scale = 10;
6210 if (sizeof(sector_t) > sizeof(unsigned long)) {
6211 while ( max_sectors/2 > (1ULL<<(scale+32)))
6212 scale++;
6213 }
6214 res = (resync>>scale)*1000;
6215 sector_div(res, (u32)((max_sectors>>scale)+1));
6216
6217 per_milli = res;
6218 {
6219 int i, x = per_milli/50, y = 20-x;
6220 seq_printf(seq, "[");
6221 for (i = 0; i < x; i++)
6222 seq_printf(seq, "=");
6223 seq_printf(seq, ">");
6224 for (i = 0; i < y; i++)
6225 seq_printf(seq, ".");
6226 seq_printf(seq, "] ");
6227 }
6228 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6229 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6230 "reshape" :
6231 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6232 "check" :
6233 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6234 "resync" : "recovery"))),
6235 per_milli/10, per_milli % 10,
6236 (unsigned long long) resync/2,
6237 (unsigned long long) max_sectors/2);
6238
6239 /*
6240 * dt: time from mark until now
6241 * db: blocks written from mark until now
6242 * rt: remaining time
6243 *
6244 * rt is a sector_t, so could be 32bit or 64bit.
6245 * So we divide before multiply in case it is 32bit and close
6246 * to the limit.
6247 * We scale the divisor (db) by 32 to avoid loosing precision
6248 * near the end of resync when the number of remaining sectors
6249 * is close to 'db'.
6250 * We then divide rt by 32 after multiplying by db to compensate.
6251 * The '+1' avoids division by zero if db is very small.
6252 */
6253 dt = ((jiffies - mddev->resync_mark) / HZ);
6254 if (!dt) dt++;
6255 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6256 - mddev->resync_mark_cnt;
6257
6258 rt = max_sectors - resync; /* number of remaining sectors */
6259 sector_div(rt, db/32+1);
6260 rt *= dt;
6261 rt >>= 5;
6262
6263 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6264 ((unsigned long)rt % 60)/6);
6265
6266 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6267 }
6268
6269 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6270 {
6271 struct list_head *tmp;
6272 loff_t l = *pos;
6273 mddev_t *mddev;
6274
6275 if (l >= 0x10000)
6276 return NULL;
6277 if (!l--)
6278 /* header */
6279 return (void*)1;
6280
6281 spin_lock(&all_mddevs_lock);
6282 list_for_each(tmp,&all_mddevs)
6283 if (!l--) {
6284 mddev = list_entry(tmp, mddev_t, all_mddevs);
6285 mddev_get(mddev);
6286 spin_unlock(&all_mddevs_lock);
6287 return mddev;
6288 }
6289 spin_unlock(&all_mddevs_lock);
6290 if (!l--)
6291 return (void*)2;/* tail */
6292 return NULL;
6293 }
6294
6295 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6296 {
6297 struct list_head *tmp;
6298 mddev_t *next_mddev, *mddev = v;
6299
6300 ++*pos;
6301 if (v == (void*)2)
6302 return NULL;
6303
6304 spin_lock(&all_mddevs_lock);
6305 if (v == (void*)1)
6306 tmp = all_mddevs.next;
6307 else
6308 tmp = mddev->all_mddevs.next;
6309 if (tmp != &all_mddevs)
6310 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6311 else {
6312 next_mddev = (void*)2;
6313 *pos = 0x10000;
6314 }
6315 spin_unlock(&all_mddevs_lock);
6316
6317 if (v != (void*)1)
6318 mddev_put(mddev);
6319 return next_mddev;
6320
6321 }
6322
6323 static void md_seq_stop(struct seq_file *seq, void *v)
6324 {
6325 mddev_t *mddev = v;
6326
6327 if (mddev && v != (void*)1 && v != (void*)2)
6328 mddev_put(mddev);
6329 }
6330
6331 struct mdstat_info {
6332 int event;
6333 };
6334
6335 static int md_seq_show(struct seq_file *seq, void *v)
6336 {
6337 mddev_t *mddev = v;
6338 sector_t sectors;
6339 mdk_rdev_t *rdev;
6340 struct mdstat_info *mi = seq->private;
6341 struct bitmap *bitmap;
6342
6343 if (v == (void*)1) {
6344 struct mdk_personality *pers;
6345 seq_printf(seq, "Personalities : ");
6346 spin_lock(&pers_lock);
6347 list_for_each_entry(pers, &pers_list, list)
6348 seq_printf(seq, "[%s] ", pers->name);
6349
6350 spin_unlock(&pers_lock);
6351 seq_printf(seq, "\n");
6352 mi->event = atomic_read(&md_event_count);
6353 return 0;
6354 }
6355 if (v == (void*)2) {
6356 status_unused(seq);
6357 return 0;
6358 }
6359
6360 if (mddev_lock(mddev) < 0)
6361 return -EINTR;
6362
6363 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6364 seq_printf(seq, "%s : %sactive", mdname(mddev),
6365 mddev->pers ? "" : "in");
6366 if (mddev->pers) {
6367 if (mddev->ro==1)
6368 seq_printf(seq, " (read-only)");
6369 if (mddev->ro==2)
6370 seq_printf(seq, " (auto-read-only)");
6371 seq_printf(seq, " %s", mddev->pers->name);
6372 }
6373
6374 sectors = 0;
6375 list_for_each_entry(rdev, &mddev->disks, same_set) {
6376 char b[BDEVNAME_SIZE];
6377 seq_printf(seq, " %s[%d]",
