]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/md.c
Merge branch 'for-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[mirror_ubuntu-bionic-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75 /*
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
79 */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
117 },
118 {
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
124 },
125 { }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
144 },
145 { }
146 };
147
148 static const struct block_device_operations md_fops;
149
150 static int start_readonly;
151
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
154 */
155
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158 mddev_t *mddev, **mddevp;
159
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
162
163 bio_free(bio, mddev->bio_set);
164 }
165
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
168 {
169 struct bio *b;
170 mddev_t **mddevp;
171
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
174
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
188 {
189 struct bio *b;
190 mddev_t **mddevp;
191
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
194
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
205
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
211 }
212 }
213
214 return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217
218 /*
219 * We have a system wide 'event count' that is incremented
220 * on any 'interesting' event, and readers of /proc/mdstat
221 * can use 'poll' or 'select' to find out when the event
222 * count increases.
223 *
224 * Events are:
225 * start array, stop array, error, add device, remove device,
226 * start build, activate spare
227 */
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
231 {
232 atomic_inc(&md_event_count);
233 wake_up(&md_event_waiters);
234 }
235 EXPORT_SYMBOL_GPL(md_new_event);
236
237 /* Alternate version that can be called from interrupts
238 * when calling sysfs_notify isn't needed.
239 */
240 static void md_new_event_inintr(mddev_t *mddev)
241 {
242 atomic_inc(&md_event_count);
243 wake_up(&md_event_waiters);
244 }
245
246 /*
247 * Enables to iterate over all existing md arrays
248 * all_mddevs_lock protects this list.
249 */
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
252
253
254 /*
255 * iterates through all used mddevs in the system.
256 * We take care to grab the all_mddevs_lock whenever navigating
257 * the list, and to always hold a refcount when unlocked.
258 * Any code which breaks out of this loop while own
259 * a reference to the current mddev and must mddev_put it.
260 */
261 #define for_each_mddev(mddev,tmp) \
262 \
263 for (({ spin_lock(&all_mddevs_lock); \
264 tmp = all_mddevs.next; \
265 mddev = NULL;}); \
266 ({ if (tmp != &all_mddevs) \
267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 spin_unlock(&all_mddevs_lock); \
269 if (mddev) mddev_put(mddev); \
270 mddev = list_entry(tmp, mddev_t, all_mddevs); \
271 tmp != &all_mddevs;}); \
272 ({ spin_lock(&all_mddevs_lock); \
273 tmp = tmp->next;}) \
274 )
275
276
277 /* Rather than calling directly into the personality make_request function,
278 * IO requests come here first so that we can check if the device is
279 * being suspended pending a reconfiguration.
280 * We hold a refcount over the call to ->make_request. By the time that
281 * call has finished, the bio has been linked into some internal structure
282 * and so is visible to ->quiesce(), so we don't need the refcount any more.
283 */
284 static int md_make_request(struct request_queue *q, struct bio *bio)
285 {
286 const int rw = bio_data_dir(bio);
287 mddev_t *mddev = q->queuedata;
288 int rv;
289 int cpu;
290 unsigned int sectors;
291
292 if (mddev == NULL || mddev->pers == NULL
293 || !mddev->ready) {
294 bio_io_error(bio);
295 return 0;
296 }
297 smp_rmb(); /* Ensure implications of 'active' are visible */
298 rcu_read_lock();
299 if (mddev->suspended) {
300 DEFINE_WAIT(__wait);
301 for (;;) {
302 prepare_to_wait(&mddev->sb_wait, &__wait,
303 TASK_UNINTERRUPTIBLE);
304 if (!mddev->suspended)
305 break;
306 rcu_read_unlock();
307 schedule();
308 rcu_read_lock();
309 }
310 finish_wait(&mddev->sb_wait, &__wait);
311 }
312 atomic_inc(&mddev->active_io);
313 rcu_read_unlock();
314
315 /*
316 * save the sectors now since our bio can
317 * go away inside make_request
318 */
319 sectors = bio_sectors(bio);
320 rv = mddev->pers->make_request(mddev, bio);
321
322 cpu = part_stat_lock();
323 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
324 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
325 part_stat_unlock();
326
327 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
328 wake_up(&mddev->sb_wait);
329
330 return rv;
331 }
332
333 /* mddev_suspend makes sure no new requests are submitted
334 * to the device, and that any requests that have been submitted
335 * are completely handled.
336 * Once ->stop is called and completes, the module will be completely
337 * unused.
338 */
339 void mddev_suspend(mddev_t *mddev)
340 {
341 BUG_ON(mddev->suspended);
342 mddev->suspended = 1;
343 synchronize_rcu();
344 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
345 mddev->pers->quiesce(mddev, 1);
346 }
347 EXPORT_SYMBOL_GPL(mddev_suspend);
348
349 void mddev_resume(mddev_t *mddev)
350 {
351 mddev->suspended = 0;
352 wake_up(&mddev->sb_wait);
353 mddev->pers->quiesce(mddev, 0);
354 }
355 EXPORT_SYMBOL_GPL(mddev_resume);
356
357 int mddev_congested(mddev_t *mddev, int bits)
358 {
359 return mddev->suspended;
360 }
361 EXPORT_SYMBOL(mddev_congested);
362
363 /*
364 * Generic flush handling for md
365 */
366
367 static void md_end_flush(struct bio *bio, int err)
368 {
369 mdk_rdev_t *rdev = bio->bi_private;
370 mddev_t *mddev = rdev->mddev;
371
372 rdev_dec_pending(rdev, mddev);
373
374 if (atomic_dec_and_test(&mddev->flush_pending)) {
375 /* The pre-request flush has finished */
376 queue_work(md_wq, &mddev->flush_work);
377 }
378 bio_put(bio);
379 }
380
381 static void md_submit_flush_data(struct work_struct *ws);
382
383 static void submit_flushes(struct work_struct *ws)
384 {
385 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
386 mdk_rdev_t *rdev;
387
388 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
389 atomic_set(&mddev->flush_pending, 1);
390 rcu_read_lock();
391 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
392 if (rdev->raid_disk >= 0 &&
393 !test_bit(Faulty, &rdev->flags)) {
394 /* Take two references, one is dropped
395 * when request finishes, one after
396 * we reclaim rcu_read_lock
397 */
398 struct bio *bi;
399 atomic_inc(&rdev->nr_pending);
400 atomic_inc(&rdev->nr_pending);
401 rcu_read_unlock();
402 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
403 bi->bi_end_io = md_end_flush;
404 bi->bi_private = rdev;
405 bi->bi_bdev = rdev->bdev;
406 atomic_inc(&mddev->flush_pending);
407 submit_bio(WRITE_FLUSH, bi);
408 rcu_read_lock();
409 rdev_dec_pending(rdev, mddev);
410 }
411 rcu_read_unlock();
412 if (atomic_dec_and_test(&mddev->flush_pending))
413 queue_work(md_wq, &mddev->flush_work);
414 }
415
416 static void md_submit_flush_data(struct work_struct *ws)
417 {
418 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
419 struct bio *bio = mddev->flush_bio;
420
421 if (bio->bi_size == 0)
422 /* an empty barrier - all done */
423 bio_endio(bio, 0);
424 else {
425 bio->bi_rw &= ~REQ_FLUSH;
426 if (mddev->pers->make_request(mddev, bio))
427 generic_make_request(bio);
428 }
429
430 mddev->flush_bio = NULL;
431 wake_up(&mddev->sb_wait);
432 }
433
434 void md_flush_request(mddev_t *mddev, struct bio *bio)
435 {
436 spin_lock_irq(&mddev->write_lock);
437 wait_event_lock_irq(mddev->sb_wait,
438 !mddev->flush_bio,
439 mddev->write_lock, /*nothing*/);
440 mddev->flush_bio = bio;
441 spin_unlock_irq(&mddev->write_lock);
442
443 INIT_WORK(&mddev->flush_work, submit_flushes);
444 queue_work(md_wq, &mddev->flush_work);
445 }
446 EXPORT_SYMBOL(md_flush_request);
447
448 /* Support for plugging.
449 * This mirrors the plugging support in request_queue, but does not
450 * require having a whole queue
451 */
452 static void plugger_work(struct work_struct *work)
453 {
454 struct plug_handle *plug =
455 container_of(work, struct plug_handle, unplug_work);
456 plug->unplug_fn(plug);
457 }
458 static void plugger_timeout(unsigned long data)
459 {
460 struct plug_handle *plug = (void *)data;
461 kblockd_schedule_work(NULL, &plug->unplug_work);
462 }
463 void plugger_init(struct plug_handle *plug,
464 void (*unplug_fn)(struct plug_handle *))
465 {
466 plug->unplug_flag = 0;
467 plug->unplug_fn = unplug_fn;
468 init_timer(&plug->unplug_timer);
469 plug->unplug_timer.function = plugger_timeout;
470 plug->unplug_timer.data = (unsigned long)plug;
471 INIT_WORK(&plug->unplug_work, plugger_work);
472 }
473 EXPORT_SYMBOL_GPL(plugger_init);
474
475 void plugger_set_plug(struct plug_handle *plug)
476 {
477 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
478 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
479 }
480 EXPORT_SYMBOL_GPL(plugger_set_plug);
481
482 int plugger_remove_plug(struct plug_handle *plug)
483 {
484 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
485 del_timer(&plug->unplug_timer);
486 return 1;
487 } else
488 return 0;
489 }
490 EXPORT_SYMBOL_GPL(plugger_remove_plug);
491
492
493 static inline mddev_t *mddev_get(mddev_t *mddev)
494 {
495 atomic_inc(&mddev->active);
496 return mddev;
497 }
498
499 static void mddev_delayed_delete(struct work_struct *ws);
500
501 static void mddev_put(mddev_t *mddev)
502 {
503 struct bio_set *bs = NULL;
504
505 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
506 return;
507 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
508 mddev->ctime == 0 && !mddev->hold_active) {
509 /* Array is not configured at all, and not held active,
510 * so destroy it */
511 list_del(&mddev->all_mddevs);
512 bs = mddev->bio_set;
513 mddev->bio_set = NULL;
514 if (mddev->gendisk) {
515 /* We did a probe so need to clean up. Call
516 * queue_work inside the spinlock so that
517 * flush_workqueue() after mddev_find will
518 * succeed in waiting for the work to be done.
519 */
520 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
521 queue_work(md_misc_wq, &mddev->del_work);
522 } else
523 kfree(mddev);
524 }
525 spin_unlock(&all_mddevs_lock);
526 if (bs)
527 bioset_free(bs);
528 }
529
530 void mddev_init(mddev_t *mddev)
531 {
532 mutex_init(&mddev->open_mutex);
533 mutex_init(&mddev->reconfig_mutex);
534 mutex_init(&mddev->bitmap_info.mutex);
535 INIT_LIST_HEAD(&mddev->disks);
536 INIT_LIST_HEAD(&mddev->all_mddevs);
537 init_timer(&mddev->safemode_timer);
538 atomic_set(&mddev->active, 1);
539 atomic_set(&mddev->openers, 0);
540 atomic_set(&mddev->active_io, 0);
541 spin_lock_init(&mddev->write_lock);
542 atomic_set(&mddev->flush_pending, 0);
543 init_waitqueue_head(&mddev->sb_wait);
544 init_waitqueue_head(&mddev->recovery_wait);
545 mddev->reshape_position = MaxSector;
546 mddev->resync_min = 0;
547 mddev->resync_max = MaxSector;
548 mddev->level = LEVEL_NONE;
549 }
550 EXPORT_SYMBOL_GPL(mddev_init);
551
552 static mddev_t * mddev_find(dev_t unit)
553 {
554 mddev_t *mddev, *new = NULL;
555
556 if (unit && MAJOR(unit) != MD_MAJOR)
557 unit &= ~((1<<MdpMinorShift)-1);
558
559 retry:
560 spin_lock(&all_mddevs_lock);
561
562 if (unit) {
563 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
564 if (mddev->unit == unit) {
565 mddev_get(mddev);
566 spin_unlock(&all_mddevs_lock);
567 kfree(new);
568 return mddev;
569 }
570
571 if (new) {
572 list_add(&new->all_mddevs, &all_mddevs);
573 spin_unlock(&all_mddevs_lock);
574 new->hold_active = UNTIL_IOCTL;
575 return new;
576 }
577 } else if (new) {
578 /* find an unused unit number */
579 static int next_minor = 512;
580 int start = next_minor;
581 int is_free = 0;
582 int dev = 0;
583 while (!is_free) {
584 dev = MKDEV(MD_MAJOR, next_minor);
585 next_minor++;
586 if (next_minor > MINORMASK)
587 next_minor = 0;
588 if (next_minor == start) {
589 /* Oh dear, all in use. */
590 spin_unlock(&all_mddevs_lock);
591 kfree(new);
592 return NULL;
593 }
594
595 is_free = 1;
596 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
597 if (mddev->unit == dev) {
598 is_free = 0;
599 break;
600 }
601 }
602 new->unit = dev;
603 new->md_minor = MINOR(dev);
604 new->hold_active = UNTIL_STOP;
605 list_add(&new->all_mddevs, &all_mddevs);
606 spin_unlock(&all_mddevs_lock);
607 return new;
608 }
609 spin_unlock(&all_mddevs_lock);
610
611 new = kzalloc(sizeof(*new), GFP_KERNEL);
612 if (!new)
613 return NULL;
614
615 new->unit = unit;
616 if (MAJOR(unit) == MD_MAJOR)
617 new->md_minor = MINOR(unit);
618 else
619 new->md_minor = MINOR(unit) >> MdpMinorShift;
620
621 mddev_init(new);
622
623 goto retry;
624 }
625
626 static inline int mddev_lock(mddev_t * mddev)
627 {
628 return mutex_lock_interruptible(&mddev->reconfig_mutex);
629 }
630
631 static inline int mddev_is_locked(mddev_t *mddev)
632 {
633 return mutex_is_locked(&mddev->reconfig_mutex);
634 }
635
636 static inline int mddev_trylock(mddev_t * mddev)
637 {
638 return mutex_trylock(&mddev->reconfig_mutex);
639 }
640
641 static struct attribute_group md_redundancy_group;
642
643 static void mddev_unlock(mddev_t * mddev)
644 {
645 if (mddev->to_remove) {
646 /* These cannot be removed under reconfig_mutex as
647 * an access to the files will try to take reconfig_mutex
648 * while holding the file unremovable, which leads to
649 * a deadlock.
650 * So hold set sysfs_active while the remove in happeing,
651 * and anything else which might set ->to_remove or my
652 * otherwise change the sysfs namespace will fail with
653 * -EBUSY if sysfs_active is still set.
654 * We set sysfs_active under reconfig_mutex and elsewhere
655 * test it under the same mutex to ensure its correct value
656 * is seen.
657 */
658 struct attribute_group *to_remove = mddev->to_remove;
659 mddev->to_remove = NULL;
660 mddev->sysfs_active = 1;
661 mutex_unlock(&mddev->reconfig_mutex);
662
663 if (mddev->kobj.sd) {
664 if (to_remove != &md_redundancy_group)
665 sysfs_remove_group(&mddev->kobj, to_remove);
666 if (mddev->pers == NULL ||
667 mddev->pers->sync_request == NULL) {
668 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
669 if (mddev->sysfs_action)
670 sysfs_put(mddev->sysfs_action);
671 mddev->sysfs_action = NULL;
672 }
673 }
674 mddev->sysfs_active = 0;
675 } else
676 mutex_unlock(&mddev->reconfig_mutex);
677
678 md_wakeup_thread(mddev->thread);
679 }
680
681 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
682 {
683 mdk_rdev_t *rdev;
684
685 list_for_each_entry(rdev, &mddev->disks, same_set)
686 if (rdev->desc_nr == nr)
687 return rdev;
688
689 return NULL;
690 }
691
692 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
693 {
694 mdk_rdev_t *rdev;
695
696 list_for_each_entry(rdev, &mddev->disks, same_set)
697 if (rdev->bdev->bd_dev == dev)
698 return rdev;
699
700 return NULL;
701 }
702
703 static struct mdk_personality *find_pers(int level, char *clevel)
704 {
705 struct mdk_personality *pers;
706 list_for_each_entry(pers, &pers_list, list) {
707 if (level != LEVEL_NONE && pers->level == level)
708 return pers;
709 if (strcmp(pers->name, clevel)==0)
710 return pers;
711 }
712 return NULL;
713 }
714
715 /* return the offset of the super block in 512byte sectors */
716 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
717 {
718 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
719 return MD_NEW_SIZE_SECTORS(num_sectors);
720 }
721
722 static int alloc_disk_sb(mdk_rdev_t * rdev)
723 {
724 if (rdev->sb_page)
725 MD_BUG();
726
727 rdev->sb_page = alloc_page(GFP_KERNEL);
728 if (!rdev->sb_page) {
729 printk(KERN_ALERT "md: out of memory.\n");
730 return -ENOMEM;
731 }
732
733 return 0;
734 }
735
736 static void free_disk_sb(mdk_rdev_t * rdev)
737 {
738 if (rdev->sb_page) {
739 put_page(rdev->sb_page);
740 rdev->sb_loaded = 0;
741 rdev->sb_page = NULL;
742 rdev->sb_start = 0;
743 rdev->sectors = 0;
744 }
745 }
746
747
748 static void super_written(struct bio *bio, int error)
749 {
750 mdk_rdev_t *rdev = bio->bi_private;
751 mddev_t *mddev = rdev->mddev;
752
753 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
754 printk("md: super_written gets error=%d, uptodate=%d\n",
755 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
756 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
757 md_error(mddev, rdev);
758 }
759
760 if (atomic_dec_and_test(&mddev->pending_writes))
761 wake_up(&mddev->sb_wait);
762 bio_put(bio);
763 }
764
765 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
766 sector_t sector, int size, struct page *page)
767 {
768 /* write first size bytes of page to sector of rdev
769 * Increment mddev->pending_writes before returning
770 * and decrement it on completion, waking up sb_wait
771 * if zero is reached.
772 * If an error occurred, call md_error
773 */
774 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
775
776 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
777 bio->bi_sector = sector;
778 bio_add_page(bio, page, size, 0);
779 bio->bi_private = rdev;
780 bio->bi_end_io = super_written;
781
782 atomic_inc(&mddev->pending_writes);
783 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
784 bio);
785 }
786
787 void md_super_wait(mddev_t *mddev)
788 {
789 /* wait for all superblock writes that were scheduled to complete */
790 DEFINE_WAIT(wq);
791 for(;;) {
792 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
793 if (atomic_read(&mddev->pending_writes)==0)
794 break;
795 schedule();
796 }
797 finish_wait(&mddev->sb_wait, &wq);
798 }
799
800 static void bi_complete(struct bio *bio, int error)
801 {
802 complete((struct completion*)bio->bi_private);
803 }
804
805 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
806 struct page *page, int rw, bool metadata_op)
807 {
808 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
809 struct completion event;
810 int ret;
811
812 rw |= REQ_SYNC | REQ_UNPLUG;
813
814 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
815 rdev->meta_bdev : rdev->bdev;
816 if (metadata_op)
817 bio->bi_sector = sector + rdev->sb_start;
818 else
819 bio->bi_sector = sector + rdev->data_offset;
820 bio_add_page(bio, page, size, 0);
821 init_completion(&event);
822 bio->bi_private = &event;
823 bio->bi_end_io = bi_complete;
824 submit_bio(rw, bio);
825 wait_for_completion(&event);
826
827 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
828 bio_put(bio);
829 return ret;
830 }
831 EXPORT_SYMBOL_GPL(sync_page_io);
832
833 static int read_disk_sb(mdk_rdev_t * rdev, int size)
834 {
835 char b[BDEVNAME_SIZE];
836 if (!rdev->sb_page) {
837 MD_BUG();
838 return -EINVAL;
839 }
840 if (rdev->sb_loaded)
841 return 0;
842
843
844 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
845 goto fail;
846 rdev->sb_loaded = 1;
847 return 0;
848
849 fail:
850 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
851 bdevname(rdev->bdev,b));
852 return -EINVAL;
853 }
854
855 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
856 {
857 return sb1->set_uuid0 == sb2->set_uuid0 &&
858 sb1->set_uuid1 == sb2->set_uuid1 &&
859 sb1->set_uuid2 == sb2->set_uuid2 &&
860 sb1->set_uuid3 == sb2->set_uuid3;
861 }
862
863 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
864 {
865 int ret;
866 mdp_super_t *tmp1, *tmp2;
867
868 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
869 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
870
871 if (!tmp1 || !tmp2) {
872 ret = 0;
873 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
874 goto abort;
875 }
876
877 *tmp1 = *sb1;
878 *tmp2 = *sb2;
879
880 /*
881 * nr_disks is not constant
882 */
883 tmp1->nr_disks = 0;
884 tmp2->nr_disks = 0;
885
886 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
887 abort:
888 kfree(tmp1);
889 kfree(tmp2);
890 return ret;
891 }
892
893
894 static u32 md_csum_fold(u32 csum)
895 {
896 csum = (csum & 0xffff) + (csum >> 16);
897 return (csum & 0xffff) + (csum >> 16);
898 }
899
900 static unsigned int calc_sb_csum(mdp_super_t * sb)
901 {
902 u64 newcsum = 0;
903 u32 *sb32 = (u32*)sb;
904 int i;
905 unsigned int disk_csum, csum;
906
907 disk_csum = sb->sb_csum;
908 sb->sb_csum = 0;
909
910 for (i = 0; i < MD_SB_BYTES/4 ; i++)
911 newcsum += sb32[i];
912 csum = (newcsum & 0xffffffff) + (newcsum>>32);
913
914
915 #ifdef CONFIG_ALPHA
916 /* This used to use csum_partial, which was wrong for several
917 * reasons including that different results are returned on
918 * different architectures. It isn't critical that we get exactly
919 * the same return value as before (we always csum_fold before
920 * testing, and that removes any differences). However as we
921 * know that csum_partial always returned a 16bit value on
922 * alphas, do a fold to maximise conformity to previous behaviour.
923 */
924 sb->sb_csum = md_csum_fold(disk_csum);
925 #else
926 sb->sb_csum = disk_csum;
927 #endif
928 return csum;
929 }
930
931
932 /*
933 * Handle superblock details.
934 * We want to be able to handle multiple superblock formats
935 * so we have a common interface to them all, and an array of
936 * different handlers.
937 * We rely on user-space to write the initial superblock, and support
938 * reading and updating of superblocks.
939 * Interface methods are:
940 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
941 * loads and validates a superblock on dev.
942 * if refdev != NULL, compare superblocks on both devices
943 * Return:
944 * 0 - dev has a superblock that is compatible with refdev
945 * 1 - dev has a superblock that is compatible and newer than refdev
946 * so dev should be used as the refdev in future
947 * -EINVAL superblock incompatible or invalid
948 * -othererror e.g. -EIO
949 *
950 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
951 * Verify that dev is acceptable into mddev.
952 * The first time, mddev->raid_disks will be 0, and data from
953 * dev should be merged in. Subsequent calls check that dev
954 * is new enough. Return 0 or -EINVAL
955 *
956 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
957 * Update the superblock for rdev with data in mddev
958 * This does not write to disc.
959 *
960 */
961
962 struct super_type {
963 char *name;
964 struct module *owner;
965 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
966 int minor_version);
967 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
968 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
969 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
970 sector_t num_sectors);
971 };
972
973 /*
974 * Check that the given mddev has no bitmap.
975 *
976 * This function is called from the run method of all personalities that do not
977 * support bitmaps. It prints an error message and returns non-zero if mddev
978 * has a bitmap. Otherwise, it returns 0.
979 *
980 */
981 int md_check_no_bitmap(mddev_t *mddev)
982 {
983 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
984 return 0;
985 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
986 mdname(mddev), mddev->pers->name);
987 return 1;
988 }
989 EXPORT_SYMBOL(md_check_no_bitmap);
990
991 /*
992 * load_super for 0.90.0
993 */
994 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
995 {
996 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
997 mdp_super_t *sb;
998 int ret;
999
1000 /*
1001 * Calculate the position of the superblock (512byte sectors),
1002 * it's at the end of the disk.
1003 *
1004 * It also happens to be a multiple of 4Kb.
1005 */
1006 rdev->sb_start = calc_dev_sboffset(rdev);
1007
1008 ret = read_disk_sb(rdev, MD_SB_BYTES);
1009 if (ret) return ret;
1010
1011 ret = -EINVAL;
1012
1013 bdevname(rdev->bdev, b);
1014 sb = (mdp_super_t*)page_address(rdev->sb_page);
1015
1016 if (sb->md_magic != MD_SB_MAGIC) {
1017 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1018 b);
1019 goto abort;
1020 }
1021
1022 if (sb->major_version != 0 ||
1023 sb->minor_version < 90 ||
1024 sb->minor_version > 91) {
1025 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1026 sb->major_version, sb->minor_version,
1027 b);
1028 goto abort;
1029 }
1030
1031 if (sb->raid_disks <= 0)
1032 goto abort;
1033
1034 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1035 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1036 b);
1037 goto abort;
1038 }
1039
1040 rdev->preferred_minor = sb->md_minor;
1041 rdev->data_offset = 0;
1042 rdev->sb_size = MD_SB_BYTES;
1043
1044 if (sb->level == LEVEL_MULTIPATH)
1045 rdev->desc_nr = -1;
1046 else
1047 rdev->desc_nr = sb->this_disk.number;
1048
1049 if (!refdev) {
1050 ret = 1;
1051 } else {
1052 __u64 ev1, ev2;
1053 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1054 if (!uuid_equal(refsb, sb)) {
1055 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1056 b, bdevname(refdev->bdev,b2));
1057 goto abort;
1058 }
1059 if (!sb_equal(refsb, sb)) {
1060 printk(KERN_WARNING "md: %s has same UUID"
1061 " but different superblock to %s\n",
1062 b, bdevname(refdev->bdev, b2));
1063 goto abort;
1064 }
1065 ev1 = md_event(sb);
1066 ev2 = md_event(refsb);
1067 if (ev1 > ev2)
1068 ret = 1;
1069 else
1070 ret = 0;
1071 }
1072 rdev->sectors = rdev->sb_start;
1073
1074 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1075 /* "this cannot possibly happen" ... */
1076 ret = -EINVAL;
1077
1078 abort:
1079 return ret;
1080 }
1081
1082 /*
1083 * validate_super for 0.90.0
1084 */
1085 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1086 {
1087 mdp_disk_t *desc;
1088 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1089 __u64 ev1 = md_event(sb);
1090
1091 rdev->raid_disk = -1;
1092 clear_bit(Faulty, &rdev->flags);
1093 clear_bit(In_sync, &rdev->flags);
1094 clear_bit(WriteMostly, &rdev->flags);
1095
1096 if (mddev->raid_disks == 0) {
1097 mddev->major_version = 0;
1098 mddev->minor_version = sb->minor_version;
1099 mddev->patch_version = sb->patch_version;
1100 mddev->external = 0;
1101 mddev->chunk_sectors = sb->chunk_size >> 9;
1102 mddev->ctime = sb->ctime;
1103 mddev->utime = sb->utime;
1104 mddev->level = sb->level;
1105 mddev->clevel[0] = 0;
1106 mddev->layout = sb->layout;
1107 mddev->raid_disks = sb->raid_disks;
1108 mddev->dev_sectors = sb->size * 2;
1109 mddev->events = ev1;
1110 mddev->bitmap_info.offset = 0;
1111 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1112
1113 if (mddev->minor_version >= 91) {
1114 mddev->reshape_position = sb->reshape_position;
1115 mddev->delta_disks = sb->delta_disks;
1116 mddev->new_level = sb->new_level;
1117 mddev->new_layout = sb->new_layout;
1118 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1119 } else {
1120 mddev->reshape_position = MaxSector;
1121 mddev->delta_disks = 0;
1122 mddev->new_level = mddev->level;
1123 mddev->new_layout = mddev->layout;
1124 mddev->new_chunk_sectors = mddev->chunk_sectors;
1125 }
1126
1127 if (sb->state & (1<<MD_SB_CLEAN))
1128 mddev->recovery_cp = MaxSector;
1129 else {
1130 if (sb->events_hi == sb->cp_events_hi &&
1131 sb->events_lo == sb->cp_events_lo) {
1132 mddev->recovery_cp = sb->recovery_cp;
1133 } else
1134 mddev->recovery_cp = 0;
1135 }
1136
1137 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1138 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1139 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1140 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1141
1142 mddev->max_disks = MD_SB_DISKS;
1143
1144 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1145 mddev->bitmap_info.file == NULL)
1146 mddev->bitmap_info.offset =
1147 mddev->bitmap_info.default_offset;
1148
1149 } else if (mddev->pers == NULL) {
1150 /* Insist on good event counter while assembling, except
1151 * for spares (which don't need an event count) */
1152 ++ev1;
1153 if (sb->disks[rdev->desc_nr].state & (
1154 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1155 if (ev1 < mddev->events)
1156 return -EINVAL;
1157 } else if (mddev->bitmap) {
1158 /* if adding to array with a bitmap, then we can accept an
1159 * older device ... but not too old.