6378 bdevname(rdev->bdev,b), rdev->desc_nr);
6379 if (test_bit(WriteMostly, &rdev->flags))
6380 seq_printf(seq, "(W)");
6381 if (test_bit(Faulty, &rdev->flags)) {
6382 seq_printf(seq, "(F)");
6383 continue;
6384 } else if (rdev->raid_disk < 0)
6385 seq_printf(seq, "(S)"); /* spare */
6386 sectors += rdev->sectors;
6387 }
6388
6389 if (!list_empty(&mddev->disks)) {
6390 if (mddev->pers)
6391 seq_printf(seq, "\n %llu blocks",
6392 (unsigned long long)
6393 mddev->array_sectors / 2);
6394 else
6395 seq_printf(seq, "\n %llu blocks",
6396 (unsigned long long)sectors / 2);
6397 }
6398 if (mddev->persistent) {
6399 if (mddev->major_version != 0 ||
6400 mddev->minor_version != 90) {
6401 seq_printf(seq," super %d.%d",
6402 mddev->major_version,
6403 mddev->minor_version);
6404 }
6405 } else if (mddev->external)
6406 seq_printf(seq, " super external:%s",
6407 mddev->metadata_type);
6408 else
6409 seq_printf(seq, " super non-persistent");
6410
6411 if (mddev->pers) {
6412 mddev->pers->status(seq, mddev);
6413 seq_printf(seq, "\n ");
6414 if (mddev->pers->sync_request) {
6415 if (mddev->curr_resync > 2) {
6416 status_resync(seq, mddev);
6417 seq_printf(seq, "\n ");
6418 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6419 seq_printf(seq, "\tresync=DELAYED\n ");
6420 else if (mddev->recovery_cp < MaxSector)
6421 seq_printf(seq, "\tresync=PENDING\n ");
6422 }
6423 } else
6424 seq_printf(seq, "\n ");
6425
6426 if ((bitmap = mddev->bitmap)) {
6427 unsigned long chunk_kb;
6428 unsigned long flags;
6429 spin_lock_irqsave(&bitmap->lock, flags);
6430 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6431 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6432 "%lu%s chunk",
6433 bitmap->pages - bitmap->missing_pages,
6434 bitmap->pages,
6435 (bitmap->pages - bitmap->missing_pages)
6436 << (PAGE_SHIFT - 10),
6437 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6438 chunk_kb ? "KB" : "B");
6439 if (bitmap->file) {
6440 seq_printf(seq, ", file: ");
6441 seq_path(seq, &bitmap->file->f_path, " \t\n");
6442 }
6443
6444 seq_printf(seq, "\n");
6445 spin_unlock_irqrestore(&bitmap->lock, flags);
6446 }
6447
6448 seq_printf(seq, "\n");
6449 }
6450 mddev_unlock(mddev);
6451
6452 return 0;
6453 }
6454
6455 static const struct seq_operations md_seq_ops = {
6456 .start = md_seq_start,
6457 .next = md_seq_next,
6458 .stop = md_seq_stop,
6459 .show = md_seq_show,
6460 };
6461
6462 static int md_seq_open(struct inode *inode, struct file *file)
6463 {
6464 int error;
6465 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6466 if (mi == NULL)
6467 return -ENOMEM;
6468
6469 error = seq_open(file, &md_seq_ops);
6470 if (error)
6471 kfree(mi);
6472 else {
6473 struct seq_file *p = file->private_data;
6474 p->private = mi;
6475 mi->event = atomic_read(&md_event_count);
6476 }
6477 return error;
6478 }
6479
6480 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6481 {
6482 struct seq_file *m = filp->private_data;
6483 struct mdstat_info *mi = m->private;
6484 int mask;
6485
6486 poll_wait(filp, &md_event_waiters, wait);
6487
6488 /* always allow read */
6489 mask = POLLIN | POLLRDNORM;
6490
6491 if (mi->event != atomic_read(&md_event_count))
6492 mask |= POLLERR | POLLPRI;
6493 return mask;
6494 }
6495
6496 static const struct file_operations md_seq_fops = {
6497 .owner = THIS_MODULE,
6498 .open = md_seq_open,
6499 .read = seq_read,
6500 .llseek = seq_lseek,
6501 .release = seq_release_private,
6502 .poll = mdstat_poll,
6503 };
6504
6505 int register_md_personality(struct mdk_personality *p)
6506 {
6507 spin_lock(&pers_lock);
6508 list_add_tail(&p->list, &pers_list);
6509 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6510 spin_unlock(&pers_lock);
6511 return 0;
6512 }
6513
6514 int unregister_md_personality(struct mdk_personality *p)
6515 {
6516 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6517 spin_lock(&pers_lock);
6518 list_del_init(&p->list);
6519 spin_unlock(&pers_lock);
6520 return 0;
6521 }
6522
6523 static int is_mddev_idle(mddev_t *mddev, int init)
6524 {
6525 mdk_rdev_t * rdev;
6526 int idle;
6527 int curr_events;
6528
6529 idle = 1;
6530 rcu_read_lock();
6531 rdev_for_each_rcu(rdev, mddev) {
6532 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6533 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6534 (int)part_stat_read(&disk->part0, sectors[1]) -
6535 atomic_read(&disk->sync_io);
6536 /* sync IO will cause sync_io to increase before the disk_stats
6537 * as sync_io is counted when a request starts, and
6538 * disk_stats is counted when it completes.