1160 */
1161 if (ev1 < mddev->bitmap->events_cleared)
1162 return 0;
1163 } else {
1164 if (ev1 < mddev->events)
1165 /* just a hot-add of a new device, leave raid_disk at -1 */
1166 return 0;
1167 }
1168
1169 if (mddev->level != LEVEL_MULTIPATH) {
1170 desc = sb->disks + rdev->desc_nr;
1171
1172 if (desc->state & (1<<MD_DISK_FAULTY))
1173 set_bit(Faulty, &rdev->flags);
1174 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1175 desc->raid_disk < mddev->raid_disks */) {
1176 set_bit(In_sync, &rdev->flags);
1177 rdev->raid_disk = desc->raid_disk;
1178 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1179 /* active but not in sync implies recovery up to
1180 * reshape position. We don't know exactly where
1181 * that is, so set to zero for now */
1182 if (mddev->minor_version >= 91) {
1183 rdev->recovery_offset = 0;
1184 rdev->raid_disk = desc->raid_disk;
1185 }
1186 }
1187 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1188 set_bit(WriteMostly, &rdev->flags);
1189 } else /* MULTIPATH are always insync */
1190 set_bit(In_sync, &rdev->flags);
1191 return 0;
1192 }
1193
1194 /*
1195 * sync_super for 0.90.0
1196 */
1197 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1198 {
1199 mdp_super_t *sb;
1200 mdk_rdev_t *rdev2;
1201 int next_spare = mddev->raid_disks;
1202
1203
1204 /* make rdev->sb match mddev data..
1205 *
1206 * 1/ zero out disks
1207 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1208 * 3/ any empty disks < next_spare become removed
1209 *
1210 * disks[0] gets initialised to REMOVED because
1211 * we cannot be sure from other fields if it has
1212 * been initialised or not.
1213 */
1214 int i;
1215 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1216
1217 rdev->sb_size = MD_SB_BYTES;
1218
1219 sb = (mdp_super_t*)page_address(rdev->sb_page);
1220
1221 memset(sb, 0, sizeof(*sb));
1222
1223 sb->md_magic = MD_SB_MAGIC;
1224 sb->major_version = mddev->major_version;
1225 sb->patch_version = mddev->patch_version;
1226 sb->gvalid_words = 0; /* ignored */
1227 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1228 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1229 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1230 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1231
1232 sb->ctime = mddev->ctime;
1233 sb->level = mddev->level;
1234 sb->size = mddev->dev_sectors / 2;
1235 sb->raid_disks = mddev->raid_disks;
1236 sb->md_minor = mddev->md_minor;
1237 sb->not_persistent = 0;
1238 sb->utime = mddev->utime;
1239 sb->state = 0;
1240 sb->events_hi = (mddev->events>>32);
1241 sb->events_lo = (u32)mddev->events;
1242
1243 if (mddev->reshape_position == MaxSector)
1244 sb->minor_version = 90;
1245 else {
1246 sb->minor_version = 91;
1247 sb->reshape_position = mddev->reshape_position;
1248 sb->new_level = mddev->new_level;
1249 sb->delta_disks = mddev->delta_disks;
1250 sb->new_layout = mddev->new_layout;
1251 sb->new_chunk = mddev->new_chunk_sectors << 9;
1252 }
1253 mddev->minor_version = sb->minor_version;
1254 if (mddev->in_sync)
1255 {
1256 sb->recovery_cp = mddev->recovery_cp;
1257 sb->cp_events_hi = (mddev->events>>32);
1258 sb->cp_events_lo = (u32)mddev->events;
1259 if (mddev->recovery_cp == MaxSector)
1260 sb->state = (1<< MD_SB_CLEAN);
1261 } else
1262 sb->recovery_cp = 0;
1263
1264 sb->layout = mddev->layout;
1265 sb->chunk_size = mddev->chunk_sectors << 9;
1266
1267 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1268 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1269
1270 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1271 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1272 mdp_disk_t *d;
1273 int desc_nr;
1274 int is_active = test_bit(In_sync, &rdev2->flags);
1275
1276 if (rdev2->raid_disk >= 0 &&
1277 sb->minor_version >= 91)
1278 /* we have nowhere to store the recovery_offset,
1279 * but if it is not below the reshape_position,
1280 * we can piggy-back on that.
1281 */
1282 is_active = 1;
1283 if (rdev2->raid_disk < 0 ||
1284 test_bit(Faulty, &rdev2->flags))
1285 is_active = 0;
1286 if (is_active)
1287 desc_nr = rdev2->raid_disk;
1288 else
1289 desc_nr = next_spare++;
1290 rdev2->desc_nr = desc_nr;
1291 d = &sb->disks[rdev2->desc_nr];
1292 nr_disks++;
1293 d->number = rdev2->desc_nr;
1294 d->major = MAJOR(rdev2->bdev->bd_dev);
1295 d->minor = MINOR(rdev2->bdev->bd_dev);
1296 if (is_active)
1297 d->raid_disk = rdev2->raid_disk;
1298 else
1299 d->raid_disk = rdev2->desc_nr; /* compatibility */
1300 if (test_bit(Faulty, &rdev2->flags))
1301 d->state = (1<<MD_DISK_FAULTY);
1302 else if (is_active) {
1303 d->state = (1<<MD_DISK_ACTIVE);
1304 if (test_bit(In_sync, &rdev2->flags))
1305 d->state |= (1<<MD_DISK_SYNC);
1306 active++;
1307 working++;
1308 } else {
1309 d->state = 0;
1310 spare++;
1311 working++;
1312 }
1313 if (test_bit(WriteMostly, &rdev2->flags))
1314 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1315 }
1316 /* now set the "removed" and "faulty" bits on any missing devices */
1317 for (i=0 ; i < mddev->raid_disks ; i++) {
1318 mdp_disk_t *d = &sb->disks[i];
1319 if (d->state == 0 && d->number == 0) {
1320 d->number = i;
1321 d->raid_disk = i;
1322 d->state = (1<<MD_DISK_REMOVED);
1323 d->state |= (1<<MD_DISK_FAULTY);
1324 failed++;
1325 }
1326 }
1327 sb->nr_disks = nr_disks;
1328 sb->active_disks = active;
1329 sb->working_disks = working;
1330 sb->failed_disks = failed;
1331 sb->spare_disks = spare;
1332
1333 sb->this_disk = sb->disks[rdev->desc_nr];
1334 sb->sb_csum = calc_sb_csum(sb);
1335 }
1336
1337 /*
1338 * rdev_size_change for 0.90.0
1339 */
1340 static unsigned long long
1341 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1342 {
1343 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1344 return 0; /* component must fit device */
1345 if (rdev->mddev->bitmap_info.offset)
1346 return 0; /* can't move bitmap */
1347 rdev->sb_start = calc_dev_sboffset(rdev);
1348 if (!num_sectors || num_sectors > rdev->sb_start)
1349 num_sectors = rdev->sb_start;
1350 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1351 rdev->sb_page);
1352 md_super_wait(rdev->mddev);
1353 return num_sectors;
1354 }
1355
1356
1357 /*
1358 * version 1 superblock
1359 */
1360
1361 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1362 {
1363 __le32 disk_csum;
1364 u32 csum;
1365 unsigned long long newcsum;
1366 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1367 __le32 *isuper = (__le32*)sb;
1368 int i;
1369
1370 disk_csum = sb->sb_csum;
1371 sb->sb_csum = 0;
1372 newcsum = 0;
1373 for (i=0; size>=4; size -= 4 )
1374 newcsum += le32_to_cpu(*isuper++);
1375
1376 if (size == 2)
1377 newcsum += le16_to_cpu(*(__le16*) isuper);
1378
1379 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1380 sb->sb_csum = disk_csum;
1381 return cpu_to_le32(csum);
1382 }
1383
1384 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1385 {
1386 struct mdp_superblock_1 *sb;
1387 int ret;
1388 sector_t sb_start;
1389 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1390 int bmask;
1391
1392 /*
1393 * Calculate the position of the superblock in 512byte sectors.
1394 * It is always aligned to a 4K boundary and
1395 * depeding on minor_version, it can be:
1396 * 0: At least 8K, but less than 12K, from end of device
1397 * 1: At start of device
1398 * 2: 4K from start of device.
1399 */
1400 switch(minor_version) {
1401 case 0:
1402 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1403 sb_start -= 8*2;
1404 sb_start &= ~(sector_t)(4*2-1);
1405 break;
1406 case 1:
1407 sb_start = 0;
1408 break;
1409 case 2:
1410 sb_start = 8;
1411 break;
1412 default:
1413 return -EINVAL;
1414 }
1415 rdev->sb_start = sb_start;
1416
1417 /* superblock is rarely larger than 1K, but it can be larger,
1418 * and it is safe to read 4k, so we do that
1419 */
1420 ret = read_disk_sb(rdev, 4096);
1421 if (ret) return ret;
1422
1423
1424 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1425
1426 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1427 sb->major_version != cpu_to_le32(1) ||
1428 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1429 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1430 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1431 return -EINVAL;
1432
1433 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1434 printk("md: invalid superblock checksum on %s\n",
1435 bdevname(rdev->bdev,b));
1436 return -EINVAL;
1437 }
1438 if (le64_to_cpu(sb->data_size) < 10) {
1439 printk("md: data_size too small on %s\n",
1440 bdevname(rdev->bdev,b));
1441 return -EINVAL;
1442 }
1443
1444 rdev->preferred_minor = 0xffff;
1445 rdev->data_offset = le64_to_cpu(sb->data_offset);
1446 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1447
1448 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1449 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1450 if (rdev->sb_size & bmask)
1451 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1452
1453 if (minor_version
1454 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1455 return -EINVAL;
1456
1457 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1458 rdev->desc_nr = -1;
1459 else
1460 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1461
1462 if (!refdev) {
1463 ret = 1;
1464 } else {
1465 __u64 ev1, ev2;
1466 struct mdp_superblock_1 *refsb =
1467 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1468
1469 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1470 sb->level != refsb->level ||
1471 sb->layout != refsb->layout ||
1472 sb->chunksize != refsb->chunksize) {
1473 printk(KERN_WARNING "md: %s has strangely different"
1474 " superblock to %s\n",
1475 bdevname(rdev->bdev,b),
1476 bdevname(refdev->bdev,b2));
1477 return -EINVAL;
1478 }
1479 ev1 = le64_to_cpu(sb->events);
1480 ev2 = le64_to_cpu(refsb->events);
1481
1482 if (ev1 > ev2)
1483 ret = 1;
1484 else
1485 ret = 0;
1486 }
1487 if (minor_version)
1488 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1489 le64_to_cpu(sb->data_offset);
1490 else
1491 rdev->sectors = rdev->sb_start;
1492 if (rdev->sectors < le64_to_cpu(sb->data_size))
1493 return -EINVAL;
1494 rdev->sectors = le64_to_cpu(sb->data_size);
1495 if (le64_to_cpu(sb->size) > rdev->sectors)
1496 return -EINVAL;
1497 return ret;
1498 }
1499
1500 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1501 {
1502 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1503 __u64 ev1 = le64_to_cpu(sb->events);
1504
1505 rdev->raid_disk = -1;
1506 clear_bit(Faulty, &rdev->flags);
1507 clear_bit(In_sync, &rdev->flags);
1508 clear_bit(WriteMostly, &rdev->flags);
1509
1510 if (mddev->raid_disks == 0) {
1511 mddev->major_version = 1;
1512 mddev->patch_version = 0;
1513 mddev->external = 0;
1514 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1515 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1516 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1517 mddev->level = le32_to_cpu(sb->level);
1518 mddev->clevel[0] = 0;
1519 mddev->layout = le32_to_cpu(sb->layout);
1520 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1521 mddev->dev_sectors = le64_to_cpu(sb->size);
1522 mddev->events = ev1;
1523 mddev->bitmap_info.offset = 0;
1524 mddev->bitmap_info.default_offset = 1024 >> 9;
1525
1526 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1527 memcpy(mddev->uuid, sb->set_uuid, 16);
1528
1529 mddev->max_disks = (4096-256)/2;
1530
1531 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1532 mddev->bitmap_info.file == NULL )
1533 mddev->bitmap_info.offset =
1534 (__s32)le32_to_cpu(sb->bitmap_offset);
1535
1536 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1537 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1538 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1539 mddev->new_level = le32_to_cpu(sb->new_level);
1540 mddev->new_layout = le32_to_cpu(sb->new_layout);
1541 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1542 } else {
1543 mddev->reshape_position = MaxSector;
1544 mddev->delta_disks = 0;
1545 mddev->new_level = mddev->level;
1546 mddev->new_layout = mddev->layout;
1547 mddev->new_chunk_sectors = mddev->chunk_sectors;
1548 }
1549
1550 } else if (mddev->pers == NULL) {
1551 /* Insist of good event counter while assembling, except for
1552 * spares (which don't need an event count) */
1553 ++ev1;
1554 if (rdev->desc_nr >= 0 &&
1555 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1556 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1557 if (ev1 < mddev->events)
1558 return -EINVAL;
1559 } else if (mddev->bitmap) {
1560 /* If adding to array with a bitmap, then we can accept an
1561 * older device, but not too old.
1562 */
1563 if (ev1 < mddev->bitmap->events_cleared)
1564 return 0;
1565 } else {
1566 if (ev1 < mddev->events)
1567 /* just a hot-add of a new device, leave raid_disk at -1 */
1568 return 0;
1569 }
1570 if (mddev->level != LEVEL_MULTIPATH) {
1571 int role;
1572 if (rdev->desc_nr < 0 ||
1573 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1574 role = 0xffff;
1575 rdev->desc_nr = -1;
1576 } else
1577 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1578 switch(role) {
1579 case 0xffff: /* spare */
1580 break;
1581 case 0xfffe: /* faulty */
1582 set_bit(Faulty, &rdev->flags);
1583 break;
1584 default:
1585 if ((le32_to_cpu(sb->feature_map) &
1586 MD_FEATURE_RECOVERY_OFFSET))
1587 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1588 else
1589 set_bit(In_sync, &rdev->flags);
1590 rdev->raid_disk = role;
1591 break;
1592 }
1593 if (sb->devflags & WriteMostly1)
1594 set_bit(WriteMostly, &rdev->flags);
1595 } else /* MULTIPATH are always insync */
1596 set_bit(In_sync, &rdev->flags);
1597
1598 return 0;
1599 }
1600
1601 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1602 {
1603 struct mdp_superblock_1 *sb;
1604 mdk_rdev_t *rdev2;
1605 int max_dev, i;
1606 /* make rdev->sb match mddev and rdev data. */
1607
1608 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1609
1610 sb->feature_map = 0;
1611 sb->pad0 = 0;
1612 sb->recovery_offset = cpu_to_le64(0);
1613 memset(sb->pad1, 0, sizeof(sb->pad1));
1614 memset(sb->pad2, 0, sizeof(sb->pad2));
1615 memset(sb->pad3, 0, sizeof(sb->pad3));
1616
1617 sb->utime = cpu_to_le64((__u64)mddev->utime);
1618 sb->events = cpu_to_le64(mddev->events);
1619 if (mddev->in_sync)
1620 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1621 else
1622 sb->resync_offset = cpu_to_le64(0);
1623
1624 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1625
1626 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1627 sb->size = cpu_to_le64(mddev->dev_sectors);
1628 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1629 sb->level = cpu_to_le32(mddev->level);
1630 sb->layout = cpu_to_le32(mddev->layout);
1631
1632 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1633 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1634 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1635 }
1636
1637 if (rdev->raid_disk >= 0 &&
1638 !test_bit(In_sync, &rdev->flags)) {
1639 sb->feature_map |=
1640 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1641 sb->recovery_offset =
1642 cpu_to_le64(rdev->recovery_offset);
1643 }
1644
1645 if (mddev->reshape_position != MaxSector) {
1646 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1647 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1648 sb->new_layout = cpu_to_le32(mddev->new_layout);
1649 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1650 sb->new_level = cpu_to_le32(mddev->new_level);
1651 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1652 }
1653
1654 max_dev = 0;
1655 list_for_each_entry(rdev2, &mddev->disks, same_set)
1656 if (rdev2->desc_nr+1 > max_dev)
1657 max_dev = rdev2->desc_nr+1;
1658
1659 if (max_dev > le32_to_cpu(sb->max_dev)) {
1660 int bmask;
1661 sb->max_dev = cpu_to_le32(max_dev);
1662 rdev->sb_size = max_dev * 2 + 256;
1663 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1664 if (rdev->sb_size & bmask)
1665 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1666 } else
1667 max_dev = le32_to_cpu(sb->max_dev);
1668
1669 for (i=0; i<max_dev;i++)
1670 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1671
1672 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1673 i = rdev2->desc_nr;
1674 if (test_bit(Faulty, &rdev2->flags))
1675 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1676 else if (test_bit(In_sync, &rdev2->flags))
1677 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1678 else if (rdev2->raid_disk >= 0)
1679 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1680 else
1681 sb->dev_roles[i] = cpu_to_le16(0xffff);
1682 }
1683
1684 sb->sb_csum = calc_sb_1_csum(sb);
1685 }
1686
1687 static unsigned long long
1688 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1689 {
1690 struct mdp_superblock_1 *sb;
1691 sector_t max_sectors;
1692 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1693 return 0; /* component must fit device */
1694 if (rdev->sb_start < rdev->data_offset) {
1695 /* minor versions 1 and 2; superblock before data */
1696 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1697 max_sectors -= rdev->data_offset;
1698 if (!num_sectors || num_sectors > max_sectors)
1699 num_sectors = max_sectors;
1700 } else if (rdev->mddev->bitmap_info.offset) {
1701 /* minor version 0 with bitmap we can't move */
1702 return 0;
1703 } else {
1704 /* minor version 0; superblock after data */
1705 sector_t sb_start;
1706 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1707 sb_start &= ~(sector_t)(4*2 - 1);
1708 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1709 if (!num_sectors || num_sectors > max_sectors)
1710 num_sectors = max_sectors;
1711 rdev->sb_start = sb_start;
1712 }
1713 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1714 sb->data_size = cpu_to_le64(num_sectors);
1715 sb->super_offset = rdev->sb_start;
1716 sb->sb_csum = calc_sb_1_csum(sb);
1717 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1718 rdev->sb_page);
1719 md_super_wait(rdev->mddev);
1720 return num_sectors;
1721 }
1722
1723 static struct super_type super_types[] = {
1724 [0] = {
1725 .name = "0.90.0",
1726 .owner = THIS_MODULE,
1727 .load_super = super_90_load,
1728 .validate_super = super_90_validate,
1729 .sync_super = super_90_sync,
1730 .rdev_size_change = super_90_rdev_size_change,
1731 },
1732 [1] = {
1733 .name = "md-1",
1734 .owner = THIS_MODULE,
1735 .load_super = super_1_load,
1736 .validate_super = super_1_validate,
1737 .sync_super = super_1_sync,
1738 .rdev_size_change = super_1_rdev_size_change,
1739 },
1740 };
1741
1742 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1743 {
1744 mdk_rdev_t *rdev, *rdev2;
1745
1746 rcu_read_lock();
1747 rdev_for_each_rcu(rdev, mddev1)
1748 rdev_for_each_rcu(rdev2, mddev2)
1749 if (rdev->bdev->bd_contains ==
1750 rdev2->bdev->bd_contains) {
1751 rcu_read_unlock();
1752 return 1;
1753 }
1754 rcu_read_unlock();
1755 return 0;
1756 }
1757
1758 static LIST_HEAD(pending_raid_disks);
1759
1760 /*
1761 * Try to register data integrity profile for an mddev
1762 *
1763 * This is called when an array is started and after a disk has been kicked
1764 * from the array. It only succeeds if all working and active component devices
1765 * are integrity capable with matching profiles.
1766 */
1767 int md_integrity_register(mddev_t *mddev)
1768 {
1769 mdk_rdev_t *rdev, *reference = NULL;
1770
1771 if (list_empty(&mddev->disks))
1772 return 0; /* nothing to do */
1773 if (blk_get_integrity(mddev->gendisk))
1774 return 0; /* already registered */
1775 list_for_each_entry(rdev, &mddev->disks, same_set) {
1776 /* skip spares and non-functional disks */
1777 if (test_bit(Faulty, &rdev->flags))
1778 continue;
1779 if (rdev->raid_disk < 0)
1780 continue;
1781 /*
1782 * If at least one rdev is not integrity capable, we can not
1783 * enable data integrity for the md device.
1784 */
1785 if (!bdev_get_integrity(rdev->bdev))
1786 return -EINVAL;
1787 if (!reference) {
1788 /* Use the first rdev as the reference */
1789 reference = rdev;
1790 continue;
1791 }
1792 /* does this rdev's profile match the reference profile? */
1793 if (blk_integrity_compare(reference->bdev->bd_disk,
1794 rdev->bdev->bd_disk) < 0)
1795 return -EINVAL;
1796 }
1797 /*
1798 * All component devices are integrity capable and have matching
1799 * profiles, register the common profile for the md device.
1800 */
1801 if (blk_integrity_register(mddev->gendisk,
1802 bdev_get_integrity(reference->bdev)) != 0) {
1803 printk(KERN_ERR "md: failed to register integrity for %s\n",
1804 mdname(mddev));
1805 return -EINVAL;
1806 }
1807 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1808 mdname(mddev));
1809 return 0;
1810 }
1811 EXPORT_SYMBOL(md_integrity_register);
1812
1813 /* Disable data integrity if non-capable/non-matching disk is being added */
1814 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1815 {
1816 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1817 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1818
1819 if (!bi_mddev) /* nothing to do */
1820 return;
1821 if (rdev->raid_disk < 0) /* skip spares */
1822 return;
1823 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1824 rdev->bdev->bd_disk) >= 0)
1825 return;
1826 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1827 blk_integrity_unregister(mddev->gendisk);
1828 }
1829 EXPORT_SYMBOL(md_integrity_add_rdev);
1830
1831 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1832 {
1833 char b[BDEVNAME_SIZE];
1834 struct kobject *ko;
1835 char *s;
1836 int err;
1837
1838 if (rdev->mddev) {
1839 MD_BUG();
1840 return -EINVAL;
1841 }
1842
1843 /* prevent duplicates */
1844 if (find_rdev(mddev, rdev->bdev->bd_dev))
1845 return -EEXIST;
1846
1847 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1848 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1849 rdev->sectors < mddev->dev_sectors)) {
1850 if (mddev->pers) {
1851 /* Cannot change size, so fail
1852 * If mddev->level <= 0, then we don't care
1853 * about aligning sizes (e.g. linear)
1854 */
1855 if (mddev->level > 0)
1856 return -ENOSPC;
1857 } else
1858 mddev->dev_sectors = rdev->sectors;
1859 }
1860
1861 /* Verify rdev->desc_nr is unique.
1862 * If it is -1, assign a free number, else
1863 * check number is not in use
1864 */
1865 if (rdev->desc_nr < 0) {
1866 int choice = 0;
1867 if (mddev->pers) choice = mddev->raid_disks;
1868 while (find_rdev_nr(mddev, choice))
1869 choice++;
1870 rdev->desc_nr = choice;
1871 } else {
1872 if (find_rdev_nr(mddev, rdev->desc_nr))
1873 return -EBUSY;
1874 }
1875 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1876 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1877 mdname(mddev), mddev->max_disks);
1878 return -EBUSY;
1879 }
1880 bdevname(rdev->bdev,b);
1881 while ( (s=strchr(b, '/')) != NULL)
1882 *s = '!';
1883
1884 rdev->mddev = mddev;
1885 printk(KERN_INFO "md: bind<%s>\n", b);
1886
1887 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1888 goto fail;
1889
1890 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1891 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1892 /* failure here is OK */;
1893 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1894
1895 list_add_rcu(&rdev->same_set, &mddev->disks);
1896 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
1897
1898 /* May as well allow recovery to be retried once */
1899 mddev->recovery_disabled = 0;
1900
1901 return 0;
1902
1903 fail:
1904 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1905 b, mdname(mddev));
1906 return err;
1907 }
1908
1909 static void md_delayed_delete(struct work_struct *ws)
1910 {
1911 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1912 kobject_del(&rdev->kobj);
1913 kobject_put(&rdev->kobj);
1914 }
1915
1916 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1917 {
1918 char b[BDEVNAME_SIZE];
1919 if (!rdev->mddev) {
1920 MD_BUG();
1921 return;
1922 }
1923 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
1924 list_del_rcu(&rdev->same_set);
1925 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1926 rdev->mddev = NULL;
1927 sysfs_remove_link(&rdev->kobj, "block");
1928 sysfs_put(rdev->sysfs_state);
1929 rdev->sysfs_state = NULL;
1930 /* We need to delay this, otherwise we can deadlock when
1931 * writing to 'remove' to "dev/state". We also need
1932 * to delay it due to rcu usage.
1933 */
1934 synchronize_rcu();
1935 INIT_WORK(&rdev->del_work, md_delayed_delete);
1936 kobject_get(&rdev->kobj);
1937 queue_work(md_misc_wq, &rdev->del_work);
1938 }
1939
1940 /*
1941 * prevent the device from being mounted, repartitioned or
1942 * otherwise reused by a RAID array (or any other kernel
1943 * subsystem), by bd_claiming the device.
1944 */
1945 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1946 {
1947 int err = 0;
1948 struct block_device *bdev;
1949 char b[BDEVNAME_SIZE];
1950
1951 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1952 shared ? (mdk_rdev_t *)lock_rdev : rdev);
1953 if (IS_ERR(bdev)) {
1954 printk(KERN_ERR "md: could not open %s.\n",
1955 __bdevname(dev, b));
1956 return PTR_ERR(bdev);
1957 }
1958 rdev->bdev = bdev;
1959 return err;
1960 }
1961
1962 static void unlock_rdev(mdk_rdev_t *rdev)
1963 {
1964 struct block_device *bdev = rdev->bdev;
1965 rdev->bdev = NULL;
1966 if (!bdev)
1967 MD_BUG();
1968 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1969 }
1970
1971 void md_autodetect_dev(dev_t dev);
1972
1973 static void export_rdev(mdk_rdev_t * rdev)
1974 {
1975 char b[BDEVNAME_SIZE];
1976 printk(KERN_INFO "md: export_rdev(%s)\n",
1977 bdevname(rdev->bdev,b));
1978 if (rdev->mddev)
1979 MD_BUG();
1980 free_disk_sb(rdev);
1981 #ifndef MODULE
1982 if (test_bit(AutoDetected, &rdev->flags))
1983 md_autodetect_dev(rdev->bdev->bd_dev);
1984 #endif
1985 unlock_rdev(rdev);
1986 kobject_put(&rdev->kobj);
1987 }
1988
1989 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1990 {
1991 unbind_rdev_from_array(rdev);
1992 export_rdev(rdev);
1993 }
1994
1995 static void export_array(mddev_t *mddev)
1996 {
1997 mdk_rdev_t *rdev, *tmp;
1998
1999 rdev_for_each(rdev, tmp, mddev) {
2000 if (!rdev->mddev) {
2001 MD_BUG();
2002 continue;
2003 }
2004 kick_rdev_from_array(rdev);
2005 }
2006 if (!list_empty(&mddev->disks))
2007 MD_BUG();
2008 mddev->raid_disks = 0;
2009 mddev->major_version = 0;
2010 }
2011
2012 static void print_desc(mdp_disk_t *desc)
2013 {
2014 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2015 desc->major,desc->minor,desc->raid_disk,desc->state);
2016 }
2017
2018 static void print_sb_90(mdp_super_t *sb)
2019 {
2020 int i;
2021
2022 printk(KERN_INFO
2023 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2024 sb->major_version, sb->minor_version, sb->patch_version,
2025 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2026 sb->ctime);
2027 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2028 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2029 sb->md_minor, sb->layout, sb->chunk_size);
2030 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2031 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2032 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2033 sb->failed_disks, sb->spare_disks,
2034 sb->sb_csum, (unsigned long)sb->events_lo);
2035
2036 printk(KERN_INFO);
2037 for (i = 0; i < MD_SB_DISKS; i++) {
2038 mdp_disk_t *desc;
2039
2040 desc = sb->disks + i;
2041 if (desc->number || desc->major || desc->minor ||
2042 desc->raid_disk || (desc->state && (desc->state != 4))) {
2043 printk(" D %2d: ", i);
2044 print_desc(desc);
2045 }
2046 }
2047 printk(KERN_INFO "md: THIS: ");
2048 print_desc(&sb->this_disk);
2049 }
2050
2051 static void print_sb_1(struct mdp_superblock_1 *sb)
2052 {
2053 __u8 *uuid;
2054
2055 uuid = sb->set_uuid;
2056 printk(KERN_INFO
2057 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2058 "md: Name: \"%s\" CT:%llu\n",
2059 le32_to_cpu(sb->major_version),
2060 le32_to_cpu(sb->feature_map),
2061 uuid,
2062 sb->set_name,
2063 (unsigned long long)le64_to_cpu(sb->ctime)
2064 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2065
2066 uuid = sb->device_uuid;
2067 printk(KERN_INFO
2068 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2069 " RO:%llu\n"
2070 "md: Dev:%08x UUID: %pU\n"
2071 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2072 "md: (MaxDev:%u) \n",
2073 le32_to_cpu(sb->level),
2074 (unsigned long long)le64_to_cpu(sb->size),
2075 le32_to_cpu(sb->raid_disks),
2076 le32_to_cpu(sb->layout),
2077 le32_to_cpu(sb->chunksize),
2078 (unsigned long long)le64_to_cpu(sb->data_offset),
2079 (unsigned long long)le64_to_cpu(sb->data_size),
2080 (unsigned long long)le64_to_cpu(sb->super_offset),
2081 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2082 le32_to_cpu(sb->dev_number),
2083 uuid,
2084 sb->devflags,
2085 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2086 (unsigned long long)le64_to_cpu(sb->events),
2087 (unsigned long long)le64_to_cpu(sb->resync_offset),
2088 le32_to_cpu(sb->sb_csum),
2089 le32_to_cpu(sb->max_dev)
2090 );
2091 }
2092
2093 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2094 {
2095 char b[BDEVNAME_SIZE];
2096 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2097 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2098 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2099 rdev->desc_nr);
2100 if (rdev->sb_loaded) {
2101 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2102 switch (major_version) {
2103 case 0:
2104 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2105 break;
2106 case 1:
2107 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2108 break;
2109 }
2110 } else
2111 printk(KERN_INFO "md: no rdev superblock!\n");
2112 }
2113
2114 static void md_print_devices(void)
2115 {
2116 struct list_head *tmp;
2117 mdk_rdev_t *rdev;
2118 mddev_t *mddev;
2119 char b[BDEVNAME_SIZE];
2120
2121 printk("\n");
2122 printk("md: **********************************\n");
2123 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2124 printk("md: **********************************\n");
2125 for_each_mddev(mddev, tmp) {
2126
2127 if (mddev->bitmap)
2128 bitmap_print_sb(mddev->bitmap);
2129 else
2130 printk("%s: ", mdname(mddev));
2131 list_for_each_entry(rdev, &mddev->disks, same_set)
2132 printk("<%s>", bdevname(rdev->bdev,b));
2133 printk("\n");
2134
2135 list_for_each_entry(rdev, &mddev->disks, same_set)
2136 print_rdev(rdev, mddev->major_version);
2137 }
2138 printk("md: **********************************\n");
2139 printk("\n");
2140 }
2141
2142
2143 static void sync_sbs(mddev_t * mddev, int nospares)
2144 {
2145 /* Update each superblock (in-memory image), but
2146 * if we are allowed to, skip spares which already
2147 * have the right event counter, or have one earlier
2148 * (which would mean they aren't being marked as dirty
2149 * with the rest of the array)
2150 */
2151 mdk_rdev_t *rdev;
2152 list_for_each_entry(rdev, &mddev->disks, same_set) {
2153 if (rdev->sb_events == mddev->events ||
2154 (nospares &&
2155 rdev->raid_disk < 0 &&
2156 rdev->sb_events+1 == mddev->events)) {
2157 /* Don't update this superblock */
2158 rdev->sb_loaded = 2;
2159 } else {
2160 super_types[mddev->major_version].
2161 sync_super(mddev, rdev);
2162 rdev->sb_loaded = 1;
2163 }
2164 }
2165 }
2166
2167 static void md_update_sb(mddev_t * mddev, int force_change)
2168 {
2169 mdk_rdev_t *rdev;
2170 int sync_req;
2171 int nospares = 0;
2172
2173 repeat:
2174 /* First make sure individual recovery_offsets are correct */
2175 list_for_each_entry(rdev, &mddev->disks, same_set) {
2176 if (rdev->raid_disk >= 0 &&
2177 mddev->delta_disks >= 0 &&
2178 !test_bit(In_sync, &rdev->flags) &&
2179 mddev->curr_resync_completed > rdev->recovery_offset)
2180 rdev->recovery_offset = mddev->curr_resync_completed;
2181
2182 }
2183 if (!mddev->persistent) {
2184 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2185 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2186 if (!mddev->external)
2187 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2188 wake_up(&mddev->sb_wait);
2189 return;
2190 }
2191
2192 spin_lock_irq(&mddev->write_lock);
2193
2194 mddev->utime = get_seconds();
2195
2196 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2197 force_change = 1;
2198 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2199 /* just a clean<-> dirty transition, possibly leave spares alone,
2200 * though if events isn't the right even/odd, we will have to do
2201 * spares after all
2202 */
2203 nospares = 1;
2204 if (force_change)
2205 nospares = 0;
2206 if (mddev->degraded)
2207 /* If the array is degraded, then skipping spares is both
2208 * dangerous and fairly pointless.
2209 * Dangerous because a device that was removed from the array
2210 * might have a event_count that still looks up-to-date,
2211 * so it can be re-added without a resync.
2212 * Pointless because if there are any spares to skip,
2213 * then a recovery will happen and soon that array won't
2214 * be degraded any more and the spare can go back to sleep then.
2215 */
2216 nospares = 0;
2217
2218 sync_req = mddev->in_sync;
2219
2220 /* If this is just a dirty<->clean transition, and the array is clean
2221 * and 'events' is odd, we can roll back to the previous clean state */
2222 if (nospares
2223 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2224 && mddev->can_decrease_events
2225 && mddev->events != 1) {
2226 mddev->events--;
2227 mddev->can_decrease_events = 0;
2228 } else {
2229 /* otherwise we have to go forward and ... */
2230 mddev->events ++;
2231 mddev->can_decrease_events = nospares;
2232 }
2233
2234 if (!mddev->events) {
2235 /*
2236 * oops, this 64-bit counter should never wrap.
2237 * Either we are in around ~1 trillion A.C., assuming
2238 * 1 reboot per second, or we have a bug:
2239 */
2240 MD_BUG();
2241 mddev->events --;
2242 }
2243 sync_sbs(mddev, nospares);
2244 spin_unlock_irq(&mddev->write_lock);
2245
2246 dprintk(KERN_INFO
2247 "md: updating %s RAID superblock on device (in sync %d)\n",
2248 mdname(mddev),mddev->in_sync);
2249
2250 bitmap_update_sb(mddev->bitmap);
2251 list_for_each_entry(rdev, &mddev->disks, same_set) {
2252 char b[BDEVNAME_SIZE];
2253 dprintk(KERN_INFO "md: ");
2254 if (rdev->sb_loaded != 1)
2255 continue; /* no noise on spare devices */
2256 if (test_bit(Faulty, &rdev->flags))
2257 dprintk("(skipping faulty ");
2258
2259 dprintk("%s ", bdevname(rdev->bdev,b));
2260 if (!test_bit(Faulty, &rdev->flags)) {
2261 md_super_write(mddev,rdev,
2262 rdev->sb_start, rdev->sb_size,
2263 rdev->sb_page);
2264 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2265 bdevname(rdev->bdev,b),
2266 (unsigned long long)rdev->sb_start);
2267 rdev->sb_events = mddev->events;
2268
2269 } else
2270 dprintk(")\n");
2271 if (mddev->level == LEVEL_MULTIPATH)
2272 /* only need to write one superblock... */
2273 break;
2274 }
2275 md_super_wait(mddev);
2276 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2277
2278 spin_lock_irq(&mddev->write_lock);
2279 if (mddev->in_sync != sync_req ||
2280 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2281 /* have to write it out again */
2282 spin_unlock_irq(&mddev->write_lock);
2283 goto repeat;
2284 }
2285 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2286 spin_unlock_irq(&mddev->write_lock);
2287 wake_up(&mddev->sb_wait);
2288 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2289 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2290
2291 }
2292
2293 /* words written to sysfs files may, or may not, be \n terminated.
2294 * We want to accept with case. For this we use cmd_match.
2295 */
2296 static int cmd_match(const char *cmd, const char *str)
2297 {
2298 /* See if cmd, written into a sysfs file, matches
2299 * str. They must either be the same, or cmd can
2300 * have a trailing newline
2301 */
2302 while (*cmd && *str && *cmd == *str) {
2303 cmd++;
2304 str++;
2305 }
2306 if (*cmd == '\n')
2307 cmd++;
2308 if (*str || *cmd)
2309 return 0;
2310 return 1;
2311 }
2312
2313 struct rdev_sysfs_entry {
2314 struct attribute attr;
2315 ssize_t (*show)(mdk_rdev_t *, char *);
2316 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2317 };
2318
2319 static ssize_t
2320 state_show(mdk_rdev_t *rdev, char *page)
2321 {
2322 char *sep = "";
2323 size_t len = 0;
2324
2325 if (test_bit(Faulty, &rdev->flags)) {
2326 len+= sprintf(page+len, "%sfaulty",sep);
2327 sep = ",";
2328 }
2329 if (test_bit(In_sync, &rdev->flags)) {
2330 len += sprintf(page+len, "%sin_sync",sep);
2331 sep = ",";
2332 }
2333 if (test_bit(WriteMostly, &rdev->flags)) {
2334 len += sprintf(page+len, "%swrite_mostly",sep);
2335 sep = ",";
2336 }
2337 if (test_bit(Blocked, &rdev->flags)) {
2338 len += sprintf(page+len, "%sblocked", sep);
2339 sep = ",";
2340 }
2341 if (!test_bit(Faulty, &rdev->flags) &&
2342 !test_bit(In_sync, &rdev->flags)) {
2343 len += sprintf(page+len, "%sspare", sep);
2344 sep = ",";
2345 }
2346 return len+sprintf(page+len, "\n");
2347 }
2348
2349 static ssize_t
2350 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2351 {
2352 /* can write
2353 * faulty - simulates and error
2354 * remove - disconnects the device
2355 * writemostly - sets write_mostly
2356 * -writemostly - clears write_mostly
2357 * blocked - sets the Blocked flag
2358 * -blocked - clears the Blocked flag
2359 * insync - sets Insync providing device isn't active
2360 */
2361 int err = -EINVAL;
2362 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2363 md_error(rdev->mddev, rdev);
2364 err = 0;
2365 } else if (cmd_match(buf, "remove")) {
2366 if (rdev->raid_disk >= 0)
2367 err = -EBUSY;
2368 else {
2369 mddev_t *mddev = rdev->mddev;
2370 kick_rdev_from_array(rdev);
2371 if (mddev->pers)
2372 md_update_sb(mddev, 1);
2373 md_new_event(mddev);
2374 err = 0;
2375 }
2376 } else if (cmd_match(buf, "writemostly")) {
2377 set_bit(WriteMostly, &rdev->flags);
2378 err = 0;
2379 } else if (cmd_match(buf, "-writemostly")) {
2380 clear_bit(WriteMostly, &rdev->flags);
2381 err = 0;
2382 } else if (cmd_match(buf, "blocked")) {
2383 set_bit(Blocked, &rdev->flags);
2384 err = 0;
2385 } else if (cmd_match(buf, "-blocked")) {
2386 clear_bit(Blocked, &rdev->flags);
2387 wake_up(&rdev->blocked_wait);
2388 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2389 md_wakeup_thread(rdev->mddev->thread);
2390
2391 err = 0;
2392 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2393 set_bit(In_sync, &rdev->flags);
2394 err = 0;
2395 }
2396 if (!err)
2397 sysfs_notify_dirent_safe(rdev->sysfs_state);
2398 return err ? err : len;
2399 }
2400 static struct rdev_sysfs_entry rdev_state =
2401 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2402
2403 static ssize_t
2404 errors_show(mdk_rdev_t *rdev, char *page)
2405 {
2406 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2407 }
2408
2409 static ssize_t
2410 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2411 {
2412 char *e;
2413 unsigned long n = simple_strtoul(buf, &e, 10);
2414 if (*buf && (*e == 0 || *e == '\n')) {
2415 atomic_set(&rdev->corrected_errors, n);
2416 return len;
2417 }
2418 return -EINVAL;
2419 }
2420 static struct rdev_sysfs_entry rdev_errors =
2421 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2422
2423 static ssize_t
2424 slot_show(mdk_rdev_t *rdev, char *page)
2425 {
2426 if (rdev->raid_disk < 0)
2427 return sprintf(page, "none\n");
2428 else
2429 return sprintf(page, "%d\n", rdev->raid_disk);
2430 }
2431
2432 static ssize_t
2433 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2434 {
2435 char *e;
2436 int err;
2437 char nm[20];
2438 int slot = simple_strtoul(buf, &e, 10);
2439 if (strncmp(buf, "none", 4)==0)
2440 slot = -1;
2441 else if (e==buf || (*e && *e!= '\n'))
2442 return -EINVAL;
2443 if (rdev->mddev->pers && slot == -1) {
2444 /* Setting 'slot' on an active array requires also
2445 * updating the 'rd%d' link, and communicating
2446 * with the personality with ->hot_*_disk.
2447 * For now we only support removing
2448 * failed/spare devices. This normally happens automatically,
2449 * but not when the metadata is externally managed.
2450 */
2451 if (rdev->raid_disk == -1)
2452 return -EEXIST;
2453 /* personality does all needed checks */
2454 if (rdev->mddev->pers->hot_add_disk == NULL)
2455 return -EINVAL;
2456 err = rdev->mddev->pers->
2457 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2458 if (err)
2459 return err;
2460 sprintf(nm, "rd%d", rdev->raid_disk);
2461 sysfs_remove_link(&rdev->mddev->kobj, nm);
2462 rdev->raid_disk = -1;
2463 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2464 md_wakeup_thread(rdev->mddev->thread);
2465 } else if (rdev->mddev->pers) {
2466 mdk_rdev_t *rdev2;
2467 /* Activating a spare .. or possibly reactivating
2468 * if we ever get bitmaps working here.
2469 */
2470
2471 if (rdev->raid_disk != -1)
2472 return -EBUSY;
2473
2474 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2475 return -EBUSY;
2476
2477 if (rdev->mddev->pers->hot_add_disk == NULL)
2478 return -EINVAL;
2479
2480 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2481 if (rdev2->raid_disk == slot)
2482 return -EEXIST;
2483
2484 if (slot >= rdev->mddev->raid_disks &&
2485 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2486 return -ENOSPC;
2487
2488 rdev->raid_disk = slot;
2489 if (test_bit(In_sync, &rdev->flags))
2490 rdev->saved_raid_disk = slot;
2491 else
2492 rdev->saved_raid_disk = -1;
2493 err = rdev->mddev->pers->
2494 hot_add_disk(rdev->mddev, rdev);
2495 if (err) {
2496 rdev->raid_disk = -1;
2497 return err;
2498 } else
2499 sysfs_notify_dirent_safe(rdev->sysfs_state);
2500 sprintf(nm, "rd%d", rdev->raid_disk);
2501 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2502 /* failure here is OK */;
2503 /* don't wakeup anyone, leave that to userspace. */
2504 } else {
2505 if (slot >= rdev->mddev->raid_disks &&
2506 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2507 return -ENOSPC;
2508 rdev->raid_disk = slot;
2509 /* assume it is working */
2510 clear_bit(Faulty, &rdev->flags);
2511 clear_bit(WriteMostly, &rdev->flags);
2512 set_bit(In_sync, &rdev->flags);
2513 sysfs_notify_dirent_safe(rdev->sysfs_state);
2514 }
2515 return len;
2516 }
2517
2518
2519 static struct rdev_sysfs_entry rdev_slot =
2520 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2521
2522 static ssize_t
2523 offset_show(mdk_rdev_t *rdev, char *page)
2524 {
2525 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2526 }
2527
2528 static ssize_t
2529 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2530 {
2531 char *e;
2532 unsigned long long offset = simple_strtoull(buf, &e, 10);
2533 if (e==buf || (*e && *e != '\n'))
2534 return -EINVAL;
2535 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2536 return -EBUSY;
2537 if (rdev->sectors && rdev->mddev->external)
2538 /* Must set offset before size, so overlap checks
2539 * can be sane */
2540 return -EBUSY;
2541 rdev->data_offset = offset;
2542 return len;
2543 }
2544
2545 static struct rdev_sysfs_entry rdev_offset =
2546 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2547
2548 static ssize_t
2549 rdev_size_show(mdk_rdev_t *rdev, char *page)
2550 {
2551 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2552 }
2553
2554 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2555 {
2556 /* check if two start/length pairs overlap */
2557 if (s1+l1 <= s2)
2558 return 0;
2559 if (s2+l2 <= s1)
2560 return 0;
2561 return 1;
2562 }
2563
2564 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2565 {
2566 unsigned long long blocks;
2567 sector_t new;
2568
2569 if (strict_strtoull(buf, 10, &blocks) < 0)
2570 return -EINVAL;
2571
2572 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2573 return -EINVAL; /* sector conversion overflow */
2574
2575 new = blocks * 2;
2576 if (new != blocks * 2)
2577 return -EINVAL; /* unsigned long long to sector_t overflow */
2578
2579 *sectors = new;
2580 return 0;
2581 }
2582
2583 static ssize_t
2584 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2585 {
2586 mddev_t *my_mddev = rdev->mddev;
2587 sector_t oldsectors = rdev->sectors;
2588 sector_t sectors;
2589
2590 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2591 return -EINVAL;
2592 if (my_mddev->pers && rdev->raid_disk >= 0) {
2593 if (my_mddev->persistent) {
2594 sectors = super_types[my_mddev->major_version].
2595 rdev_size_change(rdev, sectors);
2596 if (!sectors)
2597 return -EBUSY;
2598 } else if (!sectors)
2599 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2600 rdev->data_offset;
2601 }
2602 if (sectors < my_mddev->dev_sectors)
2603 return -EINVAL; /* component must fit device */
2604
2605 rdev->sectors = sectors;
2606 if (sectors > oldsectors && my_mddev->external) {
2607 /* need to check that all other rdevs with the same ->bdev
2608 * do not overlap. We need to unlock the mddev to avoid
2609 * a deadlock. We have already changed rdev->sectors, and if
2610 * we have to change it back, we will have the lock again.
2611 */
2612 mddev_t *mddev;
2613 int overlap = 0;
2614 struct list_head *tmp;
2615
2616 mddev_unlock(my_mddev);
2617 for_each_mddev(mddev, tmp) {
2618 mdk_rdev_t *rdev2;
2619
2620 mddev_lock(mddev);
2621 list_for_each_entry(rdev2, &mddev->disks, same_set)
2622 if (rdev->bdev == rdev2->bdev &&
2623 rdev != rdev2 &&
2624 overlaps(rdev->data_offset, rdev->sectors,
2625 rdev2->data_offset,
2626 rdev2->sectors)) {
2627 overlap = 1;
2628 break;
2629 }
2630 mddev_unlock(mddev);
2631 if (overlap) {
2632 mddev_put(mddev);
2633 break;
2634 }
2635 }
2636 mddev_lock(my_mddev);
2637 if (overlap) {
2638 /* Someone else could have slipped in a size
2639 * change here, but doing so is just silly.
2640 * We put oldsectors back because we *know* it is
2641 * safe, and trust userspace not to race with
2642 * itself
2643 */
2644 rdev->sectors = oldsectors;
2645 return -EBUSY;
2646 }
2647 }
2648 return len;
2649 }
2650
2651 static struct rdev_sysfs_entry rdev_size =
2652 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2653
2654
2655 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2656 {
2657 unsigned long long recovery_start = rdev->recovery_offset;
2658
2659 if (test_bit(In_sync, &rdev->flags) ||
2660 recovery_start == MaxSector)
2661 return sprintf(page, "none\n");
2662
2663 return sprintf(page, "%llu\n", recovery_start);
2664 }
2665
2666 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2667 {
2668 unsigned long long recovery_start;
2669
2670 if (cmd_match(buf, "none"))
2671 recovery_start = MaxSector;
2672 else if (strict_strtoull(buf, 10, &recovery_start))
2673 return -EINVAL;
2674
2675 if (rdev->mddev->pers &&
2676 rdev->raid_disk >= 0)
2677 return -EBUSY;
2678
2679 rdev->recovery_offset = recovery_start;
2680 if (recovery_start == MaxSector)
2681 set_bit(In_sync, &rdev->flags);
2682 else
2683 clear_bit(In_sync, &rdev->flags);
2684 return len;
2685 }
2686
2687 static struct rdev_sysfs_entry rdev_recovery_start =
2688 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2689
2690 static struct attribute *rdev_default_attrs[] = {
2691 &rdev_state.attr,
2692 &rdev_errors.attr,
2693 &rdev_slot.attr,
2694 &rdev_offset.attr,
2695 &rdev_size.attr,
2696 &rdev_recovery_start.attr,
2697 NULL,
2698 };
2699 static ssize_t
2700 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2701 {
2702 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2703 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2704 mddev_t *mddev = rdev->mddev;
2705 ssize_t rv;
2706
2707 if (!entry->show)
2708 return -EIO;
2709
2710 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2711 if (!rv) {
2712 if (rdev->mddev == NULL)
2713 rv = -EBUSY;
2714 else
2715 rv = entry->show(rdev, page);
2716 mddev_unlock(mddev);
2717 }
2718 return rv;
2719 }
2720
2721 static ssize_t
2722 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2723 const char *page, size_t length)
2724 {
2725 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2726 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2727 ssize_t rv;
2728 mddev_t *mddev = rdev->mddev;
2729
2730 if (!entry->store)
2731 return -EIO;
2732 if (!capable(CAP_SYS_ADMIN))
2733 return -EACCES;
2734 rv = mddev ? mddev_lock(mddev): -EBUSY;
2735 if (!rv) {
2736 if (rdev->mddev == NULL)
2737 rv = -EBUSY;
2738 else
2739 rv = entry->store(rdev, page, length);
2740 mddev_unlock(mddev);
2741 }
2742 return rv;
2743 }
2744
2745 static void rdev_free(struct kobject *ko)
2746 {
2747 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2748 kfree(rdev);
2749 }
2750 static const struct sysfs_ops rdev_sysfs_ops = {
2751 .show = rdev_attr_show,
2752 .store = rdev_attr_store,
2753 };
2754 static struct kobj_type rdev_ktype = {
2755 .release = rdev_free,
2756 .sysfs_ops = &rdev_sysfs_ops,
2757 .default_attrs = rdev_default_attrs,
2758 };
2759
2760 void md_rdev_init(mdk_rdev_t *rdev)
2761 {
2762 rdev->desc_nr = -1;
2763 rdev->saved_raid_disk = -1;
2764 rdev->raid_disk = -1;
2765 rdev->flags = 0;
2766 rdev->data_offset = 0;
2767 rdev->sb_events = 0;
2768 rdev->last_read_error.tv_sec = 0;
2769 rdev->last_read_error.tv_nsec = 0;
2770 atomic_set(&rdev->nr_pending, 0);
2771 atomic_set(&rdev->read_errors, 0);
2772 atomic_set(&rdev->corrected_errors, 0);
2773
2774 INIT_LIST_HEAD(&rdev->same_set);
2775 init_waitqueue_head(&rdev->blocked_wait);
2776 }
2777 EXPORT_SYMBOL_GPL(md_rdev_init);
2778 /*
2779 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2780 *
2781 * mark the device faulty if:
2782 *
2783 * - the device is nonexistent (zero size)
2784 * - the device has no valid superblock
2785 *
2786 * a faulty rdev _never_ has rdev->sb set.
2787 */
2788 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2789 {
2790 char b[BDEVNAME_SIZE];
2791 int err;
2792 mdk_rdev_t *rdev;
2793 sector_t size;
2794
2795 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2796 if (!rdev) {
2797 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2798 return ERR_PTR(-ENOMEM);
2799 }
2800
2801 md_rdev_init(rdev);
2802 if ((err = alloc_disk_sb(rdev)))
2803 goto abort_free;
2804
2805 err = lock_rdev(rdev, newdev, super_format == -2);
2806 if (err)
2807 goto abort_free;
2808
2809 kobject_init(&rdev->kobj, &rdev_ktype);
2810
2811 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2812 if (!size) {
2813 printk(KERN_WARNING
2814 "md: %s has zero or unknown size, marking faulty!\n",
2815 bdevname(rdev->bdev,b));
2816 err = -EINVAL;
2817 goto abort_free;
2818 }
2819
2820 if (super_format >= 0) {
2821 err = super_types[super_format].
2822 load_super(rdev, NULL, super_minor);
2823 if (err == -EINVAL) {
2824 printk(KERN_WARNING
2825 "md: %s does not have a valid v%d.%d "
2826 "superblock, not importing!\n",
2827 bdevname(rdev->bdev,b),
2828 super_format, super_minor);
2829 goto abort_free;
2830 }
2831 if (err < 0) {
2832 printk(KERN_WARNING
2833 "md: could not read %s's sb, not importing!\n",
2834 bdevname(rdev->bdev,b));
2835 goto abort_free;
2836 }
2837 }
2838
2839 return rdev;
2840
2841 abort_free:
2842 if (rdev->sb_page) {
2843 if (rdev->bdev)
2844 unlock_rdev(rdev);
2845 free_disk_sb(rdev);
2846 }
2847 kfree(rdev);
2848 return ERR_PTR(err);
2849 }
2850
2851 /*
2852 * Check a full RAID array for plausibility
2853 */
2854
2855
2856 static void analyze_sbs(mddev_t * mddev)
2857 {
2858 int i;
2859 mdk_rdev_t *rdev, *freshest, *tmp;
2860 char b[BDEVNAME_SIZE];
2861
2862 freshest = NULL;
2863 rdev_for_each(rdev, tmp, mddev)
2864 switch (super_types[mddev->major_version].
2865 load_super(rdev, freshest, mddev->minor_version)) {
2866 case 1:
2867 freshest = rdev;
2868 break;
2869 case 0:
2870 break;
2871 default:
2872 printk( KERN_ERR \
2873 "md: fatal superblock inconsistency in %s"
2874 " -- removing from array\n",
2875 bdevname(rdev->bdev,b));
2876 kick_rdev_from_array(rdev);
2877 }
2878
2879
2880 super_types[mddev->major_version].
2881 validate_super(mddev, freshest);
2882
2883 i = 0;
2884 rdev_for_each(rdev, tmp, mddev) {
2885 if (mddev->max_disks &&
2886 (rdev->desc_nr >= mddev->max_disks ||
2887 i > mddev->max_disks)) {
2888 printk(KERN_WARNING
2889 "md: %s: %s: only %d devices permitted\n",
2890 mdname(mddev), bdevname(rdev->bdev, b),
2891 mddev->max_disks);
2892 kick_rdev_from_array(rdev);
2893 continue;
2894 }
2895 if (rdev != freshest)
2896 if (super_types[mddev->major_version].
2897 validate_super(mddev, rdev)) {
2898 printk(KERN_WARNING "md: kicking non-fresh %s"
2899 " from array!\n",
2900 bdevname(rdev->bdev,b));
2901 kick_rdev_from_array(rdev);
2902 continue;
2903 }
2904 if (mddev->level == LEVEL_MULTIPATH) {
2905 rdev->desc_nr = i++;
2906 rdev->raid_disk = rdev->desc_nr;
2907 set_bit(In_sync, &rdev->flags);
2908 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2909 rdev->raid_disk = -1;
2910 clear_bit(In_sync, &rdev->flags);
2911 }
2912 }
2913 }
2914
2915 /* Read a fixed-point number.
2916 * Numbers in sysfs attributes should be in "standard" units where
2917 * possible, so time should be in seconds.
2918 * However we internally use a a much smaller unit such as
2919 * milliseconds or jiffies.
2920 * This function takes a decimal number with a possible fractional
2921 * component, and produces an integer which is the result of
2922 * multiplying that number by 10^'scale'.
2923 * all without any floating-point arithmetic.