6539 * So resync activity will cause curr_events to be smaller than
6540 * when there was no such activity.
6541 * non-sync IO will cause disk_stat to increase without
6542 * increasing sync_io so curr_events will (eventually)
6543 * be larger than it was before. Once it becomes
6544 * substantially larger, the test below will cause
6545 * the array to appear non-idle, and resync will slow
6546 * down.
6547 * If there is a lot of outstanding resync activity when
6548 * we set last_event to curr_events, then all that activity
6549 * completing might cause the array to appear non-idle
6550 * and resync will be slowed down even though there might
6551 * not have been non-resync activity. This will only
6552 * happen once though. 'last_events' will soon reflect
6553 * the state where there is little or no outstanding
6554 * resync requests, and further resync activity will
6555 * always make curr_events less than last_events.
6556 *
6557 */
6558 if (init || curr_events - rdev->last_events > 64) {
6559 rdev->last_events = curr_events;
6560 idle = 0;
6561 }
6562 }
6563 rcu_read_unlock();
6564 return idle;
6565 }
6566
6567 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6568 {
6569 /* another "blocks" (512byte) blocks have been synced */
6570 atomic_sub(blocks, &mddev->recovery_active);
6571 wake_up(&mddev->recovery_wait);
6572 if (!ok) {
6573 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6574 md_wakeup_thread(mddev->thread);
6575 // stop recovery, signal do_sync ....
6576 }
6577 }
6578
6579
6580 /* md_write_start(mddev, bi)
6581 * If we need to update some array metadata (e.g. 'active' flag
6582 * in superblock) before writing, schedule a superblock update
6583 * and wait for it to complete.
6584 */
6585 void md_write_start(mddev_t *mddev, struct bio *bi)
6586 {
6587 int did_change = 0;
6588 if (bio_data_dir(bi) != WRITE)
6589 return;
6590
6591 BUG_ON(mddev->ro == 1);
6592 if (mddev->ro == 2) {
6593 /* need to switch to read/write */
6594 mddev->ro = 0;
6595 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6596 md_wakeup_thread(mddev->thread);
6597 md_wakeup_thread(mddev->sync_thread);
6598 did_change = 1;
6599 }
6600 atomic_inc(&mddev->writes_pending);
6601 if (mddev->safemode == 1)
6602 mddev->safemode = 0;
6603 if (mddev->in_sync) {
6604 spin_lock_irq(&mddev->write_lock);
6605 if (mddev->in_sync) {
6606 mddev->in_sync = 0;
6607 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6608 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6609 md_wakeup_thread(mddev->thread);
6610 did_change = 1;
6611 }
6612 spin_unlock_irq(&mddev->write_lock);
6613 }
6614 if (did_change)
6615 sysfs_notify_dirent_safe(mddev->sysfs_state);
6616 wait_event(mddev->sb_wait,
6617 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6618 }
6619
6620 void md_write_end(mddev_t *mddev)
6621 {
6622 if (atomic_dec_and_test(&mddev->writes_pending)) {
6623 if (mddev->safemode == 2)
6624 md_wakeup_thread(mddev->thread);
6625 else if (mddev->safemode_delay)
6626 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6627 }
6628 }
6629
6630 /* md_allow_write(mddev)
6631 * Calling this ensures that the array is marked 'active' so that writes
6632 * may proceed without blocking. It is important to call this before
6633 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6634 * Must be called with mddev_lock held.
6635 *
6636 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6637 * is dropped, so return -EAGAIN after notifying userspace.
6638 */
6639 int md_allow_write(mddev_t *mddev)
6640 {
6641 if (!mddev->pers)
6642 return 0;
6643 if (mddev->ro)
6644 return 0;
6645 if (!mddev->pers->sync_request)
6646 return 0;
6647
6648 spin_lock_irq(&mddev->write_lock);
6649 if (mddev->in_sync) {
6650 mddev->in_sync = 0;
6651 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6652 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6653 if (mddev->safemode_delay &&
6654 mddev->safemode == 0)
6655 mddev->safemode = 1;
6656 spin_unlock_irq(&mddev->write_lock);
6657 md_update_sb(mddev, 0);
6658 sysfs_notify_dirent_safe(mddev->sysfs_state);
6659 } else
6660 spin_unlock_irq(&mddev->write_lock);
6661
6662 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6663 return -EAGAIN;
6664 else
6665 return 0;
6666 }
6667 EXPORT_SYMBOL_GPL(md_allow_write);
6668
6669 void md_unplug(mddev_t *mddev)
6670 {
6671 if (mddev->plug)
6672 mddev->plug->unplug_fn(mddev->plug);
6673 }
6674
6675 #define SYNC_MARKS 10
6676 #define SYNC_MARK_STEP (3*HZ)
6677 void md_do_sync(mddev_t *mddev)
6678 {
6679 mddev_t *mddev2;
6680 unsigned int currspeed = 0,
6681 window;
6682 sector_t max_sectors,j, io_sectors;
6683 unsigned long mark[SYNC_MARKS];
6684 sector_t mark_cnt[SYNC_MARKS];
6685 int last_mark,m;
6686 struct list_head *tmp;
6687 sector_t last_check;
6688 int skipped = 0;
6689 mdk_rdev_t *rdev;
6690 char *desc;
6691
6692 /* just incase thread restarts... */
6693 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6694 return;
6695 if (mddev->ro) /* never try to sync a read-only array */
6696 return;
6697
6698 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6699 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6700 desc = "data-check";
6701 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6702 desc = "requested-resync";
6703 else
6704 desc = "resync";
6705 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6706 desc = "reshape";
6707 else
6708 desc = "recovery";
6709
6710 /* we overload curr_resync somewhat here.