2924 */
2925 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2926 {
2927 unsigned long result = 0;
2928 long decimals = -1;
2929 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2930 if (*cp == '.')
2931 decimals = 0;
2932 else if (decimals < scale) {
2933 unsigned int value;
2934 value = *cp - '0';
2935 result = result * 10 + value;
2936 if (decimals >= 0)
2937 decimals++;
2938 }
2939 cp++;
2940 }
2941 if (*cp == '\n')
2942 cp++;
2943 if (*cp)
2944 return -EINVAL;
2945 if (decimals < 0)
2946 decimals = 0;
2947 while (decimals < scale) {
2948 result *= 10;
2949 decimals ++;
2950 }
2951 *res = result;
2952 return 0;
2953 }
2954
2955
2956 static void md_safemode_timeout(unsigned long data);
2957
2958 static ssize_t
2959 safe_delay_show(mddev_t *mddev, char *page)
2960 {
2961 int msec = (mddev->safemode_delay*1000)/HZ;
2962 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2963 }
2964 static ssize_t
2965 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2966 {
2967 unsigned long msec;
2968
2969 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2970 return -EINVAL;
2971 if (msec == 0)
2972 mddev->safemode_delay = 0;
2973 else {
2974 unsigned long old_delay = mddev->safemode_delay;
2975 mddev->safemode_delay = (msec*HZ)/1000;
2976 if (mddev->safemode_delay == 0)
2977 mddev->safemode_delay = 1;
2978 if (mddev->safemode_delay < old_delay)
2979 md_safemode_timeout((unsigned long)mddev);
2980 }
2981 return len;
2982 }
2983 static struct md_sysfs_entry md_safe_delay =
2984 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2985
2986 static ssize_t
2987 level_show(mddev_t *mddev, char *page)
2988 {
2989 struct mdk_personality *p = mddev->pers;
2990 if (p)
2991 return sprintf(page, "%s\n", p->name);
2992 else if (mddev->clevel[0])
2993 return sprintf(page, "%s\n", mddev->clevel);
2994 else if (mddev->level != LEVEL_NONE)
2995 return sprintf(page, "%d\n", mddev->level);
2996 else
2997 return 0;
2998 }
2999
3000 static ssize_t
3001 level_store(mddev_t *mddev, const char *buf, size_t len)
3002 {
3003 char clevel[16];
3004 ssize_t rv = len;
3005 struct mdk_personality *pers;
3006 long level;
3007 void *priv;
3008 mdk_rdev_t *rdev;
3009
3010 if (mddev->pers == NULL) {
3011 if (len == 0)
3012 return 0;
3013 if (len >= sizeof(mddev->clevel))
3014 return -ENOSPC;
3015 strncpy(mddev->clevel, buf, len);
3016 if (mddev->clevel[len-1] == '\n')
3017 len--;
3018 mddev->clevel[len] = 0;
3019 mddev->level = LEVEL_NONE;
3020 return rv;
3021 }
3022
3023 /* request to change the personality. Need to ensure:
3024 * - array is not engaged in resync/recovery/reshape
3025 * - old personality can be suspended
3026 * - new personality will access other array.
3027 */
3028
3029 if (mddev->sync_thread ||
3030 mddev->reshape_position != MaxSector ||
3031 mddev->sysfs_active)
3032 return -EBUSY;
3033
3034 if (!mddev->pers->quiesce) {
3035 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3036 mdname(mddev), mddev->pers->name);
3037 return -EINVAL;
3038 }
3039
3040 /* Now find the new personality */
3041 if (len == 0 || len >= sizeof(clevel))
3042 return -EINVAL;
3043 strncpy(clevel, buf, len);
3044 if (clevel[len-1] == '\n')
3045 len--;
3046 clevel[len] = 0;
3047 if (strict_strtol(clevel, 10, &level))
3048 level = LEVEL_NONE;
3049
3050 if (request_module("md-%s", clevel) != 0)
3051 request_module("md-level-%s", clevel);
3052 spin_lock(&pers_lock);
3053 pers = find_pers(level, clevel);
3054 if (!pers || !try_module_get(pers->owner)) {
3055 spin_unlock(&pers_lock);
3056 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3057 return -EINVAL;
3058 }
3059 spin_unlock(&pers_lock);
3060
3061 if (pers == mddev->pers) {
3062 /* Nothing to do! */
3063 module_put(pers->owner);
3064 return rv;
3065 }
3066 if (!pers->takeover) {
3067 module_put(pers->owner);
3068 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3069 mdname(mddev), clevel);
3070 return -EINVAL;
3071 }
3072
3073 list_for_each_entry(rdev, &mddev->disks, same_set)
3074 rdev->new_raid_disk = rdev->raid_disk;
3075
3076 /* ->takeover must set new_* and/or delta_disks
3077 * if it succeeds, and may set them when it fails.
3078 */
3079 priv = pers->takeover(mddev);
3080 if (IS_ERR(priv)) {
3081 mddev->new_level = mddev->level;
3082 mddev->new_layout = mddev->layout;
3083 mddev->new_chunk_sectors = mddev->chunk_sectors;
3084 mddev->raid_disks -= mddev->delta_disks;
3085 mddev->delta_disks = 0;
3086 module_put(pers->owner);
3087 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3088 mdname(mddev), clevel);
3089 return PTR_ERR(priv);
3090 }
3091
3092 /* Looks like we have a winner */
3093 mddev_suspend(mddev);
3094 mddev->pers->stop(mddev);
3095
3096 if (mddev->pers->sync_request == NULL &&
3097 pers->sync_request != NULL) {
3098 /* need to add the md_redundancy_group */
3099 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3100 printk(KERN_WARNING
3101 "md: cannot register extra attributes for %s\n",
3102 mdname(mddev));
3103 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3104 }
3105 if (mddev->pers->sync_request != NULL &&
3106 pers->sync_request == NULL) {
3107 /* need to remove the md_redundancy_group */
3108 if (mddev->to_remove == NULL)
3109 mddev->to_remove = &md_redundancy_group;
3110 }
3111
3112 if (mddev->pers->sync_request == NULL &&
3113 mddev->external) {
3114 /* We are converting from a no-redundancy array
3115 * to a redundancy array and metadata is managed
3116 * externally so we need to be sure that writes
3117 * won't block due to a need to transition
3118 * clean->dirty
3119 * until external management is started.
3120 */
3121 mddev->in_sync = 0;
3122 mddev->safemode_delay = 0;
3123 mddev->safemode = 0;
3124 }
3125
3126 list_for_each_entry(rdev, &mddev->disks, same_set) {
3127 char nm[20];
3128 if (rdev->raid_disk < 0)
3129 continue;
3130 if (rdev->new_raid_disk >= mddev->raid_disks)
3131 rdev->new_raid_disk = -1;
3132 if (rdev->new_raid_disk == rdev->raid_disk)
3133 continue;
3134 sprintf(nm, "rd%d", rdev->raid_disk);
3135 sysfs_remove_link(&mddev->kobj, nm);
3136 }
3137 list_for_each_entry(rdev, &mddev->disks, same_set) {
3138 if (rdev->raid_disk < 0)
3139 continue;
3140 if (rdev->new_raid_disk == rdev->raid_disk)
3141 continue;
3142 rdev->raid_disk = rdev->new_raid_disk;
3143 if (rdev->raid_disk < 0)
3144 clear_bit(In_sync, &rdev->flags);
3145 else {
3146 char nm[20];
3147 sprintf(nm, "rd%d", rdev->raid_disk);
3148 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3149 printk("md: cannot register %s for %s after level change\n",
3150 nm, mdname(mddev));
3151 }
3152 }
3153
3154 module_put(mddev->pers->owner);
3155 mddev->pers = pers;
3156 mddev->private = priv;
3157 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3158 mddev->level = mddev->new_level;
3159 mddev->layout = mddev->new_layout;
3160 mddev->chunk_sectors = mddev->new_chunk_sectors;
3161 mddev->delta_disks = 0;
3162 if (mddev->pers->sync_request == NULL) {
3163 /* this is now an array without redundancy, so
3164 * it must always be in_sync
3165 */
3166 mddev->in_sync = 1;
3167 del_timer_sync(&mddev->safemode_timer);
3168 }
3169 pers->run(mddev);
3170 mddev_resume(mddev);
3171 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3172 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3173 md_wakeup_thread(mddev->thread);
3174 sysfs_notify(&mddev->kobj, NULL, "level");
3175 md_new_event(mddev);
3176 return rv;
3177 }
3178
3179 static struct md_sysfs_entry md_level =
3180 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3181
3182
3183 static ssize_t
3184 layout_show(mddev_t *mddev, char *page)
3185 {
3186 /* just a number, not meaningful for all levels */
3187 if (mddev->reshape_position != MaxSector &&
3188 mddev->layout != mddev->new_layout)
3189 return sprintf(page, "%d (%d)\n",
3190 mddev->new_layout, mddev->layout);
3191 return sprintf(page, "%d\n", mddev->layout);
3192 }
3193
3194 static ssize_t
3195 layout_store(mddev_t *mddev, const char *buf, size_t len)
3196 {
3197 char *e;
3198 unsigned long n = simple_strtoul(buf, &e, 10);
3199
3200 if (!*buf || (*e && *e != '\n'))
3201 return -EINVAL;
3202
3203 if (mddev->pers) {
3204 int err;
3205 if (mddev->pers->check_reshape == NULL)
3206 return -EBUSY;
3207 mddev->new_layout = n;
3208 err = mddev->pers->check_reshape(mddev);
3209 if (err) {
3210 mddev->new_layout = mddev->layout;
3211 return err;
3212 }
3213 } else {
3214 mddev->new_layout = n;
3215 if (mddev->reshape_position == MaxSector)
3216 mddev->layout = n;
3217 }
3218 return len;
3219 }
3220 static struct md_sysfs_entry md_layout =
3221 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3222
3223
3224 static ssize_t
3225 raid_disks_show(mddev_t *mddev, char *page)
3226 {
3227 if (mddev->raid_disks == 0)
3228 return 0;
3229 if (mddev->reshape_position != MaxSector &&
3230 mddev->delta_disks != 0)
3231 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3232 mddev->raid_disks - mddev->delta_disks);
3233 return sprintf(page, "%d\n", mddev->raid_disks);
3234 }
3235
3236 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3237
3238 static ssize_t
3239 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3240 {
3241 char *e;
3242 int rv = 0;
3243 unsigned long n = simple_strtoul(buf, &e, 10);
3244
3245 if (!*buf || (*e && *e != '\n'))
3246 return -EINVAL;
3247
3248 if (mddev->pers)
3249 rv = update_raid_disks(mddev, n);
3250 else if (mddev->reshape_position != MaxSector) {
3251 int olddisks = mddev->raid_disks - mddev->delta_disks;
3252 mddev->delta_disks = n - olddisks;
3253 mddev->raid_disks = n;
3254 } else
3255 mddev->raid_disks = n;
3256 return rv ? rv : len;
3257 }
3258 static struct md_sysfs_entry md_raid_disks =
3259 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3260
3261 static ssize_t
3262 chunk_size_show(mddev_t *mddev, char *page)
3263 {
3264 if (mddev->reshape_position != MaxSector &&
3265 mddev->chunk_sectors != mddev->new_chunk_sectors)
3266 return sprintf(page, "%d (%d)\n",
3267 mddev->new_chunk_sectors << 9,
3268 mddev->chunk_sectors << 9);
3269 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3270 }
3271
3272 static ssize_t
3273 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3274 {
3275 char *e;
3276 unsigned long n = simple_strtoul(buf, &e, 10);
3277
3278 if (!*buf || (*e && *e != '\n'))
3279 return -EINVAL;
3280
3281 if (mddev->pers) {
3282 int err;
3283 if (mddev->pers->check_reshape == NULL)
3284 return -EBUSY;
3285 mddev->new_chunk_sectors = n >> 9;
3286 err = mddev->pers->check_reshape(mddev);
3287 if (err) {
3288 mddev->new_chunk_sectors = mddev->chunk_sectors;
3289 return err;
3290 }
3291 } else {
3292 mddev->new_chunk_sectors = n >> 9;
3293 if (mddev->reshape_position == MaxSector)
3294 mddev->chunk_sectors = n >> 9;
3295 }
3296 return len;
3297 }
3298 static struct md_sysfs_entry md_chunk_size =
3299 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3300
3301 static ssize_t
3302 resync_start_show(mddev_t *mddev, char *page)
3303 {
3304 if (mddev->recovery_cp == MaxSector)
3305 return sprintf(page, "none\n");
3306 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3307 }
3308
3309 static ssize_t
3310 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3311 {
3312 char *e;
3313 unsigned long long n = simple_strtoull(buf, &e, 10);
3314
3315 if (mddev->pers)
3316 return -EBUSY;
3317 if (cmd_match(buf, "none"))
3318 n = MaxSector;
3319 else if (!*buf || (*e && *e != '\n'))
3320 return -EINVAL;
3321
3322 mddev->recovery_cp = n;
3323 return len;
3324 }
3325 static struct md_sysfs_entry md_resync_start =
3326 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3327
3328 /*
3329 * The array state can be:
3330 *
3331 * clear
3332 * No devices, no size, no level
3333 * Equivalent to STOP_ARRAY ioctl
3334 * inactive
3335 * May have some settings, but array is not active
3336 * all IO results in error
3337 * When written, doesn't tear down array, but just stops it
3338 * suspended (not supported yet)
3339 * All IO requests will block. The array can be reconfigured.
3340 * Writing this, if accepted, will block until array is quiescent
3341 * readonly
3342 * no resync can happen. no superblocks get written.
3343 * write requests fail
3344 * read-auto
3345 * like readonly, but behaves like 'clean' on a write request.
3346 *
3347 * clean - no pending writes, but otherwise active.
3348 * When written to inactive array, starts without resync
3349 * If a write request arrives then
3350 * if metadata is known, mark 'dirty' and switch to 'active'.
3351 * if not known, block and switch to write-pending
3352 * If written to an active array that has pending writes, then fails.
3353 * active
3354 * fully active: IO and resync can be happening.
3355 * When written to inactive array, starts with resync
3356 *
3357 * write-pending
3358 * clean, but writes are blocked waiting for 'active' to be written.
3359 *
3360 * active-idle
3361 * like active, but no writes have been seen for a while (100msec).
3362 *
3363 */
3364 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3365 write_pending, active_idle, bad_word};
3366 static char *array_states[] = {
3367 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3368 "write-pending", "active-idle", NULL };
3369
3370 static int match_word(const char *word, char **list)
3371 {
3372 int n;
3373 for (n=0; list[n]; n++)
3374 if (cmd_match(word, list[n]))
3375 break;
3376 return n;
3377 }
3378
3379 static ssize_t
3380 array_state_show(mddev_t *mddev, char *page)
3381 {
3382 enum array_state st = inactive;
3383
3384 if (mddev->pers)
3385 switch(mddev->ro) {
3386 case 1:
3387 st = readonly;
3388 break;
3389 case 2:
3390 st = read_auto;
3391 break;
3392 case 0:
3393 if (mddev->in_sync)
3394 st = clean;
3395 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3396 st = write_pending;
3397 else if (mddev->safemode)
3398 st = active_idle;
3399 else
3400 st = active;
3401 }
3402 else {
3403 if (list_empty(&mddev->disks) &&
3404 mddev->raid_disks == 0 &&
3405 mddev->dev_sectors == 0)
3406 st = clear;
3407 else
3408 st = inactive;
3409 }
3410 return sprintf(page, "%s\n", array_states[st]);
3411 }
3412
3413 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3414 static int md_set_readonly(mddev_t * mddev, int is_open);
3415 static int do_md_run(mddev_t * mddev);
3416 static int restart_array(mddev_t *mddev);
3417
3418 static ssize_t
3419 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3420 {
3421 int err = -EINVAL;
3422 enum array_state st = match_word(buf, array_states);
3423 switch(st) {
3424 case bad_word:
3425 break;
3426 case clear:
3427 /* stopping an active array */
3428 if (atomic_read(&mddev->openers) > 0)
3429 return -EBUSY;
3430 err = do_md_stop(mddev, 0, 0);
3431 break;
3432 case inactive:
3433 /* stopping an active array */
3434 if (mddev->pers) {
3435 if (atomic_read(&mddev->openers) > 0)
3436 return -EBUSY;
3437 err = do_md_stop(mddev, 2, 0);
3438 } else
3439 err = 0; /* already inactive */
3440 break;
3441 case suspended:
3442 break; /* not supported yet */
3443 case readonly:
3444 if (mddev->pers)
3445 err = md_set_readonly(mddev, 0);
3446 else {
3447 mddev->ro = 1;
3448 set_disk_ro(mddev->gendisk, 1);
3449 err = do_md_run(mddev);
3450 }
3451 break;
3452 case read_auto:
3453 if (mddev->pers) {
3454 if (mddev->ro == 0)
3455 err = md_set_readonly(mddev, 0);
3456 else if (mddev->ro == 1)
3457 err = restart_array(mddev);
3458 if (err == 0) {
3459 mddev->ro = 2;
3460 set_disk_ro(mddev->gendisk, 0);
3461 }
3462 } else {
3463 mddev->ro = 2;
3464 err = do_md_run(mddev);
3465 }
3466 break;
3467 case clean:
3468 if (mddev->pers) {
3469 restart_array(mddev);
3470 spin_lock_irq(&mddev->write_lock);
3471 if (atomic_read(&mddev->writes_pending) == 0) {
3472 if (mddev->in_sync == 0) {
3473 mddev->in_sync = 1;
3474 if (mddev->safemode == 1)
3475 mddev->safemode = 0;
3476 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3477 }
3478 err = 0;
3479 } else
3480 err = -EBUSY;
3481 spin_unlock_irq(&mddev->write_lock);
3482 } else
3483 err = -EINVAL;
3484 break;
3485 case active:
3486 if (mddev->pers) {
3487 restart_array(mddev);
3488 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3489 wake_up(&mddev->sb_wait);
3490 err = 0;
3491 } else {
3492 mddev->ro = 0;
3493 set_disk_ro(mddev->gendisk, 0);
3494 err = do_md_run(mddev);
3495 }
3496 break;
3497 case write_pending:
3498 case active_idle:
3499 /* these cannot be set */
3500 break;
3501 }
3502 if (err)
3503 return err;
3504 else {
3505 sysfs_notify_dirent_safe(mddev->sysfs_state);
3506 return len;
3507 }
3508 }
3509 static struct md_sysfs_entry md_array_state =
3510 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3511
3512 static ssize_t
3513 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3514 return sprintf(page, "%d\n",
3515 atomic_read(&mddev->max_corr_read_errors));
3516 }
3517
3518 static ssize_t
3519 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3520 {
3521 char *e;
3522 unsigned long n = simple_strtoul(buf, &e, 10);
3523
3524 if (*buf && (*e == 0 || *e == '\n')) {
3525 atomic_set(&mddev->max_corr_read_errors, n);
3526 return len;
3527 }
3528 return -EINVAL;
3529 }
3530
3531 static struct md_sysfs_entry max_corr_read_errors =
3532 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3533 max_corrected_read_errors_store);
3534
3535 static ssize_t
3536 null_show(mddev_t *mddev, char *page)
3537 {
3538 return -EINVAL;
3539 }
3540
3541 static ssize_t
3542 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3543 {
3544 /* buf must be %d:%d\n? giving major and minor numbers */
3545 /* The new device is added to the array.
3546 * If the array has a persistent superblock, we read the
3547 * superblock to initialise info and check validity.
3548 * Otherwise, only checking done is that in bind_rdev_to_array,
3549 * which mainly checks size.
3550 */
3551 char *e;
3552 int major = simple_strtoul(buf, &e, 10);
3553 int minor;
3554 dev_t dev;
3555 mdk_rdev_t *rdev;
3556 int err;
3557
3558 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3559 return -EINVAL;
3560 minor = simple_strtoul(e+1, &e, 10);
3561 if (*e && *e != '\n')
3562 return -EINVAL;
3563 dev = MKDEV(major, minor);
3564 if (major != MAJOR(dev) ||
3565 minor != MINOR(dev))
3566 return -EOVERFLOW;
3567
3568
3569 if (mddev->persistent) {
3570 rdev = md_import_device(dev, mddev->major_version,
3571 mddev->minor_version);
3572 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3573 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3574 mdk_rdev_t, same_set);
3575 err = super_types[mddev->major_version]
3576 .load_super(rdev, rdev0, mddev->minor_version);
3577 if (err < 0)
3578 goto out;
3579 }
3580 } else if (mddev->external)
3581 rdev = md_import_device(dev, -2, -1);
3582 else
3583 rdev = md_import_device(dev, -1, -1);
3584
3585 if (IS_ERR(rdev))
3586 return PTR_ERR(rdev);
3587 err = bind_rdev_to_array(rdev, mddev);
3588 out:
3589 if (err)
3590 export_rdev(rdev);
3591 return err ? err : len;
3592 }
3593
3594 static struct md_sysfs_entry md_new_device =
3595 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3596
3597 static ssize_t
3598 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3599 {
3600 char *end;
3601 unsigned long chunk, end_chunk;
3602
3603 if (!mddev->bitmap)
3604 goto out;
3605 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3606 while (*buf) {
3607 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3608 if (buf == end) break;
3609 if (*end == '-') { /* range */
3610 buf = end + 1;
3611 end_chunk = simple_strtoul(buf, &end, 0);
3612 if (buf == end) break;
3613 }
3614 if (*end && !isspace(*end)) break;
3615 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3616 buf = skip_spaces(end);
3617 }
3618 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3619 out:
3620 return len;
3621 }
3622
3623 static struct md_sysfs_entry md_bitmap =
3624 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3625
3626 static ssize_t
3627 size_show(mddev_t *mddev, char *page)
3628 {
3629 return sprintf(page, "%llu\n",
3630 (unsigned long long)mddev->dev_sectors / 2);
3631 }
3632
3633 static int update_size(mddev_t *mddev, sector_t num_sectors);
3634
3635 static ssize_t
3636 size_store(mddev_t *mddev, const char *buf, size_t len)
3637 {
3638 /* If array is inactive, we can reduce the component size, but
3639 * not increase it (except from 0).
3640 * If array is active, we can try an on-line resize
3641 */
3642 sector_t sectors;
3643 int err = strict_blocks_to_sectors(buf, &sectors);
3644
3645 if (err < 0)
3646 return err;
3647 if (mddev->pers) {
3648 err = update_size(mddev, sectors);
3649 md_update_sb(mddev, 1);
3650 } else {
3651 if (mddev->dev_sectors == 0 ||
3652 mddev->dev_sectors > sectors)
3653 mddev->dev_sectors = sectors;
3654 else
3655 err = -ENOSPC;
3656 }
3657 return err ? err : len;
3658 }
3659
3660 static struct md_sysfs_entry md_size =
3661 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3662
3663
3664 /* Metdata version.
3665 * This is one of
3666 * 'none' for arrays with no metadata (good luck...)
3667 * 'external' for arrays with externally managed metadata,
3668 * or N.M for internally known formats
3669 */
3670 static ssize_t
3671 metadata_show(mddev_t *mddev, char *page)
3672 {
3673 if (mddev->persistent)
3674 return sprintf(page, "%d.%d\n",
3675 mddev->major_version, mddev->minor_version);
3676 else if (mddev->external)
3677 return sprintf(page, "external:%s\n", mddev->metadata_type);
3678 else
3679 return sprintf(page, "none\n");
3680 }
3681
3682 static ssize_t
3683 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3684 {
3685 int major, minor;
3686 char *e;
3687 /* Changing the details of 'external' metadata is
3688 * always permitted. Otherwise there must be
3689 * no devices attached to the array.
3690 */
3691 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3692 ;
3693 else if (!list_empty(&mddev->disks))
3694 return -EBUSY;
3695
3696 if (cmd_match(buf, "none")) {
3697 mddev->persistent = 0;
3698 mddev->external = 0;
3699 mddev->major_version = 0;
3700 mddev->minor_version = 90;
3701 return len;
3702 }
3703 if (strncmp(buf, "external:", 9) == 0) {
3704 size_t namelen = len-9;
3705 if (namelen >= sizeof(mddev->metadata_type))
3706 namelen = sizeof(mddev->metadata_type)-1;
3707 strncpy(mddev->metadata_type, buf+9, namelen);
3708 mddev->metadata_type[namelen] = 0;
3709 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3710 mddev->metadata_type[--namelen] = 0;
3711 mddev->persistent = 0;
3712 mddev->external = 1;
3713 mddev->major_version = 0;
3714 mddev->minor_version = 90;
3715 return len;
3716 }
3717 major = simple_strtoul(buf, &e, 10);
3718 if (e==buf || *e != '.')
3719 return -EINVAL;
3720 buf = e+1;
3721 minor = simple_strtoul(buf, &e, 10);
3722 if (e==buf || (*e && *e != '\n') )
3723 return -EINVAL;
3724 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3725 return -ENOENT;
3726 mddev->major_version = major;
3727 mddev->minor_version = minor;
3728 mddev->persistent = 1;
3729 mddev->external = 0;
3730 return len;
3731 }
3732
3733 static struct md_sysfs_entry md_metadata =
3734 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3735
3736 static ssize_t
3737 action_show(mddev_t *mddev, char *page)
3738 {
3739 char *type = "idle";
3740 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3741 type = "frozen";
3742 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3743 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3744 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3745 type = "reshape";
3746 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3747 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3748 type = "resync";
3749 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3750 type = "check";
3751 else
3752 type = "repair";
3753 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3754 type = "recover";
3755 }
3756 return sprintf(page, "%s\n", type);
3757 }
3758
3759 static void reap_sync_thread(mddev_t *mddev);
3760
3761 static ssize_t
3762 action_store(mddev_t *mddev, const char *page, size_t len)
3763 {
3764 if (!mddev->pers || !mddev->pers->sync_request)
3765 return -EINVAL;
3766
3767 if (cmd_match(page, "frozen"))
3768 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3769 else
3770 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3771
3772 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3773 if (mddev->sync_thread) {
3774 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3775 reap_sync_thread(mddev);
3776 }
3777 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3778 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3779 return -EBUSY;
3780 else if (cmd_match(page, "resync"))
3781 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3782 else if (cmd_match(page, "recover")) {
3783 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3784 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3785 } else if (cmd_match(page, "reshape")) {
3786 int err;
3787 if (mddev->pers->start_reshape == NULL)
3788 return -EINVAL;
3789 err = mddev->pers->start_reshape(mddev);
3790 if (err)
3791 return err;
3792 sysfs_notify(&mddev->kobj, NULL, "degraded");
3793 } else {
3794 if (cmd_match(page, "check"))
3795 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3796 else if (!cmd_match(page, "repair"))
3797 return -EINVAL;
3798 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3799 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3800 }
3801 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3802 md_wakeup_thread(mddev->thread);
3803 sysfs_notify_dirent_safe(mddev->sysfs_action);
3804 return len;
3805 }
3806
3807 static ssize_t
3808 mismatch_cnt_show(mddev_t *mddev, char *page)
3809 {
3810 return sprintf(page, "%llu\n",
3811 (unsigned long long) mddev->resync_mismatches);
3812 }
3813
3814 static struct md_sysfs_entry md_scan_mode =
3815 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3816
3817
3818 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3819
3820 static ssize_t
3821 sync_min_show(mddev_t *mddev, char *page)
3822 {
3823 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3824 mddev->sync_speed_min ? "local": "system");
3825 }
3826
3827 static ssize_t
3828 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3829 {
3830 int min;
3831 char *e;
3832 if (strncmp(buf, "system", 6)==0) {
3833 mddev->sync_speed_min = 0;
3834 return len;
3835 }
3836 min = simple_strtoul(buf, &e, 10);
3837 if (buf == e || (*e && *e != '\n') || min <= 0)
3838 return -EINVAL;
3839 mddev->sync_speed_min = min;
3840 return len;
3841 }
3842
3843 static struct md_sysfs_entry md_sync_min =
3844 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3845
3846 static ssize_t
3847 sync_max_show(mddev_t *mddev, char *page)
3848 {
3849 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3850 mddev->sync_speed_max ? "local": "system");
3851 }
3852
3853 static ssize_t
3854 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3855 {
3856 int max;
3857 char *e;
3858 if (strncmp(buf, "system", 6)==0) {
3859 mddev->sync_speed_max = 0;
3860 return len;
3861 }
3862 max = simple_strtoul(buf, &e, 10);
3863 if (buf == e || (*e && *e != '\n') || max <= 0)
3864 return -EINVAL;
3865 mddev->sync_speed_max = max;
3866 return len;
3867 }
3868
3869 static struct md_sysfs_entry md_sync_max =
3870 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3871
3872 static ssize_t
3873 degraded_show(mddev_t *mddev, char *page)
3874 {
3875 return sprintf(page, "%d\n", mddev->degraded);
3876 }
3877 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3878
3879 static ssize_t
3880 sync_force_parallel_show(mddev_t *mddev, char *page)
3881 {
3882 return sprintf(page, "%d\n", mddev->parallel_resync);
3883 }
3884
3885 static ssize_t
3886 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3887 {
3888 long n;
3889
3890 if (strict_strtol(buf, 10, &n))
3891 return -EINVAL;
3892
3893 if (n != 0 && n != 1)
3894 return -EINVAL;
3895
3896 mddev->parallel_resync = n;
3897
3898 if (mddev->sync_thread)
3899 wake_up(&resync_wait);
3900
3901 return len;
3902 }
3903
3904 /* force parallel resync, even with shared block devices */
3905 static struct md_sysfs_entry md_sync_force_parallel =
3906 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3907 sync_force_parallel_show, sync_force_parallel_store);
3908
3909 static ssize_t
3910 sync_speed_show(mddev_t *mddev, char *page)
3911 {
3912 unsigned long resync, dt, db;
3913 if (mddev->curr_resync == 0)
3914 return sprintf(page, "none\n");
3915 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3916 dt = (jiffies - mddev->resync_mark) / HZ;
3917 if (!dt) dt++;
3918 db = resync - mddev->resync_mark_cnt;
3919 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3920 }
3921
3922 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3923
3924 static ssize_t
3925 sync_completed_show(mddev_t *mddev, char *page)
3926 {
3927 unsigned long long max_sectors, resync;
3928
3929 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3930 return sprintf(page, "none\n");
3931
3932 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3933 max_sectors = mddev->resync_max_sectors;
3934 else
3935 max_sectors = mddev->dev_sectors;
3936
3937 resync = mddev->curr_resync_completed;
3938 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
3939 }
3940
3941 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3942
3943 static ssize_t
3944 min_sync_show(mddev_t *mddev, char *page)
3945 {
3946 return sprintf(page, "%llu\n",
3947 (unsigned long long)mddev->resync_min);
3948 }
3949 static ssize_t
3950 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3951 {
3952 unsigned long long min;
3953 if (strict_strtoull(buf, 10, &min))
3954 return -EINVAL;
3955 if (min > mddev->resync_max)
3956 return -EINVAL;
3957 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3958 return -EBUSY;
3959
3960 /* Must be a multiple of chunk_size */
3961 if (mddev->chunk_sectors) {
3962 sector_t temp = min;
3963 if (sector_div(temp, mddev->chunk_sectors))
3964 return -EINVAL;
3965 }
3966 mddev->resync_min = min;
3967
3968 return len;
3969 }
3970
3971 static struct md_sysfs_entry md_min_sync =
3972 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3973
3974 static ssize_t
3975 max_sync_show(mddev_t *mddev, char *page)
3976 {
3977 if (mddev->resync_max == MaxSector)
3978 return sprintf(page, "max\n");
3979 else
3980 return sprintf(page, "%llu\n",
3981 (unsigned long long)mddev->resync_max);
3982 }
3983 static ssize_t
3984 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3985 {
3986 if (strncmp(buf, "max", 3) == 0)
3987 mddev->resync_max = MaxSector;
3988 else {
3989 unsigned long long max;
3990 if (strict_strtoull(buf, 10, &max))
3991 return -EINVAL;
3992 if (max < mddev->resync_min)
3993 return -EINVAL;
3994 if (max < mddev->resync_max &&
3995 mddev->ro == 0 &&
3996 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3997 return -EBUSY;
3998
3999 /* Must be a multiple of chunk_size */
4000 if (mddev->chunk_sectors) {
4001 sector_t temp = max;
4002 if (sector_div(temp, mddev->chunk_sectors))
4003 return -EINVAL;
4004 }
4005 mddev->resync_max = max;
4006 }
4007 wake_up(&mddev->recovery_wait);
4008 return len;
4009 }
4010
4011 static struct md_sysfs_entry md_max_sync =
4012 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4013
4014 static ssize_t
4015 suspend_lo_show(mddev_t *mddev, char *page)
4016 {
4017 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4018 }
4019
4020 static ssize_t
4021 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4022 {
4023 char *e;
4024 unsigned long long new = simple_strtoull(buf, &e, 10);
4025 unsigned long long old = mddev->suspend_lo;
4026
4027 if (mddev->pers == NULL ||
4028 mddev->pers->quiesce == NULL)
4029 return -EINVAL;
4030 if (buf == e || (*e && *e != '\n'))
4031 return -EINVAL;
4032
4033 mddev->suspend_lo = new;
4034 if (new >= old)
4035 /* Shrinking suspended region */
4036 mddev->pers->quiesce(mddev, 2);
4037 else {
4038 /* Expanding suspended region - need to wait */
4039 mddev->pers->quiesce(mddev, 1);
4040 mddev->pers->quiesce(mddev, 0);
4041 }
4042 return len;
4043 }
4044 static struct md_sysfs_entry md_suspend_lo =
4045 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4046
4047
4048 static ssize_t
4049 suspend_hi_show(mddev_t *mddev, char *page)
4050 {
4051 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4052 }
4053
4054 static ssize_t
4055 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4056 {
4057 char *e;
4058 unsigned long long new = simple_strtoull(buf, &e, 10);
4059 unsigned long long old = mddev->suspend_hi;
4060
4061 if (mddev->pers == NULL ||
4062 mddev->pers->quiesce == NULL)
4063 return -EINVAL;
4064 if (buf == e || (*e && *e != '\n'))
4065 return -EINVAL;
4066
4067 mddev->suspend_hi = new;
4068 if (new <= old)
4069 /* Shrinking suspended region */
4070 mddev->pers->quiesce(mddev, 2);
4071 else {
4072 /* Expanding suspended region - need to wait */
4073 mddev->pers->quiesce(mddev, 1);
4074 mddev->pers->quiesce(mddev, 0);
4075 }
4076 return len;
4077 }
4078 static struct md_sysfs_entry md_suspend_hi =
4079 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4080
4081 static ssize_t
4082 reshape_position_show(mddev_t *mddev, char *page)
4083 {
4084 if (mddev->reshape_position != MaxSector)
4085 return sprintf(page, "%llu\n",
4086 (unsigned long long)mddev->reshape_position);
4087 strcpy(page, "none\n");
4088 return 5;
4089 }
4090
4091 static ssize_t
4092 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4093 {
4094 char *e;
4095 unsigned long long new = simple_strtoull(buf, &e, 10);
4096 if (mddev->pers)
4097 return -EBUSY;
4098 if (buf == e || (*e && *e != '\n'))
4099 return -EINVAL;
4100 mddev->reshape_position = new;
4101 mddev->delta_disks = 0;
4102 mddev->new_level = mddev->level;
4103 mddev->new_layout = mddev->layout;
4104 mddev->new_chunk_sectors = mddev->chunk_sectors;
4105 return len;
4106 }
4107
4108 static struct md_sysfs_entry md_reshape_position =
4109 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4110 reshape_position_store);
4111
4112 static ssize_t
4113 array_size_show(mddev_t *mddev, char *page)
4114 {
4115 if (mddev->external_size)
4116 return sprintf(page, "%llu\n",
4117 (unsigned long long)mddev->array_sectors/2);
4118 else
4119 return sprintf(page, "default\n");
4120 }
4121
4122 static ssize_t
4123 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4124 {
4125 sector_t sectors;
4126
4127 if (strncmp(buf, "default", 7) == 0) {
4128 if (mddev->pers)
4129 sectors = mddev->pers->size(mddev, 0, 0);
4130 else
4131 sectors = mddev->array_sectors;
4132
4133 mddev->external_size = 0;
4134 } else {
4135 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4136 return -EINVAL;
4137 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4138 return -E2BIG;
4139
4140 mddev->external_size = 1;
4141 }
4142
4143 mddev->array_sectors = sectors;
4144 if (mddev->pers) {
4145 set_capacity(mddev->gendisk, mddev->array_sectors);
4146 revalidate_disk(mddev->gendisk);
4147 }
4148 return len;
4149 }
4150
4151 static struct md_sysfs_entry md_array_size =
4152 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4153 array_size_store);
4154
4155 static struct attribute *md_default_attrs[] = {
4156 &md_level.attr,
4157 &md_layout.attr,
4158 &md_raid_disks.attr,
4159 &md_chunk_size.attr,
4160 &md_size.attr,
4161 &md_resync_start.attr,
4162 &md_metadata.attr,
4163 &md_new_device.attr,
4164 &md_safe_delay.attr,
4165 &md_array_state.attr,
4166 &md_reshape_position.attr,
4167 &md_array_size.attr,
4168 &max_corr_read_errors.attr,
4169 NULL,
4170 };
4171
4172 static struct attribute *md_redundancy_attrs[] = {
4173 &md_scan_mode.attr,
4174 &md_mismatches.attr,
4175 &md_sync_min.attr,
4176 &md_sync_max.attr,
4177 &md_sync_speed.attr,
4178 &md_sync_force_parallel.attr,
4179 &md_sync_completed.attr,
4180 &md_min_sync.attr,
4181 &md_max_sync.attr,
4182 &md_suspend_lo.attr,
4183 &md_suspend_hi.attr,
4184 &md_bitmap.attr,
4185 &md_degraded.attr,
4186 NULL,
4187 };
4188 static struct attribute_group md_redundancy_group = {
4189 .name = NULL,
4190 .attrs = md_redundancy_attrs,
4191 };
4192
4193
4194 static ssize_t
4195 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4196 {
4197 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4198 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4199 ssize_t rv;
4200
4201 if (!entry->show)
4202 return -EIO;
4203 rv = mddev_lock(mddev);
4204 if (!rv) {
4205 rv = entry->show(mddev, page);
4206 mddev_unlock(mddev);
4207 }
4208 return rv;
4209 }
4210
4211 static ssize_t
4212 md_attr_store(struct kobject *kobj, struct attribute *attr,
4213 const char *page, size_t length)
4214 {
4215 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4216 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4217 ssize_t rv;
4218
4219 if (!entry->store)
4220 return -EIO;
4221 if (!capable(CAP_SYS_ADMIN))
4222 return -EACCES;
4223 rv = mddev_lock(mddev);
4224 if (mddev->hold_active == UNTIL_IOCTL)
4225 mddev->hold_active = 0;
4226 if (!rv) {
4227 rv = entry->store(mddev, page, length);
4228 mddev_unlock(mddev);
4229 }
4230 return rv;
4231 }
4232
4233 static void md_free(struct kobject *ko)
4234 {
4235 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4236
4237 if (mddev->sysfs_state)
4238 sysfs_put(mddev->sysfs_state);
4239
4240 if (mddev->gendisk) {
4241 del_gendisk(mddev->gendisk);
4242 put_disk(mddev->gendisk);
4243 }
4244 if (mddev->queue)
4245 blk_cleanup_queue(mddev->queue);
4246
4247 kfree(mddev);
4248 }
4249
4250 static const struct sysfs_ops md_sysfs_ops = {
4251 .show = md_attr_show,
4252 .store = md_attr_store,
4253 };
4254 static struct kobj_type md_ktype = {
4255 .release = md_free,
4256 .sysfs_ops = &md_sysfs_ops,
4257 .default_attrs = md_default_attrs,
4258 };
4259
4260 int mdp_major = 0;
4261
4262 static void mddev_delayed_delete(struct work_struct *ws)
4263 {
4264 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4265
4266 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4267 kobject_del(&mddev->kobj);
4268 kobject_put(&mddev->kobj);
4269 }
4270
4271 static int md_alloc(dev_t dev, char *name)
4272 {
4273 static DEFINE_MUTEX(disks_mutex);
4274 mddev_t *mddev = mddev_find(dev);
4275 struct gendisk *disk;
4276 int partitioned;
4277 int shift;
4278 int unit;
4279 int error;
4280
4281 if (!mddev)
4282 return -ENODEV;
4283
4284 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4285 shift = partitioned ? MdpMinorShift : 0;
4286 unit = MINOR(mddev->unit) >> shift;
4287
4288 /* wait for any previous instance of this device to be
4289 * completely removed (mddev_delayed_delete).
4290 */
4291 flush_workqueue(md_misc_wq);
4292
4293 mutex_lock(&disks_mutex);
4294 error = -EEXIST;
4295 if (mddev->gendisk)
4296 goto abort;
4297
4298 if (name) {
4299 /* Need to ensure that 'name' is not a duplicate.
4300 */
4301 mddev_t *mddev2;
4302 spin_lock(&all_mddevs_lock);
4303
4304 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4305 if (mddev2->gendisk &&
4306 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4307 spin_unlock(&all_mddevs_lock);
4308 goto abort;
4309 }
4310 spin_unlock(&all_mddevs_lock);
4311 }
4312
4313 error = -ENOMEM;
4314 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4315 if (!mddev->queue)
4316 goto abort;
4317 mddev->queue->queuedata = mddev;
4318
4319 blk_queue_make_request(mddev->queue, md_make_request);
4320
4321 disk = alloc_disk(1 << shift);
4322 if (!disk) {
4323 blk_cleanup_queue(mddev->queue);
4324 mddev->queue = NULL;
4325 goto abort;
4326 }
4327 disk->major = MAJOR(mddev->unit);
4328 disk->first_minor = unit << shift;
4329 if (name)
4330 strcpy(disk->disk_name, name);
4331 else if (partitioned)
4332 sprintf(disk->disk_name, "md_d%d", unit);
4333 else
4334 sprintf(disk->disk_name, "md%d", unit);
4335 disk->fops = &md_fops;
4336 disk->private_data = mddev;
4337 disk->queue = mddev->queue;
4338 /* Allow extended partitions. This makes the
4339 * 'mdp' device redundant, but we can't really
4340 * remove it now.
4341 */
4342 disk->flags |= GENHD_FL_EXT_DEVT;
4343 add_disk(disk);
4344 mddev->gendisk = disk;
4345 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4346 &disk_to_dev(disk)->kobj, "%s", "md");
4347 if (error) {
4348 /* This isn't possible, but as kobject_init_and_add is marked
4349 * __must_check, we must do something with the result
4350 */
4351 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4352 disk->disk_name);
4353 error = 0;
4354 }
4355 if (mddev->kobj.sd &&
4356 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4357 printk(KERN_DEBUG "pointless warning\n");
4358
4359 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4360 abort:
4361 mutex_unlock(&disks_mutex);
4362 if (!error && mddev->kobj.sd) {
4363 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4364 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4365 }
4366 mddev_put(mddev);
4367 return error;
4368 }
4369
4370 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4371 {
4372 md_alloc(dev, NULL);
4373 return NULL;
4374 }
4375
4376 static int add_named_array(const char *val, struct kernel_param *kp)
4377 {
4378 /* val must be "md_*" where * is not all digits.
4379 * We allocate an array with a large free minor number, and
4380 * set the name to val. val must not already be an active name.
4381 */
4382 int len = strlen(val);
4383 char buf[DISK_NAME_LEN];
4384
4385 while (len && val[len-1] == '\n')
4386 len--;
4387 if (len >= DISK_NAME_LEN)
4388 return -E2BIG;
4389 strlcpy(buf, val, len+1);
4390 if (strncmp(buf, "md_", 3) != 0)
4391 return -EINVAL;
4392 return md_alloc(0, buf);
4393 }
4394
4395 static void md_safemode_timeout(unsigned long data)
4396 {
4397 mddev_t *mddev = (mddev_t *) data;
4398
4399 if (!atomic_read(&mddev->writes_pending)) {
4400 mddev->safemode = 1;
4401 if (mddev->external)
4402 sysfs_notify_dirent_safe(mddev->sysfs_state);
4403 }
4404 md_wakeup_thread(mddev->thread);
4405 }
4406
4407 static int start_dirty_degraded;
4408
4409 int md_run(mddev_t *mddev)
4410 {
4411 int err;
4412 mdk_rdev_t *rdev;
4413 struct mdk_personality *pers;
4414
4415 if (list_empty(&mddev->disks))
4416 /* cannot run an array with no devices.. */
4417 return -EINVAL;
4418
4419 if (mddev->pers)
4420 return -EBUSY;
4421 /* Cannot run until previous stop completes properly */
4422 if (mddev->sysfs_active)
4423 return -EBUSY;
4424
4425 /*
4426 * Analyze all RAID superblock(s)
4427 */
4428 if (!mddev->raid_disks) {
4429 if (!mddev->persistent)
4430 return -EINVAL;
4431 analyze_sbs(mddev);
4432 }
4433
4434 if (mddev->level != LEVEL_NONE)
4435 request_module("md-level-%d", mddev->level);
4436 else if (mddev->clevel[0])
4437 request_module("md-%s", mddev->clevel);
4438
4439 /*
4440 * Drop all container device buffers, from now on
4441 * the only valid external interface is through the md
4442 * device.
4443 */
4444 list_for_each_entry(rdev, &mddev->disks, same_set) {
4445 if (test_bit(Faulty, &rdev->flags))
4446 continue;
4447 sync_blockdev(rdev->bdev);
4448 invalidate_bdev(rdev->bdev);
4449
4450 /* perform some consistency tests on the device.
4451 * We don't want the data to overlap the metadata,
4452 * Internal Bitmap issues have been handled elsewhere.
4453 */
4454 if (rdev->meta_bdev) {
4455 /* Nothing to check */;
4456 } else if (rdev->data_offset < rdev->sb_start) {
4457 if (mddev->dev_sectors &&
4458 rdev->data_offset + mddev->dev_sectors
4459 > rdev->sb_start) {
4460 printk("md: %s: data overlaps metadata\n",
4461 mdname(mddev));
4462 return -EINVAL;
4463 }
4464 } else {
4465 if (rdev->sb_start + rdev->sb_size/512
4466 > rdev->data_offset) {
4467 printk("md: %s: metadata overlaps data\n",
4468 mdname(mddev));
4469 return -EINVAL;
4470 }
4471 }
4472 sysfs_notify_dirent_safe(rdev->sysfs_state);
4473 }
4474
4475 if (mddev->bio_set == NULL)
4476 mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4477
4478 spin_lock(&pers_lock);
4479 pers = find_pers(mddev->level, mddev->clevel);
4480 if (!pers || !try_module_get(pers->owner)) {
4481 spin_unlock(&pers_lock);
4482 if (mddev->level != LEVEL_NONE)
4483 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4484 mddev->level);
4485 else
4486 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4487 mddev->clevel);
4488 return -EINVAL;
4489 }
4490 mddev->pers = pers;
4491 spin_unlock(&pers_lock);
4492 if (mddev->level != pers->level) {
4493 mddev->level = pers->level;
4494 mddev->new_level = pers->level;
4495 }
4496 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4497
4498 if (mddev->reshape_position != MaxSector &&
4499 pers->start_reshape == NULL) {
4500 /* This personality cannot handle reshaping... */
4501 mddev->pers = NULL;
4502 module_put(pers->owner);
4503 return -EINVAL;
4504 }
4505
4506 if (pers->sync_request) {
4507 /* Warn if this is a potentially silly
4508 * configuration.
4509 */
4510 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4511 mdk_rdev_t *rdev2;
4512 int warned = 0;
4513
4514 list_for_each_entry(rdev, &mddev->disks, same_set)
4515 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4516 if (rdev < rdev2 &&
4517 rdev->bdev->bd_contains ==
4518 rdev2->bdev->bd_contains) {
4519 printk(KERN_WARNING
4520 "%s: WARNING: %s appears to be"
4521 " on the same physical disk as"
4522 " %s.\n",
4523 mdname(mddev),
4524 bdevname(rdev->bdev,b),
4525 bdevname(rdev2->bdev,b2));
4526 warned = 1;
4527 }
4528 }
4529
4530 if (warned)
4531 printk(KERN_WARNING
4532 "True protection against single-disk"
4533 " failure might be compromised.\n");
4534 }
4535
4536 mddev->recovery = 0;
4537 /* may be over-ridden by personality */
4538 mddev->resync_max_sectors = mddev->dev_sectors;
4539
4540 mddev->ok_start_degraded = start_dirty_degraded;
4541
4542 if (start_readonly && mddev->ro == 0)
4543 mddev->ro = 2; /* read-only, but switch on first write */
4544
4545 err = mddev->pers->run(mddev);
4546 if (err)
4547 printk(KERN_ERR "md: pers->run() failed ...\n");
4548 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4549 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4550 " but 'external_size' not in effect?\n", __func__);
4551 printk(KERN_ERR
4552 "md: invalid array_size %llu > default size %llu\n",
4553 (unsigned long long)mddev->array_sectors / 2,
4554 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4555 err = -EINVAL;
4556 mddev->pers->stop(mddev);
4557 }
4558 if (err == 0 && mddev->pers->sync_request) {
4559 err = bitmap_create(mddev);
4560 if (err) {
4561 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4562 mdname(mddev), err);
4563 mddev->pers->stop(mddev);
4564 }
4565 }
4566 if (err) {
4567 module_put(mddev->pers->owner);
4568 mddev->pers = NULL;
4569 bitmap_destroy(mddev);
4570 return err;
4571 }
4572 if (mddev->pers->sync_request) {
4573 if (mddev->kobj.sd &&
4574 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4575 printk(KERN_WARNING
4576 "md: cannot register extra attributes for %s\n",
4577 mdname(mddev));
4578 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4579 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4580 mddev->ro = 0;
4581
4582 atomic_set(&mddev->writes_pending,0);
4583 atomic_set(&mddev->max_corr_read_errors,
4584 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4585 mddev->safemode = 0;
4586 mddev->safemode_timer.function = md_safemode_timeout;
4587 mddev->safemode_timer.data = (unsigned long) mddev;
4588 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4589 mddev->in_sync = 1;
4590 smp_wmb();
4591 mddev->ready = 1;
4592 list_for_each_entry(rdev, &mddev->disks, same_set)
4593 if (rdev->raid_disk >= 0) {
4594 char nm[20];
4595 sprintf(nm, "rd%d", rdev->raid_disk);
4596 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4597 /* failure here is OK */;
4598 }
4599
4600 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4601
4602 if (mddev->flags)
4603 md_update_sb(mddev, 0);
4604
4605 md_wakeup_thread(mddev->thread);
4606 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4607
4608 md_new_event(mddev);
4609 sysfs_notify_dirent_safe(mddev->sysfs_state);
4610 sysfs_notify_dirent_safe(mddev->sysfs_action);
4611 sysfs_notify(&mddev->kobj, NULL, "degraded");
4612 return 0;
4613 }
4614 EXPORT_SYMBOL_GPL(md_run);
4615
4616 static int do_md_run(mddev_t *mddev)
4617 {
4618 int err;
4619
4620 err = md_run(mddev);
4621 if (err)
4622 goto out;
4623 err = bitmap_load(mddev);
4624 if (err) {
4625 bitmap_destroy(mddev);
4626 goto out;
4627 }
4628 set_capacity(mddev->gendisk, mddev->array_sectors);
4629 revalidate_disk(mddev->gendisk);
4630 mddev->changed = 1;
4631 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4632 out:
4633 return err;
4634 }
4635
4636 static int restart_array(mddev_t *mddev)
4637 {
4638 struct gendisk *disk = mddev->gendisk;
4639
4640 /* Complain if it has no devices */
4641 if (list_empty(&mddev->disks))
4642 return -ENXIO;
4643 if (!mddev->pers)
4644 return -EINVAL;
4645 if (!mddev->ro)
4646 return -EBUSY;
4647 mddev->safemode = 0;
4648 mddev->ro = 0;
4649 set_disk_ro(disk, 0);
4650 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4651 mdname(mddev));
4652 /* Kick recovery or resync if necessary */
4653 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4654 md_wakeup_thread(mddev->thread);
4655 md_wakeup_thread(mddev->sync_thread);
4656 sysfs_notify_dirent_safe(mddev->sysfs_state);
4657 return 0;
4658 }
4659
4660 /* similar to deny_write_access, but accounts for our holding a reference
4661 * to the file ourselves */
4662 static int deny_bitmap_write_access(struct file * file)
4663 {
4664 struct inode *inode = file->f_mapping->host;
4665
4666 spin_lock(&inode->i_lock);
4667 if (atomic_read(&inode->i_writecount) > 1) {
4668 spin_unlock(&inode->i_lock);
4669 return -ETXTBSY;
4670 }
4671 atomic_set(&inode->i_writecount, -1);
4672 spin_unlock(&inode->i_lock);
4673
4674 return 0;
4675 }
4676
4677 void restore_bitmap_write_access(struct file *file)
4678 {
4679 struct inode *inode = file->f_mapping->host;
4680
4681 spin_lock(&inode->i_lock);
4682 atomic_set(&inode->i_writecount, 1);
4683 spin_unlock(&inode->i_lock);
4684 }
4685
4686 static void md_clean(mddev_t *mddev)
4687 {
4688 mddev->array_sectors = 0;
4689 mddev->external_size = 0;
4690 mddev->dev_sectors = 0;
4691 mddev->raid_disks = 0;
4692 mddev->recovery_cp = 0;
4693 mddev->resync_min = 0;
4694 mddev->resync_max = MaxSector;
4695 mddev->reshape_position = MaxSector;
4696 mddev->external = 0;
4697 mddev->persistent = 0;
4698 mddev->level = LEVEL_NONE;
4699 mddev->clevel[0] = 0;
4700 mddev->flags = 0;
4701 mddev->ro = 0;
4702 mddev->metadata_type[0] = 0;
4703 mddev->chunk_sectors = 0;
4704 mddev->ctime = mddev->utime = 0;
4705 mddev->layout = 0;
4706 mddev->max_disks = 0;
4707 mddev->events = 0;
4708 mddev->can_decrease_events = 0;
4709 mddev->delta_disks = 0;
4710 mddev->new_level = LEVEL_NONE;
4711 mddev->new_layout = 0;
4712 mddev->new_chunk_sectors = 0;
4713 mddev->curr_resync = 0;
4714 mddev->resync_mismatches = 0;
4715 mddev->suspend_lo = mddev->suspend_hi = 0;
4716 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4717 mddev->recovery = 0;
4718 mddev->in_sync = 0;
4719 mddev->changed = 0;
4720 mddev->degraded = 0;
4721 mddev->safemode = 0;
4722 mddev->bitmap_info.offset = 0;
4723 mddev->bitmap_info.default_offset = 0;
4724 mddev->bitmap_info.chunksize = 0;
4725 mddev->bitmap_info.daemon_sleep = 0;
4726 mddev->bitmap_info.max_write_behind = 0;
4727 mddev->plug = NULL;
4728 }
4729
4730 static void __md_stop_writes(mddev_t *mddev)
4731 {
4732 if (mddev->sync_thread) {
4733 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4734 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4735 reap_sync_thread(mddev);
4736 }
4737
4738 del_timer_sync(&mddev->safemode_timer);
4739
4740 bitmap_flush(mddev);
4741 md_super_wait(mddev);
4742
4743 if (!mddev->in_sync || mddev->flags) {
4744 /* mark array as shutdown cleanly */
4745 mddev->in_sync = 1;
4746 md_update_sb(mddev, 1);
4747 }
4748 }
4749
4750 void md_stop_writes(mddev_t *mddev)
4751 {
4752 mddev_lock(mddev);
4753 __md_stop_writes(mddev);
4754 mddev_unlock(mddev);
4755 }
4756 EXPORT_SYMBOL_GPL(md_stop_writes);
4757
4758 void md_stop(mddev_t *mddev)
4759 {
4760 mddev->ready = 0;
4761 mddev->pers->stop(mddev);
4762 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4763 mddev->to_remove = &md_redundancy_group;
4764 module_put(mddev->pers->owner);
4765 mddev->pers = NULL;
4766 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4767 }
4768 EXPORT_SYMBOL_GPL(md_stop);
4769
4770 static int md_set_readonly(mddev_t *mddev, int is_open)
4771 {
4772 int err = 0;
4773 mutex_lock(&mddev->open_mutex);
4774 if (atomic_read(&mddev->openers) > is_open) {
4775 printk("md: %s still in use.\n",mdname(mddev));
4776 err = -EBUSY;
4777 goto out;
4778 }
4779 if (mddev->pers) {
4780 __md_stop_writes(mddev);
4781
4782 err = -ENXIO;
4783 if (mddev->ro==1)
4784 goto out;
4785 mddev->ro = 1;
4786 set_disk_ro(mddev->gendisk, 1);
4787 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4788 sysfs_notify_dirent_safe(mddev->sysfs_state);
4789 err = 0;
4790 }
4791 out:
4792 mutex_unlock(&mddev->open_mutex);
4793 return err;
4794 }
4795
4796 /* mode:
4797 * 0 - completely stop and dis-assemble array
4798 * 2 - stop but do not disassemble array
4799 */
4800 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4801 {
4802 struct gendisk *disk = mddev->gendisk;
4803 mdk_rdev_t *rdev;
4804
4805 mutex_lock(&mddev->open_mutex);
4806 if (atomic_read(&mddev->openers) > is_open ||
4807 mddev->sysfs_active) {
4808 printk("md: %s still in use.\n",mdname(mddev));
4809 mutex_unlock(&mddev->open_mutex);
4810 return -EBUSY;
4811 }
4812
4813 if (mddev->pers) {
4814 if (mddev->ro)
4815 set_disk_ro(disk, 0);
4816
4817 __md_stop_writes(mddev);
4818 md_stop(mddev);
4819 mddev->queue->merge_bvec_fn = NULL;
4820 mddev->queue->unplug_fn = NULL;
4821 mddev->queue->backing_dev_info.congested_fn = NULL;
4822
4823 /* tell userspace to handle 'inactive' */
4824 sysfs_notify_dirent_safe(mddev->sysfs_state);
4825
4826 list_for_each_entry(rdev, &mddev->disks, same_set)
4827 if (rdev->raid_disk >= 0) {
4828 char nm[20];
4829 sprintf(nm, "rd%d", rdev->raid_disk);
4830 sysfs_remove_link(&mddev->kobj, nm);
4831 }
4832
4833 set_capacity(disk, 0);
4834 mutex_unlock(&mddev->open_mutex);
4835 mddev->changed = 1;
4836 revalidate_disk(disk);
4837
4838 if (mddev->ro)
4839 mddev->ro = 0;
4840 } else
4841 mutex_unlock(&mddev->open_mutex);
4842 /*
4843 * Free resources if final stop
4844 */
4845 if (mode == 0) {
4846 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4847
4848 bitmap_destroy(mddev);
4849 if (mddev->bitmap_info.file) {
4850 restore_bitmap_write_access(mddev->bitmap_info.file);
4851 fput(mddev->bitmap_info.file);
4852 mddev->bitmap_info.file = NULL;
4853 }
4854 mddev->bitmap_info.offset = 0;
4855
4856 export_array(mddev);
4857
4858 md_clean(mddev);
4859 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4860 if (mddev->hold_active == UNTIL_STOP)
4861 mddev->hold_active = 0;
4862 }
4863 blk_integrity_unregister(disk);
4864 md_new_event(mddev);
4865 sysfs_notify_dirent_safe(mddev->sysfs_state);
4866 return 0;
4867 }
4868
4869 #ifndef MODULE
4870 static void autorun_array(mddev_t *mddev)
4871 {
4872 mdk_rdev_t *rdev;
4873 int err;
4874
4875 if (list_empty(&mddev->disks))
4876 return;
4877
4878 printk(KERN_INFO "md: running: ");
4879
4880 list_for_each_entry(rdev, &mddev->disks, same_set) {
4881 char b[BDEVNAME_SIZE];
4882 printk("<%s>", bdevname(rdev->bdev,b));
4883 }
4884 printk("\n");
4885
4886 err = do_md_run(mddev);
4887 if (err) {
4888 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4889 do_md_stop(mddev, 0, 0);
4890 }
4891 }
4892
4893 /*
4894 * lets try to run arrays based on all disks that have arrived
4895 * until now. (those are in pending_raid_disks)
4896 *
4897 * the method: pick the first pending disk, collect all disks with
4898 * the same UUID, remove all from the pending list and put them into
4899 * the 'same_array' list. Then order this list based on superblock
4900 * update time (freshest comes first), kick out 'old' disks and
4901 * compare superblocks. If everything's fine then run it.