6711 * 0 == not engaged in resync at all
6712 * 2 == checking that there is no conflict with another sync
6713 * 1 == like 2, but have yielded to allow conflicting resync to
6714 * commense
6715 * other == active in resync - this many blocks
6716 *
6717 * Before starting a resync we must have set curr_resync to
6718 * 2, and then checked that every "conflicting" array has curr_resync
6719 * less than ours. When we find one that is the same or higher
6720 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6721 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6722 * This will mean we have to start checking from the beginning again.
6723 *
6724 */
6725
6726 do {
6727 mddev->curr_resync = 2;
6728
6729 try_again:
6730 if (kthread_should_stop())
6731 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6732
6733 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6734 goto skip;
6735 for_each_mddev(mddev2, tmp) {
6736 if (mddev2 == mddev)
6737 continue;
6738 if (!mddev->parallel_resync
6739 && mddev2->curr_resync
6740 && match_mddev_units(mddev, mddev2)) {
6741 DEFINE_WAIT(wq);
6742 if (mddev < mddev2 && mddev->curr_resync == 2) {
6743 /* arbitrarily yield */
6744 mddev->curr_resync = 1;
6745 wake_up(&resync_wait);
6746 }
6747 if (mddev > mddev2 && mddev->curr_resync == 1)
6748 /* no need to wait here, we can wait the next
6749 * time 'round when curr_resync == 2
6750 */
6751 continue;
6752 /* We need to wait 'interruptible' so as not to
6753 * contribute to the load average, and not to
6754 * be caught by 'softlockup'
6755 */
6756 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6757 if (!kthread_should_stop() &&
6758 mddev2->curr_resync >= mddev->curr_resync) {
6759 printk(KERN_INFO "md: delaying %s of %s"
6760 " until %s has finished (they"
6761 " share one or more physical units)\n",
6762 desc, mdname(mddev), mdname(mddev2));
6763 mddev_put(mddev2);
6764 if (signal_pending(current))
6765 flush_signals(current);
6766 schedule();
6767 finish_wait(&resync_wait, &wq);
6768 goto try_again;
6769 }
6770 finish_wait(&resync_wait, &wq);
6771 }
6772 }
6773 } while (mddev->curr_resync < 2);
6774
6775 j = 0;
6776 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6777 /* resync follows the size requested by the personality,
6778 * which defaults to physical size, but can be virtual size
6779 */
6780 max_sectors = mddev->resync_max_sectors;
6781 mddev->resync_mismatches = 0;
6782 /* we don't use the checkpoint if there's a bitmap */
6783 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6784 j = mddev->resync_min;
6785 else if (!mddev->bitmap)
6786 j = mddev->recovery_cp;
6787
6788 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6789 max_sectors = mddev->dev_sectors;
6790 else {
6791 /* recovery follows the physical size of devices */
6792 max_sectors = mddev->dev_sectors;
6793 j = MaxSector;
6794 rcu_read_lock();
6795 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6796 if (rdev->raid_disk >= 0 &&
6797 !test_bit(Faulty, &rdev->flags) &&
6798 !test_bit(In_sync, &rdev->flags) &&
6799 rdev->recovery_offset < j)
6800 j = rdev->recovery_offset;
6801 rcu_read_unlock();
6802 }
6803
6804 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6805 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6806 " %d KB/sec/disk.\n", speed_min(mddev));
6807 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6808 "(but not more than %d KB/sec) for %s.\n",
6809 speed_max(mddev), desc);
6810
6811 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6812
6813 io_sectors = 0;
6814 for (m = 0; m < SYNC_MARKS; m++) {
6815 mark[m] = jiffies;
6816 mark_cnt[m] = io_sectors;
6817 }
6818 last_mark = 0;
6819 mddev->resync_mark = mark[last_mark];
6820 mddev->resync_mark_cnt = mark_cnt[last_mark];
6821
6822 /*
6823 * Tune reconstruction:
6824 */
6825 window = 32*(PAGE_SIZE/512);
6826 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6827 window/2,(unsigned long long) max_sectors/2);
6828
6829 atomic_set(&mddev->recovery_active, 0);
6830 last_check = 0;
6831
6832 if (j>2) {
6833 printk(KERN_INFO
6834 "md: resuming %s of %s from checkpoint.\n",
6835 desc, mdname(mddev));
6836 mddev->curr_resync = j;
6837 }
6838 mddev->curr_resync_completed = j;
6839
6840 while (j < max_sectors) {
6841 sector_t sectors;
6842
6843 skipped = 0;
6844
6845 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6846 ((mddev->curr_resync > mddev->curr_resync_completed &&
6847 (mddev->curr_resync - mddev->curr_resync_completed)
6848 > (max_sectors >> 4)) ||
6849 (j - mddev->curr_resync_completed)*2
6850 >= mddev->resync_max - mddev->curr_resync_completed
6851 )) {
6852 /* time to update curr_resync_completed */
6853 wait_event(mddev->recovery_wait,
6854 atomic_read(&mddev->recovery_active) == 0);
6855 mddev->curr_resync_completed = j;
6856 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6857 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6858 }
6859
6860 while (j >= mddev->resync_max && !kthread_should_stop()) {
6861 /* As this condition is controlled by user-space,
6862 * we can block indefinitely, so use '_interruptible'
6863 * to avoid triggering warnings.
6864 */
6865 flush_signals(current); /* just in case */
6866 wait_event_interruptible(mddev->recovery_wait,
6867 mddev->resync_max > j
6868 || kthread_should_stop());
6869 }
6870
6871 if (kthread_should_stop())
6872 goto interrupted;
6873
6874 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6875 currspeed < speed_min(mddev));
6876 if (sectors == 0) {
6877 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6878 goto out;
6879 }
6880
6881 if (!skipped) { /* actual IO requested */
6882 io_sectors += sectors;
6883 atomic_add(sectors, &mddev->recovery_active);
6884 }
6885
6886 j += sectors;
6887 if (j>1) mddev->curr_resync = j;
6888 mddev->curr_mark_cnt = io_sectors;
6889 if (last_check == 0)
6890 /* this is the earliers that rebuilt will be
6891 * visible in /proc/mdstat
6892 */
6893 md_new_event(mddev);
6894
6895 if (last_check + window > io_sectors || j == max_sectors)
6896 continue;
6897
6898 last_check = io_sectors;
6899
6900 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6901 break;
6902
6903 repeat:
6904 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6905 /* step marks */
6906 int next = (last_mark+1) % SYNC_MARKS;
6907
6908 mddev->resync_mark = mark[next];
6909 mddev->resync_mark_cnt = mark_cnt[next];
6910 mark[next] = jiffies;
6911 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6912 last_mark = next;
6913 }
6914
6915
6916 if (kthread_should_stop())
6917 goto interrupted;
6918
6919
6920 /*
6921 * this loop exits only if either when we are slower than
6922 * the 'hard' speed limit, or the system was IO-idle for
6923 * a jiffy.
6924 * the system might be non-idle CPU-wise, but we only care
6925 * about not overloading the IO subsystem. (things like an
6926 * e2fsck being done on the RAID array should execute fast)
6927 */
6928 cond_resched();
6929
6930 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6931 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6932
6933 if (currspeed > speed_min(mddev)) {
6934 if ((currspeed > speed_max(mddev)) ||
6935 !is_mddev_idle(mddev, 0)) {
6936 msleep(500);
6937 goto repeat;
6938 }
6939 }
6940 }
6941 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6942 /*
6943 * this also signals 'finished resyncing' to md_stop
6944 */
6945 out:
6946 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6947
6948 /* tell personality that we are finished */
6949 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6950
6951 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6952 mddev->curr_resync > 2) {
6953 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6954 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6955 if (mddev->curr_resync >= mddev->recovery_cp) {
6956 printk(KERN_INFO
6957 "md: checkpointing %s of %s.\n",
6958 desc, mdname(mddev));
6959 mddev->recovery_cp = mddev->curr_resync;
6960 }
6961 } else
6962 mddev->recovery_cp = MaxSector;
6963 } else {
6964 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6965 mddev->curr_resync = MaxSector;
6966 rcu_read_lock();
6967 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6968 if (rdev->raid_disk >= 0 &&
6969 mddev->delta_disks >= 0 &&
6970 !test_bit(Faulty, &rdev->flags) &&
6971 !test_bit(In_sync, &rdev->flags) &&
6972 rdev->recovery_offset < mddev->curr_resync)
6973 rdev->recovery_offset = mddev->curr_resync;
6974 rcu_read_unlock();
6975 }
6976 }
6977 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6978
6979 skip:
6980 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6981 /* We completed so min/max setting can be forgotten if used. */
6982 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6983 mddev->resync_min = 0;
6984 mddev->resync_max = MaxSector;
6985 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6986 mddev->resync_min = mddev->curr_resync_completed;
6987 mddev->curr_resync = 0;
6988 wake_up(&resync_wait);
6989 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6990 md_wakeup_thread(mddev->thread);
6991 return;
6992
6993 interrupted:
6994 /*
6995 * got a signal, exit.