4902 *
4903 * If "unit" is allocated, then bump its reference count
4904 */
4905 static void autorun_devices(int part)
4906 {
4907 mdk_rdev_t *rdev0, *rdev, *tmp;
4908 mddev_t *mddev;
4909 char b[BDEVNAME_SIZE];
4910
4911 printk(KERN_INFO "md: autorun ...\n");
4912 while (!list_empty(&pending_raid_disks)) {
4913 int unit;
4914 dev_t dev;
4915 LIST_HEAD(candidates);
4916 rdev0 = list_entry(pending_raid_disks.next,
4917 mdk_rdev_t, same_set);
4918
4919 printk(KERN_INFO "md: considering %s ...\n",
4920 bdevname(rdev0->bdev,b));
4921 INIT_LIST_HEAD(&candidates);
4922 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4923 if (super_90_load(rdev, rdev0, 0) >= 0) {
4924 printk(KERN_INFO "md: adding %s ...\n",
4925 bdevname(rdev->bdev,b));
4926 list_move(&rdev->same_set, &candidates);
4927 }
4928 /*
4929 * now we have a set of devices, with all of them having
4930 * mostly sane superblocks. It's time to allocate the
4931 * mddev.
4932 */
4933 if (part) {
4934 dev = MKDEV(mdp_major,
4935 rdev0->preferred_minor << MdpMinorShift);
4936 unit = MINOR(dev) >> MdpMinorShift;
4937 } else {
4938 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4939 unit = MINOR(dev);
4940 }
4941 if (rdev0->preferred_minor != unit) {
4942 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4943 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4944 break;
4945 }
4946
4947 md_probe(dev, NULL, NULL);
4948 mddev = mddev_find(dev);
4949 if (!mddev || !mddev->gendisk) {
4950 if (mddev)
4951 mddev_put(mddev);
4952 printk(KERN_ERR
4953 "md: cannot allocate memory for md drive.\n");
4954 break;
4955 }
4956 if (mddev_lock(mddev))
4957 printk(KERN_WARNING "md: %s locked, cannot run\n",
4958 mdname(mddev));
4959 else if (mddev->raid_disks || mddev->major_version
4960 || !list_empty(&mddev->disks)) {
4961 printk(KERN_WARNING
4962 "md: %s already running, cannot run %s\n",
4963 mdname(mddev), bdevname(rdev0->bdev,b));
4964 mddev_unlock(mddev);
4965 } else {
4966 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4967 mddev->persistent = 1;
4968 rdev_for_each_list(rdev, tmp, &candidates) {
4969 list_del_init(&rdev->same_set);
4970 if (bind_rdev_to_array(rdev, mddev))
4971 export_rdev(rdev);
4972 }
4973 autorun_array(mddev);
4974 mddev_unlock(mddev);
4975 }
4976 /* on success, candidates will be empty, on error
4977 * it won't...
4978 */
4979 rdev_for_each_list(rdev, tmp, &candidates) {
4980 list_del_init(&rdev->same_set);
4981 export_rdev(rdev);
4982 }
4983 mddev_put(mddev);
4984 }
4985 printk(KERN_INFO "md: ... autorun DONE.\n");
4986 }
4987 #endif /* !MODULE */
4988
4989 static int get_version(void __user * arg)
4990 {
4991 mdu_version_t ver;
4992
4993 ver.major = MD_MAJOR_VERSION;
4994 ver.minor = MD_MINOR_VERSION;
4995 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4996
4997 if (copy_to_user(arg, &ver, sizeof(ver)))
4998 return -EFAULT;
4999
5000 return 0;
5001 }
5002
5003 static int get_array_info(mddev_t * mddev, void __user * arg)
5004 {
5005 mdu_array_info_t info;
5006 int nr,working,insync,failed,spare;
5007 mdk_rdev_t *rdev;
5008
5009 nr=working=insync=failed=spare=0;
5010 list_for_each_entry(rdev, &mddev->disks, same_set) {
5011 nr++;
5012 if (test_bit(Faulty, &rdev->flags))
5013 failed++;
5014 else {
5015 working++;
5016 if (test_bit(In_sync, &rdev->flags))
5017 insync++;
5018 else
5019 spare++;
5020 }
5021 }
5022
5023 info.major_version = mddev->major_version;
5024 info.minor_version = mddev->minor_version;
5025 info.patch_version = MD_PATCHLEVEL_VERSION;
5026 info.ctime = mddev->ctime;
5027 info.level = mddev->level;
5028 info.size = mddev->dev_sectors / 2;
5029 if (info.size != mddev->dev_sectors / 2) /* overflow */
5030 info.size = -1;
5031 info.nr_disks = nr;
5032 info.raid_disks = mddev->raid_disks;
5033 info.md_minor = mddev->md_minor;
5034 info.not_persistent= !mddev->persistent;
5035
5036 info.utime = mddev->utime;
5037 info.state = 0;
5038 if (mddev->in_sync)
5039 info.state = (1<<MD_SB_CLEAN);
5040 if (mddev->bitmap && mddev->bitmap_info.offset)
5041 info.state = (1<<MD_SB_BITMAP_PRESENT);
5042 info.active_disks = insync;
5043 info.working_disks = working;
5044 info.failed_disks = failed;
5045 info.spare_disks = spare;
5046
5047 info.layout = mddev->layout;
5048 info.chunk_size = mddev->chunk_sectors << 9;
5049
5050 if (copy_to_user(arg, &info, sizeof(info)))
5051 return -EFAULT;
5052
5053 return 0;
5054 }
5055
5056 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5057 {
5058 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5059 char *ptr, *buf = NULL;
5060 int err = -ENOMEM;
5061
5062 if (md_allow_write(mddev))
5063 file = kmalloc(sizeof(*file), GFP_NOIO);
5064 else
5065 file = kmalloc(sizeof(*file), GFP_KERNEL);
5066
5067 if (!file)
5068 goto out;
5069
5070 /* bitmap disabled, zero the first byte and copy out */
5071 if (!mddev->bitmap || !mddev->bitmap->file) {
5072 file->pathname[0] = '\0';
5073 goto copy_out;
5074 }
5075
5076 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5077 if (!buf)
5078 goto out;
5079
5080 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5081 if (IS_ERR(ptr))
5082 goto out;
5083
5084 strcpy(file->pathname, ptr);
5085
5086 copy_out:
5087 err = 0;
5088 if (copy_to_user(arg, file, sizeof(*file)))
5089 err = -EFAULT;
5090 out:
5091 kfree(buf);
5092 kfree(file);
5093 return err;
5094 }
5095
5096 static int get_disk_info(mddev_t * mddev, void __user * arg)
5097 {
5098 mdu_disk_info_t info;
5099 mdk_rdev_t *rdev;
5100
5101 if (copy_from_user(&info, arg, sizeof(info)))
5102 return -EFAULT;
5103
5104 rdev = find_rdev_nr(mddev, info.number);
5105 if (rdev) {
5106 info.major = MAJOR(rdev->bdev->bd_dev);
5107 info.minor = MINOR(rdev->bdev->bd_dev);
5108 info.raid_disk = rdev->raid_disk;
5109 info.state = 0;
5110 if (test_bit(Faulty, &rdev->flags))
5111 info.state |= (1<<MD_DISK_FAULTY);
5112 else if (test_bit(In_sync, &rdev->flags)) {
5113 info.state |= (1<<MD_DISK_ACTIVE);
5114 info.state |= (1<<MD_DISK_SYNC);
5115 }
5116 if (test_bit(WriteMostly, &rdev->flags))
5117 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5118 } else {
5119 info.major = info.minor = 0;
5120 info.raid_disk = -1;
5121 info.state = (1<<MD_DISK_REMOVED);
5122 }
5123
5124 if (copy_to_user(arg, &info, sizeof(info)))
5125 return -EFAULT;
5126
5127 return 0;
5128 }
5129
5130 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5131 {
5132 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5133 mdk_rdev_t *rdev;
5134 dev_t dev = MKDEV(info->major,info->minor);
5135
5136 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5137 return -EOVERFLOW;
5138
5139 if (!mddev->raid_disks) {
5140 int err;
5141 /* expecting a device which has a superblock */
5142 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5143 if (IS_ERR(rdev)) {
5144 printk(KERN_WARNING
5145 "md: md_import_device returned %ld\n",
5146 PTR_ERR(rdev));
5147 return PTR_ERR(rdev);
5148 }
5149 if (!list_empty(&mddev->disks)) {
5150 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5151 mdk_rdev_t, same_set);
5152 err = super_types[mddev->major_version]
5153 .load_super(rdev, rdev0, mddev->minor_version);
5154 if (err < 0) {
5155 printk(KERN_WARNING
5156 "md: %s has different UUID to %s\n",
5157 bdevname(rdev->bdev,b),
5158 bdevname(rdev0->bdev,b2));
5159 export_rdev(rdev);
5160 return -EINVAL;
5161 }
5162 }
5163 err = bind_rdev_to_array(rdev, mddev);
5164 if (err)
5165 export_rdev(rdev);
5166 return err;
5167 }
5168
5169 /*
5170 * add_new_disk can be used once the array is assembled
5171 * to add "hot spares". They must already have a superblock
5172 * written
5173 */
5174 if (mddev->pers) {
5175 int err;
5176 if (!mddev->pers->hot_add_disk) {
5177 printk(KERN_WARNING
5178 "%s: personality does not support diskops!\n",
5179 mdname(mddev));
5180 return -EINVAL;
5181 }
5182 if (mddev->persistent)
5183 rdev = md_import_device(dev, mddev->major_version,
5184 mddev->minor_version);
5185 else
5186 rdev = md_import_device(dev, -1, -1);
5187 if (IS_ERR(rdev)) {
5188 printk(KERN_WARNING
5189 "md: md_import_device returned %ld\n",
5190 PTR_ERR(rdev));
5191 return PTR_ERR(rdev);
5192 }
5193 /* set saved_raid_disk if appropriate */
5194 if (!mddev->persistent) {
5195 if (info->state & (1<<MD_DISK_SYNC) &&
5196 info->raid_disk < mddev->raid_disks) {
5197 rdev->raid_disk = info->raid_disk;
5198 set_bit(In_sync, &rdev->flags);
5199 } else
5200 rdev->raid_disk = -1;
5201 } else
5202 super_types[mddev->major_version].
5203 validate_super(mddev, rdev);
5204 if (test_bit(In_sync, &rdev->flags))
5205 rdev->saved_raid_disk = rdev->raid_disk;
5206 else
5207 rdev->saved_raid_disk = -1;
5208
5209 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5210 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5211 set_bit(WriteMostly, &rdev->flags);
5212 else
5213 clear_bit(WriteMostly, &rdev->flags);
5214
5215 rdev->raid_disk = -1;
5216 err = bind_rdev_to_array(rdev, mddev);
5217 if (!err && !mddev->pers->hot_remove_disk) {
5218 /* If there is hot_add_disk but no hot_remove_disk
5219 * then added disks for geometry changes,
5220 * and should be added immediately.
5221 */
5222 super_types[mddev->major_version].
5223 validate_super(mddev, rdev);
5224 err = mddev->pers->hot_add_disk(mddev, rdev);
5225 if (err)
5226 unbind_rdev_from_array(rdev);
5227 }
5228 if (err)
5229 export_rdev(rdev);
5230 else
5231 sysfs_notify_dirent_safe(rdev->sysfs_state);
5232
5233 md_update_sb(mddev, 1);
5234 if (mddev->degraded)
5235 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5236 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5237 md_wakeup_thread(mddev->thread);
5238 return err;
5239 }
5240
5241 /* otherwise, add_new_disk is only allowed
5242 * for major_version==0 superblocks
5243 */
5244 if (mddev->major_version != 0) {
5245 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5246 mdname(mddev));
5247 return -EINVAL;
5248 }
5249
5250 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5251 int err;
5252 rdev = md_import_device(dev, -1, 0);
5253 if (IS_ERR(rdev)) {
5254 printk(KERN_WARNING
5255 "md: error, md_import_device() returned %ld\n",
5256 PTR_ERR(rdev));
5257 return PTR_ERR(rdev);
5258 }
5259 rdev->desc_nr = info->number;
5260 if (info->raid_disk < mddev->raid_disks)
5261 rdev->raid_disk = info->raid_disk;
5262 else
5263 rdev->raid_disk = -1;
5264
5265 if (rdev->raid_disk < mddev->raid_disks)
5266 if (info->state & (1<<MD_DISK_SYNC))
5267 set_bit(In_sync, &rdev->flags);
5268
5269 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5270 set_bit(WriteMostly, &rdev->flags);
5271
5272 if (!mddev->persistent) {
5273 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5274 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5275 } else
5276 rdev->sb_start = calc_dev_sboffset(rdev);
5277 rdev->sectors = rdev->sb_start;
5278
5279 err = bind_rdev_to_array(rdev, mddev);
5280 if (err) {
5281 export_rdev(rdev);
5282 return err;
5283 }
5284 }
5285
5286 return 0;
5287 }
5288
5289 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5290 {
5291 char b[BDEVNAME_SIZE];
5292 mdk_rdev_t *rdev;
5293
5294 rdev = find_rdev(mddev, dev);
5295 if (!rdev)
5296 return -ENXIO;
5297
5298 if (rdev->raid_disk >= 0)
5299 goto busy;
5300
5301 kick_rdev_from_array(rdev);
5302 md_update_sb(mddev, 1);
5303 md_new_event(mddev);
5304
5305 return 0;
5306 busy:
5307 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5308 bdevname(rdev->bdev,b), mdname(mddev));
5309 return -EBUSY;
5310 }
5311
5312 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5313 {
5314 char b[BDEVNAME_SIZE];
5315 int err;
5316 mdk_rdev_t *rdev;
5317
5318 if (!mddev->pers)
5319 return -ENODEV;
5320
5321 if (mddev->major_version != 0) {
5322 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5323 " version-0 superblocks.\n",
5324 mdname(mddev));
5325 return -EINVAL;
5326 }
5327 if (!mddev->pers->hot_add_disk) {
5328 printk(KERN_WARNING
5329 "%s: personality does not support diskops!\n",
5330 mdname(mddev));
5331 return -EINVAL;
5332 }
5333
5334 rdev = md_import_device(dev, -1, 0);
5335 if (IS_ERR(rdev)) {
5336 printk(KERN_WARNING
5337 "md: error, md_import_device() returned %ld\n",
5338 PTR_ERR(rdev));
5339 return -EINVAL;
5340 }
5341
5342 if (mddev->persistent)
5343 rdev->sb_start = calc_dev_sboffset(rdev);
5344 else
5345 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5346
5347 rdev->sectors = rdev->sb_start;
5348
5349 if (test_bit(Faulty, &rdev->flags)) {
5350 printk(KERN_WARNING
5351 "md: can not hot-add faulty %s disk to %s!\n",
5352 bdevname(rdev->bdev,b), mdname(mddev));
5353 err = -EINVAL;
5354 goto abort_export;
5355 }
5356 clear_bit(In_sync, &rdev->flags);
5357 rdev->desc_nr = -1;
5358 rdev->saved_raid_disk = -1;
5359 err = bind_rdev_to_array(rdev, mddev);
5360 if (err)
5361 goto abort_export;
5362
5363 /*
5364 * The rest should better be atomic, we can have disk failures
5365 * noticed in interrupt contexts ...
5366 */
5367
5368 rdev->raid_disk = -1;
5369
5370 md_update_sb(mddev, 1);
5371
5372 /*
5373 * Kick recovery, maybe this spare has to be added to the
5374 * array immediately.
5375 */
5376 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5377 md_wakeup_thread(mddev->thread);
5378 md_new_event(mddev);
5379 return 0;
5380
5381 abort_export:
5382 export_rdev(rdev);
5383 return err;
5384 }
5385
5386 static int set_bitmap_file(mddev_t *mddev, int fd)
5387 {
5388 int err;
5389
5390 if (mddev->pers) {
5391 if (!mddev->pers->quiesce)
5392 return -EBUSY;
5393 if (mddev->recovery || mddev->sync_thread)
5394 return -EBUSY;
5395 /* we should be able to change the bitmap.. */
5396 }
5397
5398
5399 if (fd >= 0) {
5400 if (mddev->bitmap)
5401 return -EEXIST; /* cannot add when bitmap is present */
5402 mddev->bitmap_info.file = fget(fd);
5403
5404 if (mddev->bitmap_info.file == NULL) {
5405 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5406 mdname(mddev));
5407 return -EBADF;
5408 }
5409
5410 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5411 if (err) {
5412 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5413 mdname(mddev));
5414 fput(mddev->bitmap_info.file);
5415 mddev->bitmap_info.file = NULL;
5416 return err;
5417 }
5418 mddev->bitmap_info.offset = 0; /* file overrides offset */
5419 } else if (mddev->bitmap == NULL)
5420 return -ENOENT; /* cannot remove what isn't there */
5421 err = 0;
5422 if (mddev->pers) {
5423 mddev->pers->quiesce(mddev, 1);
5424 if (fd >= 0) {
5425 err = bitmap_create(mddev);
5426 if (!err)
5427 err = bitmap_load(mddev);
5428 }
5429 if (fd < 0 || err) {
5430 bitmap_destroy(mddev);
5431 fd = -1; /* make sure to put the file */
5432 }
5433 mddev->pers->quiesce(mddev, 0);
5434 }
5435 if (fd < 0) {
5436 if (mddev->bitmap_info.file) {
5437 restore_bitmap_write_access(mddev->bitmap_info.file);
5438 fput(mddev->bitmap_info.file);
5439 }
5440 mddev->bitmap_info.file = NULL;
5441 }
5442
5443 return err;
5444 }
5445
5446 /*
5447 * set_array_info is used two different ways
5448 * The original usage is when creating a new array.
5449 * In this usage, raid_disks is > 0 and it together with
5450 * level, size, not_persistent,layout,chunksize determine the
5451 * shape of the array.
5452 * This will always create an array with a type-0.90.0 superblock.
5453 * The newer usage is when assembling an array.
5454 * In this case raid_disks will be 0, and the major_version field is
5455 * use to determine which style super-blocks are to be found on the devices.
5456 * The minor and patch _version numbers are also kept incase the
5457 * super_block handler wishes to interpret them.
5458 */
5459 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5460 {
5461
5462 if (info->raid_disks == 0) {
5463 /* just setting version number for superblock loading */
5464 if (info->major_version < 0 ||
5465 info->major_version >= ARRAY_SIZE(super_types) ||
5466 super_types[info->major_version].name == NULL) {
5467 /* maybe try to auto-load a module? */
5468 printk(KERN_INFO
5469 "md: superblock version %d not known\n",
5470 info->major_version);
5471 return -EINVAL;
5472 }
5473 mddev->major_version = info->major_version;
5474 mddev->minor_version = info->minor_version;
5475 mddev->patch_version = info->patch_version;
5476 mddev->persistent = !info->not_persistent;
5477 /* ensure mddev_put doesn't delete this now that there
5478 * is some minimal configuration.
5479 */
5480 mddev->ctime = get_seconds();
5481 return 0;
5482 }
5483 mddev->major_version = MD_MAJOR_VERSION;
5484 mddev->minor_version = MD_MINOR_VERSION;
5485 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5486 mddev->ctime = get_seconds();
5487
5488 mddev->level = info->level;
5489 mddev->clevel[0] = 0;
5490 mddev->dev_sectors = 2 * (sector_t)info->size;
5491 mddev->raid_disks = info->raid_disks;
5492 /* don't set md_minor, it is determined by which /dev/md* was
5493 * openned
5494 */
5495 if (info->state & (1<<MD_SB_CLEAN))
5496 mddev->recovery_cp = MaxSector;
5497 else
5498 mddev->recovery_cp = 0;
5499 mddev->persistent = ! info->not_persistent;
5500 mddev->external = 0;
5501
5502 mddev->layout = info->layout;
5503 mddev->chunk_sectors = info->chunk_size >> 9;
5504
5505 mddev->max_disks = MD_SB_DISKS;
5506
5507 if (mddev->persistent)
5508 mddev->flags = 0;
5509 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5510
5511 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5512 mddev->bitmap_info.offset = 0;
5513
5514 mddev->reshape_position = MaxSector;
5515
5516 /*
5517 * Generate a 128 bit UUID
5518 */
5519 get_random_bytes(mddev->uuid, 16);
5520
5521 mddev->new_level = mddev->level;
5522 mddev->new_chunk_sectors = mddev->chunk_sectors;
5523 mddev->new_layout = mddev->layout;
5524 mddev->delta_disks = 0;
5525
5526 return 0;
5527 }
5528
5529 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5530 {
5531 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5532
5533 if (mddev->external_size)
5534 return;
5535
5536 mddev->array_sectors = array_sectors;
5537 }
5538 EXPORT_SYMBOL(md_set_array_sectors);
5539
5540 static int update_size(mddev_t *mddev, sector_t num_sectors)
5541 {
5542 mdk_rdev_t *rdev;
5543 int rv;
5544 int fit = (num_sectors == 0);
5545
5546 if (mddev->pers->resize == NULL)
5547 return -EINVAL;
5548 /* The "num_sectors" is the number of sectors of each device that
5549 * is used. This can only make sense for arrays with redundancy.
5550 * linear and raid0 always use whatever space is available. We can only
5551 * consider changing this number if no resync or reconstruction is
5552 * happening, and if the new size is acceptable. It must fit before the
5553 * sb_start or, if that is <data_offset, it must fit before the size
5554 * of each device. If num_sectors is zero, we find the largest size
5555 * that fits.
5556 */
5557 if (mddev->sync_thread)
5558 return -EBUSY;
5559 if (mddev->bitmap)
5560 /* Sorry, cannot grow a bitmap yet, just remove it,
5561 * grow, and re-add.
5562 */
5563 return -EBUSY;
5564 list_for_each_entry(rdev, &mddev->disks, same_set) {
5565 sector_t avail = rdev->sectors;
5566
5567 if (fit && (num_sectors == 0 || num_sectors > avail))
5568 num_sectors = avail;
5569 if (avail < num_sectors)
5570 return -ENOSPC;
5571 }
5572 rv = mddev->pers->resize(mddev, num_sectors);
5573 if (!rv)
5574 revalidate_disk(mddev->gendisk);
5575 return rv;
5576 }
5577
5578 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5579 {
5580 int rv;
5581 /* change the number of raid disks */
5582 if (mddev->pers->check_reshape == NULL)
5583 return -EINVAL;
5584 if (raid_disks <= 0 ||
5585 (mddev->max_disks && raid_disks >= mddev->max_disks))
5586 return -EINVAL;
5587 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5588 return -EBUSY;
5589 mddev->delta_disks = raid_disks - mddev->raid_disks;
5590
5591 rv = mddev->pers->check_reshape(mddev);
5592 if (rv < 0)
5593 mddev->delta_disks = 0;
5594 return rv;
5595 }
5596
5597
5598 /*
5599 * update_array_info is used to change the configuration of an
5600 * on-line array.
5601 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5602 * fields in the info are checked against the array.
5603 * Any differences that cannot be handled will cause an error.
5604 * Normally, only one change can be managed at a time.
5605 */
5606 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5607 {
5608 int rv = 0;
5609 int cnt = 0;
5610 int state = 0;
5611
5612 /* calculate expected state,ignoring low bits */
5613 if (mddev->bitmap && mddev->bitmap_info.offset)
5614 state |= (1 << MD_SB_BITMAP_PRESENT);
5615
5616 if (mddev->major_version != info->major_version ||
5617 mddev->minor_version != info->minor_version ||
5618 /* mddev->patch_version != info->patch_version || */
5619 mddev->ctime != info->ctime ||
5620 mddev->level != info->level ||
5621 /* mddev->layout != info->layout || */
5622 !mddev->persistent != info->not_persistent||
5623 mddev->chunk_sectors != info->chunk_size >> 9 ||
5624 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5625 ((state^info->state) & 0xfffffe00)
5626 )
5627 return -EINVAL;
5628 /* Check there is only one change */
5629 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5630 cnt++;
5631 if (mddev->raid_disks != info->raid_disks)
5632 cnt++;
5633 if (mddev->layout != info->layout)
5634 cnt++;
5635 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5636 cnt++;
5637 if (cnt == 0)
5638 return 0;
5639 if (cnt > 1)
5640 return -EINVAL;
5641
5642 if (mddev->layout != info->layout) {
5643 /* Change layout
5644 * we don't need to do anything at the md level, the
5645 * personality will take care of it all.