6996 */
6997 printk(KERN_INFO
6998 "md: md_do_sync() got signal ... exiting\n");
6999 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7000 goto out;
7001
7002 }
7003 EXPORT_SYMBOL_GPL(md_do_sync);
7004
7005
7006 static int remove_and_add_spares(mddev_t *mddev)
7007 {
7008 mdk_rdev_t *rdev;
7009 int spares = 0;
7010
7011 mddev->curr_resync_completed = 0;
7012
7013 list_for_each_entry(rdev, &mddev->disks, same_set)
7014 if (rdev->raid_disk >= 0 &&
7015 !test_bit(Blocked, &rdev->flags) &&
7016 (test_bit(Faulty, &rdev->flags) ||
7017 ! test_bit(In_sync, &rdev->flags)) &&
7018 atomic_read(&rdev->nr_pending)==0) {
7019 if (mddev->pers->hot_remove_disk(
7020 mddev, rdev->raid_disk)==0) {
7021 char nm[20];
7022 sprintf(nm,"rd%d", rdev->raid_disk);
7023 sysfs_remove_link(&mddev->kobj, nm);
7024 rdev->raid_disk = -1;
7025 }
7026 }
7027
7028 if (mddev->degraded && !mddev->recovery_disabled) {
7029 list_for_each_entry(rdev, &mddev->disks, same_set) {
7030 if (rdev->raid_disk >= 0 &&
7031 !test_bit(In_sync, &rdev->flags) &&
7032 !test_bit(Blocked, &rdev->flags))
7033 spares++;
7034 if (rdev->raid_disk < 0
7035 && !test_bit(Faulty, &rdev->flags)) {
7036 rdev->recovery_offset = 0;
7037 if (mddev->pers->
7038 hot_add_disk(mddev, rdev) == 0) {
7039 char nm[20];
7040 sprintf(nm, "rd%d", rdev->raid_disk);
7041 if (sysfs_create_link(&mddev->kobj,
7042 &rdev->kobj, nm))
7043 /* failure here is OK */;
7044 spares++;
7045 md_new_event(mddev);
7046 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7047 } else
7048 break;
7049 }
7050 }
7051 }
7052 return spares;
7053 }
7054
7055 static void reap_sync_thread(mddev_t *mddev)
7056 {
7057 mdk_rdev_t *rdev;
7058
7059 /* resync has finished, collect result */
7060 md_unregister_thread(mddev->sync_thread);
7061 mddev->sync_thread = NULL;
7062 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7063 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7064 /* success...*/
7065 /* activate any spares */
7066 if (mddev->pers->spare_active(mddev))
7067 sysfs_notify(&mddev->kobj, NULL,
7068 "degraded");
7069 }
7070 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7071 mddev->pers->finish_reshape)
7072 mddev->pers->finish_reshape(mddev);
7073 md_update_sb(mddev, 1);
7074
7075 /* if array is no-longer degraded, then any saved_raid_disk
7076 * information must be scrapped
7077 */
7078 if (!mddev->degraded)
7079 list_for_each_entry(rdev, &mddev->disks, same_set)
7080 rdev->saved_raid_disk = -1;
7081
7082 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7083 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7084 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7085 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7086 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7087 /* flag recovery needed just to double check */
7088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7089 sysfs_notify_dirent_safe(mddev->sysfs_action);
7090 md_new_event(mddev);
7091 }
7092
7093 /*
7094 * This routine is regularly called by all per-raid-array threads to
7095 * deal with generic issues like resync and super-block update.
7096 * Raid personalities that don't have a thread (linear/raid0) do not
7097 * need this as they never do any recovery or update the superblock.
7098 *
7099 * It does not do any resync itself, but rather "forks" off other threads
7100 * to do that as needed.
7101 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7102 * "->recovery" and create a thread at ->sync_thread.
7103 * When the thread finishes it sets MD_RECOVERY_DONE
7104 * and wakeups up this thread which will reap the thread and finish up.
7105 * This thread also removes any faulty devices (with nr_pending == 0).
7106 *
7107 * The overall approach is:
7108 * 1/ if the superblock needs updating, update it.
7109 * 2/ If a recovery thread is running, don't do anything else.
7110 * 3/ If recovery has finished, clean up, possibly marking spares active.
7111 * 4/ If there are any faulty devices, remove them.
7112 * 5/ If array is degraded, try to add spares devices
7113 * 6/ If array has spares or is not in-sync, start a resync thread.
7114 */
7115 void md_check_recovery(mddev_t *mddev)
7116 {
7117 if (mddev->bitmap)
7118 bitmap_daemon_work(mddev);
7119
7120 if (mddev->ro)
7121 return;
7122
7123 if (signal_pending(current)) {
7124 if (mddev->pers->sync_request && !mddev->external) {
7125 printk(KERN_INFO "md: %s in immediate safe mode\n",
7126 mdname(mddev));
7127 mddev->safemode = 2;
7128 }
7129 flush_signals(current);
7130 }
7131
7132 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7133 return;
7134 if ( ! (
7135 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7136 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7137 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7138 (mddev->external == 0 && mddev->safemode == 1) ||
7139 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7140 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7141 ))
7142 return;
7143
7144 if (mddev_trylock(mddev)) {
7145 int spares = 0;
7146
7147 if (mddev->ro) {
7148 /* Only thing we do on a ro array is remove
7149 * failed devices.
7150 */
7151 mdk_rdev_t *rdev;
7152 list_for_each_entry(rdev, &mddev->disks, same_set)
7153 if (rdev->raid_disk >= 0 &&
7154 !test_bit(Blocked, &rdev->flags) &&
7155 test_bit(Faulty, &rdev->flags) &&
7156 atomic_read(&rdev->nr_pending)==0) {
7157 if (mddev->pers->hot_remove_disk(
7158 mddev, rdev->raid_disk)==0) {
7159 char nm[20];
7160 sprintf(nm,"rd%d", rdev->raid_disk);
7161 sysfs_remove_link(&mddev->kobj, nm);
7162 rdev->raid_disk = -1;
7163 }
7164 }
7165 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7166 goto unlock;
7167 }
7168
7169 if (!mddev->external) {
7170 int did_change = 0;
7171 spin_lock_irq(&mddev->write_lock);
7172 if (mddev->safemode &&
7173 !atomic_read(&mddev->writes_pending) &&
7174 !mddev->in_sync &&
7175 mddev->recovery_cp == MaxSector) {
7176 mddev->in_sync = 1;
7177 did_change = 1;
7178 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7179 }
7180 if (mddev->safemode == 1)
7181 mddev->safemode = 0;
7182 spin_unlock_irq(&mddev->write_lock);
7183 if (did_change)
7184 sysfs_notify_dirent_safe(mddev->sysfs_state);
7185 }
7186
7187 if (mddev->flags)
7188 md_update_sb(mddev, 0);
7189
7190 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7191 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7192 /* resync/recovery still happening */
7193 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7194 goto unlock;
7195 }
7196 if (mddev->sync_thread) {
7197 reap_sync_thread(mddev);
7198 goto unlock;
7199 }
7200 /* Set RUNNING before clearing NEEDED to avoid
7201 * any transients in the value of "sync_action".
7202 */
7203 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7204 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7205 /* Clear some bits that don't mean anything, but
7206 * might be left set
7207 */
7208 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7209 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7210
7211 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7212 goto unlock;
7213 /* no recovery is running.
7214 * remove any failed drives, then
7215 * add spares if possible.
7216 * Spare are also removed and re-added, to allow
7217 * the personality to fail the re-add.
7218 */
7219
7220 if (mddev->reshape_position != MaxSector) {
7221 if (mddev->pers->check_reshape == NULL ||
7222 mddev->pers->check_reshape(mddev) != 0)
7223 /* Cannot proceed */
7224 goto unlock;
7225 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7226 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7227 } else if ((spares = remove_and_add_spares(mddev))) {
7228 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7229 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7230 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7231 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7232 } else if (mddev->recovery_cp < MaxSector) {
7233 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7234 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7235 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7236 /* nothing to be done ... */
7237 goto unlock;
7238
7239 if (mddev->pers->sync_request) {
7240 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7241 /* We are adding a device or devices to an array
7242 * which has the bitmap stored on all devices.
7243 * So make sure all bitmap pages get written
7244 */
7245 bitmap_write_all(mddev->bitmap);
7246 }
7247 mddev->sync_thread = md_register_thread(md_do_sync,
7248 mddev,
7249 "resync");
7250 if (!mddev->sync_thread) {
7251 printk(KERN_ERR "%s: could not start resync"
7252 " thread...\n",
7253 mdname(mddev));
7254 /* leave the spares where they are, it shouldn't hurt */
7255 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7256 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7257 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7258 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7259 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7260 } else
7261 md_wakeup_thread(mddev->sync_thread);
7262 sysfs_notify_dirent_safe(mddev->sysfs_action);
7263 md_new_event(mddev);
7264 }
7265 unlock:
7266 if (!mddev->sync_thread) {
7267 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7268 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7269 &mddev->recovery))
7270 if (mddev->sysfs_action)
7271 sysfs_notify_dirent_safe(mddev->sysfs_action);
7272 }
7273 mddev_unlock(mddev);
7274 }
7275 }
7276
7277 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7278 {
7279 sysfs_notify_dirent_safe(rdev->sysfs_state);
7280 wait_event_timeout(rdev->blocked_wait,
7281 !test_bit(Blocked, &rdev->flags),
7282 msecs_to_jiffies(5000));
7283 rdev_dec_pending(rdev, mddev);
7284 }
7285 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7286
7287 static int md_notify_reboot(struct notifier_block *this,
7288 unsigned long code, void *x)
7289 {
7290 struct list_head *tmp;
7291 mddev_t *mddev;
7292
7293 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7294
7295 printk(KERN_INFO "md: stopping all md devices.\n");
7296
7297 for_each_mddev(mddev, tmp)
7298 if (mddev_trylock(mddev)) {
7299 /* Force a switch to readonly even array
7300 * appears to still be in use. Hence
7301 * the '100'.
7302 */
7303 md_set_readonly(mddev, 100);
7304 mddev_unlock(mddev);
7305 }
7306 /*
7307 * certain more exotic SCSI devices are known to be
7308 * volatile wrt too early system reboots. While the
7309 * right place to handle this issue is the given
7310 * driver, we do want to have a safe RAID driver ...