5646 */
5647 if (mddev->pers->check_reshape == NULL)
5648 return -EINVAL;
5649 else {
5650 mddev->new_layout = info->layout;
5651 rv = mddev->pers->check_reshape(mddev);
5652 if (rv)
5653 mddev->new_layout = mddev->layout;
5654 return rv;
5655 }
5656 }
5657 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5658 rv = update_size(mddev, (sector_t)info->size * 2);
5659
5660 if (mddev->raid_disks != info->raid_disks)
5661 rv = update_raid_disks(mddev, info->raid_disks);
5662
5663 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5664 if (mddev->pers->quiesce == NULL)
5665 return -EINVAL;
5666 if (mddev->recovery || mddev->sync_thread)
5667 return -EBUSY;
5668 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5669 /* add the bitmap */
5670 if (mddev->bitmap)
5671 return -EEXIST;
5672 if (mddev->bitmap_info.default_offset == 0)
5673 return -EINVAL;
5674 mddev->bitmap_info.offset =
5675 mddev->bitmap_info.default_offset;
5676 mddev->pers->quiesce(mddev, 1);
5677 rv = bitmap_create(mddev);
5678 if (!rv)
5679 rv = bitmap_load(mddev);
5680 if (rv)
5681 bitmap_destroy(mddev);
5682 mddev->pers->quiesce(mddev, 0);
5683 } else {
5684 /* remove the bitmap */
5685 if (!mddev->bitmap)
5686 return -ENOENT;
5687 if (mddev->bitmap->file)
5688 return -EINVAL;
5689 mddev->pers->quiesce(mddev, 1);
5690 bitmap_destroy(mddev);
5691 mddev->pers->quiesce(mddev, 0);
5692 mddev->bitmap_info.offset = 0;
5693 }
5694 }
5695 md_update_sb(mddev, 1);
5696 return rv;
5697 }
5698
5699 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5700 {
5701 mdk_rdev_t *rdev;
5702
5703 if (mddev->pers == NULL)
5704 return -ENODEV;
5705
5706 rdev = find_rdev(mddev, dev);
5707 if (!rdev)
5708 return -ENODEV;
5709
5710 md_error(mddev, rdev);
5711 return 0;
5712 }
5713
5714 /*
5715 * We have a problem here : there is no easy way to give a CHS
5716 * virtual geometry. We currently pretend that we have a 2 heads
5717 * 4 sectors (with a BIG number of cylinders...). This drives
5718 * dosfs just mad... ;-)
5719 */
5720 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5721 {
5722 mddev_t *mddev = bdev->bd_disk->private_data;
5723
5724 geo->heads = 2;
5725 geo->sectors = 4;
5726 geo->cylinders = mddev->array_sectors / 8;
5727 return 0;
5728 }
5729
5730 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5731 unsigned int cmd, unsigned long arg)
5732 {
5733 int err = 0;
5734 void __user *argp = (void __user *)arg;
5735 mddev_t *mddev = NULL;
5736 int ro;
5737
5738 if (!capable(CAP_SYS_ADMIN))
5739 return -EACCES;
5740
5741 /*
5742 * Commands dealing with the RAID driver but not any
5743 * particular array:
5744 */
5745 switch (cmd)
5746 {
5747 case RAID_VERSION:
5748 err = get_version(argp);
5749 goto done;
5750
5751 case PRINT_RAID_DEBUG:
5752 err = 0;
5753 md_print_devices();
5754 goto done;
5755
5756 #ifndef MODULE
5757 case RAID_AUTORUN:
5758 err = 0;
5759 autostart_arrays(arg);
5760 goto done;
5761 #endif
5762 default:;
5763 }
5764
5765 /*
5766 * Commands creating/starting a new array:
5767 */
5768
5769 mddev = bdev->bd_disk->private_data;
5770
5771 if (!mddev) {
5772 BUG();
5773 goto abort;
5774 }
5775
5776 err = mddev_lock(mddev);
5777 if (err) {
5778 printk(KERN_INFO
5779 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5780 err, cmd);
5781 goto abort;
5782 }
5783
5784 switch (cmd)
5785 {
5786 case SET_ARRAY_INFO:
5787 {
5788 mdu_array_info_t info;
5789 if (!arg)
5790 memset(&info, 0, sizeof(info));
5791 else if (copy_from_user(&info, argp, sizeof(info))) {
5792 err = -EFAULT;
5793 goto abort_unlock;
5794 }
5795 if (mddev->pers) {
5796 err = update_array_info(mddev, &info);
5797 if (err) {
5798 printk(KERN_WARNING "md: couldn't update"
5799 " array info. %d\n", err);
5800 goto abort_unlock;
5801 }
5802 goto done_unlock;
5803 }
5804 if (!list_empty(&mddev->disks)) {
5805 printk(KERN_WARNING
5806 "md: array %s already has disks!\n",
5807 mdname(mddev));
5808 err = -EBUSY;
5809 goto abort_unlock;
5810 }
5811 if (mddev->raid_disks) {
5812 printk(KERN_WARNING
5813 "md: array %s already initialised!\n",
5814 mdname(mddev));
5815 err = -EBUSY;
5816 goto abort_unlock;
5817 }
5818 err = set_array_info(mddev, &info);
5819 if (err) {
5820 printk(KERN_WARNING "md: couldn't set"
5821 " array info. %d\n", err);
5822 goto abort_unlock;
5823 }
5824 }
5825 goto done_unlock;
5826
5827 default:;
5828 }
5829
5830 /*
5831 * Commands querying/configuring an existing array:
5832 */
5833 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5834 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5835 if ((!mddev->raid_disks && !mddev->external)
5836 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5837 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5838 && cmd != GET_BITMAP_FILE) {
5839 err = -ENODEV;
5840 goto abort_unlock;
5841 }
5842
5843 /*
5844 * Commands even a read-only array can execute:
5845 */
5846 switch (cmd)
5847 {
5848 case GET_ARRAY_INFO:
5849 err = get_array_info(mddev, argp);
5850 goto done_unlock;
5851
5852 case GET_BITMAP_FILE:
5853 err = get_bitmap_file(mddev, argp);
5854 goto done_unlock;
5855
5856 case GET_DISK_INFO:
5857 err = get_disk_info(mddev, argp);
5858 goto done_unlock;
5859
5860 case RESTART_ARRAY_RW:
5861 err = restart_array(mddev);
5862 goto done_unlock;
5863
5864 case STOP_ARRAY:
5865 err = do_md_stop(mddev, 0, 1);
5866 goto done_unlock;
5867
5868 case STOP_ARRAY_RO:
5869 err = md_set_readonly(mddev, 1);
5870 goto done_unlock;
5871
5872 case BLKROSET:
5873 if (get_user(ro, (int __user *)(arg))) {
5874 err = -EFAULT;
5875 goto done_unlock;
5876 }
5877 err = -EINVAL;
5878
5879 /* if the bdev is going readonly the value of mddev->ro
5880 * does not matter, no writes are coming
5881 */
5882 if (ro)
5883 goto done_unlock;
5884
5885 /* are we are already prepared for writes? */
5886 if (mddev->ro != 1)
5887 goto done_unlock;
5888
5889 /* transitioning to readauto need only happen for
5890 * arrays that call md_write_start
5891 */
5892 if (mddev->pers) {
5893 err = restart_array(mddev);
5894 if (err == 0) {
5895 mddev->ro = 2;
5896 set_disk_ro(mddev->gendisk, 0);
5897 }
5898 }
5899 goto done_unlock;
5900 }
5901
5902 /*
5903 * The remaining ioctls are changing the state of the
5904 * superblock, so we do not allow them on read-only arrays.
5905 * However non-MD ioctls (e.g. get-size) will still come through
5906 * here and hit the 'default' below, so only disallow
5907 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5908 */
5909 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5910 if (mddev->ro == 2) {
5911 mddev->ro = 0;
5912 sysfs_notify_dirent_safe(mddev->sysfs_state);
5913 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5914 md_wakeup_thread(mddev->thread);
5915 } else {
5916 err = -EROFS;
5917 goto abort_unlock;
5918 }
5919 }
5920
5921 switch (cmd)
5922 {
5923 case ADD_NEW_DISK:
5924 {
5925 mdu_disk_info_t info;
5926 if (copy_from_user(&info, argp, sizeof(info)))
5927 err = -EFAULT;
5928 else
5929 err = add_new_disk(mddev, &info);
5930 goto done_unlock;
5931 }
5932
5933 case HOT_REMOVE_DISK:
5934 err = hot_remove_disk(mddev, new_decode_dev(arg));
5935 goto done_unlock;
5936
5937 case HOT_ADD_DISK:
5938 err = hot_add_disk(mddev, new_decode_dev(arg));
5939 goto done_unlock;
5940
5941 case SET_DISK_FAULTY:
5942 err = set_disk_faulty(mddev, new_decode_dev(arg));
5943 goto done_unlock;
5944
5945 case RUN_ARRAY:
5946 err = do_md_run(mddev);
5947 goto done_unlock;
5948
5949 case SET_BITMAP_FILE:
5950 err = set_bitmap_file(mddev, (int)arg);
5951 goto done_unlock;
5952
5953 default:
5954 err = -EINVAL;
5955 goto abort_unlock;
5956 }
5957
5958 done_unlock:
5959 abort_unlock:
5960 if (mddev->hold_active == UNTIL_IOCTL &&
5961 err != -EINVAL)
5962 mddev->hold_active = 0;
5963 mddev_unlock(mddev);
5964
5965 return err;
5966 done:
5967 if (err)
5968 MD_BUG();
5969 abort:
5970 return err;
5971 }
5972 #ifdef CONFIG_COMPAT
5973 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5974 unsigned int cmd, unsigned long arg)
5975 {
5976 switch (cmd) {
5977 case HOT_REMOVE_DISK:
5978 case HOT_ADD_DISK:
5979 case SET_DISK_FAULTY:
5980 case SET_BITMAP_FILE:
5981 /* These take in integer arg, do not convert */
5982 break;
5983 default:
5984 arg = (unsigned long)compat_ptr(arg);
5985 break;
5986 }
5987
5988 return md_ioctl(bdev, mode, cmd, arg);
5989 }
5990 #endif /* CONFIG_COMPAT */
5991
5992 static int md_open(struct block_device *bdev, fmode_t mode)
5993 {
5994 /*
5995 * Succeed if we can lock the mddev, which confirms that
5996 * it isn't being stopped right now.
5997 */
5998 mddev_t *mddev = mddev_find(bdev->bd_dev);
5999 int err;
6000
6001 if (mddev->gendisk != bdev->bd_disk) {
6002 /* we are racing with mddev_put which is discarding this
6003 * bd_disk.
6004 */
6005 mddev_put(mddev);
6006 /* Wait until bdev->bd_disk is definitely gone */
6007 flush_workqueue(md_misc_wq);
6008 /* Then retry the open from the top */
6009 return -ERESTARTSYS;
6010 }
6011 BUG_ON(mddev != bdev->bd_disk->private_data);
6012
6013 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6014 goto out;
6015
6016 err = 0;
6017 atomic_inc(&mddev->openers);
6018 mutex_unlock(&mddev->open_mutex);
6019
6020 check_disk_change(bdev);
6021 out:
6022 return err;
6023 }
6024
6025 static int md_release(struct gendisk *disk, fmode_t mode)
6026 {
6027 mddev_t *mddev = disk->private_data;
6028
6029 BUG_ON(!mddev);
6030 atomic_dec(&mddev->openers);
6031 mddev_put(mddev);
6032
6033 return 0;
6034 }
6035
6036 static int md_media_changed(struct gendisk *disk)
6037 {
6038 mddev_t *mddev = disk->private_data;
6039
6040 return mddev->changed;
6041 }
6042
6043 static int md_revalidate(struct gendisk *disk)
6044 {
6045 mddev_t *mddev = disk->private_data;
6046
6047 mddev->changed = 0;
6048 return 0;
6049 }
6050 static const struct block_device_operations md_fops =
6051 {
6052 .owner = THIS_MODULE,
6053 .open = md_open,
6054 .release = md_release,
6055 .ioctl = md_ioctl,
6056 #ifdef CONFIG_COMPAT
6057 .compat_ioctl = md_compat_ioctl,
6058 #endif
6059 .getgeo = md_getgeo,
6060 .media_changed = md_media_changed,
6061 .revalidate_disk= md_revalidate,
6062 };
6063
6064 static int md_thread(void * arg)
6065 {
6066 mdk_thread_t *thread = arg;
6067
6068 /*
6069 * md_thread is a 'system-thread', it's priority should be very
6070 * high. We avoid resource deadlocks individually in each
6071 * raid personality. (RAID5 does preallocation) We also use RR and
6072 * the very same RT priority as kswapd, thus we will never get
6073 * into a priority inversion deadlock.
6074 *
6075 * we definitely have to have equal or higher priority than
6076 * bdflush, otherwise bdflush will deadlock if there are too
6077 * many dirty RAID5 blocks.
6078 */
6079
6080 allow_signal(SIGKILL);
6081 while (!kthread_should_stop()) {
6082
6083 /* We need to wait INTERRUPTIBLE so that
6084 * we don't add to the load-average.
6085 * That means we need to be sure no signals are
6086 * pending
6087 */
6088 if (signal_pending(current))
6089 flush_signals(current);
6090
6091 wait_event_interruptible_timeout
6092 (thread->wqueue,
6093 test_bit(THREAD_WAKEUP, &thread->flags)
6094 || kthread_should_stop(),
6095 thread->timeout);
6096
6097 clear_bit(THREAD_WAKEUP, &thread->flags);
6098 if (!kthread_should_stop())
6099 thread->run(thread->mddev);
6100 }
6101
6102 return 0;
6103 }
6104
6105 void md_wakeup_thread(mdk_thread_t *thread)
6106 {
6107 if (thread) {
6108 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6109 set_bit(THREAD_WAKEUP, &thread->flags);
6110 wake_up(&thread->wqueue);
6111 }
6112 }
6113
6114 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6115 const char *name)
6116 {
6117 mdk_thread_t *thread;
6118
6119 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6120 if (!thread)
6121 return NULL;
6122
6123 init_waitqueue_head(&thread->wqueue);
6124
6125 thread->run = run;
6126 thread->mddev = mddev;
6127 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6128 thread->tsk = kthread_run(md_thread, thread,
6129 "%s_%s",
6130 mdname(thread->mddev),
6131 name ?: mddev->pers->name);
6132 if (IS_ERR(thread->tsk)) {
6133 kfree(thread);
6134 return NULL;
6135 }
6136 return thread;
6137 }
6138
6139 void md_unregister_thread(mdk_thread_t *thread)
6140 {
6141 if (!thread)
6142 return;
6143 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6144
6145 kthread_stop(thread->tsk);
6146 kfree(thread);
6147 }
6148
6149 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6150 {
6151 if (!mddev) {
6152 MD_BUG();
6153 return;
6154 }
6155
6156 if (!rdev || test_bit(Faulty, &rdev->flags))
6157 return;
6158
6159 if (mddev->external)
6160 set_bit(Blocked, &rdev->flags);
6161 /*
6162 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6163 mdname(mddev),
6164 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6165 __builtin_return_address(0),__builtin_return_address(1),
6166 __builtin_return_address(2),__builtin_return_address(3));
6167 */
6168 if (!mddev->pers)
6169 return;
6170 if (!mddev->pers->error_handler)
6171 return;
6172 mddev->pers->error_handler(mddev,rdev);
6173 if (mddev->degraded)
6174 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6175 sysfs_notify_dirent_safe(rdev->sysfs_state);
6176 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6177 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6178 md_wakeup_thread(mddev->thread);
6179 if (mddev->event_work.func)
6180 queue_work(md_misc_wq, &mddev->event_work);
6181 md_new_event_inintr(mddev);
6182 }
6183
6184 /* seq_file implementation /proc/mdstat */
6185
6186 static void status_unused(struct seq_file *seq)
6187 {
6188 int i = 0;
6189 mdk_rdev_t *rdev;
6190
6191 seq_printf(seq, "unused devices: ");
6192
6193 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6194 char b[BDEVNAME_SIZE];
6195 i++;
6196 seq_printf(seq, "%s ",
6197 bdevname(rdev->bdev,b));
6198 }
6199 if (!i)
6200 seq_printf(seq, "<none>");
6201
6202 seq_printf(seq, "\n");
6203 }
6204
6205
6206 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6207 {
6208 sector_t max_sectors, resync, res;
6209 unsigned long dt, db;
6210 sector_t rt;
6211 int scale;
6212 unsigned int per_milli;
6213
6214 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6215
6216 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6217 max_sectors = mddev->resync_max_sectors;
6218 else
6219 max_sectors = mddev->dev_sectors;
6220
6221 /*
6222 * Should not happen.
6223 */
6224 if (!max_sectors) {
6225 MD_BUG();
6226 return;
6227 }
6228 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6229 * in a sector_t, and (max_sectors>>scale) will fit in a
6230 * u32, as those are the requirements for sector_div.
6231 * Thus 'scale' must be at least 10
6232 */
6233 scale = 10;
6234 if (sizeof(sector_t) > sizeof(unsigned long)) {
6235 while ( max_sectors/2 > (1ULL<<(scale+32)))
6236 scale++;
6237 }
6238 res = (resync>>scale)*1000;
6239 sector_div(res, (u32)((max_sectors>>scale)+1));
6240
6241 per_milli = res;
6242 {
6243 int i, x = per_milli/50, y = 20-x;
6244 seq_printf(seq, "[");
6245 for (i = 0; i < x; i++)
6246 seq_printf(seq, "=");
6247 seq_printf(seq, ">");
6248 for (i = 0; i < y; i++)
6249 seq_printf(seq, ".");
6250 seq_printf(seq, "] ");
6251 }
6252 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6253 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6254 "reshape" :
6255 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6256 "check" :
6257 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6258 "resync" : "recovery"))),
6259 per_milli/10, per_milli % 10,
6260 (unsigned long long) resync/2,
6261 (unsigned long long) max_sectors/2);
6262
6263 /*
6264 * dt: time from mark until now
6265 * db: blocks written from mark until now
6266 * rt: remaining time
6267 *
6268 * rt is a sector_t, so could be 32bit or 64bit.
6269 * So we divide before multiply in case it is 32bit and close
6270 * to the limit.
6271 * We scale the divisor (db) by 32 to avoid loosing precision
6272 * near the end of resync when the number of remaining sectors
6273 * is close to 'db'.
6274 * We then divide rt by 32 after multiplying by db to compensate.
6275 * The '+1' avoids division by zero if db is very small.
6276 */
6277 dt = ((jiffies - mddev->resync_mark) / HZ);
6278 if (!dt) dt++;
6279 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6280 - mddev->resync_mark_cnt;
6281
6282 rt = max_sectors - resync; /* number of remaining sectors */
6283 sector_div(rt, db/32+1);
6284 rt *= dt;
6285 rt >>= 5;
6286
6287 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6288 ((unsigned long)rt % 60)/6);
6289
6290 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6291 }
6292
6293 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6294 {
6295 struct list_head *tmp;
6296 loff_t l = *pos;
6297 mddev_t *mddev;
6298
6299 if (l >= 0x10000)
6300 return NULL;
6301 if (!l--)
6302 /* header */
6303 return (void*)1;
6304
6305 spin_lock(&all_mddevs_lock);
6306 list_for_each(tmp,&all_mddevs)
6307 if (!l--) {
6308 mddev = list_entry(tmp, mddev_t, all_mddevs);
6309 mddev_get(mddev);
6310 spin_unlock(&all_mddevs_lock);
6311 return mddev;
6312 }
6313 spin_unlock(&all_mddevs_lock);
6314 if (!l--)
6315 return (void*)2;/* tail */
6316 return NULL;
6317 }
6318
6319 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6320 {
6321 struct list_head *tmp;
6322 mddev_t *next_mddev, *mddev = v;
6323
6324 ++*pos;
6325 if (v == (void*)2)
6326 return NULL;
6327
6328 spin_lock(&all_mddevs_lock);
6329 if (v == (void*)1)
6330 tmp = all_mddevs.next;
6331 else
6332 tmp = mddev->all_mddevs.next;
6333 if (tmp != &all_mddevs)
6334 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6335 else {
6336 next_mddev = (void*)2;
6337 *pos = 0x10000;
6338 }
6339 spin_unlock(&all_mddevs_lock);
6340
6341 if (v != (void*)1)
6342 mddev_put(mddev);
6343 return next_mddev;
6344
6345 }
6346
6347 static void md_seq_stop(struct seq_file *seq, void *v)
6348 {
6349 mddev_t *mddev = v;
6350
6351 if (mddev && v != (void*)1 && v != (void*)2)
6352 mddev_put(mddev);
6353 }
6354
6355 struct mdstat_info {
6356 int event;
6357 };
6358
6359 static int md_seq_show(struct seq_file *seq, void *v)
6360 {
6361 mddev_t *mddev = v;
6362 sector_t sectors;
6363 mdk_rdev_t *rdev;
6364 struct mdstat_info *mi = seq->private;
6365 struct bitmap *bitmap;
6366
6367 if (v == (void*)1) {
6368 struct mdk_personality *pers;
6369 seq_printf(seq, "Personalities : ");
6370 spin_lock(&pers_lock);
6371 list_for_each_entry(pers, &pers_list, list)
6372 seq_printf(seq, "[%s] ", pers->name);
6373
6374 spin_unlock(&pers_lock);
6375 seq_printf(seq, "\n");
6376 mi->event = atomic_read(&md_event_count);
6377 return 0;
6378 }
6379 if (v == (void*)2) {
6380 status_unused(seq);
6381 return 0;
6382 }
6383
6384 if (mddev_lock(mddev) < 0)
6385 return -EINTR;
6386
6387 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6388 seq_printf(seq, "%s : %sactive", mdname(mddev),
6389 mddev->pers ? "" : "in");
6390 if (mddev->pers) {
6391 if (mddev->ro==1)
6392 seq_printf(seq, " (read-only)");
6393 if (mddev->ro==2)
6394 seq_printf(seq, " (auto-read-only)");
6395 seq_printf(seq, " %s", mddev->pers->name);
6396 }
6397
6398 sectors = 0;
6399 list_for_each_entry(rdev, &mddev->disks, same_set) {
6400 char b[BDEVNAME_SIZE];
6401 seq_printf(seq, " %s[%d]",
6402 bdevname(rdev->bdev,b), rdev->desc_nr);
6403 if (test_bit(WriteMostly, &rdev->flags))
6404 seq_printf(seq, "(W)");
6405 if (test_bit(Faulty, &rdev->flags)) {
6406 seq_printf(seq, "(F)");
6407 continue;
6408 } else if (rdev->raid_disk < 0)
6409 seq_printf(seq, "(S)"); /* spare */
6410 sectors += rdev->sectors;
6411 }
6412
6413 if (!list_empty(&mddev->disks)) {
6414 if (mddev->pers)
6415 seq_printf(seq, "\n %llu blocks",
6416 (unsigned long long)
6417 mddev->array_sectors / 2);
6418 else
6419 seq_printf(seq, "\n %llu blocks",
6420 (unsigned long long)sectors / 2);
6421 }
6422 if (mddev->persistent) {
6423 if (mddev->major_version != 0 ||
6424 mddev->minor_version != 90) {
6425 seq_printf(seq," super %d.%d",
6426 mddev->major_version,
6427 mddev->minor_version);
6428 }
6429 } else if (mddev->external)
6430 seq_printf(seq, " super external:%s",
6431 mddev->metadata_type);
6432 else
6433 seq_printf(seq, " super non-persistent");
6434
6435 if (mddev->pers) {
6436 mddev->pers->status(seq, mddev);
6437 seq_printf(seq, "\n ");
6438 if (mddev->pers->sync_request) {
6439 if (mddev->curr_resync > 2) {
6440 status_resync(seq, mddev);
6441 seq_printf(seq, "\n ");
6442 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6443 seq_printf(seq, "\tresync=DELAYED\n ");
6444 else if (mddev->recovery_cp < MaxSector)
6445 seq_printf(seq, "\tresync=PENDING\n ");
6446 }
6447 } else
6448 seq_printf(seq, "\n ");
6449
6450 if ((bitmap = mddev->bitmap)) {
6451 unsigned long chunk_kb;
6452 unsigned long flags;
6453 spin_lock_irqsave(&bitmap->lock, flags);
6454 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6455 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6456 "%lu%s chunk",
6457 bitmap->pages - bitmap->missing_pages,
6458 bitmap->pages,
6459 (bitmap->pages - bitmap->missing_pages)
6460 << (PAGE_SHIFT - 10),
6461 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6462 chunk_kb ? "KB" : "B");
6463 if (bitmap->file) {
6464 seq_printf(seq, ", file: ");
6465 seq_path(seq, &bitmap->file->f_path, " \t\n");
6466 }
6467
6468 seq_printf(seq, "\n");
6469 spin_unlock_irqrestore(&bitmap->lock, flags);
6470 }
6471
6472 seq_printf(seq, "\n");
6473 }
6474 mddev_unlock(mddev);
6475
6476 return 0;
6477 }
6478
6479 static const struct seq_operations md_seq_ops = {
6480 .start = md_seq_start,
6481 .next = md_seq_next,
6482 .stop = md_seq_stop,
6483 .show = md_seq_show,
6484 };
6485
6486 static int md_seq_open(struct inode *inode, struct file *file)
6487 {
6488 int error;
6489 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6490 if (mi == NULL)
6491 return -ENOMEM;
6492
6493 error = seq_open(file, &md_seq_ops);
6494 if (error)
6495 kfree(mi);
6496 else {
6497 struct seq_file *p = file->private_data;
6498 p->private = mi;
6499 mi->event = atomic_read(&md_event_count);
6500 }
6501 return error;
6502 }
6503
6504 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6505 {
6506 struct seq_file *m = filp->private_data;
6507 struct mdstat_info *mi = m->private;
6508 int mask;
6509
6510 poll_wait(filp, &md_event_waiters, wait);
6511
6512 /* always allow read */
6513 mask = POLLIN | POLLRDNORM;
6514
6515 if (mi->event != atomic_read(&md_event_count))
6516 mask |= POLLERR | POLLPRI;
6517 return mask;
6518 }
6519
6520 static const struct file_operations md_seq_fops = {
6521 .owner = THIS_MODULE,
6522 .open = md_seq_open,
6523 .read = seq_read,
6524 .llseek = seq_lseek,
6525 .release = seq_release_private,
6526 .poll = mdstat_poll,
6527 };
6528
6529 int register_md_personality(struct mdk_personality *p)
6530 {
6531 spin_lock(&pers_lock);
6532 list_add_tail(&p->list, &pers_list);
6533 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6534 spin_unlock(&pers_lock);
6535 return 0;
6536 }
6537
6538 int unregister_md_personality(struct mdk_personality *p)
6539 {
6540 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6541 spin_lock(&pers_lock);
6542 list_del_init(&p->list);
6543 spin_unlock(&pers_lock);
6544 return 0;
6545 }
6546
6547 static int is_mddev_idle(mddev_t *mddev, int init)
6548 {
6549 mdk_rdev_t * rdev;
6550 int idle;
6551 int curr_events;
6552
6553 idle = 1;
6554 rcu_read_lock();
6555 rdev_for_each_rcu(rdev, mddev) {
6556 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6557 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6558 (int)part_stat_read(&disk->part0, sectors[1]) -
6559 atomic_read(&disk->sync_io);
6560 /* sync IO will cause sync_io to increase before the disk_stats
6561 * as sync_io is counted when a request starts, and
6562 * disk_stats is counted when it completes.
6563 * So resync activity will cause curr_events to be smaller than
6564 * when there was no such activity.
6565 * non-sync IO will cause disk_stat to increase without
6566 * increasing sync_io so curr_events will (eventually)
6567 * be larger than it was before. Once it becomes
6568 * substantially larger, the test below will cause
6569 * the array to appear non-idle, and resync will slow
6570 * down.
6571 * If there is a lot of outstanding resync activity when
6572 * we set last_event to curr_events, then all that activity
6573 * completing might cause the array to appear non-idle
6574 * and resync will be slowed down even though there might
6575 * not have been non-resync activity. This will only
6576 * happen once though. 'last_events' will soon reflect
6577 * the state where there is little or no outstanding
6578 * resync requests, and further resync activity will
6579 * always make curr_events less than last_events.
6580 *
6581 */
6582 if (init || curr_events - rdev->last_events > 64) {
6583 rdev->last_events = curr_events;
6584 idle = 0;
6585 }
6586 }
6587 rcu_read_unlock();
6588 return idle;
6589 }
6590
6591 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6592 {
6593 /* another "blocks" (512byte) blocks have been synced */
6594 atomic_sub(blocks, &mddev->recovery_active);
6595 wake_up(&mddev->recovery_wait);
6596 if (!ok) {
6597 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6598 md_wakeup_thread(mddev->thread);
6599 // stop recovery, signal do_sync ....