7311 */
7312 mdelay(1000*1);
7313 }
7314 return NOTIFY_DONE;
7315 }
7316
7317 static struct notifier_block md_notifier = {
7318 .notifier_call = md_notify_reboot,
7319 .next = NULL,
7320 .priority = INT_MAX, /* before any real devices */
7321 };
7322
7323 static void md_geninit(void)
7324 {
7325 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7326
7327 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7328 }
7329
7330 static int __init md_init(void)
7331 {
7332 int ret = -ENOMEM;
7333
7334 md_wq = alloc_workqueue("md", WQ_RESCUER, 0);
7335 if (!md_wq)
7336 goto err_wq;
7337
7338 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7339 if (!md_misc_wq)
7340 goto err_misc_wq;
7341
7342 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7343 goto err_md;
7344
7345 if ((ret = register_blkdev(0, "mdp")) < 0)
7346 goto err_mdp;
7347 mdp_major = ret;
7348
7349 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7350 md_probe, NULL, NULL);
7351 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7352 md_probe, NULL, NULL);
7353
7354 register_reboot_notifier(&md_notifier);
7355 raid_table_header = register_sysctl_table(raid_root_table);
7356
7357 md_geninit();
7358 return 0;
7359
7360 err_mdp:
7361 unregister_blkdev(MD_MAJOR, "md");
7362 err_md:
7363 destroy_workqueue(md_misc_wq);
7364 err_misc_wq:
7365 destroy_workqueue(md_wq);
7366 err_wq:
7367 return ret;
7368 }
7369
7370 #ifndef MODULE
7371
7372 /*
7373 * Searches all registered partitions for autorun RAID arrays
7374 * at boot time.
7375 */
7376
7377 static LIST_HEAD(all_detected_devices);
7378 struct detected_devices_node {
7379 struct list_head list;
7380 dev_t dev;
7381 };
7382
7383 void md_autodetect_dev(dev_t dev)
7384 {
7385 struct detected_devices_node *node_detected_dev;
7386
7387 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7388 if (node_detected_dev) {
7389 node_detected_dev->dev = dev;
7390 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7391 } else {
7392 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7393 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7394 }
7395 }
7396
7397
7398 static void autostart_arrays(int part)
7399 {
7400 mdk_rdev_t *rdev;
7401 struct detected_devices_node *node_detected_dev;
7402 dev_t dev;
7403 int i_scanned, i_passed;
7404
7405 i_scanned = 0;
7406 i_passed = 0;
7407
7408 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7409
7410 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7411 i_scanned++;
7412 node_detected_dev = list_entry(all_detected_devices.next,
7413 struct detected_devices_node, list);
7414 list_del(&node_detected_dev->list);
7415 dev = node_detected_dev->dev;
7416 kfree(node_detected_dev);
7417 rdev = md_import_device(dev,0, 90);
7418 if (IS_ERR(rdev))
7419 continue;
7420
7421 if (test_bit(Faulty, &rdev->flags)) {
7422 MD_BUG();
7423 continue;
7424 }
7425 set_bit(AutoDetected, &rdev->flags);
7426 list_add(&rdev->same_set, &pending_raid_disks);
7427 i_passed++;
7428 }
7429
7430 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7431 i_scanned, i_passed);
7432
7433 autorun_devices(part);
7434 }
7435
7436 #endif /* !MODULE */
7437
7438 static __exit void md_exit(void)
7439 {
7440 mddev_t *mddev;
7441 struct list_head *tmp;
7442
7443 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7444 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7445
7446 unregister_blkdev(MD_MAJOR,"md");
7447 unregister_blkdev(mdp_major, "mdp");
7448 unregister_reboot_notifier(&md_notifier);
7449 unregister_sysctl_table(raid_table_header);
7450 remove_proc_entry("mdstat", NULL);
7451 for_each_mddev(mddev, tmp) {
7452 export_array(mddev);
7453 mddev->hold_active = 0;
7454 }
7455 destroy_workqueue(md_misc_wq);
7456 destroy_workqueue(md_wq);
7457 }
7458
7459 subsys_initcall(md_init);
7460 module_exit(md_exit)
7461
7462 static int get_ro(char *buffer, struct kernel_param *kp)
7463 {
7464 return sprintf(buffer, "%d", start_readonly);
7465 }
7466 static int set_ro(const char *val, struct kernel_param *kp)
7467 {
7468 char *e;
7469 int num = simple_strtoul(val, &e, 10);
7470 if (*val && (*e == '\0' || *e == '\n')) {
7471 start_readonly = num;
7472 return 0;
7473 }
7474 return -EINVAL;
7475 }
7476
7477 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7478 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7479
7480 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7481
7482 EXPORT_SYMBOL(register_md_personality);
7483 EXPORT_SYMBOL(unregister_md_personality);
7484 EXPORT_SYMBOL(md_error);
7485 EXPORT_SYMBOL(md_done_sync);
7486 EXPORT_SYMBOL(md_write_start);
7487 EXPORT_SYMBOL(md_write_end);
7488 EXPORT_SYMBOL(md_register_thread);
7489 EXPORT_SYMBOL(md_unregister_thread);
7490 EXPORT_SYMBOL(md_wakeup_thread);
7491 EXPORT_SYMBOL(md_check_recovery);
7492 MODULE_LICENSE("GPL");
7493 MODULE_DESCRIPTION("MD RAID framework");
7494 MODULE_ALIAS("md");
7495 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);