6600 }
6601 }
6602
6603
6604 /* md_write_start(mddev, bi)
6605 * If we need to update some array metadata (e.g. 'active' flag
6606 * in superblock) before writing, schedule a superblock update
6607 * and wait for it to complete.
6608 */
6609 void md_write_start(mddev_t *mddev, struct bio *bi)
6610 {
6611 int did_change = 0;
6612 if (bio_data_dir(bi) != WRITE)
6613 return;
6614
6615 BUG_ON(mddev->ro == 1);
6616 if (mddev->ro == 2) {
6617 /* need to switch to read/write */
6618 mddev->ro = 0;
6619 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6620 md_wakeup_thread(mddev->thread);
6621 md_wakeup_thread(mddev->sync_thread);
6622 did_change = 1;
6623 }
6624 atomic_inc(&mddev->writes_pending);
6625 if (mddev->safemode == 1)
6626 mddev->safemode = 0;
6627 if (mddev->in_sync) {
6628 spin_lock_irq(&mddev->write_lock);
6629 if (mddev->in_sync) {
6630 mddev->in_sync = 0;
6631 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6632 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6633 md_wakeup_thread(mddev->thread);
6634 did_change = 1;
6635 }
6636 spin_unlock_irq(&mddev->write_lock);
6637 }
6638 if (did_change)
6639 sysfs_notify_dirent_safe(mddev->sysfs_state);
6640 wait_event(mddev->sb_wait,
6641 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6642 }
6643
6644 void md_write_end(mddev_t *mddev)
6645 {
6646 if (atomic_dec_and_test(&mddev->writes_pending)) {
6647 if (mddev->safemode == 2)
6648 md_wakeup_thread(mddev->thread);
6649 else if (mddev->safemode_delay)
6650 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6651 }
6652 }
6653
6654 /* md_allow_write(mddev)
6655 * Calling this ensures that the array is marked 'active' so that writes
6656 * may proceed without blocking. It is important to call this before
6657 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6658 * Must be called with mddev_lock held.
6659 *
6660 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6661 * is dropped, so return -EAGAIN after notifying userspace.
6662 */
6663 int md_allow_write(mddev_t *mddev)
6664 {
6665 if (!mddev->pers)
6666 return 0;
6667 if (mddev->ro)
6668 return 0;
6669 if (!mddev->pers->sync_request)
6670 return 0;
6671
6672 spin_lock_irq(&mddev->write_lock);
6673 if (mddev->in_sync) {
6674 mddev->in_sync = 0;
6675 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6676 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6677 if (mddev->safemode_delay &&
6678 mddev->safemode == 0)
6679 mddev->safemode = 1;
6680 spin_unlock_irq(&mddev->write_lock);
6681 md_update_sb(mddev, 0);
6682 sysfs_notify_dirent_safe(mddev->sysfs_state);
6683 } else
6684 spin_unlock_irq(&mddev->write_lock);
6685
6686 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6687 return -EAGAIN;
6688 else
6689 return 0;
6690 }
6691 EXPORT_SYMBOL_GPL(md_allow_write);
6692
6693 void md_unplug(mddev_t *mddev)
6694 {
6695 if (mddev->queue)
6696 blk_unplug(mddev->queue);
6697 if (mddev->plug)
6698 mddev->plug->unplug_fn(mddev->plug);
6699 }
6700
6701 #define SYNC_MARKS 10
6702 #define SYNC_MARK_STEP (3*HZ)
6703 void md_do_sync(mddev_t *mddev)
6704 {
6705 mddev_t *mddev2;
6706 unsigned int currspeed = 0,
6707 window;
6708 sector_t max_sectors,j, io_sectors;
6709 unsigned long mark[SYNC_MARKS];
6710 sector_t mark_cnt[SYNC_MARKS];
6711 int last_mark,m;
6712 struct list_head *tmp;
6713 sector_t last_check;
6714 int skipped = 0;
6715 mdk_rdev_t *rdev;
6716 char *desc;
6717
6718 /* just incase thread restarts... */
6719 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6720 return;
6721 if (mddev->ro) /* never try to sync a read-only array */
6722 return;
6723
6724 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6725 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6726 desc = "data-check";
6727 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6728 desc = "requested-resync";
6729 else
6730 desc = "resync";
6731 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6732 desc = "reshape";
6733 else
6734 desc = "recovery";
6735
6736 /* we overload curr_resync somewhat here.
6737 * 0 == not engaged in resync at all
6738 * 2 == checking that there is no conflict with another sync
6739 * 1 == like 2, but have yielded to allow conflicting resync to
6740 * commense
6741 * other == active in resync - this many blocks
6742 *
6743 * Before starting a resync we must have set curr_resync to
6744 * 2, and then checked that every "conflicting" array has curr_resync
6745 * less than ours. When we find one that is the same or higher
6746 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6747 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6748 * This will mean we have to start checking from the beginning again.
6749 *
6750 */
6751
6752 do {
6753 mddev->curr_resync = 2;
6754
6755 try_again:
6756 if (kthread_should_stop())
6757 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6758
6759 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6760 goto skip;
6761 for_each_mddev(mddev2, tmp) {
6762 if (mddev2 == mddev)
6763 continue;
6764 if (!mddev->parallel_resync
6765 && mddev2->curr_resync
6766 && match_mddev_units(mddev, mddev2)) {
6767 DEFINE_WAIT(wq);
6768 if (mddev < mddev2 && mddev->curr_resync == 2) {
6769 /* arbitrarily yield */
6770 mddev->curr_resync = 1;
6771 wake_up(&resync_wait);
6772 }
6773 if (mddev > mddev2 && mddev->curr_resync == 1)
6774 /* no need to wait here, we can wait the next
6775 * time 'round when curr_resync == 2
6776 */
6777 continue;
6778 /* We need to wait 'interruptible' so as not to
6779 * contribute to the load average, and not to
6780 * be caught by 'softlockup'
6781 */
6782 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6783 if (!kthread_should_stop() &&
6784 mddev2->curr_resync >= mddev->curr_resync) {
6785 printk(KERN_INFO "md: delaying %s of %s"
6786 " until %s has finished (they"
6787 " share one or more physical units)\n",
6788 desc, mdname(mddev), mdname(mddev2));
6789 mddev_put(mddev2);
6790 if (signal_pending(current))
6791 flush_signals(current);
6792 schedule();
6793 finish_wait(&resync_wait, &wq);
6794 goto try_again;
6795 }
6796 finish_wait(&resync_wait, &wq);
6797 }
6798 }
6799 } while (mddev->curr_resync < 2);
6800
6801 j = 0;
6802 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6803 /* resync follows the size requested by the personality,
6804 * which defaults to physical size, but can be virtual size
6805 */
6806 max_sectors = mddev->resync_max_sectors;
6807 mddev->resync_mismatches = 0;
6808 /* we don't use the checkpoint if there's a bitmap */
6809 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6810 j = mddev->resync_min;
6811 else if (!mddev->bitmap)
6812 j = mddev->recovery_cp;
6813
6814 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6815 max_sectors = mddev->dev_sectors;
6816 else {
6817 /* recovery follows the physical size of devices */
6818 max_sectors = mddev->dev_sectors;
6819 j = MaxSector;
6820 rcu_read_lock();
6821 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6822 if (rdev->raid_disk >= 0 &&
6823 !test_bit(Faulty, &rdev->flags) &&
6824 !test_bit(In_sync, &rdev->flags) &&
6825 rdev->recovery_offset < j)
6826 j = rdev->recovery_offset;
6827 rcu_read_unlock();
6828 }
6829
6830 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6831 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6832 " %d KB/sec/disk.\n", speed_min(mddev));
6833 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6834 "(but not more than %d KB/sec) for %s.\n",
6835 speed_max(mddev), desc);
6836
6837 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6838
6839 io_sectors = 0;
6840 for (m = 0; m < SYNC_MARKS; m++) {
6841 mark[m] = jiffies;
6842 mark_cnt[m] = io_sectors;
6843 }
6844 last_mark = 0;
6845 mddev->resync_mark = mark[last_mark];
6846 mddev->resync_mark_cnt = mark_cnt[last_mark];
6847
6848 /*
6849 * Tune reconstruction:
6850 */
6851 window = 32*(PAGE_SIZE/512);
6852 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6853 window/2,(unsigned long long) max_sectors/2);
6854
6855 atomic_set(&mddev->recovery_active, 0);
6856 last_check = 0;
6857
6858 if (j>2) {
6859 printk(KERN_INFO
6860 "md: resuming %s of %s from checkpoint.\n",
6861 desc, mdname(mddev));
6862 mddev->curr_resync = j;
6863 }
6864 mddev->curr_resync_completed = j;
6865
6866 while (j < max_sectors) {
6867 sector_t sectors;
6868
6869 skipped = 0;
6870
6871 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6872 ((mddev->curr_resync > mddev->curr_resync_completed &&
6873 (mddev->curr_resync - mddev->curr_resync_completed)
6874 > (max_sectors >> 4)) ||
6875 (j - mddev->curr_resync_completed)*2
6876 >= mddev->resync_max - mddev->curr_resync_completed
6877 )) {
6878 /* time to update curr_resync_completed */
6879 md_unplug(mddev);
6880 wait_event(mddev->recovery_wait,
6881 atomic_read(&mddev->recovery_active) == 0);
6882 mddev->curr_resync_completed = j;
6883 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6884 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6885 }
6886
6887 while (j >= mddev->resync_max && !kthread_should_stop()) {
6888 /* As this condition is controlled by user-space,
6889 * we can block indefinitely, so use '_interruptible'
6890 * to avoid triggering warnings.
6891 */
6892 flush_signals(current); /* just in case */
6893 wait_event_interruptible(mddev->recovery_wait,
6894 mddev->resync_max > j
6895 || kthread_should_stop());
6896 }
6897
6898 if (kthread_should_stop())
6899 goto interrupted;
6900
6901 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6902 currspeed < speed_min(mddev));
6903 if (sectors == 0) {
6904 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6905 goto out;
6906 }
6907
6908 if (!skipped) { /* actual IO requested */
6909 io_sectors += sectors;
6910 atomic_add(sectors, &mddev->recovery_active);
6911 }
6912
6913 j += sectors;
6914 if (j>1) mddev->curr_resync = j;
6915 mddev->curr_mark_cnt = io_sectors;
6916 if (last_check == 0)
6917 /* this is the earliers that rebuilt will be
6918 * visible in /proc/mdstat
6919 */
6920 md_new_event(mddev);
6921
6922 if (last_check + window > io_sectors || j == max_sectors)
6923 continue;
6924
6925 last_check = io_sectors;
6926
6927 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6928 break;
6929
6930 repeat:
6931 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6932 /* step marks */
6933 int next = (last_mark+1) % SYNC_MARKS;
6934
6935 mddev->resync_mark = mark[next];
6936 mddev->resync_mark_cnt = mark_cnt[next];
6937 mark[next] = jiffies;
6938 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6939 last_mark = next;
6940 }
6941
6942
6943 if (kthread_should_stop())
6944 goto interrupted;
6945
6946
6947 /*
6948 * this loop exits only if either when we are slower than
6949 * the 'hard' speed limit, or the system was IO-idle for
6950 * a jiffy.
6951 * the system might be non-idle CPU-wise, but we only care
6952 * about not overloading the IO subsystem. (things like an
6953 * e2fsck being done on the RAID array should execute fast)
6954 */
6955 md_unplug(mddev);
6956 cond_resched();
6957
6958 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6959 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6960
6961 if (currspeed > speed_min(mddev)) {
6962 if ((currspeed > speed_max(mddev)) ||
6963 !is_mddev_idle(mddev, 0)) {
6964 msleep(500);
6965 goto repeat;
6966 }
6967 }
6968 }
6969 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6970 /*
6971 * this also signals 'finished resyncing' to md_stop
6972 */
6973 out:
6974 md_unplug(mddev);
6975
6976 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6977
6978 /* tell personality that we are finished */
6979 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6980
6981 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6982 mddev->curr_resync > 2) {
6983 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6984 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6985 if (mddev->curr_resync >= mddev->recovery_cp) {
6986 printk(KERN_INFO
6987 "md: checkpointing %s of %s.\n",
6988 desc, mdname(mddev));
6989 mddev->recovery_cp = mddev->curr_resync;
6990 }
6991 } else
6992 mddev->recovery_cp = MaxSector;
6993 } else {
6994 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6995 mddev->curr_resync = MaxSector;
6996 rcu_read_lock();
6997 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6998 if (rdev->raid_disk >= 0 &&
6999 mddev->delta_disks >= 0 &&
7000 !test_bit(Faulty, &rdev->flags) &&
7001 !test_bit(In_sync, &rdev->flags) &&
7002 rdev->recovery_offset < mddev->curr_resync)
7003 rdev->recovery_offset = mddev->curr_resync;
7004 rcu_read_unlock();
7005 }
7006 }
7007 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7008
7009 skip:
7010 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7011 /* We completed so min/max setting can be forgotten if used. */
7012 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7013 mddev->resync_min = 0;
7014 mddev->resync_max = MaxSector;
7015 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7016 mddev->resync_min = mddev->curr_resync_completed;
7017 mddev->curr_resync = 0;
7018 wake_up(&resync_wait);
7019 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7020 md_wakeup_thread(mddev->thread);
7021 return;
7022
7023 interrupted:
7024 /*
7025 * got a signal, exit.
7026 */
7027 printk(KERN_INFO
7028 "md: md_do_sync() got signal ... exiting\n");
7029 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7030 goto out;
7031
7032 }
7033 EXPORT_SYMBOL_GPL(md_do_sync);
7034
7035
7036 static int remove_and_add_spares(mddev_t *mddev)
7037 {
7038 mdk_rdev_t *rdev;
7039 int spares = 0;
7040
7041 mddev->curr_resync_completed = 0;
7042
7043 list_for_each_entry(rdev, &mddev->disks, same_set)
7044 if (rdev->raid_disk >= 0 &&
7045 !test_bit(Blocked, &rdev->flags) &&
7046 (test_bit(Faulty, &rdev->flags) ||
7047 ! test_bit(In_sync, &rdev->flags)) &&
7048 atomic_read(&rdev->nr_pending)==0) {
7049 if (mddev->pers->hot_remove_disk(
7050 mddev, rdev->raid_disk)==0) {
7051 char nm[20];
7052 sprintf(nm,"rd%d", rdev->raid_disk);
7053 sysfs_remove_link(&mddev->kobj, nm);
7054 rdev->raid_disk = -1;
7055 }
7056 }
7057
7058 if (mddev->degraded && !mddev->recovery_disabled) {
7059 list_for_each_entry(rdev, &mddev->disks, same_set) {
7060 if (rdev->raid_disk >= 0 &&
7061 !test_bit(In_sync, &rdev->flags) &&
7062 !test_bit(Blocked, &rdev->flags))
7063 spares++;
7064 if (rdev->raid_disk < 0
7065 && !test_bit(Faulty, &rdev->flags)) {
7066 rdev->recovery_offset = 0;
7067 if (mddev->pers->
7068 hot_add_disk(mddev, rdev) == 0) {
7069 char nm[20];
7070 sprintf(nm, "rd%d", rdev->raid_disk);
7071 if (sysfs_create_link(&mddev->kobj,
7072 &rdev->kobj, nm))
7073 /* failure here is OK */;
7074 spares++;
7075 md_new_event(mddev);
7076 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7077 } else
7078 break;
7079 }
7080 }
7081 }
7082 return spares;
7083 }
7084
7085 static void reap_sync_thread(mddev_t *mddev)
7086 {
7087 mdk_rdev_t *rdev;
7088
7089 /* resync has finished, collect result */
7090 md_unregister_thread(mddev->sync_thread);
7091 mddev->sync_thread = NULL;
7092 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7093 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7094 /* success...*/
7095 /* activate any spares */
7096 if (mddev->pers->spare_active(mddev))
7097 sysfs_notify(&mddev->kobj, NULL,
7098 "degraded");
7099 }
7100 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7101 mddev->pers->finish_reshape)
7102 mddev->pers->finish_reshape(mddev);
7103 md_update_sb(mddev, 1);
7104
7105 /* if array is no-longer degraded, then any saved_raid_disk
7106 * information must be scrapped
7107 */
7108 if (!mddev->degraded)
7109 list_for_each_entry(rdev, &mddev->disks, same_set)
7110 rdev->saved_raid_disk = -1;
7111
7112 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7113 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7114 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7115 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7116 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7117 /* flag recovery needed just to double check */
7118 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7119 sysfs_notify_dirent_safe(mddev->sysfs_action);
7120 md_new_event(mddev);
7121 }
7122
7123 /*
7124 * This routine is regularly called by all per-raid-array threads to
7125 * deal with generic issues like resync and super-block update.
7126 * Raid personalities that don't have a thread (linear/raid0) do not
7127 * need this as they never do any recovery or update the superblock.
7128 *
7129 * It does not do any resync itself, but rather "forks" off other threads
7130 * to do that as needed.
7131 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7132 * "->recovery" and create a thread at ->sync_thread.
7133 * When the thread finishes it sets MD_RECOVERY_DONE
7134 * and wakeups up this thread which will reap the thread and finish up.
7135 * This thread also removes any faulty devices (with nr_pending == 0).
7136 *
7137 * The overall approach is:
7138 * 1/ if the superblock needs updating, update it.
7139 * 2/ If a recovery thread is running, don't do anything else.
7140 * 3/ If recovery has finished, clean up, possibly marking spares active.
7141 * 4/ If there are any faulty devices, remove them.
7142 * 5/ If array is degraded, try to add spares devices
7143 * 6/ If array has spares or is not in-sync, start a resync thread.
7144 */
7145 void md_check_recovery(mddev_t *mddev)
7146 {
7147 if (mddev->bitmap)
7148 bitmap_daemon_work(mddev);
7149
7150 if (mddev->ro)
7151 return;
7152
7153 if (signal_pending(current)) {
7154 if (mddev->pers->sync_request && !mddev->external) {
7155 printk(KERN_INFO "md: %s in immediate safe mode\n",
7156 mdname(mddev));
7157 mddev->safemode = 2;
7158 }
7159 flush_signals(current);
7160 }
7161
7162 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7163 return;
7164 if ( ! (
7165 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7166 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7167 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7168 (mddev->external == 0 && mddev->safemode == 1) ||
7169 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7170 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7171 ))
7172 return;
7173
7174 if (mddev_trylock(mddev)) {
7175 int spares = 0;
7176
7177 if (mddev->ro) {
7178 /* Only thing we do on a ro array is remove
7179 * failed devices.
7180 */
7181 mdk_rdev_t *rdev;
7182 list_for_each_entry(rdev, &mddev->disks, same_set)
7183 if (rdev->raid_disk >= 0 &&
7184 !test_bit(Blocked, &rdev->flags) &&
7185 test_bit(Faulty, &rdev->flags) &&
7186 atomic_read(&rdev->nr_pending)==0) {
7187 if (mddev->pers->hot_remove_disk(
7188 mddev, rdev->raid_disk)==0) {
7189 char nm[20];
7190 sprintf(nm,"rd%d", rdev->raid_disk);
7191 sysfs_remove_link(&mddev->kobj, nm);
7192 rdev->raid_disk = -1;
7193 }
7194 }
7195 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7196 goto unlock;
7197 }
7198
7199 if (!mddev->external) {
7200 int did_change = 0;
7201 spin_lock_irq(&mddev->write_lock);
7202 if (mddev->safemode &&
7203 !atomic_read(&mddev->writes_pending) &&
7204 !mddev->in_sync &&
7205 mddev->recovery_cp == MaxSector) {
7206 mddev->in_sync = 1;
7207 did_change = 1;
7208 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7209 }
7210 if (mddev->safemode == 1)
7211 mddev->safemode = 0;
7212 spin_unlock_irq(&mddev->write_lock);
7213 if (did_change)
7214 sysfs_notify_dirent_safe(mddev->sysfs_state);
7215 }
7216
7217 if (mddev->flags)
7218 md_update_sb(mddev, 0);
7219
7220 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7221 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7222 /* resync/recovery still happening */
7223 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7224 goto unlock;
7225 }
7226 if (mddev->sync_thread) {
7227 reap_sync_thread(mddev);
7228 goto unlock;
7229 }
7230 /* Set RUNNING before clearing NEEDED to avoid
7231 * any transients in the value of "sync_action".
7232 */
7233 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7234 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7235 /* Clear some bits that don't mean anything, but
7236 * might be left set
7237 */
7238 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7239 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7240
7241 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7242 goto unlock;
7243 /* no recovery is running.
7244 * remove any failed drives, then
7245 * add spares if possible.
7246 * Spare are also removed and re-added, to allow
7247 * the personality to fail the re-add.
7248 */
7249
7250 if (mddev->reshape_position != MaxSector) {
7251 if (mddev->pers->check_reshape == NULL ||
7252 mddev->pers->check_reshape(mddev) != 0)
7253 /* Cannot proceed */
7254 goto unlock;
7255 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7256 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7257 } else if ((spares = remove_and_add_spares(mddev))) {
7258 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7259 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7260 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7261 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7262 } else if (mddev->recovery_cp < MaxSector) {
7263 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7264 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7265 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7266 /* nothing to be done ... */
7267 goto unlock;
7268
7269 if (mddev->pers->sync_request) {
7270 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7271 /* We are adding a device or devices to an array
7272 * which has the bitmap stored on all devices.
7273 * So make sure all bitmap pages get written
7274 */
7275 bitmap_write_all(mddev->bitmap);
7276 }
7277 mddev->sync_thread = md_register_thread(md_do_sync,
7278 mddev,
7279 "resync");
7280 if (!mddev->sync_thread) {
7281 printk(KERN_ERR "%s: could not start resync"
7282 " thread...\n",
7283 mdname(mddev));
7284 /* leave the spares where they are, it shouldn't hurt */
7285 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7286 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7287 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7288 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7289 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7290 } else
7291 md_wakeup_thread(mddev->sync_thread);
7292 sysfs_notify_dirent_safe(mddev->sysfs_action);
7293 md_new_event(mddev);
7294 }
7295 unlock:
7296 if (!mddev->sync_thread) {
7297 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7298 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7299 &mddev->recovery))
7300 if (mddev->sysfs_action)
7301 sysfs_notify_dirent_safe(mddev->sysfs_action);
7302 }
7303 mddev_unlock(mddev);
7304 }
7305 }
7306
7307 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7308 {
7309 sysfs_notify_dirent_safe(rdev->sysfs_state);
7310 wait_event_timeout(rdev->blocked_wait,
7311 !test_bit(Blocked, &rdev->flags),
7312 msecs_to_jiffies(5000));
7313 rdev_dec_pending(rdev, mddev);
7314 }
7315 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7316
7317 static int md_notify_reboot(struct notifier_block *this,
7318 unsigned long code, void *x)
7319 {
7320 struct list_head *tmp;
7321 mddev_t *mddev;
7322
7323 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7324
7325 printk(KERN_INFO "md: stopping all md devices.\n");
7326
7327 for_each_mddev(mddev, tmp)
7328 if (mddev_trylock(mddev)) {
7329 /* Force a switch to readonly even array
7330 * appears to still be in use. Hence
7331 * the '100'.
7332 */
7333 md_set_readonly(mddev, 100);
7334 mddev_unlock(mddev);
7335 }
7336 /*
7337 * certain more exotic SCSI devices are known to be
7338 * volatile wrt too early system reboots. While the
7339 * right place to handle this issue is the given
7340 * driver, we do want to have a safe RAID driver ...
7341 */
7342 mdelay(1000*1);
7343 }
7344 return NOTIFY_DONE;
7345 }
7346
7347 static struct notifier_block md_notifier = {
7348 .notifier_call = md_notify_reboot,
7349 .next = NULL,
7350 .priority = INT_MAX, /* before any real devices */
7351 };
7352
7353 static void md_geninit(void)
7354 {
7355 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7356
7357 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7358 }
7359
7360 static int __init md_init(void)
7361 {
7362 int ret = -ENOMEM;
7363
7364 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
7365 if (!md_wq)
7366 goto err_wq;
7367
7368 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7369 if (!md_misc_wq)
7370 goto err_misc_wq;
7371
7372 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7373 goto err_md;
7374
7375 if ((ret = register_blkdev(0, "mdp")) < 0)
7376 goto err_mdp;
7377 mdp_major = ret;
7378
7379 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7380 md_probe, NULL, NULL);
7381 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7382 md_probe, NULL, NULL);
7383
7384 register_reboot_notifier(&md_notifier);
7385 raid_table_header = register_sysctl_table(raid_root_table);
7386
7387 md_geninit();
7388 return 0;
7389
7390 err_mdp:
7391 unregister_blkdev(MD_MAJOR, "md");
7392 err_md:
7393 destroy_workqueue(md_misc_wq);
7394 err_misc_wq:
7395 destroy_workqueue(md_wq);
7396 err_wq:
7397 return ret;
7398 }
7399
7400 #ifndef MODULE
7401
7402 /*
7403 * Searches all registered partitions for autorun RAID arrays
7404 * at boot time.
7405 */
7406
7407 static LIST_HEAD(all_detected_devices);
7408 struct detected_devices_node {
7409 struct list_head list;
7410 dev_t dev;
7411 };
7412
7413 void md_autodetect_dev(dev_t dev)
7414 {
7415 struct detected_devices_node *node_detected_dev;
7416
7417 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7418 if (node_detected_dev) {
7419 node_detected_dev->dev = dev;
7420 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7421 } else {
7422 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7423 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7424 }
7425 }
7426
7427
7428 static void autostart_arrays(int part)
7429 {
7430 mdk_rdev_t *rdev;
7431 struct detected_devices_node *node_detected_dev;
7432 dev_t dev;
7433 int i_scanned, i_passed;
7434
7435 i_scanned = 0;
7436 i_passed = 0;
7437
7438 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7439
7440 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7441 i_scanned++;
7442 node_detected_dev = list_entry(all_detected_devices.next,
7443 struct detected_devices_node, list);
7444 list_del(&node_detected_dev->list);
7445 dev = node_detected_dev->dev;
7446 kfree(node_detected_dev);
7447 rdev = md_import_device(dev,0, 90);
7448 if (IS_ERR(rdev))
7449 continue;
7450
7451 if (test_bit(Faulty, &rdev->flags)) {
7452 MD_BUG();
7453 continue;
7454 }
7455 set_bit(AutoDetected, &rdev->flags);
7456 list_add(&rdev->same_set, &pending_raid_disks);
7457 i_passed++;
7458 }
7459
7460 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7461 i_scanned, i_passed);
7462
7463 autorun_devices(part);
7464 }
7465
7466 #endif /* !MODULE */
7467
7468 static __exit void md_exit(void)
7469 {
7470 mddev_t *mddev;
7471 struct list_head *tmp;
7472
7473 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7474 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7475
7476 unregister_blkdev(MD_MAJOR,"md");
7477 unregister_blkdev(mdp_major, "mdp");
7478 unregister_reboot_notifier(&md_notifier);
7479 unregister_sysctl_table(raid_table_header);
7480 remove_proc_entry("mdstat", NULL);
7481 for_each_mddev(mddev, tmp) {
7482 export_array(mddev);
7483 mddev->hold_active = 0;
7484 }
7485 destroy_workqueue(md_misc_wq);
7486 destroy_workqueue(md_wq);
7487 }
7488
7489 subsys_initcall(md_init);
7490 module_exit(md_exit)
7491
7492 static int get_ro(char *buffer, struct kernel_param *kp)
7493 {
7494 return sprintf(buffer, "%d", start_readonly);
7495 }
7496 static int set_ro(const char *val, struct kernel_param *kp)
7497 {
7498 char *e;
7499 int num = simple_strtoul(val, &e, 10);
7500 if (*val && (*e == '\0' || *e == '\n')) {
7501 start_readonly = num;
7502 return 0;
7503 }
7504 return -EINVAL;
7505 }
7506
7507 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7508 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7509
7510 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7511
7512 EXPORT_SYMBOL(register_md_personality);
7513 EXPORT_SYMBOL(unregister_md_personality);
7514 EXPORT_SYMBOL(md_error);
7515 EXPORT_SYMBOL(md_done_sync);
7516 EXPORT_SYMBOL(md_write_start);
7517 EXPORT_SYMBOL(md_write_end);
7518 EXPORT_SYMBOL(md_register_thread);
7519 EXPORT_SYMBOL(md_unregister_thread);
7520 EXPORT_SYMBOL(md_wakeup_thread);
7521 EXPORT_SYMBOL(md_check_recovery);
7522 MODULE_LICENSE("GPL");
7523 MODULE_DESCRIPTION("MD RAID framework");
7524 MODULE_ALIAS("md");
7525 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);